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1. Introduction

As the Reynolds number for the flow around the aerofoils and fuselage of aircraft is
usually very large, most of the boundary-layer flow along the surface will be turbulent.
It is not possible to compute all the details of the turbulent motion within a reasonable
turn-around time (say several hours); therefore for all practical computations the use
of turbulence models is mandatory.

Up to now most designers and developers of aerofoils compute turbulent flows
with older generation models, like the algebraic models of Cebeci-Smith, Baldwin-
Lomax, or Johnson-King. More recently some industries and research institutes (like
NLR) have also applied two-equation models. All these models assume the existence
of a single turbulent velocity and length scale, which is only approximately right for
so-called equilibrium flows, such as attached boundary layers in a zero or moderate
streamwise pressure gradient. Indeed those models have shown to be rather inaccu-
rate for non-equilibrium flows, like separating boundary layers occurring in high-lift
configurations; examples of such configurations are aerofoils under high angle of at-
tack, and multi-element aerofoils. Therefore all these models are only accurate in a
limited number of flow types, and they do not meet the high-accuracy requirements
for a wide range of configurations. As a result of this, experiments in wind tunnels
still serve as the major source of design information.

However, the new generation of turbulence models, i.e. Differential Reynolds-
Stress Models (DRSM), are expected to deliver much higher accuracy than the men-
tioned algebraic and two-equation models, and such models can thus upgrade the role
of computations in the design and development process. The price of the improved
accuracy in a wide range of configurations is an increased computational effort, as
multiple differential equations have to be solved for the turbulence. But, provided
the numerical methods used are appropriate, an acceptable turn-around time on a
modern work station seems to be obtainable.

The present report gives an overview of the above-mentioned types of turbulence
models. The models were implemented in in a boundary-layer code that is used
at the low-speed aerodynamics laboratory of our faculty. The code was applied to
different types of boundary layers, both without and with (favourable or adverse)
streamwise pressure gradient. We also used the models to derive the scalings of the
boundary-layer at very large Reynolds numbers. The results of the application of the
turbulence models are not included in this report, but they are published in three
journal papers:

e Application of Turbulence Models to Attached Boundary Layers Relevant to
Aeronautics, to appear in Applied Scientific Research (1997).

e Scalings of the Turbulent Boundary Layer Along a Flat Plate According to
Different Turbulence Models, to appear in International Journal on Heat and
Fluid Flow (1997).



e Scaling of Equilibrium Boundary Layers Under Adverse Pressure Gradient Ac-
cording to Different Turbulence Models, Submitted to AIAA Journal (1997).

The present report is meant to provide the details of turbulence models, and may
also be used as a text for undergraduate students in a course on boundary layers.
Other valuable papers on turbulence models for external aerodynamics are provided
by, for example, Bushnell (1991) and Hanjali¢ (1994).

2. Equations for the Reynolds stresses

Differential equations for the turbulent Reynolds stresses —-m can directly be de-
rived from the Navier-Stokes equations. These equations can be used as a starting
point for turbulence modelling.

To derive the Reynolds-stress equations, we use the tensor notation, with

n=z 2=Y F3=Z (1)
Uy =u, Ug =V, Uz = w.

The Einstein summation convention will be used, which says that if an index appears
twice, a summation should be performed for all values that the index can have. For
example

du; vy Oup  Ous Ou v dw
TPt i v e e el e (2)

dz; Oz Jdvy dzs Ox dy Oz

or,
8'&'.,' 8u,- + au,- + Bu,-
Up=— = Uy =— + Up—— + U .
* 0z Yz, T Oy | s
By using the Einstein convention, the continuity equation for incompressible flows

can shortly be written as

du;
%o, (4)

P =

(3)

With the tensor notation the incompressible Navier-Stokes equation in the direc-
tion x; (with ¢ = 1,2,3) can be written as
2

d ' [ J ) N / d ) _.'
a( i)+ (wg + g )3_—_&(14‘ +u) = (p+p)+ Vm(uf + ui').(5)

Here the instantaneous velocity and pressure are split up in a time-averaged contri-
bution (denoted without a prime) and a fluctuating quantity (denoted with a prime).
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If this equation is averaged in time, all terms that are linear in the fluctuations will
disappear. For a stationary time-averaged flow, the time averaging leads to

w 0w 1 dp 0%u;
e . i . 6
“ka.’.‘:k T L 3.’8;; pB:c; i Va.?:kazt‘;,- ( )
or to
du; 1 ap &u; duy’
H;,a/m ;‘5: + Vl’j:(‘ka:ck wy, -8: (7)
Because
,0uy! ,0u;
i,,(“‘ w) = it a: (8)
and because, due to the continuity equation,
811;;"
" = 0‘ 9
Bwk ( )
we can rewrite equation (7) as
A 2y —
Ug - ] ap +V"'ﬂ'——iﬂ.‘ 'ﬂ.k. (10)

““azk ()1‘, dz 0z Oy
This is the Reynolds-Averaged Navier-Stokes equation (RANS). This equation de-
scribes how the time-averaged velocity field is influenced by the Reynolds stresses
wiug.
A transport equation for the Reynolds stresses can be derived as well. Thereto
equation (5) is multiplied by u/, which gives

1 2
9 — (uitu; )+u (ug +u;\)ai (ui+ul) = —uj—=— Q (p+p' ) v ———(ui+ul),(11)
k

33 p 0x; I 9z By
(with i = 1,2,3 and j = 1,2,3). Then equation (5) in the j-direction is multiplied
with u! (that is, 7 and j are just interchanged in the equation), which gives

, 10 gy 0
‘3i[u1+u )4 (m+u")8 (uj+u;) = -—ug;gg(l’-l'ﬁ )+vu; Tesbon

Adding equations (11) and (12) gives, after time averaging

(uj+uf).(12)

“odl o, odl o) —— du; W o oul
u;-—(%+uf-3% +u;_.u;-8;: + upu 'a +u3u;‘a +u u*§—+t -a& + whu B—" =(13)
1 2 3 4
1,00 1 ,0p , O , 0%
p 1 9z pt££3 UL EFr 10T i yu'@xkaark -
5 6

The different terms denote the following physical processes:



1. unsteady term

v

convection

3. production

4, turbulent diffusion

5. redistribution of energy through the pressure
6. molecular diffusion and dissipation

When the time-averaged flow is assumed to be stationary, term 1 vanishes:

0 —
au:u; =0. (14)
Using the continuity equation, term 4 can be rewritten as
——TA 8 ———
—uiutug —ulu = —ululul. 15
8$k ivk ! Ja.’.rk 3.1';; Tk ( }

The quantity ufufuj, is a so-called triple correlation. Using the new expressions for
the terms 1 aud 4 equation (13) leads to the following equation for the Reynolds
stress ulu]

7 [P
ukaufu; =d;; + P + ®i; — €ij, (16)

where d;; is the diffusion of the Reynolds stresses, F;; is the production of energy in
the Reynolds stresses due to velocity gradients, ®;; is the pressure-strain correlation
causing a redistribution of energy among the different components of the Reynolds-
stress tensor, and ¢; is the dissipation rate of the energy in the Reynolds stresses.
The different components are defined as

a Bu,uJ e 1
P ( e — uluul, p’u 8k ppu 5:&)

du; ou;
P;‘j:-—-(ﬂ" ;‘3_-+ ’t},a k),
1 [0  Oul
i =P (T +a—)

