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ABSTRACT
Background. Automated driving is often proposed as a solution to human errors.
However, fully automated driving has not yet reached the point where it can be
implemented in real traffic. This study focused on adaptively allocating steering control
either to the driver or to an automated pilot based on momentary driver distraction
measured from an eye tracker.
Methods. Participants (N = 31) steered a simulated vehicle with a fixed speed, and
at specific moments were required to perform a visual secondary task (i.e., changing a
CD). Three conditions were tested: (1)Manual driving (Manual), in which participants
steered themselves. (2) An automated backup (Backup) condition, consisting ofmanual
steering except during periods of visual distraction, where the driver was backed up
by automated steering. (3) A forced manual drive (Forced) condition, consisting of
automated steering except during periods of visual distraction, where the driver was
forced into manual steering. In all three conditions, the speed of the vehicle was
automatically kept at 70 km/h throughout the drive.
Results. The Backup condition showed a decrease in mean and maximum absolute
lateral error compared to the Manual condition. The Backup condition also showed
the lowest self-reported workload ratings and yielded a higher acceptance rating than
the Forced condition. The Forced condition showed a highermaximum absolute lateral
error than the Backup condition.
Discussion. In conclusion, the Backup condition was well accepted, and significantly
improved performance when compared to the Manual and Forced conditions. Future
research could use a higher level of simulator fidelity and a higher-quality eye-tracker.

Subjects Human-Computer Interaction, Multimedia
Keywords Automated driving, Adaptive automation, Eye tracking, Driver distraction, Driving
simulator, Dual task, Human–machine interaction, Car driving

INTRODUCTION
Automated driving
Over the last couple of decades, researchers have been studying the viability of automated
driving for commercial use. However, automation research has not yet reached the point
where fully autonomous driving can be implemented with the promise of a perfect
system. Current designs of automated driving systems often focus on applying partial,
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conditional, or high automation (SAE International, 2016), where the human tasks are
that of a supervisor. This supervisory role has brought about other human factor issues,
including loss of vigilance, varying workload, fatigue, and loss of situation awareness
(Casner, Hutchins & Norman, 2016; De Winter et al., 2014; Matthews, 2016; Parasuraman
& Riley, 1997).

The potential of adaptive automation
Adaptive automation has been proposed as a solution to maximize human-machine
cooperation (e.g., De Visser & Parasuraman, 2011; Hancock, 2007; Inagaki, 2003; Kaber
& Endsley, 2004; Parasuraman, 2000). In adaptive automation, control functions change
to a lower or higher level of automation depending on predetermined criteria, such as
momentary workload or situation awareness of the human operator. For example, if
during the automated execution of a task the human is measured to be inattentive, the
algorithm could switch the automation to a lower level or even turn over control entirely
to the human operator to engage the human. Alternatively, if high human workload is
detected during a manually-executed task, some or all of the control might automatically
be switched to the automation.

Types of adaptive automation
Algorithms that define how and when automation is invoked and terminated differ
greatly. Sheridan & Parasuraman (2005) (see also Parasuraman et al., 1992; Inagaki, 2003)
describe five types of methods for implementing adaptive automation: (1) critical-event
logic, (2) operator performance measurements, (3) modeling, (4) operator physiological
measurements, and (5) hybrid methods, combining multiple of these methods.

Physiological measurements offer the advantage that they can be obtained continuously
regardless of whether the automation is active or inactive (Parasuraman et al., 1992; Scerbo
et al., 2001). There are different physiological measures that provide information on
the human operator state, including heart rate, skin conductance, and eye movements.
For this research study, the focus lies on eye movements because they can be measured
non-obtrusively and provide specific information regarding where the driver attends
to, as opposed to other physiological indexes which provide a more general index of
attentional/arousal. How drivers distribute their visual attention is relevant in driving
safety research, as the information relevant to driving is likely to be predominantly visual
(Sivak, 1996).

Backup automation
Fundamentally, there are two approaches towards adaptive automation using eye
movements. The first approach is backup or background automation, which ‘‘allows
the driver to drive the vehicle, but watches over them in case of trouble’’ (Kyriakidis
et al., in press). For example, it is possible to let the driver control the car manually, and
invoke automation if the driver is distracted. This approach may be beneficial for safety, as
off-road glances are associated with decrements in performance and safety. For example,
a naturalistic driving study found significant associations between eyes-off-road time and
standard deviation of lateral position (Peng, Boyle & Hallmark, 2013).
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Backup automation is similar to real-time distraction-mitigation feedback which alerts
drivers based on their off-road eye glances (Donmez, Boyle & Lee, 2007). However, alerts
alone may not always be effective, as drivers may decide to ignore warning systems
(e.g., Parasuraman & Riley, 1997).

Forced manual driving
The second and opposite approach (‘foreground automation’; Kyriakidis et al., in press)
would be to let the car drive automatically, and force the driver to take over if he or she is
distracted (i.e., negligent in their responsibility for monitoring the dynamic driving task).

