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1. Introduction 

As the Reynolds number for the flow around the aerofoils and fuselage of aircraft is 
usually very large, most of the boundary-layer flow along the surface will be turbulent. 
It is not possible to compute all the details of the turbulent motion within areasonabie 
turn-around time (say several hours) ; therefore for all practical computations the use 
of tU1'bulence models is mandatory. 

Up to now most designers and elevelopers of aerofoils compute turbulent flows 
with oleler generation modeis, like the algebraic moelels of Cebeci-Smith, Balelwin­
Lomax, or Johnson-King. More recently some industries and research institutes (like 
NLR) have also applieel two-equation moelels. All these moelels assume the existence 
of a single turbulent velocity and length scale, which is only approximately right for 
so-called equilibrium flows, such as attached boundary layers in a zero or moderate 
streamwise pressure gradient. lndeed those models have shown to be rather inaccu­
rate for non-equilibrium flows, like separating bounelary layers occurring in high-lift 
configurations; examples of such configurations are aerofoils under high angle of at­
tack, and muit i-element aerofoils. Therefore all these models are only accurate in a 
limited number of flow types, anel they elo not meet the high-accuracy requirements 
for a wiele range of configurations. As a result of this, experiments in wind tunnels 
still serve as the major source of design information . 

However, the new generation of turbulence moelels, i.e. Differential Reynolels­
Stress Moelels (DRSM) , are expecteel to eleliver much higher accuracy than the men­
tioneel algebraic anel two-equation moelels, anel such moelels can th us upgraele the role 
of computations in the design anel development process. The price of the improved 
accuracy in a wide range of configurations is an increased computational effort, as 
multiple differential equations have to be solved for the turbulence. But, provided 
the numerical methoels useel are appropriate, an acceptable turn-arounel time on a 
moelern work station seems to be obtainable. 

The present report gives an overview of the above-mentioneel types of turbulence 
moelels. The moelels were implementeel in in a bounelary-layer coele that is useel 
at the low-speeel aeroelynamics laboratory of our faculty. The coele was applieel to 
elifferent types of bounelary layers , both without anel with (favourable or aelverse) 
streamwise pressure graelient. We also useel the moel els to derive the scalings of the 
bounelary-layer at very large Reynolels numbers. The results of the application of the 
turbulence moelels are not inclueleel in this report , but they are publisheel in three 
journal papers: 

• Application of Turbulence Moelels to Attached Boundary Layers Relevant to 
Aeronautics, to appeal' in Applied Scientific Research (1997) . 

• Scalings of the Turbulent Bounelary Layer Along a F lat Plate According to 
Different Turbulence Moelels, to appear in International Joumal on Heat and 
Fluid .Flow (1997). 
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• Scaling of Equilibrium Boundary Layers Under Adverse PressUl'e Gradient Ac­
cOl'ding to Different Turbulence Modeis , Submitted to AIAA Journal (1997). 

The present report is meant to provide the details of turbulence modeIs, and may 
also be used as a text for undergracluate students in a course on boundary layers. 
Other valuable papers on turbulence models for external aerodynamics are provided 
by, for example, Bushnell (1991) and Hanjalié (1994). 

2. Equations for the Reynolds stresses 

Differential equations for the turbulent Reynolds stresses -u;uj can directly be de­
rived from the Navier-Stokes equations. These equations can be used as a starting 
point for turbulence modelling. 

To derive the Reynolds-stress equations, we use the tensor notation, with 

(1) 

The Einstein summation convention will be used, which says that if an index appears 
twice, asurnmation should be performed for all values that the index can have. For 
example 

or, 

au; aUl OU2 aU3 au a v aw 
-=-+-+-=-+-+-
ax; aXl OX2 OX3 ax oy az' 

(2) 

(3) 

By using the Einstein convention, the continuity equation for incompressible fiows 
can shortly be written as 

aUi ~ o. 
aXi 

(4) 

With the tensor notation the incompressible Navier-Stokes equation in the direc­
tion Xi (with i = 1,2,3) can be written as 

o ( ') ( ') 0 ( ') 1 0 ( ') 0
2 

') ( ) - Ui+Ui + 1lk+Uk -, - 11;+11; = --- p+p +//-.--(l1i +l1i .5 
at OXk p aXi OXkOXk 

Here the instantaneous velocity and pressure are split up in a time-averaged contri­
bution (denoted without a prime) and a fiuctuating quantity (denoted with a prime). 
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If this equation is averagecl in time, all terms that are linear in the fluctuations wi ll 
clisappear. For a stationary time-averagecl flow , the time averaging leads to 

au · -----u:u; 1 op 0211 . 
Uk-' + llk' -. -' = - -- + V -. - - ' - , 

a ;rk a .Tk p aXi aXka;Ck 

or to 

Because 

a " ,aUk' , au;' 
~(Ui Uk) = Ui ~ + Uk -;:;-- , 
UXk U:rk UXk 

and because, due to the continuity equation , 

BUk' --0 
OXk - , 

we can rewrite equation (7) as 

OUi 1 op 02Ui f) --
Uk- = - - -. - + v--- - -. -U/Uk" 

f)Xk p a :ri f)Xkf)Xk aXk 

(6) 

(7) 

(8) 

(9) 

(10) 

This is the Reynolds-Averaged Navier-Stokes equation (RANS) . This equat ion ele­
scribes how the time-averaged velocity fie ld is influenceel by the Reynolds stresses 

U:Uk ' 
A transport equation for the Reynolcls stresses can be derived as weIl. Thereto 

equation (5) is multiplied by uj, which gives 

, f) ( , ) , ( ' ) a ( , ) 1 f) ( , ) ,f)2 , 
Uj~ Ui+U j +uj Uk+uk ~ Uj+Uj = -Uj - ""i:l. p+p +VU);=l~-~(Ui+u;) , ( 11) 

ut UXk p u X, UXkU Xk 

(with i = 1,2,3 and j = 1,2,3). Then equation (5) in the j -direction is multiplied 
with u; (that is, i and jare just interchanged in the equation) , which gives 

, f) ( , )' ') f) (' 1 f) ( ') ,f)2 , Uj~ Uj+Uj +Ui(Uk +Uk -a. Uj+Uj) = -Ui - -
a 

. p+p +VUi~(tlj +Uj) .(12) 
ut Xk P x J UXkUXk 

Aelding equations (11) anel (12) gives, af ter time averaging 

------rJUï fh1 ----g:;z fh1 --au --au · au' au' , ' +' J + ' t + ' J + " ' +" J + " ' +" J (13) Uja Uia UkUj~ UkUia llj llk~ Uillk a lljUka UiUka = 
~ , Xk Xk" Xk Xk" Xk v Xk, 

1 2 3 4 

The different terms elenote the following physical processes: 
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1. unsteady term 

2. convection 

3. production 

4. turbulent diffusion 

5. redistribution of energy through the preSSUl·e 

6. molecular diffusion and dissipation 

When the time-averaged flow is assumed to be stationary, term 1 vanishes: 

0-,-, _ 0 at UiUj - . 

Using the continuity equation, term 4 can be rewritten as 

(14) 

(15) 

The quantity uiujuk is a so-called triple correlation. Using the new expressions for 
the terms 1 and 4, equation (1:3) leads to the following equation for the Reynolds 
stress u:uj 

0-,-, d P <P 
Uk~UiUj = ij + ij + ij - Eij, 

UXk 
(16) 

where d i j is the diffusion of the Reynolds stresses, Pij is the production of energy in 
the Reynolds stresses due to velocity gradients, <Pij is the pressure-strain correlation 
causing a redistribution of energy among the different components of the Reynolds­
stress tensor, and Eij is the dissipation rate of the energy in the Reynolds stresses. 
The different components are defined as 

6 

<P - _p' _J +_' 1 (OU'- all') 
'J - P aXi a:t'j ' 

au' OU'­
Eij = 2v-. _, _. _J. 