- Ou 311
CU 6.’1‘5 Ba o :

d,'j =




au’ )

This shows that the total diffusion d;; can be split up in molecular diffusion — T
Tk

() a'lk ]
J ——— 1
turbulent diffusion — 3 ——ulubu), and pressure diffusion ——(pulbjk + p'ubir).
Tk p
The equation for the turbulent kinetic energy k (= Jufu} = j(w* +v* + w'?))

can be found by taking j = i in (16). Using again the Emstem convention (that is
taking the sum of the contributions due to ¢ = 1,2,3), and dividing the result by 2
gives

uk% =d + P, —e¢ (17)

with

()u ()u
31‘:, da;’

Note that the contribution of ®;; vanishes, as these tel‘ms serve to redistribute the

energy among the different components (0 = p’-a— = 0, see eq. (9)).
If a flow is considered that is two- dlmensxonal after time averaging, we have
uz =0, uwus=0, whui=0. (18)
Furthermore, all derivatives with respect to x3 are zero for all time-averaged quanti-
ties. Under the assumption of two-dimensionality, equation (17) reduces to

ok dk
01+u251‘g'—d+&_£1 (19)

Uy

with

d=vr—+v=— “7—|MH

3k &k d (1
8:.512 81‘22 6131 A

1wl +uh® +uh ))

9 (1 19— 18—
3_1'2 (§1£E(H1 + uh 2y A )) = ;a.—lp‘u*l — Ef_h—‘z-p!nfz
—du 0 0y —5dup

s _“525?1 “Utg, day u,uza Ty ﬂa'cz



_ (0w : FAN o\’ o\ o\’ o\’
C/V— (T’L‘i) + (aﬂ."z) + 3.173 + a{ + 55:'; + axa 4+
AN TR Ouy "
awl 31‘2 a.’tg

If the boundary-layer simplifications are made, which are

3,
8_1-2 b 5;]-., Ug << Uy,
equation (19) reduces to
ok Ok
u£+‘b‘8—y=d+Pp¢—E, (2'[})
with
= a—i‘- ( % — ’%? — ;v'(u’? + v 4 w’z)) =
P, = —Wg—:

(using the substitution u; = u, upz = v, &1 = z, 2, = y, et cetera). This is the
boundary-layer equation for the turbulent kinetic energy. It is a convection-diffusion
equation, with a source and sink term:

e the turbulent kinetic energy is convected by the velocity vector (u,v), through
; ak ok
the advection term u— + v—;
oz Ay
o the turbulent kinetic energy is diffused by the term d, which consists of molec-
ular diffusion, pressure diffusion, and turbulence diffusion;

e the turbulent kinetic energy is generated by the source term P, which extracts
energy from the mean gradient velocity field;

e the turbulent kinetic energy is dissipated into heat by the sink term ¢, which is
the so-called turbulent dissipation rate.

3. Classification of turbulence models

In the past decades a variety of turbulence models has been developed. The most
simple models are computationally very cheap, but can only be applied to those
flow types for which they were originally developed. More complex models require
more computational effort, but they have the advantage that they are applicable to
a wider class of turbulent flows, because they incorporate more of the fundamental
flow physics.

A possible classification of existing turbulence models is given below:



integral methods

e Eddy-Viscosity Models (EVM);

algebraic models

half-equation models

one-equation models

two-equation models

Differential Reynolds-Stress Models (DRSM)

Large-Eddy Simulation (LES)
e Direct Numerical Simulation (DNS)

The most simple models are provided by integral methods. These models do not
explicitly consider the variations in turbulence across the boundary-layer thickness,
but instead they only make use of integral quantities, represented by shape factors,
at each streamwise boundary-layer station. In this way partial differential equations
(dependent on z and y) for the flow and turbulence are replaced by ordinary differen-
tial equations for the integral parameters. If suitable initial conditions are known at
the first station z,, these ordinary differential equations (depending on ) can easily
be integrated with the help of a numerical integration scheme.

Within the integral methods the precise modelling of turbulence is not very clear.
The methods heavily rely on empirical relations between the integral parameters.
Due to their simplicity, integral methods are still very much used in aerodynamic
design codes. In this way, a complete airfoil polar can be computed very quickly on
a simple computer.

Eddy-viscosity models relate the Reynolds-stresses —u';?;- to the time-averaged
gradient velocity field by introducing an eddy viscosity (or: turbulent viscosity) vy

du;  Ou; 2
—ylyt = 3 ) = Z)E 2
uiu’ = 1y (3:{?5 + Bx.-) 3!.6._,. (21)

The last term —2k&;; has to be introduced to obtain a consistent expression when the
trace of the Reynolds-stress tensor is taken. Due to the continuity equation, taking
j =1in (21) now leads to the correct expression

_'U.':‘T!:‘ = =2k. (22)

If boundary-layer simplifications are made, equation (21) reduces to

3

Within the eddy-viscosity concept it is assumed that there is an analogy between
turbulent transport and molecular transport. It is emphasized, however, that in

o — = — 2
—uly! = .u,g—u, and w?=v?=w"? =k (23)
Y



contrast to the molecular viscosity v, the turbulent viscosity v, is not a fluid property.
Therefore v; can vary strongly through the flow.

It should also be noted that as long as v(x.y) in equation (21) is not further
specified yet, no modelling for the Reynolds stresses has been made (except for the
implicit assumption that u; is a scalar and not a tensor). Of course, the turbulent
viscosity has been introduced having in mind that the modelling of the turbulent
viscosity is easier than the direct modelling of the Reynolds stress itself.

Considering the dimensions of »; shows that

yr:f(a.,y)xlfxlr‘ {24)

where V' is a characteristic turbulent velocity scale, and L is a characteristic turbulent
length scale. The function f is dimensionless. These quantities can be modelled in
different ways.

Algebraic turbulence models introduce algebraic expressions for V and L, whereas
[ is taken as a constant. A well-known example of an algebraic model is the mixing
length model, which has

du

:l, L:Im., V:‘Im
f o

; (25)

For boundary layers the mixing length is taken as [, = sy in the inner layer. Other
well-known algebraic models are the Cebeci & Smith model and the Baldwin & Lomax
model, which will be discussed in sections 4.1 and 4.2.

The Johnson & King model (see section 4.3) is sometimes referred to as a half-
equation model. In addition to algebraic relations, this model solves an ordinary
differential equation for a quantity related to the turbulent velocity scale. As the
complexity of this equation is in between a partial differential equation and an alge-
braic equation this model is called a half-equation model.

One-equation models solve, besides algebraic expressions, only one partial differ-
ential equation for the turbulence. A well-known one-equation model is the k — [
model of Bradshaw et al. (see section 5), which solves a partial differential equation
for the turbulent kinetic energy k (=V?) and an algebraic equation for the turbulent
length scale [ (=L).

