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Preface

This thesis is based on experimental work performed at the Laboratory for
Aero- and Hydrodynamics (Delft Technical University, Netherlands) from
August 2005 to December 2009. The modeling work evolved later during the
employment at the University of Bremen, Germany. Three reviewed articles
directly arose from the combined work and represent the main contributions
to this thesis:

• Mießner, U., Helmers, T., Lindken, R., Westerweel, J. An analytical
interface shape approximation of microscopic Taylor flows. Exp Fluids
60, 75 (2019).
https://doi.org/10.1007/s00348-019-2719-0

• Mießner, U., Helmers, T., Lindken, R., Westerweel, J. µPIV Measure-
ment of the 3D velocity distribution of Taylor droplets moving in a
square horizontal channel. Exp Fluids 61, 125 (2020).
https://doi.org/10.1007/s00348-020-02949-z

• Mießner, U., Helmers, T., Lindken, R., Westerweel, J. Experimental
investigation of the 3D pressure field of Taylor droplets moving in a
square horizontal microchannel. Exp Fluids 62, 83 (2021).
https://doi.org/10.1007/s00348-021-03189-5

The Chapters 4 (Modeling the Taylor droplet interface), 5 (Flow field of a
viscous Taylor droplet) and 6 (Pressure field and energy dissipation) directly
cite the introductions, results and discussions and the conclusions sections of
the respective above-listed articles. However, all three papers are based on the
same theory and set of measurements and therefore rely on identical methods
and evaluation procedures. Thus, the Chapters 2 (The fluid mechanics of
Taylor droplets) and 3 (Materials and methods) merge the according sections
of the papers. The first Chapter 1 (Introduction) is based on the abstracts
and introduction the three above listed articles. It connects the three papers,
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provides the motivation and context of the work. The last Chapter 7 (Main
conclusions and outlook) restates the important findings and provides an
outlook on how to proceed with the results of this work.
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Summary

Digital microfluidics emerged and established over the last 20 years. The
scope of applications ranges from pharmaceutical to biological, chemical
and even thermal processes. The practical use of Taylor droplets as individ-
ual reaction chambers, mixing vessels or simply as transportation vehicles
on process engineered microfluidic devices allows for precise control and
process intensification of precious materials or sparse samples. Despite this
widespread use of Taylor droplets, some of the fundamental physics of this
flow have not been investigated experimentally.

Continuous Taylor droplet chains in long rectangular microchannels exhibit
a fluctuation of the droplet length, the droplet shedding frequency and
the droplet velocity. The fluctuation of the droplet velocity is connected
to the droplet length distribution in the Taylor flow. As a driving force for
the difference between the droplet velocity and the mean flow velocity a
pressure gradient is predicted that is inverted with respect to the main flow
direction.

A multiplane approach of conventional µPIV is chosen to accurately measure
and reconstruct the 3D3C velocity field and the 3D pressure distribution
inside and outside of a mean quasi-stationary Taylor droplet. A new method-
ology to asynchronously record, extract and compile µPIV raw-images of a
pulsating two-phase flow has been developed successfully to overcome the
severe influence of the droplet length fluctuation.

An analytical interface shape approximation has been developed and veri-
fied, that allows to estimate the position of the motion-deformed dynamic
Taylor droplet interface. This geometrical model uses the Laplace pressure
between the Taylor droplet interface at rest and a moving droplet to deliver
a quantitative relation between the flow related deformation of the caps and
the geometry of the bypass flow of the droplet. Additionally, the interface
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approximation serves as a projection surface to visualize and investigate the
derived flow quantities.

The 3D velocity information allows the detailed investigation of the 3D flow
features such as stagnation regions and the shear rate distribution. The
maximum shear rate is located at the entrances and exits of the wall films
and at the corner flow (gutter) bypassing the Taylor droplet. The regions
of high strain correspond to the cap positions of the Taylor droplets. This
experimental data set allows visualization of the streamlines of the velocity
distribution on the interface of a Taylor droplet and to directly relate it to the
main and secondary vortices of the droplet phase velocity field.

The 3D pressure field is derived and divided into a wall-proximate layer and a
core-flow to describe the phenomenology. At the wall, the pressure decreases
expectedly in downstream direction. In contrast, a reversed pressure gradient
is present in the core of the flow as predicted. It drives the bypass flow of
the continuous phase through the corners and causes the Taylor droplet’s
relative velocity between the faster droplet flow and the slower mean velocity
of the flow. Based on the pressure field the driving pressure gradient of the
bypass flow is quantified and verified with a simple estimation method: the
geometry approximation of the gutter entrances delivers a Laplace pressure
difference.

As a direct measure for the viscous dissipation, the 3D distribution of work
done on the flow elements is calculated. It represents the necessary work
to maintain the stationarity of the Taylor flow. The spatial integration of
this distribution provides the overall dissipated energy and allows to identify
and quantify different contributions of the individual fluid phases, from the
wall-proximate layer and from the flow redirection due to presence of the
droplet interface.

The work presented in this thesis provides detailed insight into the into the
physics of viscous Taylor flow based on experimentally acquired 3D3C velocity
data. The 3D3C velocity field, the 3D pressure field, the 3D distribution of
work as well as the approximate interface model are supplied as electronic
supplementary material of the publications to the fluid mechanics community
to enable a benchmark for CFD and numerical simulations.
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Samenvatting

Digitale microfluïdica is de afgelopen 20 jaar ontstaan en ontwikkeld. Het
toepassingsgebied varieërt van farmaceutische tot biologische, chemische en
zelfs thermische processen. Het praktische gebruik van Taylor-druppels als
individuele reactiekamers, mengvaten of gewoon als transportvoertuigen op
door het proces ontwikkelde microfluïdische apparaten maakt nauwkeurige
controle en procesintensificatie van kostbare materialen of schaarse mon-
sters mogelijk. Ondanks dit wijdverbreide gebruik van Taylor-druppels, is
een deel van de fundamentele fysica van deze stroom niet experimenteel
onderzocht.

Continue Taylor-druppelketens in lange rechthoekige microkanalen vertonen
een fluctuatie van de druppellengte, de frequentie van druppel generatie en
de druppelsnelheid. De fluctuatie van de druppelsnelheid hangt samen met
de druppellengteverdeling in de Taylor-stroom. Als drijvende kracht voor
het verschil tussen de druppelsnelheid en de gemiddelde stroomsnelheid
wordt een drukgradiënt voorspeld die omgekeerd is ten opzichte van de
hoofdstroomrichting.

Een multi-vlakken benadering van conventionele µPIV is gekozen om nauw-
keurig het 3D3C-snelheidsveld en de 3D-drukverdeling binnen en buiten een
gemiddeld quasi-stationaire Taylor-druppel te meten en te reconstrueren.
Een nieuwe methodologie voor het asynchroon opnemen, extraheren en com-
pileren van onbewerkte PIV-beelden van een pulserende tweefasenstroom
die met succes is ontwikkeld om de invloed van de fluctuatie van de druppel-
lengte te overwinnen.

Er is een analytische interface-vormbenadering ontwikkeld en geverifieerd,
waarmee de positie van de bewegingsvervormde dynamische Taylor-druppel
grensflakte kan worden geschat. Dit geometrische model gebruikt de Laplace-
druk tussen het Taylor-druppel gresflakte in rust en een bewegende druppel
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om een kwantitatieve relatie te leveren tussen de stroomgerelateerde ver-
vorming van de doppen en de geometrie van de bypassstroom van de druppel.
Bovendien dient de grensflakte benadering als een projectieoppervlak om de
afgeleide grootheden te visualiseren en te onderzoeken.

De 3D-snelheidsinformatie maakt gedetailleerd onderzoek mogelijk van
de 3D-stromingskenmerken zoals stagnatiegebieden en de verdeling van
de afschuifsnelheid. De maximale afschuifsnelheid bevindt zich bij de in-
en uitgangen van de grenslaag an de en bij de hoekstroom die de Taylor-
druppel omstroomd. De gebieden met hoge spanning komen overeen met de
dop-posities van de Taylor-druppeltjes. Deze experimentele dataset maakt
visualisatie mogelijk van de stroomlijnen van de snelheidsverdeling op het
grensvlakte van een Taylor-druppel en om deze direct te relateren aan de
hoofd- en secundaire wervels van het snelheidsveld van de druppelfase.

Het 3D-drukveld wordt afgeleid en verdeeld in een laag in de buurt van
de muur en een kernstroom om de fenomenologie te beschrijven. Bij de
muur neemt de druk naar verwachting af in stroomafwaartse richting. Daar-
entegen is, zoals voorspeld, een omgekeerde drukgradiënt aanwezig in de
kern van de stroom. Het drijft de bypass-stroom van continue fase door de
hoeken en veroorzaakt de relatieve snelheid van de Taylor-druppel tussen
de snellere druppelstroom en de langzamere gemiddelde snelheid van de
stroom. Op basis van het drukveld wordt de aandrijvende drukgradiënt
van de bypassstroom gekwantificeerd en geverifieerd met een eenvoudige
schattingsmethode: de geometrische benadering van de bypass-ingangen
levert een Laplace drukverschil op.

Als directe maat voor de viskeuze dissipatie wordt de 3D-verdeling van het
werk op de stromingselementen berekend. Het vertegenwoordigt het noodza-
kelijke werk om de stationariteit van de Taylor-stroom te behouden. De
ruimtelijke integratie van deze verdeling zorgt voor de totale gedissipeerde
energie en maakt het mogelijk om verschillende bijdragen van de vloeistof-
fasen, van de grenslaag en van de stroomomleiding door de aanwezigheid
van het druppelgrensvlakte te identificeren en kwantificeren.

Met het werk dat in dit proefschrift wordt gepresenteerd, wordt gedetailleerd
inzicht verschaft in de fysica van viskeuze Taylor-stroming op basis van ex-
perimenteel verkregen 3D3C-snelheidsgegevens. Het 3D3C-snelheidsveld,
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het 3D-drukveld, de 3D-werkverdeling en het benaderende grensflaktemodel
worden als elektronisch aanvullend materiaal van de publicaties aan de
stromingsleer-gemeenschap geleverd om een benchmark voor CFD en nu-
merieke simulaties mogelijk te maken.
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Introduction
1

Once there was a particle
It looked quite nice - just optical
Denied to move - unworkable
No push nor pull observable
It wouldn’t move - that barnacle

This thesis addresses the fluid mechanics of viscous Taylor droplets in rect-
angular microchannels. This confined two-phase flow is established as a
regular distribution of individual droplets translating in a steady droplet chain
separated by compartments of continuous phase (Fig. 1.1). The droplets
investigated in this work feature a thin film of bulk phase fluid prevents the
droplet phase from contacting the wall.