OXk OXk 



This shows that the total diffusion dij cau be spli t up in molecular diffusion aa 1/ aaUiUj , 
Xk 1'k 

turbulent diffusion -a~ u;ujuk' anel pressure eliffusion - ~(p'll:bjk + p'ujbik). 
1k p 

The equation for the turbulent kineti c energy k (= ~u:ll: = ~(ll,2 + V,2 + 10,2)) 
can be fOlllld by taking j =i in (16). U sing again the Einstein convention (that is 
taking the sum of the contributions due to i = 1, 2, 3), anel dividing the result by 2, 
gives 

with 

P 
_ - ,-, aUi 

k - - UiUk-a ' 
Xk 

(17) 

Note that the contribution of ep ij vanishes , as these terms serve to redistribute t he 

energy among the different components (epii = ~p'aau i = 0, see eq. (9)). 
P Xi 

If a flow is considered that is two-climensional aftel' time averaging, we have 

U3 = 0, uiu~ = 0, U2U~ = o. (18) 

Furthermore, all derivatives with respect to X3 are zero for all time-averagecl quanti­
ties. U neler the assumption of t wo-dimensionali ty, equation (17) recluces to 

(19) 

with 
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If the boundary-layer simplifications are made, which are 

o 0 - » - U2 « Uj , 
OX2 OXj , 

equation (19) reduces to 

ok ok 
u- + v- = d + Pk - E, 

OX oy (20) 

with 

d = - v- - -p'v' - - V '(U,2 + V,2 + W,2) , o (Ok 1- 1 ) 
oy oy p 2 

-ou 
Pk = -u'v' oy . 

(using the substitution Uj = u, U2 = V, Xl = X, X2 = y, et cetera). This is the 
boundary-layer equation for the turbulent kinetic energy. It is a convection-diffusion 
equation, with a source and sink term: 

• the turbulent kinetic energy is convected by the velocity vector (u, v), through 
ok ok 

the advection term u ax + v ay ; 
• the turbulent kinetic energy is diffused by the term d, which consists of molec­

ular diffusion, pressure diffusion, and turbulence diffusion; 

• the turbulent kinetic energy is generated by the source term P , which extracts 
energy from the mean gradient velocity field; 

• the turbulent kinetic energy is dissipated into heat by the sink term E, which is 
the so-called turbulent dissipation rate. 

3. Classification of turbulence models 

In the past decades a variety of turbulence modeIs has been developed. The most 
simple models are computationally very cheap, but can only be applied to those 
flow types for which they were originally developed. More complex models require 
more computational effort, but they have the advantage that they are applicable to 
a wider class of turbulent flows , because they incorporate more of the fundamental 
flow physics. 

A possible classification of existing turbulence models is given below: 
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• integral methods 

• Eddy- Viscosity Models (EVM); 

algebraic modeIs 

half-equation models 

- one-equation models 

- two-equation models 

• Differential Reynolds-Stress Moc\els (DRSM) 

• Large-Eddy Simulation (LES) 

• Direct Numerical Simulation (DNS) 

The most simple models are provided by integral methods. These models do not 
explicitly consider the variations in turbulence across the boundary-Iayer thickness, 
but instead they only make use of integral quantities , represented by shape factors, 
at each streamwise boundary-Iayer station. In this way partial differential equations 
(dependent on x and y) for the flow anel turbulence are replaceel by ordinary differen­
tial equations for the integral parameters. If suitable initial conditions are known at 
the first station X a , these ordinary differential equations (depencling on x) can easily 
be integrated with the help of a numeri cal integration scheme. 

Within the integral methods the precise moelelling of turbulence is not very dear. 
The methods heavily rely on empi rical relations bet ween the integral parameters. 
Due to their simplicity, integral met hoeis are sti ll very much useel in aerodynamic 
design codes. In thi s way, a complete airfoil polar can be computed very quickly on 
a simple computer. 

Eddy-viscosity modeIs relate the Reynolels-stresses -tt;ttj to the time-averaged 
gradient velocity field by introelucing an eeldy viscosity (or: t urbulent viscosity) Vt 

-tt ·u · = Vt - + - - -k8 · -'-I (aUi atl j) 2 
I J aX j aXi 3 IJ' 

(21) 

The last term -~k8ij has to be introeluced to obtain a consistent expression when the 
trace of the Reynolds-stress tensor is taken. Due to the continuity equation, taking 
j = i in (21) now leads to the correct expression 

-U;tt; = -2k. (22) 

If boundary-Iayer simplifications are made, equation (21) reduces to 

ou - - - .) 
-u'v' = v - anel tt ,2 = V,2 = W,2 = :,,~. 

toy' 3 (23) 

Within the eddy-viscosity concept it is assumed that there is au analogy between 
turbulent transport and molecular transport. It is emphasized, however, that in 
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contrast to the molecular viscosity /I, the turbulent viscosity /lt is not a fluid property. 
Therefore /lt can va.ry strongly through the flow . 

It should also be noted that as long as /lt (;"C , y) in equation (21) is not ftll-ther 
specified yet, no modelling for the Reynolds stresses has been made (except for the 
implicit assumption that /lt is a scalar and not a tensor). Of course, the turbulent 
viscosity has been introduced having in mind that the modelling of the turbulent 
viscosity is easier than the direct modelling of the Reynolds stress itself. 

Considering the dimensions of /lt shows that 

/lt = f(x,y) x V x L, (24) 

where V is a characteristic turbulent velocity scale, anel L is a characteristic turbulent 
length scale. The function f is dimensionless. These quantities can be modelleel in 
different ways. 

Algebraic turbulence models introeluce algebraic expressions for V and L, whereas 
f is taken as a constant. A well-known example of an algebraic model is the mixing 
length model , which has 

f = I, (25) 

For boundary layers the mixing length is taken as lm = Ky in the inner layer. Other 
well-known algebraic models are the Cebeci & Smith model and the Baldwin & Lomax 
model, which will be discussed in sections 4.1 and 4.2. 

The Johnson & King model (see section 4.3) is sometimes referreel to as a half­
equation model. In addition to algebraic relations, this model solves an ordinary 
differential equation for a quantity relateel to the turbulent velocity scale. As the 
complexity of this equation is in bet ween a partial differential equation and an alge­
braic equation this model is called a half-equation model. 

One-equation models solve, besides algebraic expressions, only one partial differ­
ential equation for the turbulence. A well-known one-equation model is the k - I 
model of Bradshaw et al. (see section .5), which solves a partia1 differential equation 
for the turbulent kinetic energy k (= V 2

) and an algebraic equation for the turbulent 
length scale I (= L ). 

Two-equation models solve two partial differential equations for the turbulent 
quantities. The most well-known two-equation model is the k - é model, which solves 
a differential equation for k and for é. Ana1ysing the dimensions gives that V = k1/ 2 

and L = P/2/é. Substituting these expressions into (24) gives 

k2 

(26) 

Thus the function I( x, y) has been replaced by the constant CJ.l. (which commonly has 
the value 0.09). 
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Another two-equation model, which seems to have become quite popltlar for aero­
nautical a,pplications, is the k - w model. This model solves partial differential equa­
tions for the turbulent kinetic energy and for the specific dissipation rate w, which is 
proportional to EI k. AnaJysing the dimensions gives V = 1 . .:l/2 and L = k1/2Iw, which 
leads to 

k 
Vt = Q-. 

w 
(27) 

Thus the function .f has been replaced by the constant Q. Other two-equation models 
replace the differential equation for E or w by an equation for the length scale (k - I 
model) or for the time scale (k - T model). 