Two-equation models solve two partial differential equations for the turbulent
quantities. The most well-known two-equation model is the £ — e model, which solves
a differential equation for k and for e. Analysing the dimensions gives that V = k!'/2
and L = k*?/e. Substituting these expressions into (24) gives

2
s, (26)
€

Thus the function f(x,y) has been replaced by the constant ¢, (which commonly has

the value 0.09).

10




Another two-equation model, which seems to have become quite popular for aero-
nautical applications, is the ¥ —w model. This model solves partial differential equa-
tions for the turbulent kinetic energy and for the specific dissipation rate w, which is
proportional to €/k. Analysing the dimensions gives V = kY2 and L = k'/?Jw, which
leads to

k

v=a—. (27)
w

Thus the function f has been replaced by the constant a. Other two-equation models
replace the differential equation for € or w by an equation for the length scale (k —1
model) or for the time scale (k — 7 model).

It is noted that all the mentioned two-equation models can be transformed into
each other, because all models can actually be interpreted as representing the single
velocity scale and the single length scale appearing in the the turbulent viscosity
(24). For example the k — ¢ model can be transformed in a & — w model by using
¢ = hw. However, turbulence modellers argue, that some choices of the variables lead
to simpler models than others.

The two-equation models have the following restrictions:

o linear relation between the Reynolds stresses and the gradient velocity field;
e scalar character of the turbulent viscosity;
o only one velocity scale and one length scale are considered;

e anisotropy is not explicitly taken into account (that is, w? =% = w? = %k if
boundary-layer simplifications are applied).

These restrictions can lead to an inaccurate prediction of flows that are more complex
than just simple shear layers, such as:

e flows with abrupt changes in the velocity field;
o flow along strongly curved surfaces;

e stagnant flow regions;

e 3D flows;

e low-frequency unsteadiness.

An example of a complex flow is turbulent boundary-layer separation. The separation
shows strong curvature and has strong velocity gradients. Such complex flow types
can more accurately be predicted by differential Reynolds-stress models, which solve
a partial differential equation for each component of the Reynolds-stress tensor. For
example, to calculate a 3D flow 6 equations are solved (e.g. u?, o, w?, W, v,
and vw’, respectively). In addition, the model also solves a differential equation for



the dissipation rate. The reason that differential Reynolds-stress models are most
suited for complex flows is that the production of turbulence energy P does not have
to be modelled. Therefore the production due to simple shear, curvature, 3D effects
and rotation is represented exactly.

For flows that contain relatively large-scale spatial structures and low-frequency
unsteadiness, like near wake flows, flow buffeting and dynamic stall, the use of a
Large-Eddy Simulation seems to be a promising approach. In contrast to the earlier
mentioned models, which all try to the model the time-averaged equations, the LES
only models the small-scale structures, whereas the large-scale structures are calcu-
lated from an unsteady time integration. As the small-scale turbulence is almost
isotropic, the so-called subgrid models in LES are expected to be not very crucial.
LES was originally developed for meteorological applications, like the earth’s atmo-
spheric boundary layer, which typically consists of large-scale structures. More recent
research on LES is also devoted to aeronautical boundary layers.

The most exact approach of turbulence is the Direct Numerical Simulation. The
3D unsteady Navier-Stokes equations are solved without applying a turbulence model.
Very small numerical time steps and fine spatial grids have to be used to represent
even the smallest turbulent scales (i.e. the Kolmogorov scales), where turbulent
dissipation takes place. Therefore a typical DNS takes several hundreds of hours
CPU time on a supercomputer. Due to the large computer time, DNS is restricted
to simple configurations (like channel flow, pipe flow, Couette flow, and boundary
layers) at somewhat low Reynolds numbers. We cannot expect that DNS can be
used for predicting the flow around a complete aircraft, or even on a wing, within a
few decades or so. For such flow types, the further development of turbulence models
remains important. DNS for details of the turbulent flow, however, are important,
as in addition to experiments, the results can be used to validate turbulence models.

4. Algebraic models
4.1. Cebeci & Smith model (1974)

Cebeci & Smith have formulated an algebraic model that for a long time has been
one of the most popular turbulence models in aeronautics. The boundary layer is
split up in an inner layer and an outer layer. In the inner layer, which covers the
viscous sublayer, the buffer layer, and the inertial sublayer, the turbulent viscosity
i is modelled according to

du

5|7 (25)

LQ_,‘ = !‘2

This actually is Prandtl’s mixing length model, with

I = ry[l — exp(—y*/A™). (29)
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Here y* = $or (and w, = Jru/p, Tw = 1t (g—;)w) Close to the wall, the Van

¥

. B T . . Uy

Driest damping function is applied. The function A* (= —l) only depends on the
v
magnitude of the streamwise pressure gradient according to

26
At = —— 30
V1 —118 pt (30)
. : . . vlUdU ; :
where p* is the dimensionless pressure gradient g (here U is the velocity at the

edge of the boundary layer).

In equation (28), 7 is the intermittency factor, which accounts for the experimental
finding that the turbulence becomes intermittent when the outer edge of the boundary
layer is approached. Hence the boundary layer is turbulent only during the fraction
v of the time. Klebanoff has experimentally found that

v = [1 +5.5 (%)Tl, (31)

in which § is the y-position where E} = 0.995. In the inner layer this gives v = 1.
In the outer layer the turbulent viscosity is modelled according to

e =a U™y, (32)

This shows that in the outer layer the characteristic velocity is assumed to be pro-
portional to the outer edge velocity U whereas the characteristic length scale is pro-

==}
portional to the displacement thickness é* (= f (1 - %
0 f

only dependent on the local Reynolds number based on the momentum thickness #

)dy). The function « is

%o gy u :
= =(1-% t
( .[o U (l U)dy}‘ according to

a= 0.0168%, (33)
with

IT = 0.55(1 — exp(—0.243,/z; — 0.298z)),

Reg
Z; = max [],E — ]j| D

The switch between the inner turbulent viscosity and the outer turbulent viscosity
i, is at the y position where both values are equal, i.e. vy; = Vi,



4.2, Baldwin & Lomax model (1978)

A disadvantage of the Cebeci & Smith model is that it contains typical boundary-layer
parameters, like 8, §* and 6. The computation of these parameters is straightforward
when the boundary-layer equations are considered, but is less clear when the model
is implemented in a general RANS code. The latter approach is often used for the
computation of multi-element airfoils and/or for large scale separation regions occur-
ring at airfoils at high incidence. Therefore, Baldwin & Lomax have modified the
Cebeci & Smith model in such a way that the typical boundary-layer parameters are
avoided. In the case that boundary layers are considered, however, the results with
the Baldwin & Lomax model are almost similar to the results with the Cebeci &
Smith model. The Baldwin & Lomax model can be applied both to boundary layers
along walls and to wake flows, whereas the presented formulation of the Cebeci &
Smith model is not applicable to wake flows.

Considering the Baldwin & Lomax model, the turbulent viscosity in the inner

layer is the same as in the Cebeci & Smith, except for the interchange of d—: by the

modulus of the local vorticity w:

v = Plul, (34)

du )\’ o ow\’ ow o\’
] [ Y 8 SUY o (OO )
dy Oz dz  dy dx 0Oz

The turbulent viscosity in the outer layer is modelled as

Vo= 0Q Cleakc')‘- (35)
Here a = 0.0168 and C; = 1.6. The function F,.. is defined as

Fyake = min [ymemax‘ C‘zymadezifr/Fmax] "
with €y = 0.25 and

F(y) = ylw|[1 — exp(—y*/AT)].