An early application of small confined droplets or bubbles were flow meters.
In channels of circular cross-section, the bubble is assumed to block almost
the entire-cross section of the channel without fluid bypassing the bubble.
Thus, the bubble velocity is used as a measure for the mean flow velocity.
However, a thickening wall film establishes at rising viscous forces which

Fig. 1.1: Taylor droplets (water/glycerin mixture dispersed in 1-octanol) in a mi-
crochannel of 104 µm by 96 µm width and height. The surface tension
forces dominate the viscous forces (Cac “ 0.005) and Stokes-flow condi-
tions apply (Rec “ 0.051q
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needs to be accounted for. Fairbrother and Stubbs (1935) [27] delivered an
empirical relation that describes the effect of the lubricating film at very low
viscous forces in circular capillaries. Taylor (1961) [111] has significantly
expanded investigations into the drops named after him. He extended the
range of available measurements to more pronounced viscous forces and
postulated a re-circulating vortex in the continuous phase. In the same
year Bretherton (1961) [15] used lubrication analysis to describe the film
formation at the transition region between the front cap of the droplet and
the established film along the droplet body. The outcome of Taylor’s and
Bretherton’s work was applied decades later to design complex multi-phase
flow devices on the micro-scale.

Anticipating the importance of an emerging field of research, Feynman pre-
sented in 1959 [29] one of the first considerations of the potential of nano-
and microtechnolgy. In the following decades, new ways of surface struc-
turing evolved - mainly for production of electronic circuitry (Micro-Electro-
Mechanical Systems - MEMS) and optics (Micro-Opto-Electro-Mechanical
Systems - MOEMS). Emerging methods like photolithography, electroplating
and molding opened the door for the development of modern microfluidic
equipment. The idea to integrate complex dedicated laboratory processes
onto miniaturized devices lead to the evolution of "lab-on-a-chip" (LOC) con-
cepts and ultimately to the translation of entire analytic process sequences
towards "micro total analysis systems" (µTAS). It is the lithographic nature
of the production process of these microfluidic devices, that results the typ-
ical nearly rectangular shape of the microchannel cross section of these
systems.

The term microfluidics refers to the research on and the technology of fluid
handling in channels of microscopic dimensions. The geometric size of the
structures ranges between 1 µm and 1 mm. With microfluidic approaches
sample volumes of femtoliter-size can be precisely handled [18, 106, 122]
and processed. The translation of unit operations and unit processes into the
micro-scale is called micro process engineering. In order to reliably analyze
a series of samples of different origin or property, samples need to be kept
separate from each other to avoid cross-contamination. One obvious solution
to this issue is the usage of individual droplets and bubbles, which is referred
to as digital microfluidics or microscopic multiphase flows. An extensive
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overview on the evolution of microfluidics and the use of two-phase flow is
given by Shang et al. [104].

In order to build a reliable analytic platform applying digital microfluidics, it
is of major interest to keep the process properties constant. The comparability
of individual flow segments is affected by the equality of the geometric and
hydrodynamic conditions of individual droplets. The amount of segment
volume, the magnitude of the available interface area and the adjoining flow
fields strongly influence the gradients of the driving forces for heat and mass
transfer.

Despite Taylor flows being simple to establish and easy to apply, the hydrody-
namic interaction inside Taylor droplet chains is complex. The self-organized
droplet and bubble formation and their subsequent motion through the mi-
crochannels are essentially pressure dependent. Compared to a single-phase
flow of the same length, individual droplets or bubbles exert an increased
pressure drop to the microchannel outlet [125] that rises with droplet length
[46].

Given a fixed total pressure gradient that drives the flow through the channel,
each droplet adds a length-specific pressure loss to the outlet channel. The
elevated pressure loss in the outlet, causes a gradual formation of smaller
droplets with each newly generated droplet that enters the outlet. Shorter
droplets indeed cause less pressure loss but they have the tendency to trans-
late faster through the channel than the average speed of the Taylor flow
[41]. In extreme cases, when the pressure in the outlet is too high, the inflow
of disperse phase is even stopped and recommences only after sufficient
droplets have vacated the channel to allow for new droplets to be gener-
ated. Thus, depending on the microchannel length, an ascending number of
droplets sensitively feedback on the formation [81] and cause a droplet size
distribution and a residence time distribution [32].

This thesis intends to add a substantial step towards a better understanding
of the physics of Taylor flows in rectangular microchannels. Experimental
fluid dynamics has been chosen over a computational fluid dynamics (CFD)
approach to establish well investigated reference data that provides a starting
point for parameterized numerical simulations. A model for the approxi-
mation of the dynamic interface shape of moving Taylor droplets (Chap. 4)
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allows to visualize and investigate physical quantities of the flow directly
at the interface position and relates its deformation to the individual flow
conditions. The experimentally measured data set of the flow field (Chap. 5)
allows to derive the pressure field (Chap. 6) of an average droplet in the flow.
The results of this thesis may improve the reactor design and operation for
digital microfluidics and can be used as benchmark data for CFD-Studies.

1.1 Motivation

The resources of our planet are restricted. The unworried consumption-
oriented way of satisfying mankind’s needs already threatens the functional-
ity of our biosphere. The coupled gaseous, liquid and solid emission streams
interact with the ecological balance of our habitat [44]. From a process engi-
neering perspective, the dissipation of energy and consumption of material
resources is a key issue to address, when transforming our economic and
ecological conduct into a sustainable development.

One technological way to address this issue is process intensification, which is
defined as the targeted improvement of processes at the unit operations, tasks
and phenomena level in order to increase process efficiency and improve
sustainability [33]. The design and usage of innovative operating conditions
or the combination of simultaneous physical (e.g. mixing) and chemical
processes (reaction) aims at faster global kinetics [7]. Here, global reaction
kinetics refer to the integral reaction kinetics of a entire unit process, where
the intrinsic reaction rates of the educts is usually masked by e.g. limitations
in mass transfer due to mixing inefficiency. In this context, well-controlled
processes are essential e.g. to handle chemical reactions in their optimal
operational window.

Constant isothermal conditions at the reaction optimum promote maximum
yield and selectivity. In conventional macroscopic processes, reactor dimen-
sions are on the scale of centimeters to several meters. In these larger reaction
volumes a high reaction enthalpy causes temperature gradients that deviate
from the isothermal ideal and decrease the yield. The resulting inefficient
processes strongly increase the downstream processing effort to separate the
main from the side-products.
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Microscopic process engineering delivers an entire toolbox of effects and
methods, that proved to be well-suited for process intensification [58]. It
applies constrained flows of gases and liquids on a small scale. Unit oper-
ations and processes are realized on length scales of the flows that range
typically between 1 µm and 1 mm. Rather than miniaturization of the process,
it is the objective of micro process engineering to use the striking physical
advantages that arise from the application of processes on such small scales:
small economical sample volumes, well-controlled laminar flow conditions,
high surface to volume ratio and short diffusion and conduction distances.
The latter advantages provide excellent precise mixing and promote heat and
mass transfer [12] to achieve the desired optimal reaction conditions. They
are the key to access process intensification potentials.

A major fraction of industrial processes involves multiphase flows. Thermo-
dynamically, a phase is defined as a continuum of homogeneous properties –
a gaseous, solid or liquid phase. Thus, multiphase flows necessarily consist
of two or more immiscible simultaneously flowing phases. Multiphase flows
in microchannels exhibit a variety of flow patterns (Fig. 1.2 a-h). The flow
patterns can be observed in capillaries with vertical as well as in horizontal
orientation, in circular as well as in rectangular microchannels. All flow
patterns occur in pressure driven as well as in volume flow driven set-ups
[118]. In this choice of flow patterns the Taylor flow stands out since it
provides individually addressable reaction compartments with the continu-
ous phase slugs separating individual droplets and a thin lubricating wall
film preventing the contact between the wall and the disperse phase. The
Taylor flow meets the required predictability and definiteness of intensified
processes best.

Applications of droplet microfluidic approaches employ two-phase flows
using either the continuous phase or the disperse phase of Taylor flows to
implement thermal [52, 67, 76], chemical [35, 60, 66, 110], biological [69,
79, 123] or medical [53] processes. Taylor flows enable precise handling
of small sample volumes [30, 122] and Seemann et al. [103] propose the
application of Taylor droplets as consequtive encapsulated process vessels
to enable high-speed processing and circumvent cross-contamination. Chou
et al. [22] published a overview on Taylor flow applications.
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Fig. 1.2: Sketch of observed flow patterns in capillary channels. (a,b): bubbly
flow, (c,d) segmented flow (a.k.a. bubble train flow, Taylor flow, capillary
slug flow), (e) transitional slug/churn flow, (f) churn flow, (g) film flow
(downflow only), (h) annular flow. Reprinted from Kreutzer et al. (2005)
[60] with permission from Elsevier
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Constant stable optimal process conditions in microfluidics are the key to
achieve process intensification. Driving a quasi-stationary Taylor flow requires
a profound understanding the interaction of convection-advection conditions
inside and outside the Taylor droplets. Comprehension of the hydrodynamics
enables to control the flow, narrow the residence time distribution, distribute
the flow evenly in a network of channels, and to adjust the extent of available
interface area for heat and mass exchange.

1.2 Objectives and scope

Microchannel fabrication often necessitates the realization of Taylor flows
in rectangular cross section geometries. The channel structures are inte-
grated in microfluidic chips, that facilitate pressure driven flows. The entire
droplet chain accumulates a total pressure drop from the generation to the
microchannel outlet: each unit of slug and droplet experiences an individual
local driving pressure field in the frame of reference of a single droplet in
that chain.

