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Abstract

This work comprises research in the field of Experimental Dynamics. This technique is currently used
in the automotive area and is used to enhances the current state of FEM with the inclusive of test-
based models. Building test-based models for EDS (Experimental Dynamic Substructuring) requires
very accurate measurement, and this thesis examines how uncertainty on sensors and impacts affects
the accuracy of the test-based model.

Dynamic Substructuring is the collection of methods to describe large and complex systems by using
the models of its substructures. This approach assumes that the dynamics of each substructure is
enclosed in a so-called super element at interface DoF. Modeling domains that engage condensed
dynamic information, like admittance FRFs in the frequency domain, are therefore particularly suited
for substructuring [49].
One of the methods to model the interface between two (or more) substructures, is coupling two sub-
structure by a single mutual point, so-called Virtual Point. This single point is a collocated point, a
super-element, which has both translational and rotational DoFs.
, In order to obtain the FRF of the coupling point of each substructure, an experimentally gained in-
formation is transforming into the super-element’s admittance (Virtual Point FRF). The experimentally
gained information is recorded by sensors and roving impacts. The transformation uses projection ma-
trices for both input and output and is called Virtual Points Transformation (VPT).

In all experiments, we almost always have some uncertainties, and achieving true experiments is al-
most impossible. Making errors while mounting the sensors and roving impacts is very plausible. This
mounting errors can be positional as well as directional. Because of these uncertainties, we can
never find the true transformation matrices.

In this thesis, the propagation of the positional and directional uncertainty of measuring equipment (sen-
sors and roving impacts) into the calculation of Virtual Point frequency response function is investigated
analytically, as well as numerically. It is shown which error and in what extend is the most dominant er-
ror source, and inwhich frequencies and inwhich cross-functions of 𝑉𝑃 we can expect the least precise.

Expectations can be made on the inputs’ or outputs’ DOF with dominant effect on error generation for a
particular mode shape, based on the local mode shape-motion of measurement area, and by using the
Component Mode Synthesized method (CMS). It is shown that the error generation on measurement,
and further error propagation into super-element caused by a particular error source is mode shape-
and frequency-dependent.
Further, an estimation is given for the amount of influence of each dominant error source on the cal-
culation of the forces and responses of Virtual Point, on both rotational and translational forces and
responses. Since the dominant error generation is depending on the mode shape motion, the 𝑉𝑃’s
cross-functions with the least precision can also be defined.
It is shown that based on the decomposition of transformation matrices, the rotational/ rotational cross-
functions are the most sensitive ones to both positional and directional uncertainties if we are looking
to absolute value. Then, base on the numerical results, a comparison is made between all four studied
cases; Impacts Positional Uncertainty (IPU), Impacts Directional Uncertainty (IDU), Sensors Positional
Uncertainty (SPU), and Sensors Directional Uncertainty (SDU). The possibility of error cancellation and
the maximum error propagation is introduced.
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1
General Introduction

This work comprises research in the field of Experimental Dynamics. This technique is currently used
in the automotive area and is used to enhances the current state of FEM with the inclusive of test-
based models. Building test-based models for EDS (Experimental Dynamic Substructuring) requires
very accurate measurement, and this thesis examines how uncertainty on sensors and impacts affects
the accuracy of the test-based model.

1.1. Motivation and research contex
Dynamic Substructuring (DS) is a widely used tool in industrial applications ranging from automotive
and aerospace engineering to the design of wide turbines and high-tech precision machinery. Dy-
namic Substructuring analyses the dynamic behavior and simulates the mechanical vibrations of the
substructures and components of a mechanical system separately. This method does help to calcu-
late the assembled dynamics later using the coupling procedure. Due to improvements in sensor and
signal processing technology, substructuring techniques also became attractive for the experimental
community.

Dynamic Substructuring is the collection of methods to describe large and complex systems by using
the models of its substructures. This approach assumes that the dynamics of each substructure is
enclosed in a so-called super element at interface DoF. This means that only the dynamics which are
displayed at the interface is of relevance to the substructure assembly. Modeling domains that engage
condensed dynamic information, like admittance FRFs in the frequency domain, are therefore particu-
larly suited for substructuring [49].

Compatibility condition and equilibrium condition are two interface conditions which must always be
satisfied. Equilibrium condition means having the force equilibrium on the couple point’s DoFs of both
substructures. Compatibility condition refers to the same displacement of coupling points.
The substructures (components) can be modeled by a hand full of analytical equations, by numerical
models (FEM) or by experimentally obtained information.

In the field of Experimental Dynamic Substructuring, the subparts are characterized by their experimen-
tal behavior. In other words, the experimentally obtained information does describe the subdomain(s)
instead of a mathematical description of the domain.
Development in digital data acquisition and the discovery of the Fourier Fast Fourier Transformation
(FFT) by Cooley and Tukey in 1965 [12] gave the possibility to do a modal test and (almost) immediately
obtain frequency response function (FRFs). These FRFs can be used directly to build an experimental
model of the component to characterize the dynamics of the system. This experimental test-based
model is potentially as powerful as any numerical model could be employed for purposes like dynamic
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6 1. General Introduction

substructuring, transient simulation, and transfer path analysis.

There are different methods to model the interface between two (or more) substructures. One of them
is coupling two substructure by a single mutual point, so-called Virtual Point. This single point is a
collocated point, a super-element, which has both translational and rotational DoFs.

For further substructuring, we need the FRF of the single coupling point of each substructure. We
need an experimentally gained information recorded by sensors and roving impacts in order to be able
to calculate and build the super-element’s admittance (Virtual Point FRF). Then these measured data
are transforming into a super-element’s admittance for using the projection matrices for both input and
output. This process is called Virtual Points Transformation (VPT).
In order to calculate the super-element’s admittance (by transforming measured data), the area of mea-
surement must deform rigidly, so we assume the linearity on the measurement area.

1.2. Problem Statement
A carefully performed measurement could help to obtain results with a high accuracy in a multi-kHz
range where a numerical model would already fail to produce a reliable result. However, to guarantee
for a such high level of accuracy, beside a deep understanding of component’s dynamics the measure-
ments have to be done carefully [49].

Two types of errors can be made in a measurement; random errors, and systematic errors [48]. Ran-
dom errors in DS are signal fluctuations. Most of the time these type of errors are caused by the
measurement environment and can be evaluated through statistical analysis. Systematic errors in DS
are usually caused by inaccurate sensor and hammer impact positioning, wrong calibration of mea-
surement equipment, constant influence from the environment, leakage, and the mass loading[15].

In all experiments, always we have some uncertainties. For this reason, achieving true experiment
is almost impossible. Making errors while mounting the sensors and roving impacts is very plausible.
This mounting errors can be positional as well as directional. In the presence of locational or direc-
tional uncertainty the relative distances and relative orientation (between measured places and Virtual
Point) do not represent the true value. Any uncertainty in the estimation of the position or the direction
of the measured input and output will lead to an inaccurate projection of the measured data into super-
element and consequently may affect the estimation of super element’s (𝑉𝑃) admittance.

1.3. Research question

Voormeeren et al [50] have shown that uncertainties in the interface point FRFs (i.g. Virtual Point)
cause propagation of uncertainty in all of the FRFs of the assembled system. This arises the impor-
tance of having an accurate calculation of Virtual Point FRFs. As the main objective of this thesis I tried
to understand:

How uncertainty in the position and direction of the measuring equipment propagates to the
(calculated) frequency response function of super-element (so-called Virtual Point 𝑉𝑃).

We have two choices to deal with the inaccurate estimation of the position and directions of measure-
ment equipment:

• Efforts in order to find a better estimation of position and direction of sensors and impacts, to
calculate a more accurate FRF at 𝑉𝑃.

• Investigate to understand how these uncertainty propagates to 𝑉𝑃’s FRF calculation and being
aware of the consequences of the wrong estimations. This understanding can further give us
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abilities to know where to find inaccurate results from the calculations.

In this thesis, I decided to chose the second approach. And, this study is an investigation to analyze how
the uncertainty in the position and direction of measuring equipments propagates into the calculation
of Virtual Point’s FRF, by answering the following questions:

• Which error at what amount is the most dominant error source?

• At which frequencies we can expect the less precisest?

In this thesis the uncertainties on the measuring equipment are as follow:

• Impacts’ Directional (Orientation) Uncertainty (IDU)
• Impacts’ Positional Uncertainty (IPU)
• Sensors’ Directional (Orientation) Uncertainty (SDU)
• Sensors’ Positional Uncertainty (SPU)

1.4. Outline of content
This thesis consists of two main parts: Part. I is a literature survey about the theoretical background on
Experimental Dynamic substructuring (EDS), and the sources of measurement uncertainties on EDS
are reviewed. Part.II is studying how uncertainties on FRFs measurement propagates to super element
(a single coupling point).

Section.2.2 of Part.I (literature review) discusses the Dynamic Substructuring (DS), its advantages, and
the ways to model a component. Then the theoretical background on Experimental Dynamic Substruc-
turing (EDS) is presented on section.2.3; such as frequency domains of system dynamics, component
mode synthesized (CMS), the assumptions of EDS, the ways of practicing an experiment, and the
challenges and difficulties of EDS. Section.2.4 reviews the challenges and difficulties of EDS, such as
experimental errors, modal truncation errors, rotational DoFs, time delay. Section.2.5 discusses the
sources of measurement uncertainties in EDS, particularly for sensors (output of system), for the input
of the system, the effect of non-linearity, and nonphysical measurements. Section.2.6 discussed the
classification of uncertainties and the methods to analyze the uncertainty propagation.
Sections.2.7 considers the methods to model the interface in DS and reviews the concept of a single
coupling point, a super element, so-called Virtual Point (𝑉𝑃). Section.2.8 is a review of the quality
indication methods super-element (Virtual Point 𝑉𝑃). These methods are categorized into four main
groups; decomposition techniques, coherency analysis, reciprocity, and driving point passivity.

Part.II focuses on how uncertainty propagates from measurement to a single coupling point’s FRF (a
super-element, so-called 𝑉𝑃). These sources of these uncertainties are particularly the position and
direction of force and response sensors.

Chapter.4 reviews how super element’s (Virtual Point’s) FRF is calculated, and how each component
of calculation works through computation. Moreover how uncertainty affects the way each component
contributes to the computation of 𝑉𝑃’s FRF.
First, it is shown how the intended uncertainties affect the measured FRF themselves, which is the
subject of section.4.3.

Applying an exact amount of positional and directional error (uncertainty) on the sensor and impact in
an experiment is challenging, and obtaining the true experiment is almost impossible. For this reason,
this study uses simulation to mimics an experiment.
Four types of uncertain scenarios are considered; impacts positional uncertainty (IPU), impacts di-
rectional uncertainty (IDU), sensors positional uncertainty (SPU), and sensors directional uncertainty
(SDU). Each scenario contains just one type of uncertainty.
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In chapter.5 three approaches are investigated, analytical approach, numerical approach, and Monte
Carlo simulation. Both numerical simulation and Monte Carlo are applied to a complex finite element
model.

In Section.5.2 each scenario is analytically analyzed. Then on Sections.5.3 a complex modal-based
model is introduced for numerical approach. Sections.5.4 discussed how Monte Carlo simulation is
used to bring random errors on each variable (still for each scenario).

Chapter.6 indicates the results of the numerical approach for case IDU, Impacts Directional Uncertainty.
In Section.6.1 the IPU case is simulated on a complex modal-model, for a well-defined amount of error.
Then a Monte Carlo simulation is used to bring random errors on each variable (still for each scenario).
In the discussion part of chapter.6, the results of simulations are compared with each other and then
compared with the expectations from the analytical analysis.

1.5. Contribution
The contribution of this these to the field of Experimental Dynamic Substructuring is as follows:

• The most dominant error source
Based on the local mode shape motion of measurement area, and using the Component Mode
Synthesized method; expectations can be made on the inputs’ or outputs’ DOF with dominant
effect on error generation for a particular mode shape.

• Frequencies with less precise expectations
This thesis shows analytically and confirms with numerical results that the error generation of
a particular error (for example, a specific error direction for positional uncertainty in an impact)
is mode shape- and frequency-dependent. Moreover, the propagated errors into Virtual Point
admittance are also mode shape- and frequency-dependent.

• The amount of the error propagation caused by dominant error source
By studying the error generation caused by incorrect and inaccurate transformation operators,
we obtain the amount of the influence of each dominant error source on the calculation of the
forces and responses of Virtual Point, on both rotational and translational forces and responses.
Table.5.2.11 summarizes all the errors on the calculation of forces and responses (for both rota-
tional and directional kind of error).

• Error Cancellation
The direction of the generated errors on rotational part (rotational responses or moments) is
depending on the sign of error direction, and on the sign of the relative distance of the error
source to 𝑉𝑃 (sign of 𝛿𝜃 and 𝑟፱). Further, the amount of generated errors on rotational parts
(rotational responses or moments) is depending on the distance of measure point to 𝑉𝑃, and the
amount of uncertainty.
Altogether, there is a possibility for an error cancellation, where the generated errors with different
signs can cancel each other.

• Maximum error generation
It is numerically shown that if all the generated errors, including dominant ones, have the same
direction, then these errors will be added on top of each other, and the maximum error can be
generated.

• Error generation in percentage value:
In case of directional error, the portion of replaced modal value remains constant for a certain
amount of directional error. This leads to greater percentage change on FRF for measuring point
with primary low modal value.

• Comparing the uncertainty propagation on impacts; IPU VS IDU
We compared the deviations on the 𝑉𝑃’s admittance caused by both types of impact’s errors,
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IPU, and IDU, separately for all types of mode shapes. We observed from numerical results that
a directional uncertainty of 5 degrees on impacts may cause higher error generation on the 𝑉𝑃’s
admittance than a 2 mm positional uncertainty on impacts. This comparison is based on the
worst-case scenario when no error cancellation can happen.

• Comparing the uncertainty propagation, sensors VS impacts
In the presence of uncertainty on impacts, we are expecting the highest deviations (on absolute
value) on the cross-functions on a same row of admittance. This(ese) row(s) corresponds to
response DoF(s) with the highest response and motion of that particular mode shape.
Further, if a sensor has a mounting error, then we expect to see the most deviations on the cross-
functions on the same columns of admittance. These columns correspond to force DoF(s) with
the highest modal values.

• Error propagation on higher numbers of each mode shape type
An analysis is done to find the relation between the distance of measure point (and 𝑉𝑃) to the
stand node. The numerical results also confirms that; smaller the distance between the mea-
suring point (and 𝑉𝑃) to stand node, the higher the error propagation into 𝑉𝑃’s admittance. In
other words, higher the number of a certain type of mode shape, higher the error generation and
propagation.
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2
Literature survey

2.1. Introduction
This chapter is reviewing the literature regarding the Dynamic Substructuring, Experimental Substruc-
turing, error sources of an experiment and the effect of each error on the measured data.

In section.2.2 the Dynamic Substructuring (DS), its advantages and the ways to model a component is
discussed. Section.2.3 reviews the theoretical background on Experimental Dynamic Substructuring
(EDS); such as different domains of system dynamics (particularly the frequency domain), compo-
nent mode synthesised (CMS), the crucial assumptions of EDS, and the possible ways to operate a
measurement. Then on Section.2.3.5 the challenges and difficulties of EDS is discussed; such as ex-
perimental errors, modal truncation errors, rotational DoFs, time delay.
Section.2.5 the sources of the measurements inaccuracies in EDS is obtained. These sources catego-
rized into four groups, accelerometers as error source, force sensors as error source, nonlinearity and
nonphysical measurement.Each category discussed the possible kind of errors it can generates.

Section.2.7 considers the possible ways of modeling the interface, and explains the concept of a single
coupling point so called Virtual Point. Since the goal of this thesis is to understand how measurements
errors propagation into a single coupling point (the Virtual Point), the transformation (from measure-
ment into single couple point, 𝑉𝑃) is discussed in details.

Section.2.8 reviews the methods to indicate the quality of Virtual Point. Thes methods are categorized
into four type of techniques; decomposition techniques, coherency analysis, reciprocity and the driving
point passivity.
At the end, based on the literature survey the scope of this thesis is clarified.

2.2. Dynamic substructuring (DS)

Dynamic sub-structuring techniques is decomposing the system domain into sub-domains [26]. These
subdomains are simpler to analyse dynamic context these sub-domains are called substructures. One
of the very strengths of dynamic substructuring is the ability to predict structural-dynamic behaviour of
the assembly based on the dynamics of its components. For dynamics modeling, the reduction of the
substructures complexity will lead to increase the efficiency.

Advantages of DS
Performing the dynamic substructuring analysis has some important advantages over global methods

13
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[26]:

• It gives the ability to evaluate the dynamic behaviour (both numerically and experimentally) of
very large and/or complex structures as a whole.

• Identifying the local problems (and operating local optimization in case of numerical domains) due
to easier analyzing the local dynamic behavior rather than the entire system. Also, the capability
to eliminate the local subsystem that have no significant impact on assembled system may cause
a reduction on analysis time.

• It allows combining analytically modeled parts with experimentally identifying components, en-
abling a hybrid modelling approach.

• Ability to Share and combine substructures from different projects or departements.

2.2.1. Principal conditions for DS; Interface conditions

Dynamic substructuring is the collection of methods to describe large/complex systems by using the
models of its substructures. This approach assumes that the dynamics of each substructure is enclosed
in a so called super element at interface DoF. This means that only the dynamics that are displayed at
the interface are of relevance to the substructure assembly. Modeling domains that engage condensed
dynamic information like admittance FRFs in the frequency domain, are therefore particularly suited for
substructuring [49].

As the dynamics of the interface is relevant for the assembly, it’s crucial that the DoFs at the interface
represent the same motion for both connecting substructures. To have the same motion at the con-
nection points (interface) between two or more substructures, two interface conditions must always
be satisfied:

• Compatibility condition at matching pairs of DoFs; which means the displacement of each in-
terface DoF of each substructure must have the same value and sign as its pair on the other
substructure. However, in practice the coupling between the subsystems can be modeled as:

– exact joint in which the displacement of both sides are exactly the same.

– linear flexible joint in which one introduces a stiffness representing the coupling stiffness
between the coupling DoFs of both components. This stiffness matrix is added during the
coupling procedure. This matrix can include some frequency independent elements in the
case of a frequency-dependent flexible joint [13].
Also efforts are made to develop nonlinear models to account for a nonlinear behaviors [23].

• Equilibrium condition at interface: means a force equilibrium between matching interface DoFs
must be satisfied.

2.2.2. Component modeling

Analytical modeling
The mechanical behaviour of a component can be modeled by a a handful of analytical equations. As
these equations require some degree of continuity, a lot of simplifications are needed to model a struc-
ture in a primitive system like masses-springs and beams. The task of analytical modelling involves a
process of conceptual steps to get from the actual structure to an analytical description to understand
just a few degrees of freedom [49]. Analytical solutions are limited to relatively simple cases.

Numerical Modeling
Another approach to analyze a structure’s behavior is the Finite Element Method (FEM), which is actu-
ally a numerical method for solving differential equations generated by theories of mechanics such as
elasticity theory and strength of material. To solve the problem, it subdivides a large system of equa-
tions into smaller, simpler parts that are called finite elements. The simple equations that model these
finite elements are then assembled into a larger and more complex system of equations that models
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the entire problem. Then FEM uses calculus variational methods (using small changes in functions
and functionals to find the maxima and minima of functionals) to approximate a solution by minimizing
as associated error function [30].
In some engineering areas like automotive and air space the numerical modeling is very adequate to
model structures with homogeneous material properties. However in modeling the parts with different
materials, mechatronic components and in the interaction between parts (connected by welds, bolts or
adhesion), the numerical approach shows its limitations. Also, in practice, lots of internal mechanism
are not taking in account during the numerical analysis due to their complex geometry and kinematics,
however they do contribute to the global dynamics in a very complicated way [49].

Experimental Modeling
In the Experimental Dynamic Substructuring the subparts are characterized by their experimental be-
havior. In other words the subdomain(s) are described by using the experimentally obtained information
instead of mathematical description of the domains.
Development in digital data acquisition and the discovery of the Fourier Fast Fourier Transformation
(FFT) by Cooley and Tukey in 1965 [12] gave the possibility to do a modal test and (almost) immediately
obtain frequency response function (FRFs). These FRFs can be used directly to build an experimental
model of the component to characterize the dynamics of the system. This experimental test based
model is potentially as powerful as any numerical model, and can be employed for purposes like dy-
namic substructuring, transient simulation and transfer path analysis.
In fact, if the experimental measurements are carefully performed, accurate results could be obtained
in multi-kHz range where a numerical model would already fail to produce reliable result. However, to
guarantee for a such a level of accuracy, the measurements need to be done carefully, and with deep
understanding of the component’s dynamics [49].
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2.3. Experimental dynamic substructuring

The experimental sub-structuring uses the experimentally obtained information to describes subdo-
main(s).

Domains of system dynamics

Structural dynamic are commonly modelled in five different domains [49] and can be derived from either
numerical modeling or experimental testing;

• physical
• modal
• frequency
• time
• state-space

The main focus of this study will stay on frequency and modal domain.

Considering a discrete dynamic system, the second order differential equilibrium can be written be-
tween inertia, viscous damping, elasticity and the external applied force

𝑀𝑢̈𝑀𝑢̈𝑀𝑢̈(𝑡) + 𝐶𝑢̇𝐶𝑢̇𝐶𝑢̇(𝑡) +𝐾𝑢𝐾𝑢𝐾𝑢(𝑡) = 𝑓𝑓𝑓(𝑡) (2.1)

Where𝑀𝑀𝑀, 𝐶𝐶𝐶 and 𝐾𝐾𝐾 represent the linearized system matrices for respectively mass, damping and stiff-
ness. 𝑢𝑢𝑢 and 𝑓𝑓𝑓 are respectively the displacement and external applied force for all 𝑛 degree of freedom
(DoFs).

Frequency domain
In the frequency domain representation, one assumes a synchronous response to an harmonic load,
such that the time-dependency of the coordinates and loads can be replaced by frequency-dependency.
By applying the Fourier transformation on the coordiantes and force vector, we can convert the dynamic
equilibrium of Eq.2.1 as a function of excitation frequency 𝑤. By knowing that 𝑢̇̇𝑢̇𝑢 = 𝑗𝜔𝑢𝑢𝑢 and 𝑢̈̈𝑢̈𝑢 = −𝜔ኼ𝑢𝑢𝑢,
the terms on the left hand side can be gathered, Eq.2.2, and calling it 𝑌𝑌𝑌(𝜔) ,Eq.2.3.

𝑀𝑢̈𝑀𝑢̈𝑀𝑢̈(𝜔) +𝐶𝑢̇𝐶𝑢̇𝐶𝑢̇(𝜔) +𝐾𝑢𝐾𝑢𝐾𝑢(𝜔) = 𝑓𝑓𝑓(𝜔)
[−𝑀𝑀𝑀(𝜔ኼ) + 𝑗𝜔𝐶𝐶𝐶(𝜔) +𝐾𝐾𝐾]𝑢𝑢𝑢𝜔 = 𝑓𝑓𝑓(𝜔) (2.2)

𝑌𝑌𝑌(𝜔) = 𝑓
𝑓𝑓(𝜔)
𝑢𝑢𝑢(𝜔) with 𝑌𝑌𝑌(𝜔) = [𝑀𝑀𝑀(−𝜔ኼ) + 𝑗𝜔𝐶𝐶𝐶(𝜔) +𝐾𝐾𝐾] (2.3)

𝑌𝑌𝑌(𝜔) is called receptance, or in general admittance matrix which is a complex-valued frequency-
dependent function, yields a clear interpretation of a structure’s dynamic behaviour. The elements
of 𝑌𝑌𝑌(𝜔) are also called Frequency response functions (FRFs) and describe the displacement response
as a result of a unit force. The column of 𝑌𝑌𝑌(𝜔) governs the global response of all DoFs as a result of
an excitation at one particular DoF.

Modal domain
According to wave theory, for a dynamic system, a mode is a standing wave state of excitation, in which
all the component of the system will be affected sinusoidally under a specific fixed frequency. Because
no real system can perfectly fit under the standing wave framework, the mode concept is taken as a
general characterization of specific states of oscillation. It means treating the dynamical system in a
linear fashion in which linear superposition of states can be performed [7].
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So, the most general motion of the system is the superposition of its normal modes. The modes are
normal in the sense they can move independently, and therefore an excitation of one mode will never
cause excitation of a different mode. In mathematical terms, normal modes are orthogonal to each
other.
Modes(or resonances) are the inherent properties of a structure, and are determined by the material
properties (like mass, stiffness properties) and boundary conditions of the structure. Each mode is
defined by natural frequencies, modal damping (added to incorporate some damping effect) and mode
shape.

Modes are used as a simple and efficient means of characterizing resonant vibration. The majority of
the structures are resonant in behaviour. Resonant vibration is caused by the interaction between the
inertia and elastic properties of the material within the structure [46]. To better understand any struc-
tural vibration problem, the resonances of the structure need to be identified and quantified. Finding
modal parameters of the structure is a common way to doing this.

From all the modes of a dynamical system, the normal mode or the dominant mode of a system will
be the mode storing the minimum amount of energy for a given amplitude of the modal variable. Or
equivalently, for a given stored amount of energy, will be the mode imposing the maximum amplitude
of the modal variable.

For linear and proportionally-damped structure, normal modes or eigenmodes are vibration shapes at a
fixed frequency for which (in the absence of damping) the inertia forces are in harmony with the elastic
force. The eigenmodes 𝜙፫ and their corresponding eigenfrequencies 𝜔፫ can be calculated by solving
the:

(𝐾𝐾𝐾 − 𝜔ኼ፫𝑀𝑀𝑀)𝜙𝜙𝜙፫ = 000 𝑟 = 1, ......., 𝑛 (2.4)

Where 𝑟 is the number of mode shapes, and 𝑛 is the number of DoFs. Typically the eigenmodes 𝜙፫፧
of each mode 𝑟 are stored in the columns of a modeshape matrixΦΦΦ. The subscript 𝑟 shows the mode
shape number and superscript 𝑛 denotes the DoF’s number.

ΦΦΦ = 𝜙፧፫ =
|
|

𝜙ኻኻ 𝜙ኻኼ 𝜙ኻኽ ... 𝜙ኻ፫
𝜙ኼኻ 𝜙ኼኼ 𝜙ኼኽ ... 𝜙ኼ፫
.. .. .. ... ..
.. .. .. ... ..
𝜙፧ኻ 𝜙፧ኼ 𝜙፧ኽ ... 𝜙፧፫

|
| (2.5)

Modes are further characterize as their rigid body modes or flexible body modes. The rigid body
modes are the modes for which the solution of Eq.2.4 is 𝜔፫ = 0. All structures can have up to 6 rigid
body modes, three transnational modes and three rotational modes.

2.3.1. Component Mode Synthesis (CMS)
As the modes with lowest eigenfrequency are in general the most accurate in an FE model and relevant
to typical dynamic analysis, we can limit the full displacement field 𝑈𝑈𝑈 a subspace of size 𝑚, where 𝑚
are the number of first natural modes (𝑚 ≪ 𝑛 in succesive order). As a consequence the modeshape
matrix will be reduced to the reduced modeshape matrix 𝑅𝑅𝑅 = [𝜙ኻ, ...., 𝜙፦], which can extremely reduce
the effective dimension of the original problem [26] [49]. It is good practice to include eigenfrequencies
up to twice the highest frequency of interest in summation [49].

The admittance FRFs can then be synthesised using a superposition of single-DoF modal solutions.
The rigid body modes (if present) need to be treated differently as they have an eigenfrequency 𝜔፫ = 0
and no damping ratio related to frequency. The superposition for admittance, i.g. displacement at
DoF(i) over force at DoF(j) reads as follow:
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𝑌𝑌𝑌።፣(𝜔) ≈ −
1
𝜔ኼ

ኻ

∑
፦ᑉᐹ

𝜙𝜙𝜙።፫𝜙𝜙𝜙፣
ᑋ
፫

| {z }
rigid body modes

+
፦

∑
፦ᑉᐹዄኻ

𝜙𝜙𝜙።፫𝜙𝜙𝜙፣፫
ፓ

−𝜔ኼ + 2𝑗𝜔𝜁፫𝜔፫ + 𝜔፫ኼ

| {z }
vibration modes

The nominator only comprises the spatial or modal part of the response which remains constant over
frequency. The denominator controls the spectral part, adding a resonance frequency for each mode
𝑟, namely for 𝜔 = 𝜔፫
Note that FRFs for velocities or accelerations are obtained by multiplication of 𝑌𝑌𝑌(𝜔) with 𝑗𝜔 and −𝜔ኼ,
respectively.

2.3.2. Experimental modal analysis

The admittance FRFs can be obtained from experimental testing, and directly used in frequency based
substructuring or for experimental modal analysis (EMA). The goal of Experimental modal analysis is
identifying the vibration modes from measured response data, resulting in the series of mode shapes
with associated frequency and damping parameters, which are called modal parameter estimation and
can be understood as the inverse action of mode synthesis.

The Experimental modal analysis is a system identification techniques. The system is a ’black box’
that needs to be decoded. The traditional approach is to provide the ’black box’ with a known input,
measure the output and continue with the identification. For the measurement the force is used as an
input so that the frequency response function can be derived from the force and response information.
frequency response functions, FRFs, is a frequency domain representation of a system’s dynamic char-
acteristics. The excitation force can be random, sinusoidal, periodic, or impacts ones. Theoretically,
the type of force does not matter as FRF is the ratio between the response and force. The force must
have sufficient energy and frequency component to to excite all vibration modes of interest [19].

2.3.3. Assumptions of EDS

Linearity of the tested structure is one of the essential assumption to achieve accurate FRF measure-
ments. To prove the linearity of the structure, we should be able to control the force level, then we
multiple the force input level and observe the repeatability of the FRF data. If the linearity assumption
does not follow exactly, the normal modal analysis from the measured FRF data may only represent a
linearized mathematical model for the structure.

Reciprocity property of the structure is other essential assumption. This assumption is also not diffi-
cult to verify.

Time-invariant structure is required to succeed the FRF measurements. Time-invariant structure
means that the dynamic properties of a structure does not vary during the measurements.