It is noted that all t he mentioned two-equation models can be transformed into 
each other, because all models can actually be interpreted as representing the single 
velocity scale and the single length scale appearing in the the turbulent viscosity 
(24). For example the k - ( model can be transformed in a k - w model by using 
( = kw. However, turbulence modelIers argue, that some choices of the variables lead 
to simpier models than others. 

The two-equation models have the following restrictions: 

• linear relation between the Reynolds stresses and the gradient velocity field; 

• scalar character of the turbulent viscosity; 

• only one velocity scale and one length scale are considered; 

• anisotropy is not explicitly taken into accoun t (that is, U
,2 = V

,2 = W ,2 = § k if 
boundary-Iayer simplifications are applied). 

These restrictions can lead to an inaccurate prediction of flows that are more complex 
than just simple shear layers, such as: 

• flows with abrupt changes in the velocity field ; 

• flow along strongly curved surfaces; 

• stagnant flow regions ; 

• 3D flows ; 

• low-frequency unsteadiness. 

An example of a complex flow is turbulent bounclary-Iayer separation. The separation 
shows strong curvature and has strong velocity gradients. Such complex flow types 
can more accurately be predicted by differential Reynolds-stress modeis , which solve 
a partial differential equation for each component of the Reynolds-stress tensor. For 
example , to calculate a :3D flow 6 equations are solved (e.g. U

,2
, V

,2
, W

,2
, U'V ' , V 'W' , 

and V'W' , respectively). In adclition, the model also solves a clifferential equation for 
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the dissipation rate. The reason that differential Reynolds-stress models are most 
suited for complex flows is that the product ion of turbulence energy P does not have 
to be modelled. Therefore the production due to simple shear, curvature, 3D effects 
and rotation is represented exactly. 

For flows that contain relatively large-scale spatial structures and low-frequency 
unsteadiness, like near wake flows , flow buffeting and dynamic stalI, the use of a 
Large-Eddy Simttlation seems to be a promising approach. In contrast to the earlier 
mentioned modeIs, which all try to the model the time-averaged equations, the LES 
only models the small-scale structures, whereas the large-scale structures are calcu­
lated from an unsteady time integration. As the small-scale turbulence is almost 
isotropic, the so-called subgrid models in LES are expectecl to be not very crucial. 
LES was originally developed for meteorological appli cations, like the earth 's atmo­
spheric boundary layer , which typically consists of large-scale structures. More recent 
research on LES is also devoted to aeronautical boundary layers. 

The most exact approach of turbulence is the Direct Numerical Simulation. The 
3D unsteady Navier-Stokes equations are solved without applying a turbulence model. 
Very smal! numerical time steps and fine spatial grids have to be used to represent 
even the smal!est turbulent scales (i.e. the Kolmogorov scales), where turbulent 
dissipation takes place. Therefore a typical DNS takes several hundreds of hours 
CPU time on a supercomputer. Due to the large computer time, DNS is restricted 
to simple configurations (like channel flow, pipe flow, Couette flow, and boundary 
layers) at somewhat low Reynolds numbers. We cannot expect that DNS can be 
used for predicting the flow around a complete aircraft , or even on a wing, with in a 
few decades or so. For such flow types, the further development of turbulence models 
remains important. DNS for details of the turbulent flow, however, are important, 
as in acldition to experiments, the results can be used to validate turbulence modeIs. 

4. Algebraic models 

4.1. Cebeci & Smith model (1974) 

Cebeci & Smith have formulated an algebraic model that for a long time has been 
one of the most popular turbulence models in aeronautics. The boundary layer is 
spli t up in an inner layer and an outer layer. In the inner layer , which covers the 
viscous sublayer , the buffer layer, and the inertial sublayer, the turbulent viscosity 
/Jt ,i is modelled according to 

2 1 au 1 /Jt ,i = I ay ,. (28) 

This actually is Prandtl 's mixing length model, with 

(29) 
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Here y+ = y~T (and 'UT = JTtu / p, Tw = ft (~~ }w)' Close to the wall, the Van 

Driest da.mping function is applied. The function A + (= Au,,) only depends on the 
1/ 

magnitude of the streamwise pressure gradient according to 

')6 
A+ = -

Jl - 11.8 p+' 
(30) 

where p+ is the dimensionless pressure gradient vU (d
LU 

(here U is the velocity at the 
u3 x 

edge of the boundary layer). " . 
In equation (28), I is the intermittency factor, which accounts for the experiment al 
finding that the turbulence becomes intermittent when the outer edge of the boundary 
layer is approached. Hence the boundary layer is turbulent only during the fraction 
I of the time. Klebanoff has experimentally found that 

(31) 

in which 8 is the y-position where V = 0.995. In the inner layer this gives I ~ 1. 

In the outer layer the turbulent viscosity is modelled according to 

This shows that in the outer layer the characteristic velocity is assumeel to be pro­
portional to the outer eelge velocity U whereas the chara.cteristic length scale is pro-

portional to the elisplacement thickness 8* (= 1000 (1 - V) dy). The function Cl' is 

only elependent on the local Reynolds number based on the momentum thickness () 

(= 10
00 V (1 - V) dy) , accoreling to 

with 

1.55 
Cl' = 0.0168-- , 

1+11 

11 = 0.55(1 - exp( -0.243 ft;" - 0.298zd), 

Z1 = max [1 , Reo - 1] . 
425 

(33) 

The switch between the inner turbulent viscosity anel the outer turbulent viscosity 
Vt,o is at the y position where both values are equal , i. e. Vt ,i = Vt,o ' 
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4.2. Baldwin f:î LOl1w;z, model (1978) 

A disadvantage of the Cebeci & Smith model is that it contains typica.l boundary-layer 
parameters, like 8, 8* and (J. The computation of these parameters is straightforward 
when the boundary-layer equa.tions are considered, but is less d eal' when the model 
is implemented in a general RA NS code. The latter approach is often used for the 
computation of muit i-element airfoi ls a.nd/or for large scale separation regions occur­
ring at airfoils at high incidence. Therefore, Baldwin & Lomax have modified t he 
Cebeci & Smith model in such a way that the typical boundary-layer parameters are 
avoided. In the case that boundary layers are considereel , however, the results with 
the Baldwin & Lomax model are almost similar to the results with the Cebeci & 
Smith model. The Baldwin & Lomax moelel can be applieel both to bounelary layers 
along walls and to wake ftows , whereas the presented formulation of the Cebeci & 
Smith model is not applicable to wake ftows . 

Considering the Baldwin & Lomax model, the turbulent viscosity in the inner 

layer is the same as in the Cebeci & Smith, except for the interchange of ~~ by the 

moelulus of the local vorticity w: 

(34) 

Iwl = ( au _ av) 2 + (av _ ~w ) 2 + ( ~w _ ~u) 2 

ay ax az ay ax a:: 

The turbulent viscosity in the outer layer is moelelleel as 

(35) 

Here Ct = 0.0168 and Cl = 1.6. The function Fwake is defined as 

with C2 = 0.25 anel 

F(y) = ylwl[1 - exp( -y+ /A+) ]. 

