<]
TUDelft

Delft University of Technology

Route Planning with Breaks and Truck Driving Bans Using Time-Dependent Contraction
Hierarchies

van der Tuin, Marieke; de Weerdt, Mathijs; Batz, G. Veit

Publication date
2018

Document Version
Final published version

Published in
Proceedings of The Twenty-Eighth International Conference on Automated Planning and Scheduling

Citation (APA)

van der Tuin, M., de Weerdt, M., & Batz, G. V. (2018). Route Planning with Breaks and Truck Driving Bans
Using Time-Dependent Contraction Hierarchies. In M. de Weerdt, S. Koenig, G. Roger, & M. Spaan (Eds.),
Proceedings of The Twenty-Eighth International Conference on Automated Planning and Scheduling (pp.
356-364). American Association for Artificial Intelligence (AAAI).
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17745

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://www.aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17745

Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ — Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

Route Planning with Breaks and Truck Driving Bans
Using Time-Dependent Contraction Hierarchies

Marieke van der Tuin
Delft University of Technology
Transport and Planning department
Stevinweg 1, Delft
The Netherlands

Abstract

Mandatory breaks for truck drivers are nowadays scheduled
after the route has been decided. However, in some cases it
is beneficial to plan these breaks during waiting time caused
by truck driving bans. Optimally planning a single break con-
sidering driving bans can be done using Dijkstra’s algorithm
with multiple labels. This has large effects on predicted travel
times: 17% of the analysed routes having a night rest obtain
an earlier arrival time by 5 hours on average. However, the
computation times of this algorithm are long. A novel heuris-
tic version of time-dependent contraction hierarchies leads to
significant reductions in computation times from several sec-
onds to several milliseconds per route. Experiments show that
the solutions are still optimal for a representative test set con-
sisting of 10,000 route queries.

1 Introduction

Truck drivers are required to take a break after several hours
of driving. Currently, sophisticated route planners used by
freight transporters do not consider the optimal planning
of these breaks. Instead, breaks are inserted after the route
has been planned, usually as late as possible. However, this
does not always lead to the earliest arrival in case of tem-
porary road closures for trucks, which occur in some Eu-
ropean countries. Such driving bans prohibit driving during
the night or in the weekend to reduce pollution or noise. In
the context of such driving bans, the insertion of a break as
late as possible might cause a truck to be too late to pass
through the region before the ban starts, resulting in a long
wait, while a different (longer) route through other coun-
tries may exist that results in an earlier arrival time. Further-
more, it is also possible that a truck has to wait due to a
driving ban while soon afterwards a break needs to be taken.
By scheduling the break earlier, (partly) during the driving
ban, it is possible to efficiently use this waiting time to ar-
rive earlier at the destination. The influence of driving bans
on total travel time is substantial, due to the long closures
lasting 7 till up to 38 hours. However, as we show later in
this paper, optimally planning breaks and the route itself
on a time-dependent network can be seen as an optimiza-
tion problem with two criteria, which is an NP-hard prob-
lem (Hansen 1980). This paper describes how to plan routes

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Mathijs de Weerdt
Delft University of Technology
Algorithmics group
Van Mourik Broekmanweg 6, Delft
The Netherlands

356

G. Veit Batz
ORTEC B.V.
ORTEC Optimization Technology
Houtsingel 5, Zoetermeer
The Netherlands

with a single break adhering to the European drivers’ legisla-
tion (2006), while taking driving bans into account. A single
break on a route is the simplest case possible and provides
a good insight into the effects of optimal break planning for
this proof-of-concept stage. Still this obtains a large cover-
age, since 80% of routes driven by trucks in Europe includes
only one single night rest. The first contribution of this pa-
per is a quantitative analysis of the effect of optimal break
planning on the travel times. This is done by presenting a
modification of a multi-label Dijkstra search, and evaluating
it experimentally on a detailed network of Europe having 7
million nodes. The test set consists of 10,000 routes based on
actual freight flows. These experiments show that the arrival
times decrease notably compared to the industry standard.
However, in this detailed network, the algorithm has quite
a long runtime. This is a problem if it is used for solving a
Vehicle Routing Problem (VRP), determining the best de-
livery sequences for a fleet of trucks. Therefore, the second
contribution of our paper is showing that these routes can
be computed fast but accurate using a heuristic version of
time-dependent contraction hierarchies. The obtained speed-
up is about 200 times, while the solution quality remains
good. An even higher speed-up is reached by introducing
a single-label heuristic algorithm: it computes routes about
2000 times as fast as the Dijkstra multi-label algorithm. All
contributions are based on the first author’s thesis (2017).
The structure of this paper is as follows. Section 2 dis-
cusses related work in the area of shortest path computa-
tion for road networks, including contraction hierarchies.
Then the problem of optimal break planning with driving
bans is defined formally. Section 4 introduces the optimal
algorithm, whereas Section 5 provides the speed-up using
contraction hierarchies. The algorithms are experimentally
tested and compared to a reference algorithm in Section 6.

2 Related Work

Optimal break planning is a variation of the shortest path
problem. This section gives an overview of this well-
researched domain based on a review by Sommer (2014).

2.1 Shortest path algorithms

Dijkstra (1959) describes one of the earliest algorithms solv-
ing the shortest path problem, and no faster algorithm for

general graphs with constant travel times is developed since.
It is still widely used in various applications.