A modal analysis on a subsystem might not always be possible as the substructure might have

• too high damping
• frequency dependent dynamic stiffness
• too high modal density

In such a cases, direct coupling with the measured FRF data is the best option, as the residual terms
are naturally included in the data [26]. For more information about direct coupling see [26].
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2.3.4. Practice

For obtaining the test based experimental model and study the dynamics of a substructure in the fre-
quency domain an admittance measurements needs to be done. This measurements include measur-
ing the vibration of a substructure when it is excited (by hammer or shaker). Modern day experimental
dynamic substructuring systems are composed of 1) sensors, 2) data acquisition system, and 3) a host
PC to view data and analyze it.

The frequency response function, FRF, is a fundamental measurement to characterize the dynamics of
the system. The FRF describes the input-output relation between two point as a function of frequency
range. A FRF is a measures how much displacement, velocity or acceleration response a structure
has at an output DoF, per unit of excitation force at an input DoF. FRF is the ratio of the Fourier trans-
formation of an output response 𝑋(𝜔)𝑋(𝜔)𝑋(𝜔), divided by the Fourier transformation of the input force 𝐹𝐹𝐹(𝜔)
that caused the output.
The structural dynamic measurements involves measuring the elements of FRF matrix for the struc-
ture. This model represents the dynamics of the structure between all pairs of input and output DoFs.
FRF matrix columns correspond to input, and rows correspond to outputs.

The classical approach is single-input,multiple-output (SIMO), which is one excitation point and mea-
suring the resonance at many different points. It’s also possible to fix an accelerometer and excite
the (sub)structure with a hammer in many positions, which called multiple-input,single-output (MISO).
Mathematically, due to the principle of reciprocity the MISO and SIMO are identical. Reciprocity is dis-
cussed on section ??. Recently multi-input,multi-output is becoming more practical, as by using partial
coherence analysis, which gives a possibility to observe which part of resonance comes from which
excitation source.

Sensors
The use of triaxial accelerometers has become standard practice in experimental testing [4]. Triax-
ial accelerometers are piezoelectric accelerometers which are converting the mechanical motion into
an electrical signal. Piezosensitive accelerometers are preferred in high shock applications. In the
capacitive accelerometers the silicon micro-machined is the sensing element, and their performance
is superior in the low frequency range. In the field of dynamic substructuring the triaxial sensors are
mostly used. In Section 2.5.1 the limitations and challenges of using accelerometers are discussed.

Excitation Tool
Typical tools to excite a (sub)structure for vibration analysis are a shaker or impact hammer.

Impact hammer is a hammer with a load cell and a variable tip, to excite and measure impact forces
on structures. It excites the structure by a short impulse, which mimics an impulse response, creating
excitation energy well distributed for a large frequency band. The load cell on the tip of the hammer
measures the stimulus force.
A variety of tips supplied with each hammer permit the energy content of the force impulse to be tai-
lored to suit the requirements of the item under test. The tip of the hammer determines the impulse
shape (both amplitude and duration) and the bandwidth of excitation. In Section 2.5.1 the limitations
and challenges of using hammer impacts are discussed.

Shakers are the voice coils where a thin stick is attached, called the stringer. Stringer is connected
to the structure with a force gauge, and excites the structure in for frequency of interest. In the case
of shaker, using a single shaker may not effectively excite all the modes of the (sub)structure, where
multiple shakers distribute the energy to the system in more uniform way over the (sub)structure [6].

?
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2.3.5. Challenges and difficulties of DS

Like all methods, effective and reliable use of Dynamic substructuring requires a solid understanding
of its limitations. Experimental Ds is highly sensitivity to the experimental errors and the origin of all
experimental DS analysis errors lies on the inability to properly measurement [49]. The list of main
difficulties in DS are as follow [26]:

• Experimental Errors

– Challenges regarding sensors; sensor placement, cross-axial error, mass loading, low fre-
quency accuracy

– Challenges regarding impact hammer: Accuracy to placement, force dependency, choice
of hammer tip, local flexibility, energy limit, double pulse

• Modal truncation errors means that not all the modal degrees of freedom, describing the sub-
system’s dynamics, are contained in the subsystem’s description. If a subsystem is identified with
Experimental Modal Analysis (EMA) and is afterwards used in DS calculation the inclusion of for
example residual flexibility is essential. If the residual flexibility is not included, the substructure
will behave more stiff as it has less degrees of freedom to deform in[21] and a shift in resonance
frequency of the total coupled system can be expected [26].

• Rotational degree of freedoms are very important in the mobility coupling application, and their
absence in the formulation causes faulty predictions [17]. In [29] the importance of the RDoFs
FRFs of each substructure on the coupled system is discussed by looking to the generated error
in the ”coupled system”. The study suggests to look at the significance of each RDoF in the FRF
coupling analysis.
In the higher frequency range, the rotational motions are bigger than the translational ones [17].
The measurements of structures at with joints have to be carefully made in order to avoid errors
at these coordinates. The RDoFs are normally neglected in experimental modal analysis due
to THEIR difficulty TO measuring [17]. In practice, the measurements of these rotations and
the application of torque to excite them is very difficult. The influence of neglected rotational
information strongly depends on the componnet’s interface flexibility [10]. Different approaches
exists to tackle the RDoF issues [26]:

– measuring RDoFs

– expand translational data to reconstruct the RDoF information [41] [38]

– If the interface has only local rigid body motions, the response of the interface can be con-
structed from a minimum of six coupling DoF at three nodes [26]. This leads to good results
up to a frequency where local deformation between the interface nodes starts to take place.

• Interface modeling is a challenge in DS, as in fact the interface is a continuous surface, and the
measurements can usually be performed on a small discrete number of points.

• Rigid body modes information is the essential to successfully couple the structures with com-
ponent modal synthesis method [39] . A modal identification procedure is required to extract all
the modal properties of the available rigid body modes.

The main difficulty associated with these methods is that not all the rigid body modes can be
simultaneously excited during an experimental test [5].

• Dynamics of joints can cause a nonlinear coupling mechanism

• Time delay is a bottleneck of real-time DS which is caused by the inherent dynamics of actuators
used for structural testing [22]. The time delay in can cause instability during the experiment.
In real-time DS, a hybrid model of the complete system can be created, by combining the ex-
perimental substructure with numerical substructure. This technique is useful when dealing with
nonlinear structures. The nonlinear dynamic behavior can be extracted experimentally by includ-
ing the substructure in the real-time substructuring loop [26].
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The main focus of the present study is to identify the measurement errors, their exact sources and
how they propagate during modal analysis, which is going to be discussed broadly in the coming
chapters and sections.
Further treatment of other uncertainty sources and their influence on measurements is out of the scope
of this study.

2.4. Measurements inaccuracies in Experimental DS

Experimental modeling has some advantages over numerical modeling. But it requires a very accu-
rate measurement. In experimental dynamic substructuring the origin of all analysis errors lies on the
inability to properly measurement [49].

To study the measurements inaccuracies in experimental DS, first the sources of measurement un-
certainties in DS are analyzed. Section 2.5.1 and 2.5.2 reviews respectively the how impacts and
sensors can be a sources of uncertainty. Section 2.5.3 examines how non-linearity can cause errors
during measurements. Section 2.5.4 consider cases where measured data has no physical interpre-
tation. Section 2.6.1 reviews the uncertainties classification and introduces methods to analyze the
uncertainty propagation.

2.5. Sources of measurements uncertainties in DS
Errors in FRFmeasurements and in themodal parameters extracted from them can arise from a number
of sources, and this can have a dramatic effect on dynamic substructuring predictions. Allen et al
[2] reviewed the uncertainty in experimental/analytical substructuring predictions form litterateurs, and
categorize them in a few subcategories:

• measurements inconsistencies
• Cross-axis errors
• non physical measurements.

In this thesis the same categories are adapted and analyzed what kind of uncertainty they can gener-
ate.
In this section impacts and sensors are consider as the uncertainty sources and discussing the type of
uncertainty they can produce.

2.5.1. Sensors (output of system) as a source of uncertainty

Cross-axis sensitivity
The piezoelectric accelerometer sensors that are most frequenctly used for modal test are known to
register vibrations from other directions than the intended one, a phenomena called cross-axis sensi-
tivity [2].
Similarly, there is always uncertainty regarding the direction of the input applied to the structure,
which results to overestimating the response of the structure [2].
Cross-axis error can have an important effect on the substructuring prediction. In [32] and [3] the cross-
axis errors are thought to be responsible for artificially high level of axial motion in the bending response
of a simple beam.
Nicgorski and Avitabile introduce a method called VIKING (Variability Improvement of Key Inaccurate
Node Groups) to use the measurements to tune an approximate FEM model for the substructure to
eliminate cross-axis error.

Sensors Mass loading
As the sensors have mass, they influence the measurements. Rixen [45] shows the sensor mass load-
ing results in spurious peaks in the DS analysis where the location of these peaks depend on where
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the sensor is placed on the structure. Their suggestion is to handle the sensors as substructures that
are coupled to substructure during measurements and decouple them afterwards.

Sensors accuracy on low frequency
The triaxial sensors data sheets typically claim they can sense the motion from 1 Hz upward for ICD
sensors with typical sensitivity 100𝑚𝑉𝑔ኻ or 10𝑚𝑉𝑔ኻ, and a 50 g peak. While this range of frequency
is acceptable, the noise level can be too high and the gain seems to be affected in impact testing [37].

Adhesion material
Sensors are mostly glued to the substructure. The adhesion material has also an influence on sensor
measurement. Adhesion material with high energy absorption can lead to unreliable measurements.
The rigidity of the adhesion between the sensor and structure have an influence on the accuracy of the
sensor on high frequencies; a stiff adhesive creates a better read out of high frequency
Experimental results of Qnig 𝑒𝑡𝑎𝑙 [44] revealed that an increase in adhesive thickness alters the elec-
tromechanical impedance and the resonant frequency of the piezoelectric elements as well as the
amplitude of the sensor signal.

2.5.2. Impacts (input of system) as a source of uncertainty

The study of Brown 𝑒𝑡𝑎𝑙 [8] discussed the possible errors generated by impacts during impacts test-
ing, which are double(multiple) impacts, overloading, impact hammer calibration, force and response
window, force input location and direction or direction, reducing external noise and nonlinear effect.

1. Averaging
In the roving ’hammer test’, where the sensors are fixed on the structure and a hammer hits the
structure in different places, every impact hits the structure slightly different. This inconsistency
leads to slightly different Frequency Response Functions (FRF). In practice it is common to take
an average of multiple impacts that have high coherence with respect to each other. In averaging
one do not look to the correctness of the impacts, but look to consistency of them, which is
debatable if the averaging processes yields to the true FRF.

2. Improper Excitation during measurement

(a) Accuracy on Impacts positioning (direction and orientation)
Inaccuracy in the location or the direction of force input is caused by the users laps of at-
tention or experience or extreme difficulty of access to a particular input location. Different
authors looked into the effect of variation on the impacts location on the FRF [31] [8] [14].
de Klerk [14] studied the effect of the small errors in the orientation and location of the im-
pacts hammer during a roving hammer test, and showed a very small error can have an
important effect on FBS prediction.

In [14] the impacts locationwere changed, and the offset on anti-resonances was observed.
In [8] they show an error on impacts location on just one impact causes dramatic effect on
coherency between the impacts in frequency range. The reduction in coherence is more
visible at anti-resonances.
In [49] the author looked into the slight random error on all impacts orientation, and changes
in the coherency between them. The calculated coherence for this study is not a direct
coherence, while the impacts are first projected to a so called Virtual Point and then project
back to the original point, and then compare these (so called filtered) with the ones before
any projection. More details of this coherence analyses can be found on 2.8.2.

(b) Overload
Overload happens when too high energy is put to the structure. The overloads are causing
distortion errors in measured FRFs in most digital data acquisition systems [8]. Figure.2.1
shows the differences at antiresonance of both phase and magnitude. Point B shows the
phase loss instead of phase gain due to overloading.
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Figure 2.1: FRF measurements exhibiting overload distortion, adopted from [8]

(c) Too little energy
The structure needs to excite by enough energy to reach the response at higher frequencies.
If the hammer impulse does not hit with proper energy, the resulted FRF is not reliable.

(d) Double or multiple Hits
The double or multiple impacts are visible as both magnitude and phase distortions in the
frequency domain. By using a force window we can maybe eliminate the second impulse
from the measured data, but not the actual energy that is applied to the structure and not
from the response signal [8]. For these reasons the resulting FRF is unreliable.

Figure 2.2: force spectrum to double impact, adopted from [8]

3. Hammer tip
The correct tip of hammer will ensure structure get enough energy to excite all the modes of struc-
ture. In [31] authors show the effect of different impact tips on the frequency response function
(FRF), Figure.2.3. The same study shows a soft tip, like a rubber hammer tip, can not excite all
the modes of interest. Reasoning is the same as the locally deformation of structure; the pulse
duration is too long which leads to reduction on the usable frequency range of the input spec-
trum. In contrast, the iron hammer tip has a shorter duration of impulse Figure.2.3 which has
higher frequency content Figure.2.4.
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Figure 2.3: Force pulse with the different impact tips on the impact hammer, adopted from [31]

Figure 2.4: Force spectrum with different impact tips on the impact hammer, adopted from [31]

Impacts calibration
As mentioned impact hammers involved a load cell that is assembled in the head of the hammer. The
force measured by the load cell is not the same as the external force acting on the tip of the hammer
during impact. Therefore impacts needs to be calibrated. The incorrect calibration leads to incorrect
data recording.

2.5.3. Non-linearity

• Local deformation and flexibility of structure
Hitting the flexible part of the structure results in a local and large deformation in that area, which
leads to local absorption of the impact energy. This large deformation effectively lengthens the
duration of the impact, thereby reducing the usable frequency range of the input spectrum. In this
case it’s not anymore possible to put energy to the structure to reach the higher frequencies and
as a consequence the bad FRF estimation [9].

• Non-linearity in joints
An impact is not a practical excitation for characterizing non-linearity’s because the force level
can not be precisely controlled for every impact [9].
Segalman [47] and Allen 𝑒𝑡𝑎𝑙 [1] have shown if there is a small non-linearity, for example due to
bolted joints, on each loading a microscopically slip may happen which leads to having a shift on
natural frequency from one experiment to the next.

2.5.4. Nonphysical measurements

Sometimes errors in FRF measurements can be detected when they cause FRFs that exhibit phenom-
ena which are not possible for physical systems [2].

1. Negative imaginary value at driving point
since the mode shapes appears as squared quantities at drive point, at driving point the imaginary
part of the accelerance response must always be positive. Carne and Dohram [11] found the
spurious peaks can appear in substructuring prediction if this feature is violated, and introduce
a technique called Decomposition Data filtering (DCD) to address it. This method found to be
successful to remove some spurious peaks from FBS predictions for a quite complicated system.
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2. Negative Mass after Substructure Uncoupling
Kanda et al. [25] found that the mass matrix sometimes is not positive definite after uncoupling
and removing a mass from a substructure, in the modal domain. The same authors in [3] and
[32] observe the negative mass matrix when substructuring one flexible structure from another.
They point this non-physical result as an errors in the modal scale factors and adjusted them with
experimentally determined value until the mass matrix became positive definite as expected.

2.6. Uncertainty propagation

Voormeeren, de Klerk and Rixen show on [15] and [50] how the uncertainties in each substructure FRF
propagate to the (built-up) structure assembly, here they use the linear term in Tylor series expansion
of the substructure equation. In [50] they found the uncertainty on the connection point FRF produces
uncertainty in all elements of FRF of assembled system, while uncertainties on points away from con-
nection point do not affect by the FRF of the assembled system.
Considering the frequency based substructuring approach, at each frequency the FRFs of the coupled
system are computed from the FRFs of the subcomponents at the same frequency, so those regions of
the frequency band may become resonances of the built-up structure, greatly amplifying measurement
errors [2].
The study of Imregun, Robb and Ewins from 1987 [24] for the FBS method (frequency based substruc-
turing method), shows that very large errors might exist in coupled system predictions due to relatively
small ( 5%) errors in the subcomponent FRFs.

Yang, Adams et al. [51] introduce the Embeded Sensitivity approach, which is based on linear ap-
proximation for the FRF sensitivity. Under mild assumption one can compute the sensitivity of FRF to
small mass or stiffness modification, using the measured FRF alone. It is called embeded because it
is the explicit structure properties like mass, stiffness and damping are not required. They introduce
a formula for numerical model to calculate the changes in frequency response function (FRF) when a
small mass 𝛿𝑚 is added to the system on a certain node. As this method considers the problem lin-
early, it can be used just for small modification, where non-linearity is absence. For more detail see [51].

This section reviews the general classification of uncertainty. Section 2.6.2 studies the Methods to an-
alyze uncertainty propagation by categorizing them as Non-probabilistic and probabilistic methods and
further sub-categorizing them to statistical probabilistic methods and analytical probabilistic methods.
In Section 2.6.3 the Monte Carlo simulation and the evaluation of correctness of that is reviewed.

2.6.1. General classification of uncertainties

During a measurement two kind of errors can be made, random errors and systematic errors [48]:

1. Random errors are always present in measurements. Random errors in experimental measure-
ments are caused by unknown and unpredictable changes in the experiment. These changes
may occur in the measuring instruments or in the environmental condition. Random errors have
often Gausian distribution, and in such a case the statistical methods may be used to analyze the
data. The mean 𝑚 of a number of measurements of the same quantity is the best estimate and
that quantity, and the standard deviation 𝑠 of the measurements indicates the estimation valida-
tion.
Random errors are errors in measurements that lead to values being inconsistent when repeated.
Random errors in DS are signal fluctuations, which are most of the time caused by the measure-
ment environment and can be evaluated through statistical analysis. In general, random errors
are due to factors that cannot be controlled.

2. Systematic or bias errors are errors that are not determined by chance but are introduced by an
inaccuracy (involving either the observation or measurement process) inherent to the system [33].
Examples of bias errors in experimental DS are errors in the positioning and the direction of
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sensors and hammer impacts, imperfect calibration of measurement equipment’s, constant
environmental influences, leakage, neglecting rotational DoF, mass loading, unmeasured
side forces in the shaker’s excitation [15]. The difficulty of systematic errors is that they are
not observable and can’t be removed from the system.

2.6.2. Methods to analyze uncertainty propagation

Different approaches exist to investigate the uncertainty propagation from a number of inputs to an
output. In general, they can be classified according to [18]:

• Non-probabilistic methods are used when little is known about the input variables. A non-
probabilistic approach is usually based on an interval analysis.

• Probabilistic methods can be used when the probability distributions of the input variables are
known, hence regarding them as stochastic variables. Two types of probabilistic methods exist:

– Statistical probabilistic approaches
use a large number of random input values and calculate repeatedly the output values.
Statistical properties of the output are thereafter calculated. The classic example of such
a method is the Monte Carlo simulation [34].

– Analytical probabilistic approaches
Take an analytical approach to determine the uncertainty of the output variables based on
the input uncertainties. Examples are the ‘moment’ and ‘stochastic differential equation’
methods [40].

2.6.3. Monte Carlo Simulation

One of the most straightforward way to study the effect of uncertainty is through Monte Carlo Simu-
lation. In physical-related problems Monte Carlo methods is used for solving the problems with many
coupled degree of freedom. Monte Carlo is also used for modeling and predicting a system or phe-
nomena with significant uncertain inputs [43].
This method use different random values for the uncertain system parameters to repeating the sub-
structure predictions. Then, the statistics can be performed on response and robustly quantify the effect
of the built up system’s response.

The characteristic of high quality Monte Carlo simulation are listed by Sawilowsky [27] and are as follow

• There are enough samples to ensure the accurate results
• The proper sampling technique is used
• The algorithm used is proper for what is being modeled
• The (pseudo-random) random value generator pass the tests for randomness
• The (pseudo-random) number generator has certain characteristics (e.g., a long ”period” before
the sequence repeats)

2.7. Interface Modeling in DS

This section considers briefly the discrete and continuous interface, then reviews two discrete methods
to model the interface, EMPC and Virtual Point. In Section ?? we consider the Virtual Point transfor-
mation by looking to displacement and force reduction of the interface. In Section ?? different methods
for quality indication of the Virtual Point Transformation are considered.

In general there are two categories of connectivity between substructures:

• Discrete connection nodes, where the connection points behave rigidly in the area near the
interface. Up to a certain frequency these nodes permitted to displace with respect to each other
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which allows the significant deformation in the structure. In discretized interfaces the deforma-
tion on connecting points are very small and do not contribute to the coupled vibration, see Fig-
ure.2.5(a).

• Continuous line or surface interface, where the deformation of the interface is strongly cou-
pled to the internal vibration of structure and can not be discretized to a small number of nodes,
Figure.2.5(b).

Figure 2.5: Substructure connectivity, (a) discrete interface points, (b) continuous interface surface, Adopted from [49]

2.7.1. Discrete interface modelling

The interface can be considered in different ways. Figure(2.6a) shows the continuous interaction in
a bolted connection as the result of friction caused by pretension. Figure(2.6b) considers the same
connection in case of using FEM model, a discrete coupling with coinciding nodes. In this case by
coupling a sufficient number of nodes over a large area, any rotational coupling is implicitly accounted
for.

One way to experimentally model the connection is considering the connection as some single points
(SPC). For doing that some measurement points need to be chosen, as close as possible to the con-
nection point and mount the sensors at those places (e.g. triaxial accelerometers), and excite the
(sub)structure at places near to sensors, in all directions. Then, obtain the FRF matrix, the response of
each direction of each sensor to each excitation point. This method do accounts just for translational
directions and does not account for rotations which are known to be essential in many substructuring
cases [36].

(a) Friction at the full contact area (b) Discrete coupling with coinciding nodes

(c) MSP: multiple single points, only translational
directions (9 DoFs)

(d) Virtual Point transformation: 6 col- located translations
and rotations (from 9 to 6 DoFs)

Figure 2.6: Ways Of considering interface problem, Adopted from [49]

In the experimental modeling it’s not possible to measure the response of the whole connection area
in all rotational and transnational directions. Literature propose two methods to accounts for rotational
DoFs by using just the translational sensors, 1)Equivalent Multiple-Connection point (EMCP) and 2)Vir-
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tual Point.

Equivalent Multiple-Connection point (EMCP)
A method called Equivalent Multiple-Connection point (EMCP) [42] accounts for rotations implicitly, by
coupling the transnational FRFs of multiple points in the proximity of the interface, Figure(2.6c). A set
of minimum 3 not in line triaxial accelerometers are sufficient to couple all translational and rotational
directions, resulting in total 9 DoFs at connection point.

A common problem of mentioned methods is the practical difficulty to collect applied forces with mea-
sured displacements/acceleration. One can never excite exactly at the point where a sensor is located,
which is required to measure a true driving point FRF.

Virtual Point
Another approach is the Virtual Point Transformation, see Figure(2.6d), which reduces the interface
connectivity to a single point. Virtual Point Transformation projects all the translational displacements
and forces of multiple-connection points into all 6 DoF ( 3 translational and 3 rotational) of a single-
connection point, called Virtual Point (VP).

2.7.2. Virtual Point transformation

The equilibrium and compatibility condition at interface requires that substructures have the collocated
(driving-point) DoFs at their interface which is shared by both side of structures. Experimentally it is
difficult to measure displacement and load (for both translation and rotation) at these shared points,
however Virtual Point Transformation gives a possibility to describe them.

The Virtual Point Transformation relies on the spacial reduction of coordinates, so called Interface
Displacements Modes filtering (IDMs) [20] [16] [26]. This point is called Virtual Point as no actual
measurement is at that location. The location of the Virtual Point can be chosen anywhere in proximity
of the interface.
To obtain the Virtual Point Transformation first the displacements and forces at the interface need to
be reduced.

(a) The Virtual Point transformation workflow for coupling of substructure
A (left) and B (right). Both substructures are instrumented by

acceleration sensors (blue). The excitations of the FRF measurements
are depicted by red arrows, adopted from [49]

(b) The constructed translational and rotational displacement of Virtual
Point (green) from triaxial accelerometers positioned around VP,

adopted from[49]

Figure 2.7: Ways Of considering interface problem, Adopted from [49]
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Interface Displacement Reduction
To obtain the displacements at each Virtual Point, each VP of each substructure is surrounded by
(often) 3 not-in-line triaxial accelerometers, registering a total of 9 translational displacement (At least
3 sensor is needed to gain the not-in-line condition). The IMD matrix 𝑅፤፯𝑅፤፯𝑅፤፯ translates the local frame
displacements of each sensor 𝑢፤𝑢፤𝑢፤ to 6 Virtual Point translations and rotations, gathered in vector 𝑞፯𝑞፯𝑞፯,
plus a residual 𝜇፤𝜇፤𝜇፤. This residual is captures all displacements not in the subspace of IDMs, which is
normally the ”flexible” motion or caused by measurement errors.

𝑢𝑢𝑢፤ = 𝐸𝐸𝐸፤𝑅𝑅𝑅፤፯𝑞𝑞𝑞፯ +𝜇𝜇𝜇፤ (2.6)

[
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] [
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+ [
𝜇፤፱
𝜇፤፲
𝜇፤፳
] (2.7)

Where 𝐸𝐸𝐸፤ determines the orientation of the sensor 𝑘 by its three measured directions, specified as
orthogonal unit vectors:

𝐸𝐸𝐸፤ = [𝑒፤፱ 𝑒፤፲ 𝑒፡፳ ] (2.8)
The distance from the sensors to the Virtual Point is given by vector 𝑟𝑟𝑟፤. For a typical configuration of
3 sensors per Virtual Point, these 𝑅፤፯ matrices needs to be diagonally stacked in matrix 𝑅.

𝑢 = 𝑅፮𝑞 + 𝜇 (2.9)

Interface Force Reduction
To obtain the translational and rotational forces andmoments of each Virtual Point at each substructure,
the substructure needs to be excited in more than 6 not-in-line excitation points in proximity at the Virtual
Point. The following relation can be written for a set of Virtual Point forces and moments𝑚፯𝑚፯𝑚፯ as a result
of a single applied excitation 𝑓፡𝑓፡𝑓፡;

𝑚𝑚𝑚፯ = 𝑅𝑅𝑅፡፯ᑋ𝑓𝑓𝑓፡ (2.10)
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[
𝑒፡፱
𝑒፡፲
𝑒፡፳
] 𝑓፡ (2.11)

The Virtual Point forces and moments are direct result of applied the forces, hence there is no need to
add a residual. The system for the complete the set of DoFs is;

𝑚 = 𝑅ፓ፟𝑓 (2.12)

Virtual Point transformation

The Virtual Point adimttance describes the relation between the displacements (both translational and
rotational) and forces/moments at the Virtual Point. To obtain a VP admittance matrix 𝑌፪፦, the actual
FRF describing the relation of sensors and impacts to the 𝑉𝑃 needs to be pre-multiplied and multiplied
by displacement transformation matrix 𝑇፮ and force transformation matrix 𝑇 .

𝑌፪፦ = 𝑇፮𝑌𝑇ፓ፟ (2.13)
where transformation matrices 𝑇፮ and 𝑇 can be computed from IDM matrices 𝑅፮ and 𝑅፟;

𝑇፮ = (𝑅ፓ፮𝑊፮𝑅፮)ዅኻ𝑅ፓ፮𝑊፮ , 𝑇 = 𝑊 𝑅፟(𝑅ፓ፟𝑊 𝑅፟)ዅኻ (2.14)

The𝑊፮ and𝑊 are weighing matrices. In [49] these are assumed to be identity matrices.
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2.8. Methods for quality indication of VP
The methods for quality indications can be categorized in as follows; Decomposition techniques,

Coherency analysis, Reciprocity, Driving point passivity.

2.8.1. Decomposition techniques
• Contribution analysis (CMIF)
Complex Mode Indicator Function, CMIF, is an algorithm that applies SVD (singular value decom-
position) to a FRF matrix for every frequency. It is a method to identify closely spaced or repeated
modal frequencies, and it can be use in modal parameter estimation. CMIF reveals the dynamic
mode shapes that build up the FRFs, and shows which are themost dominant for every frequency.

CMIF CMIF can also be used to identify error in the measurement data, which can be investigated
by two ways:

– At low frequency, far before the first elastic resonance frequency, the rigid body modes are
the only modes that are acting, and no other dynamics is to be expected. An additional
modes at those frequencies will be treated as non-physical modes. Non-physical modes
and unexpected physics indicates some errors during measurements, caused for example
by overshoots or bad sensors signals. As CMIF can extract all the available modes at each
frequency, it can reveal if at low frequencies the nonphysical modes are present or not.

– Another use of CMIF is detecting a channel (sensor or impact) causing bad dynamics
[37], by inspecting the left and right vectors of the significant singular values at low fre-
quency. The left vector 𝑈𝑈𝑈 and right vector 𝑉𝑉𝑉 reveal respectively the sensor and impacts
signals and are orthogonal. The orthogonality property gives these vectors the opportunity
to calculate the contribution matrix when squared.

፦

∑
።
|𝑈።፬|

ኼ = 1 and
፧

∑
።
|𝑉።፬|

ኼ = 1 (2.15)

The bad dynamics will cause a poor distribution of the mode shape, it means all available
DOFs pointing on a certain direction do not have equally contribution to that DOF.
For example, if multiple sensor channels are pointed into the x-direction, and one of the sin-
gular value modes is a translation in x-direction, the contribution to that mode shape will be
evenly distributed to all sensor channels in 𝑥 direction. In contrast, ’bad’ dynamics is often
related to a single input or output. This results in a poor distribution of the mode shape, or
in other words, all contribution concentrated onto one DoF.

• Operational Deflection Shape (ODS)
The Operational Deflection Shape (ODS) analysis is a method used to visualize the vibration
pattern of a structure at a certain load-case. It animates the deflection of the sensors on the
structure at a particular frequency The ODS is a very useful tool to assess the quality of the
VPT by looking at the structure’s motion associated with some virtual FRFs, and facilitating the
identification of incorrect positioning of impacts and sensors.

• SVD ODS; ODS of left and right vectors of SVD
Visualizing the left and right vectors of SVD to identify alignment or positioning mistakes in the
bookkeeping of sensor and impacts [37].

• IDM polar Decomposition [37]
Calculation of Virtual Point FRF, 𝑌፪፦, uses the transformation matrix 𝑇. 𝑇𝑇𝑇 is a least square in-
verse, and as a consequence the values in the matrix are not intuitive and difficult to see which
channels will contribute to which Virtual Point DoF.