The exponential term is omitteel if wake flows are consielereel . The quantity Fmax 

denotes the maximum value of F , anel Ymax is the value of y at which the maximum 
occurs. Further , Udiff is the difference between the maximum and minimum total 
velocity (Ju 2 + v 2 + w 2 ) in the profile at a fixeel x station. The minimum total 
velocity is zero for the boundary layer along a fixed wall , bu t can be nonzero if the 
moelel is applieel to wake ftows. The in termittency is moelelleel as 

Î = [1 +5.5 (C3y )6]-I , 
Ymax 

(:36) 
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with C3 = 0.3. 
The switch bet ween the inner turbulent viscosity and the outer viscosity takes 

place at the y position where both turbulent viscosities are equal. Comparing the 
Baldwin & Lomax model with the Cebeci & Smith model, for the case that bound­
ary layer simplifications are applied, shows that the main difference concerns the 
treatment of the velocity and length scale in the outer layer. 

The constants in the Ba.ldwin & Lomax model have been tuned for giving good 
predictions for zero-pressure gradient boundary layers at transoni c speeds. In the 
past years the Baldwin & Lomax model has quite of ten been used to compute a.irfoi ls 
at operational flow conditions. 

4.3. Johnson f3 [(ing model (J9S4J 

The algebraic modeIs of Cebeci & Smith and of Baldwin & Lomax turned out to work 
reasonably weil for attached boundary layers under weakly favourable or adverse pres­
sure gradients. For boundary layers in astrong adverse pressure grad ients, however, 
a too early separation was predicted . The reason for this seems to be that algebraic 
models are fully determined by local processes, whereas the gradual streamwise evo­
lution of turbulence is not expli citly included in the model. As a result of this , the 
algebraic model reacts too strongly on changes in the outer-edge velocity, leading to 
a too early separation. To account more properly for the so-called m emory or his­
tOl'y effects of turbulence, a more differential-type of modelling ShOldd be inc\uded. 
Therefore Johnson & King modified existing algebraic models by the inc\usion of an 
ordinary differential equation for the maximum turbulent shear stress. 

For the whole boundary layer the Johnson & King model evaluates the turbulent 
viscosity according to 

IJt = IJt ,o [1 - exp( -IJt ,;! IJt,o) 1 . (37) 

This actually is a blending function between IJt,i, meant to model the inner layer, and 
IJt,o, meant to model the outer layer. 
The turbulent viscosity for the inner layer is modelled as 

(38) 

in which Van Driest's dampingfunction is used, D = l- exp(-y+ jA+) (here A+ = 1.5 
is used). Equation (38) shows that the maximum of the turbulent shear stress is used 
to model the characteri stic turbulent velocity scale in the inner layer. Due to the the 
logarithmic wal! function, for zero pressure gradient boundary layers the turbulent 
shear stress is constant in the inertial sublayer, implying that there (-U'V')max in the 
model can be replaced by -u'v' as weIl. The lat ter expression is used in the algebraic 
models of Cebeci & Smith and Baldwin & Lomax. Indeed later on it will become 
c\ear that the .1ohnson & King model gives the same result for the inner layer in zero 

'pressure gradient flows , i.e. V(-U'V')max = Kyloujoyl. 
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The turbulent viscosity in the outer layer is moclellecl as 

(:39) 

with Q = 0.0168 ancl I is Klebanoff 's intermittency fllnction, I = [1 + .5 .. 5(y /8)6]-1. 
The value of the :r-clepenelent function f3 will fol!ow from an orelinary clifferential equa­
ti on for (-u'V')max. Actually, the function f3 wil! be chosen such that t he following 
relationshi p holcls: 

( 40) 

Here IJt is given by eqllatioll (37). The subscript m clenotes that the qllantity is 
evaluatecl at the position where - u'v' has its maximum. 

To complete the model an equation for the turbulent viscosity scale Vm = J( -u'v')max 
is needed. Thereto the differential equation for the turbulent kinetic energy (20) , as 
elerived in section 2, is applied along the path s of m aximum turbulent shear stress : 

(41) 

with 

( 0 (1- 1-)) 
dm = - oy r/'v' + 2Q2v

' m ' 

- (ou) Pm = (-u'v')max oy m 

Because s is approximately the same as x, the lat ter coorclinate has been useel in (41). 
The characteristic turbulent length scale is moelelleel as Lm = V';'/2/ Cm, with Vm = 
(-u'v')~;x' Furthermore the experimental fineling is applieel that the turbulent shea,r 
stress is almost proportional to the turbulent kinetic energy, i. e. (-u'v')max/ km = 
al = constant (here al is set to 0.25). Substitution of these expressions into (41) 
gives 

Lm D* 
V2 m' 

m 

(42) 

The turbulent length scale is moelelleel as Lm = O.4Ym, if Ym/8 ::::: 0.225 , anel as 
Lm = 0.098 if Ym/8 > 0.225. The eliffusion term in (42), as elenotecl by D;,,, also neecls 
further moelelling. If the turbulence in the bounclary layer is in 'local equilibrium ', as 
is the case for the zero pressure graelient bOllnelary layer, the eliffusion ancl convection 
are negligible in (42), anel the proeluction of turbulence is balancecl by clissipation. 
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Thus, for the equi librium case (denoted by the subscript. 'eq'), the Johnson & King 
moclel recluces to 

Ilt ,eq = Ilt ,o, [1 - exp( -llt,; ,e,J llt,("eq)] , 

(43) 

Ilt,o,eq = 0,0 168U Ó· ~/, 

The cliffusion is modelled as 

D';" = 'dif ' m 1 _ ~ , C \ / 3 1 ( )1 /21 
aló[0,7 - (:lJ/Ó)m] vt.o,eq 

(44) 

with Cdif = 0,50, The diffusion vanishes for the equilibrium case, 

5. One-equation models 

A one-equation model that has frequently been used for external aerodynamics is 
the model due to Braclshaw et al, (1967), th is model solves bes ides the continuity 
equation and the momentum equations, also a differential equation for the turbulent 
kinetic energy, as deri ved in section 2, This gives, under bounclary-layer simplifica­
tions 

with 

ou + av _ 0 
ax ay - , 

ou au 1 dp a-
u- + v- = --- - -u'v' 

ox ay p dx dy , 

ok ak 
u- + v- = d + P - E, 

ax ay 

- au 
Pk = -u'v' ay , 

(45) 

(46) 

( 47) 

In this formulation on ly high-Reynolels-number turbulence is consielereel . implying 
that contributions in which the molecular viscosity v appeal' have been neglecteel, As 
a consequence , this formu lation is not valiel very close to the wall , anel wal! functions 
have to be usecl as bounclary conclitions, 
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The Reynolds-stress T 

stress according to 
-pu'v' is rewritten as the kinematic Reynolds shear 

A T -
T = - = - 'tl'v'. 

P 
(48) 

Comparison of dimensions shows that the dissipation rate of turbulent kinetic energy 
can be written as 

f3/2 
E=y, (49) 

where L is a characteristic turbulent length scale. In the one-equation model of 
Bradshaw et al., the length scale L is modelled by an algebraic equation. In the 
special case that the production of kinetic energy equals its dissipation , i.t. Pk = E, 

it follows that 

-ou ou f3/2 
-u'v'- = f - = é = -oy oy L ' (50) 

which gives 

(.51 ) 

Hence for this specific case the turbulent length scale L is equal to the mixing length 
I. 