Besides the lubricating wall films, Taylor flows in rectangular microchannels
feature a bypass flow through the continuous phase-filled corners [60], the
gutters [107]. Depending on the flow conditions, this flow through the
gutters (Fig. 2.3) causes the Taylor droplet velocity to deviate significantly
(up to ˘30%) from the mean velocity of the flow [41, 50]. The droplets
are slower than the average flow velocity e.g. if de-wetting occurs at the
wall films [62] and the proceeding three-phase contact line adds additional
restraining forces to the droplet motion. The droplet can only be faster than
the mean velocity if the local pressure gradient along the Taylor droplet is
reversed with respect to the overall flow direction, i.e. continuous phase is
transported from the frontal slug of the droplet to the slug on the back [3]. A
thoroughly conducted measurement of the 3D-flow field inside and outside
of a Taylor droplet would allow to investigate the volume flow through the
gutters and to derive the driving pressure field.

The locally inverted pressure gradient also affects the shape of the droplet. In
a microscopic channel, the shape of a static confined droplet at rest emerges
due to the energy minimization of the interface. Any flow will exert forces
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on the interface and causes the droplet to dynamically deform. The flow-
related dynamic deformation of Taylor droplets is experimentally observed
by Sauzade and Cubaud [101] and Helmers et al. [40] and qualitatively
explained by Abiev [3].

Controlling the behavior of droplets in a Taylor flow needs thorough under-
standing of the pressure field of the individual Taylor droplet. The pressure
field of Taylor droplets

• causes the convection in the flow supporting heat and mass transfer.

• drives the inner and outer flow field, and with them e.g. the shear
stresses on fragile educts and products.

• forces the by-pass volume flow through the gutters and thus controls
the droplet excess velocity for achieving a narrow residence time distri-
bution.

• generates the overall pressure drop that effects the even dispersion of
droplets in chains.

• feedbacks sensitively on the droplet shedding frequency and thus on
the available exchange interface area.

The shape and the flow field of Taylor droplets are interdependent. They
are connected via the Laplace pressure distribution on the interface. Both
shape and flow are optically accessible with direct digital imaging. In case of
a mismatched index of refraction between the phases, the droplet shape can
be assessed [40]. The flow field may be investigated by means of microscopic
particle image velocimetry (µPIV) [57], when the refractive indices are
matched [39] and tracer particles are added.

In this thesis, a carefully conducted 3D2C µPIV measurement is the basis to
accurately reconstruct the third velocity component of a Taylor flow. Based
on the complete 3D3C velocity field the Navier-Stokes equation permits to
derive the underlying 3D pressure field of a mean Taylor droplet. Additionally,
a 3D model for the dynamically deformed Taylor droplet shape enables to
access the flow and pressure conditions directly at the interface position and
allows to calculate and verify local pressure gradients. A discussion of the
governing forces and the fluid mechanics theory behind this investigation is
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given in Chapter 2. The experimental methods and verification procedures
applied in this thesis are explained in Chapter 3.

In Chapter 4, the three dimensional geometric model to approximate the
interface shape of Taylor bubbles and droplets moving in rectangular mi-
crochannels is developed to describe and quantify the dynamic deformation
of the Taylor droplet. The accuracy of the interface shape model is bench-
marked with averaged µPIV raw-images of the statistical distribution of the
particulate tracer. In the related experiments, the fluidic material system, the
aspect ratio of the channel cross section, and the droplet length are varied.
The model is found to predict the 3D interface position of Taylor droplets
with less than 3% deviation if the viscous forces govern the surface tension
forces.

Chapter 5 presents the results of the multiplane µPIV measurement of the
3D2C velocity distribution of Taylor droplets moving in a square horizontal
microchannel. The third velocity component is reconstructed from the 2D
measurement by means of intergrating the continuity equation [16, 17, 98]
and an accuracy assessment of the reconstruction is presented based on a
volume flow balance of the 3D3C velocity field. The velocity field allows a
detailed investigation of the 3D flow features, such as stagnation regions
and the shear rate distribution. The maximum shear rate is located at the
entrances and exits of the wall films and at the corner flow (gutter) bypassing
the Taylor droplet. The regions of high strain correspond to the cap positions
of the Taylor droplets. This experimental data set allows the visualization
of the streamlines of the velocity distribution on the interface of a Taylor
droplet and to directly relate it to the main and secondary vortices of the
droplet phase velocity field.

Based on the 3D velocity distribution, the 3D pressure field of a Taylor droplet
is accessed in Chapter 6. The pressure field is divided in a wall-proximate part
and a core-flow to describe the phenomenology. At the wall, the pressure
decreases as expected in downstream direction. In contrast, a reversed
pressure gradient is present in the core of the flow that drives the bypass
flow of continuous phase through the corners (gutters) and causes the Taylor
droplet’s relative velocity between the faster droplet flow and the slower
mean flow. Based on the pressure field the driving pressure gradient of the
bypass flow is quantified, and a simple estimation method is verified: the
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geometry of the gutter entrances and the interface tension deliver a Laplace
pressure difference. As a direct measure for the viscous dissipation, the 3D
distribution of work done on the flow elements is calculated, that is necessary
to maintain the stationarity of the Taylor flow. The spatial integration of this
distribution provides the overall dissipated energy and allows to identify and
quantify different contributions from the individual fluid phases i.e. from
the wall-proximate layer and from the flow redirection due to presence of
the droplet interface. For the first time, deep insight is provided into the 3D
pressure field and the distribution of the energy dissipation in the Taylor flow
based on experimentally acquired 3D3C velocity data. The 3D pressure field
and the 3D distribution of work is provided online as supplementary material
to enable a benchmark for CFD and numerical simulations.

The accumulated results of this thesis - the velocity field, the pressure field
and the interface approximation - allow a unique and dense visualization and
investigation of the fluid dynamics of a viscous Taylor droplet. The interplay
of the work done on the flow, the pressure, the flow and the interface shape
displayed for this single reference case provides deep insight in the physic of
this setting. The data-set is provided online to the fluid mechanics community
as a benchmark case for parametric numeric studies.
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Fluid mechanics of
Taylor droplets

2

Once there was a particle
It felt no urge - no lousy prickle
it stopped and waited tearily
It had to move - in theory
I wish it’d helped to tickle

In the following chapter, a theoretical background to understand and de-
scribe the fluid mechanics of Taylor droplets is provided. At first a very
brief supporting overview of the geometrical setting of a Taylor flow, it’s
properties, directions and orientation is given. Secondly, a discussion of
the governing forces identifies the dominating forces of the addressed flow
situation. Subsequently, a force balance at the interface relates the forces of
the flow field to the interfacial tension forces of the dynamically deformed
Taylor droplet. Finally, the derivation of the investigated quantities of higher
order with respect to the velocity field is briefly explained.

2.1 Setting of the Taylor flow

A Taylor droplet with a length Ld moves along a microchannel of width
Wch and height Hch (Fig. 2.1). The cross section area of the microchannel
spans along the y- and z-axis and is given by Ach “ Hch ¨Wch. The droplet’s
absolute flow direction coincides with the positive x-axis and the droplet

11



Fig. 2.1: Setting of the Taylor flow. Provides information on the geometrical di-
mension of the Taylor flow as well as on the denomination of the material
properties, the coordinate system, the main absolute flow direction, the
mean velocity of the entire flow and Taylor droplet velocity. Please note,
that the droplet velocity ud is commonly not equal to the mean velocity.
The mechanism of this phenomenon is in part subject of this work.

translates through the microchannel with a droplet speed ud. The mean
velocity of the flow Ū is also denoted as the total superficial flow velocity
u0,tot “ Ū “ Qd`Qc

Ach
to distinguish it from the superficial velocities of the single

phases feeding the Taylor droplet chain. Herein Qd and Qc denote the volume
flow of the disperse and the continuous phase respectively. The gravitational
acceleration points in negative z-direction. The material properties density
ρi and dynamic viscosity ηi are indexed d and c assigning to the disperse
and the continuous phase respectively. The interface tension between the
immiscible phases is denoted with σ. Please note, that the droplet velocity
ud is commonly not equal to the mean velocity. The mechanism of this
phenomenon is in part subject of this work.

2.2 Consideration of the governing forces

Bubbles or droplets in motion are subject to forces arising from gravity,
interface tension, inertia and viscosity. For macroscopic freely moving two-
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phase flows the Morton number Mo is a pure material parameter utilized to
characterize the shape and the velocity of the dispersed phase.

Mo “
g η4

c ∆ρ
ρ2

c σ
3

“ BoOh4
c

Herein, ∆ρ is the density difference between the interacting phases. The
Morton-Number also applies to confined flows with Taylor droplets, since
the same forces are relevant. A decomposition allows to distinguish between
the weak influence of buoyancy forces on the droplet shape in case of the
Bond-number Bo

Bo “
g∆ρH2

ch
σ

,

and the strong influence of the viscous and inertia forces on the droplet shape
in case of the Ohnesorge-number Oh4

c

Ohc “
ηc

?
Hch ρc σ

“

c

Cac

Rec
,

A subdivision of the purely material related Ohnesorge-number into the
capillary-number Cac and Reynolds-number Rec shows the relation between
the ratio of the viscous and interface forces, and the ratio of the inertia and
viscous forces respectively. The Reynolds-number is defined as follows

Rec “
ρc u0,tot Hch

ηc
.

A Taylor droplet translates with a velocity ud that is not necessarily equal to
the total superficial velocity. Depending on the flow conditions (e.g. wetting/
no-wetting of the disperse phase), the droplet can be faster or slower than the
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mean motion, because in a relative frame of reference the fluid is transported
towards the droplet back or towards its front respectively. Three different
concepts exist to quantify the relative movement of the disperse phase with
respect to the mean motion of the entire flow.

i) Bretherton [15] introduced a "droplet mobility" m in his pioneering
work on Taylor flow, which was later also used by Jakiela et al. [46].

m “
ud

u0,tot

ii) The velocity difference between the droplet and the mean velocity is
normalized with the droplet velocity. This approach is described in
different terms by different authors: ("slipping velocity" [70], "relative
droplet velocity" [8], "relative droplet velocity" [1], "dimensionless drift
velocity" [43])

uslip “
pud ´ u0,totq

ud
.

However, this description uses a flow dependent reference to describe
the relative velocity difference between the droplet and the mean flow
velocity. As the droplet velocity changes based on an outer independent
parameter such as the total superficial velocity the denominator of the
fraction changes as well. The result is a distorted relation.

iii) Helmers et al. [41] eliminate the issue by establishing a dimensionless
"excess velocity".

uex “
pud ´ u0,totq

u0,tot

The velocity difference between the droplet and the mean flow velocity
is based on an independent variable and does not bias the description
of the effect. In the presented work the term excess velocity will be used
throughout to describe the velocity difference between the disperse
phase and the mean flow.
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The Capillary-number Cac determines the flow regime of the microscopic
two-phase flow. For Taylor flows, the Capillary number relates to the changes
of the droplet shape [40, 109].