Polar decomposition to the inverse IDMmatrix, T=QS. (Q is orthogonal matrix ,and S a symmetric
matrix, for geometric transformation: Q is rotation, and S is scaling matrix). As Q is orthonor-
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mal, the rows related to each DoF are normalized, and can be interpreted as contribution when
squared. (This is similar to the CMIF contribution analysis approach) shows which measured DoF
(u or f) contributed to which virtual DoF (q or m).

Σ፧ᑜ፤዆ኻ |𝑄፪፤|
ኼ = 1 (2.16)

Where 𝑛፤ is the number of impacts or channels, and 𝑞 is the Virtual Point DoF. Where particular
input (sensor channels or impacts) gives high contribution to certain DoF, the user can anticipate
on it by either moving the input to another location, or making sure to operate careful measure-
ments for this particular input.
The conditioning number of scaling matrix 𝑆𝑆𝑆 give insight in the quality of T.
IDM decomposition indicates which part of the measurement data will contribute the most to Vir-
tual Point DoF, is useful for set up the Virtual Point.

An example for this contribution analysis is illustrated on Figure.2.8, where impacts and 𝑉𝑃 DoFs
share the same local coordinate system. Figure.2.8b illustrates the dependency of each 𝑉𝑃’s
DoF on each impact, by comparing the 𝑄ኼ፪፤ value of DoF 𝑞 of 𝑉𝑃. This analysis is done for a FEM
model illustrates on Figure.2.8a where 12 impacts are used to make a single 𝑉𝑃. Figure.2.8c
shows the contribution of each impact on 𝑉𝑃.

An example for this contribution analysis is illustrated on Figure.2.8, Foe a FEM model, where
12 impacts and 6 𝑉𝑃’s DoFs share the same local coordinate system. Figure.2.8b illustrates the
dependency of each 𝑉𝑃’s DoF on each impact, by comparing the 𝑄ኼ፪፤ value of DoF 𝑞 of 𝑉𝑃. Fig-
ure.2.8c shows the amount of contribution of each impact on each 𝑉𝑃’s Dof.

(a) FEM model, with 12 impacts (red arrows) and a Virtual Point with 6 DoFs (green arrows)

(b) Dependency of each ፕፏ’s DoF (forces and moments) on each impact (c) Amount of Contribution of each impact on the calculation of each
force and moment DoF of ፕፏ

Figure 2.8: Polar decomposition analysis for a FEM model(a)

2.8.2. Coherence analysis
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An important ability of the Virtual Point transformation is the ability to quantify the measurement con-
sistency. There are two main consistency functions:

• Sensor consistency
Sensor consistency functions compare the measured responses 𝑢𝑢𝑢 with the responses after pro-
jection onto IDMs,𝑢̃̃𝑢̃𝑢. It was originally proposed in [16] as the interface rigidness indication.
The sensor consistency can be shown in two forms

– Overall sensor consistency, compares the norm of both filtered and unfiltered responses,
and yield a frequency dependent function bounded by one(full consistency) and zero(no
consistency). If the value drops at a certain frequency, it is often an indication of the presence
of a flexible interface mode.

𝜌፮ᑚ,ᑛ(𝜔)፨፯፞፫ፚ፥፥ =
‖𝑢̃።,፣(𝜔)‖
‖𝑢።,፣(𝜔)‖

(2.17)

– Specific sensor consistency, evaluates the consistency per measurement channel, by
looking to the spectral coherenc3 of two spectra. The coherence function compares two
complex values with respect to their amplitude and phase, and again is bounded between
one and zero. Specific consistency allows to evaluate the consistency of each measurement
channel with respect to the full transformation. In this way, the problematic sensor can be
identified.

𝜌፮ᑚ,ᑛ(𝜔)፬፩፞፜።፟።፜ = coh(𝑢̃።,፣(𝜔), 𝑢።,፣(𝜔)) (2.18)

• Impacts consistency
Like sensors consistency, impacts consistencies can be be obtained, as overall impacts consis-
tency and specific impacts consistency, which is again the comparison between filtered forces
𝑓̃𝑓̃𝑓̃ and unfiltered forces 𝑓𝑓𝑓. The procedure for analysis is the same as for sensors consistency

Different types of coherency functions can be used to examine the relation between two signals or data
set. In dynamic substructuring the previous works suggests the following methods, which are not going
to be discussed here.

• Regular Consistency [49]
• Log consistency [37]
• Multiple Coherence [37]

2.8.3. Reciprocity

As sensor and impacts are not collocated (are not placed in the same locations), the measured ad-
mittance matrix is not reciprocal. Since Virtual Point forces and displacements are collocated, the
reciprocity of Virtual Point admittance should be symmetric and can be verified. To do this, a frequency
dependent coherency function can be used to evaluate the reciprocal elements of Virtual Point admit-
tance matrix, 𝑌𝑌𝑌።,፣ and 𝑌𝑌𝑌፣,።, and indicate the level of similarity between them, which has a value between
0 and 1.

𝑋።,፣ = coh(𝑌𝑌𝑌።,፣ , 𝑌𝑌𝑌፣,።) 𝑌𝑌𝑌።,፣ , 𝑌𝑌𝑌፣,። ∈ 𝑌𝑌𝑌፯፩ (2.19)

2.8.4. Driving point passivity

A complementary condition to reciprocity is passivity, which can be evaluate on the diagonal elements
of the Virtual Point admittance matrix. In the context of driving point FRFs, the passive behavior means
that the driving points FRFs (diagonal elements of matrix) need to be minimum-phase function. This
implies that an applied force at DoF 𝑖 must always result in a displacement in the same direction at that
point. If the function is not minimum-phase, it indicates that energy is added after the impulse, which
contradicts system passivity [28].
The diagonal elements of Virtual Point FRF are the only entries that must demonstrate minimum phase
response:
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∠𝑌𝑌𝑌።,። = {
∈ [−180, 0] for receptance FRFs
∈ [−90, 90] for mobility FRFs 𝑌𝑌𝑌።,። ∈ 𝑌𝑌𝑌፯፩
∈ [0, +180] for accelerance FRFs

(2.20)

2.9. Conclusion of literature survey

From the literature study on the field of Experimental Dynamic Substructuring and reviewing the chal-
lenges of the field, we have seen different methods are developed and used for quality indication of
Virtual Point. However, we did not found any coherent study about the propagation of the inaccuracy
of the location and the direction of sensors and impacts on the transformed recorded data to Virtual
Point. Voormeeren et al [50] have shown that uncertainties in the interface point FRFs (i.g. Virtual
Point) cause propagation of uncertainty in all of the FRFs of the assembled system. This arises the
importance of having an accurate calculation of Virtual Point FRFs.
The second part of this thesis is an investigation to find an answer for the following question:

How an uncertainty on the position and direction of the force/accelerometers sensors affects
the calculated frequency response function of Virtual Point.





II
Uncertainty propagation from

measurements to Virtual Point (𝑉𝑃)

35





3
Introduction

In the previous part, we reviewed the literature to define the scope of this thesis and clarify the goals
of it. The second part of this thesis is an investigation to analyze the uncertainty propagation to the
calculation of Virtual Point frequency response function, caused by inaccurate estimation of sensors’
and impacts’ position and direction.

In Experimental dynamics, we need experimentally gained information recorded by sensors and roving
impacts to build the FRF, to be able to calculate the Virtual Point transformed FRF. In all experiments,
we almost always have some uncertainties, and achieving true experiment is almost impossible. Mak-
ing errors while mounting the sensors and roving impacts is very plausible. This mounting errors can
be positional as well as directional. Because of these uncertainties, we can never find the true trans-
formation matrices.

To calculate the Virtual Point admittance (for further substructuring), the data from measurements will
be transformed by using the projection matrices 𝑇𝑇𝑇፮ and 𝑇𝑇𝑇፟. These transformation matrices are all
described in Cartesian coordinate system, the theory from Section.4.2. These projection matrices
use the locational distances (𝑟፤፯፱ , 𝑟፤፯፲ , 𝑟፤፯፳ ), (𝑟፣፯፱ , 𝑟፣፯፲ , 𝑟፣፯፳ ) and directional differences (𝜃፤፯፱ , 𝜃፤፯፲ , 𝜃፤፯፳ ),
(𝜃፣፯፱ , 𝜃፣፯፲ , 𝜃፣፯፳ ) between measurements palces, sensor 𝑘 and impacts 𝑗, and Virtual Point 𝑉𝑃.

Existence of directional and rotational uncertainty on sensors or impacts can cause an error generation
on the calculation of Virtual Point (𝑉𝑃) admittance (𝑌፯፩𝑌፯፩𝑌፯፩).

The main goal of this study is to understand:
How an uncertainty on the position and direction of the force/accelerometers sensors affects
the calculated frequency response function of Virtual Point.

This study investigates to understand how these types of measurement errors affect the calculation of
𝑉𝑃’s FRF by answering the following questions:

• Which error at what amount is the most dominant error source?

• At which frequencies we can expect the less precise?

In the second part of the thesis, chapter.4 analyzes the problem by studying how a Virtual Point’s FRF
is calculated, and how each component of calculation works through the computation of Virtual Point’
FRF, and how uncertainty affects the way each component contributes to the computation of 𝑉𝑃’s FRF,
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Section.4.2.

In section.4.3 the theory of component mode synthesized (CMS) is used to describe how uncertainty
in an input or output can influence the admittance.
Based on the theory of component mode synthesized (CMS), we know that the frequency response
function 𝑌።፣ at and around each resonance (𝜔፫፧) between impact 𝑗 and sensor 𝑖 is governing by the
modal values of input 𝑖 and output 𝑗 corresponds to that resonance. Since these values and their con-
tribution is mode shape and frequency-dependent, the problem refines and focused on the resonances
and their dominant mode shape motion. Then the relation between the error direction and mode shape
is studied (for both positional and directional uncertainties), and based on that, the dominant error
sources are identified. Furthermore, the amount of uncertainty propagation into the 𝑉𝑃’s DoFs is quan-
tified.

Applying an exact amount of positional and directional error (uncertainty) on the sensor and impact in
an experiment is challenging, and obtaining the true experiment is almost impossible. For this reason,
this study uses simulation to mimics an experiment.
Four types of uncertain scenarios are considered; impacts positional uncertainty (IPU), impacts di-
rectional uncertainty (IDU), sensors positional uncertainty (SPU), and sensors directional uncertainty
(SDU). Each scenario contains just one type of uncertainty.

In chapter.5 three different approaches are considered analytical approach, numerical approach, and
Monte Carlo simulation. Each method considers each of four uncertainty scenarios (IPU, IDU, SPU,
and SDU) separately.

The analytical approach (section.5.2) considers a free end part of a beam, to mimic the coupling area.
This method used the modal values and considered the effect of each of the four uncertainty scenarios
on different mode shapes. Based on dominant modal values, the dominant error directions for each
mode shape for each scenario is introduced. Moreover, an estimation is given on the changes of the
(calculated) Virtual Point’s forces and responses, caused by these dominant error sources.

In section.5.3 a complex modal based model (FEM) is introduced. Section.5.4 discussed how a Monte
Carlo simulation is adopted on the complex modal based model to implement the random errors for
each type of uncertainty for a massive number of times.

Chapter.6 shows and then discusses the results of the numerical approach. In Section.6.1 every sce-
nario is simulated on a complex modal-model, for a well-defined amount of error. Then a Monte Carlo
simulation is used to bring random errors on each variable (still for each scenario). In the discussion
part of chapter.6, the results of simulations are compared with each other and then compared with the
expectations from the analytical analysis.

The chapters of the second part of this thesis are as follows

• Section.4: Analyzing the problem
• Section.5: Methodology
• Section.6: Results and discussion
• Section.7: Conclusion



4
Analyzing the problem

To analyze the problem, first of all, we need to decompose the problem. The first section of this chap-
ter, section.4.1 studies how a Virtual Point’s FRF is calculated (on section.??), Furthermore, how (po-
sitional or directional) uncertainty affects the way each component contributes to the computation of
Virtual Point’ FRF. Section.4.2 discussed how uncertainty affects the accuracy of transformation matri-
ces 𝑇፮𝑇፮𝑇፮ and 𝑇𝑇𝑇 , and how the inaccurate transformation matrices affect the Virtual Point’s transformation.
Moreover, based on the decomposition of the transformation matrices, a prediction is made to find the
𝑉𝑃’s cross-functions with higher sensitivity to the (positional and directional) inaccuracies of the mea-
suring equipment.

Sections.4.3 uses the Component Mode Synthesis method to discuss how inaccuracy affects the mea-
sured FRF, for both positional and directional uncertainties and both input and output. Section.??
debates why this uncertainty is mode shape and frequency-dependent.

4.1. Decomposing the problem

The measured cross-functions (in the frequency domain) between all force channels (inputs) and sen-
sors channels (outputs) are all gathered in an admittance matrix 𝑌፦፞ፚ፬𝑌፦፞ፚ፬𝑌፦፞ፚ፬. Transformation matrices 𝑇𝑇𝑇፮
and 𝑇𝑇𝑇፟ transform the measured FRFs to a single coupling point for further substructuring. This single
coupling point is called Virtual Point (𝑉𝑃), which is a collocated super-element having both transna-
tional and rotational DoFs, the theory from section.2.7.2. Recalling the equation that computes the
𝑉𝑃’s FRF:

𝑌𝑌𝑌፯፩ = 𝑇𝑇𝑇፮𝑌𝑌𝑌𝑇𝑇𝑇ፓፅ (4.1)

Equation.4.1 shows that the computation of 𝑉𝑃’s FRF consists of :

• Displacement transformation matrix 𝑇𝑇𝑇፮.
• Measured frequency response function; 𝑌𝑌𝑌.
• Force transformation matrix 𝑇𝑇𝑇፟.

The transformationmatrices use the locational distances (𝑟፱ , 𝑟፲ , 𝑟፳) and directional differences (𝜃፱ , 𝜃፲ , 𝜃፳)
between the measurements places and Virtual Point, to convert the measured data into a Virtual Point.
This transformation matrices are all described in Cartesian coordinate system.

Since we never know the actual position and direction of sensors and impacts during the measure-
ments, we can not accurately set up the projection matrices 𝑇𝑇𝑇፮ and 𝑇𝑇𝑇፟. This uncertain estimation of
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position and direction is the main reason to get the deviation on the calculation of 𝑉𝑃’s frequency re-
sponse function. In other words, as long as we accurately compile the transformation matrices 𝑇𝑇𝑇፮ and
𝑇𝑇𝑇፟, we will end up to the same calculated FRF at 𝑉𝑃 (if we accomplish the linearity assumption), no
matter where we excite or measure the response of the structure. Note that this is just valid under the
local rigidity condition in the measuring area, meaning that the structure’s deformation does not involve
any shear, extension, or compression in the area where we excite or measure or set the Virtual Point.

𝑚

ᑞᎳ

ᑞᎴ
፯፩

ᑞᎶ
ᑞᎷ

𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑟𝑖𝑔𝑖𝑑 𝑎𝑟𝑒𝑎

Figure 4.1: Local linearity and rigidity of the measured area, the main assumption of Virtual Point Transformation

In the presence of measurement’s uncertainty on the positioning of the sensors or roving hammers,
the measured FRF can be decomposed into two parts.

• 𝑌𝑌𝑌፭፫፫፮፞: Measurement without any uncertainty.
• Δ𝑌Δ𝑌Δ𝑌: A deviation on measured FRF from the true measurements, caused by uncertainty.

𝑌𝑌𝑌፮፧፜፞፫፭ፚ።፧ = 𝑌𝑌𝑌፭፫፮፞ +Δ𝑌Δ𝑌Δ𝑌 (4.2)

The uncertainty propagates during the transformation, and the uncertain 𝑉𝑃’s FRF consequently can
be written as follow:

𝑌𝑌𝑌፯፩,፮፧፜፞፫፭ፚ።፧ = 𝑌𝑌𝑌፯፩,፭፫፮፞ +Δ𝑌Δ𝑌Δ𝑌፯፩
= 𝑇𝑇𝑇፮ .(𝑌𝑌𝑌፭፫፮፞ +Δ𝑌Δ𝑌Δ𝑌).𝑇𝑇𝑇ፓ፟

(4.3)

The deviated transformed admittance Δ𝑌Δ𝑌Δ𝑌፯፩ is due to inaccurate estimation of transformation matrices
𝑇𝑇𝑇፮ and 𝑇𝑇𝑇፟.

4.2. Transformation matrices 𝑇𝑢 and 𝑇𝑓 as an uncertainty amplifica-
tion factors

If we are not accurately aware of the locational or directional changes, we will set up the displace-
ment and force transformation matrices, 𝑇𝑇𝑇፮, and 𝑇𝑇𝑇፟, in an unappreciated and inaccurate way. Now we
need to consider how the uncertain transformation matrix affects the calculation of the 𝑉𝑃’s admittance.

In order to understand how the transformation matrices 𝑇፮ and 𝑇 has influenced the 𝑉𝑃’s FRF calcu-
lation, first of all, we study in detail how these matrices are made, and then further how they transform
data which are not entirely belong to them.

4.2.1. Setup of transformation matrices 𝑇𝑇𝑇፮ and 𝑇𝑇𝑇፟

The displacement transformation matrix, 𝑇𝑇𝑇፮, is made of different displacement transformation matri-
ces. Each of these sub-transformation matrices, 𝑇𝑇𝑇፤፯፮ , converts data form sensor 𝑘 to a Virtual Point
in the Cartesian coordinate system. Since each sensor has 3 DoFs, 𝑇𝑇𝑇፤፯፮ is a matrix and not a vector.
Every sensor’s displacement transformation matrix 𝑇𝑇𝑇፤፯፮ is decomposed of two parts. The rotational
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projection matrix and translational projection matrix.

Recalling that each Virtual Point (𝑉𝑃) is a collocated super-elemet, having 6 Dofs on responses (3
translational and 3 rotational) and 6 DoFs on Forces (3 translational forces and 3 moments) on Carte-
sian coordinate system. It means that a 𝑉𝑃’s FRF at each frequency is a 6 × 6 matrix.
The transformation of measured responses (translational), 𝑢𝑢𝑢፦፞ፚ፬, into 𝑉𝑃’s responses 𝑞𝑞𝑞፯፩ (both trans-
lational and rotational) is as follows

𝑞𝑞𝑞፯፩ = 𝑇፮𝑇፮𝑇፮ 𝑢𝑢𝑢፦፞ፚ፬.
𝑢𝑢𝑢፦፞ፚ፬. = 𝑅፮𝑅፮𝑅፮ 𝑞𝑞𝑞፯፩ where 𝑅፮𝑅፮𝑅፮ = 𝑇፮𝑇፮𝑇፮ዅኻ

(4.4)

Since the first 3 rows of 𝑉𝑃’s admittance represent the displacement, the transposed of translational
projection matrix is forming the upper part of transformation matrix 𝑇𝑇𝑇፤፯፮ . And, the transposed of
rotational transformation part creates the bottom part of displacement transformation matrix 𝑇𝑇𝑇፤፯፮ .

𝑅𝑅𝑅፤፯፮ = 𝑇𝑇𝑇፤፯፮
ዅኻ = [𝐸𝐸𝐸፤፯ᑋ (𝑟𝑟𝑟፤፯ ×𝐸𝐸𝐸፤፯)ፓ] where ⇒ {𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 ∶ (𝑟𝑟𝑟፤፯ ×𝐸𝐸𝐸፤፯)ፓ

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ∶ 𝐸𝐸𝐸፤፯ᑋ
(4.5)

The rotation part describes the rotationmatrix of Euler angles (three angles). This Euler angle reflects
the relative angle between the sensor and the 𝑉𝑃 coordinate system. The rotation matrix of sensor 𝑘
with respect to Virtual Point is as follows:

𝐸𝐸𝐸፤፯ = 𝑅𝑅𝑅፳(𝛼)𝑅𝑅𝑅፲(𝛽)𝑅𝑅𝑅፱(𝛾) (4.6)

Where 𝛼, 𝛽 and 𝛾 are the angle differences between sensor 𝑘 and 𝑉𝑃, in 𝑧,𝑦 and 𝑥 direction, respec-
tively.

In fact, Each column 𝑖 of displacement transformation matrix 𝑇፮ transform the displacement of channel 𝑖
to translational and rotational displacement of Virtual Point, with relative direction vector 𝑒𝑒𝑒፤፯። and relative
distance vector 𝑟𝑟𝑟፤፯። with respect to 𝑉𝑃.

𝑅𝑅𝑅፤፯፮ = (𝑇𝑇𝑇፤፯፮ )
ዅኻ = [ 𝑅𝑅𝑅፳(𝛼)𝑅𝑅𝑅፲(𝛽)𝑅𝑅𝑅፱(𝛾) ] [

1 0 0 0 𝑟፤፯፳ −𝑟፤፯፲
0 1 0 −𝑟፤፯፳ 0 𝑟፤፯፱
0 0 1 𝑟፤፯፲ −𝑟፤፯፱ 0

] (4.7)

The same procedure is used to calculate the force transformation matrix 𝑇𝑇𝑇፟, which transforms the
forces from impacts 𝑓𝑓𝑓፦፞ፚ፬. to forces and moments at Virtual Point 𝑓𝑓𝑓፯፩.

𝑓𝑓𝑓፯፩ = 𝑅𝑅𝑅ፓ፟ 𝑓𝑓𝑓፦፞ፚ፬.
𝑓𝑓𝑓፦፞ፚ፬. = 𝑇𝑇𝑇ዅፓ፟ 𝑓𝑓𝑓፯፩ where 𝑅፟𝑅፟𝑅፟ = 𝑇𝑇𝑇ዅኻ፟

(4.8)

Note that in the calculation of 𝑉𝑃’s FRF, we use the transposed of force transformation matrix (𝑇𝑇𝑇፟)ፓ,
which has 6 columns, and the number of rows is equal to the number of impacts.

In the transposed of force transformation matrix 𝑇𝑇𝑇ፓ፟, each row 𝑗 is responsible to transform the force
of impact-channel 𝑗 to force and moment of Virtual Point, with relative direction vector 𝑒𝑒𝑒፣፯። and relative
distance vector 𝑟𝑟𝑟፣፯። with respect to 𝑉𝑃. The force transformation matrix 𝑇𝑇𝑇፟ has two parts, the trans-
lational part and the rotational part, which are respectively building the left part and right part of
transformation matrix.

𝑅𝑅𝑅፣፯
ᑋ

፟ = (𝑇𝑇𝑇፣፯
ᑋ

፟ )
ዅኻ
= [ 𝑒𝑒𝑒፣፯ᑋ

(𝑟𝑟𝑟፣፯ ×𝑒𝑒𝑒፣፯)ፓ
] where ⇒ {𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 ∶ (𝑟𝑟𝑟፣፯ ×𝑒𝑒𝑒፣፯)ፓ

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ∶ 𝑒𝑒𝑒፣፯ᑋ
(4.9)
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4.2.2. How inaccurate transformation matrices affects the 𝑉𝑃’s calculation

Since the translational part of transformation matrices reflecting the relative distance between sen-
sor/impact and 𝑉𝑃, their value is much smaller compared with the values of rotational part, which has
values between -1 and 1. As a consequence, if a measurement contains some uncertainty, the rota-
tion part of projection matrices amplifies the uncertainty on the measured frequency response function
(𝑌𝑌𝑌፦፞ፚ፬) more than the translational part.

In order to understand how uncertain measurement propagates into 𝑉𝑃’s FRF, we study the deviation
of incorrect transformed FRF from its true value, Δ𝑌፯፩Δ𝑌፯፩Δ𝑌፯፩.
First, we consider the calculation part between 𝑇𝑇𝑇፮ and Δ𝑌Δ𝑌Δ𝑌. We have seen that the lower part of 𝑇𝑇𝑇፮ (re-
sponsible for rotational transformation) has higher values comparing with the upper part of the matrix.
As a consequence, the product of 𝑇𝑇𝑇፮ ∗Δ𝑌Δ𝑌Δ𝑌 has a higher values on the lower part of this product matrix.

Then we need to multiply the product of 𝑇𝑇𝑇፮ ∗ Δ𝑌Δ𝑌Δ𝑌 with the transposed of force transformation matrix
𝑇𝑇𝑇ፓ፟. As discussed before, the right part of 𝑇𝑇𝑇ፓ፟ was responsible for rotational transformation and has
relative higher values comparing with translational part.

All these together we expect that the product of 𝑇𝑇𝑇፮ ∗ Δ𝑌Δ𝑌Δ𝑌 ∗ 𝑇𝑇𝑇ፓ፟, which results in a 6 × 6 matrix (at each
frequency), will have higher values on the SE (South-East) part of the 𝑉𝑃’s admittance matrix.

We may conclude;
If during an operational measurement we measure the input and/or output with inaccurate position
(location and/or direction), then the deviation on transformed admittance Δ𝑌Δ𝑌Δ𝑌፯፩ which is a product of
𝑇𝑇𝑇፮ ∗ Δ𝑌Δ𝑌Δ𝑌 ∗ 𝑇𝑇𝑇ፓ፟ will have higher values on its SE (South-East) part.

𝑇𝑇𝑇፮ =
⎡
⎢
⎢
⎣ 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛

⎤
⎥
⎥
⎦
, ,Δ𝑌Δ𝑌Δ𝑌 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑇𝑇𝑇ፓ፟ =
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

Δ𝑌Δ𝑌Δ𝑌፯፩ = 𝑇𝑇𝑇፮Δ𝑌Δ𝑌Δ𝑌𝑇𝑇𝑇ፓ፟ =
⎡
⎢
⎢
⎣

𝑁𝑊 𝑁𝐸

𝑆𝑊 𝑆𝐸

⎤
⎥
⎥
⎦

4.2.3. Influence of relative distances and relative directions of all impacts to 𝑉𝑃𝑉𝑃𝑉𝑃

We have seen that the projection matrices𝑅𝑅𝑅፮ and𝑅𝑅𝑅፟ are composed of all relative distances and relative
orientations of every input and output to 𝑉𝑃. During the transformation from the measured admittance
to the 𝑉𝑃’s admittance, we use 𝑇𝑇𝑇፮ and 𝑇𝑇𝑇፟, which are the Pueso inverse of these projection matrices 𝑅𝑅𝑅፮
and 𝑅𝑅𝑅፟. As these two transformation matrices (𝑇𝑇𝑇፮ and 𝑇𝑇𝑇፟) are the inverse, all of the relative distances
and relative orientations (of inputs and outputs with respect to 𝑉𝑃) will influence the values of each
entry of these transformation matrices.
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The effect of dominant impacts and sensors is not just depending on their relative distances and ori-
entation with respect to 𝑉𝑃, but also the distance and orientation of other impacts and sensors matters
and contributes to the error propagation. This means that any inaccurate estimation on location or
direction propagates tho the whole transformation matrix (𝑇𝑇𝑇፮ or 𝑇𝑇𝑇፟).

4.3. How uncertainty affects the measured Frequency Response
Function

In the previous section, we discussed how the decomposition of transformation matrices (𝑇፮𝑇፮𝑇፮ and 𝑇𝑇𝑇 )
could amplify themeasurement uncertainties, and consequently causes that the 𝑉𝑃’s rotational/rotational
cross-functions become least precise.

We need to understand which measured cross-functions containing higher deviations, in order to de-
fine which entries of that least precise part of 𝑉𝑃’s admittance (𝑆𝐸 part or rotational/rotational cross-
functions) do contain the highest error generation.

In this section, the Component Mode Synthesis (CMS) is used to understand how positional or di-
rectional uncertainty changes a measured frequency response function. First, the case of positional
uncertainty is discussed and then directional uncertainty.

Component Mode Synthesis (CMS)

As discussed in section.2.3.1 the admittance FRFs can be synthesized using a superposition of single-
DoFmodal solutions (natural modes). Recalling the formula form section.2.3.1, the frequency response
function 𝑌።,፣(𝜔) of output 𝑖 and input 𝑗 reads as follows:

𝑌።፣(𝜔) =
፤

∑
፧዆ኻ

𝜙።,፧𝜙፣,፧
−𝜔ኼ + 2𝜁፧𝜔፧𝜔 + 𝜔ኼ፧

=
𝜙።,ኻ𝜙፣,ኻ

−𝜔ኼ + 2𝜁ኻ𝜔ኻ𝜔 + 𝜔ኼኻ
+

𝜙።,ኼ𝜙፣,ኼ
−𝜔ኼ + 2𝜁ኼ𝜔ኼ𝜔 + 𝜔ኼኼ

+ . . . + 𝜙።,፤𝜙።,፤
−𝜔ኼ + 2𝜁፤𝜔፤𝜔 + 𝜔ኼ፤

(4.10)

Where 𝑘 is the total considered modes in the calculation, 𝑛 is the number of mode, and 𝜔፧ is the eigen-
frequency of that mode number. 𝜙፧። and 𝜙፧፣ are representing the modal-value of output (or response)
𝑖 and modal-value of input (or force) 𝑗 at mode number 𝑛.

4.3.1. Mode and frequency dependency on uncertainty propagation to 𝑉𝑃’s FRF

Each decomposed part of Equation.4.10, is governing the general behaviour of frequency response
function at and around its corresponding eigenfrequency 𝜔፧. By slightly changing the measurement
setup (slightly changing the position or the direction of sensor or impact), we are not changing the
structure (ignoring the changes due to sensors mass and its influences), and consequently, the reso-
nance frequencies (𝜔፧) are remaining the same. It means changes in the position or direction of input
or output do not change the denominator part of each decomposed part of mode synthesized.

However, in the presence of positional uncertainty (of the measuring equipment(s)), we actually mea-
sure the response of a node (or discretized mass), which is placed just next to the true node. The
recorded data are not any more accurately representative of how that targeted node (true node) of
structure responds to an excitation.
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It means, in the presence of positional uncertainty in a measurement, the modes synthesized admit-
tance is not anymore reflecting the modal values of true-positioned input or output. The presented
modal values are belonging to a place just next to the true position.

𝑌።፣(𝜔) =
፤

∑
፧዆ኻ

𝜙።,፧𝜙ፓ፣,፧
−𝜔ኼ + 2𝜁፧𝜔𝜔፧ + 𝜔ኼ፧

contribution of mode n ∶
𝜙።,፧𝜙ፓ፣,፧

−𝜔ኼ + 2𝜁፧𝜔𝜔፧ + 𝜔ኼ፧

(4.11)

On each decomposed part of Equation.4.13, the denominator (−𝜔ኼ +2𝜁𝜔፫፧𝜔+𝜔ኼ፫፧) defines at which
frequency a peak occurs, where the nominator (𝜙፧። 𝜙፧፣ ) determine the value of the amplitude. There-
fore, by changing the modal value vector (𝜙፧። ), the eigenfrequencies remain the same, so the structure
will still resonate at the same frequencies. However, the value of the amplitude will change. It means,
in the presence of positional (or directional uncertainty), the portion of the contribution of each normal
mode on the composed end-product 𝑌።፣ will change, and the amount of contribution of these changes
is depending on the frequency.