The notion of forced manual driving might seem odd due to its apparent unsafe nature.
However, it is not odd in the sense that it roughly corresponds to a path being followed by
the automotive industry. As a result of an investigation into the first fatal crash with Tesla’s
Autopilot and a truck in May 2016, the National Transportation Safety Board (NTSB) has
issued recommendations to ‘‘develop applications to more effectively sense the driver’s
level of engagement’’ and to ‘‘incorporate system safeguards that limit the use of automated
vehicle control systems to those conditions for which they were designed’’ (NTSB, 2017).
Other than a warning based on hands-on-wheel sensing, one such safeguard could be to
automatically activate a functional transition from the automated mode towards manual
driving, see the case of Cadillac Super Cruise, which uses head tracking software that ‘‘helps
make sure your eyes are on the road, and alerts you when you need to paymore attention or
take back control’’ (Cadillac, 2018). In current level 2 automated driving, the car performs
lateral and longitudinal control, and the system penalizes the inattentive supervisor with
a transition of control back to the driver. In an overview of 2017 models from vehicle
manufacturers with level 2 driving automation systems, transitions of control back to
the driver were found to be a commonly employed strategy for reacting to insufficient
supervisory driver attention (C Cabrall, A Eriksson, F Dreger, R Happee & JCF De Winter,
2018, unpublished data). Accordingly, the forced manual driving may be a useful strategy
to prevent overreliance on automation.

The present study
In summary, transitions in adaptive automation could occur in two directions. While
driving manually, detection of visual distraction could trigger a transition from manual
driving control to automated control (Backup automation). In the other direction, visual
distraction could trigger a transition from automated to manual driving (Forced manual
driving). At present, it is unknown whether background automation or foreground
automationwith forcedmanual driving is preferred in terms of safety and driver acceptance.

The present experiment was performed with three different conditions (1) Manual
driving (Manual), (2) An automated backup (Backup) condition, consisting of manual
driving except during periods of visual distraction, where the driver was backed up by an
automated pilot that was automatically initiated, and (3) A forced manual drive (Forced)
condition, consisting of automated driving except during periods of visual distraction,
where the driver was forced back into the manual control loop.

An expected result was that the automated backup condition would yield better lane-
keeping performance during visual distraction because the automation is programmed to
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keep lane center better than what humans are capable of. Additionally, it was of interest to
see whether people accepted this condition, in which control was taken away from them.
For the forced manual drive condition, it was expected that lateral driving performance
would deteriorate as compared to the manual drive condition during such moments
because visual attention is a prerequisite for being able to keep the car in the lane (Senders
et al., 1967).

METHODS
Ethics statement
This research was approved by the Human Research Ethics Committee (HREC) of the
Delft University of Technology (TU Delft). All participants provided written informed
consent.

Participants
Thirty-one people participated, of which 25 were male and six female. The mean age was
26.4 years (SD = 4.5 years). Participation criteria were having a driver’s license, and not
having to wear glasses to see properly. Participants were offered¤5 compensation for their
time (approx. 30 min).

Equipment
A SmartEye DR120 remote eye tracker was used to record the participant’s gaze direction
while seated and viewing a desktop monitor (Fig. 1). Data were collected at a frequency
of 60 Hz. The experiment took place in a room with standard office lighting and lowered
window blinds. A 24-inch monitor was used to display the simulated environment. The
distance between the monitor and the participant differed between participants but was
limited by the DR120 eye tracker, which was able to measure in the range 50–80 cm from
the cameras. A Logitech G27 steering wheel was used to control the simulated vehicle.
PreScan software (TASS International, Helmond, The Netherlands) was used to create the
simulation environment. MATLAB/Simulink was used along with PreScan to control the
simulated vehicle and to log data. A stack of CDs and a small boom box to the right of
the monitor and steering wheel were used to present a secondary task that evokes visual
distraction similar to that which might commonly occur while driving (e.g., using a route
navigation device, tuning the radio, texting).

Simulated environment
The environment consisted of a two-lane road with a lane width of 5 m. The road had five
straight segments and four 10◦ bends (Fig. 2). The participant was shown the dashboard of
a vehicle (BMW X5) as well as the road in front of them (Fig. 3). A bar on the dashboard
indicated the state of the automation. A green bar indicated that the automation was on,
a yellow bar indicated that the automation was still on but that the participant was about
to regain lateral control, and a red bar indicated that the automation was off (i.e., manual
lateral control). The automation was designed in such a way that when it was switched on,
it would quickly drive the car towards the center of the right lane and keep it there.
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Figure 1 The experimental setup. Source credit: the authors.
Full-size DOI: 10.7717/peerjcs.166/fig-1
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Figure 2 Top-down perspective of the road. The markers indicate the six moments when a 1-s beep
was presented, signaling that the participant could start the secondary task.

Full-size DOI: 10.7717/peerjcs.166/fig-2
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Figure 3 Photo from the participant’s perspective. The eye-tracker cameras are connected to the bot-
tom of the monitor. Source credit: the authors.