The exponential term is omitted if wake flows are considered. The quantity Fpay
denotes the maximum value of F, and ymax is the value of y at which the maximum
occurs. Further, Ugq is the difference between the maximum and minimum total
velocity (vu?+ v? + w?) in the profile at a fixed x station. The minimum total
velocity is zero for the boundary layer along a fixed wall, but can be nonzero if the
model is applied to wake flows. The intermittency is modelled as

1

v 6]
y= {1 +5.5 (gﬂ) } . (36)

14



with C3 = 0.3.

The switch between the inner turbulent viscosity and the outer viscosity takes
place at the y position where both turbulent viscosities are equal. Comparing the
Baldwin & Lomax model with the Cebeci & Smith model, for the case that bound-
ary layer simplifications are applied, shows that the main difference concerns the
treatment of the velocity and length scale in the outer layer.

The constants in the Baldwin & Lomax model have been tuned for giving good
predictions for zero-pressure gradient boundary layers at transonic speeds. In the
past years the Baldwin & Lomax model has quite often been used to compute airfoils
at operational flow conditions.

4.3. Johnson & King model (1984)

The algebraic models of Cebeci & Smith and of Baldwin & Lomax turned out to work
reasonably well for attached boundary layers under weakly favourable or adverse pres-
sure gradients. For boundary layers in a strong adverse pressure gradients, however,
a too early separation was predicted. The reason for this seems to be that algebraic
models are fully determined by local processes, whereas the gradual streamwise evo-
lution of turbulence is not explicitly included in the model. As a result of this, the
algebraic model reacts too strongly on changes in the outer-edge velocity, leading to
a too early separation. To account more properly for the so-called memory or his-
tory effects of turbulence, a more differential-type of modelling should be included.
Therefore Johnson & King modified existing algebraic models by the inclusion of an
ordinary differential equation for the maximum turbulent shear stress.

For the whole boundary layer the Johnson & King model evaluates the turbulent
viscosity according to

V= Vg [] = Effp(—vt,i/f’t.a)] - (37)

This actually is a blending function between u ;, meant to model the inner layer. and
Vi, meant to model the outer layer.
The turbulent viscosity for the inner layer is modelled as

ni= Dz"":y (_’W)maxe (38)

in which Van Driest’s damping function is used, D = 1—exp(—y*/4*) (here AT = 15
is used). Equation (38) shows that the maximum of the turbulent shear stress is used
to model the characteristic turbulent velocity scale in the inner layer. Due to the the
logarithmic wall function, for zero pressure gradient boundary layers the turbulent
shear stress is constant in the inertial sublayer, implying that there (—w/v/)may in the
model can be replaced by —u'v’ as well. The latter expression is used in the algebraic
models of Cebeci & Smith and Baldwin & Lomax. Indeed later on it will become
clear that the Johnson & King model gives the same result for the inner layer in zero

pressure gradient flows, i.e. \/(—u'v)max = Ky|Ou/y|.

15



The turbulent viscosity in the outer layer is modelled as
v, = allé™yB(x), (39)

with @ = 0.0168 and 4 is Klebanoff’s intermittency function, y = [1 + 5.5(y/6)%]~".
The value of the 2-dependent function 3 will follow from an ordinary differential equa-
tion for (—u'v')max- Actually, the function 8 will be chosen such that the following
relationship holds:

e 2 {_“’t’!]max
(o
/.

Here v, is given by equation (37). The subscript m denotes that the quantity is
evaluated at the position where —w/v’ has its maximum.

(40)

To complete the model an equation for the turbulent viscosity scale Vi, = 1/(— 't )max
is needed. Thereto the differential equation for the turbulent kinetic energy (20), as
derived in section 2, is applied along the path s of maximum turbulent shear stress:

ok
Um—m Sl + Py — &y {41)

dr
with

o (§ 7o+ 7).

Pm — {"W)max (g_:)

Because s is approximately the same as x, the latter coordinate has been used in (41).
The characteristic turbulent length scale is modelled as L,, = V2/?/e,,, with V,, =
(—uv")2 . Furthermore the experimental finding is applied that the turbulent shear
stress is almost proportional to the turbulent kinetic energy, i.e. (—uv/)max/km =
a; = constant (here a; is set to 0.25). Substitution of these expressions into (41)
gives

Lot dV2 du Lo
— s Ll —— — 2D, 42
" aV2 ode . (ay)m D (42)

Va
The turbulent length scale is modelled as L,, = 0.4yn. if y,/6 < 0.225, and as
Ly = 0.096 if y,, /8 > 0.225. The diffusion term in (42), as denoted by D7, also needs
further modelling. If the turbulence in the boundary layer is in "local equilibrium’, as
is the case for the zero pressure gradient boundary layer, the diffusion and convection
are negligible in (42), and the production of turbulence is balanced by dissipation.
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Thus, for the equilibrium case (denoted by the subscript 'eq’). the Johnson & King
model reduces to

Vieq = Vte, [1 - ex})(“”‘I.i.eq/yt.o.cq)] *

Viieq = D2 LAY (_W}max- (43)
Veowq = 0.01681/877.
The diffusion is modelled as

Cait Vi
Dt - mo R
i ﬂ.]é[U-T— [:,U/é)m]

1/2
()]
JIJ"t.ca.l::a:j

with Cyr = 0.50. The diffusion vanishes for the equilibrium case.

5. One-equation models

A one-equation model that has frequently been used for external aerodynamics is
the model due to Bradshaw ef al. (1967), this model solves besides the continuity
equation and the momentum equations, also a differential equation for the turbulent
kinetic energy, as derived in section 2. This gives, under boundary-layer simplifica-
tions

Ju @__

2 + By 0, (45)
du du ldp 09—
Ha—x-i-ﬂa—-——ga—ggnv, (46}
ok Ak
u%+va—y-—d+P—c, (47)
with

d = ..._g._ (lw + ‘})_.U!(uﬂ 4 .[,.-2 + w'? ]) ‘

dy \p 2
.
P = —u’v’-a%:.

In this formulation only high-Reynolds-number turbulence is considered. implying
that contributions in which the molecular viscosity v appear have been neglected. As
a consequence, this formulation is not valid very close to the wall, and wall functions
have to be used as boundary conditions.
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The Reynolds-stress 7 = —pu/t’ is rewritten as the kinematic Reynolds shear
stress according to

F=l = (48)

p
Comparison of dimensions shows that the dissipation rate of turbulent kinetic energy
can be written as

f.afz
W
where L is a characteristic turbulent length scale. In the one-equation model of
Bradshaw et al., the length scale L is modelled by an algebraic equation. In the

special case that the production of kinetic energy equals its dissipation, i.e. Py =¢,
it follows that

(49)

€=

O Bu_FEE
_uva—y_'ra—y_e—-T, (5{])
which gives
2
F=1I% (%) ; (51)

Hence for this specific case the turbulent length scale L is equal to the mixing length
1.