In order to find the dominant error sources, in the next chapter, on analytical approach (section.5.2),
we discuss in details the effective factors influencing the amount of the changes on the modal value
𝛿𝜙። or 𝛿𝜙፣. These factors are; the amount of uncertainty, the direction of uncertainty, relative distance
of measuring point to 𝑉𝑃, and the relative distance of measuring point to stand node (number of each
mode shape).

4.3.2. Directional uncertainty in measuring equipment

In this section, the propagation of the second type of measurement uncertainty is investigated, namely
the Directional uncertainty of input or/and output.

Since the modal value of non-dominant directions of that mode shape is significantly smaller, the contri-
bution of their corresponding normal mode on mode synthesized is also small. As a consequence, the
amplitude of frequency response function at and around that specific resonance is small with no peaks.

In the presence of directional uncertainty, the modal values extracted from measurements are not any-
more representing the modal value of the direction assigned to the projection matrix, and consequently,
measured data will incorrectly be projected to 𝑉𝑃.

In the mode synthesized form, a part of the modal value will be replaced by the modal value of another
direction. If the new added direction has the same direction as the mode shape motion, then the added
modal value is a portion of high value, and consequently, the modal value for that natural mode will
increase significantly. If it happens, some peaks will appear at frequencies corresponds to that mode
shape.

Figure.4.2 illustrates two FRFs, one in blue and one in green, where each of them corresponds to one
channel of a sensor. The sensor is mounted in such a way that each channel is just bale to record the
motion of one type mode-shape (for example, one can just record lateral bending and one just vertical
bending). Since each channel can just record one of the motions, each cross-function contains one
peak at a frequency corresponds to one mode shape.
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Figure 4.2: FRF directional1

If the sensor has some directional uncertainty, in such a way where one channel is recording the motion
of other direction, then we expect to observe a spurious peak at resonances corresponds to new added
direction, which are not belong to the true direction. Figure.4.3 illustrates this new FRF which is called
a multi directional recorded data.

Mode shape 1

Mode shape 2
recorded data just on the direction of mode shape 2
recorded data just on the direction of mode shape 1
multi directional recorded data

ᎦᑣᎴ: resonance
with dominant motion
on direction 2

Ꭻᑄᐻᑠᐽ,ᒞᑣᎳ

sc
al
ed

re
sp
on
se
:

m
od
al
va
lu
e

𝜙

𝜔ᎦᑣᎳ: resonance
with dominant motion
on direction 1

ᎫᐻᑠᐽᎴ,ᒞᑣᎳ

ᎫᐻᑠᑗᎳ,ᒞᑣᎳ

Figure 4.3: FRF directional2

At each frequency, the amount of the contribution of each DoF on the Multi directional (MDoF) recorded
data is depending on the amount of the response of each direction, and the amount of contribution of
each direction
If a force is amultiple-directional load (exciting a structure onmore than one (local) DoF), then themodal
vector of that output (reference 𝑖) becomes amulti-DoFmodal value𝜙።ፌፃ𝜙።ፌፃ𝜙።ፌፃ, which is a combination of the
eigenvectors of both directions, so each direction gets a portion on the final modal vector for reference
𝑖 :

𝜙።ፌፃ𝜙።ፌፃ𝜙።ፌፃ = 𝛼።𝜙።፱𝜙።፱𝜙።፱ + 𝛽።𝜙።፲𝜙።፲𝜙።፲ (4.12)
Where 𝛼 and 𝛽 denotes the portions of the components of each eigenvectors (for each DoF) for that
reference 𝑖.

In the presence of multi-directional (MD) modal vector of reference 𝑖𝑖𝑖, the synthesized FRF is becoming
as follows:

𝑌።፣ =
፤

∑
፧዆ኻ

𝜙፧።ፌፃ𝜙፧፣
−𝜔ኼ + 2𝜁𝜔፫፧𝜔 + 𝜔ኼ፫፧

=
፤

∑
፧዆ኻ

(𝛼።𝜙፧።፱ + 𝛽።𝜙፧።፲)𝜙፧፣
−𝜔ኼ + 2𝜁𝜔፫፧𝜔 + 𝜔ኼ፫፧

(4.13)

In this case the force (input 𝑖) is decomposed of two directions, 𝑓።፱ and 𝑓።፲. Components 𝛼 and 𝛽 have
the following relation with 𝑓።፱ and 𝑓።፲;

𝑓።፱
𝑓።፲

= 𝛼።
𝛽።

(4.14)
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Based on the CMS method, every modal value of input and output has a contribution in the calculation
of the cross function. The amount of the contribution of each of them depends on the frequency. In the
case of multi-directional input or output (with respect to local coordinate), the modal parameters of each
reference (input or output) are the decomposition of different modal values of a different direction for
that reference. By changing the direction of the input or output, the portion of each modal parameters
at that reference will change, which means change on values of 𝛼 and 𝛽.

In the presence of directional uncertainty on input or output, the values of both 𝛼 and 𝛽 are becoming
uncertain. Moreover, the values of the modal parameters of different directions are becoming error
amplification factors. The amount of generated deviation on FRF depends on the modal parameters of
both directions (or in general all directions).
It means any changes on the component of modal value 𝜙፱ or 𝜙፲ with higher value will amplify the er-
ror more than a one with smaller value. Furthermore, since the components of each eigenvector have
different values, and each component becomes dominant around its corresponding eigenfrequency,
the generated error on synthesized FRF is the frequency and mode dependent.



5
Methodology

5.1. Introduction

Applying an exact amount of positional and directional error (uncertainty) on the sensor and impact in
an experiment is challenging, and obtaining the true experiment is almost impossible. For this reason,
this chapter uses analytical analysis and FEM to mimics an experiment and the consequences of the
measuring equipment’s directional uncertainties and positional uncertainties on the determination of
Virtual Point (𝑉𝑃).
Four types of uncertain scenarios are considered; impacts positional uncertainty (IPU), impacts di-
rectional uncertainty (IDU), sensors positional uncertainty (SPU), and sensors directional uncertainty
(SDU). Each scenario contains just one type of uncertainty.

In this chapter, three different approaches are considered analytical approach, numerical approach,
and Monte Carlo simulation. Each method considers each of four uncertainty scenarios (IPU, IDU,
SPU, and SDU), separately.

The analytical approach (section.5.2) considers a free end part of a beam, to mimic the coupling area.
This method used the modal values and considered the effect of each of the four uncertainty scenarios
on different mode shapes. Based on dominant modal values, the dominant error directions for each
mode shape and for each scenario is introduced. Moreover, an estimation is given on the changes of
the (calculated) Virtual Point’s forces and responses, caused by these dominant error sources.
In section.5.3 a complex modal based model (FEM) is introduced. Section.5.4 discussed how a Monte
Carlo simulation is adopted on the complex modal based model to implement the random errors for
each type of uncertainty for a massive number of times.

5.2. Analytical approach

In the analytical approach, We simplify the coupling area into a free-end part of a structure, in order to
mimic the area of measurement and transformations into 𝑉𝑃. We decide to study a part of a structure
with a free-end, since the end purpose of this study is meant for substructuring and coupling using a
Virtual Point Transformation, and in the most cases the coupling area of the substructure is a free-end
part of substructure (at least locally).

47
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፳

፱
፲

impact A

impact B

impact C፯፩

𝑚

፯፩
𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑟𝑖𝑔𝑖𝑑 𝑎𝑟𝑒𝑎

𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑟𝑖𝑔𝑖𝑑 𝑎𝑟𝑒𝑎

impact

impact

impact

Figure 5.1: Simplification of coupling area into a free-end part of a beam

Then, we study the changes on measured admittance (Δ𝑌Δ𝑌Δ𝑌) when the location and direction of the
inputs and outputs (sensors/impacts) are varying, separately for two types of bending (vertical and
lateral bending). Then we compare the changes on the modal value of 𝑉𝑃 and based on that error
directions with higher sensitivity for each mode; shapes are introduced and summarized.
In the analysis of Δ𝑌Δ𝑌Δ𝑌, we are considering the following questions:

• Does it matter in which direction we make a positional error on measuring equipment?

• How the main direction of the impact (or sensors) containing positional uncertainty affects the
measurements?

• How distance between measure point to stand node can influence the uncertainty generation?

5.2.1. Error sensitivity as a function of error direction
Since the frequency response function can be described by the normal modes of the inputs and out-
puts (CMS method), we are interested in the changes in the normal mode of inputs and outputs when
the position or direction of them is changing. Since the responses and modal values are frequency-
and mode-shape-dependent, we are considering the effect of positional and directional uncertainty in
different mode-shapes.
The following section investigates to explain the different sensitivity of impacts and sensors to positional
and directional uncertainty and introduce the dominant error sources.

Figure.5.2 is an illustration of the first lateral and first vertical bending of our free-end beam. This part of
the beam is considered to be the area between the end-node and the first stand-node (of that particular
mode shape). We consider one impact at each surface of our free end part, impacts A, B, and C, in
order to study the effect of the impact’s primary direction.

1st lateral Bending

፬፭ፚ፧፝ ፧፨፝፞

ᎎ

impact B

impact C

impact A

1st Vertical Bending

፬፭ፚ፧፝ ፧፨፝፞

ᎎ

impact A

impact B

impact C

፳

፱
፲

𝑉𝑃 𝑉𝑃

Figure 5.2: Deformation of beam in vertical bending and lateral bending. The dominant motion on vertical bending is along
z-axes, and the dominant motion on lateral bending is along y-axes.
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In order to mimic a positional uncertainty for an impact (or sensor), we consider two node 𝑥1 and 𝑥2
representing the true position and the actual position (with uncertainty), respectively. 𝑥1 is in distance
𝑟፱, 𝑎፱, and 𝛿𝑟፱ from 𝑉𝑃, stand-node, and node 𝑥2.

Vertical Bending
Figure.5.3 is a 2-D illustration of nodes 𝑥2 and 𝑥2 with their corresponding modal value, 𝜙፱ኻ and 𝜙፱ኼ,
at first vertical bending (bending a motion along 𝑦 axes).

1st vertical Bending
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፳
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፱ኼ ፱ኻ ፯፩

Figure 5.3: 1st mode-shape 2D

Since measuring equipment (inputs and outputs) acts and is mounted on the surface of the structure;
its positional uncertainty could have components on two directions.

Figure.5.4 expands the model into a 3 − 𝐷 model, in order to be able to introduce node 𝑥3, which is in
distance 𝛿𝑟፲ (along 𝑦 axes) from node 𝑥1. The amount of 𝛿𝑟፱ and 𝛿𝑟፲ are the same.
This figures compares the changes on modal values in the presence of positional uncertainty, where
once 𝑥1 is displaced along 𝑥 axes to 𝑥2 (Figure.5.4(a)), and Once displaced along 𝑦 axes to 𝑥3 (Fig-
ure.5.4(b)).

In Figure.5.4(a) a positional error along 𝑥 axes will cause changes on the modal value (of 𝑧 direction);
however the same amount of positional along 𝑦 will have no effect on the modal value.

We can conclude that the positional uncertainty of input or output has different directional sensitivity,
which is mode-shape and frequency-dependent. It means that at each mode shape, the same amount
of positional error does not introduce the same amount of changes on modal value.
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Figure 5.4: 2modes

As mentioned before the component mode synthesised method is one of the ways to compute the fre-
quency response function, which uses the natural vibration modes. The admittance can be synthesised
by the superposition of the natural modal solutions. The superposition of the admittance of input 𝑖 to
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output 𝑗, i.g. displacement over force reads as follows;

𝑌።፣(𝜔) =
፤

∑
፧዆ኻ

𝜙።,፧𝜙ፓ፣,፧
−𝜔ኼ + 2𝜁፧𝜔𝜔፧ + 𝜔ኼ፧

=
𝜙ኻ።,ኻ𝜙ኻ፣,ኻ

−𝜔ኼ + 2𝜁ኻ𝜔𝜔ኻ + 𝜔ኼኻ
+

𝜙።,ኼ𝜙ፓ፣,ኼ
−𝜔ኼ + 2𝜁ኼ𝜔𝜔ኼ + 𝜔ኼኼ

+ ............. +
𝜙።,፤𝜙ፓ፣,፤

−𝜔ኼ + 2𝜁፤𝜔𝜔፤ + 𝜔ኼ፤

(5.1)

Where the 𝑟 is the mode number, 𝜙።,፫ and 𝜙፣,፫ are the modal value of nodes corresponds to input 𝑖 and
output 𝑗 at mode number 𝑟.

This superposition means that each natural mode has a governing and dominant role in describing FRF
around and especially at its natural frequency. As a matter of fact, changes on each of modal values
𝜙። or 𝜙፣ is just limited to that particular natural mode, and just change the frequency response function
locally, at resonances corresponds to that natural mode. Now the question is that how the motion of
structure at each mode shape can influence the changes of modal value corresponds to that mode
shape.

In the previous section, we discussed that in the presence of uncertainty on the location of input or out-
put, we record data that correspond to an additional node that differs from the true node. In the mode
synthesized method, this dis-positioning is reflecting by replacing the modal value corresponds to the
true position by the modal value corresponds to the measured position. Further, We have seen that
the changes made on modal value are depending on the motion and mode shape. From this, we can
expect that a certain error on position does not generate the same differences in other mode shapes,
as the direction of displacement does not remain the same. It means that the changes in modal value
𝜙።,፫ is not the same for all natural modes 𝑟. Which results in different deviations of each natural mode.
It means if we have some uncertainty on the position of input or output, we expect different deviation
around each resonance, since the 𝜙።,፫ does not change the same for all mode shapes.

Δ𝑌።፣(𝜔) =
፤

∑
፧዆ኻ

(𝜙፧።ዅፑፄፅ − 𝜙፧።ዅwith error)𝜙፧፣
−𝜔ኼ + 2𝜁𝜔፫፧𝜔 + 𝜔ኼ፫፧

=
፤

∑
፧዆ኻ

(𝛿𝜙፧። )𝜙፧፣
−𝜔ኼ + 2𝜁𝜔፫,፧𝜔 + 𝜔ኼ፫,፧

(5.2)

Since we are assuming that we accomplish the linearity assumption, the relation between 𝛿𝜙, 𝛿𝑟,
𝜙፦፞ፚ፬፮፫፞, 𝜙፭𝑟𝑢𝑒, 𝑎፱ (changes on modal values, amount of error, measured response, true response,
and distance to stand node can be written as follows:

𝛿𝜙
𝛿𝑟 =

𝜙፦፞ፚ፬፮፫፞
𝑎፱ + 𝛿𝑟

= 𝜙፭፫፮፞
𝑎𝑥 (5.3)

Lateral Bending

Now we are considering another mode shape, lateral bending, of the same model (the free-end model
which was illustrates on Figure.5.2), and applying the same positional errors on both possible directions,
𝛿𝑟፱ and 𝛿𝑟፲.
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𝛿𝑟፱

𝑧

𝑥
𝑦
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𝜙፱ኼ,፱
𝜙፱ኻ,፱

𝛿𝜙፱ ≈ 0

Figure 5.5: Different sensitivity of the channels of triaxial sensor to positional uncertainty, where each channel record the data
from one direction and is more sensitive to positional uncertainty on specific mode shapes, but other channels do not possibly

have the same sensitivity to positional uncertainty on the same mode shape.

From this, we can conclude that for those DoFs that are not displaced during a particular mode shape
(having minimal modal values for those mode shapes), the positional uncertainty does not significantly
change the FRF at and around frequencies correspond to the resonances of those mode shapes. The
reason is that their modal value of both true position and uncertain position is almost zero, and does not
change by changing their placement (on the same surface). For these nodes, the positional uncertainty
does not change the FRF, at- and around frequencies corresponds to that mode shape. Note that in
this case, the distance to stand-node does not matter.

In practice, people often use the triaccelerometers, which records the response of three perpendicular
directions of the same node. It means that by having a positional error on sensor placement, depending
on the mode shape, different channels may have different sensitivity to positional uncertainty. This is
also shown on Figure.5.5

5.2.2. Effect of impacts direction on the propagation of positional uncertainty

Since we need at least three impacts which each of them acts on one of the (local) directions, we need
to know how the (main) direction of impact is influencing the changes on measured FRF if the input
contains directional uncertainty.

Figure5.6 illustrates a part of structure on its lateral bending, where 3 impacts 𝐴, 𝐵 and 𝐶 acting on each
surface near to 𝑉𝑃. All impacts contain positional uncertainty, on their possible directions.
At this mode shape, the modal value of impact 𝐴 is the highest, and changes on its modal value (caused
by positional uncertainty) is also the highest, comparing with impacts 𝐵 and 𝐶.
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impact A

𝑣𝑝
𝑣𝑝

Figure 5.6: Lateral Bending,
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Since in lateral bending (this part of) structure does not have any motion along 𝑧 axes, the modal value
corresponds to impact 𝐶 is zero, and slightly changes on the position of this impact does not change
its modal value.
Moreover, the modal value corresponds to impact 𝐵 (for lateral bending) is very small, and the lightly
changes in the position of impact 𝐵 will cause minimal changes in modal value. However, these tiny
changes on modal value are more when we have positional changes along y-axes than along x-axes.

5.2.3. FRF’s error generation as a function of distance to stand node

In this section, we study the changes in the modal values as a function of mode-shape number. In the
presence of positional uncertainty, the distance of the reference position of input or output to the stand
node influences the amount of generated error, Equation. 5.3.

Figure.5.7 compares two situations, where both have the same type of mode shape, and the difference
is on their number of mode shape, one illustrates the first vertical bending and the other one the second
vertical bending. Again, 𝑟፱ is the (dominant) positional error, and 𝑎፱ is the distance from the measuring
point to stand node corresponds to this mode shape.

When we are approaching higher numbers of a certain mode-shape, the distance of measure point to
stand node, 𝑎፱, will change. It mean, a certain positional error 𝛿𝑟፱ on input (or output) do not cause the
same changes (value) on the admittance for different number of a certain mode shape type.

If the measured point is still on the same side of stand node for different numbers of a mode shape, a
certain amount of positional error 𝛿𝑟፱ will cause higher error generation on higher frequencies for the
higher number of a particular mode shape.

𝛿𝜙፛ኼ፱

𝛼
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𝛼
ᎫᑩᎴ
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ᎫᑩᎳ ᎫᑩᎴ

𝑎፱ 𝑎፱
Ꭻᑞᑒᑩ

Figure 5.7: together-modeshapes

Figure.5.8 shows that the influence of the number of mode-shape on error generation is just valid for
dominant positional error (in our example 𝛿𝑟፱), and not for non-dominant error sources (in our example
𝛿𝑟፲).
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Figure 5.8: For non-dominant positional errors, the number of mode-shape does not influencing the error generation
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5.2.4. Uncertainty propagation into 𝑉𝑃𝑉𝑃𝑉𝑃’s FRF

From the previous section, we have seen that how the direction of the uncertainty and the main di-
rection of impact and distance to stand node are influencing the modal value and, consequently, on
the measured FRF. In this section, we study; how the positional and directional errors propagate into
Virtual Point admittance.
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Figure 5.9: Mode shape and frequency dependency of ፕፏ

By assuming the linearity condition, the changes onmodal value of inputs(impacts) or responses(sensors)
are the same as the error generation on modal value of 𝑉𝑃. With one difference, in the calculation of
𝑉𝑃 we actually average the positional errors of all inputs and all outputs.

Figure.5.10 illustrates the error generation during the projection, at the 1st vertical bending. This figure
shows that in the presence of uncertainty on the position of input or output, the incorrect projection
matrices will cause to calculate the FRF belongs to another point, which is in the distance 𝛿𝑟፱ of 𝑉𝑃.
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Figure 5.10: verticalBnedingWithVP

Since the motion in the area of projection is assumed to be linear, and the amount of error on position
of input (or output) and 𝑉𝑃 is the same (𝛿𝑟፱,ፀ = 𝛿𝑟፱,ፕፏ), the amount of changes on modal values of
measured point 𝐴 and 𝑉𝑃 are the same;

𝛿𝜙ፀ,፳ = 𝛿𝜙ፕፏ,፳ (5.4)

This relation (same changes on the amount on modal value at measurement point and 𝑉𝑃) is valid for
translational transformation, and does not depending on the distance between measured position and
Virtual Point, 𝑟፱, and their distance to stand node, 𝑎፱.

In short, the placement of inputs/outputs to 𝑉𝑃 does not have an influence on the amount of error prop-
agation on translational transformation into 𝑉𝑃’s FRF, as long as they remain on the linear area.
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5.2.5. Uncertainty propagation into𝑉𝑃’s FRF, absolute value VSpercentage value

Since the modal value of 𝐴 and 𝑉𝑃 do not have the same value, 𝜙ፀ,፳ ≠ 𝜙ፕፏ,፳, the percentage changes
on their modal value (and consequently on FRF) is not the same.

𝛿𝜙ፀ,፳
𝜙ፀ,፳

≠ 𝛿𝜙ፕፏ,፳
𝜙ፕፏ,፳

(5.5)

The percentage changes on modal value of 𝑉𝑃 (which consequently affects its FRF), 𝑃ፕፏ =
᎑Ꭻᑍᑇ,ᑫ
Ꭻᑍᑇ,ᑫ

, is
surely depending on both 𝑟፱𝑟፱𝑟፱, 𝑎፱𝑎፱𝑎፱, and 𝑎፱𝑎፱𝑎፱, which are respectively the distance between measured point
and 𝑉𝑃, measured point to stand node, and 𝑉𝑃 to stand node.

• Effect of 𝑟፱𝑟፱𝑟፱ (distance between measure point and 𝑉𝑃𝑉𝑃𝑉𝑃) on percentage modal changes of 𝑉𝑃𝑉𝑃𝑉𝑃
In a case both 𝐴 and 𝑉𝑃 locating on the same side of stand node, higher the value on 𝑟፱ (more
distance between 𝐴 and 𝑉𝑃), higher the differences between the modal value of 𝐴 and 𝑉𝑃, which
leads to higher the difference between the percentage changes on their modal values (Δ𝑃 = ᎑Ꭻ

Ꭻ ).

↑ 𝑟፱ ⇒↑ Δ𝑃 where Δ𝑃 = 𝑃ፕፏ − 𝑃ፀ =
𝛿𝜙ፕፏ
𝜙ፕፏ

− 𝛿𝜙ፀ𝜙ፀ
(5.6)

For example for a situation illustrates on Figure.5.10 (a positional error on input), the percentage
changes on 𝑉𝑃’s modal values (and consequently 𝑉𝑃’s FRF) is smaller than the percentage
changes on modal values of 𝐴;

𝛿𝜙ፕፏ,፳
𝜙ፕፏ,፳

> 𝛿𝜙ፀ,፳
𝜙ፀ,፳

where {
𝛿𝜙ፕፏ,፳ = 𝛿𝜙ፀ,፳
𝜙ፀ,፳ < 𝜙ፕፏ,፳
𝛿𝑟፱,ፀ = 𝛿𝑟፱,ፕፏ

(5.7)

By increasing the distance between 𝐴 and 𝑉𝑃, 𝑟፱, the difference between the percentage changes
on their modal values (Δ𝑃) will be greater.

• Effect of 𝑎፱𝑎፱𝑎፱ (distance between measure point and a stand-node) on percentage modal
changes of 𝑉𝑃𝑉𝑃𝑉𝑃
Consider a case where we move both 𝑉𝑃 and 𝐴 towards the stand node (where still 𝑉𝑃 is in
distance 𝑟፱ of 𝐴). Figure.5.11 illustrates this situation when the structure is locally under vertical
bending.
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Figure 5.11: distance to Stand-node percentage Vertical Bending

Under the assumption of linearity for both set of measurement and 𝑉𝑃, we obtain the percentage
error generation for each Virtual Points, 𝑃ፕፏ =

᎑Ꭻᑍᑇ,ᑫ
Ꭻᑍᑇ,ᑫ

. Comparing theses two percentage changes
shows:

𝑃ፕፏኼ
𝑃ፕፏኻ

=
᎑ᎫᑍᑇᎴ
ᎫᑍᑇᎴ
᎑ᎫᑍᑇᎳ
ᎫᑍᑇᎳ

=
᎑ᎫᑍᑇᎴ
ፚᑩᎴዄ፫ᑩ
᎑ᎫᑍᑇᎳ
ፚᑩᎳዄ፫ᑩ

= 𝑎፱ኻ + 𝑟፱
𝑎፱ኼ + 𝑟፱

where {
ᎫᑍᑇᎴ
ᎫᑍᑇᎳ

= ፚᑩᎴዄ፫ᑩ
ፚᑩᎳዄ፫ᑩ

𝛿𝜙ፕፏኻ = 𝛿𝜙ፕፏኼ
(5.8)
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Since the measured point 𝐴1 is placed on a longer distance to stand-node than 𝐴2, 𝑎፱ኻ > 𝑎፱ኼ, the
percentage error generated on 𝑉𝑃1 (which is 𝑃ፕፏኻ) is higher than the percentage error generation
for the same amount of positional error on 𝑉𝑃2 (which is 𝑃ፕፏኼ).

𝑃ፕፏኻ > 𝑃ፕፏኼ for 𝑎፱ኻ > 𝑎፱ኼ (5.9)

• Effect of 𝑏፱𝑏፱𝑏፱ (distance between 𝑉𝑃𝑉𝑃𝑉𝑃 and stand node) on percentage modal changes of 𝑉𝑃𝑉𝑃𝑉𝑃
For more general form we write the relation between percentage errors 𝑃ፕፏኻ and 𝑃ፕፏኼ as a func-
tion of distance of these two Virtual Points to the stand-node corresponds to that mode shape,
𝑏ፕፏኻ,፱ and 𝑏ፕፏኼ,፱.
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Figure 5.12: ax bx

This adjustment is made to give a more general form of how the distance between 𝑉𝑃 and stand-
node plays a role on determination of percentage error generation on 𝑉𝑃, regardless of the deci-
sion of putting the measured point 𝐴 on the left-hand side of 𝑉𝑃 or on the right-hand side of that,
as long as their distance 𝑟፱ remains the same and both stay on linear regime. Then Equation.5.8
becomes as follow:

𝑃ፕፏኼ
𝑃ፕፏኻ

=
᎑ᎫᑍᑇᎴ
ᎫᑍᑇᎴ
᎑ᎫᑍᑇᎳ
ᎫᑍᑇᎳ

= 𝑏፱ኻ
𝑏፱ኼ

where { 𝑟፱ኻ = 𝑟፱ኼ
𝑏፱ = 𝑎፱ ± 𝑟፱ (5.10)

It means, for a set of measurement points and 𝑉𝑃, and for a certain type of mode shape, on higher
number of a mode shape type, we have a reduction on the 𝑏፱,ፕፏ. And, based on Equation.5.10
we expect less percentage error on VP (𝑃ፕፏ) for higher number of that type of mode shape.

↑ 𝑏፱ ⇒↑ 𝑃ፕፏ (5.11)

5.2.6. Non-linearity and uncertainty propagation to 𝑉𝑃’s FRF

In theory, if we accomplish the linearity assumption, the 𝑟፱ (distance between the uncertain measure-
ment point and 𝑉𝑃) does not influence the amount of generated error on translational cross-functions
of 𝑉𝑃, at its absolute value. (The effect of this uncertainty on rotational cross-functions is the subject
of next sections).

Absolute error
In case of local nonlinearity (on the region where the measuring equipment and 𝑉𝑃 are placed), the
generated error (on its absolute value) on modal value 𝛿𝜙 for both 𝐴 and 𝑉𝑃 are not anymore the same,
left figure of Figure.5.13.

Since we need to be sure measuring equipment and 𝑉𝑃 are placed on the linear region; it is a good
practice to locate the measurement equipment as close as possible to 𝑉𝑃, minimizing 𝑟፱, to make sure
that we accomplish the linearity assumption.
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Figure 5.13: nonlinear deflection

Percentage error
As discussed before, locating the measuring equipment close to the 𝑉𝑃 (in order to decrease the 𝑟፱, 𝑟፲
and 𝑟፳) will not change the generated error on the 𝑉𝑃’s FRF in both percentage value and in absolute
value, for transnational DoFs.

If we are not on the linear regime, then the calculated FRF at 𝑉𝑃 is much smaller than the real values at
that point. Also, the amount of error generation in nonlinear regime in a real case is much higher than
the linear case. It means, in nonlinear regime, the error propagation is higher than the linear regime
for both absolute and percentage values.
In non-linear regime, as long as 𝑏ፕፏ,፱ (distance between 𝑉𝑃 and stand node) is smaller than 𝑎፱, the
generated percentage error on 𝑉𝑃 (𝑃ፕፏ) is smaller than the measurement point.

5.2.7. Relation of 𝑎፱ and 𝑏፱ and their influence on 𝑃ፕፏ

The relation between 𝑎፱ and 𝑏፱ is also influencing the percentage error propagation to Virtual Point. 𝑎፱
and 𝑏፱ are representing the distance of measure point to stand-node for a certain mode shape and the
distance of 𝑉𝑃 to stand-node, respectively. Figure.5.14 summarizes these relations and their affects
on the error propagation.

This figure concludes that if the 𝑉𝑃 is closer to the stand node than the measure point (𝑏፱ < 𝑎፱), then
the percentage error generation on modal value of 𝑉𝑃 is bigger than the measure point (𝑃፯፩ > 𝑃ፀ), left
illustration of Figure.5.14. And, if the measure point is closer to the stand node than the 𝑉𝑃, then the
percentage error generation on 𝑉𝑃 is smaller than the percentage error generation in an experiment,
right illustration of Figure.5.14.