However, a road network is not a general graph but has
special properties that are exploited by speed-up techniques:
it is sparse (a low number of edges per node), it is almost
planar (relatively few bridges and tunnels) and a particular
layout is given (the geographic coordinates). Algorithms us-
ing such properties are bi-directional search (Dantzig 1962),
A* (Hart, Nilsson, and Raphael 1968), ALT (Goldberg and
Harrelson 2005), and SHARC (Bauer and Delling 2009).

Other speed-up techniques use the hierarchical nature of
the road network: a typical route starts at a local road, trav-
els via a B-road to the highway and then gets back to a local
road. Contraction Hierarchies (CH) is an example of such an
algorithm (Geisberger et al. 2008). It consists of two phases:
preprocessing and querying. During preprocessing a hierar-
chy is constructed where every level contains one node less,
which is contracted (that is, removed from the network). The
minimum travel cost between the remaining nodes in the
hierarchy level is preserved by adding an artificial shortcut
edge if needed. The resulting hierarchy is then used for fast
querying. The querying algorithm uses a bidirectional Dijk-
stra search, where the forward search only relaxes upward
edges (i.e., toward nodes having a higher node ordering),
whereas the backward search only relaxes downward edges.
This creates so called up-down-paths. If the minimum value
of both forward and backward priority queues exceeds the
travel time of the shortest up-down-path so far, the shortest
path has been found, as proven by Geisberger (2008).

The duration of the preprocessing step of an 18 million
nodes network of Western Europe is 25 minutes (using an
AMD Opteron 2.6 GhZ processor with 16GB of RAM)
(Batz and Sanders 2012). Although this is a substantial com-
putation time, this enables fast querying afterwards (on av-
erage 0.2 ms).

2.2 Shortest path algorithms with driving bans

The generalized form of shortest paths with driving bans is
the NP-hard time-dependent shortest path problem. A con-
dition that makes the problem polynomially solvable is the
FIFO (First In, First Out) property (Orda and Rom 1990),
stating that departing later never results in an earlier arrival
time. This property is assumed to be valid in road networks.

Given the FIFO property, the Dijkstra (1959) algorithm is
easily modified to in a time-dependent variant. This is not
the case for the various speed-up techniques: for a back-
ward search the arrival time at the destination needs to be
known, but this is only known after the complete path is
computed. However, this can be overcome by first perform-
ing a backward interval search to determine all possible
paths independent of the arrival time (Nannicini et al. 2008;
Batz et al. 2013). Then, the forward search is continued as a
downward search to determine the earliest arrival path.

The contraction hierarchies algorithm for time-dependent
networks is presented by Batz et al. (2013). Its preprocess-
ing phase consists of subsequently contracting nodes from
the network, just as its non time-dependent variant. Shortcut
edges represent the fastest route for each possible departure
time, and thus represent possibly multiple routes. The result-

357

ing hierarchy is used by the querying algorithm, which uses
a time-dependent bidirectional search. The time-dependent
contraction hierarchies algorithm (TCH) is proven to pro-
duce optimal results, and provides the fastest querying times
currently known for time-dependent road networks.

2.3 Shortest path algorithms with breaks

As shown in this paper, the problem of scheduling breaks
can be seen as a multi-criteria shortest path problem, with
criteria of travel time and time since last break. The optimal
multi-criteria path is in general not prefix optimal, meaning
that it is not necessarily the case that every subpath start-
ing at the start node is optimal as well. This problem is
proven to be NP-hard (Hansen 1980) and cannot be solved
using the Dijkstra shortest-path algorithm which only main-
tains prefix optimal paths. Instead, a Pareto or multi-label
search algorithm is applied (Hansen 1980). This algorithm,
based on Dijkstra’s algorithm, keeps track of all possible
non-dominating paths at each node. In Section 4, we show
how to do this for the optimal break-planning problem.

According to the taxonomy of Lahyani (2015), optimal
break planning in time-dependent networks had not yet
been studied before their survey. In all discussed litera-
ture, breaks are inserted when needed, without consider-
ing optimality. For example, Kok et al. (2010) schedules
breaks sub-optimally by planning these at customers only
(within the VRP context). If the travel time between two
customers is too long, artificial customers are inserted be-
forehand where a break can be scheduled. However, after
the survey by Lahyani, the bachelor work of Briuer (2016)
uses contraction hierarchies for optimal break planning in
a time-dependent network. He places parking lots on the
highest level of the preprocessed hierarchy. Every up-down
path then contains a parking lot, where a break is scheduled.
Time-dependency is included by daily congestion, driving
bans are not taken into account. An optimal solution is com-
puted by considering all paths from start to destination via
each of these parking lots. This leads to a runtime of 16 sec-
onds per query for a graph of Germany having 7 million
nodes — worse than one would expect by running the Pareto
algorithm described earlier. Restricting this approach to only
a portion of parking lots, leads to runtimes of 0.2 seconds
with an approximation factor of 5%.

Although Briuers computation times are not fast, previ-
ously it was shown that time-dependent contraction hierar-
chies can be used for solving the general multiple objective
shortest path problem in fast computation time (Batz and
Sanders 2012). It is even shown that it easily outperforms a
multi-label A* algorithm.

Therefore, it is assumed that it is possible to use TCH to
obtain a fast algorithm capable of planning breaks — albeit
possibly suboptimally.

3 Problem Definition

In this work we study the problem of optimally planning a
single break in a network with truck driving bans. Given is
a directed graph G = (V, F) consisting of vertices (nodes)
and edges (links). Each edge e € F is described as a pair of
vertices (u, v).