Full-size DOI: 10.7717/peerjcs.166/fig-3

Experimental conditions
A within-subject design was used, and the order of the conditions was counterbalanced
across the participants. The counterbalancing was done by presenting the six possible
orders of the Manual (1), Backup (2), and Forced (3) conditions, in the following manner
to the first six participants: 1-2-3, 3-2-1, 2-3-1, 2-1-3, 1-3-2, 3-1-2. These orders were
repeated for Participants 7–12, 13–18, 19–24, and 25–30, and Participant 31 was presented
with the 1-2-3 order. During the entire experiment, the vehicle speed was constant at 70
km/h, and thus no longitudinal control actions were required. This speed was chosen to
simulate driving on rural roads. No infrastructure (buildings, signage, vegetation) nor any
other traffic were simulated. Three experimental conditions were used:
Manual condition (Manual). In the Manual condition, the participant performed the
steering without help from an automated system.
Automated backup condition (Backup). In this condition, the automated system assumed
lateral control when visual distraction was measured. Otherwise, the participant performed
manual steering. Visual distraction was defined by the consecutive eyes-off-monitor
time being greater than 1.5 s. The secondary task was placed to the right of the steering
wheel, and when the participant turned the head to look at it, it sometimes became
difficult for the eye tracker to record the eyes. When the eye tracker was not able
to record the eyes, it reported this as null values, and the algorithm treated these as
off-monitor measurements. Automation termination was also performed based on
eye measurements: the participant would regain lateral control if (s)he focused on
the monitor for 4.5 s. The yellow status bar switched on 1.4 s before the transition
to manual took place. The 1.5 s and 4.5 s thresholds were based on pilot studies
(see https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b). The 1.5 s
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threshold for Backup automation is in approximate agreement with the literature, which
suggests that off-road glances of 2.0 s and longer are risky (Klauer et al., 2006; Ryu, Sihn &
Yu, 2013). Recently, Liang, Lee & Horrey (2014) concluded that ‘‘frequent off-road glances
longer than 1.7 s present a high-risk glance pattern in the seconds preceding a safety-critical
event and that the 2.0 second-threshold that is frequently cited in defining dangerously
long off-road glances might be a liberal estimation’’.
Forced manual drive condition (Forced). The Forced condition can be described as being
opposite to the Backup condition in the sense of control transition directionality. The
automation had lateral control of the car while the participant was assessed as being
visually attentive, and initiated a control transition to manual driving if visual distraction
was measured. If the gaze was directed away from the monitor for 1.5 consecutive seconds,
the automation switched off, and the participant would be forced to drive manually. The
status bar switched from green to yellow 0.75 before the transition to manual would take
place. The algorithm would wait until 4.5 on-monitor seconds were measured and then
the automation would switch on.

In the Manual and Backup conditions, the first 3.5 s of each trial were driven with
automation enabled, and between 3.5 and 5 s, the status bar was yellow. This ensured that
the participant started smoothly with zero lateral error.

During automated driving, the steering wheel (i.e., the physical angle of the Logitech
steering wheel) was decoupled from the simulated steering angle, and so not necessarily
centered. When regaining manual control, the virtual steering angle would make a discrete
jump from the previous steering angle determined by the automation towards the steering
angle at which the physical steering wheel angled at that moment.

It is noted that the above-mentioned descriptions of the Backup and Forced conditions
are simplifications of the actual algorithms (see https://doi.org/10.4121/uuid:49d87edc-
07a6-4f07-a5e6-0b699705881b for source code). One detail is that, to prevent effects of
eye blinks and rapid glances between the secondary task and the monitor, the algorithms
featured a filter regarding the transition back to the nominal state (i.e., manual driving in
the Backup condition and automated driving in the Forced condition). This means that
the driver did not have to look to the monitor for 4.5 s consecutively to induce a transition.
Specifically, the algorithm of the Backup condition was programmed in such a way that
if the eye tracker measured 1.5 consecutive off-monitor seconds, the on-monitor counter
would reset to zero. In other words, if a cumulative total of 4.5 on-monitor seconds were
measured (i.e., without 1.5 consecutive off-monitor seconds in between), the participant
automatically regained lateral control. For the Forced condition, on the other hand, the
on-monitor counter would reset after 0.33 consecutive off-monitor seconds. There was no
specific purpose for these differences between the Backup and Forced conditions, but these
differences were the consequence of adjustments during pilot testing.

Secondary task
The participant was given a secondary task intended to cause a visual distraction. In this
secondary task, the participant was required to perform a sequence of physical actions
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involving the stack of CDs and a CD-player (see Horberry et al., 2006), who reported that
this type of task degrades driving performance).

The sequence of steps consisted of keeping the left hand on the steering wheel and using
the right hand to (1) press stop on the CD-player, (2) open the CD-player, take out the
CD, and put it on top of the stack of CDs, (3) take out the bottom CD from the stack, put
it in the CD-player, and close the lid, (4) press play on the CD-player, (5) put the stack
of CDs back in their original position, and (6) place the right hand back on the steering
wheel. The sequence of steps was designed to encourage visual distraction and thus trigger
an automatic transition of control. Note that the volume of the CD-player was set to zero.

The participant was told to keep the left hand on the steering wheel at all times.
Furthermore, the participant was instructed to look at the secondary task (CDs, CD-player)
when performing the secondary task. In other words, the participant was not supposed
to look towards the monitor and simultaneously perform the secondary task based on
peripheral vision or touch. This requirement was included to ensure that the participant
was visually distracted from the driving due to performing the secondary task.

At six moments during the drive (after 15 s, 65 s, 115 s, 165 s, 225 s, and 275 s), the
participant was alerted that he/she was required to perform the secondary task by a long
(1 s) beep. To encourage secondary task engagement, the participant was scored by the
experimenter on a scale from0 to 10. The participant could get up to 6 points for performing
the task steps correctly and up to 4 points depending on howquickly the taskwas completed.
The scoring was done by the experimenter by looking at the participant and an on-screen
timer that was visible on the experimenter’s computer. The precise scoring criteria are
provided in https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b. If the
task was not completed within 25 s, the participant would only get points for the steps
finished at that time. The total score was the average of the six secondary tasks per driving
trial. At the end of each driving trial and before they started with the questionnaires, the
experimenter orally told the participant what the secondary task score was, rounded to 1
decimal point.

Additionally, for the Manual and Backup conditions, a short (0.25 s) beep was produced
25 s after the long beep, to mark the end of the secondary task period. In the Forced
condition, the short beep was produced when the automation had made a transition from
manual to automated driving or 25 s after the long beep (whichever came first). For the
Forced condition, the short beep was presented right after the manual-to-automation
transition to signal to the participant that the secondary task was over.