፳
፱

vertical Bending

᎑Ꭻᐸ,ᑫ

፬፭ፚ፧፝ ፧፨፝፞

ፚᑩ

Ꭻᑧᑡ

᎑Ꭻᑧᑡ,ᑫ

፫ᑩ

ᒉᑣᑩ፯፩
Ꭻᐸ

ᒉᑣᑩ
ᎫᐸᎼᒉᑣᑩ

ᎫᑧᑡᎼᒉᑣᑩ ፀ

፛ᑩ

vertical Bending

᎑Ꭻᐸ,ᑫ፬፭ፚ፧፝ ፧፨፝፞

ፚᑩ

Ꭻᑧᑡ

᎑Ꭻᑧᑡ,ᑫ

፫ᑩ

ᒉᑣᑩ፯፩ Ꭻᐸ
ᎫᐸᎼᒉᑣᑩ

ᎫᑧᑡᎼᒉᑣᑩ ፀ

፛ᑩ

ፚᑩ ጺ ፛ᑩ
Ꭻᐸ ጺ Ꭻᑧᑡ → ፏᑧᑡ ጺ ፏᐸ

ፚᑩ ጻ ፛ᑩ
Ꭻᐸ ጻ Ꭻᑧᑡ → ፏᑧᑡ ጻ ፏᐸ

Figure 5.14: Relation ፚᑩ and ፛ᑩ and their influence on percentage error on ፕፏ (ፏᑍᑇ), unless they are on the same side of
stand-node or not

Guide line: If it is possible, place 𝑉𝑃more close to stand node (than the measured point to stand node)
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to reduce the percentage error.

5.2.8. Positional Uncertainty: Mode shape and frequency dependency of error
propagation into 𝑉𝑃

In this section, we consider two bending types, vertical- and lateral bending, in order to define the im-
pacts directions and uncertainty directions with a dominant effect on error propagation into 𝑉𝑃. First,
we consider the locational error and then the directional error.

Vertical Bending and locational uncertainty

1st Vertical Bending

፬፭ፚ፧፝ ፧፨፝፞

ᎎ

impact A

impact B

impact C

፯፩ ፳

፱
፲

᎑፫ᑩ᎑፫ᑪ
᎑፫ᑫ

Figure 5.15: Mode shape and frequency dependency of ፕፏ at its vertical bending

Figure.5.9 illustrates all projection errors on vertical bending. A rough estimation on the generated
uncertainty on modal values of Virtual Point 𝛿𝜙ፕፏ caused by each error direction 𝛿𝑟 read as follow:

𝛿𝑟፱,ፕፏ ∶ {
𝛿𝜙፳,ፕፏ ≠ 0
𝛿𝜙፱,ፕፏ ≈ 0
𝛿𝜙፲,ፕፏ = 0

𝛿𝑟፲,ፕፏ ∶ {
𝛿𝜙፳,ፕፏ = 0
𝛿𝜙፱,ፕፏ ≈ 0
𝛿𝜙፲,ፕፏ = 0

𝛿𝑟፳,ፕፏ ∶ {
𝛿𝜙፳,ፕፏ = 0
𝛿𝜙፱,ፕፏ ≈ 0
𝛿𝜙፲,ፕፏ = 0

(5.12)

At and around frequencies corresponds to vertical bending (according to coordinate choice of this
study), the 𝑉𝑃 is more sensitive to errors which cause the highest changes on modal value of 𝑧 direc-
tion (which is in the same direction as vertical bending), which here is 𝛿𝑟፱.

Lateral Bending and locational uncertainty

Figure.5.16 illustrates a Lateral Bending of the same free-end beam, and looked to the changes on
modal values of 𝑉𝑃 at this mode shape.

Lateral Bending

፬፭ፚ፧፝ ፧፨፝፞

ᎎ ፳

፱
፲

፯፩
᎑፫ᑩ
᎑፫ᑪ

᎑፫ᑫimpact B

impact C

impact A

Figure 5.16: Lateral Bending of a free-end beam, changes of modal value of ፕፏ
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Again, a rough estimation on the changes on the modal value of 𝑉𝑃, 𝛿𝜙ፕፏ, caused by different (posi-
tional) error direction 𝛿𝑟ፕፏ is as follows:

𝛿𝑟፱,ፕፏ ∶ {
𝛿𝜙፳,ፕፏ = 0
𝛿𝜙፱,ፕፏ ≈ 0
𝛿𝜙፲,ፕፏ ≠ 0

𝛿𝑟፲,ፕፏ ∶ {
𝛿𝜙፳,ፕፏ = 0
𝛿𝜙፱,ፕፏ ≈ 0
𝛿𝜙፲,ፕፏ = 0

𝛿𝑟፳,ፕፏ ∶ {
𝛿𝜙፳,ፕፏ = 0
𝛿𝜙፱,ፕፏ ≈ 0
𝛿𝜙፲,ፕፏ = 0

(5.13)

At and around frequencies corresponds to Lateral bending (again, according to coordinate choice of
this study), the 𝑉𝑃 is also more sensitive to errors on 𝑥 direction 𝛿𝑟፱. However, this error direction
causes the highest changes on the modal value of 𝑦 direction (which is in the same direction as Lateral
bending).

5.2.9. Positional uncertainty; Error in the estimation of𝑉𝑃𝑉𝑃𝑉𝑃’s forces and responses

In the presence of positional uncertainty of an impact or a sensor, we will have deviation(s) on the
relative distance between the measured point and 𝑉𝑃 (comparing with true measurement). If we do
not adjust this deviation on the transformation matrices 𝑅𝑅𝑅, then we will project the measured data into
a point which is not 𝑉𝑃, which we call it 𝑉𝑃፮፧፜፞፫፭ፚ።፧.

In this section we compare the true transformation matrix, 𝑅፭፫፮፞𝑅፭፫፮፞𝑅፭፫፮፞, with uncertain transformation matrix,
𝑅፮፧፜፞፫፭ፚ።፧𝑅፮፧፜፞፫፭ፚ።፧𝑅፮፧፜፞፫፭ፚ።፧, in order to calculate the deviation on the calculation of forces,( 𝛿𝐹ፕፏ), and moments (𝛿𝑀ፕፏ)
(or translational (𝛿𝑢ፕፏ) and rotational responses (𝛿𝑡ℎ𝑒𝑡𝑎ፕፏ)) between 𝑉𝑃፭፫፮፞ and 𝑉𝑃፮፧፜፞፫፭ፚ።፧.

Consider positional uncertainty 𝛿𝑟፱, since we have shown that this positional uncertainty (PU) is a
dominant positional error source (for both lateral and vertical bending).
In our example (Figure.5.2) two impacts 𝐴 and 𝐶 can include this positional uncertainty. Figure.5.17
illustrates these errors and the amount of error in force and moments they generate.

𝛿𝑟፱,ፀ
A

𝑣𝑝
𝑟፱,ፀ 𝑟፲,ፀ

𝑟፳,ፀ

𝐹ፀዅ፩፮ 𝐹ፀዅ፭፫፮፞
𝛿𝑀᎕፳,፯፩, ፩፮= 𝛿𝑟፱ . 𝐹ፀ,፩፮𝛿𝑀᎕፲,፯፩, ፩፮= 𝛿𝑟፱ . 𝐹ፂ,፩፝

𝑣𝑝

C
𝑟፱,ፀ 𝑟፲,ፀ

𝐹ፂዅ፩፮𝐹ፂዅ፭፫፮፞

𝛿𝑟፱,ፂ

𝑥
𝑦

𝑧

Figure 5.17: Impacts with possibility to contain positional uncertainty(PU) along ፱ axes are dominant error source for both
vertical and lateral bending. These impacts have highest sensitivity to positional error along ፱ axes, and the amount of the

error they generate is depending on the impact direction and the amount of error ᎑፫ᑩ

For more general estimation of error generation, we calculate the 𝛿𝑅𝛿𝑅𝛿𝑅. Recall the relation between
measured responses (𝑢𝑢𝑢) and transformed responses to 𝑉𝑃 (𝑞𝑞𝑞):

𝑢𝑢𝑢 = 𝑅𝑅𝑅፮𝑞𝑞𝑞 +𝜇𝜇𝜇 = [𝑒𝑒𝑒ፓ፮ (𝑟𝑟𝑟፮ ×𝑒𝑒𝑒፮)ፓ]𝑞𝑞𝑞 + 𝜇𝜇𝜇 (5.14)

In order to see the changes on transformation matrix, we add uncertainty 𝛿𝑟፱ to the relative distances
vector 𝑟𝑟𝑟፮, and compare the transformation matrices.

𝛿𝑅𝛿𝑅𝛿𝑅፮ = 𝑅𝑅𝑅፮፧፜፞፫፭ፚ።፧ −𝑅𝑅𝑅፭፫፮፞ (5.15)

Since we assume that the linearity assumption is accomplished, the residual is considered to be zero
(𝜇 = 0). The deviated response between 𝑉𝑃 and 𝑉𝑃፮፧፜፞፫፭ፚ።፧ is obtained by calculating the 𝛿𝑅ዅኻ፮𝛿𝑅ዅኻ፮𝛿𝑅ዅኻ፮ :
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𝛿𝑅𝛿𝑅𝛿𝑅ᎽᎳᑦ ዆ ኻ
᎑፫ᑩ

⎡
⎢
⎢
⎢
⎢
⎣

ኺ ኺ ኺ
ኺ ኺ ኺ
ኺ ኺ ኺ
ኺ ኺ ኺ

ዅ፬።፧᎕ᑪ ፜፨፬᎕ᑪ .፬።፧᎕ᑩ ዅ፜፨፬᎕ᑩ .፜፨፬᎕ᑪ
ዅ፜፨፬᎕ᑪ .፬።፧᎕ᑫ ፜፨፬᎕ᑩ .፜፨፬᎕ᑫ ዅ ፬።፧᎕ᑩ .፬።፧᎕ᑪ .፬።፧᎕ᑫ ፜፨፬᎕ᑫ .፬።፧᎕ᑩ ዄ ፜፨፬᎕ᑩ .፬።፧᎕ᑪ .፬።፧᎕ᑫ

⎤
⎥
⎥
⎥
⎥
⎦

(5.16)

Based on Equation.5.16 we can write our expectation of the changes on translational and rotational
responses at 𝑉𝑃, when the dominant positional error sources 𝛿𝑟፱ is present :

Translational: {
᎑፪ᑩ,ᑍᑇ ዆ ኺ
᎑፪ᑪ,ᑍᑇ ዆ ኺ
᎑፪ᑫ,ᑍᑇ ዆ ኺ

Rotational:{
᎑፪ᒍᑩ ,ᑍᑇ ዆ ኺ
᎑፪ᒍᑪ ,ᑍᑇ ዆ ᑦᑩ .ᑤᑚᑟᒍᑪᎽᑦᑪ(ᑔᑠᑤᒍᑪᑤᑚᑟᒍᑩ)Ꮍᑦᑫ(ᑔᑠᑤᒍᑩ .ᑔᑠᑤᒍᑪ)

ᒉᑣᑩ
᎑፪ᒍᑫ ,ᑍᑇ ዆ Ꮍᑦᑩ(ᑔᑠᑤᒍᑪ .ᑤᑚᑟᒍᑫ)Ꮌᑦᑪ(ᑔᑠᑤᒍᑩ .ᑔᑠᑤᒍᑫᎽᑤᑚᑟᒍᑩ .ᑤᑚᑟᒍᑪ .ᑤᑚᑟᒍᑫ)Ꮌᑦᑫ(ᑔᑠᑤᒍᑫ .ᑤᑚᑟᒍᑩᎼᑔᑠᑤᒍᑩ .ᑤᑚᑟᒍᑪ .ᑤᑚᑟᒍᑫ)

ᒉᑣᑩ

In the case that the sensor is perfectly aligned with 𝑉𝑃 (𝜃፱ = 0, 𝜃፲ = 0 and 𝜃፳ = 0), the positional
uncertainty of measured point (PU) will cause no changes on the 𝑉𝑃’s forces. However, it changes the
calculated rotational responses, 𝛿𝑞᎕፲,ፕፏ and 𝛿𝑞᎕፳,ፕፏ.

𝛿𝑅𝛿𝑅𝛿𝑅ᎽᎳᑦ ዆

⎡
⎢
⎢
⎢
⎢
⎣

ኺ ኺ ኺ
ኺ ኺ ኺ
ኺ ኺ ኺ
ኺ ኺ ኺ
ኺ ኺ ዅኻ/᎑፫ᑩ
ኺ ዅኻ/᎑፫ᑩ ኺ

⎤
⎥
⎥
⎥
⎥
⎦

⇒

⎡
⎢
⎢
⎢
⎢
⎣

᎑፪ᑩ
᎑፪ᑪ
᎑፪ᑫ
᎑፪ᒍᑩ
᎑፪ᒍᑪ
᎑፪ᒍᑫ

⎤
⎥
⎥
⎥
⎥
⎦

዆

⎡
⎢
⎢
⎢
⎢
⎣

ኺ ኺ ኺ
ኺ ኺ ኺ
ኺ ኺ ኺ
ኺ ኺ ኺ
ኺ ኺ ዅኻ/᎑፫ᑩ
ኺ ዅኻ/᎑፫ᑩ ኺ

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

᎑፮ᑩ
᎑፮ᑪ
᎑፮ᑫ
᎑፮ᒍᑩ
᎑፮ᒍᑪ
᎑፮ᒍᑫ

⎤
⎥
⎥
⎥
⎥
⎦

(5.17)

Table.5.1 shows the error generation on 𝑉𝑃’s responses, for both vertical- and lateral bending, for
dominant positional error source 𝛿𝑟፱.

Table 5.1: Properties and dimensions of the substructure

Mode-shape Error type Dominant Response direction 𝛿𝑞𝑞𝑞ᑍᑇ = 𝑞𝑞𝑞ᑍᑇ −𝑞𝑞𝑞ᑍᑇ,ᑇᑌ
error source

vertical-lateral positional 𝛿𝑟ᑩ 𝑍 𝛿𝑞𝑞𝑞ᑇᑌ,ᒉᑣᑩᑫ,ᑍᑇ = [0 0 0 0 𝛿𝑢ᑫ/𝛿𝑟ᑩ 0]ᑋ

bending
vertical-lateral positional 𝛿𝑟ᑩ 𝑋 𝛿𝑞𝑞𝑞ᑇᑌ,ᒉᑣᑩᑩ,ᑍᑇ = [0 0 0 0 0 0]ᑋ

bending
vertical-lateral positional 𝛿𝑟ᑩ 𝑌 𝛿𝑞𝑞𝑞ᑇᑌ,ᒉᑣᑩᑪ,ᑍᑇ = [0 0 0 0 0 𝛿𝑢ᑪ/𝛿𝑟ᑩ]

ᑋ

bending

Where 𝑞ፕፏ,ፏፔ denotes the vector containing the translational and rotational response at 𝑉𝑃 in the pres-
ence of positional uncertainty 𝑃𝑈.

We can conclude from Table.5.6 that, in the presence of positional errors on sensors, more significant
the response 𝑢፲ or 𝑢፳, the less amount of error generation on 𝑉𝑃’s, for both absolute and percentage
value!

Positional Uncertainty on Impacts

We recall the relation between the inputs(forces), denotes by 𝑓𝑓𝑓 = [𝑓፱ 𝑓፲ 𝑓፳]ፓ in Carthesian coordi-
nate system, force transformation matrix 𝑅𝑅𝑅፟, and forces and moments at Virtual Point 𝑚ፕፏ𝑚ፕፏ𝑚ፕፏ, for both
true and uncertain positioning of input (for dominant positional error source 𝛿𝑟፱.

𝑚𝑚𝑚ፕፏ = 𝑅𝑅𝑅ፓ፟𝑓𝑓𝑓 = [
𝑒𝑒𝑒

[𝑟𝑟𝑟 × 𝑒𝑒𝑒]]𝑓𝑓𝑓 , 𝑚𝑚𝑚ፕፏ,፮፧፜፞፫፭ፚ።፧ = 𝑅𝑅𝑅ፓ፟𝑓𝑓𝑓 = [
𝑒𝑒𝑒

[(𝑟፱ + 𝛿𝑟፱) 𝑟፲ 𝑟፳] × 𝑒𝑒𝑒] [
𝑓፱
𝑓፲
𝑓፳
] (5.18)
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Again, changes on the force transformation matrix 𝛿𝑅𝑅𝑅ፓ፟ gives us the amount of generated error on the
calculation of forces and moments of 𝑉𝑃.

𝛿𝑅𝛿𝑅𝛿𝑅ᑋᑗ ዆ ᎑፫ᑩ

⎡
⎢
⎢
⎢
⎢
⎣

ኺ ኺ ኺ
ኺ ኺ ኺ
ኺ ኺ ኺ
ኺ ኺ ኺ

ዅ፬።፧᎕ᑪ ፜፨፬᎕ᑪ .፬።፧᎕ᑩ ዅ፜፨፬᎕ᑩ .፜፨፬᎕ᑪ
ዅ፜፨፬᎕ᑪ .፬።፧᎕ᑫ ፜፨፬᎕ᑩ .፜፨፬᎕ᑫ ዅ ፬።፧᎕ᑩ .፬።፧᎕ᑪ .፬።፧᎕ᑫ ፜፨፬᎕ᑫ .፬።፧᎕ᑩ ዄ ፜፨፬᎕ᑩ .፬።፧᎕ᑪ .፬።፧᎕ᑫ

⎤
⎥
⎥
⎥
⎥
⎦

(5.19)

The changes on the 𝑉𝑃’s forces and moments reads as follow:

Forces: {
᎑፦ᑩ,ᑍᑇ ዆ ኺ
᎑፦ᑪ,ᑍᑇ ዆ ኺ
᎑፦ᑫ,ᑍᑇ ዆ ኺ

Moments:{
᎑፦ᒍᑩ ,ᑍᑇ ዆ ኺ
᎑፦ᒍᑪ ,ᑍᑇ ዆ ዅ ᑩ፟ .፬።፧᎕ᑪ ዄ ᑪ፟(፜፨፬᎕ᑪ .፬።፧᎕ᑩ) ዅ ᑫ፟(፜፨፬᎕ᑩ .፜፨፬᎕ᑪ)
᎑፦ᒍᑫ ,ᑍᑇ ዆ ዅ ᑩ፟ .፜፨፬᎕ᑪ .፬።፧᎕ᑫ ዄ ᑪ፟(፜፨፬᎕ᑩ .፜፨፬᎕ᑫ ዅ ፬።፧᎕ᑩ .፬።፧᎕ᑪ .፬።፧᎕ᑫ)

ዄ ᑫ፟(፜፨፬᎕ᑫ .፬።፧᎕ᑩ ዄ ፜፨፬᎕ᑩ .፬።፧᎕ᑪ .፬።፧᎕ᑫ)

As we expected, the 𝑉𝑃’s forces are not prone to positional uncertainty of inputs(impacts). The amount
of the changes on the moments (𝛿𝑀፲ and 𝛿𝑀፳) is depending on the direction of the impact (𝐹፱ , 𝐹፲ or
𝐹፳) and its relative angle to 𝑉𝑃 (𝜃፱ , 𝜃፲ or 𝜃፳).

In case of directional alignment of impacts with 𝑉𝑃, (𝜃፱ = 𝜃፲ = 𝜃፳ = 0), the error generation on 𝑉𝑃’s
moments by dominant error direction for each impact is shown on Table.5.2.
For example, for impact 𝐶 which acts along 𝑧 axes (𝑓፱ = 𝑓፲ = 0 ) and has high sensitivity to positional
uncertainty along 𝑥 axes, we will expect an error generation on moments around 𝑦 axes, with amount
of 𝛿𝑀፲ = 𝛿𝑟፱𝑓፳. By comparing the projection matrix we can see what is the influence of changing the
position of each impact on 𝑉𝑃.

Table 5.2: Properties and dimensions of the substructure

Mode-shape Error type Dominant Impact Force direction 𝛿𝑚𝛿𝑚𝛿𝑚ᑇᑌ,ᒉᑣᑩ
ᑍᑇ =𝑚𝑚𝑚ᑍᑇ −𝛿𝑚𝛿𝑚𝛿𝑚ᑇᑌ,ᒉᑣᑩ

ᑍᑇ
error source

vertical-lateral positional 𝛿𝑟ᑩ C 𝐹ᐺ = 𝑓ᐺ,ᑑ 𝛿𝑚𝛿𝑚𝛿𝑚ᑇᑌ,ᒉᑣᑩ
ᑫ,ᑍᑇ = [0 0 0 0 𝛿𝑟ᑩ.𝑓ᑫ 0]ᑋ

bending 𝑓ᐺ,ᑩ = 0, 𝑓ᐺ,ᑪ = 0
vertical-lateral positional 𝛿𝑟ᑩ B 𝐹ᐹ = 𝑓ᐹ,ᑩ 𝛿𝑚𝛿𝑚𝛿𝑚ᑇᑌ,ᒉᑣᑩ

ᑩ,ᑍᑇ = [0 0 0 0 0 0]ᑋ
bending 𝑓ᐹ,ᑐ = 0, 𝑓ᐹ,ᑫ = 0

vertical-lateral positional 𝛿𝑟ᑩ A 𝐹ᐸ = 𝑓ᐸ,ᑪ 𝛿𝑚𝛿𝑚𝛿𝑚ᑇᑌ,ᒉᑣᑩ
ᑪ,ᑍᑇ = [0 0 0 0 0 −𝛿𝑟ᑩ.𝑓𝑦]

ᑋ

bending 𝑓ᐸ,ᑩ = 0, 𝑓ᐸ,ᑫ = 0

5.2.10. Directional Uncertainty

In this section, we consider the directional uncertainty of measuring equipment, in order to find the
dominant error sources for each mode shape and the amount of generated error on the forces and
responses (rotational and translational) of Virtual Point.

Figure.5.18 illustrates a part of structure under (local) vertical bending, where impacts 𝐴, 𝐵 and 𝐶
contain directional uncertainties. The directional uncertainty of each impact is decomposed of two
components. For example, directional uncertainties for impact 𝐶 (which its true direction is along 𝑧
axes) could be:

• Rotating around 𝑦 axes, by the amount of 𝛿𝜃፲, which causes a reduction on the contribution of
force on 𝑧 direction, and (instead) exciting the structure also on 𝑥 direction.

• Rotating around 𝑥 axes, by the amount of 𝛿𝜃፱, which leads to exciting the structure also on 𝑦
axes, and reducing the portion of force on 𝑧 direction.

We expect that each directional error which leads to a contribution of force or responses with the same
direction as the dominant motion of mode shape, becomes a significant error contributor at- and around
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frequencies corresponds to that type of mode shape.
We also expect to observe some spurious peaks on some FRFs, where directional errors on measuring
equipment made them able to measure some motions of other DoFs.

Vertical Bending and directional uncertainty

In our example, on (local) vertical bending, the dominant motion is along 𝑧 direction, and all the nodes
have significantly higher modal value in this direction. Modal value of other directions are significantly
lower and are almost the same (𝜙፱ ≈ 𝜙፲):

𝜙፱ ≈ 𝜙፲ << 𝜙፳ (5.20)

Vertical Bending

𝑠𝑡𝑎𝑛𝑑 𝑛𝑜𝑑𝑒
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𝑧
𝑥
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impact B

impact C
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𝛿𝜃፳

𝛿𝜃፲
𝛿𝜃፳

𝛿𝜃፱
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Figure 5.18: vertical Bending UD

Since dominant motion at this vertical bending is on 𝑧 direction, any error which leads to a contribution
of force at 𝑧 direction becomes a significant error contributor at and around frequencies corresponds
to this type of mode shape.

Impacts 𝐴 and 𝐵 are able to contain some directional uncertainty which leads to the contribution of
forces on 𝑧 direction. This directional errors are due to error 𝛿𝜃፱ on impact 𝐴, and 𝛿𝜃፲ on impact 𝐵.

Table 5.3: Estimation of error generation, in order to find dominant directional errors and their corresponding true directions, for
vertical bending

mode shape impact direction of error modal value changes (approximation)
Vertical Bending C 𝛿𝜃ᑩ 𝛿𝜙ᐺ,ᑫ = 0

𝛿𝜃ᑪ 𝛿𝜙ᐺ,ᑫ ≈ 0
Vertical Bending B 𝛿𝜃ᑫ 𝛿𝜙ᐹ,ᑩ = 0

𝛿𝜃ᑪ 𝛿𝜙ᐹ,ᑩ ≠ 0
Vertical Bending A 𝛿𝜃ᑫ 𝛿𝜙ᐸ,ᑪ ≈ 0

𝛿𝜃ᑩ 𝛿𝜙ᐸ,ᑪ ≠ 0

Lateral Bending and directional uncertainty

We take the same procedure for lateral bending, in order to find the impacts with dominant directional
error for frequencies at- and around resonances correspond to this type of mode shape.
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Lateral Bending
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Figure 5.19: Lateralbending UD

Table.5.4 indicates (in red) the directional error sources (𝛿𝜃) with dominant effect on changing (or
partially replacing) the modal value for each impact (true) direction. Directional uncertainty (DU) on
impact 𝐶 caused by rotation of this impact around its 𝑥 axes, and DU in impact B caused by rotation of
this impact around its 𝑧 axes, are the dominant error sources, for this lateral bending.

Table 5.4: Properties and dimensions of the substructure

mode shape impact direction of error modal value changes (approximation)
Lateral Bending C 𝛿𝜃ᑩ 𝛿𝜙ᐺ,ᑫ ≠ 0

𝛿𝜃ᑪ 𝛿𝜙ᐺ,ᑫ ≈ 0
Lateral Bending B 𝛿𝜃ᑫ 𝛿𝜙ᐹ,ᑩ ≠ 0

𝛿𝜃ᑪ 𝛿𝜙ᐹ,ᑩ = 0
Lateral Bending A 𝛿𝜃ᑫ 𝛿𝜙ᐸ,ᑪ ≈ 0

𝛿𝜃ᑩ 𝛿𝜙ᐸ,ᑪ = 0

5.2.11. Propagation of Directional Uncertainty into 𝑉𝑃𝑉𝑃𝑉𝑃
In the previous section, we have seen that impacts with different main directions have different sensi-
tivity to directional error. Moreover, if a directional uncertainty causes a contribution of force (or sensor)
on the same direction as the direction of the mode shape motion, then this direction for uncertainty is a
highly sensitive direction for error generation for that specific mode shape, at- and around frequencies
of resonance correspond to that mode shape.
Figure.5.20 illustrates the dominant directional error sources for both vertical bending and lateral bend-
ing.
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Figure 5.20: Vertical Bending

Figure 5.21: Dominant directional error sources for vertical and lateral bending, the (true) direction of each the impacts is aligned
with one of the ፕፏ’s DoFs

Table 5.5: Dominant directional error sources for lateral bending and vertical bending, and how each error will affect the
direction of excitation, when measuring equipment and ፕፏ coordinates are aligned

mode shape direction of error modal value changes (approximation)
and replacing by other values

Vertical Bending 𝛿𝜃ᑍᑇ,ᑪ 𝛿𝜙ᑍᑇ,ᑫ = 0
𝛿𝜙ᑍᑇ,ᑩ ≠ 0

Vertical Bending 𝛿𝜃ᑍᑇ,ᑫ 𝛿𝜙ᑍᑇ,ᑪ ≈ 0
𝛿𝜙ᑍᑇ,ᑩ ≈ 0

Vertical Bending 𝛿𝜃ᑍᑇ,ᑩ 𝛿𝜙ᑍᑇ,ᑫ = 0
𝛿𝜙ᑍᑇ,ᑪ ≠ 0

Lateral Bending 𝛿𝜃ᑍᑇ,ᑪ 𝛿𝜙ᑍᑇ,ᑫ ≠ 0
𝛿𝜙ᑍᑇ,ᑩ ≠ 0

Lateral Bending 𝛿𝜃ᑍᑇ,ᑫ 𝛿𝜙ᑍᑇ,ᑪ = 0
𝛿𝜙ᑍᑇ,ᑩ ≠ 0

Lateral Bending 𝛿𝜃ᑍᑇ,ᑩ 𝛿𝜙ᑍᑇ,ᑫ ≠ 0
𝛿𝜙ᑍᑇ,ᑪ ≈ 0

Forces and Responses of 𝑉𝑃, in the presence of DU, vertical bending

The supposed direction of impact 𝐵 is along 𝑥 axes. In the presence of directional uncertainty on this
impact towards 𝑧 direction, we will excite the structure on 𝑧 direction. The amount of the contribution
of the response of 𝑧 direction depends on the amount of directional error, in this case, 𝛿𝜃ፁ,፳
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Figure 5.22: verticalbending UD 2D impactB deltaTheataZ

Now, the question is how the directional error (generated during ameasurement) makes changes on the
(calculated) FRF of 𝑉𝑃. For answering this question, we consider two kinds of mode shape, vertical and
lateral bending, separately, we chose an impact and a directional error with high sensitivity to directional
error, and then we go through the transformation and the calculation of the FRF of 𝑉𝑃.

𝛿𝑅𝛿𝑅𝛿𝑅ፓ፮ = 𝑅𝑅𝑅ፓ፮,፮፧፜፞፫፭ፚ።፧ −𝑅𝑅𝑅ፓ፮,፭፫፮፞ (5.21)

In the presence of directional uncertainty, to calculate the true transformation matrix we need to adjust
the Eulerian rotational matrix in the transformation matrix.
For example, if we have directional uncertainty 𝛿𝑡ℎ𝑒𝑡𝑎፲, and want to obtain the correct transformation
matrix we need to adjust the rotational matrix corresponds to 𝑦 axes on Eulerian rotation matrix, 𝑅𝑅𝑅፲(𝛽),
by replacing the 𝛽 with 𝛿𝜃፲ + 𝛽. in this case the transformation matrix becomes:

𝑅𝑅𝑅፤፯፮ = 𝑇𝑇𝑇፤፯፮
ዅኻ = [(𝑟𝑟𝑟

፤፯ ×𝐸𝐸𝐸፤፯፭፫፮፞)
ፓ

𝐸𝐸𝐸፤፯ᑋ፭፫፮፞
] = where 𝐸𝐸𝐸፭፫፮፞ = 𝑅𝑅𝑅፳(𝛼)𝑅𝑅𝑅፲(𝛽 + 𝛿𝜃፲)𝑅𝑅𝑅፱(𝛾) (5.22)

Recall the relation between the forces on measured point and the forces and moments on 𝑉𝑃:

𝑚𝑚𝑚ፕፏ,፭፫፮፞ = 𝑅𝑅𝑅፟,፭፫፮፞ፓ .𝑓𝑓𝑓፦፞ፚ፬
𝑚𝑚𝑚ፕፏ,፮፧፜፞፫፭ፚ።፧ = 𝑅𝑅𝑅፟,፮፧፜፞፫፭ፚ።፧ፓ .𝑓𝑓𝑓፦፞ፚ፬

} ⇒ 𝛿𝑚𝑚𝑚ፕፏ = 𝛿𝑅𝑅𝑅ፓ .𝑓𝑓𝑓፦፞ፚ፬

The 𝛿𝑅𝑅𝑅፟ gives us the chance to track the changes on forces and moments of 𝑉𝑃 (𝛿𝑚𝑚𝑚).
On vertical bending impact 𝐴 with directional error on 𝛿𝜃፱ is one of the dominant error sources.
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In order to obtain the 𝛿𝑅𝛿𝑅𝛿𝑅፟, we substitute the 𝛾+𝛿𝜃፱ on rotational matrix around 𝑥 axes (𝑅፱) of Equation
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5.22, to obtain 𝑅𝑅𝑅፮,፭፫፮፞ and then compare it with 𝑅𝑅𝑅፮፧፜፞፫፭ፚ።፧.