240

—
o]
S

—
[
(=}

D
(=}

Travel time [min]

0
8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

Departure time

Figure 1: TTF with Apr = 60 and RB = [12 : 00, 14 : 00]

An optimal break planning path is then described as a path
from start node s € V toward destination node ¢t € V, for a
given departure time 7y € R, and an already driven consec-
utive driving time of A, , where the arrival time 7, € R is
minimal and at most one break is taken along the path. The
path is represented as a list of nodes P = (s, ..., t).

The route should adhere to the drivers legislation. There-
fore, the consecutive driving time A; € R>(may not ex-
ceed a certain threshold T". A break of duration A, can be
taken anywhere on the route to reset A4 to 0. Only one break
is allowed on each route. If A, exceeds T" and a break al-
ready has been modelled, the route is considered infeasible.

The travel time of an edge at a certain departure time is
influenced by delays caused by driving bans, referred to as a
road block. Such a road block is described as follows:

Definition 1 (Road Block). A Road Block (RB) is given by
an interval [Ty, Tpe, indicating the start and end times. Dur-
ing the interval, it is not allowed to drive the road segment.

Every edge in the road network can have multiple road
blocks. These road blocks may not overlap. The road blocks,
together with the free flow travel time Apg, form the travel
time function (TTF) f. : R — R>¢. This function represents
the travel time for a given start time as a piecewise linear
function (Ichoua, Gendreau, and Potvin 2003), while fulfill-
ing the FIFO (First In, First Out) property. An example of
such a TTF with a road block is shown in Figure 1.

To keep track of the allowed consecutive driving time A,
a shift duration function is used. This function gives the new
consecutive driving time after travelling an edge e at time 7
and is denoted by s.(Agy, 7). Waiting for a road block does
not count as driving time (but may be used as break time). As
aresult, s.(Ag,7) = Agq + Apr, if no break is scheduled
on the respective edge. If a break is scheduled on the spe-
cific edge, the function returns 0, such that the consecutive
driving time Ay is reset as well.

Example 1. A truck driver needs to travel from Venice to-
ward Regensburg, as shown in Figure 2. The maximum con-
secutive driving time T is 4.5 hours and the break time A\,
is 45 minutes. The truck driver departs Saturday morning at
9:43. The current industry practice —computing the fastest
route and later on adding breaks where needed— results in
the dark route on the right. However, the insertion of a break
after 4.5 hours causes the truck to end up in the road block of
Austria, resulting in an arrival time of 7:55 on Monday! The

358

Czechia

End:
Sat18:01

Block Germany: € Mon 7:55

Sun 0:00 -

Sun 22:00
Wait:
Sat ISZOQTMSH 5:00
Break: -@ :
SR 14013 Break: Block Austria:
Sat:14:13 Sat 15:00-
Mon 5:00
%]

Start: N
Sat 9:43

Map data ©2017 GeoBasis-DE/BKG (82005), Soogle Terms.

Figure 2: Example route from Italy to Germany demonstrat-
ing the consequences of optimal break planning

optimal break planning path is shown on the left, which en-
tails that the required break is scheduled in Germany instead
of Austria. This gives an arrival time of 18:01 on Saturday.

This example shows a significant improvement in arrival
time caused by optimal break planning. In the next sections
four algorithms are proposed for computing such paths.

4 Break Planning

In this section we show how to model the network such that
an optimal break planning path can be computed using the
multi-label (Pareto) version of the Dijkstra algorithm.

4.1 Stacked break graph

The break planning problem is modelled using a modified
graph. For each edge (u1,v1) in the original graph, an edge
(u1,v2) is added, where v is a copy of node v1. The edge
(uq,v2) represents travelling through the edge and taking a
break somewhere on that edge. This graph is called a Stacked
Break Graph (SBG) and is defined as follows:

Definition 2 (Stacked Break Graph). Given a graph (V, E),
a Stacked Break Graph (SBG) is a graph G' = (V1 U
Vo, E1 U Es U EB) where Vi = V and E1 = E, V5 and
FEs are exact copies of V and E, and E B represents possible
breaks along an edge in Ey, i.e., EB = {(u1, v2)|(u1,v1) €
Ey and va € V3 is a copy of vy }.

The SBG graph has 2|V;| nodes and 3|E;| edges. A vi-
sualisation of a stacked break graph is shown in Figure 3.

For edges e¢ in EB, the TTF f.(7) is redefined, given
Apy, the break time A, and nearest road block [Ty, Tpe]:

ifT Z Ths — AFF
and 7 < Tpe — Ay

AFF + Toe — Tos

fe(T) =< App+ Ay — (The —7) 7> Tpe — Ay
and 7 < Tpe
Apr + Ay else

Figure 3: In this stacked break graph the original graph is
below, the copy is on top, and break edges are dashed.

blocked 10 00 11: OOh 3:30h
1: 30h

7, = 10:00 T,= 12:00 T,= 15:30
A,=1h A,=4.5h
T, = 11:30 T, = 15:00
A,=15h A,=5h

Figure 4: Let s be the start node with departure time 10:00,
T is 4.5 hours, and Ay is 45 minutes. The arrival time at v
is 11:30 via the lower route, and 12:00 via the upper route.
Dijkstra only maintains the lower path at v. However, the
best path towards destination ¢ is the other one, since A4 of
the lower path exceeds 4.5 hours and is therefore infeasible.