In the model the turbulent diffusion is assumed to be determined by the large
eddies, which cover the full boundary-layer thickness. The characteristic velocity
fluctuations are determined by the local Reynolds-shear stress 7. The diffusion is
characterized by typical gradients in 7, which can be represented by Tmay, defined as
the maximum of 7 for 0.25 < y/& < 1. In this way the model assumes that ¢%v’ is
proportional to #v/Fmax, With g2 = w2 +v/? 4+ w'*. The same approximation is made
for the pressure diffusion. This all ends up in the following modeled terms

O T

2l =6, 52
F s 52

— =a. (53)

q2

In this model L, G and «¢; are determined through calibration with experiments;

L1§ = fily/§) and G = \/Tmax/U% f2(y/6) (where U is the local outer-edge velocity
and § is the local y where u/U = 0.995). The functions f; and f; are assumed to
have universal shapes. The structure parameter is taken as a; = 0.15.
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Substitution of the modeled terms into (45) to (47) gives the following one-
equation model:

ou v
HE 2 4
t5 =0 (54)
du  du 1dp 07
H%-l-l’a—y = -;BE—I— " (55)
a (+ a7
FLELP Al jo— | —— | = d P — 5 .
"oz (‘2(11) ¥ l@y (2«1) ) ‘ (56)
with
ad . =
d = ‘“‘tE (GT Tmax) 5
L du
P = Ta—y,
;.3/2
€= T

6. Two-equation models
6.1. k — ¢ models

In the k—e model, two differential equations are solved for the turbulent kinetic energy
(k) and the dissipation rate of turbulent kinetic energy (¢), respectively. One of the
first important publications on the k — e model was due to Jones & Launder (1972).
Through the years the model has become very popular for internal engineering flows,
like flows in pipe systems. The application of k — e models to external aerodynamics,
such as boundary layers with streamwise pressure gradient, has only recently gained
more interest.

Starting point of the modelling are the exact equations for the turbulent kinetic
energy and the dissipation rate of turbulent kinetic energy, both of which can be
derived from the Navier-Stokes equations; in section 2 only the derivation of the
exact equation for k has been given. However, the equation for € is much more
complicated than the equation for k. As a consequence the modelled k equation
shows a much closer link with the exact equation than the modelled € equation.

Applying boundary-layer simplifications, the continuity equation and the differ-
ential equations for u, k and € read

du v -



du du  ldp 0 du Q
ety T Tpde Ty ["’*””a—y : v

d
k. ok ( v ) Ak
S T v+

"a;r'*”%:@ % %]"‘Pk—t‘i‘D‘ (59)
de  Je 0 V r)_g 4
u.a + U@ = ()—y [(V + EC—) ?)y} + (cafiPi — Cafgf)z + E, (60)

with
o\’ &?
P =y, (a—y) 1 W= Cpfu‘(_—-

The model contains so-called high-Reynolds-number constants (namely ¢, ok, o, ca
and ¢.), and low-Reynolds-number functions (namely f.. fi, f2. D and E). Here
the relevant Reynolds number is based on the local turbulence quantities; possible
definitions are Re; = k?/ve, or Re, = yvVk/v.

First the high-Reynolds-number k& — ¢ model will be discussed. The high-Re
model is found from (59) and (60) by setting the low-Re functions to D = E = 0,
and f, = fi = f, = 1. The high-Re model can be applied in those regions of the
flow were the turbulence-based Reynolds number is sufficiently high. For example,
high-Re turbulence is found in the part of the boundary layer that is both sufficiently
far downstream of the transition region and not too close to the fixed wall (i.e. in
the inertial sublayer or in the defect layer).

Some of the high-Re constants can be derived with the help of the wall functions
for & and e. In the inertial sublayer the production of turbulent kinetic energy is
assumed to be balanced by its dissipation. This means that both convection and
diffusion can be neglected in (539), giving P. = ¢, or

2
”y (g—;) =€. (61)

In the inertial sublayer the convection can also be neglected in the momentum equa-
tion (58), which simplifies to

ad du

Rk — =0. 2

5w =0 (62
This can directly be integrated to

(v+ Vr)g—; = (63)
with u, = /7, /p. Because v, >> v in the inertial sublayer, (62) reduces to

du g
V= = ul. 64
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Differentiation of the logarithmic wall function for the velocity (u* = —Iny™ + C',
e

with ut = u/u;) gives

@ = _l_zz_il_ (65)
dy  kwyt
From equations (61), (64) and (65) it follows that
w?
o= (66)

Non-dimensionalization with » and u, gives the dissipation rate in wall units (as
denoted with the + subscript):

1

ef=—,
Kyt

= (67)
with et = ev/ul. Equation (67) is the wall function for the turbulent dissipation rate,
and is only valid in the inertial sublayer. In the viscous sublayer the wall function
gives et — oo, which supports that the expression has lost its validity.

Using v; = ¢, k?/e, also wall [unctions for the other turbulent quantities can be
derived, giving

1

- J (68)
\/C_u
vE =yt (69)
—wt =1, (70)
with k* = k/u2, v = v /v, —ulo’ = =W [ul.

The here derived wall functions can be used to provide boundary conditions for
the differential equations for k and e. This means that equations (67) and (68) are
used as Dirichlet boundary conditions at the first inner computational grid point from
the wall. One has to take care that the first inner grid point is chosen sufficiently
far away from the wall for the wall functions to hold. As a rule yi > 11.5 is used.
An advantage of using wall functions is that the application of many computational
grid points for solving the steep gradients in the viscous sublayer and the inertial
sublayer can be avoided. A disadvantage is that the predictions, for example for the
wall-shear stress, cannot be expected to be accurate in cases where the validity of the
wall functions is questionable, such as for boundary layers with separation.

Applying the wall functions for & and —u'v’ gives

o RI.U.F

5 = Ve (1)

21



Indeed experiments have shown that the turbulent shear stress is proportional to the
turbulent kinetic energy in part of the boundary layer, and that the proportionality
constant (often denoted as the structural parameter) is equal to about 0.3. This
constant is used to fix the value of ¢, at 0.09.

The value for the model constant ¢, can be found by considering the behaviour
of the k — € equations close to the outer edge of the boundary layer. Due to the
asymptotic character of the boundary layer equations, all normal gradients must
vanish at the outer edge. This defines the proper boundary conditions for k and e

at the outer edge, namely the homogeneous boundary conditions E)— =0, g—; = 0.
¥
Therefore the boundary-layer equations (45) and (46) at the outer edge simplify to
k.
€ ==y 2
Umg - =54 (72)
Oe. €2 ;
Uea‘ = —‘ng'!;:. (?'3)

Here the subscript e is used to denote values at the outer edge. This system consists
of two ordinary differential equations for k and e. At some initial station wg, the
value of k and e at the outer edge have to be specified, denoted as k.o and e.q. For
a constant free stream velocity, an exact solution for & exists:

=1
PN Tez—1
- (cczk:ﬁl]eec,u{x — 20) + kl5ce _ (74)
For large x, this expression shows that k should decay as x™", with n = ml_].
Experiments for the decay of isotropic grid turbulence give n ~ 1.25, which fixes
the model constant c,, at 1.8. Most k& — ¢ models use a slightly larger value, namely
Cea = 1.92.