𝛿𝑅ᑗ =

⎡
⎢
⎢
⎢
⎢
⎣

0 0, 0
0 𝑐𝑜𝑠(𝛿𝜃ᑩ) − 1 −𝑠𝑖𝑛(𝛿𝜃ᑩ)
0 𝑠𝑖𝑛(𝛿𝜃ᑩ) 𝑐𝑜𝑠(𝛿𝜃ᑩ) − 1
0 𝑟ᑫ(1 − 𝑐𝑜𝑠(𝛿𝜃ᑩ)) + 𝑟ᑪ.𝑠𝑖𝑛(𝛿𝜃ᑩ) 𝑟ᑪ(𝑐𝑜𝑠(𝛿𝜃ᑩ) − 1) + 𝑟ᑫ.𝑠𝑖𝑛(𝛿𝜃ᑩ)
0 −𝑟ᑩ.𝑠𝑖𝑛(𝛿𝜃ᑩ) 𝑟ᑩ(1 − 𝑐𝑜𝑠(𝛿𝜃ᑩ))
0 𝑟ᑩ.𝑐𝑜𝑠(𝛿𝜃ᑩ) − 𝑟ᑩ −𝑟ᑩ.𝑠𝑖𝑛(𝛿𝜃ᑩ)

⎤
⎥
⎥
⎥
⎥
⎦

≈

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 𝛿𝜃ᑩ
0 𝛿𝜃ᑩ 0
0 𝛿𝜃ᑩ.𝑟ᑪ 𝛿𝜃ᑩ.𝑟ᑫ
0 −𝛿𝜃ᑩ.𝑟ᑩ 0
0 0 −𝛿𝜃ᑩ.𝑟ᑩ

⎤
⎥
⎥
⎥
⎥
⎦
(5.23)

Since force of impact A has a true direction along 𝑦 axes, we take the second column of 𝛿𝑅𝑅𝑅 to calculate
the changes on the forces and the moments of 𝑉𝑃 in the presence of directional error 𝛿𝜃፱ for impact 𝐴
are becoming as follow:

𝛿𝑚𝑚𝑚ፕፏ = (𝛿𝑅𝑅𝑅ፀ,ፕፏ፟(᎐→᎐ዄ፝፞፥፭ፚ᎕ᑩ))
ፓ . [
𝑓፱,ፀ
𝑓፲,ፀ
𝑓፳,ፀ
]

forces A:{
𝛿𝑓ᐻᑌ,ᒉᒍᑩᑩ,ᑍᑇ = 0
𝛿𝑓ᐻᑌ,ᒉᒍᑩᑪ,ᑍᑇ = −𝐹ᑪ.(1 − 𝑐𝑜𝑠𝛿𝜃ᑩ)
𝛿𝑓ᐻᑌ,ᒉᒍᑩᑫ,ᑍᑇ = −𝐹ᑪ.𝑠𝑖𝑛𝛿𝜃ᑩ

Moments:{
𝛿𝑀ᐻᑌ,ᒉᒍᑩ

ᒍᑩ ,ᑍᑇ = 𝐹ᑪ[𝑟ᑪ.𝑠𝑖𝑛𝛿𝜃ᑩ + 𝑟ᑫ(1 − 𝑐𝑜𝑠𝛿𝜃ᑩ)]
𝛿𝑀ᐻᑌ,ᒉᒍᑩ

ᒍᑪ ,ᑍᑇ = 𝑟ᑩ.𝐹ᑪ.𝑠𝑖𝑛(𝛿𝜃ᑩ)
𝛿𝑀ᐻᑌ,ᒉᒍᑩ

ᒍᑫ ,ᑍᑇ = −𝑟ᑩ.𝐹ᑪ(1 − 𝑐𝑜𝑠𝛿𝜃ᑩ)
(5.24)

The same procedure is taken for another dominant directional error sources for both vertical bending
and lateral bending, see Appendix.A.

Figure.5.24 illustrates and summarizes all dominant error sources, for both positional uncertainty and
directional uncertainty, for both vertical- and lateral bending.
Table.5.2.11 gives the changes on the calculation of Virtual Point forces, moments, translational- and
rotational response, for dominant error sources of each mode-shape (by indicating the dominant error
direction) for both positional and directional uncertainties.
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Figure 5.24: all errors illustration V2
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Table 5.6: Dominant error sources and their influence on the calculation of ፯፩

Bending error type Force Dominant 𝛿𝑓ᑩ,ᑧᑡ 𝛿𝑓ᑪ,ᑧᑡ 𝛿𝑓ᑫ,ᑧᑡ 𝛿𝑀ᒍᑩ ,ᑧᑡ 𝛿𝑀ᒍᑪ ,ᑧᑡ 𝛿𝑀ᒍᑫ ,ᑧᑡ
error

Lateral DU 𝐹ᐹ,ᑩ 𝛿𝜃ᑫ −𝐹ᑩ(1 − 𝑐𝑜𝑠𝛿𝜃ᑫ) 𝐹ᑩ.𝑠𝑖𝑛𝛿𝜃ᑫ 0 −𝐹ᑩ.𝑟ᑫ.𝑠𝑖𝑛𝛿𝜃ᑫ 𝐹ᑩ.𝑟ᑫ(1 − 𝑐𝑜𝑠𝛿𝜃ᑫ) 𝐹ᑩ[𝑟ᑪ.(1 − 𝑐𝑜𝑠𝛿𝜃ᑫ)
+𝑟ᑪ.𝑠𝑖𝑛𝛿𝜃ᑫ]

Lateral DU 𝐹ᐺ,ᑑ 𝛿𝜃ᑩ 0 −𝐹ᑫ(𝑠𝑖𝑛𝛿𝜃ᑩ) 𝐹ᑫ.(1 − 𝑐𝑜𝑠𝛿𝜃ᑩ) −𝐹ᑫ[𝑟ᑪ.(1 − 𝑐𝑜𝑠𝛿𝜃ᑩ) 𝐹ᑫ.𝑟ᑩ.(1 − 𝑐𝑜𝑠𝛿𝜃ᑩ) 𝐹ᑫ.𝑟ᑩ(𝑠𝑖𝑛𝛿𝜃ᑩ)
+𝑟ᑫ.𝑠𝑖𝑛𝛿𝜃ᑩ]

Vertical DU 𝐹ᐹ,ᑩ 𝛿𝜃ᑪ −𝐹ᑩ.(1 − 𝑐𝑜𝑠𝛿𝜃ᑪ) 0 −𝐹ᑩ.𝑠𝑖𝑛𝛿𝜃ᑪ 𝐹ᑩ.𝑟ᑪ.𝑠𝑖𝑛𝛿𝜃ᑪ 𝐹ᑩ[𝑟ᑩ.𝑠𝑖𝑛(𝛿𝜃ᑪ) −𝐹ᑩ.𝑟ᑪ.(1 − 𝑐𝑜𝑠𝛿𝜃ᑪ)
−𝑟ᑫ(1 − 𝑐𝑜𝑠𝛿𝜃ᑪ)]

Vertical DU 𝐹ᐸ,ᑪ 𝛿𝜃ᑩ 0 −𝐹ᑪ.(1 − 𝑐𝑜𝑠𝛿𝜃ᑩ) −𝐹ᑪ.𝑠𝑖𝑛𝛿𝜃ᑩ 𝐹ᑪ[𝑟ᑪ.𝑠𝑖𝑛𝛿𝜃ᑩ 𝑟ᑩ.𝐹ᑪ.𝑠𝑖𝑛(𝛿𝜃ᑩ) −𝑟ᑩ.𝐹ᑪ(1 − 𝑐𝑜𝑠𝛿𝜃ᑩ)
+𝑟ᑫ(1 − 𝑐𝑜𝑠𝛿𝜃ᑩ)]

Vertical PU 𝐹ᐸ,ᑪ 𝛿𝑟ᑩ 0 0 0 0 0 −𝛿𝑟ᑩ.𝐹ᑪ
Lateral

Vertical PU 𝐹ᐺ,ᑫ 𝛿𝑟ᑩ 0 0 0 0 𝛿𝑟ᑩ.𝐹ᑫ 0
Lateral

error type Sensor error 𝛿𝑢ᑩ,ᑧᑡ 𝛿𝑢ᑪ,ᑧᑡ 𝛿𝑢ᑫ,ᑧᑡ 𝛿𝜃ᑩ,ᑧᑡ 𝛿𝜃ᑪ,ᑧᑡ 𝛿𝜃ᑫ,ᑧᑡ

Vertical DU 𝑢ᑪ 𝛿𝜃ᑩ 0 Ꮍ(ᑦᑪ)(ᑣᑪ .ᑣᑫ)
ᒉᒍᑩ(ᑣᎴᑩᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

Ꮍ(ᑦᑪ)(ᑣᎴᑩᎼᑣᎴᑫᎼᎳ)
ᒉᒍᑩ(ᑣᎴᑩᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

Ꮍ(ᑦᑪ)(ᑣᑪ)
ᒉᒍᑩ(ᑣᎴᑩᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

Ꮍ(ᑦᑪ)(ᑣᑩ)(ᑣᎴᑩᎼᑣᎴᑫᎼᎳ)
ᒉᒍᑩ(ᑣᎴᑩᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

(ᑦᑪ)(ᑣᑩ .ᑣᑪ .ᑣᑫ)
ᒉᒍᑩ(ᑣᎴᑩᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

Vertical DU 𝑢ᑩ 𝛿𝜃ᑪ
(ᑦᑩ)(ᑣᑩ .ᑣᑫ)

ᒉᒍᑪ(ᑣᎴᑪᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)
0 (ᑦᑩ)(ᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

ᒉᒍᑪ(ᑣᎴᑪᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)
(ᑦᑩ)(ᑣᑪ)(ᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

ᒉᒍᑪ(ᑣᎴᑪᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)
Ꮍ(ᑦᑩ)ᑣᑩ

ᒉᒍᑪ(ᑣᎴᑪᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)
(ᑦᑩ)(ᑣᑩ .ᑣᑪ .ᑣᑫ)

ᒉᒍᑪ(ᑣᎴᑪᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

Lateral DU 𝑢ᑫ 𝛿𝜃ᑩ 0 (ᑦᑫ)(ᑣᎴᑩᎼᑣᎴᑪᎼᎳ)
ᒉᒍᑩ(ᑣᎴᑩᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

(ᑦᑫ)(ᑣᑫ .ᑣᑪ)
ᒉᒍᑩ(ᑣᎴᑩᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

(ᑦᑫ)ᑣᑫ
ᒉᒍᑩ(ᑣᎴᑩᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

Ꮍ(ᑦᑫ)(ᑣᑫ .ᑣᑪ)
ᒉᒍᑩ(ᑣᎴᑩᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

(ᑦᑫ)(ᑣᑩ)(ᑣᎴᑩᎼᑣᎴᑪᎼᎳ)
ᒉᒍᑩ(ᑣᎴᑩᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

Lateral DU 𝑢ᑩ 𝛿𝜃ᑫ
Ꮍ(ᑦᑩ)(ᑣᑩ .ᑣᑪ)

ᒉᒍᑫ(ᑣᎴᑫᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)
Ꮍ(ᑦᑩ)(ᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

ᒉᒍᑫ(ᑣᎴᑫᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)
0 (ᑦᑩ)(ᑣᑫ)(ᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

ᒉᒍᑫ(ᑣᎴᑫᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)
Ꮍ(ᑦᑩ)(ᑣᑪ .ᑣᑫ .ᑣᑩ)

ᒉᒍᑫ(ᑣᎴᑫᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)
Ꮍ(ᑦᑩ)ᑣᑩ

ᒉᒍᑫ(ᑣᎴᑫᎼᎳ)(ᑣᎴᑩᎼᑣᎴᑪᎼᑣᎴᑫᎼᎳ)

Vertical PU 𝑢ᑪ 𝛿𝑟ᑩ 0 0 0 0 0 ᐽᑫ
ᒉᑣᑩ

Lateral

Vertical PU 𝑢ᑫ 𝛿𝑟ᑩ 0 0 0 0 Ꮍᐽᑪ
ᒉᑣᑩ

0
Lateral
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5.3. FEMapproach on an asymmetric structure (modal based)model

An asymmetric, complex modal based model (FEM) is used to study the ”propagation of directional
and locational uncertainty on impacts and sensors to the calculation of 𝑉𝑃”, shown on Figure.5.25.
The presented structure is considered to examine the correctness of dominant error source corre-
sponds to each mode shape, which was discussed on the analytical approach in the previous chapter.

This structure has two legs and contains several holes to be able to couple to another structure. The
head of one of these legs contains a hole, and this hole is chosen to be the coupling point. As a single
coupling point, a 6Dofs Virtual Point (𝑉𝑃) is defined, which is placed exactly in the center of the hole. To
determine the FRF for this 𝑉𝑃, three accelerometers, and 13 impacts are placed on different surfaces
around the hole, as closed as possible to the chosen 𝑉𝑃.

Figure 5.25: An asymmetric structure with one coupling point. The 3 sensors and 13 impacts are shown in gray cubs and red
arrows, respectively. The Virtual Point DsFs are illustrated as green arrows centered in the hole of coupling point

Table 5.7: Properties and dimensions of the asymmetric substructure

substructure physical dimensions
size 42.89x2.8x3 cm
weight 6.8530 kg
Substructure FE modeling
Material density 2.7 g/cm^3
Young‚Äôs modulus 70 GPa
number of nodes 8004
number of DOFs 24012
Simulated experimental setup
sensors type triaxial accelerometers

number of sensors 3
sensors DOFs 9: 3X, 3Y, 3Z

excitation tool type impact hammer
number of impacts 13
impacts DOFs 13x1 = 13

Virtual Point 𝑉𝑃 displacement DOFs 3 translational + 3 rotational
𝑉𝑃 force and moment DOFs 3 translational + 3 rotational

The free-free model of the asymmetric structure is made on ANSYS (properties are given on Table.5.7);
further the 𝑀𝑀𝑀 and the 𝐾𝐾𝐾 matrices of the model are extracted and then imported to MATLAB. By using
these two matrices, the eigenfrequencies and corresponding eigenvectors are calculated. By knowing
the eigenvectors of each DoF of the system, we can select the eigenvalues of DoFs corresponding to
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each sensor and each impact.
The modal synthesized frequency response function 𝑌።,፣(𝜔) between each sensor’s channel 𝑖 and each
impact 𝑗 can be made by using the eigenfrequencies (𝜔፧), eigen-parameters 𝜙𝜙𝜙። and 𝜙𝜙𝜙፣ (modal vector
corresponds to each impact 𝑗 and sensor’s channel 𝑖) and the modal damping parameter 𝜁.
We are assuming a constant modal damping parameter for all frequencies equal to 𝜁 = 0.004. This
value is found from literature (which itself is extracted from experimental data for that chosen material)
[35].

𝑌።,፣(𝜔) =
፧

∑
፫዆ኻ

𝜙።,፫𝜙፣,፫
−𝜔ኼ + 2𝜁𝜔𝜔፫ + 𝜔ኼ፫

(5.25)

Having 3 triaxial-accelerometers and 13 impacts get us 9 DoFs from sensors and 13 DoFs from im-
pacts. The corresponding frequency response function (𝑌𝑌𝑌።,፣(𝜔)) between all impacts and sensors at
each frequency becomes a 9x13 matrix.

Knowing the relative distance and relative angle between 𝑉𝑃 and each sensor and each impact, the
displacement projection matrix 𝑇𝑇𝑇፮ (a 6x9 matrix) and a force projection matrix 𝑇𝑇𝑇ፓ፟ (a 13x6 matrix) are
set up. These projection matrices are used to transform the (numerically) measured FRF (𝑌𝑌𝑌።,፣(𝜔)) to
𝑉𝑃’s FRF (𝑌𝑌𝑌ፕፏ(𝜔)).

𝑌𝑌𝑌ፕፏ(𝜔) = 𝑇𝑇𝑇፮𝑌𝑌𝑌።,፣(𝜔)𝑇𝑇𝑇ፓ፟ (5.26)

The 𝑉𝑃’s FRF is a frequency response function between all 6 DoFs (translational and rotational) forces
and 6 DoFs (translational and rotational) responses of the coupling point.

5.3.1. Tracking the dominant directional error source for each mode shape

To track the dominant directional error source, each time a single directional error was applied on pos-
sible impacts, and then the frequency response function (𝑌𝑌𝑌፮፧፜፞፫፭ፚ።፧) was numerically computed. This
uncertain FRF was compared (element-wise) with the true FRF (𝑌𝑌𝑌፭፫፮፞) to obtain the generated mea-
surement error Δ𝑌𝑌𝑌, which was caused by a specific uncertainty.
Then the deviated FRF, Δ𝑌𝑌𝑌, (caused by a single directional uncertainty) was studied for type of mode
shape.

The mode shape type is defined based on the type of the structure’s motion at each resonance. For
asymmetric model illustrated on Figure.5.25 the mode shapes are divided into four groups; 1)lateral
bending, 2)vertical bending, 3)torsion and 4)mixed motions, which are presented on Table.6.1.

Table 5.8: Mode shapes and their corresponding resonances, for asymmetric model illustrated on Figure.5.25

Mode Shape Dominant motion’s direction resonances [Hz]
Lateral Bending 𝑦 442 1647 2334
Vertical Bending 𝑧 596
Torsion x,y 816 2583
Torsion+Vertical bending x,y+z 1340 1953 2145



70 5. Methodology

(a) Torsion (b) Bending Z, vertical bending (c) Bending Y, lateral bending

Figure 5.26: The type of the motions for each mode-shape group.

In order to find the dominant directional error source for each mode shape, we compare the Δ𝑌𝑌𝑌s caused
by different directional uncertainties at specific frequency (frequency which corresponds to that mode
shape).
we decide to use Heatmaps to compare the absolute value of different entries of (deviation on) admit-
tance, Δ𝑌𝑌𝑌, at a specific frequency. A heatmap numerically and visually (by shades of a color) compares
the values of a matrix. In our case, at each frequency, the Δ𝑌𝑌𝑌፦፞ፚ፬፮፫፞ is a 9x13 matrix and Δ𝑌ፕፏ𝑌ፕፏ𝑌ፕፏ is a
6x6 matrix. By using a heatmap we can see which impacts and in which extend cause a greater error
and deviation on FRF (at a specific frequency).
The results form this numerical approach is presented on next chapter (chapter.6)

5.4. Monte Carlo simulation on an asymmetric structure (modal
based) model

The most straightforward way to study the effect of uncertainty is through Monte Carlo Simulation [43].
A Monte Carlo simulation is used on our modal based asymmetric substructure (FEM) to simulate
the propagation of directional and locational uncertainty on impacts and sensors to the calculation of
𝑉𝑃. Monte Carlo is a computational algorithm that relies on repeated random sampling. In order to
systematically generating errors, the following steps are taken:

1. Define the domain of possible input:
The varied variables in this thesis are as follows (wherein each simulation just one of these vari-
ables is changing).

• Sensors’ Position (SP)
• Sensors’ Direction (Orientation) (SD)
• Impacts’ Position (IP)
• Impacts’ Direction (Orientation) (ID)

2. Define the value of error on each case:
In the case of varying impacts’ or sensors’ positions, we defined a value equal to 1 𝑚𝑚 (for
each possible direction), where the center of sensor or the contact point of impact hammer with
structure can vary around its true position, in each possible direction.
In the case of directional uncertainty, the amount of error on each direction is 5∘.

3. Generate error vector:

• Impacts’/sensors’ Position (IP, SP): To bring uncertainty on the location of sensors, each
time, all sensors will move by error vectors around their true position. The error vector for
each sensor is independent, and its components are generated randomly within a defined
value of error. The component of the error vector is generated independently in all directions.
As each sensor mounted on a surface, it can move in just 2 directions, as a matter of fact
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the error vector has 2 non-zero values, Δ𝑟 = [𝛿𝑟፱ 𝛿𝑟፲ 𝛿𝑟፳]. The error vector further will
be multiplied by the rotation matrix to go from local coordinate to global coordinate. Then
the sensor was moved from its true position by error vector. The same procedure is applied
for bringing positional uncertainty on impacts.

• Impacts’/sensors’ direction (ID, SD): To bring directional uncertainty on impact, first a
directional error vector was generated, where its elements are randomly and independently
are defined within a certain directional error value. Then this error vector was multiplied
by impacts rotational matrix, to get the directional error vector on global coordinate which is
become Δ𝜃።፦፩ፚ፜፭(።) = [𝛿𝜃፱(።) 𝛿𝜃፲(።) 𝛿𝜃፳(።)] . Further the direction of the impact is changed
to 𝜃።፦፩ፚ፜፭(።) = [𝜃፱(።) + 𝛿𝜃፱(።) 𝜃፲(።) + 𝛿𝜃፲(።) 𝜃፳(።) + 𝛿𝜃፳(።)]. The same procedure is applied
for bringing directional uncertainty on sensors.

4. Calculating FRF (Y), mapping the cross-function between sensors and impacts where impacts
or sensors have new location or new direction.

5. Calculating FRF at 𝑉𝑃 (𝑌ፕፏ = 𝑇፮𝑌𝑇ፓ፟ ): we can calculate two VP’s FRF, 𝑌፜፞፫፭ፚ።፧𝑌፜፞፫፭ፚ።፧𝑌፜፞፫፭ፚ።፧ and 𝑌፮፧፜፞፫፭ፚ።፧𝑌፮፧፜፞፫፭ፚ።፧𝑌፮፧፜፞፫፭ፚ።፧.
• 𝑌፜፞፫፭ፚ።፧𝑌፜፞፫፭ፚ።፧𝑌፜፞፫፭ፚ።፧: Calculating 𝑉𝑃𝑉𝑃𝑉𝑃’s FRF with accurate transformation matrices 𝑇፮𝑇፮𝑇፮ and 𝑇𝑇𝑇 means
that at each run, the projection matrices are adopted with a new direction or orientation (of
impacts) and will be changed at each run. It is not a surprise that using the actual projection
matrices gives exactly the same 𝑉𝑃’s FRFs for all runs (illustrated in Figure.??).

• 𝑌፮፧፜፞፫፭ፚ።፧𝑌፮፧፜፞፫፭ፚ።፧𝑌፮፧፜፞፫፭ፚ።፧: Calculating 𝑉𝑃’s FRF with a fixed 𝑇፮𝑇፮𝑇፮ and 𝑇𝑇𝑇 , gives FRFs which are deviating
from each other (illustrated on Figure.??). since we are trying to mimic the experiment, and
obtaining the true experiment is almost impossible, we will never know the actual position
and direction of sensors and impacts. For this reason, we fix the projection matrices 𝑇፮ and
𝑇 on the calculation of 𝑉𝑃’s FRF.





6
Results and Discussion

This thesis uses analytical and numerical approaches to study the effect of sensors and impacts’ po-
sitional and directional uncertainty on the measurement and their influence on the 𝑉𝑃’ frequency re-
sponse function.
Previous chapter introduced these approaches. Further, the analytical analysis has done on a small
part of a beam with a free. Component Mode Synthesised method is used to make expectations of
the dominant error sources. Moreover, the previous chapter introduced an asymmetrical FEM model.
Also, the Monte Carlo simulation is described.

This chapter studies an introduced asymmetric modal based model to investigate a numerical verifi-
cation of the mode shape- and frequency-dependency of the uncertainty propagation to the 𝑉𝑃’s FRF,
caused by directional and locational uncertainty on impacts or sensors.
This chapter is split into two parts, Results and discussion. The results part presents the results from
the 1)FEM approach and 2)Monte Carlo simulation. In the Discussion part, the results of two numerical
approaches are compared and discussed, and further, a comparison is made between the numerical
results and analytical expectations.
based on analytical analysis, two extreme cases are introduced. In one scenario, the maximum error
generation is introduced, where all the errors are adding to each other. The second scenario describes
a case where errors of different sources cancel each other.

6.1. Results 1: FEM, A Complex Modal Based Model

This chapter contains the numerical results of the IDU case (impacts directional uncertainty) on our
asymmetric modal-based model (this FEM model is introduced in the previous chapter, and illustrated
in Figure.5.25). Further, the 𝑉𝑃’s cross-functions containing the highest propagated error are consid-
ered. For the results of other cases see Appendix.F, Appendix.C, Appendix.H.

Since we expect that the IDU error generation and its propagation to 𝑉𝑃 is mode shape- and frequency-
dependent, we decide to study the propagated error to 𝑉𝑃’s FRFs at resonances, in order to find the
impacts with dominant error generation for each type of motion (mode shape). In the discussion part,
we compare these numerical results with expectations from an analytical approach.

As discussed in previous chapter, the type of mode shape is defined based on the type of the structure’s
motion at each resonance. For our asymmetric model, the mode shapes are divided into four groups;
1)lateral bending, 2)vertical bending, 3)torsion and 4)mixed motions, which are presented on Table.6.1.
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Table 6.1: Mode shapes and their corresponding resonances, for asymmetric model illustrated on Figure.5.25

Mode Shape Dominant motion’s direction resonances [Hz]
Lateral Bending 𝑦 442 1647 2334
Vertical Bending 𝑧 596
Torsion x,y 816 2583
Torsion+Vertical bending (x,y)+z 1340 1953 2145

To track the dominant directional error source, each time a single directional error was applied on pos-
sible impacts, and then the frequency response function (𝑌𝑌𝑌፮፧፜፞፫፭ፚ።፧) was numerically computed. This
uncertain FRF was compared (element-wise) with the true FRF (𝑌𝑌𝑌፭፫፮፞) to obtain the generated mea-
surement error Δ𝑌𝑌𝑌, which was caused by a specific uncertainty.
Then the deviated FRF, Δ𝑌𝑌𝑌, (caused by a single directional uncertainty) was studied for type of mode
shape.

Dominant motion-direction of this FEM model at lateral bending is in 𝑦-direction. The first, second, and
third Lateral bending happens at 443, 1648, and 2335 [Hz].

Without any directional uncertainty Impacts 1-3 excite the structure along 𝑥-direction, Impacts 4-8 ex-
cite the structure along 𝑦-direction and Impacts 9-13 excite the structure along 𝑧-direction.

we decide to use Heatmaps to compare the absolute value of different entries of (deviation on) admit-
tance, Δ𝑌𝑌𝑌, at a specific frequency. A heatmap numerically and visually (by shades of a color) compares
the values of a matrix. In our case, at each frequency, the Δ𝑌𝑌𝑌፦፞ፚ፬፮፫፞ is a 9x13 matrix and Δ𝑌፯፩𝑌፯፩𝑌፯፩ is a 6x6
matrix. By using a heatmap, we can see which impacts and, in which extend, cause a greater error
and deviation on FRF (at a specific frequency).

6.1.1. Measured FRF: Mode shape- and frequency-dependent dominant error
sources

Figure.6.1 considers the changes in measured FRFs at first, second, and third lateral bending (at 443,
1648 and 2335 [Hz]), in the presence of directional uncertainty. Every column of this figure shows the
heatmap of absolute value of the deviation of measured FRF with its true value, Δ𝑌፦፞ፚ፬፮፫፞, when a
single directional error is applied on the (possible) impacts.
In this figure, column(a) represents the cases where impacts 1-4 and 9-13 have directional deviation
on their primary direction, which causes that these impacts excite the structure also on 𝑦-direction.
Column(b) is the case where impacts 4-8 and 9-13 have directional deviation, which causes these im-
pacts to apply force also on 𝑥-direction. In Column(c), impacts 1-3 and 4-8 have directional deviation
causes exciting the structure also on 𝑧-direction. Column(d) where all impacts 1-3, 4-8, and 9-13 have
directional uncertainty on all possible directions. The amount of directional error in all cases is 5 degree.

In order to find the impacts with dominant (directional) errors, we compare the FRF’s heatmap of all
lateral bendings of the case (d) (all impacts have all directional errors) with other cases (with single
directional error). We observe that at lateral bending (with a mode-shape motion on y-direction), any
directional uncertainty which causes exciting the structure in the same direction as the mode shape
motion-direction (y-direction) causes the most significant error and becomes a dominant error source,
which is column(a).

In the presence of directional uncertainty, the error which leads to exciting the structure in the same di-
rection as the mode shape motion-direction (here is 𝑦-direction) generates the most error significantly.
This confirms the expectations form analytical analysis.
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Figure 6.1: Dominant directional error source in lateral bending. The absolute value of ጂፘጂፘጂፘ at resonances with lateral bending
motion, where error sources are as follows: single directional errors on column (a), (b), and (c), and (d) where all impacts have
all possible directional errors. Comparing the FRF’s heatmap of all lateral bendings of case (d) with other cases (with single
directional error) shows that at lateral bending (with a mode-shape motion on y-direction) any directional uncertainty which
causes exciting the structure on the same direction as the mode shape motion-direction (y-direction) causes the most

significant error, and becomes a dominant error source, which in this case is column(a).
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Figure 6.2: Directional error on impacts at first, vertical bending (at 595 [Hz]), where dominant direction of the mode shape
motion is on ፳-direction. Column(c) is the case where impacts 1-3 and 4-9 have directional deviation which causes this impacts

excite the structure also on ፳-direction. This directional error source is the most dominant error source.

Error generation in absolute value:

Figure.6.1 and Figure.6.2 also show that :
At each mode shape, the impacts acting in the same direction as the movement direction of the mode
shape (MDMS) have the highest modal values, comparing with all other impacts directions.
If there is a directional deviation on these impacts, the portion of the contribution of these high modal
value will decrease, and instead, some lower values will add.

On the other hand, the same directional deviation on other impacts (which their primary directions is
not the same as the MDMS) have smaller modal value at that certain mode-shape.
A directional deviation, with the same direction as mode shape movement direction on these impacts,
will increase the modal value of those impacts. A portion of these primary low modal values will be
replaced by recently activated DOF with high modal value. Since these new added modal values are
high, a portion of them is also high. Consequently, the FRF at- and around frequencies corresponds
to that type of mode shape will deviate the most.