In the model the turbulent diffusion is assumed to be determined by the large 
eddies, which cover the full boundary-Iayer thickness. The characteristic velocity 
fluetuations are determined by the loeal Reynolds-shear stress f. The diffusion is 
eharaeterized by typieal gradients in f , whieh ean be represented by fmax , defined as 
the maximum of f for 0.25 :::; y / 8 :::; 1. In this way the model assumes that q2v' is 
proportional to rJfmax, with q2 = U,2 + V,2 + w,2. The same approximation is made 
for the pressure diffusion. This all ends up in the following modeled terms 

(52) 

(.53) 

In this model L , G and al are determined through ealibration with experiments ; 

L/8 = !1(y/8) and G = Jfmax /U2 !2(y/8) (where U is the loeal outer-edge veloeity 
and 8 is the loeal y where 'tl/U = 0.995). The functions h anc! !2 are assumed to 
have universal shapes. The strueture parameter is taken as al = 0.1 5. 
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Substitution of the modeled terms in to (45) to (47) glves the following one­
equation model: 

with 

Ou ov _ 0 
::l +::l - , 
v :r vy 

all Ou lap ai 
u-+v-=---+-

àx ày p àx dy ' 

ll- - + v- - = d + P - E, à(i) à(i) 
o;r 2al oy 2a1 

6. Two-equation models 

6.1. k - E models 

(54) 

(,55) 

(.56) 

In the k-E model, two differential equat ions are sol veel for the turbulent kinetic energy 
(k) anel the dissipation rate of turbulent kinetic energy (E), respectively. One of the 
first important publications on the k - E model was c1ue to Jones & Launder (1972). 
Through the years the model has become very poplilar for internal engineering flows, 
like flows in pipe systems. The appli cation of k - E models to external aeroclynamics, 
such as boundary layers with st reamwise pressure gradient , has only recently ga.ined 
more interest. 

Starting point of the moelelling are the exa.ct equations for the turbulent kinetic 
energy anel the elissipation rate of turbulent kineti c energy, both of which can be 
derived from the Navier-Stokes equations; in section 2 only the c1erivat ion of the 
exact equation for k has been given. However , the equation for E is much more 
compl icatecl than the equation for k. As a consequence the modellecl k equation 
shows a much closer link with the exact equation than the modelled E equation. 

Applying bounclary-layer simplifications, the continuity equat ion anel the differ­
ential equations for u , k anel E reacl 

àu + àv = 0 
àx ày , 

(.57) 
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ou OU 1 dp 0 [ OU] 
U-;- + V -;- = - -- + - (IJ + IJt) -;- , 

0,1' oy p d,r dy oy 
(58) 

ol.: ok 0 [ IJl Ok] 
U-;- + V-;- = -;- (IJ + - ) -;- + Pk - é + D, 

0.1' oy oy (Jk oy 
(.59) 

(60) 

with 

The model eontains so-ealleel high-Reynolds-nllmbel' constants (namely Cl" (Jk, (J" Cd 

anel C<2), and low-Reynolds-number functions (namely fl" h, h , D and E). Here 
the relevant Reynolds number is baseel on the loeal turbulenee quantities j possible 
elefinitions are R et = P/Vé, or Rek = yVk/v. 

First the high-Reynolels-number k - é moelel will be eliseussecL The high-Re 
model is found from (59) anel (60) by setting the low-Re functions to D = E = 0, 
anel 11' = h = h = L The high-Re moelel ean be applied in those regions of the 
flow were the turbulenee-baseel Reynolels number is sufficiently high. For example, 
high-Re turbulenee is found in the part of the bounelary layer that is both suffieiently 
far elownstream of the transition region anel not too close to the fixed wall (i.e. in 
the inertial sublayer or in the elefeet layer). 

Some of the high-Re constants ean be derived with the help of the wall functions 
for k and E. In the inertial sublayer the proeluetion of turbulent kinetic energy is 
assumed to be balaneed by its dissipation. This means that both convection anel 
diffusion ean be neglected in (.59), giving h = é, or 

(
ou) 2 

IJt - = é. 
oy 

(61) 

In the inertial sublayer the eonveetion ean also be neglecteel in the momentum equa­
tion (58), whieh simplifies to 

o ou 
oy (IJ + IJtl oy = O. 

This ean direetly be integrated to 

ou 2 
(v + Vt)-o = UT' 

Y 

with UT = JTll./P' Beeause Vt » I/ in the inertial sublayer, (62) reeluees to 

ou 2 
Vt oy = liT ' 
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Differentiation of the logarithl11ic waJI fun ction for t he velocity (u+ 

with u+ = U/UT) gives 

(Ju 1u; 1 

oy h: v y+ 

Frol11 equations (61) , (64) and (65) it foUows that 

1 
- lny+ + C, 
h: 

(65) 

(66) 

Non-dil11ensionalization with v and UT gives the eli ssipation rate In wal! units (as 
clenoteel with the + subscript): 

1 
t + --­

- "y+' 
(67) 

with t + = tv ju;'. Equation (67) is the waU function for the turbulent elissipation rate, 
anel is only valiel in the inertial sublayer. In the viscous sublayer the waU function 
gives ç+ -> = , which supports th at the expression has lost its valielity. 

Using Vt = CI"P jt, a.lso waU functions for the other turbulent quantities can be 
elerivecl, giving 

1 
(68) k+--- ,;c;; ' 

vi = "y+, (69) 

-+ -u'v' = 1, (70) 

with k+ = kjll 2 v+ = V jv -u'v'+ = -U'V'jll 2 
T' t t, T" 

The here cleriveel waU funct ions can be useel to proviele bounelary conelitions for 
the elifferential equations for k anel Eo This means that equations (67) anel (68) are 
useel as Dirichlet bounelary conelitions at the first inner computational griel point from 
t he waU . One has to take care that the first inner griel point is chosen sufficiently 
far away from the waU for the waU functions to holel. As a rule yi > 11.5 is useel. 
An aelvantage of using wall functions is that the application of many computational 
grid points for solving the steep graelients in the viscous sublayer anel the inertia.l 
sublayer can be avoieleel. A elisa.clvantage is that the preelictions, for example for the 
waU-shear stress , cannot be expecteel to be accurate in cases where the valielity of the 
waU functions is questionable, such as for bounelary layers with separation. 

Applying the wa.U functions for ~: anel -u'v' gives 

-u'v' 
--y- = vc;,. (71) 
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Indeed experiments have shown that t he turbulent shear stress is proportional to the 
turbulent kinetic energy in part of the boundary la.yer, and that the proportionality 
constant (of ten denoted as t he stnlctural pa'rameter) is equal to about 0.3. This 
constant is used to fix the value of Cl' at 0.09. 

The value for the model constant C<2 can be found by considering the behaviour 
of the k - E equations close to the outer edge of the boundary layer. Due to the 
asymptotic character of the boundary layer equations, all norm al gradients must 
vanish at the outer edge. This defines the proper boundary conditions for /.: and é 

at the outer edge, namely the homogeneous boundary conditions ~~ = a, ~~ = O. 

Therefore the boundary-Iayer equations (45) and (46) at the outer edge simplify to 

oke 
Ue -o = - Ee, (72) 

x 

(73) 

Here the subscript e is used to denote values at the outer edge. This system consists 
of two ordinary differential equations for k and E. At some initial station Xa, the 
value of k and E at the outer edge have to be specified, denoted as ke,a and Ee,a. For 
a constant free stream velo city, an exact solution for k exists: 

-I 

k = [ (C<2 -l )ée,a( _ ) + kl - C'2 ] C,2 -
1 

e kC., U x Xa e,a 
e,D e 

(74) 

For large x, this expression shows that k should decay as x-n
, with n = C'21_1 ' 

Experiments for the decay of isotropic grid turbulence give n ~ 1.25, which fixes 
the model constant C<2 at 1.8. Most k - é models use a slightly largel' value, namely 
C<2 = 1.92. 