Cac “
ηc u0,tot

σ

The experimental parameters concerning this thesis (see Chapter 3 in Tab.
3.2) result the following range of dimensionless numbers:

Cac “ 0.004´ 0.005
Rec “ 0.014´ 0.055
Bo “ 0.003´ 0.004

(2.1)

The above consideration allows to arrange the occurring forces in descending
order of their importance to the phenomenology of the Taylor flow:

surface tension forces " viscous forces " inertia forces " buoyancy forces

2.3 Force balance at the interface

The interface shape of a Taylor droplet changes from static conditions (with-
out flow) to dynamic conditions [40, 82]. At steady state, a clean droplet
interface dA between two immiscible phases is subject to the following
balance of normal forces (Fig. 2.2).

´F j
LP,c ` F

j
p,c ` F

j
u,c ` F

j
LP,d ´ F

j
p,d ´ F

j
u,d “ 0. (2.2)

Herein, F j
u,i refers to the normal forces induced by the adjoining flow con-

ditions, F j
p,i indicates the normal forces exerted by the pressure and F j

LP,i
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Fig. 2.2: Forces F jk at a curved interface dA between two immiscible phases (d -
disperse phase, c - continuous phase) in combination with the principle
radii Rj1,2 to link the Laplace-pressure to the adjoining flow field. The
superscript j refers to static (j = stat.) versus dynamic (j = dyn.) flow
conditions. The positive reference direction points into the disperse phase

represents the normal forces that arise from the energetic molecular interac-
tion inside the individual phases. The latter macroscopically results in the
surface tension forces and is related to the Laplace-pressure. The index j
refers to the flow conditions with j “ stat denoting the static case (without
flow) and j “ dyn representing the influence of velocity field. The index
i refers to either the disperse phase i “ d or the continuous phase i “ c.
Tangential forces immediately induce flow on ideal clean interfaces and do
not contribute to this balance. The experimental results of Mießner et al.
[83] (Chap. 5) clearly show interface mobility and support the assumption
of a minor interface contamination and an ideal interface behavior.

Eq. 2.2 allows to compare the force balance at static conditions (j “ stat)
with the force balance at dynamic conditions (j “ dyn). A consideration
of the individual terms simplifies the equation. The forces exerted by the
pressure on the respective sides of the interface cancel out (F j

p,d “ F j
p,c).

Without flow, the velocity forces of the static conditions vanish (F stat
u,i “ 0).

the forces across the interface are combined to a resulting force that can be
calculated from the Laplace-pressure ∆F j

LP “ `F
j
LP,d ´ F j

LP,c. A separation
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between the flow-induced forces and the interface tension forces links the
shape deformation directly to the adjoining flow field:

∆F stat
LP ´∆F dyn

LP “ `F dyn
u,c ´ F

dyn
u,d (2.3)

A division of the forces by the interface area dA results in a relation between
the flow-induced pressure field and the Laplace-pressure difference between
the static and the dynamic interface shape:

p∆pstat
LP ´∆pdyn

LP q “ `pdyn
u,c ´ p

dyn
u,d

∆ppstatÞÑdynq
LP “ `pdyn

u,c ´ p
dyn
u,d (2.4)

In disregard of the involved material parameters of the Taylor flow (σ, ρd, ρc, ηd, ηc)
the left hand side of Eq. 2.4 consists of geometry information, while the
right hand side is based on the flow field. This allows a direct quantitative
comparison between the curvature-dependent Laplace-pressure of the inter-
face geometry and the velocity field dependent pressure difference at the
interface.

2.4 Derived Quantities

The derivation of the investigated quantities of higher order with respect to
the velocity field is briefly explained. Herein, the relative coordinate system
is defined (Fig. 2.3). Its origin is set to the downstream tip of Taylor droplet’s
frontal cap. The x-axis points downstream into the direction of motion. The
y-axis is the perpendicular direction of imaged measurement plane, while
the z-axis represents the out-of-plane transverse direction.

At first the momentum thickness is calculated, the shear rate distribution in
the flow is quantified and the λ2-criterion is introduced to visualize the main
and secondary vortices. Next the pressure field is quantified based on an
integration of the Navier-Stokes equation and the pressure distribution on
the interface is calculated from the pressure field. Finally, the derivation of
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Fig. 2.3: Sketch of the a coordinate system for the Taylor flow investigation: The
downstream motion of the Taylor flow is oriented along the x-axis. The
origin of the coordinate System is set to the tip of the Taylor droplet’s
frontal cap (yellow dot). The y-axis is the perpendicular direction of the
imaged measurement plane (x´ y plane through the origin). The z-axis
represents the out-of-plane transverse direction along which the focal
plane can be moved. The red arrows visualize the relative volume flow
through the gutters

the distribution work done on the flow is derived and methods to estimate
the overall energy loss of the investigated flow are presented.

2.4.1 Momentum thickness

The pressure field is divided in a wall-proximate part and a core-flow to
support the description of the Taylor flow phenomenology. The simple flow
field of a laminar single-phase flow through a straight pipe solely evolves
due to the wall contact of the fluid. In contrast, the flow in and around a
Taylor droplet is more complex due to the additional presence of the droplet
interfaces.

Thus, the momentum thickness δ2 of a reference Poiseuille flow in a circular
microchannel (Fig. 2.4) is calculated to geometrically discriminate between
an immediate wall influenced region and the remaining core of the flow.
Details on the momentum thickness are provided by Schlichting and Gersten
[102].
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Fig. 2.4: Sketch of laminar flow conditions in circular pipe flows. Here r denotes
the radial coordinate of the pipe and ỹ is the dimensionless wall distance.
The momentum thickness δ2 quantifies a distance in which the flow is
dominated by the presence of the wall. The thickness enables to geometri-
cally discriminate between wall-influenced flow regions and the core of
the flow. The layer thickness amounts to δ2 “

1
15Hch
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The calculation of momentum thickness δ2 returns a defined length scale at a
fixed geometric fraction of the channel height

δ2 “
1
15Hch. (2.5)

Three cases set the momentum thickness δ2 into perspective to qualitativly
show the validity of the approach: The normalized analytical 2D velocity
profile of the single-phase Poiseuille flow through the cross-section of a
circular microchannel (Fig. 2.5a), through a square mircochannel (Fig. 2.5b)
and a measured stream-wise velocity profile at the central cross-section of
a Taylor droplet’s main vortex (Fig. 2.5c). For the latter case, half of the
microchannel is depicted, since the measurement data covers only half of the
flow volume. The selected cases verify the use of the momentum thickness as
reference to distinguish between wall-proximity and the core of the flow.

For better comparability, the 2D shear distributions are normalized with wall
shear stress of a laminar flow in a circular microchannel τref “

8Ū
Hch

. Values
close to one show regions where the shear profile of the respective case
equals the reference value (Fig. 2.5d-e).

A dashed line represents the border of the wall-influenced flow layer. As
expected, the reference shear and the wall-shear agree at the wall in the
circular channel (Fig. 2.5d, dotted line). The normalized shear distribution
in the laminar single-phase flow of a square channel shows increased shear
at the center of the side walls compared to the circular channel (Fig. 2.5e,
dotted line). The equality of the shear profile to the reference-shear moves
inwards to the position of the momentum thickness δ2. The same observation
holds true for the measured case of the Taylor droplet (Fig. 2.5f). The solid
black line indicates the interface position. In the gutter, additional shear
is present outside the droplet due to the by-pass flow and the high ratio λ
between droplet viscosity ηd and bulk viscosity ηc (λ “ ηd

ηc
“ 2.625). The

magnitude of the shear distribution is not ideally symmetric in the y-direction
at the top wall, because the reconstruction of the velocity z-component is
subject to integration error and integration of noise error. A comparison
of the well-resolved measurement in the y-direction with the reconstructed
results in the z-direction shows a similar trend of an increased shear in
proximity of the momentum thickness. Therefore, the layer thickness δ2 is a
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Fig. 2.5: Cross-sectional comparison between the analytical solutions of laminar
single-phase flows in circular (a,d) and square channels (b,e) with mea-
surements of a Taylor flow in a square channel in one half of the symmetric
channel (c,f). The cross-section of the droplet flow is placed at the center
of the main vortex in the droplet, where the velocities are mainly directed
in flow direction (see streamlines Fig. 6.4a). The interface is marked with
a solid black line. The velocity distribution is shown on the left (a-c) and
the shear rate distribution is given on the right (d-f). The dashed black
line indicates the momentum thickness δ2. The shear rates in the square
channel for single-phase flows (e) and for the two-phase flow (f) equal the
wall-shear rate of the pipe flow at a distance of « δ2 on the y- and z-axis
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valid measure to discriminate between wall-dominated regions and the core
of a Taylor flow.

2.4.2 Shear rate distribution

Based on the reconstructed 3D flow field of the Taylor droplet, the shear rates
of the flow are used to visualize the location of high strain of the investigated
Taylor droplets.
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As reference shear rate 9γref the wall shear rate of laminar flow in a circular
channel with a diameter of Hch is applied: 9γref “

8u0,tot
Hch

«
8ud
Hch

. To locate the
strain maximum, the directional influence of the derivatives is omitted and
only absolute values are used.

2.4.3 Vortex visualization applying the λ2-criterion

The λ2-criterion [48] visualizes the vortical structures in and around the
Taylor droplet. In their concept, a vortex is defined as a connected region
with two negative eigenvalues i.e. the second eigenvalue λ2 ă 0, which
corresponds to a vortex pressure minimum. This specific vortex visualization
is applied to the experimental results, since the method omits the effects
from unsteady straining and viscosity.

2.4.4 3D pressure distribution

Two approaches are available to compute the pressure distribution from the
µPIV measurements. One is based on the solution of the Poisson equation
and requires a set of (Neumann/ Dirichlet) boundary conditions to derive
the pressure field [36, 54, 59]. The second approach involves the direct inte-
gration of the momentum equation by means of finite differences. The main
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problem with the latter method is related to the accumulation of noise and
integration error, which is successively incorporated into the derived pressure
field [13, 47, 71, 112]. Recently, Cai et al. [20] proposed a variational
formulation for the pressure-from-velocity problem in two dimensions.