Guide line:
We can suggest if a certain mode shape of the structure is on interest, make sure the impacts acting
perpendicular to that specific mode shape direction is hitting the structure as close as possible to the
assigned direction.
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Error generation in percentage value:
Since for the same amount of directional error, the portion of replaced modal value is the same, the
percentage change on FRF is much greater for those ones where their true value was not so high.

The positive or negative value of the dominant directional error source is essential. This positive or
negative value of the dominant error source becomes very crucial when we have more impacts with (in
this case, directional) uncertainties. There are cases where the errors of different impacts can cancel
each other. As a consequence, the propagated error to Virtual Point can decrease significantly. This is
the subject of section.??.

6.1.2. VP transformation: Mode shape- and frequency-dependency of dominant
error source

Since (in a measurement) the exact position and direction of sensors and impacts are unknown, there is
some uncertainty on the transformation matrices 𝑇፮ and 𝑇 . These uncertainties leads to some FRFs’
deviations (𝛿𝑌𝛿𝑌𝛿𝑌፯፩) on the calculated Frequency Response Function of Virtual Point (coupling point)
𝑌𝑌𝑌፯፩,፮፧፜፞፫፭ፚ።፧ from its true value 𝑌𝑌𝑌፯፩,፭፫፮፞.

To find this deviation 𝛿𝑌𝛿𝑌𝛿𝑌፯፩, first we calculate the 𝑌𝑌𝑌፯፩,፮፧፜፞፫፭ፚ።፧ (uncertain 𝑉𝑃’s FRF) using the transfor-
mation matrices corresponds to reference positions and directions (𝑇𝑇𝑇፮,፫፞፟ፈፃፌ and 𝑇𝑇𝑇፟,፫፞፟ፈፃፌ), and then
we compare these FRFs with a 𝑌𝑌𝑌፯፩,፭፫፮፞.
The reference transformation matrices (𝑇𝑇𝑇፮,፫፞፟ፈፃፌ and 𝑇𝑇𝑇፟,፫፞፟ፈፃፌ) are set up based on the reference
position and direction of impacts and sensors. The reference position and direction means the location
where the measurements supposed to be operated. 𝑌𝑌𝑌፦፞ፚ፬፮፫፞ is the FRF obtained from the measure-
ment which sensors and (or) impacts are not necessarily mounted on reference position, and 𝑌𝑌𝑌፭፫፮፞ is
the FRF if all sensors are mounted on the reference position.
The true 𝑉𝑃’s FRF, 𝑌𝑌𝑌፯፩,፭፫፮፞, is calculated by true measurements 𝑌፭፫፮፞ and reference transformation
matrices (𝑇𝑇𝑇፮,፫፞፟ፈፃፌ and 𝑇𝑇𝑇፟,፫፞፟ፈፃፌ). True measurements 𝑌፭፫፮፞ corresponds to a measurement when
the sensors and impacts are on their reference position (which is achievable in a simulation).

𝑌𝑌𝑌፯፩,፮፧፜፞፫፭ፚ።፧ = 𝑌𝑌𝑌፯፩,፭፫፮፞ + Δ𝑌𝑌𝑌፯፩ (6.1)

where

𝑌𝑌𝑌፯፩,፭፫፮፞ = (𝑇𝑇𝑇፮,፫፞፟ፈፃፌ).𝑌𝑌𝑌፭፫፮፞ .(𝑇𝑇𝑇ፓ፟,፫፞፟ፈፃፌ)
𝑌𝑌𝑌፯፩,፮፧፜፞፫፭ፚ።፧ = (𝑇𝑇𝑇፮,፫፞፟ፈፃፌ).𝑌𝑌𝑌፦፞ፚ፬፮፫፞ .(𝑇𝑇𝑇ፓ፟,፫፞፟ፈፃፌ)

(6.2)

Figure.6.3 considers the changes in measured FRFs at first, second, and third lateral bending (at 443,
1648 and 2335 [Hz]), in the presence of directional uncertainty. Every column of this figure shows the
heatmap of deviation of measured FRF with its true value, Δ𝑌፦፞ፚ፬፮፫፞, when a single directional error is
applied on the (possible) impacts.
In this figure, column(a) and column(b) are the cases where impacts 1-4 and 9-13 have directional
deviation in their primary direction, respectively, which causes that these impacts excite the structure
also on 𝑦-direction. Column(c) and column (d) are the cases where impacts 4-8 and 9-13 have direc-
tional deviation, which causes exciting structure also on 𝑥-direction. Column(e) and column(f) shows
heatmaps of 𝛿𝑌𝑌𝑌 where impacts 1-3 and 4-8 have directional deviation which causes extra forces on
𝑧-direction. The most right column is the case where all impacts have directional uncertainty in all pos-
sible directions.

Figure.6.3, Figure.6.4, Figure.6.5, and Figure.6.6 show the heatmap of (absolute value) deviated Fre-
quency Response Function of Virtual Point from its true value, (Δ𝑌Δ𝑌Δ𝑌፪፦), at resonances corresponds to
lateral bending, vertical bending, torsion and mixed-Torsion-vertical Bending, respectively.



78 6. Results and Discussion

Figure.6.3 shows that at all lateral bendings, the absolute values of element [64] of 𝑉𝑃’s admittance
are the highest, this element is a cross-function of rotational response 𝜃፳ to moments 𝑀፳. The mode
shape motion is along the y-direction.
This superposition of different directional error sources shows that directional error on impacts 9-13
which causes an extra DOF of this impact in the y-direction (which is the same direction as the mode
shape motion) is the dominant error source.
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Figure 6.3: Case IDU, Super position of different directional error sources: the changes on the ፕፏ’s FRF, ጂፘᑧᑡጂፘᑧᑡጂፘᑧᑡ, at resonances corresponds to lateral bending motion (443, 1648 and 2335 [Hz]).
Amount of directional error is exactly 5 degree.
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Figure 6.4: Case IDU, Super position of different directional error sources: the changes on the ፕፏ’s FRF, ጂፘᑧᑡጂፘᑧᑡጂፘᑧᑡ, at resonances corresponds to vertical bending motion (595 [Hz]). Amount of
directional error is exactly 5 degree.
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Figure 6.5: Case IDU, Super position of different directional error sources: the changes on the ፕፏ’s FRF, ጂፘᑧᑡጂፘᑧᑡጂፘᑧᑡ, at resonances corresponds to torsion motion (816 and 2585 [Hz]). Amount of
directional error is exactly 5 degree.
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Figure 6.6: Case IDU, Super position of different directional error sources: the changes on the ፕፏ’s FRF, ጂፘᑧᑡጂፘᑧᑡጂፘᑧᑡ, at resonances corresponds to multiple mode shapes motion consisting both
torsion and vertical bending (1340, 1955 and 2147 [Hz]). Amount of directional error is exactly 5 degree.
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6.1.3. FRF of least precise 𝑣𝑝𝑣𝑝𝑣𝑝’s cross-functions
From Figure., 6.3, 6.4, 6.5, and 6.6 we can observe that 𝑉𝑃’s elements [64], [56], [46]/[44], and [56]
are respectively the most sensitive 𝑉𝑃’s cross-functions to the impact’s directional errors, for lateral
bending, vertical bending, torsion and torsion+lateral bending (mixed mode shape).
Figure.6.7, 6.8, 6.9a, 6.9b, and 6.8, are the frequency response function of these least precise 𝑉𝑃’s
when different directional errors are applied. These figures shows that; how each directional uncer-
tainty affects the frequency response function and which one is most influential in error generation. We
can observe that in all of these cross-functions, the dominant error source (with significant effect on
error generation) for a particular type of mode shape has the same direction as those mode shapes.

Figure 6.7: Case IDU, a comparison of different directional error sources on least precise ፕፏ’s FRF, element [66], at and
around frequencies corresponds to lateral bending (443, 1648 and 2335 [Hz]). And, the dominant effect of impacts 9-13 with
extra added DoF on Y direction (caused by DU). In general impacts 9-13 with all directional error causes the most error.

Figure 6.8: Case IDU, Super position of different directional error sources on least precise ፕፏ’s FRF, element [56], at and
around frequencies corresponds to vertical bending (motion along z-axes) (595 [Hz]). And, the dominant effect of impacts 4-8

with extra added DoF on Z direction (caused by DU ).
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(a) Case IDU, Super position of different directional error sources on least precise ፕፏ’s FRF, element [46], at and around frequencies
corresponds to torsion and also torsion+vertical bending (816 and 2584 [HZ] for torsion and 1349, 1955, and 2147 for mixed mode shape) . And,
the dominant effect of impacts 4-8 with extra added DoF on Z direction (caused by DU ). Note that these dominant error (impacts 4-8 with added

force on Z direction) are also causing a significant error at 595 [Hz]. At this frequency the mode shape is also on z direction.

(b) Case IDU, element [44] of ፕፏ’s admittance. The absolute changes of this element observed to be high for second torsion (2585 [Hz]).
Visually we do not see a lot of deviation on this FRF. Note the primary values of this FRF are alos very high.

Figure 6.9

There was a groups in our mode shape categorization which has mixed-motions of vertical bending and
torsion. At resonances corresponds to these mode shapes the most sensitive cross-functions of 𝑉𝑃 is
those that are also observed on the each individual mode shape groups. At vertical bending element
[56], at (first) torsion element [46], and at torsion+vertical bending both elements [56] and [46] are the
most directional error sensitive cross-functions of 𝑉𝑃.

In Figure.6.9b, we do not visually observe much deviation on the FRF. Nevertheless, the FRF itself has
a very high value. As we discussed on section.6.1.1 (percentage- and absolute deviation), if the value
of FRF is high, then its deviation can also be high compared with other FRFs, but in absolute value, it
is not very high.
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Note that in all FRFs with high absolute deviation (due to measurement error), the variation on phase
is tiny. Maybe it is a better practice to take the phase changes to measure the FRF deviation.

6.2. Error cancellation

Section.4.2 discussed how the numerical split of each transformation matrices, 𝑅፮𝑅፮𝑅፮ and𝑅፟𝑅፟𝑅፟ could lead to
higher error amplification on rotational/rotational cross-functions of Virtual Point, comparing with other
cross-functions.

Moreover, in Table.5.2.11 of previous chapter (in analytical approach), we have seen that the generated
errors on rotational parts (rotational responses or moments) is depending on the distance to 𝑉𝑃 (𝑟፱,
𝑟፲, and 𝑟፳). Further, the direction of generated errors on rotations (rotational responses or moments) is
depending on the sign of error direction and on the sign of the relative distance of the error source to
𝑉𝑃 (for example the sign of 𝛿𝜃 and 𝑟፱.)

There is a possibility for an error cancellation, where the generated errors with different signs can can-
cel each other. If the amount of these errors is also comparable, then a smart choice of measurement
positions could lead to reducing the error propagation significantly.

In Appendix.I the numerical partition of transformation matrices, for the configuration presented in sec-
tion5.3 is presented.

6.2.1. Effect of symmetrical impacts placement with respect to 𝑉𝑃

If the operational errors are consistent, for example, if the experimental technician made a bias error
and always excited the structure just on top-left of the true position, then there is a chance the errors
cancel each other, especially on rotational/rotational part of admittance.

Figure.6.12 shows the absolute values of deviated 𝑉𝑃’s admittance Δ𝑌፯፩Δ𝑌፯፩Δ𝑌፯፩ at resonances corresponds
to 1st, second, and third lateral bending. Each column shows a case where one or more impacts have
positional error (IPU) of 2mm in all possible directions. For example column (a) corresponds to a case
where just impact #6 contains a positional error.

Comparing columns shows that the effect of error cancellation is the best on column (h), where the
most symmetry exists, mainly using impact 4 and 5 on one side of and impacts 6,7,8 on the other side
of 𝑉𝑃. This causes to have impacts of opposite directions (with respect to 𝑉𝑃). Consequently, the
generated error will have opposite directions. Since the distance of these impacts to 𝑉𝑃 is also very
similar, the amount of generated errors on the rotational part are also very similar, but on the opposite
direction, which leads to error cancellation on the rotational part of admittance (for lateral bending, in
the case shown on Figure.6.12).

Comparing column (d), (e),(f) and (g) shows that error on impacts #6 and #8 (corresponds to column
(e)) also provides a good error cancellation, which is better than error on impacts #7 and 8 (column
(f)) and on impacts #6 and 7 (column (d)) and on impacts #6,7 and 8 (column(g)). The reason is that
impacts #6 and #8 are on two different sides of 𝑉𝑃, and their error is consistent, so on the calculation
of 𝑉𝑃, the generated error will be canceled with each other.

Guide Line:
Asymmetric impacts positioning is significantly helping to reduce the propagated error on the Virtual
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Point’s FRF, especially on rotational/rotational cross-functions.

In Figure.6.10 𝑉𝑃’s cross-functions with higher sensitivity to IDU are given. For each plot, three types
of FRFs are compared with each other, 𝑌፭፫፮፞, 𝑌ፌፚ፱.ፄ፫፫፨፫, and 𝑌ፄ፫፫፨፫ፂፚ፧፜፞፥፥ፚ፭።፨፧. We can see that those
FRFs with error cancellation are closer to the true value. The same comparison for other uncertainty
cases, IPU, SPU, and SDU, are given in Appendix.??

(a) 65 IDU WithAndWithoutErrorCancellation (b) 64 IDU WithAndWithoutErrorCancellation

(c) 56 IDU WithAndWithoutErrorCancellation (d) 54 IDU WithAndWithoutErrorCancellation

(e) 46 IDU WithAndWithoutErrorCancellation (f) 44 IDU WithAndWithoutErrorCancellation

Figure 6.10: IDU
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6.2.2. Effect of error’s consistency on error cancellation

In order to see the effect of error cancellation in 1D, 2D, and 3D, we implement a positional error (on all
directions) on dominant error source on impacts 4,5,6,7,8, and 9, for mixed motions, torsion+vertical
bending. First, we implement a positional error on just one single impact, then we apply DU on two
impacts, and finally, we implement errors in three or more impacts.
Figure/?? shows a comparison of the heatmaps of the 𝑉𝑃’s admittance at resonances corresponds to
these mode shapes and confirms our expectations on error cancellation.

In case (e), when the errors are available on just impact 6 and 8, there is a possibility to have a mirrored
errors, the sign and the direction of the positional error of these two are mirrored (in x and y direction)
with respect to 𝑉𝑃. This case shows a significant error reduction.
In case (h), the mirroring is more advanced. In this case, we have the error-mirroring in more directions
(in x,y, and z-direction). There are also mirrored impact’s errors on the other side of the structure, on
impacts 4,5. The results of this case are the best error cancellation and error reduction.
We can call case (h) a good error cancellation since we have no significant error generation on rota-
tional/rotational cross-functions (of 𝑉𝑃).

Figure.6.11 compares the absolute value of 𝑉𝑃’s admittance of the best error cancellation, case (a),
and a case of total no error cancellation, case (b). A significant error reduction is observed.

Guide line:
For the impacts with a particular direction, by choosing the position of the impacts on (almost) the
same distances to the 𝑉𝑃, and on all possible sides of 𝑉𝑃, when the applied impacts contains the
same operational error, then there is a big chance to reduce the error on calculated 𝑉𝑃’s FRF due to
errors cancellation, especially on rotational/rotational cross-functions.



6.2. Error cancellation 89

1st Lateral
Bending

@ 443 [Hz]

@ 1648[Hz]

@ 2335 [Hz]

IPU: consistent uncertainty, all directions,
on impacts acting on y-direction

Left-side view

Top view

2nd Lateral
Bending

3rd Lateral
Bending

Front view

Side view

Right-side view

(a)
No consistency
on uncertainty

Left-side view

(b)
consistency
on uncertainty

Right-side view

Figure 6.11: Effect of consistency on positional error implication, moment cancellation due to the same distance of these
impacts to ፕፏ and the same changes on these distances due to uncertainty. Positional error of 2 [mm] is implemented in all

impacts for all possible directions.
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1st vertcial
bending
+Torsion

2nd vertcial
bending
+Torsion

3rd vertcial
bending
+Torsion

@ 1340 [Hz]

@ 1955[Hz]

@ 2147 [Hz]

IPU:
just impact 6
all possible dir.

IPU:
just impact 7
all possible dir.

IPU:
just impact 8
all possible dir.

IPU:
just impacts 6,7
all possible dir.

IPU:
just impacts 6,8
all possible dir.

IPU:
just impacts 7,8
all possible dir.

IPU:
just impacts 6,7,8
all possible dir.

IPU:
impacts
4,5,6,7,8
all possible dir.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6.12: Error cancellation on ፕፏ; Positional error of 2 [mm] is implemented in all possible directions.
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6.2.3. Effect of symmetrical Impacts placement on error cancellation

In order to see the effect of error cancellation, we change the arrangement of the impact on the same
asymmetrical structure (FEM) introduced in section.5.3. In the new configuration, all the impacts are
arranged as symmetric as possible around Virtual Point. Figure.6.13 shows the new configuration of
impacts placement.
Figure.6.14 shows the effect of symmetrical impacts placement and consistency on positional error on
the error propagation into 𝑉𝑃’s admittance. Column (a) shows the heatmaps of the 𝑉𝑃’s admittance at
frequencies correspond to lateral bending. In column (b), the heatmaps of the same frequencies are
obtained for the original setup (13 impacts with random distribution) with no consistency in positional
error implementation.

Comparison of column (a) and (b) of Figure.6.14 shows that the combination of symmetrical impacts
placements and consistency in error generation causes a significantly reduction on error propagation
on rotational/rotational cross-functions of 𝑉𝑃.

Comparison of column (a) of Figure.6.12 and column (a) of Figure.6.14 shows that symmetrical impacts
placement, causes specifically a significant error reduction on rotational/rotational cross-functions of
𝑉𝑃.

Figure.6.20 is a comparison on frequency range between 1) symmetrical impacts placement with con-
sistent error, 2)asymmetrical impacts placement with consistent error, 3)asymmetrical impacts place-
ment with inconsistent error, 4)true FRF (without any error) for symmetric impacts placement, and
5)true FRF (without any error) for asymmetric impacts placement.

This figures also confirms that on higher frequencies the effect of error propagation is higher, which
is related to the distance of measure point and 𝑉𝑃 to the stand node, higher the number of a type of
mode shape, higher the error generation and propagation, this is discussed in the analytical approach,
in section about effect of distance to stand node and error propagation.

maybe a bit more uitleg

Guide line:
In order to reduce the error propagation caused by Impacts Positional Uncertainty (IPU), place the
impacts around 𝑉𝑃 as symmetric as possible on all possible directions, and try to be consistent in ham-
mering,

Figure 6.13: Changing the number of impacts (form 13 to 19), and the arrangement of impacts in order to have the symmetrical
impacts placement around Virtual Point, as possible (we are not enable to have a symmetrical impacts placement for impacts

1, 2, and 3).
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1st Lateral
Bending

@ 443[Hz]

@ 1648[Hz]

@ 2335 [Hz]

IPU: consistent uncertainty, all directions,
on impacts acting on y-direction

Left-side view

Top view

(b)
Non-symmetrcial
impacts placement

(a)
Symmetrcial
impacts placement

2nd Lateral
Bending

3rd Lateral
Bending

Front view

Side view

Right-side viewRight-side view

Left-side view

Figure 6.14: Effect of symmetrical impacts arrangement (with respect to ፕፏ), and consistency on positional error on moment
cancellation. The same distance of these impacts to ፕፏ and the same amount of uncertainty (but just with opposite sign)

caused the error cancellation on rotational/rotational cross-functions. Positional error of 2 [mm] is implemented in all impacts
for all possible directions.
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(a) Element [66] of ፕፏ’s admittance, this element has the highest
deviation (in absolute value) from the true configuration, in the

presence of IPU.

(b) Element [61] of ፕፏ’s admittance, this element has the highest
deviation (absolute value) from the true configuration, in the

presence of IPU.

Figure 6.15: Case IPU, frequency response function of Virtual Point’s cross-functions [66] and [61], comparison of true
measurement (simulation) for symmetrical and non-symmetrical impacts placement (new configuration) with symmetrical

impacts placement with consistent error, non-symmetrical impacts placement with inconsistent error, non-symmetrical impacts
placement with inconsistent error, and true measurement (simulation) for symmetrical and non-symmetrical impacts placement.

Error is 2 [mm] in all impacts in all possible directions.
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6.3. Results 2: Monte Carlo simulation
The Monte Carlo simulation was run 1500 times for each case. In each run, the corresponding vari-
ables are changed randomly and independently in all possible directions within a pre-default particular
value.

In order to have a range of plausible values, we calculate the confidence interval of each entry (each
cross-functions) at each frequency.
In statistics, the confidence interval is a type of estimate computed from the statistics of the observed
data. Confidence interval proposes a range of plausible values for an unknown parameter; in our case,
this parameter is the means value of each entry (each cross-function)of admittance at each frequency.
First, we calculate the mean 𝑋̄, and unbiased sample variance 𝑠ኼ.

For a known population standard deviation 𝜎, the confidence interval could be computed as follows:

(𝑥̄ − 𝑧∗ 𝜎
𝑛 − 1, 𝑥̄ + 𝑧

∗ 𝜎
𝑛 − 1) (6.3)

where

𝜇̂ = 𝑋̄ = 1
𝑛 − 1

፧

∑
።዆ኻ
𝑋። and 𝑠ኼ = 1

𝑛 − 1

፧

∑
።዆ኻ
(𝑋። − 𝑋̄።)ኼ (6.4)

Where 𝑋። is sample value, in our case a value of each entry of admittance at every frequency. We chose
the confidence level of 95%. Since we can calculate the standard deviation, we can use Student’s
Distribution, and defining the value of 𝑍∗. For the confidence interval of 95% the value of 𝑧∗ is equal to
1.96. The 95%𝑡 means that if we repeat the measurement, and if we then calculate the means, there
is a chance of 95% that the new calculated mean is in the determined confidence interval, but in 5% it
will not be.
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6.3.1. M.C. results: All cases on Lateral Bending

Comparison, the confidence interval of all cases at resonances corresponds to vertical bending.
heatmap shows the elements with the most deviation.

DU

PU

ImpactsSensors

Confidence Interval at resonances corresponds to Bending Y

Figure 6.16: Confidence Interval, n=1500, The changes on the calculated FRF of Virtual Point at resonances corresponds to
lateral bending motion (443, 1648 and 2335 [Hz]), sensors and inpacts randomly and independently disoriented en

dis-positioned



96 6. Results and Discussion

6.3.2. M.C. results: All cases on vertical bending

DU

PU

ImpactsSensors

Confidence Interval at resonances corresponds to
Bending Z

Figure 6.17: Confidence Interval, n=1500, The changes on the calculated FRF of Virtual Point at resonances corresponds to
vertical bending motion (595 [Hz]), sensors and impacts randomly and independently disoriented en dis-positioned
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6.3.3. M.C. results: All cases on Torsion

DU

PU

ImpactsSensors

Confidence Interval at resonances corresponds to
Torsion

Figure 6.18: Confidence Interval, n=1500, The changes on the calculated FRF of Virtual Point at resonances corresponds to
TORSION motion (816 and 2583 [Hz]), sensors and impacts randomly and independently disoriented en dis-positioned

The results from simulations confirm the expectations about the most deviated cross-functions of 𝑉𝑃.
All the elements with higher values are appeared on the rotational/rotational cross-functions (rotational
response/moments, which is SE part of the admittance 𝑌፯፩).

6.3.4. Deviation on the admittance, absolute value or percentage

In Monte Carlo simulation, both cases of error cancellation and maximum error generation could hap-
pen. In the case of maximum error generation, the absolute values of deviations are much higher.
Since we used statistical tools, the values of the worst cases are governing the final results of statis-
tics. For example, in Figure.6.19 there is a sudden increase in the mean value (note that the results of
Figure.6.19 are in percentage

̄ፘᑞᑖᑒᑤᑦᑣᑖፘᑞᑖᑒᑤᑦᑣᑖፘᑞᑖᑒᑤᑦᑣᑖ
ፘᑥᑣᑦᑖፘᑥᑣᑦᑖፘᑥᑣᑦᑖ

).
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Figure 6.19: Case SDU, results from Monte Carlo simulation, mean of changes on percentage on all ፕፏ’s cross-functions,
̄ᑐᑞᑖᑒᑤᑦᑣᑖᑐᑞᑖᑒᑤᑦᑣᑖᑐᑞᑖᑒᑤᑦᑣᑖ

ᑐᑥᑣᑦᑖᑐᑥᑣᑦᑖᑐᑥᑣᑦᑖ
, as a function of sample size, at 1648 [Hz]. Elements (Cross-functions) [41], [42], and [46] (which are labelled as data

19, 20, and 24, respectively) have the highest values. The effect of worst case on error propagation can be observed with a
sudden increase on error propagation. This is a case where during ፕፏ transformation all generated errors from different

sources (in this case sensors) are added to each other.
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(a) Element [41] of ፕፏ’s admittance, this element has the highest
deviation (in percentage value) from the true configuration, when

sensors have directional error.

(b) Element [42] of ፕፏ’s admittance, this element has the highest
deviation (in percentage value) from the true configuration, when

sensors have directional error.

(c) Element [46] of ፕፏ’s admittance, this element has the highest
deviation (in percentage value) from the true configuration, when

sensors have directional error. This element has also high
deviation (᎑ፘ, but not the highest) on absolute value, and in case
of error cancellation this entry has a relative low absolute value

on absolute, at 1648 [Hz].

Figure 6.20: Case SDU, frequency response function of cross-functions with highest deviation in percentage value (Figure.C.1).

6.3.5. Evaluating the correctness of Monte Carlo simulation

In part. I of this thesis., in section.2.6.3, the characteristic of high-quality Monte Carlo simulation are
listed (Sawilowsky [27]). We are confident (we checked it several times) that the algorithm used is
correct and is proper for what is being used, and the proper sampling technique is used, and the
generated errors are correctly random. Figures in Appendix.?? shows that the number of samples is
enough to ensure the accurate results since the mean value of error (separately for each impact) after
a massive number of sampling converges to (almost) zero.

In order to be able to check the correctness of Monte Carlo simulation, we need to be sure we used a
sufficient number of samples. Figure6.21 shows that the mean value of the error of each direction for
each impacts is converging to a very small value.
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Figure 6.21: Converging the mean value of impact’s positional error as a function of sample size.

6.4. Discussion

In this section, we compare the numerical results of four cases; IPU, IDU, SPU, and SPU. Case of IDU
was presented in the current chapter, the results of other cases are shown in Appendix.F, H, and H.

6.4.1. Comparing numerical results of IPU and IDU cases

We comparing the deviations on the 𝑉𝑃’s admittance caused by both types of impact’s errors, IPU, and
IDU, of all types of mode shapes. We can observe that a directional uncertainty of 5 degrees on im-
pacts may cause higher error generation on the 𝑉𝑃’s admittance than a 2 mm positional uncertainty on
impacts. This comparison is based on the worst-case scenario when no error cancellation can happen.

For both cases, the amount of this error generation significantly depends on the direction of the errors,
and the chance of error cancellation.

6.4.2. Comparing positional error and directional error on Sensors, numerical
results

The numerical results of all four cases for each type of mode shape is given in Figure.B.1, and B.2.
Comparing case SDU and SPU shows that the directional error of 5 degrees (on a single normal axes
of sensor) causes less error on the most sensitive cross-functions of 𝑉𝑃 than the positional error of 1
mm, except on Torsional mode shapes, where the amount of generated errors are comparable.

6.4.3. Comparing the PU/DU on sensors and impacts, numerical results

Based on the Component Mode Synthesised method, at each mode shape, the DoFs with the highest
modal value are governing the admittance at and around resonance corresponds to that mode shape.
A cross-function between these DoFs has the highest value at and around those resonances.
If any error causes a change in the contribution of just one of these DoFs (an input or an output), then
the modal values of the other one are still significant and governing. The generated errors are also
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becoming notable, comparing with other cross-functions.

This is the reason that in the presence of uncertainty on impacts, we are expecting the highest devia-
tions (on absolute value) on the rows. These rows correspond to the highest response and motion of
that mode shape. In the case of error cancellation, the deviation is more observable on translational
cross-functions than rotational/rotational ones. This is confirmed by numerical results.

For the same reason, if there is an error on the sensor mounting, then we expect to see the most de-
viations on the columns. These columns correspond to force DoFs with the highest modal values.

For example consider the resonances corresponds to lateral bending (Figure.C.5, Figure.H.1, Figure.??
and Figure.6.3):
In the case of errors on sensors, for both rotational and directional uncertainty, the deviation on the
admittance Δ𝑌ፕፏΔ𝑌ፕፏΔ𝑌ፕፏ is highest on the cross-functions corresponding to the moment around 𝑧-direction,
𝑀፳. This is observed even with error cancellation.

6.4.4. Effect of error cancellation on sensors, numerical results

The Results of directional-error cancellation on sensors is presented on Appendix.C. In this case each
sensor has an rotational error in all directions, and not just in one direction. Having error on all direc-
tions for all sensors made them able to cancel the errors of each other.
Figure.?? gives a comparison of most sensitive cross-functions to SDU with- and without error cancel-
lation.

6.4.5. Comparing analytical approach and numerical results

Correctness of symmetrical impacts placement on error reduction

Two more impacts are added to make the impacts positioning with respect to 𝑉𝑃 as symmetrical as
possible, symmetry for impacts which are exciting the structure on 𝑦-direction.
Figure.6.22 compares the symmetrical impacts placement and non symmetrical impacts placement.
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1st Lateral
Bending

@ 1340 [Hz]

@ 1955[Hz]

@ 2147 [Hz]

IPU: consistent uncertainty, all directions,
on impacts acting on y-direction

Left side view

Right side view

(b)
Non-symmetrcial
impacts placement

(a)
Symmetrcial
impacts placement

2nd Lateral
Bending

3rd Lateral
Bending

Figure 6.22: Error cancellation (IPU) on ፕፏ’s FRF due to symmetrical impacts placement. IPU (impacts positional error) is a
consistent positional uncertainty on impacts acting on y-direction, error is exactly 2mm all possible direction.
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Conclusion

Building test-basedmodels for EDS (Experimental Dynamic Substructuring) require very accurate mea-
surement, and this thesis examines how uncertainty on sensors and impacts affects the accuracy of
the test-based model.
The propagation of the positional and directional uncertainties on sensors and impacts into the cal-
culation of super element’s (so-called Virtual Points, 𝑉𝑃) FRF are investigated analytically as well as
numerically.
The main question and its sub-questions of this study were as follows;

• How uncertainty in the position and direction of the measuring equipment propagates to the fre-
quency response function of the super element (so-called Virtual point, 𝑉𝑃).
– Which error at which amount is the most dominant error source?
– At which frequencies we can expect the less precise?