The constants (7k and (7< are t he so-called t urbulent Prandt l numbers for the 
kinetic energy and the t urbulent energy dissipation rate, respectively. The turbulent 
Prandtl number dellOtes that the turbulent diffusion of k anel é is not necessarily 
the same as the turbulent diffusion of streamwise momentum. Most k - é moelels 
apply (7k = 1 anel (7< = 1.3. It is noteel that the term turbulent Praneltl number is 
introduced in analogy with the (molecular ) Prandt l number, which is elefined as the 
ratio bet ween the diffusion and thermal eliffusivity. 

Increasing computational sources have given further impetus to abandon the wall 
functions, and to replace the high-Re k - E moelel by an appropriate low- Re k - E 

moelel. Now the bounelary layer is computeel whole the way up to the wall , which 
requires a very fine computational griel in the viscous sublayer and in the buffer 
layer. T hrough the years a variety of formulations of these low-Re funct ions has been 
proposeel. As a guieleline in the derivation of these functions, Taylor expansions close 
to the wall shollid be useel; an overview is given by Patel et al. (1985). The main 
consieleration are as follows: 
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• limit for smal! y. Close to the wall the velocity perturbation ean be expanded 
aecording to 

u' alY + b1 y2 + ... , 
v' b2 y2 + ... , (75) 
w' (l3Y + b3y2 + .... 

. . .. - 1-- ou; ou; 
WJth these expansIOns the quantltles u'v', I.~ = ;-u;u;, E = v-;:;---;:;--, and Vt = 

2 U;Cj u.Tj 

- ou 
- u'v' j ~ become 

UY 

tt'v' al b2y3 + ... , 
k Ay2 + ... , 
E 2Av + ... , 

Vt ~ 
+ ... , - ou 

éJy wall 

(76) 

with A = ai + a§ . 

• D function and boundary condition fOT k and E. From the series expansions 
(76), the proper boundary conditions for k and E at the wall are found to be: 

k = 0 anel E = 2Av, with A = lim kjy2. 
y_O (OVk) 2 

Here A eau be eletermined as oy w 

1 (éJ
2k) 

or as 2 oy2 w' 

All developed low-Re k - Eindeed apply the zero bounelary conelition for k. 
However, not all models apply the nonzero value for (; instead sueh models 
apply E = 0 at the wall, under the introduction of an additional term D in the 
k-equation ; then the effective elissipation rate is E - D. The limiting behaviour 
of D close to the wa.ll can be fOllllel by substituting the series expansion (76) in 
the k equation, whieh gives 

(77) 

éJ2k 
with éJ

y
2 = 2A + .... With E = 0 at the wall , (77) shows that limD = 2A. 

y-O 

.. k (OVk) 2 Posslble chOlees for D are D = -2v y2 and D = -211 Dy 

23 



• hand E illnctions. Close to the wall the ( equa.tion (60) reduees to 

(78) 

à2 

The ehoiee for hand E ShOldd be su eh tha.t :::"l ~ = 0(1) for small y. For 
uy 

example, if E = 0 and the nonzero boundary condition for ( is prescribed 
(implying that ( is 0(1) for small y), it follows that h must be ehosen sueh 
that it deeays as y2 close to the wal!. Some models introduce a nonzero E term, 
but its physieal meaning is not very dear. 

Most mode Is ehoose h sueh that the deeay of isotropie grid turbulenee is mod­
elled in agreement with experiments . As al ready mentioned in the previous 
description of high-Re modeis, experiments show that k deeays as x - n

, with 
n ~ 1.25 . However if the turbulenee has deeayed to suffieiently smallieveis, the 
deeay rate n inereases to about 2.5. Thus the limiting behaviour of h follows 
from 

(79) 

with n ~ 1.25 for Ret --; 00 (whieh means that h = 1, using the eommon value 
for C<2), and n ~ 2.5 for Ret --; 0 (whieh means that h = 1.4/c<2)' 

• il' illnction. This function ShOlild be ehosen sueh that the limiting behaviour 
IJt = 0(y3) in eq. (76) is reprodueed. Indeed most low-Re models give a power 
of 3 or 4 in IJt. 

Among existing low-R e modeis , the model of Launder & Sharma (1974) seems to 
be superior for a large number of test cases. This model takes k = 0 and ( = 0 as 
boundary conditions at the wall , and it determines the low-Re functions as: 

il' ( -3 .4 ) 
exp (1 + Ret/50F 

11 1.0 , 
h 1 - 0.3 exp( -Ren, 

-2IJ (àv'kr D ày 
E (à2

l( r = 2IJIJt ày2 
The high-R e constants have the eommon values: CII = 0.09, Cd 

O"k = 1.0, and 0", = 1.3. 
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6.2. k - w models 

In this type of models the equation for the di ssipation rate in the I.: - E model is 
replaced by an equation for the reciprocal turbulent time scale w. Consic\ered is the 
low-Reynolds-number I.: - w model of Wilcox (1993): 

with 

àk al.: a [( IJt ) fJl.~ ] 
U-;-- + V-;-- = -;-- IJ + - - + Pk - E, 

D:r ay ày (Jk Dy 

11- + V-;-- = -;-- v + - - + cx-Pk - (3w , aw Dw fJ [( Vt) ow ] w 2 

Dx Dy Dy aw Dy I.: 

k Vt = cx' - , E = (3'l.:w. 
w 

The low- Reynolds-number functions are defined by 

, cxà + Ret! Rek 
cx = , cx(j = (3/3 , Rek = 6, 

1 + Ret! Rek 

5 CXo + Ret! Rew 1 
cx = - , CXo = 0.1 , Rew = 2.7, 

9 1 + Ret! Rew cx' 

(81) 

(82) 

The other coefficients in the model are (3 = 3/40, (Jk = (Jw = 2. The turbulence-based 
I.: 

Reynolds number Ret is defined here as - . The wal! boundary conditions are set 
wv 

. 6v 
to: k = 0, w = hm -(3 2 ' y-o Y 

This low-Reynolds-number model can be transformed into a high-Reynolds-number 
model by taking the limit Ret -> 00, which gives cx' = 1, cx = 5/9, (3" = 0.09. 

7. Differential Reynolds-Stress Model (DRSM) 

For the flow arOlmd airfoils , the merits of second-moment closure over eddy-viscosity 
based closures become obvious in a number of regions: 

• Stagnant flow regions. We consider an oncoming flow tha.t hi ts the perpendic­
ular plane ;f = O. This flow type resembles the stagnation zone on an a.irfoil 

. . . . 1 H 1 I I ' I' (' àu! or a Jet lmplllgmg on apate. ere t le norma ve OClty grac lents l .. f. -à 
J: l 
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and a~'1~2 ) , or the so-cal!ed irrota.tiona.l strain rates, are dominant compared to 
;{' 2 

h I · \. ( . aUl \ a1(2) II \ . I . t e cross ve oClty grac lents 'l.e . -a anc -a , Ol' so-ca ec rotatlOna stram 
;{:2 X l 

rates. The exact production of kinetic energy (see eq. (19)) is given by (no 
boundary-Iayer simplifications are made) 

(8:3) 

For incompressib le flow , due to the divergence-freedom of the velocity fi eld, 
the first two terms partly balance each other. This shows tha.t the irrota­
tional strains contribute little to the production of the turbulent kinetic energy, 
but they mainly help to change the shape of turbulent eddies from oncom­
ing :3D structures to almost 2D pancake-like structures . In contrast to the 
second-moment closure (where the production term is described exactly), the 
eddy-viscosity model (21) does not recognize this mechanism, as it modeIs the 
turbulent production as 

(84) 

Hence in the eddy-viscosity model both normal st rains increase the turbulent 
kinetic energy. This leads to an excessive overprediction of the turbulenee level. 
As the reattaehment zone of a turbulent separation bubble in a boundary layer 
wil! also be influenced by su eh a mechanism, eddy-viscosity models tend to 
predict a too early reattachment , as compared to differenti al Reynolds-st ress 
models. 