Furthermore, the shift duration function s. (A4, 7) is rede-
fined for all edges in 2. For these edges, the shift duration
is reset after taking the break (so Ay is here irrelevant):

AFF—maX(TbS—T7O) if’TZTbS—AFF
and 7 < Tpe — Ay
86(7’)2 App if 7> 71 — Ay
and 7 < Tpe
0 else

4.2 Single-label search

Running Dijkstra’s shortest path algorithm on the presented
Stacked Break Graph does not lead to an optimal route, since
no notion is made of the consecutive driving time threshold
and the optimal break planning path is not necessarily prefix
optimal. This is shown by the example in Figure 4.

We therefore propose the following heuristic algorithm
called Single-Label Break Planning (SL-BP). First we use
Dijkstra’s single-label algorithm to settle the lower layer of
nodes (i.e., all routes without a break), followed by settling
the upper layer. To prevent replacing routes by others that
have an earlier arrival time but higher shift duration, the pri-
ority queue of the upper layer is ordered on lowest shift du-
ration instead of arrival time. Such (possibly optimal) routes
are still not maintained at the lower layer. However, this situ-
ation (i.e., Figure 4) is not expected to occur often: we expect
that most problems occur with planning of breaks.

359

4.3 Optimal multi-label search

The single-label heuristic does not necessarily find optimal
paths. Therefore, a modified version of the Pareto or multi-
label search algorithm is applied (Hansen 1980). Each label
represents a subpath and is defined as follows:

Definition 3 (Label). A label is a tuple (u, T, Ag, p), repre-
senting a path to node v arriving at time T with consecutive
driving time Ay and having predecessor (label) p.

Labels are included if they represented a path that is not
dominated by another path.

Definition 4 (Domination). A path i is dominated by a path
Jifty < miand Ag; < Ag,, with at least one strict equality,
thus 7; < 7 or Ag; < Ag,.

The list of labels to further explore is maintained in a
priority queue P(Q). The rest of the algorithm is equal to
the original version (Hansen 1980). The full Optimal Break
Planning (OBP) algorithm is shown in Algorithm 1.

Algorithm 1: OBP: a Pareto algorithm for the SBG

1 Initialize L{u] = () for every node u € V

2 s < (8,70, Agy, L)

3 L[s|.add(l,), PQ.add(l,)

4 while /PQ.empty() do

ly = (u, 7,Aq,1,) < PQ.min()

6 foreach e = (u,v) € E do

7 Ly < (U, 7+ fo(T), 8e(Ad, T), lu)

8 if s.(Ag,7) < T then

9 if 1, is not dominated by | € L[v] then

W

10 foreach [in L[v] do

11 if | is dominated by [,, then
12 L{v].remove(l)

13 ‘ PQ.remove(l)

14 L[v].add(l,), PQ.add(l,)

15 return [€ L[t] having earliest arrival time T

To prove the optimality of the algorithm, it is first shown
that there always exists at least one Pareto prefix optimal
path. Since Pareto prefix optimal paths are always found by a
Pareto search algorithm (Hansen 1980), it is then shown that
an optimal break planning path is always a Pareto optimal
path. In these proofs, it is assumed that function f(Ps;) rep-
resents the travel time of path Ps; for some departure time
7o, thus 74 = 79 + f(Ps). Function s(Py;) represents the
shift duration at node ¢ of this path for the same departure
time 7y and starting consecutive driving time A, . These
proofs are based on work of Batz (2013) and Ehrgott (2006).

Lemma 1. Let G = (V, E) be a SBG such that the TTFs
[and shift duration functions s are non-negative. Consider
s,t € V, where t is reachable from s in G, even if con-
sidering drivers legislation rules. Then there always exist a
Pareto optimal path Py = (s = uy,us,...,ux = t), such
that for every i = 1,... k, the prefix path Ps; = (s
Uy, ..., u;) is a Pareto optimal path as well.

Proof. Assume Ps; is not a Pareto optimal path. Then there
is a path P!, # P,; that dominates Pj;, thus f(P.) <

f(Ps;) and s(P.;) < s(Ps;) with at least one strict equal-
ity, thus f(P.,) < f(Ps;) or s(P.;) < s(Ps;). Therefore, a
path P/, consisting of P!; followed by P;; (the subpath of
P from ¢ to t) is an s — ¢ path that contradicts the Pareto
optimality of Py due to the following three reasons: first,
f(PL) < f(Ps), since it is not possible to arrive later at ¢
by departing earlier at node ¢ due to FIFO-property of the
network. Second, s(P.,) < s(Ps;), since s(P.;) < s(Ps;)
and s(P;;) is equal to the free flow travel time of this sub-
path, and thus independent of the departure time at node <.
Third, it holds that f(P.,) < f(Pst) or s(P.,) < s(Pst),
since the subpath toward node 7 also has at least one strict
equality. Thus, path Ps; is strictly dominated by path P.,, vi-
olating the assumption of Pareto optimality of P;;, and there
always exists a prefix path Py; that is Pareto optimal. O

The Pareto search algorithm always finds all prefix opti-
mal paths if they exist (Hansen 1980), only ruling out paths
with the same arrival time and shift duration. To complete
the proof of optimality of the break planning algorithm, we
now only need to prove that the algorithm indeed returns an
optimal break planning path, implying that the optimal break
planning path is a Pareto optimal path.