Charonko et al. [21] reported that line integral methods perform better
for the internal flow, while the pressure Poisson equation is superior for the
external flow. Kat and Oudheusden [54] proposed guidelines for the temporal
and spatial resolution of the PIV-data. While the acquisition frequency has no
relevance in the investigated quasi-stationary Taylor flow, the interrogation
window size is supposed to be 5 times smaller than the flow structures to
properly resolve the pressure features. In the presented case the interrogation
window size is about 14 times smaller than the vortex features.

In contrast to the applications of the above stated papers, the µPIV-study
incorporated into this work deals with Taylor droplets at low Cac and Rec,
i.e. the surface tension forces dominate the viscous forces and inertia plays
a subordinate role. Thus, a direct integration scheme is applied to obtain
the pressure, since an internal flow is addressed and the second velocity
derivatives of the viscous dissipation need to be considered.

The Navier-Stokes equation for stationary incompressible viscous flows with
negligible influence of body forces reads as follows:

ρ p~u ¨∇q ~u “ ´∇p` η∇2~u (2.6)

Based on the measured velocity field, the velocity gradient tensor is calculated
together with the second derivatives. For the estimate of the pressure from
the flow field, the Navier-Stokes equation is directly integrated. Since a
reference pressure for the flow field is not available, the integration constant
(c “ 0) is omitted.

pdyn
u,i “ ´ρi

ş

V
p~u ¨∇q ~u d~x

`ηi
ş

V
p∇2~uq d~x (2.7)
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The direct integration procedure is done separately for the convective and
the dissipative velocity contributions. Each integration step with respect to
a coordinate axis is performed twice: Along and against the axis-direction.
The two respective results are averaged to reduce the influence of error
accumulation [21]. The consideration of 3D3C-velocity field of a two-phase
flow requires to discriminate between the material properties of the individual
phases. The interface approximation of Mießner et al. [82] (Chap. 4) serves
as a logical discriminator to attribute the material properties to the according
phases. The convective contributions are added to the viscous terms to
receive the entire 3D pressure field.

2.4.5 Pressure distribution on the droplet interface

In this section, two ways are described to retrieve information on the pressure
on the surface of a moving Taylor droplet. A geometric consideration that is
based on the geometric curvature information of the interface approximation
and the flow based pressure information across the interface. The geometry-
based quantity is later (Fig. 6.2a) compared to the pressure difference across
the interface that is reconstructed from the 3D velocity information (Fig.
6.2b).

The energetic minimization of the adhesion and cohesion forces between the
molecules along and across the clean interface dA of the contacted phases
(Fig. 2.2) determine its curvature at static flow conditions. The Laplace-
pressure describes the macroscopic effect that relates the interface tension
with the curvature of dA to the pressure in the disperse phase.

∆pjLP “ σ

ˆ

1
Rj

1
`

1
Rj

2

˙

(2.8)

When the flow field close to the interface exerts normal forces onto the
interface dA, the curvature is deformed from the static shape (j “ stat) and
the Laplace-pressure is altered (j “ dyn).

The pressure difference between both geometric states equals the pressure
contribution exerted by the flow (Eq. 2.4). Thus, there are two methods
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to derive the pressure distribution on a moving Taylor droplet: i) With
knowledge of the geometry of the interface shape, the curvature distribution
is calculated and the Laplace-pressure distribution is determined. ii) The
evaluation of the 3D velocity field of a moving Taylor droplet delivers the
pressure difference across the interface at the location of the interface.

i) The approximation of the Taylor droplet interface [82] (Chap. 4)
provides the necessary primary and secondary geometry information.
Primary information means e.g. location, volume, interface area, while
secondary information refers to e.g. the curvature distribution. The
static and the dynamic shape of the droplet deliver the respective
curvature distributions to calculate the curvature difference distribution
∆κ. For the latter step, the Matlab script "Surfature" [@23] is applied:

∆ppstatÞÑdynq
LP “ σ

ˆ

1
Rstat

1
`

1
Rstat

2

˙

´ σ

ˆ

1
Rdyn

1
`

1
Rdyn

2

˙

“ σ

˜

Rdyn
1 ´Rstat

1

Rstat
1 Rdyn

1
`
Rdyn

2 ´Rstat
2

Rstat
2 Rdyn

2

¸

“ σ
´

∆κpstatÞÑdynq
1 `∆κpstat ÞÑdynq

2

¯

(2.9)

The expression in Eq. 2.9 is a direct geometric measure for the pressure
exerted onto the interface. This scalar quantity is projected onto the
interface and easily compared to the pressure derived from the velocity
field.

ii) To receive the flow-related pressure on the moving Taylor droplet inter-
face, the pressure of the disperse phase pdyn

u,d is subtracted from pressure
of the continuous phase pdyn

u,c (Eq. 2.4). The equation is valid only at the
position of the interface, because here the Laplace-pressure emerges
from the material property changes. The interface approximation [82]
(Chap. 4) is used to determine the interface location of the moving
droplet. The resulting pressure difference is a scalar quantity that is
also projected onto the interface and compared to the curvature-based
Laplace-pressure distribution.
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2.4.6 3D field of the work done on the flow

Macroscopically, work is added to the flow by a syringe pump that builds up
a pressure gradient to establish the flow (kinetic energy) in the microchannel.
To maintain this flow stationary, the overall work added to the flow sys-
tem needs to compensate for directional changes, potential energy changes
and frictional losses. In the considered case, the system is quasi-stationary,
isothermal and incompressible, volume forces have no effect and Stokes-flow
conditions apply for a Newtonian fluid (Rec “ 0.52). Thus, the work added
by the pump to the stationary flow solely compensates for the total friction
losses in the system.

The work to drive a single average quasi-stationary Taylor droplet through
a microchannel is calculated by volume integration of the work done on
individual fluid elements W . The work done on the fluid elements composes
a scalar field. For an individual element, the work is calculated from the
forces ~F acting along its path ~s.

W “ ~F ¨ ~s (2.10)

The forces are derived from the total change of momentum ~I over time,
with m, ρ and V being the mass, density and volume of the fluid element,
respectively.

~F “
D~I
Dt “

Dm~u
Dt “ V ρ

D~u
Dt (2.11)

The above stated flow conditions (stationary Stokes-flow, etc.) simplify the
Navier-Stokes equation in (2.6) to

~∇p “ η~∇2~u. (2.12)
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Thus, the only forces that cause a pressure change in the considered Taylor
flow are the friction forces. The work done on a fluid element to compensate
the friction forces is expressed as

W “ ~F ¨ ~s “
´

V η~∇2~u
¯

¨ p~utq . (2.13)

Herein, the vector of the element’s path ~s is estimated with its velocity and
a short period of reference time ~s “ ~ut. A non-dimensional representation
of the work done per fluid element emerges after division by a reference
work. As reference serves the work done on a laminar pressure-driven
(∆pHP,c) single-phase flow (Hagen-Poiseuille flow - HP) of continuous phase
(Q “ Qtot) through the same square cross section Ach.

Wref “ ~F ¨ ~s “ p∆pHP,c ¨ Achq

ˆ

Qtot

Ach
t

˙

(2.14)

The scalar 3D field of dimensionless work W˚ reads as follows:

W˚
“

W
Wref

“

´

V ¨ η~∇2~u
¯

¨ p~utq

p∆pHP,c Qtotq t
(2.15)

Negative values of the work indicate deceleration of the flow, while positive
values represent acceleration of fluid elements.

The duration of the reference time can be chosen arbitrarily, since the consid-
ered Taylor flow is quasi-stationary in the relative frame of reference. This
leads to the conclusion, that the dimensionless work W˚ calculated above
is equal to the dimensionless power loss P ˚ and the dimensionless pressure
drop ∆p˚.
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P ˚ “ P
Pref

“

´

V ¨ η~∇2~u
¯

¨ p~uq

p∆pHP,c Qtotq

∆p˚ “
∆p

∆pref
“
Q´1

tot

´

V ¨ η~∇2~u
¯

¨ p~uq

∆pHP,c

W˚
– P ˚ – ∆p˚ (2.16)

Despite the equivalence of the dimensionless quantities, the presentation of
this work is based on the above introduced concept of work that needs to
be done on the flow to overcome the viscous losses in order to maintain the
flow stationary.

2.4.7 Quantification of the overall energy dissipation

The overall energy loss of the Taylor flow is quantified by determination of
the work W˚

i that is necessary to keep the observed flow section stationary
(Sec. 2.4.6). To obtain a dimensionless quantity, the work done to keep
up the Taylor flow is divided by the work that is necessary to maintain
a Hagen-Poiseuille flow of continuous phase with the same total volume
flow through the same cross section. The experimental data set offers three
different derivation possibilities for the overall energy loss of a moving Taylor
droplet:

i) The shear forces Fτ,x at the wall and the drag forces FΓ,x at the droplet
interface along the droplet deliver the total resisting force. The 2D
distribution of the pressure on the surface of a moving Taylor droplet is
used to estimate the drag forces of the droplet interface. The interface-
grid is re-sampled into cylindrical coordinates (Fig. 2.6a) in order to
correspond to the x-axis grid of the velocity data. The x-axis points
in downstream direction. The cumulated resistance forces in the flow
direction are calculated for the gutter region and the film region sep-
arately. The pressure ∆pΓ on a surface area element dA (Fig. 2.6b)
results in a force normal ~n0 to the area element. Its projection in flow
direction ~ex,0 contributes to the drag of the droplet (Fig. 2.6c). A
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summation of all resistance forces Fi,x along the φ-direction of the flow
delivers the drag force distribution at the droplet interface Fx,res. A
cumulative sum of the latter provides the drag force evolution along
the Taylor droplet

ř

V FΓ,x (Fig. 2.6d).

W˚
F “

p
ř

V Fτ,x `
ř

V FΓ,xqLd

p∆pHP,cAchqLd
(2.17)

ii) The pressure profile at the wall of the channel is an indicator for the
pressure loss of the flow. The flow loses energy in the same rate as the
profile changes. Thus, a linear fit of the inverted mean pressure profile
at the wall serves as reference for the evolution of the pressure loss
∆p̄wallpxq along the droplet in flow direction. A measure for the drag
forces is established after multiplication with the area of the channel
cross section. The work done on the flow is received from the forces
acting along the droplet path of length Ld.