• streamline curvature. Using stabi li ty analysis, one can show that a laminar 
boundary-Iayer flow is stabilized if the wal! has a convex shape, whereas it is 
desta.bilized if the wal! has a concave shape. The lat ter shape causes streamwise 
Görtler vortices in the flow , whieh are due to a eentrifuga.l instabili ty. This 
fundamental instabili ty meehanism is also reflected by the exact expression of 
the turbulent kinetic energy source. 

In contrast to this, the representation of the energy source by the eddy-viscosity 
model only contains positive terms, showing that this model cannot distinguish 
between the sign of the curvature. Therefore the eddy-viscosity model cannot 
be expected to work wel! if the boundary layer has strong curva.ture, li ke in the 
region close to separation . 

• .'JD .fiows . The eddy-viscosity model (21) can be rewritten as 
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with 

c,' . _ alti alt j 
LIJ - ~+~. 

u .1:j U Xi 

Here a ij is the anisotropy tensor, and Sij is the rate of sb'ain tensor. As Vt is a 
scalar , the eddy-viscosity model asSt1ll1es that the anisotropy tensor is aligneel 
with the rate of strain tensor. This is not true for strongly :3D flows , which occur, 
for example in the boundary layer along a swept wing. The turbulence in such 
a flow is the result of a combined effect of (i) simple shear strain (as also found 
in a 2D zero pressure gradient boundary layer), (ii) aelditional (irrotational) 
strains due to a favourable or adverse pressure gradient in the direction along 
the wall , perpendicular to the leaeling edge, anel (iii) adelitional (irrotational) 
strains due to spanwise pressure gradients. 

The specific differential Reynolds-stress model considered here has been proposed by 
Hanj alié, Jakirlié, and Had zié (199.5) (see also Jakirlié et al., 1994) ; the model will be 
denoted as the HJH model. This model is mainly based on high-Reynolds-number 
expressions as proposed earlier by different authors, and on a modification of the 
low-Reynolds-number terms of Launder & Shima (1989) . 

The different terms , as appearing in the transport equat ion (16) for the Reynolds 
stress u:uj are described as fo llows . 

• The triple correlation is approximated with the Generalized Gradient Diffusion 
Hypothesis 

(86) 

with Cs = 0.22. Thus the unknown triple correlation is modelleel with the help 
of known second-order correlations . 

The pressure diffusion is not explicitly moelellecl. U sing (86) the model for the 
diffusion d ij in (16) is 

a [( k- ) aUlU
l

] 
d ij = ~ V + Cs-ukuÎ ~ , 

UXk E Ux[ 
with Cs = 0.22 (87) 

• The term P ij only contains second-oreler correlations bet ween the fluctuating 
velocity components. No modelling is needed here. 
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• The term <Pij consists of second-order correla.tions bet ween the fluctuating pres­
sure and velocity components; these correla.t ions need to be modelled. The term 
serves to redistribute turbulent kinetic energy among different normal compo­
nents. Although the pressure fiuctuatioll has an elliptic character , most exist ing 
models approximate the pressure-stra.in correlation by a single-point c!osure, 
which consists of the following contributions 

<Pij = <P ij ,l + <P ij,2 + <Pij, l + <P0,2' (88) 

The first term, <P ij,l , is modelled by using Rotta's return-to-isotropy hypothesis 

(89) 

where (lij is the anisotropy tensor (85). The hypothesis states that anisotropic 
turbulence has the tendency to return to an isotropic state; the redi stribut.ion 
of energy, by the pressUl'e-strain force, works in that way. The constant Cl is 
the so-caUed Rotta constant (actuaUy it is made a function in the HJJ model). 

The second term in (88), <P ij,2, is called the rapid-distortion part. It can be 
modelled by using the isotropiza.t ion-of-product ion hypothesis: 

(90) 

with Pk = ~h. 
Close to the wall , addit ional wall terms are needed, wh ich are of ten denoted as 
pressure waU reflection terms: 

(91) 

(92) 

Here ni are the components of a. unit vector normal to the soliel waU. The 
function Jw in the HJJ model is chosen as 

{ 
P/2 } Jw = min -')--; 1.4 , 

:...5crn 

where X n is the distance normal to the wal!. 

(93) 

In the original differential Reynolels-stress model, Cl , C2 , Ct , anel Ci" were aU 
constants, but Launder & Shima (1989) andJakirli é et al. (1994) replaced these 
constallts by functions, which dep end on the local turbulence-based Reynolds 
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b R P dl" fl . num er, et = - , an on t le lllvanant parameter 0 t le stress al1lsotropy 
VE 

tensor, A. Here A is defined as 

(94) 

with A 2 = aij(!ji and A3 = (!ij(!jk(!ki. For isotropic turbulence we have aij = 0, 
which gives A = 1. \"'hen a wal! is approached, the normal stress component 
perpendicular to the wal! decreases much faster than the other two norm al 
stresses, which means that the limit of 2D turbulence is obtained. It can be 
shown that A = 0 for 2D turbulence. Hence the model feels that a wal! is 
approached , not only by a decrease of R et, but also by a decrease of A. 

The HJJ model also int roduces the invariant of the dissipation anisotropy ten­
sor: 

9 
E = I - -(E2 - E3 ) 

8 ' 
(95) 

with E 2 = eijeji , E3 = eijejkeki, and eij = :;. - ~8ij. The HJJ model takes the 
fol!owing functions for the pressure-strain correlation 

Cl = C + VAE2, C2 = O.8VA, 
Cf = max{l- 0.7C ;0.3} , Cf = min{A ; 0.3}, 

(96) 

with 

C = 2.5AFI/4f, F . {O 6 A } = mln . ; 2 , 

• The dissipation tensor Eij is model!ed as 

(97) 

with 

Here the functions Is and fd are chosen as 

I 
Id = I + O.IRt t 

(98) 
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For isotropic, fully turbulent flow , we have Is = 1 and Id = 0, and (97) reduces 
to the isotropie farm éij = ~8ijé. 
Equation (97) denotes an aJgebraic relation bet ween the di ssipation tensor é ij 

(which conta.ins 6 different components in a 3D flow) and the sealar dissipa­
tion t. The lat ter quanti ty will be described by a differenti al equation. With 
other wards, although the different iaJ Reynolds-stress model has introdueed 6 
differentia.l equations far the seeond-order velocity eorrelations (whieh can be 
interpreted as representing 6 different turbulent velocity seales ), there is still 
only one differential equation that determines the turbulent leng th seale. A t­
tempts to develop mult iple (JengtJl or time) seale models do exist , but sueh 
models have not been used very much sa far. 