Theorem 1. The Pareto search algorithm returns an optimal
break planning path

Proof. Let Ps; be the path returned by the Pareto search al-
gorithm, meaning that this path has the earliest arrival time
of the set of paths to destination node ¢ found by the algo-
rithm. Now assume that this path P;; is not an optimal break
planning path. This implies that there exists some path P/,
with f(P.,) < f(Ps). But this implies that P/, is a Pareto
optimal path, since it is not dominated by any other path.
However, the Pareto search algorithm finds all Pareto opti-
mal paths (except those having identical arrival times and
shift durations). So, it is not possible that such a path P.,
exists, and the path returned by the Pareto search algorithm
is an optimal break planning path. O

The number of Pareto optimal paths is exponentially large
in the worst case even with two criteria (Miiller-Hannemann
and Weihe 2006). Especially in detailed networks enormous
numbers of paths are generated, leading to bad runtimes.
Therefore, next we discuss a speed-up technique using con-
traction hierarchies which reduces the size of graph.

5 Speed-up using Time-Dependent
Contraction Hierarchies

When solving VRP for trucking companies, shortest path
computations are done extremely often. Therefore, a very
fast algorithm is required. The algorithm that currently has
the best runtimes for shortest path computation in road net-
works is contraction hierarchies. After the execution of an
extensive preprocessing phase, it is able to compute routes
in a few milliseconds. However, with contraction hierarchies
two potential problems can be identified: all optimal break
planning paths should be maintained during preprocessing,
and correct travel times should be computed during querying
if a break is taken on a shortcut edge.

360

1h 1h
3:30h block: block:
@_» 10:15-11:00h @ 12:00-10:45h @
— >
Start:
5:45h 2:15h

Figure 5: Preprocessing might remove optimal break plan-
ning paths: if v is contracted, the red edges are removed.

5.1 Preprocessing and optimal break planning

During preprocessing, only paths are maintained that pro-
vide a shortest path at any moment of time. To be able to
compute optimal break planning paths during querying, al-
ternatives that are optimal only in a specific time interval
(related to a road block) should not be removed during pre-
processing, as shown in the following example.

Example 2. If node v is contracted during preprocessing
from the graph shown in Figure 5, the path {u,v,t) is re-
moved from the graph since it never provides an earliest ar-
rival path between u and t. The edge between v and t can
only be driven between 10:45 and 12:00 every day, causing
at least 30 minutes of waiting time for travelling the com-
plete segment. But if a trucks starts driving at 5:45 at node
s heading for t, it will arrive at u at 9:15, just before the
driving ban starts. Continuing toward v results in an ar-
rival time of 10:15, after which a break of 45 minutes can
be taken. The trip can be continued toward t at 11:00 giving
an arrival time at t of 12:00. Taking the direct route between
u and t results in a later arrival time of 12:15.

As shown in the example, it might be the case that the op-
timal break planning path is not present in the preprocessed
graph, resulting in non-optimal break planning paths inde-
pendent of the chosen querying algorithm.

Let us first discuss two ideas for dealing with this prob-
lem: using the method by Briuer, or preprocessing the SBG
instead of the regular network.

Bréuer (2016) solves the problem by adapting the node
ordering such that all parking lots are on top of the pre-
processed tree, as explained in Section 2.3. However, this
method results in worse runtimes of 16 seconds per query
on average in a graph having 7 million nodes.

Preprocessing the SBG does not necessarily lead to main-
taining all optimal break planning paths in the hierarchy. The
optimal position of a break in the path depends on the start
and destination locations, as well as the consecutive driving
time. However, this information is not known during prepro-
cessing.

Both these approaches thus do not lead to our objective
of computing optimal break planning routes with very small
querying times. However, we do observe that optimal break
planning paths sometimes remain after preprocessing.

Theorem 2. The optimal break planning path remains in
the preprocessed graph, if any path can be driven at free flow
travel time once, meaning that it is possible to drive any path
at some moment without being delayed by a driving ban.

Proof. Assume that path P!, provides the earliest arrival
time for 7y without considering break planning. Assume that
another path P, is not included in the preprocessed hierar-
chy, but does provide the optimal break planning path for 7.
This is only possible if the time required to take a break is
less, thus f(Pst)—fn(Pst) < f(Pl)—fn(P.), with fx in-
dicating the normal travel time without considering breaks.
But this implies that path Ps; encounters a road block with-
out break planning, which can be avoided or used efficiently
when planning a break. But then, App of Py is smaller
than App of P.,. However, if both routes can be driven in
free flow travel time at one moment, Ps; would provide the
fastest path at some moment in time, and thus will still be
present in the preprocessed hierarchy. 0

Referring to Example 2: path (s, u, v, t) has an increased
travel time of 15 minutes by adding a break, whereas path
(s,u,t) has an increased travel time of 45 minutes. If
(s,u,v,t) could be driven in free flow travel time (i.e., in
5:30 hours) at some time, it was not discarded during pre-
processing and the optimal break planning path was main-
tained. Although it might seem obvious that each route can
be driven at some time without having to wait for any road
block, this is not guaranteed due to the possible creation of
very long shortcut edges in the preprocessed graph.

In the remainder we therefore use the regular preprocess-
ing method without modifications —with the chance that op-
timal break planning paths are removed— and we analyse in
the experimental section the effect on optimality.

5.2 Maintaining road block information

By using the original preprocessed graph there is a possibil-
ity that potential optimal break planning paths are removed
during preprocessing. However, even if this path was not re-
moved, there is another problem for finding these paths: the
travel times still need to be calculated in the case a break is
scheduled on the edge. This is not trivial, as shown next:

Example 3. Due to the contraction of node x during pre-
processing, two shortcut edges are added between nodes u
and v and vice versa, as shown in Figure 6. Now assume that
a truck departs at 11:00 from u with an already consecutive
driving time Ay of 4 hours, T of 4.5 hours and a break time
Ay, of 45 minutes. The corresponding TTF value indicates
a travel time of 90 minutes at this departing time. However,
the driver needs to take the mandatory break after 30 min-
utes of driving. This implies that the truck accidentally gets
stuck in the road block at 13:00, just before reaching v. At
the end, this leads to an arrival time of 15:15. On the other
hand, if the truck was driving from v to u at the same time
(which also implies a TTF value of 90 minutes), one can
take the break halfway x and v from 11:30 till 12:15 and
then continue to drive to x without facing the road block.
This leads to an arrival time of 13:15, break time Ay later
than expected.