The instructions form mentioned that ‘‘a long beep will indicate the start of the task,
a short beep will indicate that you can stop the task if you are not already finished.’’
Furthermore, the form stated that lane keeping was the primary task, ‘‘Your primary task
is to focus on staying in the center of the right lane as accurately as you can. This should
always be the most important task. Safety first!’’. The form also clarified that changing the
CD was the secondary task, and that the participant should attempt to score as high as
possible while still driving safely.
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Procedure
After reading and signing the consent form, which mentioned the goal of the experiment
and the workings of the three conditions, each participant was asked to fill out a personal
information questionnaire. They were also required to read the instructions form (see
https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b).

Next, the participant was asked to sit in front of the eye tracker and focus on four
fixed points on the monitor to perform a gaze calibration. If the calibration could not be
completed, the participant was asked to sit differently so that the cameras could record
their eyes better before performing another calibration.

For each of the three conditions, the participant was asked to drive the simulated
vehicle in the environment described above, using the steering wheel for lateral control.
Additionally, for each of the three conditions, at fixed intervals during driving, the
participant was required to perform the CD-player secondary task.

After each driving trial, the participant was asked to complete a NASA Task Load
Index (TLX) questionnaire (Hart & Staveland, 1988). Following the Backup and Forced
conditions, the participant was required to fill out an acceptance scale of in-vehicle
technology (Van der Laan, Heino & De Waard, 1997). The participantswere not required to
complete this questionnaire for theManual condition, because the scale asks to rate a specific
vehicle technology. At the end of the experiment, the participant was asked to complete a
questionnaire where they could state which session they preferred as well as give general
comments (see https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b for
all the questionnaires used in this study).

The participant performed a 185 s training run before each of the driving trials to
become familiar with each condition. These training runs were driven on the same track as
the actual experimental runs, and included three secondary task periods. After the training
run, the participant drove the full track, which took 350 s for each driving trial and included
six secondary task periods.

Dependent variables
The following measures and measurements were assessed across the 10.0 s and 349.5 s
of elapsed time per driving trial of a particular condition. The first 10 s were discarded
because this period was regarded as settling time for participants.
Lateral performance:

• Mean Absolute Lateral Error (meanALE) (m). This was the mean of the absolute
difference in lateral position between the vehicle’s position and the lane center. The
meanALE is an index of overall lane keeping performance and includes both periods
where the lateral driving automation is active (and so the lateral error is 0) and periods
of manual driving.
• Mean Absolute Lateral Error during Manual Driving (meanMALE) (m). This was the
mean of the absolute difference in lateral position between the vehicle’s position and the
lane center, only for moments when the participant was driving manually.
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• Maximum Absolute Lateral Error (maxALE) (m). maxALE is the maximum of the
absolute difference in lateral position between the vehicle’s position and the lane center
in meters, and can be regarded as an index of safety.

Furthermore, the following measures were extracted from the self-reports, for each of
the three driving conditions:
Secondary task performance:
• The secondary task score (0–10) was computed as the mean of the full set of six

secondary tasks of a driving trial.
Workload:
• NASA-TLX (%), ranging from 0% to 100% with steps of 5%. This questionnaire was

used to assess subjective workload on six different categories: (1) Mental demand, (2)
Physical demand, (3) Temporal demand, (4) Performance, (5) Effort, and (6) Frustration
(Hart & Staveland, 1988). The items were answered on a 21-point scale ranging from ‘very
low’ (‘perfect’ for the performance item) to ‘very high’ (‘failure’ for the performance item).
A composite score was obtained by taking the mean of the six different sub-category scores
(Byers, Bittner Jr & Hill, 1989).
System acceptance:

• Acceptance scale, ranging between+2 and−2, with steps of 1. The acceptance scale was
used to assess the drivers’ opinion on the Usefulness and the Satisfaction of the systems
they tested. This questionnaire consisted of nine sub-scale items, presented in order as (1)
useful-useless, (2) pleasant-unpleasant, (3) bad-good, (4) nice-annoying, (5) effective-
superfluous, (6) irritating-likeable, (7) assisting-worthless, (8) undesirable-desirable, (9)
raising alertness-sleep inducing.
• Preference. The participant was also asked which condition they preferred the most in
a final questionnaire after they had performed all of the conditions. The question they
were asked was ‘‘Which session did you prefer?’’. The possible answers were ‘‘session 1’’,
‘‘session 2’’ ‘‘session 3’’, and ‘‘no difference’’.

Statistical analyses
Non-parametric tests were used because some of the performance measures were
non-normally distributed among participants. For example, maxALE represents the
maximal deviation during the entire drive and so is sensitive to a single road excursion.
Differences between pairs of conditions were compared using the Wilcoxon signed rank
test. Corresponding effect sizes were calculated as Z /N 0.5. A significance level of .005 was
used (Benjamin et al., 2017).

RESULTS
Automation functionality
First, we assessed whether the Backup and Forced conditions worked as intended. Figure 4
shows the proportion of participants with automation on at any time for the Backup
and Forced conditions. It can be seen that about 90% of the participants in the Backup
condition drove automatically about 10 s after the task initiation beep was presented.
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Figure 4 The proportion of participants with automation turned on as a function of elapsed time. The
magenta vertical lines represent the secondary task initiation beeps. The overall percentage of automated
driving time was 0%, 22%, and 76% for the Manual, Backup, and Forced conditions, respectively.

Full-size DOI: 10.7717/peerjcs.166/fig-4

The 10 s comprises the minimum 1.5 s required to initiate a transition, plus individual
differences in eye-response time (or the fact that participants may have used frequent
scanning back and forth scanning rather than a direct re-allocation of gaze in a binary
manner). Similarly, about 90% of the participants were issued manual driving control
status in the Forced condition about 10 s after the beep. Figure 4 also shows that some of
the participants experienced control transitions outside of the secondary task periods. This
could be due to eye tracker imperfections, as faulty measurements could result in 1.5 s off
monitor glancing. Summarizing, the results in Fig. 4 show that the Backup and Forced
conditions worked in opposite ways, as intended.