The HJJ model solves the following differential equation for the sealar di ssipation 
rate é 

(99) 

H - ') a.Jk a.Jk h II h bid" - O' 'b d Of ere é = é - _v~~; at t e wa t e oune ary con ItJon é = IS presen e . 
U Xj U Xj 

course, for the differential equations for the Reynolds stresses, the boundary condition 
u:uj = 0 is prescribed at the wal!. 

The different constants and fun ct ions in (99) are ehosen as 

C, = 0.18, Cd = 1.44, C<2 = 1.92, C'3 = 0.25, (100) 

r _ _ C<2 - 1.4 , [_ (Ret )2] II'- = 1, Id = 1, .1 <2 - 1 C<2 exp 6 . 

The function SI is a modification of a term originally proposed by Yap (1987) , and 
of ten referred to as the Yap-correction . The term is mean t to suppress the growth of 
the turbulent length seale I (= k3

/
2 I é) in region wi th separation and / or reattachment. 

In the HJ J model the term is taken as 

{ [ (lal) 2 1 (1 Ol) 2 } éÈ 
SI = max Cl a~: n - 1 Cl aX

n 
; 0 IA , (101) 

with X n is the eoordinate normal to the wall . 
The term S'4 is very important for aeronaut ieal applieations, as it turns out to be 

erueia.l for the the correct prediction of t he influenee of the streamwise pressure gra­
dient on the turbulent boundary layer. Physically, a favourable pressure gradient will 

30 



decrease the turbulence level, and may even lead to relaminarization of the turbulent 
bounda,ry la.yer , whereas an adverse pressure gradient will en hance the turbulence. 

To derive S", we first consider the source di ssipat ion due to straining as repre­
~ -- àll ' 

sented by - Cd l:11iuj à:r~' For a 2D time-a,veraged Aow, this term reads 

C 1 - -1('V'- - u'v'- _1(,2- - v' - . ~ ( _àu -àv -à'tt 20V) 
, k ày àx ox oy 

(102) 

The first t wo con tributions denote t he effects of shear strains (or : rotationa.l strains) 
a.ncl the last two terms are due to normal strains (or: irrotational strains) . Hanj a.li é 
& Launder (1980) have suggested that in boundary layers with nonzero streamwise 
pressure gradient the effect of irrotational st rains on the di ssipation rate might be 
different ; with ot her words the constant Cd in (102) should have a different value 
when combined with the first two and last two contributions, respectively. Hanj alié 

& Launder have accounted for th is effect by adding the term 8,,4 = C'4 ~(V,2 _1(,2) ~'tt 
k ux 

to eq. (99). In the HJJ model the new constant is taken as C'4 = 1.16 
A disadvantage of the formulation of this extra term is that it is not coordinate 

invariant. For a 2D t ime-averagecl flow , this formulation is similar to the formu lation 
of J akirli é et al. (1994). For an adverse pressure gradient boundary layer (with 

~1( < 0 and1(,2 > V,2), the ext ra, term is positive, and will thus increase the dissipation 
u X 
rate ~, implying a decrease of the turbulent length scale, This indeed is the desired 
effect, as experiments have shown that the increase of the turbulent length scale due 
to an adverse pressure grad ient is far less than would be preclicted by the standa rcl ~ 

equation. 
In this section the clifferential Reynolcls-stress model was presented in t he tensor 

notation . Many terms will disappeal' if the time-averaged flow is two-dimensional , 
and if the boundary-layer simplifications are applied . The latter simplifications are 

o 0 
~ » -;:;-, 
uy u x 

op = _pUdU 
ox dx ' 

(10:3) 

where U is the free-st ream velocity. These simplifications are justifiecl for high 
Reynolcls numbers and for weak streamwise pressure gradien ts. The resul t ing equa­
tions are parabolic , which can be solvecl with far less computational effort than the 
original elliptic Reynolds-A veraged N avier-Stokes formulation. 

The two-dimensional bounclary-Iayer equations for the clifferential Reynolcls-stress 
model are: 

Conservation of mass: 

(104) 
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Conservation of m.omentum: 

àtt àv {Ptt dU àu'v' 
u- +v- = 11 - +u- - --, 

ax ày ày2 dJ: éJy 
(105) 

Equations fOl' the Reynolds nOTmal stl'esses: 

(106) 

(107) 

u-,- + v-- = - 11 + Cs -V,2 -- + P33 + <1>33 - E33, 
aW,2 f}w,2 a [( k-) éJw,2] 

f}x f}y ay E f}y 
(108) 

with 

[
2 . V,2 1 + 3id 1 

En = E -3 (1 - is) + is k 2' 
, 'l+~!L{ 

2 k Jd 

[
2 W,2 1 1 

E33 = E -3 (1 - Is) + is k 2 ' 
, . l+~!L f 

2 k d 
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Equation JOl' the turbulent ki'l.etie energy: 
This equation is found by taking the sum of the equations 
stresses, and dividing the result by 2. This gives 

ok aJ..~ a [( k2) Ok ] 
U-;- + V-;- = -;- IJ + Cs-Vi -;- + Pk - E-

o:!: ày oy E oy 

Equation JOl' the Reynolds shear stress: 

with 

-àu P12 = _ V ,2 _ ay' 

1l'V' 1 + fd 
El2 = EfST 2 

1 + ~ v~ fd 

Equation fOl' the dissipation mte of tm'bulent kindie energy: 

with 

E - - au 
5 - C (,2 12) 

,4 - ,4 k V - u ax' 

for the three normal 

(109) 

(llO) 

(lll) 

The last term is not consistent with the boundary-Iayer simplifications, in which x 
derivatives are neglected , and consequently 5'4 would vanish. However , this term is 
kept here, as it turns out to give a significant contribution to the E equation once the 
steamwise pressure gradients are no longel' very weak. If the x-derivative is kept in 
the 5'4 term, it also must be kept in the ot her source term of the E equation , which 
reads 

E (_au -av 2 2 au) Cd - -u'v'-;- - u'v'-;- + (v' - u' ) -;- . 
k ay ax ax (1l2) 
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The second term can be neglected compareel to the first term, but the thirel term 
is kept. Within the context of the bounelary-layer equation (111), this can also 
be realizeel by adeling the constant Cd to the origina.l C'4 value. This means that 
C'4 = 1.16 in the elliptic formu lation (99), whereas CUI = 1.16 + 1.44 = 2.6 in the 
bounelary-layer fonnulation (111). 

The wal! bounelary conelitions for the bounelary-layer equations are: 1( = v = 
_ _ _ (f)Jk ) 2 

1(, 2 = V,2 = tv,2 = 1.: = 0 anel € = 211 f)y w. 

Closure 

This report has given a e1etaileel overview of different classes of turbulence moelels 
that can be useel to compute bounela.ry-layers that are relevant to aeronautics . The 
present author has applieel anel compareel most of these moeIeIs to several testcases. 
The results are published in the journal papers mentioned in the introduction. 
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An overview is given on the background of different turbulence 
models that can be used to compute boundary layers in external 
aerodynamics, such as for aircraft. The overview inciudes algebraic 
models (Cebeci-Smith, Baldwin-Lomax), a half-equation model 
(Johnson-King), two-equation models ( K-E-K- ), and a differential 
Reynolds-stress model. The models were compared for boundary 
layer without and with streamwise pressure gradient. The models 
were also used to study the large-Reynolds number scalings (wall 
function and defect layer). The comparisson of models and the 
sealing analysis are described in three seperate journal contributions. 
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