The constants ¢ and ¢, are the so-called turbulent Prandt]! numbers for the
kinetic energy and the turbulent energy dissipation rate, respectively. The turbulent
Prandt]l number denotes that the turbulent diffusion of k and € is not necessarily
the same as the turbulent diffusion of streamwise momentum. Most k — ¢ models
apply o) = 1 and o, = 1.3. It is noted that the term turbulent Prandtl number is
introduced in analogy with the (molecular) Prandtl number, which is defined as the
ratio between the diffusion and thermal diffusivity.

Increasing computational sources have given further impetus to abandon the wall
functions, and to replace the high-Re k — ¢ model by an appropriate low-Re k — ¢
model. Now the boundary layer is computed whole the way up to the wall, which
requires a very fine computational grid in the viscous sublayer and in the buffer
layer. Through the vears a variety of formulations of these low- Re functions has been
proposed. As a guideline in the derivation of these functions, Taylor expansions close
to the wall should be used; an overview is given by Patel et al. (1985). The main
consideration are as follows:
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e limit for small y. Close to the wall the velocity perturbation can be expanded
according to

o= ay + byt + ..,
bay? + ..., (75)
w' asy + bay? + ...

Il

" , s Loz ol !
With these expansions the quantities v/v', k = ~uluf, e = v=—>—, and v, =
2 da; Ox;
—; T
—u'v' /| — become
9y
W e a,bgy:’ + i
E = Ay + ..
€ = 24y + ...,
(76)
+

_ __aby®
B. = ( du )
Y ) wal

with A = a} + dd.

e D function and boundary condition for k and ¢. From the series expansions
(76), the proper boundary conditions for k and € at the wall are found to be:

a\/E)z

k=0and e = 2Av, with A = lirr(l) k/y®. Here A can be determined as (—a-
y— y

as ;1- ﬁ]ﬁ
or 2 8y2 w.

All developed low-Re k — ¢ indeed apply the zero boundary condition for k.
However, not all models apply the nonzero value for ¢; instead such models
apply € = 0 at the wall, under the introduction of an additional term D in the
k—equation; then the effective dissipation rate is € — D. The limiting behaviour
of D close to the wall can be found by substituting the series expansion (76) in
the k equation, which gives

d*k N .
ya?—c+D=O(y], (77)
i OO g i ;
with =— = 24 + .... With ¢ = 0 at the wall, (77) shows that lim D = 2A.
dy? y—0
; 2
Possible choices for D are D = —‘.Zui_ and D = =2 r)'\/}? .
y? dy
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e [, and E functions. Close to the wall the € equation (60) reduces to

0% €
Yoy cafap +E= O(y). (78)
; d%e -
The choice for f; and E should be such that 3 = O(1) for small y. For
Y

example, if £ = 0 and the nonzero boundary condition for € is prescribed
(implying that € is O(1) for small y), it follows that f, must be chosen such
that it decays as y? close to the wall. Some models introduce a nonzero E term,
but its physical meaning is not very clear.

Most models choose f; such that the decay of isotropic grid turbulence is mod-
elled in agreement with experiments. As already mentioned in the previous
description of high-Re models, experiments show that k decays as a™", with
n = 1.25. However if the turbulence has decayed to sufficiently small levels, the
decay rate n increases to about 2.5. Thus the limiting behaviour of f; follows
from

n+11
n Ca

2= (79)

with n = 1.25 for Re; — oo (which means that f, = 1, using the common value
for ¢.2), and n = 2.5 for Re; — 0 (which means that f; = 1.4/c.).

fu function. This function should be chosen such that the limiting behaviour
v = O(y®) in eq. (76) is reproduced. Indeed most low-Re models give a power
of 3 or 4in v.

Among existing low-Re models, the model of Launder & Sharma (1974) seems to
be superior for a large number of test cases. This model takes £ = 0 and ¢ = 0 as
boundary conditions at the wall, and it determines the low-Re functions as:

—-3.4
Ju = exp ((1+Re,/50)2) '
h o= 10,
fa = 1—-0.3 exp(—Re?) ,

b (3\/!?)2 (80)

) 9*u\?
E = 2!21/; (*55‘5) .

The high-Re constants have the common values: ¢, = 0.09, ¢ = 1.44, ¢y = 1.92,
o= 1.0, and o, = 1.3.
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6.2. k —w models

In this type of models the equation for the dissipation rate in the k — ¢ model is
replaced by an equation for the reciprocal turbulent time scale w. Considered is the
low-Reynolds-number k — w model of Wilcox (1993):

ok ak ad dk
l!a+t?a—a—y{(y+o*)a]+!§k [81)
Ow dw 0 dw
Uu— J—— = — L/ 2
hgca.'.-."i.‘lf)y dy [(I )3_;}-'-0 P~ e, (82)

The low-Reynolds-number functions are defined by

. _ O‘a + Ret/REk

=17 RefRe, S0~ P35 Ber=6,

_ Sag+ Rey/Re, 1

SETD NG Sl — 0.1, Re, =27,
=91+ Re e, P ST

5/18 + (Re./ Res)*

8" = 0.09 T (e Beg)t

Re,e = 8.

The other coefficients in the model are 3 = 3/40, o = 0, = 2. The turbulence-based

Reynolds number Re, is defined here as . The wall boundary conditions are set
wy
to: k=0, w=lim S
v=0 By?’
This low-Reynolds-number model can be transformed into a high-Reynolds-number
model by taking the limit Re; — oo, which gives a* = 1, o =5/9, 3~ = 0.09.

7. Differential Reynolds-Stress Model (DRSM)

For the flow around airfoils, the merits of second-moment closure over eddy-viscosity
based closures become obvious in a number of regions:

e Stagnant flow regions. We consider an oncoming flow that hits the perpendic-
ular plane # = 0. This flow type resembles the stagnation zone on an ai:‘afoil
1y

or a jet impinging on a plate. Here the normal velocity gradients (i.e. oy
T
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.

du . ; . :
and 3—3) or the so-called irrotational strain rates. are dominant compared to
L)
; ; . Ou du ; g
the cross velocity gradients (i.e. 5——1 and 70—2], or so-called rotational strain
29 T1

rates. The exact production of kinetic energy (see eq. (19)) is given by (no
boundary-layer simplifications are made)

—du;, —s0uy — (O Ous ..
P, = —«-u’l?T - “?22_: — ujuh 92, + e (83)

For incompressible flow, due to the divergence-freedom of the velocity field,
the first two terms partly balance each other. This shows that the irrota-
tional strains contribute little to the production of the turbulent kinetic energy,
but they mainly help to change the shape of turbulent eddies from oncom-
ing 3D structures to almost 2D pancake-like structures. In contrast to the
second-moment closure (where the production term is described exactly), the
eddy-viscosity model (21) does not recognize this mechanism, as it models the
turbulent production as

2 i 3T ; 2
P, =2y ('g%) + 2u, (%) + (% + %) . (84)
T . Ty dn

Hence in the eddy-viscosity model both normal strains increase the turbulent
kinetic energy. This leads to an excessive overprediction of the turbulence level.
As the reattachment zone of a turbulent separation bubble in a boundary layer
will also be influenced by such a mechanism, eddy-viscosity models tend to
predict a too early reattachment, as compared to differential Reynolds-stress
models.

streamline curvature. Using stability analysis, one can show that a laminar
boundary-layer flow is stabilized if the wall has a convex shape, whereas it is
destabilized if the wall has a concave shape. The latter shape causes streamwise
Gortler vortices in the flow, which are due to a centrifugal instability. This
fundamental instability mechanism is also reflected by the exact expression of
the turbulent kinetic energy source.