W˚
∆p,wall “

p∆p̄wallpxqAchqLd

p∆pHP,cAchqLd
(2.18)

iii) The work distribution in the viscous flow field inside and outside the
droplet is derived in Sec. 2.4.6. A summation of the work in transverse
direction and a calculation the cumulative sum in flow direction delivers
the evolution of the flow field-related work done along the droplet.

W˚
u “

ÿ

V

´

V ¨ η~∇2~u
¯

¨ ~u∆t
p∆pHP,cQtotq ∆t (2.19)
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Fig. 2.6: Evaluation scheme of forces acting on the Taylor droplet interface. a)
Redefinition of the droplet interface grid into cylindrical coordinates to
enable a calculation of the drag force, since the velocity data grid and
the nodes of the interface do not coincide. The common x-axis allows
to compare the obtained profiles. The interface forces are evaluated in
a gutter region and in a film region. The symmetry of the measurement
domain is used to calculate the total drag force. b)-c) show the conversion
scheme of the pressure at the interface Γ of a moving Taylor droplet b)
into a drag force distribution in flow direction c) to calculate the total drag
force along the Taylor droplet length Ld d).
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Materials and Methods
3

Once there were some particles
No lonely one - comfortable
Their number grew proportional
In bulk they were transportable
This method seemed reportable

In order to investigate the flow in and around Taylor droplets at low capillary-
numbers, two sets of experiments were conducted: The first set involves a
parameter variation for the validation of the interface approximation [82]
(Chap. 4), while the second set investigates the flow at a fixed parameter
vector to perform an in-depth µPIV case study. The general experimental
setup and the raw-image pre-processing is identical for both parts of the
investigation. However, the microchannel geometry, the fluidic parameters
and material properties are detailed separately.

The experimental materials and methods are presented in this chapter. At first,
the micro fluidic and optical part of the set-up in which the experiments are
performed is described. Secondly, the two-phase material system is detailed
and subsequently the applied refractive index matching method is provided.
Next, the image processing methods for the particle image based interface
position measurement are explained with respect to the in-plane droplet
recognition as well as the out-of-plane alignment in z-direction. Succeedingly,
the ensemble correlation technique of the µPIV measurement approach is
described. Finally, the reconstruction of the third velocity component is given
with a validation of the result.
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3.1 Experimental set-up

The continuous Taylor flow is established in micro fluidic polydimethylsilox-
ane (PDMS) devices featuring a flow-focusing channel layout with a pinhole
at the junction to form the droplets (Fig. 3.1a). A glass wafer of 200 µm
thickness is spin-coated with a 50µm layer of PDMS to create micro channels
with PDMS on all inner surfaces. Therefore, equal wetting conditions are
established on the lid and the channel walls. SEM-imaging and visual inspec-
tion suggest that the surface roughness (RA Æ 0.2 µm) is small in relation to
the channel hight. The ductility of the PDMS material causes the channel to
slightly dilate upon the onset of the Taylor flow.

The cross section of the microchannel has a slight trapezoidal deviation from
the rectangular shape (e.g. Wch,1 = 104 µm, Wch,2 = 96 µm, Hch = 96 µm).
The cross section forms a convex isosceles trapezoid with the channel side
walls enclosing an angle of 4.7° in comparison to an angle of 0° between the
parallel side walls of a rectangular microchannel. The trapezoidal deviation
from an ideal rectangle is a result of the fabrication process. This shape
deviation is considered to be small and the cross section is treated as being
rectangular.

The pinhole section is the narrowest part of the FF-junction and has a width
of Wpin = 50 µm. The channel layouts offer aspect ratios Ar = 1 and 2 and
the dimensionless channel length Lch

Hch
is about 500. An overview of the

geometrical channel parameters is given in Tab. 3.1.

Tab. 3.1: Geometry parameters of the FF-channels used for all experiments

Geometry parameter Unit

Channel width Wch 0.104 mm
0.208 mm

Channel height Hch 0.096 mm
Channel length Lch 50.000 mm
Pinhole width Wpin 0.050 mm
Channel length ratio Lch

Wch
500.000 -

Channel aspect ratio Ar 1.082 -
2.167 -
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Fig. 3.1: a) A programmable timing unit coordinates the measurement set-up. A
syringe pump establishes the flow, while a piezo stepper addresses the
measurement plane. Laser light excites the fluorescent tracer particles.
The fluorescent signal results in a particle image. b) The syringe pump
establishes a continuous steady flow rate. On the fluidic PDMS-chip the
octanol continuum and an immiscible aqueous droplet are contacted in
a flow-focussing junction to form a Taylor flow. The particle images are
recorded at about a 1/100 ˆLch{Wch downstream of the junction.
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Tab. 3.2: Fluidic parameter variation of the experiments to asses the accuracy of
the interface approximation [82] (Chap. 4)

H2O/ H2O/ H2O/ H2O/ H2O/
DMSO DMSO Gly. Gly. Gly.

Ar 1 1 1 1 2 -
Ld
Wch

1.66 1.04 1.44 1.04 1.31 -
Qd 0.41 0.22 1.24 0.67 2.25 µL min´1

Qc 0.34 0.52 1.01 1.57 2.25 µL min´1

u0,tot 1.25 1.25 3.76 3.76 3.76 mm s´1

α 1.22 0.43 1.22 0.43 1.00 -
εd 0.55 0.30 0.55 0.30 0.50 -
Rec 0.014 0.014 0.042 0.042 0.055 -
Cac 0.004 0.004 0.005 0.005 0.005 -
Wec ! 1 ! 1 ! 1 ! 1 ! 1 -
Bo 0.004 0.004 0.003 0.003 0.005 -

A pulsation free syringe pump (Cetoni Nemesys) establishes the droplet
volume flow rate Qd and the continuous phase volume flow rate Qc such, that
the flow ratio α “ Qd

Qc
can be freely adjusted (Fig. 3.1a). At the flow-focussing

(FF) junction the continuous phase squeezes the partially blocking droplet,
to form a continuous Taylor droplet stream. The droplet fluid is seeded
with Rhodamine B coated polystyrene (PS) tracer particles (microparticles
GmbH) with a nominal particle diameter of dpart = 1.3 µm. Both liquids are
collected in a waste reservoir. An overview of the hydrodynamically relevant
parameters applied in the experimental set for the verification of the interface
approximation is given in Tab. 3.2. The relevant parameters for the µPIV
investigation and the pressure reconstruction are given in Tab. 3.3.

The optical set-up is located 5 mm downstream of the FF-junction (Fig. 3.1b).
A frequency-doubled Nd:YAG laser with a wavelength of λL = 532 nm is
used to excite the fluorescent tracer particles inside the droplet. The laser
light is coupled into the light path of an inverted microscope (Zeiss AxioVert
100). A dichroic mirror reflects the laser light through the objective (LD
LCI Plan-APOCHROMAT 25x/0.8) into the PDMS-channel. The fluorescent
light emitted by the tracer particles has a peak intensity around a wave
length of about λpeak = 600 nm (Rhondamine-B). The depth of correlation
of the objective determines the measurement plane thickness for the µPIV
measurements of Chap. 5 to about 5 µm.
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Tab. 3.3: Flow conditions of the µPIV experiment of the Taylor flow [83] (Chap.
5 and 6). Geometric parameters, fluidic and material parameters, and
the governing dimensionless numbers are displayed. The refractive index
matched material system is octanol and water/gylcerin for the disperse
and the continuous phase respectively. The denomination is given in the
list of symbols

Dimensionless Geometric Fluidic / material
numbers parameters parameters

Cac 0.0050 - Wch 104 µm Qd 1.5 µl min´1

Rec 0.0511 - Hch 96 µm Qc 1.5 µl min´1

Oh 0.3107 - Ach 9984 µm2 Qtot 3.0 µl min´1

Bo 0.0043 - VFF 1038336 µm3 Ū 5.0 mm s´1

Wec 0.0003 - Ar 1.08 - ud 4.7 mm s´1

Mo 0.0004 - Ld{Wch 1.58 - ηd 0.021 Pa s
α 1.0 - Lg{Wch 0.34 - ηc 0.008 Pa s
εd 0.5 - Lch{Wch 500 - ρd 1186 kg m´3

λ “ ηd{ηc 2.625 - Wo{Wch 0.5 - ρc 830 kg m´3

K “ ρd{ρc 1.427 - Lo{Wch 0.5 - σ 0.008 N m´1

This tracer particle position-signal passes through the dichroic mirror towards
a recording CCD-Camera (PCO SensiCam qe). Camera and laser are synchro-
nized with the programmable timing unit of the PIV-system (LaVision). A
piezo stepper (MIPOS500SG, Piezosystem Jena GmbH with a precision of 8
nm) precisely adjusts the z-position of the objective with respect to the x-y
direction of the micro channel. Thus, the z-position of the focal plane can be
controlled to scan through a representative measurement volume of the flow
field in view.

3.2 Two-phase system

The curvature of a droplet interface causes optical distortions, when the
refractive indices between disperse and continuous phases do not match (Fig.
3.2). Thus, it is necessary to use fluids with matching refractive indices (RI)
[19, 84, 88, 90].

1-octanol is chosen as continuous phase (RI = 1.428). The RI of the droplet
is adjusted to that of the continuous phase. The disperse phase is a mixture
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Fig. 3.2: The refractive index (RI) of the aqueous droplet is matched to the optical
density of octanol as continuous phase by adding a sufficient mass fraction
ξB of glycerin or DMSO. Thus, the curved interface does not influence the
optical path.
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Tab. 3.4: Material parameters of the liquids used are based on own measurements.
Surface and interfacial tensions are obtained with the pendant drop
method. All combinations are used for the validation experiments of the
interface approximation. For the µPIV experiment only the combination
of octanol and water/glycerin is used as disperse and continuous phase
respectively

RI Visc. Dens. Surf. Interf.
Tens. Tens.
(air) (Oct.)