7.1. Conclusion

This chapter gives the answer to these questions, and summarises the conclusions of this thesis.

The most dominant error source
Based on the local mode shape motion of measurement area, and using the Component Mode Syn-
thesized method; expectations can be made on the inputs’ or outputs’ DOF with dominant effect on
error generation for a particular mode shape.

According to the Component Mode Synthesized method, the modal values of each input and output
(force and response) defines the behavior of admittance at and around each resonance. These modal
values (of both input and output) are depending on the mode shape motion. DOFs with the highest
modal value for a specific type of mode shape are playing a significant role in error propagation. Any
action leading to an extra contribution of these DoFs leads to a significant change on the FRF at- and
around frequencies correspond to that particular mode shape.

At each mode shape, the impacts acting in the same direction as the movement direction of the mode
shape (MDMS) have the highest modal values, comparing with all other impacts directions.
If there is a directional deviation on these impacts, the portion of the contribution of these high modal
value will decrease, and instead, some lower values will add.
On the other hand, the same directional deviation on other impacts (which their primary directions is
not the same as the MDMS) have smaller modal value at that certain mode-shape.
A directional deviation, with the same direction as mode shape movement direction on these impacts,

103
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will increase the modal value of those impacts. A portion of these primary low modal values will be
replaced by recently activated DOF with high modal value. Since these new added modal values are
high, a portion of them is also high. Consequently, the FRF at- and around frequencies corresponds
to that type of mode shape will deviate the most.

This thesis shows, analytically as well as numerically, that the dominant error source (with a significant
effect on error generation) for a particular type of mode shape has the same direction as that particular
type of mode shapes.

Guide line:
We can suggest if a certain mode shape of the structure is on interest, make sure the impacts
acting perpendicular to that specific mode shape direction is hitting the structure as close as
possible to the assigned direction.

Frequencies with less precise expectations
This thesis shows analytically and confirms with numerical results that the error generation of a par-
ticular error (for example, a specific error direction for positional uncertainty in an impact) is mode
shape- and frequency-dependent. Moreover, the propagated errors into Virtual Point admittance are
also mode shape- and frequency-dependent.
Since the dominant error generation depends on the mode shape motion, the 𝑉𝑃’s cross-functions with
least precision can also be defined.

At each mode shape, the DoFs having the highest modal value (at that mode shape) are governing
the admittance at and around resonance corresponds to that mode shape. A cross-function between
these DoFs has the highest value at and around those resonances.
If the contribution of just one of these DoFs (an input or an output) is changing, then the modal values
of the other one are still significant and governing. Then, the generated errors for these cross-functions
are also becoming notable, comparing with other cross-functions.

The amount of the error propagation caused by dominant error source
By studying the error generation caused by incorrect and inaccurate transformation operators, we ob-
tain the amount of the influence of each dominant error source on the calculation of the forces and
responses of Virtual Point, on both rotational and translational forces and responses.

Table.5.2.11 summarizes all the errors on the calculation of forces and responses (for both rotational
and directional kind of error).

It is also shown that based on the decomposition of transformation matrices, the rotational/ rotational
cross-functions are the most sensitive ones to both positional and directional uncertainties, when we
are looking to the changes in absolute value.

Error Cancellation
The direction of the generated errors on rotational part (rotational responses or moments) is depending
on the sign of error direction, and on the sign of the relative distance of the error source to 𝑉𝑃 (sign of
𝛿𝜃 and 𝑟፱.)
Further, the amount of generated errors on rotational parts (rotational responses or moments) is de-
pending on the distance of measure point to 𝑉𝑃, and the amount of uncertainty.
Altogether, there is a possibility for an error cancellation, where the generated errors with different signs
can cancel each other. If the amount of these errors is also comparable, then a significant reduction
on the error propagation can happen. The numerical results also confirm this possibility of significant
error cancellation strongly.
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In the case of IPU (Impacts Positional Uncertainty), the symmetrical placement of impacts and consis-
tency on applying the error can lead to the best error cancellation on rotational/rotational cross-functions
of 𝑉𝑃. The consistency of applying impacts means having a bias positional error, for example, most of
the time hitting the North-East of the true position.

In case of impacts, the error cancellation is more plausible; and, error cancellation in sensors is much
challenging. The main challenge is the need to use more sensors all-around 𝑉𝑃.

Guide line:
In order to reduce the error propagation caused by Impacts Positional Uncertainty (IPU), place
the impacts around 𝑉𝑃 as symmetric as possible on all possible directions, and try to be
consistent in hammering, section6.2.3.
Note: as long as measuring equipment and 𝑉𝑃 remain on the linear area, the placement of
inputs and outputs (with respect to 𝑉𝑃) does not have an influence on the amount of error
propagation into translational transformation of 𝑉𝑃’s FRF.

Guide line:
Significant error reduction on sensors, SDU case. Figure.C.5.

Maximum error generation
It is numerically shown that if all the generated errors, including dominant ones, have the same direc-
tion, then these errors will be added on top of each other, and the maximum error can be generated.
The difference of this maximum error generation with the true value could be considered as the maxi-
mum expected error.

Error generation in percentage value:
In case of directional error, the portion of replaced modal value remains constant for a certain amount
of directional error. This leads to greater percentage change on FRF for measuring point with primary
low modal value.

Comparing the uncertainty propagation on impacts; IPU VS IDU
We compared the deviations on the 𝑉𝑃’s admittance caused by both types of impact’s errors, IPU, and
IDU, separately for all types of mode shapes. We observed from numerical results that a directional
uncertainty of 5 degrees on impacts may cause higher error generation on the 𝑉𝑃’s admittance than a
2 mm positional uncertainty on impacts. This comparison is based on the worst-case scenario when
no error cancellation can happen.
For both cases, the amount of this error generation significantly depends on the direction of the errors,
and the chance of error cancellation.

Comparing the uncertainty propagation, sensors VS impacts
In the presence of uncertainty on impacts, we are expecting the highest deviations (on absolute value)
on the cross-functions on a same row of admittance. This(ese) row(s) corresponds to response DoF(s)
with the highest response and motion of that particular mode shape.

Further, if a sensor has a mounting error, then we expect to see the most deviations on the cross-
functions on the same columns of admittance. These columns correspond to force DoF(s) with the
highest modal values.

For example, in the case of IDU, some elements on the fourth row (element [46]) have the greatest
changes on the absolute value of amplitude at frequencies correspond to lateral bending. Row four
corresponds to rotational around x-axes. At lateral bending, the beam also rotates around x-axes.

Error propagation on higher numbers of each mode shape type



106 7. Conclusion

If the measured point is still on the same side of stand node, a certain amount of positional error 𝛿𝑟፱ will
cause higher error generation on higher frequencies for the higher number of a particular mode shape,
section.5.2.3. This is also confirmed by numerical results.
This is related to the distance ofmeasure point (and 𝑉𝑃) to the stand node; smaller the distance between
the measuring point (and 𝑉𝑃) to stand node, the higher the error propagation into 𝑉𝑃’s admittance. In
other words, higher the number of a certain type of mode shape, higher the error generation and prop-
agation.

Effect of 𝑏፱𝑏፱𝑏፱ (distance between 𝑉𝑃𝑉𝑃𝑉𝑃 and a stand-node) on percentage modal changes of 𝑉𝑃𝑉𝑃𝑉𝑃
For a set of measurement points and 𝑉𝑃, and for a certain type of mode shape, on higher number of a
mode shape type, we have a reduction in the distance between 𝑉𝑃𝑉𝑃𝑉𝑃 and a stand-node, 𝑏፱,ፕፏ. From the
analytical approach, We expect less percentage error on VP (𝑃ፕፏ) for the higher number of that type
of mode shape. However, the numerical results did not confirm these expectations, for all mode shapes.

Guide line:
In order to reduce the percentage error propagation, place the 𝑉𝑃 more close to stand node
than the measured point to stand node (section.5.2.7).

Effect of nonlinearity on error propagation into 𝑉𝑃𝑉𝑃𝑉𝑃’s admittance
If the measuring point and 𝑉𝑃 are not placed on the linear regime, then the calculated FRF at 𝑉𝑃 is
much smaller than the real values of that point (section.2.5.3). Also, the amount of error generation in
the nonlinear regime in a real case is much higher than the expectation based on linear assumptions. It
means, in the nonlinear regime, the error propagation is higher than the linear regime for both absolute
and percentage values.
However, in the nonlinear regime, as long as 𝑏ፕፏ,፱ (distance between 𝑉𝑃 and stand node) is smaller
than 𝑎፱ (distance between measuring point and stand node), the generated percentage error on 𝑉𝑃
(𝑃ፕፏ) is smaller than the measurement point.

Guide line:
Since we need to be sure measuring equipment and 𝑉𝑃 are placed on the linear region, it is a
good practice to locate the measurement equipment as close as possible to 𝑉𝑃, minimizing 𝑟፱,
to make sure that we accomplish the linearity assumption.

7.2. Recommendations

During the analytical approach, we have discussed multiple factors that could affect the error propaga-
tion. For a few of them, the numerical results did not confirm our expectations form analytical analysis.
These unexpected results can be of interest for future work.
Moreover, by the knowledge of this thesis, the research topic can be expanded for future works. Fur-
thermore, the chosen method to observe the sensitivity of error propagation can be evaluated for the
future researches.

How to evaluate the sensitivity on error propagation, amplitude VS phase
We have seen that the propagated error (in absolute values) in some cross-functions of 𝑉𝑃 is higher
than the other ones. However, if we are looking to the FRF of these cross-functions, the changes are
not very visible. The percentage error in these cross-functions could be high or low.
Also, the phase change of these cross-functions is not very sensitive to uncertainty.

There are also some cross-functions of 𝑉𝑃, with high sensitivity to errors in absolute value, in which their
FRF (in case of uncertainty) has a visible deviation from its uncertain case. For these cross-functions,
the phase is more sensitive to changes.

In this thesis, we focused on the changes in the amplitude of the resonance. Since it seems that phase
changes are more sensitive than amplitude when the deviation on FRF is observable, it is maybe a
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better practice to study the variation on phase at resonances.

Modal map
It has been shown that the linearity assumption is crucial for accurate transforming the measured data
into Virtual Point.
From FEM model, we can extract the modal values of each node. If we can find an area where the
modal values of its nodes have a linear relation, then maybe we could call this area a rigid region,
where can be used to place the sensors and impacts and Virtual Point.

Occurrence of multiple error sources in the same time
This thesis studied the positional and directional uncertainty on the impacts and sensors separately.
In real measurement, these all can happen at the same time. We recommend for future works to com-
bine these errors on the calculation of 𝑉𝑃’s FRF, which can be done based on the founding of this thesis.

Error cancellation on translational/rotational cross-functions of 𝑉𝑃𝑉𝑃𝑉𝑃
This thesis shows the way we can reduce the error propagation into rotational/rotational cross-functions
of 𝑉𝑃. We recommend a further study to reduce the error propagation also on translational/rotational
cross-functions of 𝑉𝑃.
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Appendix A

𝛿𝜃፲ on impact 𝐵.

Vertical Bending

𝑠𝑡𝑎𝑛𝑑 𝑛𝑜𝑑𝑒

𝛼

A

C

𝑣𝑝

𝜙፱ ≈ 𝜙፲ ≪ 𝜙፳

𝑟፱,ፁ
𝑟፲,ፁ 𝐹ፁዅ፮፝

𝐹ፁዅ፭፫፮፞

𝑧

𝑥

𝑦
𝛿𝐹፳ዅ፮፝ = 𝐹ፁ,፮፝(𝑆𝑖𝑛𝛿𝜃፲)
𝛿𝐹፱ዅ፮፝ = 𝐹ፁ,፮፝(1 − 𝐶𝑜𝑠𝛿𝜃፲)

𝛿𝜃፲

𝑟፳,ፁ

𝐹ፁዅ፮፝

𝐹ፁዅ፭፫፮፞
𝛿𝜃፲

B

Figure A.1: verticalBending deltaZ impactB UD

First we obtain the true transformation matrix 𝑅𝑅𝑅፭፫፮፞ by substituting the directional difference between
impact 𝐵 and 𝑉𝑃, which is 𝛿𝜃፲, on rotational part (around 𝑥 axes) of Eulerian rotational matrix𝐸𝐸𝐸. (Since
the impacts and 𝑉𝑃 have the same generalized coordinate, the relative angular difference between
impact 𝐵 and 𝑉𝑃 is the uncertainty 𝛿𝜃፲.) By comparing true and uncertain transformation matrices
(which gives 𝛿𝑅𝛿𝑅𝛿𝑅፟) the generated error on the calculation of forces and moment of 𝑉𝑃 can be obtained.
Note that the true direction of this impact (𝐵) is along 𝑥 axes (𝑓ፁ = 𝑓፱ , 𝑓ፁ,፲ = 𝑓ፁ,፳ = 0).

forces B:{
𝛿𝑓ᑌᐻ,ᒉᒍᑪᑩ,ᑧᑡ = −𝐹ᑩ.(1 − 𝑐𝑜𝑠𝛿𝜃ᑪ)
𝛿𝑓ᑌᐻ,ᒉᒍᑪᑪ,ᑧᑡ = 0
𝛿𝑓ᑌᐻ,ᒉᒍᑪᑫ,ᑧᑡ = −𝐹ᑩ.𝑠𝑖𝑛𝛿𝜃ᑪ

Moments:{
𝛿𝑀ᐻᑌ,ᒉᒍᑪ

ᒍᑩ ,ᑧᑡ = 𝐹ᑩ.𝑟ᑪ.𝑠𝑖𝑛𝛿𝜃ᑪ
𝛿𝑀ᐻᑌ,ᒉᒍᑪ

ᒍᑪ ,ᑧᑡ = 𝐹ᑩ[𝑟ᑩ.𝑠𝑖𝑛(𝛿𝜃ᑪ) − 𝑟ᑫ(1 − 𝑐𝑜𝑠𝛿𝜃ᑪ)]
𝛿𝑀ᐻᑌ,ᒉᒍᑪ

ᒍᑫ ,ᑧᑡ = −𝐹ᑩ.𝑟ᑪ.(1 − 𝑐𝑜𝑠𝛿𝜃ᑪ)
(A.1)

Forces and responses of 𝑉𝑃, in the presence of DU, lateral bending

On lateral bending, any directional error which will lead to the contribution of forces with the same
direction as the mode shape motion, will cause a significant error on the measurement, and if the
transformation is not adjusted with it will cause error on the calculation of forces and moments (also
responses) of 𝑉𝑃.
We have seen that directional error 𝛿𝜃፱ on impacts 𝐶 and directional error 𝛿𝜃፳ on impacts 𝐵 generates
the most deviations on FRF, at and around frequencies corresponds to this mode shape.
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Figure A.2: UD impactC deltatetax

When impact 𝐶 (which supposed to excite the structure along 𝑧 axes) contains a directional error around
𝛿𝜃፱, (and if the transformation matrix is not adjusted) we expect the fallowing error generation on the
forces and the moments of 𝑣𝑜.

forces C:{
𝛿𝑓ᑌᐻ,ᒉᒍᑩᑩ,ᑧᑡ = 0
𝛿𝑓ᑌᐻ,ᒉᒍᑩᑪ,ᑧᑡ = −𝐹ᑫ(𝑠𝑖𝑛𝛿𝜃ᑩ)
𝛿𝑓ᑌᐻ,ᒉᒍᑩᑫ,ᑧᑡ = −𝐹ᑫ(1 − 𝑐𝑜𝑠𝛿𝜃ᑩ)

Moments:{
𝛿𝑀ᑌᐻ,ᒉᒍᑩ

ᒍᑩ ,ᑧᑡ = 𝐹ᑫ[𝑟ᑪ.(1 − 𝑐𝑜𝑠𝛿𝜃ᑩ) + 𝑟ᑫ.𝑠𝑖𝑛𝛿𝜃ᑩ]
𝛿𝑀ᑌᐻ,ᒉᒍᑩ

ᒍᑪ ,ᑧᑡ = −𝑟ᑩ.𝐹ᑫ.(1 − 𝑐𝑜𝑠𝛿𝜃ᑩ)
𝛿𝑀ᑌᐻ,ᒉᒍᑩ

ᒍᑫ ,ᑧᑡ = 𝑟ᑩ.𝐹ᑫ(𝑠𝑖𝑛𝛿𝜃ᑩ)
(A.2)

Impact 𝐵 with reference direction along 𝑧 also has a dominant directional error which is 𝛿𝜃፳. This error
causes an error generation on forces and moments of 𝑉𝑃 which are as follow:
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Figure A.3: UD impactB deltatZ

forces B:{
𝛿𝑓ᑌᐻ,ᒉᒍᑫᑩ,ᑧᑡ = −𝐹ᑩ(1 − 𝑐𝑜𝑠𝛿𝜃ᑫ)
𝛿𝑓ᑌᐻ,ᒉᒍᑫᑪ,ᑧᑡ = 𝐹ᑩ(𝑠𝑖𝑛𝛿𝜃ᑫ)
𝛿𝑓ᑌᐻ,ᒉᒍᑫᑫ,ᑧᑡ = 0

Moments:{
𝛿𝑀ᑌᐻ,ᒉᒍᑫ

ᒍᑩ ,ᑧᑡ = −𝐹ᑩ.𝑟ᑫ.𝑠𝑖𝑛𝛿𝜃ᑫ
𝛿𝑀ᑌᐻ,ᒉᒍᑫ

ᒍᑪ ,ᑧᑡ = 𝐹ᑩ.𝑟ᑫ(1 − 𝑐𝑜𝑠𝛿𝜃ᑫ)
𝛿𝑀ᑌᐻ,ᒉᒍᑫ

ᒍᑫ ,ᑧᑡ = 𝐹ᑩ[𝑟ᑪ.(1 − 𝑐𝑜𝑠𝛿𝜃ᑫ) + 𝑟ᑩ.𝑠𝑖𝑛𝛿𝜃ᑫ]
(A.3)

take all 𝑆𝑖𝑛(𝛿𝜃 = 𝛿𝜃) and 𝐶𝑜𝑠(𝛿𝜃 = 1) because the dominant error is in the direction of delta sin!!!!



B
Comparison of all cases from numerical

results

This part compares the results of all four cases; IPU, IDU, SPU, and SDU, for each group of mode
shape type. In each case, just the position or just the direction of just sensors or impacts are changed.
In each case, the position (or the direction) of all the sensors (or impacts) changes, with the same
amount. The position of sensors and impacts are changed 1 and 2 mm, respectively. The directional
error for both sensors and impacts is 5 degrees.
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C
SDU, Sensors Directional Uncertainty

C.1. Case SDU, without error cancellation

We take an assumption, sensors are sticking perfectly to the structure and there is no rotational errors
on those directions. It means each sensor may have a rotational error on just one direction, which is
rotating around the normal axes of the surface of structure. The amount of rotational error is equal to
5 degrees.

In every column of each figure, one of the sensors is rotating around the normal-axes of the surface.
The most right column shows a case where all sensors contain rotational uncertainty.

From Figure.C.1 we can see that in frequencies corresponds to lateral bending motion, the rotational
error on sensors #3 is the dominant error source (second column from right of Figure.C.1). The reason
could be that in lateral bending, the sensor 3 has the most motion and its modal values are y-direction
is significant. Slightly rotation around x-axes will cause that two channels of this sensor record data
also from the y-direction. Since the motion of this sensor is significantly higher than other sensors, this
directional uncertainty becomes a dominant directional error source. Since the impacts do not have
any uncertainty, their value for corresponding DoFs remains high. Moreover, the dominant motion of
lateral bending is rotation around z axes, 𝜃፳. That is the reason the most sensitive cross-function (in
absolute value comparison) corresponds to 𝑀ፙ.
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C.2. Case SDU, effect of error cancellation on sensors

The following table (Table.C.5) is representing the deviation on admittance on resonances corresponds
to lateral bending (first, second, and third lateral bending) when each sensor may have Directional er-
rors in all direction. In this case we can see the lower error generation on virtual point due to the error
cancellation. This error cancellation is a consequence of having more possibility of making errors which
can cancel each other. For this table, the amount of directional error is 2 degree, for each direction.
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Figure C.5: Super position of errors for SDU Amount of directional error is exactly 5 degree.





D
Effect of Error cancellation, case SDU

From Figure., C.5, C.2, C.3, and C.4 we can observe that 𝑉𝑃’s elements [56], [45], [44], and [64] are
respectively the most sensitive 𝑉𝑃’s cross-functions to the sensor’s directional errors, for lateral bend-
ing, vertical bending, torsion and torsion+lateral bending (mixed mode shape), respectively.
From results that partially is shown, we observed that element [46], [45], [44] and [64] are the most
sensitive to SDU, when the sensors have some error cancellations.

In order to see the effect of error cancellation we consider the FRF of element [56] and [46] 𝑉𝑃’s admit-
tance which contains the highest deviation on lateral bending(s) with- and without error cancellation.
Figure.D.1 also shown element [45] which is the most sensitive cross-function for vertical bending, for
both cases of with and without error cancellation. The FRF of cross-functions [44] and [64] are shown
to see the effect of error cancellation in frequencies corresponds to a mode shape with torsion motion,
and also for mixed motion (torsion+vertical bending).
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126 D. Effect of Error cancellation, case SDU

(a) 56, lateral bending SDU WithAndWithoutErrorCancellation (b) 46, lateral bending SDU WithAndWithoutErrorCancellation

(c) 45 Vertical bending, SDU WithAndWithoutErrorCancellation

(d) 44, Torsion and torsion+Vertical Bending, SDU
WithAndWithoutErrorCancellation

(e) 64, Torsion and torsion+Vertical Bending, SDU
WithAndWithoutErrorCancellation

Figure D.1: Case IPU, comparison of the most sensitive cross-functions with and without error cancellation



E
Error propagation in percentage

value;case SDU

Figure.E.1 shows the heatmap of percentage error, 𝑃ፕፏ =
ጂፘᑍᑇ
ፘᑍᑇ,ᑥᑣᑦᑖ

, for different type of mode shapes.
From section.5.2.5 we expected that the percentage error on 𝑉𝑃 will decrease for higher number of a
particular mode shape, for a certain amount of error. This results confirms the expectations for just one
types of mode shapes (mixed mode shape of torsion and vertical bending), but not for all of them.
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Figure E.1: Percentage value of propagated error to ፕፏ, case SDU, directional error is exactly 5 degree on all directions.



F
IPU; Impacts Positional Uncertainty

F.1. IPU, Impacts Positional uncertainty, NoError Cancellation, Non-
symmetrical Error direction

129



130
F.IPU

;Im
pacts

PositionalU
ncertainty



F.1.IPU
,Im

pacts
Positionaluncertainty,N

o
ErrorC

ancellation,N
on-sym

m
etricalErrordirection

131

1st Lateral
bending

2nd Lateral
bending

ᑧᑡ
ᑚᑞᑡᑒᑔᑥᑤ
Ꮋ Ꮍ ᎳᎵ ᑧᑡ

ᑚᑞᑡᑒᑔᑥᑤ
Ꮆ Ꮍ Ꮊ

3rd Lateral
bending

@ 443 [Hz]

@ 1648 [Hz]

@ 2335 [Hz]

IPU: y-direction IPU: x-direction DU: all directions
(A),(B),(C)

IPU: impacts 9-13
(C)

IPU: impacts 1-3
(B)

ᑧᑡᑚᑞᑡᑒᑔᑥᑤ
Ꮃ Ꮍ Ꮅ

IPU: impacts 4-8
(A)

IPU: impacts 9-13
(C)

ᑧᑡ
ᑚᑞᑡᑒᑔᑥᑤ
Ꮋ Ꮍ ᎳᎵ ᑧᑡ

ᑚᑞᑡᑒᑔᑥᑤ
Ꮃ Ꮍ Ꮅ

DU: z-direction

IPU: impacts 1_3
(B)

IPU: impacts 4_8
(A)

ᑧᑡ

ᑚᑞᑡᑒᑔᑥᑤ
Ꮆ Ꮍ Ꮊ

ᑧᑡ

Figure F.1: Case IPU, NonSymetricalError NonSymetricalImpacts BendingY, Super position of errors for IPU Amount of directional error is exactly 2mm.
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Figure F.2: Case IPU, NonSymetricalError NonSymetricalImpacts BendingZ, Super position of errors for IPU Amount of directional error is exactly 2mm.
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Figure F.3: Case IPU, NonSymetricalError NonSymetricalImpacts Torsion, Super position of errors for IPU Amount of directional error is exactly 2mm.
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Figure F.4: Case IPU, NonSymetricalError NonSymetricalImpacts Torsion+BendingZ, Super position of errors for IPU Amount of directional error is exactly 2mm.
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F.2. IPU, Impacts Positional uncertainty, with Error Cancellation
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Figure F.5: Case IPU, SymetricalError NonSymetricalImpacts BendingY, Super position of errors for IPU Amount of directional error is exactly 2mm.
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Figure F.6: Case IPU, SymetricalError NonSymetricalImpacts BendingZ, Super position of errors for IPU Amount of directional error is exactly 2mm.
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Figure F.7: Case IPU, SymetricalError NonSymetricalImpacts Torsion, Super position of errors for IPU Amount of directional error is exactly 2mm.
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Figure F.8: Case IPU, SymetricalError NonSymetricalImpacts Torsion+BendingZ, Super position of errors for IPU Amount of directional error is exactly 2mm.
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F.2.1. FRF of most sensitive cross-functions for dominant error sources

Now we are applying an error with different values (which are around 5 degree) randomly and for each
independent impact target.
Comparing Figure.F.9b and F.9d confirms our expectations from analytical approach. In these two
cross-functions we can see that uncertainty with the same direction as mode shape (Figure.F.9b, im-
plement uncertainty on y-direction on impacts 9-13 ) causes a higher deviation, than on a direction
(Figure.F.9b, implement uncertainty on x-direction on impacts 9-13 ) where the corresponding modal
values for this mode shape are smaller.
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(a) Single DU on impacts 1,2,3 (B) causing extra excitation along
፲ዅdirection, which causes dominant deviation on element [61]
(᎕ᑫ/ፅᑩ) of ፕፏ. The dominant effect of this uncertainty is the most
on frequencies corresponds to lateral bending (340, 1648, and

2335 [Hz]) , with a motion also along y-direction.

(b) Single DU on impacts 9-13 (C) causing extra excitation along
፲ዅdirection, which causes dominant deviation on element [65]
(᎕ᑫ/ፌᑪ) of ፕፏ. The dominant effect of this uncertainty is the

most on frequencies corresponds to lateral bending (340, 1648,
and 2335 [Hz]) , with a motion also along y-direction.

(c) Single DU on impacts 4-8 (A) causing extra excitation along
፱ዅdirection, which causes dominant deviation on element [66]

(᎕ᑫ/ፌᑫ) of ፕፏ.

(d) Single DU on impacts 9-13 (C) causing extra excitation along
፱ዅdirection, which causes dominant deviation on element [65]
(᎕ᑫ/ፌᑪ) of ፕፏ. The dominant effect of this uncertainty is the

most on frequencies corresponds to lateral bending (340, 1648,
and 2335 [Hz]) , with a motion also along y-direction.

(e) Multiple DU (randomly and independently for each direction) on all
impacts (A,B,C), which causes dominant deviation on element [65]

(᎕ᑫ/ፌᑪ), [66] (᎕ᑫ/ፌᑑ) and [64] (᎕ᑫ/ፌᑩ) of ፕፏ.

Figure F.9: Frequency response function of virtual point (coupling point) elements containing the most deviation in the
presence of directional uncertainty. (a),(b),(c) and (d) are the cases where single directional uncertainty is applied on just a
group of impacts with the same reference direction. The amount of these directional errors are independently and randomly

chosen for the targeted impacts. (d) is the case where all impacts have directional uncertainty, which are chosen independently
and randomly for each impact and each direction. For each case the process is repeated for 15 times, each time each

directional uncertainty is randomly and independently chosen for each impact with a value of around 5 degree.



G
Effect of error cancellation, case IPU

From Figure., F.1, F.2, F.3, and F.4 we can observe that 𝑉𝑃’s elements [66], [54], [46], and [46] are re-
spectively the most sensitive 𝑉𝑃’s cross-functions to the impact’s positional errors, for lateral bending,
vertical bending, torsion and torsion+lateral bending (mixed mode shape), respectively.

The frequency response function of these least precise cross-functions of 𝑉𝑃’s are shown in Fig-
ure.D.1b, D.1c, D.1e. These figures compares the effect of error cancellation on the FRF of the most
sensitive cross-functions of 𝑉𝑃, for each type of mode shape. For each case all impacts have a posi-
tional error of 2 mm.

Figure., F.5, F.6, F.7, and F.8 show the heatmaps of the case of error cancellation on IPU. From this
figures we can see that elements [61], [51], [42] and [43] of 𝑉𝑃 are the most sensitive cross-functions.
The FRF of these cross-functions and the influence of error cancellation is also shown in Figure.G.1.
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(a) 66, lateral bending IPU WithAndWithoutErrorCancellation (b) 61, lateral bending IPU WithAndWithoutErrorCancellation

(c) 54, Vertical Bending, IPU WithAndWithoutErrorCancellation (d) 51, Vertical Bending, IPU WithAndWithoutErrorCancellation

(e) 46, Torsion and Torsion+Vertical bending, IPU
WithAndWithoutErrorCancellation

(f) 43, Torsion and Torsion+Vertical bending, IPU
WithAndWithoutErrorCancellation

Figure G.1: Case IPU, comparison of the most sensitive cross-functions with and without error cancellation
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Figure H.1: SPU LateralBending
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Figure H.2: SPU verticalBending
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Figure H.4: SPUTorsion+verticalBending



I
Transformation matrices

The heatmaps (absolute value) of reference transformation matrices for configuration presented on
section.5.3 is shown in Figure.I.1a and I.1b. As expected (analytical approach, section.??) the lower
part of displacement transformation has highest values, and the right part of force transformation matrix
contains the highest values.

(a) caption (b) caption
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