In contrast to this, the representation of the energy source by the eddy-viscosity
model only contains positive terms, showing that this model cannot distinguish
between the sign of the curvature. Therefore the eddy-viscosity model cannot
be expected to work well if the boundary layer has strong curvature, like in the
region close to separation.

o 3D flows. The eddy-viscosity model (21) can be rewritten as

Q= ~—‘S;_-,'. (85)
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with

wiu 26
i = —— = 3%
k 3
_ Oy n du;
v 8.-:-‘,- 8.1',- i

Here a;; is the anisotropy tensor, and S ., is the rate of strain tensor. As v, is a
scalar, the eddy-viscosity model assumes that the anisotropy tensor is aligned
with the rate of strain tensor. This is not true for strongly 3D flows, which occur,
for example in the boundary layer along a swept wing. The turbulence in such
a flow is the result of a combined effect of (i) simple shear strain (as also found
in a 2D zero pressure gradient boundary layer), (i) additional (irrotational)
strains due to a favourable or adverse pressure gradient in the direction along
the wall, perpendicular to the leading edge, and (iii) additional (irrotational)
strains due to spanwise pressure gradients.

The specific differential Reynolds-stress model considered here has been proposed by
Hanjali¢, Jakirli¢, and Hadzié (1995) (see also Jakirlic et al., 1994); the model will be
denoted as the HJH model. This model is mainly based on high-Reynolds-number
expressions as proposed earlier by different authors, and on a modification of the
low-Reynolds-number terms of Launder & Shima (1989).

The different terms, as appearing in the transport equation (16) for the Reynolds
stress m are described as follows.

o The triple correlation is approximated with the Generalized Gradient Diffusion
Hypothesis

a bal
—ulu fuj, = Cs— ( uj ;;: ) § (36)

with Cs = 0.22. Thus the unknown triple correlation is modelled with the help
of known second-order correlations.

The pressure diffusion is not explicitly modelled. Using (86) the model for the
diffusion d;; in (16) is

0 (]u"uj : N
17 D ; =022 7
di T {(vﬁ-f u;u,) B, } . with C 0 (87)

e The term P; only contains second-order correlations between the fluctuating
velocity components. No modelling is needed here.
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e The term ®;; consists of second-order correlations between the fluctuating pres-
sure and velocity components; these correlations need to be modelled. The term
serves to redistribute turbulent kinetic energy among different normal compo-
nents. Although the pressure fluctuation has an elliptic character, most existing
models approximate the pressure-strain correlation by a single-point closure,
which consists of the following contributions

®i; = @iy + Dij2 + B, + P, (38)
The first term, ®;;, is modelled by using Rotta’s return-to-isotropy hypothesis
‘1:'.'_;:.1 = "'C]C(I{j. {Sg]

where «;; is the anisotropy tensor (83). The hypothesis states that anisotropic
turbulence has the tendency to return to an isotropic state; the redistribution
of energy, by the pressure-strain force, works in that way. The constant 'y is
the so-called Rotta constant (actually it is made a function in the H.J.J model).

The second term in (88), ®;2. is called the rapid-distortion part. It can be

modelled by using the isotropization-of-production hypothesis:
2

Dija=—Co(Py — 3

Pi6i;), (90)

with P;,- = lP,','.

2
Close to the wall, additional wall terms are needed, which are often denoted as
pressure wall reflection terms:

£ J—— S
‘i’};’-’l = Cr;fw(ll.;c'u:“ﬂknma;j - 5-u:-ui_nknj — a-u‘}‘,ujm-ﬁ.-}._ (91)

3 3
:_‘;,2 = C;.fw[¢km,2nknmaij s 3®l'k‘2nknj = gq)kj‘zﬂkﬂi}- {92)

Here n; are the components of a unit vector normal to the solid wall. The
function f, in the HJJ model is chosen as

| g4}
fu = min 143, (93)

2.5ex,

where x, is the distance normal to the wall.

In the original differential Reynolds-stress model, €y, Cy, C'}¥, and (')’ were all
constants, but Launder & Shima (1989) and Jakirli¢ et al. (1994) replaced these
constants by functions, which depend on the local turbulence-based Reynolds
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2 ; ! :
number, Re; = —, and on the invariant parameter of the stress anisotropy

tensor, A. Here ,Xels defined as
9
A=1- (4 — Ag), (94)

with Ay = a;;a;; and Az = a;ja iai. For isotropic turbulence we have a;; = 0,
which gives A = 1. When a wall is approached, the normal stress component
perpendicular to the wall decreases much faster than the other two normal
stresses, which means that the limit of 2D turbulence is obtained. It can be
shown that A = 0 for 2D turbulence. Hence the model feels that a wall is
approached, not only by a decrease of Re;, but also by a decrease of A.

The HJJ model also introduces the invariant of the dissipation anisotropy ten-

s0r:

i b

E =1~ g(E;~ Ey), (95)

with E, = ejjeji, B3 = ejejueri, and e;; = % — 26,5, The HJJ model takes the
following functions for the pressure-strain correlation

Cy = C + VAE?, C, = 0.8VA, (96)
Cy = max{1 — 0.7C;0.3}, Cy = min{A4;0.3},
with
Re; 3,"2
C =25AFVf, F =min{0.6; 4}, f= min{(-ﬁ) ;l} :
The dissipation tensor ¢;; is modelled as
5 2
€ij = f,ﬁ‘-J- +(1— fs)§55j61 (97)
with
i & Wl + fa(ulugngng —i—L}u}‘n.-ng_. + ulujngnmn;)
5] Ef w ut
1+ 2=222n,n, fa
Here the functions fs and f; are chosen as
; 1
L=1—VAE?, -
f VAE!, fa=17 SV (98)
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For isotropic, fully turbulent flow, we have f, =1 and f; = 0, and (97) reduces
to the isotropic form €;; = 28;¢.

Equation (97) denotes an algebraic relation between the dissipation tensor ¢;;
(which contains 6 different components in a 3D flow) and the scalar dissipa-
tion e. The latter quantity will be described by a differential equation. With
other words, although the differential Reynolds-stress model has introduced 6
differential equations for the second-order velocity correlations (which can be
interpreted as representing 6 different turbulent velocity scales), there is still
only one differential equation that determines the turbulent length scale. At-
tempts to develop multiple (length or time) scale models do exist, but such
models have not been used very much so far.

The HJJ model solves the following differential equation for the scalar dissipation
rate €

de _ 9 ko) e 3" i

&u;  Puy
7 ;‘31}@1;()“1;

WNEWE
dz;’

course, for the dlfferentlal equations for the Reynolds stresses, the boundary condition

ufu); = 0 is prescribed at the wall.