The example shows that planning a break lead to very dif-
ferent travel times, although the TTF values were equal. A
method to compute correct travel times including a break
needs to know the exact times of the road blocks on the road.

361

1:30h

1:30h
@ “ oz @bls)?l?alﬁ.@@:lﬁ;@@h@

240

180

Travel time [min]

8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
Departure time

Figure 6: Contracting node X creates two shortcut edges
from nodes u to v and v to u, including their respective travel
time functions.

It should be noted that these block times cannot be derived
from the TTF itself: due to the merging of edges with and
without road blocks the typical road block shape as shown
in Figure 1 may be shifted. However, the information on how
much the block is shifted in the TTF can be used to derive
the actual travel times if a break is planned on the route.

5.3 Single-label search

The single-label heuristic as introduced in Section 4.2 does
not work correctly using TCH (time-dependent contrac-
tion hierarchies): the preprocessing step creates several long
shortcut edges, resulting in multiple possibilities of plan-
ning a break along this edge, each having a very different
travel time. Therefore, the following modification, called
SL-TCH-BP, schedules breaks using two obvious strategies:
planning a break as late as possible along the route (i.e.,
at T'), or during a road block (which is retrieved using the
maintained road block information). The strategy resulting
in the earliest arrival time is returned as the best route.

5.4 Multi-label search

The single-label heuristic does not necessarily result in op-
timal routes, even if they are remained in the preprocessed
graph (i.e., Theorem 2 holds). A better method (denoted by
TCH-BP) is to adjust the Pareto search algorithm shown in
Algorithm 1. The label tuple gets an additional boolean b,
indicating whether a break has been taken or not. For a label
to be dominated, b needs to have the same value. If a label
without a break is relaxed, two labels are created instead of
one (line 7): one without, and one with a break. The required
travel times including the scheduled breaks are identical to
the OBP Pareto search algorithm, with the addition of using
the road block information as explained in Section 5.2. The
quality and runtime of this heuristic algorithm, as well as
the other algorithms introduced previously, are tested exper-
imentally in the following section.

Table 1: Used road blocks in Europe

Country Night block Weekend block
Austria 22:00-5:00 Sat 15:00 - Sun 22:00
Czech Republic - Sun 13:00-22:00
France, Hungary - Sat 22:00 - Sun 22:00
Germany, Slovakia - Sun 0:00-22:00

Italy - Sun 8:00-22:00
Slovenia - Sun 8:00-21:00
Switzerland 22:00-5:00 Sun 0:00-22:00

6 Experimental Analysis

The two multi-label algorithms (OBP and TCH-BP), and
their single-label variants (SL-BP and SL-TCH-BP) are
evaluated to show the influence of optimal break planning
compared to the industry standard reference algorithm. Ad-
ditionally, the quality and runtime of the heuristic single-
label variants and heuristic TCH-BP are shown.

6.1 Experimental setup

All algorithms are run on a detailed network of Europe, con-
sisting of highways, secondary roads and having 7 million
nodes and 13 million edges. Road blocks in Europe that
are active throughout the year are considered. This implies
blocks on Sundays in roughly half of the countries and night
blocks in Austria and Switzerland, as shown in Table 1. In
the used network, 41% of the links is affected.

Ideally test instances exactly represent the currently
driven start-destination pairs by trucks. However, we could
not find such a data set. Therefore, we generated our own test
set as realistically as possible using data on freight trans-
port provided by the ETIS-project (2014). This European
database gives the amount of transported goods by trucks
between each of the countries in Europe. To generate test
instances we randomly picked start and end nodes from the
given countries for each test instance according to the distri-
bution from this database. In total, 10,000 start-destination
pairs are generated.

The start time 7 for each of the test instances is picked
randomly from a uniform distribution between Monday 0:00
and Sunday 23:59. It is assumed that all routes start with an
already driven consecutive driving time A, of 0:00.

For each query, two variations are run: simulating one day
(referred to as 1D) and two days (2D) of driving. 1D corre-
sponds to the daily drivers legislation (European Parliament
2006) and has a maximum consecutive driving time 7" of 4.5
hours and a break time A of 45 minutes. 2D corresponds to
driving two consecutive days, with threshold 7" 9 hours and
night rest A, 11 hours. The required breaks of 45 minutes
are neglected in the two day variation.

All tests are run on a laptop, having 16GB memory and
an Intel Core 17-3740QM 2.70GHz processor with 4 cores.
The used algorithms and test instances are available online
(van der Tuin 2018).

The resulting arrival times of the test instances are com-
pared to the industry standard of planning breaks. This im-
plies computing the shortest paths —not taking any break

362

Table 2: Results of 1D and 2D

1D 2D
Total number of routes 10,000 10,000
Feasible routes 4042 7894
Routes with breaks 2645 3908
Routes improving 163 (6%) 664 (17%)
Avg. 7; of improved routes 15:49 h 27:31h
Avg. absolute improvement 2:45 h 5:14h
Avg. relative improvement 84.9% 89.9%

planning into account— and after that inserting breaks at the
moment the driving threshold is exceeded. The arrival time
is then recalculated by following the path from the break
location. Finally, it is checked whether the threshold of con-
secutive driving time is not exceeded on the remainder of
the path. This method is identical to the dark route shown in
Example 1, and is referred to as the Industry Standard (IS).
It should be noted that bad routes produced by this algo-
rithm are not driven in reality, but changed manually by the
logistics planner beforehand, for example by shifting the de-
parture time. These modifications are not taken into account.