Material - mPa s g mL´1 mN m´1 mN m´1

H2O 1.333 0.9 1.00 72.7 7.8
Glycerin 1.474 1412.0 1.26 - -
DMSO 1.476 2.0 1.10 44.6 2.6
Octanol 1.428 7.4 0.82 29.1 -
H2O/ Gly. 1.428 22.1 1.18 69.1 5.9
H2O/ DMSO 1.428 3.7 1.09 56,4 2.3

of water (RI = 1.333) and either glycerin (RI = 1.474) or dimethylsulfoxide
(DMSO, RI = 1.476). Both materials can be used to tune the index of
refraction of the droplet to the RI of 1-octanol. In case the matching has been
performed successfully, no droplet interface is visible at the wavelength range
of the fluorescent signal. The RI variation along the fluorescence emmission
spectrum of Rhodamine B can be neglected. It amounts to 0.41% with respect
to the RI of the Rhodamine B peak emission in water. Mixing the respective
liquids does not exclusively result in a change of RI, but also affects the
droplet viscosity, density and interfacial tension between the phases. An
overview of the material properties is provided in Tab. 3.4.

3.3 Image acquisition and image processing

The symmetry of the Talyor flow in straight rectangular microchannels allows
to conduct measurements in one half of the channel to reduce the amount of
processed data. After initiating the flow, it takes about 2 minutes for droplet
size fluctuation to reduce to a reasonable level. A ten-fold time ensures the
decline of the initial fluctuation. After this transient of 20 min, the flow is
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considered to be quasi-stationary: for the moving droplets the flow inside
and around each droplet is similar for all droplets.

The µPIV setup is not synchronized to the flow and freely records a number
of 600 double frames per measurement plane. The measured Taylor droplet
train exhibits a droplet size distribution that varies 10% in length. The
recording frequency of PIV double frame images frec is fixed at 12 Hz, while
the droplet frequency oscillates around fd « 14 Hz. The temporal distance
between the double frames is set to 1.5 µs.

The depth of correlation determines the measurement depth of the optical
setup to 5.4 µm. A detailed consideration of the DOC is given in Sec. 3.4.
Half of the channel height is divided into 11 equidistant (∆H “ 5.4 µm)
measurement planes to avoid recording redundant flow information. The
chosen z-positions of the focal planes include the center symmetry plane and
a measurement plane directly at the bottom cover of the microchannel.

Beginning with the center plane, the µPIV system is programmed such, that
after recoding 600 images the piezzo stepper moves the objective and thus
its focus to the next plane. The procedure is repeated until the measurement
is completed at the bottom lid position of the microchannel. Fig. 3.3 shows a
sketch of the measurement plane position with respect to the Taylor droplet
interface.

Due to the asynchronous recording and the strong length variability of the
observed flow, pre-processing of the recorded data is applied to receive a
quasi-stationary representation of the velocity distribution inside and around
an average Taylor droplet. The pre-processing involves image selection (e.g.
a statistical approach to reduce the droplet length variation), processing (in-
frame image shifting in x-y-direction) and vertical alignment (in z-direction).
The method is explained in detail later in Sec. 3.3.2 and Sec. 3.3.3. The
pre-processing reduces the droplet length deviation from 10% to about 3%.
This increased precision enables to determine the droplet velocity at the
stagnation points and allows to accurately change to a moving frame of
reference with respect to the droplet motion.

For each measurement plane, the identified double images of suitable droplets
are selected such that at least 60 image pairs are further processed. To
increase the data density, the flow symmetry is used along the center axis
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Fig. 3.3: Sketch of the measurement planes on which ensemble correlation µPIV is
performed. For clarity only 6 out of 11 measurement planes are depicted.
The approximate Taylor droplet model [82] (Chap. 4) indicates the posi-
tion of the interface (light blue surface). The Taylor droplets translate in
positive x-direction and the droplet’s front tip is placed at the origin of the
Cartesian coordinate system (yellow dot)

of the measured Taylor droplets. The selected image set is extended by
additionally processing the mirrored data set in the µPIV-analysis. This results
in at least 120 post-processed image pairs per measurement plane, which are
subsequently evaluated with an ensemble correlation PIV algorithm.

3.3.1 Recording mode

Once the syringe pump has started, the volume driven Taylor flow establishes
at the FF-junction and stabilizes. Depending on the volume flow ratio α or
disperse phase fraction εd Taylor droplets of a certain length are formed. The
parameter α is chosen such that the mean droplet length fits well within
the field of view of the recording camera. It turned out that the effective
field-of-view was insufficient to capture Taylor bubbles with L/W = 2. The
length of the droplets is reduced to Ld

W
“ 1.66.

The measurement plane thickness (DOC = 5.4 µm) results 21 potential mea-
surement planes along the z-direction between the bottom plane and the
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channel top. Using symmetry conditions around the channel center, the
amount of raw data can be reduced to 11 planes – beginning with the wall
plane and successively shifting the focus towards the z-directional center
plane of the microchannel. After the Taylor flow is established and stabi-
lized, the camera records up to 600 images per measurement plane and the
piezo stepper automatically translates towards the subsequent measurement
plane.

In order to deal with the droplet length fluctuation and the resulting droplet
shedding frequency fluctuation of the established continuous Taylor flow
in combination with the asynchronous recording, a sorting and image-
translation approach was applied in the post-processing of the image data
to yield the quasi-instantaneous representation of an average Taylor droplet.
The image processing is explained in Sec. 3.3.2 and Sec. 3.3.3.

3.3.2 In-plane image processing (xy-direction)

An average image of each z-position measurement plane is generated from
about i “ 600 initial source images Ipx, y, iq. The mean perimeter shape is
calculated from the average images of the particle distribution in order to
enable a quantification of the spatial deviation of the model.

In a first step, each raw image (index i, Fig. 3.4a) is analyzed with respect to
the droplet position in the image and the apparent length of the droplet L˚dpiq
(Fig. 3.4b). The apparent droplet length is determined by an analysis of the
blurred fluorescence information of out-of-focus tracer particles. In order to
reduce noise, the two-dimensional image is averaged normal to the main
flow direction and a one-dimensional fluorescence intensity distribution in
the main flow direction is calculated (Fig. 3.4b):

I˚px, iq “

ř

y Ipx, y, iq ´ x
ř

y Ipx, y, iqymin
”

ř

y Ipx, y, iq ´ x
ř

y Ipx, y, iqymin

ı

max

. (3.1)

Applying a dynamic threshold, the front and back ends are determined along
with the droplet center position and the droplet length. In case the droplet
front or back is detected too close to the image frame border the droplet
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Fig. 3.4: Image processing pipeline. a-d) Single image processing: Intensity thresh-
old analysis to locate the droplet within the image and to calculate its
downstream off-set with respect to the image center ∆xshift. e-i) Sub-
sequent image averaging procedure using all tracer information for an
in-plane droplet shape representation.
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image is discarded. A margin of 15% of the image width Wimage is sufficient
to establish a stable evaluation performance. The droplet center position
is shifted to the image center (Fig. 3.4c). Although the determination
procedure of these droplet attributes offers a limited accuracy, it is sufficient
for the upcoming sorting step (Fig. 3.4d), because the method relies on
relative droplet information L˚dpiq.

Since the recorded Taylor flow does not produce mono-disperse droplets, the
number distribution of the detected apparent droplet length allows to sort
the droplet images such, that a minimum number of images is chosen around
the peak of a droplet length histogram (Fig. 3.4e). With this strategy the
flow related variation in apparent droplet length is decreased to a necessary
minimum because the more images n are taken into account, the less accurate
the result tends to be.

The fluorescent signal of the focused tracer particles is significantly brighter
than the out-of-focus background intensity, and it contains precise informa-
tion on the droplet shape in that measurement plane, since all located tracers
are necessarily inside the droplet. After removing the low intensity back-
ground signal with a two-dimensional fast-Fourier transform (FFT) high-pass
image filter, only the steep intensity gradients of the in-focus information
remains in the n sorted images (Fig. 3.4f).

In order to increase the information density of the sparsely seeded droplet
images, an average image of all droplets in a measurement plane is created
(Fig. 3.4g). At least n = 70 – 100 images need to be collected to create an
average particle image with sufficiently dense seeding information.

The last in-plane processing step uses binary image operations (dilation and
erosion) to generate a continuous droplet perimeter shape: After normalizing
the average image, thresholding leads to a binary representation of the
droplet with a value of 1 labeling the droplet (Fig. 3.4h). Additional image
dilation with a circle as structuring element closes occasional gaps in the
binary droplet section.

Finally, the distance normal to the model contour of the corresponding
measurement slice is calculated based on the nodes of the model grid. In
this way a plane-by-plane quantification of interface shape model accuracy
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Fig. 3.5: Interface position comparison of measured and modeled Taylor droplet
data. Qualitatively, the overall impression of the shape does agree well.
The alignment procedure of the average tracer particle images in z-
direction is valid.

as well as the assessment of the overall accuracy with respect to the entire
droplet shape is possible (Fig. 3.4h).

3.3.3 Out-of-plane image alignment (z-direction)

After alignment of the different frames to the droplet center for each mea-
surement plane, the summed images for each plane should be aligned ap-
propriately along the direction normal to these planes (in z-direction). A
comparison of the fluorescent out-of-focus signal of the sections through the
tracer seeded droplets, shows that the background information is similar on
all measurement planes.

Thus, the z-directional alignment of the frames for each measurement plane
consists of a shift of the recorded droplet center towards the image frame
center. Exemplary, the measurement results of the in-plane droplet section
and the corresponding contour of the droplet shape model are shown in
Fig. 3.5. The representation of the measured droplet surface is found to be
sufficient for the following validation purpose.
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3.4 Ensemble correlation µPIV

Particle image velocimetry, or PIV, refers to a class of methods used in
experimental fluid mechanics to determine instantaneous fields of the vector
velocity by measuring the displacements of numerous fine particles that
accurately follow the motion of the fluid [6]. PIV is an optical measurement
technique that is usually applied to transparent setups and flows. In standard
macroscopic planar 2D2C PIV, a thin light sheet is formed inside the depth
of focus of the flow observing digital camera. In a microscopy setup for
µPIV, volume illumination of the flow in combination with a small depth of
focus of the objective forms the thin measurement plane (Fig. 3.1). Two
spatially calibrated raw images of the illuminated instantaneous particle
distribution in the considered flow section are recorded with a well defined
short temporal distance ∆t.

The displacement of particles ∆s between the two consecutive particle image
frames is calculated with a cross-correlation algorithm: Both particle image
frames are equally divided into small overlapping interrogation windows.
The interrogation window size, position and overlap determine the spacial
resolution of the resulting planar vector field. A cross-correlation between all
corresponding interrogation windows of the first and second image frame
calculates the most probable vector of spatial particle displacement. The
respective correlation data for all interrogation window pairs is stored in
a correlation map (correlation plane). A division of the received 2D2C
vector field of displacement by the time interval ∆t results an 2D2C velocity
field of the flow in the measurement plane. In the presented setup, µPIV-
measurements are repeated on several measurement planes throughout the
flow volume to receive a 3D2D velocity field.