The different constants and functions in (99) are chosen as

+C¢3f,;u whl, + Seq + S0

Hereé = e— 2v : at the wall the boundary condition é = 0 is prescribed. Of

C.=018, Cqy=144, Cpo=192, Cg=0.25 (100)

p— — _ (-"(2 e 1-4 RE; 2
o oo i S (]

The function S; is a modification of a term originally proposed by Yap (1987), and
often referred to as the Yap-correction. The term is meant to suppress the growth of
the turbulent length scale [ (= k*/?/¢) in region with separation and/or reattachment.
In the HJJ model the term is taken as

, 1 al\’ 1 al e
5:—max{[(aamn) 1} (6;3 ) .0} FA’ (101)

with , is the coordinate normal to the wall.

The term S,4 is very important for aeronautical applications, as it turns out to be
crucial for the the correct prediction of the influence of the streamwise pressure gra-
dient on the turbulent boundary layer. Physically. a favourable pressure gradient will
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decrease the turbulence level, and may even lead to relaminarization of the turbulent
boundary layer, whereas an adverse pressure gradient will enhance the turbulence.
To derive S, we first consider the source dissipation due to straining as repre-

€ —(}tl,‘ " .
sented by —C'dzu‘:-u:} 7 For a 2D time-averaged flow, this term reads
" 'I-'_;'
v € om0 —0u  —G0v 2
Ca ! ( 't Iy Wo'ee — U~ ) (102)

The first two contributions denote the effects of shear strains (or: rotational strains)
and the last two terms are due to normal strains (or: irrotational strains). Hanjali¢
& Launder (1980) have suggested that in boundary layers with nonzero streamwise
pressure gradient the effect of irrotational strains on the dissipation rate might be
different; with other words the constant 'y in (102) should have a different value
when combined with the first two and last two contributions, respectively. Hanjali¢

& Launder have accounted for this effect by adding the term S, 4 = C(‘,E(F—F)g—if
: -

to eq. (99). In the HJJ model the new constant is taken as Cy = 1.16

A disadvantage of the formulation of this extra term is that it is not coordinate
invariant. For a 2D time-averaged flow, this formulation is similar to the formulation
of Jakirlié et al. (1994). For an adverse pressure gradient boundary layer (with

Ju e . "= ; : G
— < 0and u? > v'%), the extra term is positive, and will thus increase the dissipation

dx

rate €, implying a decrease of the turbulent length scale. This indeed is the desired
effect, as experiments have shown that the increase of the turbulent length scale due
to an adverse pressure gradient is far less than would be predicted by the standard ¢
equation.

In this section the differential Reynolds-stress model was presented in the tensor
notation. Many terms will disappear if the time-averaged flow is two-dimensional,
and if the boundary-layer simplifications are applied. The latter simplifications are

0 __ 0 op_, __ U

8—y>>a:1 a—“ . a‘r——P*E-. (103)

where U is the free-stream velocity. These simplifications are justified for high
Reynolds numbers and for weak streamwise pressure gradients. The resulting equa-
tions are parabolic, which can be solved with far less computational effort than the
original elliptic Reynolds-Averaged Navier-Stokes formulation.

The two-dimensional boundary-layer equations for the differential Reynolds-stress
model are:

Conservation of mass:

du v
hil=o (104)
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Conservation of momentum:

dx Oy Oy? de Oy

Equations for the Reynolds normal stresses:

ua_L + vﬂs_ = g [(V—l— C, iv’z) 5‘@

da dy oy
ov”?
—ayf2
(y+ C,—v ) 7y

+ P+ @ — e,

dx dy — Jy

+ Pys + @33 — €33,

+ P33 + ®ag — €33,

with

2 il €T 2 w
@y = —Che (T = ‘é) + Cl wa1’2 = §CQPL-[2 - cz Fids

Uﬂ 2 w € 12 w
Oy = —Che 73 i wa‘l’ + zCaPi(1 - 2C fu),
w? 2 — . 2
Bs3 = —Che (% = 5) + c;“fwguﬂ +5CPu(1+ CY fu),

w'?

2 1
en=¢ (] —fs)+fsu+k"——] .
14322 f

i =
€20= € %(1_}'3) fsi ﬂ}

L Ly

€33 = €

'x.o|n~:>'

w'? 1
)+ e — |-
1+3% fa
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Equation for the turbulent kinetic energy:
This equation is found by taking the sum of the equations for the three normal
stresses, and dividing the result by 2. This gives

ak ak 0o k—3\ 9k
g + va =4 [(V - Cs:i’ ) %} + P —e (109)
Equation for the Reynolds shear stress:
o P e 9
“%1‘3 +'U;—;=»-—- [( +C ) ;;] +P12+‘1’12—612 (1]0]
with
— O
P]Q = —¢' 'é'y’f
3 € —0 —du
Dy =—(Cy + é—Cf”fijta'v’ +( ¥ fu,)Cav — %’
w1 + fd
€12 =¢€Js— = _-
k 1 + 3v'° fd

Equation for the dissipation rate of turbulent kinetic energy:

de de 0 k—\ | Oe €€
i 7 . efe Py ‘e2Je2
uge + 05, = 3y{(y+c )}8y+01f1 i = Cafap+ (111)

with
1 a1\? 1 al\? ] e
y —_— — — — —_— . _A
.5! max { |:(C! ay) ]-] ((l’f ay) ao} L 3

_o. S
Sy = “k(v u )(’):.."'

The last term is not consistent with the boundary-layer simplifications, in which z
derivatives are neglected, and consequently S.4 would vanish. However, this term is
kept here, as it turns out to give a significant contribution to the € equation once the
steamwise pressure gradients are no longer very weak. If the x-derivative is kept in
the Sy term, it also must be kept in the other source term of the € equation, which
reads

v v — t?u) (112)

€
Vi— | —u'— — u''— W2 a2
Cd},‘_ ( u'v % 'l + (2 u )015
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The second term can be neglected compared to the first term, but the third term
is kept. Within the context of the boundary-layer equation (111), this can also
be realized by adding the constant C; to the original C'yy value. This means that
C. = 1.16 in the elliptic formulation (99), whereas C'y = 1.16 + 1.44 = 2.6 in the
boundary-layer formulation (111).

The wall boundary conditions for the lgoundary-layer equations are: u = v =
as/E)

dy

wW=v?=w?=hk=0and e=2vr (

Closure

This report has given a detailed overview of different classes of turbulence models
that can be used to compute boundary-layers that are relevant to aeronautics. The
present author has applied and compared most of these models to several testcases.
The results are published in the journal papers mentioned in the introduction.
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An overview is given on the background of different turbulence
models that can be used to compute boundary layers in external
aerodynamics, such as for aircraft. The overview includes algebraic
models (Cebeci-Smith, Baldwin-Lomax), a half-equation model
(Johnson-King), two-equation models ( K-E-K- ), and a differential
Reynolds-stress model. The models were compared for boundary
layer without and with streamwise pressure gradient. The models
were also used to study the large-Reynolds number scalings (wall
function and defect layer). The comparisson of models and the
scaling analysis are described in three seperate journal contributions.
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