6.2 Influences on the arrival time

The 10,000 routes are computed for both IS and OBP, as
well as for both 1D and 2D variations. Results are shown
in Table 2. For 1D, 4042 routes out of 10,000 are feasible,
meaning that these can be driven within the maximum al-
lowed driving time of twice 4.5 hours. Only the routes that
need a break (2645) can possibly be improved using the op-
timal break planning algorithm. Out of these, 163 instances
show an improvement in travel time, with an average im-
provement of 2 hours and 45 minutes. For 2D, 664 routes
improved with an average improvement of 5 hours and 14
minutes. On average, the travel time of the optimal break
planning routes is 84.9% or 89.9% of the IS travel time for
1D and 2D, respectively.

It can be concluded that only part of the routes improve,
but that these improving routes do show large differences in
travel time. This is due to the long block durations: facing
a block due to the scheduling of a break leads to waiting
for at least 7 hours (the shortest block duration). In Europe,
most road blocks are active on Sunday, sometimes starting at
Saturday afternoon or evening. It is therefore not remarkable
that the improving routes mostly start in the afternoon or in
the weekend, as shown in Figure 7.

6.3 Quality of the TCH-OPB heuristic

As was shown with a counter example in Figure 5, the TCH-
BP algorithm is not necessarily able to provide an optimal
solution due to the removal of these optimal routes during
preprocessing. However, the experiments show that all re-
sults of the TCH-BP algorithm are identical to the results
of the optimal OBP algorithm. This means that for this spe-
cific road network and test set, there do not exist edges that
provide shortest paths for optimal break planning but are re-
moved during preprocessing. The quality of the heuristic is

I
o

| 16:00-24:00
08:00-16:00
m0:00-8:00

553 o
f=} (=}

Improving routes [%]
IS

N 1—1

Mon Tue Wed Thu Fri Sat Sun

Figure 7: Start time distribution of improving routes of 2D

Table 3: Average and maximum query runtimes in seconds

1D 2D

avg. max. avg. max.
OBP 12.77 49.90 2391 66.77
TCH-BP 0.064 0.670 0.154 1.014
SL-BP 10.18 31.66 18.25 4741
SL-TCH-BP 0.0067 0.030 0.012 0.034

therefore considered to be very good.

6.4 Quality of the single-label heuristics

Both single-label algorithms give results in travel time that
are identical to the optimal routes for all 10,000 routes. How-
ever, there do exist situations where potential good partial
solutions are not maintained during preprocessing, that is, a
route having a later arrival time but an earlier shift duration.
This can be easily detected in the SL-BP algorithm, lead-
ing to 816 potential mistakes at the 1D variation and 2537
potential mistakes at the 2D variation. A possible solution
would be to rerun these routes using the optimal algorithm.

For SL-TCH-BP it is not possible to record whether the
solution is possibly non-optimal, since routes already may
be discarded during preprocessing. Furthermore, the limited
amount of paths available at a certain departure time in the
hierarchy cause that paths found by the Pareto algorithm
may not be discovered by its single-label variant.

6.5 Runtime analysis

As expected, the TCH-BP algorithm is able to perform the
queries in much faster runtimes: 0.064 (1D) or 0.154 (2D)
seconds instead of more than 12 seconds used by the OBP
algorithm, as shown in Table 3. This is still much larger
than the query times of less than 1.2 ms of the unmodified
TCH algorithm. This is mainly explainable by the creation
of multiple paths. SL-BP results only in a minor speed-up of
the OBP algorithm. Although its quality is good, it resettles
many nodes in the upper layer of the SBG due to the order-
ing of the priority queue. The SL-TCH-BP variant gives a
much larger speed-up (= 10 times faster than TCH-BP).

7 Conclusions

This paper addresses the problem of planning a single break
while also taking driving bans in Europe into account. An

363

optimal Pareto search algorithm and several heuristics to
solve this problem are proposed. Optimal break planning
routes are compared to the industry standard, which inserts
breaks after the route is planned (such as shown in Figure 2).
The experiments show that 6% of the one-day routes driven
by trucks through Europe improve by optimal break plan-
ning. For two-day routes this is about 17 %. The savings of
improved routes are significant: 2:45 hours (for a maximum
driving time of 9 hours) or 5:14 hours (18 hours limit) com-
pared to the industry standard reference algorithm.

To decrease computation times, a heuristic single-label al-
gorithm (SL-BP) is introduced, but this gives only a small
gain in runtime (18 instead of 24 seconds per query). Fur-
thermore, in 25% of the 10,000 routes a potentially optimal
solution is discarded during the execution of the algorithm.
Rerunning only these using the optimal algorithm results in
a longer average runtime than running only the optimal al-
gorithm, and is therefore not advisable.

A more effective way of decreasing computation times is
using a heuristic Pareto search using time-dependent con-
traction hierarchies (TCH-BP). This algorithm gives speed-
ups of up to 200 times compared to the optimal algorithm,
making it suitable to be used within the context of VRP. Ad-
ditionally, the results are identical to the optimal routes. This
suggests that the optimality condition (Theorem 2) is true for
the used network. This is probably because all roads can be
driven without delay during the week in daylight hours.