Lane-keeping performance
Figure 5 shows results of the absolute lateral errors for every participant, and of all
participants averaged. Differences between conditions are evident in the lateral position
while performing a secondary task (i.e., up to about 20 s following each magenta line,
cf. Fig. 4). In the Backup condition, the absolute lateral error drops to near-zero after
participants were notified to perform the secondary task. In the Manual condition,
however, the absolute lateral error increases with evidently higher peak values compared to
periods without the secondary task. During the Forced condition, the absolute lateral error
is near-zero before the secondary task periods (i.e., when automation is on) but increases
substantially when the automation is disengaged.

Figure 6 shows the results for the three lane-keeping performance measures. Concerning
the first measure (meanALE), the Backup condition yielded better lane-keeping
performance than the Manual condition. Specifically, the meanALE of the Manual
condition (Med = 0.54 m, IQR = 0.25 m) was higher than for the Backup condition
(Med = 0.33 m, IQR = 0.12 m), Z = 4.62, r = .83, p< .001. The meanALE of the Forced
condition (Med = 0.18 m, IQR = 0.20 m) was significantly lower than that of both the
Manual condition (Z = 4.78, r = .86, p< .001) and the Backup condition (Z = 3.02,
r = .54, p= .003).
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Figure 5 Absolute lateral position as a function of elapsed time. The magenta vertical lines represent
the secondary task initiation beeps. The results of individual participants (N = 31, in each condition) are
shown in gray. The mean of participants is shown in black.

Full-size DOI: 10.7717/peerjcs.166/fig-5
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Figure 6 (A) The mean absolute lateral position (meanALE), (B) the mean absolute lateral position
during manual driving (meanMALE), and (C) the maximum absolute lateral position (maxALE).
maxALE is presented on a logarithmic scale. For each box, thick red the horizontal line is the median,
and the edges of the box are the 25th and 75th percentiles. The markers represent scores for individual
participants, with a horizontal offset to prevent overlap.
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Concerning the second measure (meanMALE), which compares only the portions of
manual driving, the median value for the Backup condition was 0.42 m (IQR = 0.14
m), which was significantly lower than the Manual condition (Med = 0.55 m, IQR =
0.25 m), Z = 3.94, r = .71, p< .001. The Forced condition yielded a significantly higher
meanMALE (median = 0.71 m, IQR = 0.81 m) than the Manual condition (Z = 3.88,
r = .70, p< .001) and the Backup condition (Z = 4.66, r = .84, p< .001). In summary,
average lane positioning during periods of manual control with adaptive transitions of
control was improved in the Backup condition compared to full manual control and was
worsened in the Forced condition.

Finally, concerning the third measure (maxALE), the Manual condition yielded poorer
performance (Med = 2.49 m, IQR = 1.74 m) than the Backup condition (Med = 1.67
m, IQR = 0.70 m), Z = 3.51, r = .63, p< .001. Furthermore, the maxALE of the Forced
condition (Med = 3.14 m, IQR = 2.67) was significantly higher than that of the Backup
condition, Z = 4.23, r = .76, p< .001, whereas the difference in maxALE between the
Forced and Manual conditions was not statistically significant, Z = 2.02, r = .36, p= .044.
In summary, maximum lane deviations were lowest in the Backup condition.

Driver attention and secondary task performance
Figure 7 shows the percentage of participants glancing at the monitor as a function of
elapsed time for the three conditions. It can be seen that participants in the Backup
condition were more likely to look away from the monitor (between about 3 and 12 s
after the task initiation beep) than participants in the other two conditions. Participants
apparently used the available backup to concentrate on the secondary task, whereas in the
Manual and Forced conditions, participants had to periodically check the road to keep the
vehicle in the lane. This was also reflected in the average number of points earned across
the six sessions, with median values of 8.50, 9.00, and 8.67 on the scale from 0 to 10, for the
Manual, Backup, and Forced conditions, respectively (Fig. 8). The score for Backup was
significantly higher than for the Manual (Z = 3.02, r = .54, p= .003) and Forced condition
(Z = 3.23, r = .58, p= .001). The difference between the Manual and Forced conditions
was not significant (Z = 0.58, r = .10, p= .562).

Self-reported workload
The results of the NASA-TLX questionnaires per item are shown in Fig. 9. Generally, the
Backup condition yielded lower workload ratings than the Manual and Forced conditions
for each of the six items. Regarding composite workload (i.e., the mean across the six
items), the medians across participants for Manual, Backup, and Forced were 46.7%,
31.7%, and 46.7%, respectively. The composite workload of the Backup condition was
significantly lower than both the Manual condition (Z = 3.98, r = .71, p< .001) and the
Forced condition (Z = 3.95, r = .71, p< .001). The difference between the Forced and
Manual conditions was not statistically significant, Z = 1.09, r = .20, p= .275.
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Figure 7 The percentage of participants glancing at the monitor as a function of elapsed time. Filtering
with an interval of 0.25 s was applied, and the data for the six secondary tasks were averaged. Missing data
(e.g., the eye tracker not tracking the eyes because the participant is performing a blink or performing the
secondary task) were coded as an off-monitor glance. The thick magenta vertical line represents the sec-
ondary task initiation beep.