The heuristic single-label TCH variant (SL-TCH-BP) also
produces identical results, within a further 10 times smaller
runtime (0.012 instead of 0.154 seconds per query). Interest-
ingly, these strategies of planning a break as late as possible
or as efficiently as possible (i.e., during a road block) result
in good routes for the considered test set. It seems that the
inclusion of break planning in this basic form already leads
to a large improvement compared to adding breaks after the
route has been planned (as the industry standard). Since it is
not straightforward to determine whether a potentially opti-
mal solution is discarded during preprocessing or querying,
an important direction for further research is to identify pre-
cisely why and when these strategies (do not) work.

Although planning a single break gives good insights in
the need for optimally planning breaks, the presented meth-
ods are not useful in an industry application yet, since for
longer routes multiple breaks need to be scheduled. How-
ever, the concept of the stacked break graph and the multi-
label algorithms are easily extendible to a multi-layered
graph each representing a different break taken. A disadvan-
tage of this method is the fixed number of breaks during the
route — which should be pre-specified as the number of lay-
ers. Another way of implementing multiple breaks would be
to keep track of the truck drivers’ status using several driv-
ing time counters, and adjusting the Pareto labels accord-
ingly. The algorithm should then explore all eligible routes.
Although enormous amounts of labels are expected to be
generated, computation times can be shortened by introduc-
ing a heuristic that discards labels that are not likely to form
good solutions, for example paths with more breaks and a
higher consecutive driving time.

For now we conclude that optimal break planning leads

to a large gain in travel time, and by using the TCH Pareto
search algorithm these routes can be computed fast and pre-
sumably optimal.

8 Acknowledgements

This work is based on the first author’s master’s thesis
(2017) supported by ORTEC B.V.. We would like to thank
the committee members C.G. Chorus, V.L. Knoop and S.
van Cranenburgh of Delft University of Technology for their
input during the thesis project.

References

Batz, G. V., and Sanders, P. 2012. Time-dependent route
planning with generalized objective functions. Lecture
Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 7501 LNCS:169-180.

Batz, G. V.; Geisberger, R.; Sanders, P.; and Vetter, C. 2013.
Minimum time-dependent travel times with contraction hi-
erarchies. Journal of Experimental Algorithmics 18(1):1.1-
1.43.

Bauer, R., and Delling, D. 2009. SHARC: Fast and robust
unidirectional routing. Journal of Experimental Algorith-
mics (JEA) 2:13-26.

Bréuer, C., and Baum, M. 2016. Optimale zeitabhingige
Pausenplanung fiir LKW-Fahrer mit integrierter Park-
platzwahl.

Dantzig, G. B. 1962. Linear programming and extensions.
Princeton university press.

Dijkstra, E. W. 1959. A Note on Two Probles in Connexion
with Graphs. Numerische Mathematik 1(1):269-271.

Ehrgott, M. 2006. Multicriteria optimization. Springer Sci-
ence & Business Media.

European Parliament. 2006. Regulation (EC) No 561/2006
of the European Parliament and of the Council of 15 March
2006 on the harmonisation of certain social legislation re-
lating to road transport and amending Council Regulations
(EEC) No 3821/85 and (EC) No 2135/98 and repealing Co.

European Transport policy Information Systems. 2014.

ETIS database. http://viewer.etisplus.eu/.

Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: Faster and simpler hierar-
chical routing in road networks. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artifi-

cial Intelligence and Lecture Notes in Bioinformatics) 5038
LNCS(July):319-333.

Goldberg, A. V., and Harrelson, C. 2005. Computing the
shortest path: A search meets graph theory. In Proceedings
of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 05, 156-165. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics.

Hansen, P. 1980. Bicriterion path problems. In Multiple
criteria decision making theory and application. Springer.
109-127.

364

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2):100-107.

Ichoua, S.; Gendreau, M.; and Potvin, J. Y. 2003. Vehi-
cle dispatching with time-dependent travel times. European
Journal of Operational Research 144(2):379-396.

Kok, A.; Meyer, C.; Kopfer, H.; and Schutten, J. 2010. A
Dynamic Programming Heuristic for the Vehicle Routing
Problem with Time Windows and European Community So-
cial Legislation. Transportation Science 44(4):442-454.

Lahyani, R.; Khemakhem, M.; and Semet, F. 2015. Rich
vehicle routing problems: From a taxonomy to a definition.
European Journal of Operational Research 241(1):1-14.

Miiller-Hannemann, M., and Weihe, K. 2006. On the cardi-
nality of the Pareto set in bicriteria shortest path problems.
Annals of Operations Research 147(1):269-286.

Nannicini, G.; Delling, D.; Liberti, L.; and Schultes, D.
2008. Bidirectional A* search for time-dependent fast paths.
Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 5038 LNCS(2):334-346.

Orda, A., and Rom, R. 1990. Shortest-Path and Minimum-
Delay Algorithms in Networks with Time-Dependent Edge-
Length. Journal of the Association for Computing Machin-
ery 37(3):607-625.

Sommer, C. 2014. Shortest-path queries in static networks.
ACM Computing Surveys 46(4):1-31.

van der Tuin, M. 2017. Time-dependent earliest arrival
routes with drivers legislation and preferences. Master’s the-
sis, Delft University of Technology.

van der Tuin, M. 2018. Break planning with
multi-label Dijkstra and time-dependent contraction hier-
archies. https://doi.org/10.4121/uuid:508b228d-e542-40c9-
95cc-1b985d86e3b2.