Full-size DOI: 10.7717/peerjcs.166/fig-7

Self-reported driver acceptance
The results of the acceptance scale per item are shown in Fig. 10. Participants reported
significantly higher acceptance scores on all items (p< .001) for the Backup condition as
compared to the Forced condition, except for the Raising alertness –Sleep-inducing item.

At the end of the experiment, each participant completed a form where they were
asked which session they liked most. Out of the 31 participants, 22 (71%) selected
the Backup condition as their preferred condition, eight (26%) selected the Manual
condition, and one (3%) participant selected the Forced condition. A final optional
comments section was provided through which 13 participants provided responses
(see https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-a5e6-0b699705881b ). Three
participants reported that they would prefer to change control manually. Furthermore,
three participants commented on the automation status bar, which was perceived as
annoying, useless, and/or interfering with the working of the systems.

DISCUSSION
This research aimed to design and investigate a distraction-mitigation system that
automatically invoked a control transition based on distraction measurements and to
see how it would affect performance, workload, and acceptance. Triggers were designed
and implemented under two essentially opposite approaches to eye-based adaptive driving
automation to examine different directional consequences upon detection of distraction:
a transition from manual to automated control vs. a transition from automated to manual
control.
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Figure 8 Points scored on the secondary task. The participant’s score is the average of six tasks. For each
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Lane-keeping performance
Backup vs. manual
Lane-keeping performance was assessed via three complementary measures: meanALE,
meanMALE, and maxALE. All three performance indices were significantly better for the
Backup condition compared to the Manual condition. The substantially lower meanALE
and maxALE are a direct result of the secondary task that induced visual distraction and
triggered the lane centring driving automation. For the meanMALEmeasure, the enhanced
lateral driving performance during periods of manual driving could be explained by a
‘staging’ benefit in the sense that the automated agent positioned the car in the center of
the lane before returning manual control to the driver. However, it could also be because
drivers felt more at ease and confident during manual driving, knowing that they had an
automated driving agent to support them.

Forced vs. manual
Regarding the Forced condition, improved lane-keeping performance compared to the
Manual condition was found only for the overall performance of meanALE, whereas a
performance detriment was found for meanMALE. The superior meanALE of the Forced
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Figure 9 Results for the six items of the self-reported workload (NASA-TLX) per condition. For each
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Full-size DOI: 10.7717/peerjcs.166/fig-10

condition can be explained because automated steering was enabled for the majority (76%)
of the driving time.

The fact that the Forced condition yielded lower meanALE but higher meanMALE than
the Manual condition indicates that a trade-off exists between automation use (i.e., more
automation is better, as automation yields zero lateral error, thereby contributing to low
meanALE) and automation reliability (i.e., if drivers are required to take over, as in the
Forced condition, large performance errors can result). This cost-benefit trade-off resembles

Cabrall et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.166 16/27

https://peerj.com
https://doi.org/10.7717/peerjcs.166/fig-9
https://doi.org/10.7717/peerjcs.166/fig-10
http://dx.doi.org/10.7717/peerj-cs.166


the lumberjack effect, where automation has benefit for routine system performance, but
a negative impact when the human has to take over (Onnasch et al., 2014).

Whether the driver is constantly in control of steering or whether he or she is occasionally
forced to take control when looking away from the forward road, the maxALE did not
obtain significant difference. An explanation for the observably large maxALE during
the Forced condition could be that the steering wheel was not always centered during an
automation-to-manual transition (see https://doi.org/10.4121/uuid:49d87edc-07a6-4f07-
a5e6-0b699705881b for steering angle results). Whether or not a steering wheel should
be decoupled during automated driving has been a topic of debate (Kerschbaum, Lorenz
& Bengler, 2014). Our results suggest that a decoupled steering wheel is associated with
increased lateral positioning variability if the decoupled steering wheel is not centered at
the moment of transferring control back to the human driver.

Workload
The Backup condition received the lowest self-reported workload ratings. During the
Forced condition, drivers were monitoring what the automated pilot was doing, until they
were forced back into control during periods of visual distraction. In other words, drivers
initially experienced a state of low task demands and were forced into high task demands.
This was not the case for the Backup condition, where adaptive automation was applied to
help the human when task demands increased.

It should be noted that low workload ratings are not necessarily desirable, because low
workload, or ‘underload’, may be associated with fatigue and loss of vigilance (Hancock
& Parasuraman, 1992; Young & Stanton, 2007). Parasuraman (2003) argued that ‘clumsy
automation’ can be an issue, whereby (adaptive) automation inadvertently adds workload
(e.g., via new task demands like supervising or re-programming the automation) during
already high periods of demand and do little to regulate workload during low periods of
demands (i.e., during routine operation of the automation). In the end, an ‘optimal’ and
balanced workload level should be aimed for. Within the current study, it is believed that
the Backup condition supported such a balanced workload during driving because the
presently 100% reliable automated steering did not require attention from the driver when
it became active and it counteracted degraded lateral performance that would otherwise
occur due to the uptake of the non-driving task.

System acceptance
The Backup condition was rated more favorably than the Forced condition on nearly
all items, except for the Raising Alertness–Sleep-inducing item where results were mixed
and inconclusive. The task demands in the Forced condition provide an explanation of
its negative acceptance ratings. Before the transition of control, participants experienced
simultaneous demands to bothmonitor the automated driving andundertake the secondary
task. Likewise, after the transition of control, participantswere still involved in the secondary
task when manual control was returned to them.

The results in Fig. 7 showed that participants looked away in higher proportions in the
Backup condition than in the Manual condition. This suggests that the participants trusted
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that the automation would assume control and were more inclined to keep their focus
on the secondary task. One of the intended goals of the Forced condition was to prevent
drivers from misusing driving automation that requires their active oversight and mental
involvement (SAE Level 2 automation). However, the Forced condition appeared to show
slightly more off-road glancing than the Manual condition. This is contrary to what was
intended and expected with the Forced condition design as it was meant to return driver
attention to the road. Apparently, in manual driving, participants are more conservative
with their off-road glances than when automation is present (whether backup or forced).
This may be because, in the former, there is one driving agent in the system whereas in the
latter there are two driving agents.

When asked to complete a form at the end of the experiment, a majority of participants
(22 of 31) preferred the Backup condition, which supports the results from the acceptance
scale. These preferences add to the promise of the Backup condition in real-world
applications. However, these preferences might also be because the automation lasts for
as long as the driver keeps the eyes off the road, and so allows for unrestricted secondary
task engagement. A driving simulator study by Jamson et al. (2013) found results which
suggested that ‘‘drivers are happy to forgo their supervisory responsibilities in preference
of a more entertaining highly-automated drive’’, whereas a test-track study by Llaneras,
Salinger & Green (2013) showed that, when using reliable automation, drivers are likely
to increase the frequency of secondary task interactions and engage in tasks that cause
extended glances away from the road. In a review by De Winter et al. (2014), it was found
that relative to manual driving (100%), highly automated driving resulted in 261% of
the number of tasks completed on an in-vehicle display. These findings suggest that the
Backup condition might be preferred because it has the potential (whether intended or not
by designers) to allow for increased end-user involvement in non-driving tasks.

Limitations and generalizability issues
Driving task simplicity
The track that the participants experienced was designed to be short-lasting (350 s per
drive) and easy: no obstacles, other road users, or emergency situations were implemented.
Furthermore, participants were instructed to keep the center of the lane and there was
also no active penalty involved with an unintended lane crossing or large lateral position
errors, and there was a reward for performing the secondary task well (in the form of a
post-trial feedback score which was determined by the experimenter while the participant
was performing the task). These factors may have caused participants to focus on the
secondary task more than they would do in real life. Future research should establish how
the adaptive automation would function in more naturalistic driving conditions.

Eye-tracker capabilities
The eye tracker sometimes lost sight of the eyes of the driver and thus reported a null value
for the gaze direction. The tracker appeared to have more difficulty with some drivers when
compared to others. For our research we used a simple binary criterion to assess visual
distraction: does the participant look at the monitor or not? This criterion was combined
with a filter of 1.5 and 4.5 s interval (see ‘Experimental conditions’), which accounted
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for short data gaps due to e.g., blinking. Based on the results in Fig. 4, sensitivity of the
on-monitor attention algorithms must have been high, as the percentage of participants for
whom the automation was ‘on’ in the Backup condition was mostly zero when participants
were supposed to look at the road (i.e., in between the secondary task periods). There
were a few participants for whom the automation turned on during such periods in the
Backup condition; we were unable to determine whether these were due to data losses
of the eye-tracker or whether participants were actually looking away from the screen
(e.g., exploring whether the Backup system was working properly). Specificity must also
be high because it would be unlikely for the eye tracker to measure that a participant is
looking at the monitor (which subtends a relatively small angular area in the participant’s
field of view) when he/she is looking instead at the CD-player. In summary, there were a
few unexpected control transitions in between the secondary task periods, but these were
infrequent and probably did not have a significant influence on the performance results.

The eye tracker used during this study had to be calibrated for every participant
and sometimes still had trouble discerning the correct gaze direction. If the eye tracker
were to calibrate itself and become more sensitive to gaze direction and less sensitive to
confounding factors such as ambient lighting, this would increase the possibilities for
real-world applications. Similar conclusions were drawn by Pohl, Birk & Westervall (2007)
who also performed a study on distractions leading to lane departures.

Realism of the steering wheel
The steering wheel that was used was smaller than an actual steering wheel and was designed
without any force feedback. Some participants mentioned that this lack of force feedback
was annoying. Another comment some of the participants made was that it was difficult
for them to follow the instructions, which stated to completely focus on what they were
doing with their hands. They were told that they were not allowed to perform any part of
the secondary task blindly, to prevent a situation where they could just keep looking at the
monitor and still finish the secondary task in time. This, understandably, might have felt
unrealistic for the task of switching a CD in the CD-player (i.e., a task people may have
sufficient practice with, and which could in principle be completed without continuous
visual attention). Nonetheless, this approach was implemented to ensure that control
transitions did take place and to simulate situations where long consecutive eyes-off-road
periods did occur.

Capabilities of the distraction detection algorithm
The initiation and termination threshold criteria for automatic transitions of control
between the human and the automated driving were established based on pilot studies.
However, these times are not necessarily generalizable, and would have to be determined
again for experiments that use a different setup. For example, some drivers kept looking
back and forth between the secondary task and the primary task at a high frequency. Due
to this behavior, the algorithms never counted enough samples of looking away from the
monitor which prevented the system from automatically initiating a control transition. A
follow-up experiment could focus on discovering recommended initiation and termination
times, or perhaps even incorporate an algorithm for using variable times.
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The difference between safe and unsafe glances was defined by looking at the monitor or
away from the monitor, respectively. In real-world driving situations, this would have to be
defined more clearly. For example, further experiments might focus on what is considered
as a safety region in the visual field. Perhaps it might be better to define a gradient where
looking at the road directly in front of the car is or at task-relevant objects is considered to
be 100% safe, whereas looking to the sides is less safe. Using such a gradient, the amount
of time after which automation engages might also be varied so that, for example, a ‘10%
safety area’ uses a shorter initiation time than an ‘80% safety area’. It should also be noted
that no mirrors were used during this experiment. Drivers usually look at the mirrors, and
an improved algorithm should not classify mirror usage as a visual distraction.

Definitions of driver distraction (see Pettitt, Burnett & Stevens, 2005) are important
for reliable driver monitoring and cross-study comparisons. Driver distraction can be
separately categorized as visual, auditory, biomechanical, and cognitive (Ranney et al.,
2000). It should be noted that the Backup and Forced systems detected visual distraction,
not other types of distraction. For example, cognitive distraction is regarded as an
important contributor to crashes, yet is a concept that is hard to define (Young, 2012).
Cognitive distraction in driving (Strayer et al., 2013) has been discussed in different guises,
including daydreaming (Galéra et al., 2012), mind wandering (Yanko & Spalek, 2013),
looked-but-failed-to-see errors (Sabey & Staughton, 1975; Staughton & Storie, 1977; Labbett
& Langham, 2006), cognitive tunneling (Reimer, 2009), attention focusing (Chapman &
Underwood, 1998), loss of covert/peripheral attention via diminished functional field of
view (Crundall, Underwood & Chapman, 1999), and highway hypnosis (Wertheim, 1978).
We reiterate here that our Backup and Forced concepts cannot detect all forms of driver
aberration: in reality, driversmay drive in an unsafemanner or crash into objects even when
their eyes are on the road (Victor et al., 2018), and one should therefore not expect that the
present Backup automation is a remedy to all types of driver distraction. However, given
the predominant importance of visual information for driving (Sivak, 1996), the generally
presumed eye-mind hypothesis where gaze direction is a strong correlate of cognitive
activity (Just & Carpenter, 1980), and a substantial history of driving visual occlusion
research (e.g., Senders et al., 1967; Van der Horst, 2004), adaptive automation based on
visual attention alone could reasonably be expected to offer a beneficial contribution.

Realism of the secondary task
The secondary task of changing a CD during this study was chosen because it was assumed
to involve similar visual-manual loads as a number of common and risky in-vehicle tasks
(e.g., texting, reaching for a dropped object, searching within a bag or purse, handling
cables of charging devices, etc.). Participants were periodically forced to perform this
secondary task at pre-defined moments during driving. This might have felt unnatural to
some of the drivers because normally, a driver might choose a moment during driving
before he or she would start a secondary task, whereas during this study these moments
were forced.
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Mode errors and human machine interface
Because of the automatic and dynamic switching of driving task responsibility between
the driver and the automated driving system, the Backup and Forced conditions could be
susceptible to mode confusions, a well-known problem in human-automation interaction
(e.g., Feldhütter, Segler & Bengler, 2017; Sarter & Woods, 1995). A mode confusion occurs
when the driver believes that the automation is on while it is off, or vice versa (see Janssen
et al., in press for a framework of mode confusions in automated driving).

In our study, the status of the automation was communicated visually to the driver by
means of a status bar in the middle of the dashboard. However, because the secondary task
imposed a visual distraction, it was difficult for the driver to know whether the automation
had taken control or not, as predicted by the multiple resource theory (Wickens, 2002).
In more complex driving tasks, where the driver performs many head movements (e.g.,
looking over the shoulder, looking in mirrors), the driver may be susceptible to mode
confusion, as such conditions could cause the Backup automation to enable itself without
the driver being aware of this.

A proper human-machine interface is essential to prevent such confusions and facilitate
trust in the adaptive system. Donmez et al. (2006) found that display modality of a
distraction-mitigation feedback system had a strong effect on driver acceptance and
trust. Future research could be focused on how to best communicate the automation status
to a visually distracted driver and whether the existence of backup automation needs to be
communicated at all. For example, if the automated driving functions are implemented in
an innocuous manner (e.g., small accelerations, minor corrections, blended inputs, etc.),
automation status might even be best hidden to avoid confusion or misuse. That is, perhaps
the driver does not need to know that the automation exists at all or when it is functioning
(cf. electronic stability control, emergency enhanced braking power, etc.).

CONCLUSIONS AND RECOMMENDATIONS
In conclusion, the Backup condition shows the potential to increase safety when compared
to manual driving. A system that forces manual control back upon the driver appeared to
be less safe than normal manual driving and less accepted than a backup system.

The current systems were designed to be simple and will need to be tested in more
realistic long-lasting studies before any definitive conclusions can be drawn about the safety
implications during real-world driving, and see Kalra & Paddock (2016) for calculations
indicating that hundreds of millions of kilometers need to be driven in order to prove
that automated driving technology is safe. Further testing might focus on expanding the
simulation and the algorithm to account for other traffic, objects, emergency situations
and increase fidelity by including car mirrors, and a more realistic car interior.

Finally, we note that the Backup and Forced conditions rest on different philosophies.
That is, the Backup automation is a form of background automation (Kyriakidis et al., in
press), where automation is engaged only when the driver is measured to be distracted.
The assumption here is that, even though the automated driving system may be imperfect,
automation is still better than a visually impaired human. The Forced automation system is
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a form of foreground automation, where the automation is active for most of the time but
needs a human supervisor at all times. In the Backup condition, participants could devote
themselves more to the secondary task than in the Forced condition. This difference result
could be interpreted as good (because a given secondary task is completed sooner) or bad
(because it affords the ability to devote attention to the secondary task), depending on the
context of operations.

It may take many decades of technological progress until fully automated (i.e.,
autonomous) driving is commercially viable (Shladover, 2016). Until that time, foreground
and background automation strategies are viable candidates to be further researched
developed before wide-market deployment on public roads.
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