In microscopic flows the magnitude of Brownian motion can be considerably
high with respect to the strength of the flow. Additionally, the introduction
of image noise from the digital cameras impacts the particle image quality in
the low light conditions of microscopy setups. To overcome these influences
for the investigated quasi-stationary flow, an elevated number of image pairs
is recorded, selected and processed (Sec. 3.3): On each measurement plane,
the image pairs are evaluated using ensemble correlation [26]. The method
relies on averaging coinciding correlation planes from a sequence of image

44 Chapter 3 Materials and Methods



pairs of a stationary flow [95]. After passing through the post-processing
(Sec. 3.3.2), the images fulfill this requirement. Stochastic influences such as
Brownian motion are suppressed since randomly deviated correlation peaks
are averaged out in favor of the recurring correlation peaks of the stationary
flow. Additionally, this technique increases the information density of the
sparsely seeded flows [6]. Depending on the particle density, Vennemann
et al. [113] estimated 50 image pairs to be sufficient to obtain close to 100%
reliable vectors (for interrogation areas of 64ˆ 64 px).

For the µPIV evaluation of this thesis, a cycle of decreasing square interroga-
tion windows sizes [256 128 96 64 32 16 16] px was used with an overlap of
50% applying ensemble correlation for each iteration. The resulting vector
field of each cycle is used as input information for the next iteration step.
The last evaluation step is performed twice to further increase the accuracy
of the resulting ensemble correlated vector field.

The depth of correlation (DOC) is zcorr,0 “ 5.4 µm [68, 94, 100]. However,
the flow in the setup is subject to shear: Olsen [92, 93] introduced an
approximation to describe the shear dependency of the DOC. In-plane shear
increases the DOC, while to a less extend out-of-plane shear decreases the
DOC. The statistics of the in-plane shear (Fig. 3.6) show that the DOC-
increase in the setup ranges between 1.12 and 2.35 at most, depending on
whether 68% or 95% of the shear rate distribution data is included in the
estimation.

An analysis of the correlation between the in-plane shear distribution of the
downstream velocities and the reconstruction error distribution reveals, that
the error increases with rising shear rates. In fact, the increase could be
explained with the shear increase of the DOC. Anyway, given the relative
low mean absolute reconstruction error presented in Sec. 3.5.2, the change
of the DOC due to shear is acceptable and the chosen measurement plane
distance is valid.

Evaluating the particle image data sets of all measurement planes results
in a 3D2C velocity distribution with an in-plane spatial resolution ∆x “
∆y “ 1.8 µm and an out-of-plane distance of ∆z “ 5.4 µm. The number of
measurement nodes of 171 ˆ 71 ˆ 11 amounts to 133551 regularly spaced
vectors in one of the symmetric halves of the quasi-stationary Taylor flow.

3.4 Ensemble correlation µPIV 45



Fig. 3.6: Based on the probability distribution of the in-plane shear rates (red) on
the left y-axis, the cumulated probability on the right y-axis allows to
estimate the amount of included values of the shear rates distribution. The
bins of the shear rate distribution (x-axis) are converted into the shear
related depth of correlation (DOC) variation [93], to simplify the reading
of the graph

46 Chapter 3 Materials and Methods



3.5 The out-of-plane velocity component

The µPIV measurement delivers a 3D2C velocity field, which lacks the third
velocity component w in z-direction. In the following the reconstruction of
the missing velocity is described and a assessment of the accuracy of the
method is provided.

3.5.1 Reconstruction of the velocity z-component pwq

The reconstruction method retrieves the missing velocity component based
on the available measured 3D2C field information. The 2D in-plane velocity
components u and v are used in the continuity equation for incompressible
flows. A 2nd order central difference scheme delivers the derivatives of the
2D velocity field [6].

Beginning with the supposedly divergence-free symmetry plane (i.e. with
dw{dz “ 0 and w “ 0) of Taylor droplets and proceeding towards the bottom
cover of the microchannel, the integration of the divergence in z-direction
delivers an estimate for the out-of-plane velocity component w. A more
detailed description of the method is given by Brücker [16, 17] and Robinson
and Rockwell [98]. No boundary condition for the velocity in z-direction at
the cover is imposed. Instead, the deviation from w “ 0 allows to asses the
accuracy of the reconstruction.

Prior to reconstruction, an approach based on the normalized median test
[120, 121] is applied to detect, remove and replace outliers of the measured
velocities u and v and their derivatives. Additionally, a 2D median filter
with a 3ˆ3 neighborhood for velocities and a 5ˆ5 neighborhood for the
derivatives is applied to suppress random noise [6, 119].

3.5.2 Validation of the reconstructed 3D3C flow field

The validation of the reconstruction is segmented in three steps. First, a
quantitative analysis is conducted based on a comparison of the probability
density distributions of the velocity components. Secondly, a quantitative
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measure for the reconstruction accuracy is established and investigated.
Finally, the conservation of volume allows to quantitatively evaluate the
overall accuracy of the reconstruction of the out-of-plane velocity component
w.

Qualitative assessment

The transverse velocities v (measured) and w (reconstructed) are considered
to be symmetric for a perfect aspect ratio of Ar “ 1. Therefore, a comparison
of the probability density distribution (PDF) of the transverse velocities (Fig.
3.7) offers a visual qualitative impression of the reconstruction accuracy.
The shape of the probability density function representing the reconstructed
velocities (red solid line) is similar to that of the measured component (black
solid line). The deviations between the peaks and the flanks are attributed to
the measurement uncertainties and the reconstruction.

The PDF of the normalized stream-wise relative velocity (black dotted line)
represents measurement data only. The two peaks at a normalized velocity
amplitude of -1 and 0 are related to the velocities at the wall and the
stagnation regions of the flow, respectively. The broad positive and negative
flanks of the graph result from the bi-directional stream-wise flow of the
main wall-driven vortices inside and outside the Taylor droplet.

Quantitative assessment of the velocity field

The symmetry of the flow enables to compare the measured y-components
in the first quadrant of the cross section (`y, `z) with the reconstructed
z-component of the second quadrant (´y, `z): Rotating the measured 2D
velocity field by +90° and performing a linear interpolation of the rotated
measured transverse velocity component on the grid of the reconstructed
velocities gives vK. Subtracting the measured values from the reconstructed
velocity components in quadrant two results a 3D residue distribution, that
serves as an estimate of the reconstruction accuracy:

R “

`

w ´ vK
˘

ud
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Fig. 3.7: Normalized velocities u (stream-wise direction, measurement), v (trans-
verse direction, measurement), w (transverse direction, reconstruction).
Qualitatively, the PDF of the reconstructed transverse velocity is similar
to the measured transverse component PDF. The deviations at the peak
and the flanks are at first attributed to the measurement uncertainties, the
median filter application and the calculation of the derivative used for the
reconstruction
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Fig. 3.8: Quantification of the reconstruction error. a) Probability density distri-
bution (PDF) of the residue in the entire domain. The total mean recon-
struction error amounts to R̄z ˘ 1σpRzq “ 0, 6˘ 5.3%. b) Mean residue
R̄z distribution and its standard deviation in dependence of the channel
height z

Hch
. c) Mean residue R̄x distribution and its standard deviation in

flow direction x
Hch

The overall reconstruction accuracy of the domain is expressed as a proba-
bility density function (Fig. 3.8a) and it is estimated to be R̄z ˘ 1σpRzq “

0, 6˘ 5.3%. A perfect reconstruction would result a mean value and a stan-
dard deviation of zero. Thus the general reconstruction process works well.
However, considering 95% (2σ) of all residues, the reconstruction shows a
deviation of ˘10.6%.

Fig. 3.8b shows the mean residue R̄z and its standard deviation in depen-
dence of the channel height z

Hch
. The residue grows with the distance to

the xy-symmetry plane. The maximum deviation can be found at a chan-
nel height of z

Hch
« 0.30, where the maximum out-of-plane velocities in

z-direction are found.

Analyzing the mean reconstruction error in flow direction (Fig. 3.8c) shows
again the relation between the amplitude of the out-of-plane velocity and the
reconstruction error. At the cap regions (red lines), the strong out-of-plane
motion coincides with an increased error. At the center of the main vortex
less out-of-plane movement is present, which results a decreased error.

Sec. 3.4 stated that the depth of correlation (DOC) is dependent on the shear
of the flow. Plotting the reconstruction residues versus the according in-plane
shear rates allows to analyze the magnitude of the effect in the presented
experiment. Fig. 3.9 is based on a 2D-histogram of the reconstruction error
(x-axis) and the normalized shear rate distribution (y-axis). For each shear
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Fig. 3.9: Correlation of the reconstruction residues and the according in-plane shear
rates. Shear could be reason the rising mean absolute reconstruction error.
The rate of change is similar to the influence suggested by Olsen [93]

rate bin the mean reconstruction residue (˝) and its standard deviation is
calculated (‚). The gray area indicates a region of high shear with insufficient
data quantity. The mean error rises linearly from 5.2% to 7.2% between
a normalized shear of 0.2 and 0.8 respectively. As comparison the model
of Olsen [93] for the shear influence on the DOC is applied, transformed
and added to the graph (red line). The influence of shear on the DOC is
identified to be a possible reason for the observed evolution of the mean
absolute reconstruction error.
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Quantitative assessment of the volume flows

An analysis of the stream-wise and transverse volume flow inside and outside
the Taylor droplets in Fig. 3.10 confirms the coherence of the measured flow
data. The mean volume flux distribution Qx, Qy and Qz along the center axis
of the channel is calculated with the reconstructed 3D3C absolute velocity
field and the corresponding reference areas dAx “ ∆y∆z, dAy “ ∆x∆z
and dAz “ ∆x∆y. The mean volume fluxes in x-direction (Fig. 3.10 a), y-
direction (Fig. 3.10 b) and z-direction (Fig. 3.10 c) are non-dimensionalized
with the superimposed total volume flow pQtot “ Qd `Qcq. The total volume
flow of a direction is marked blue, while the continuous phase and the
disperse phase are shown as black and red lines respectively. The volume
flux Qi,c and Qi,d of each of the two phases is extracted by applying the
approximate interface model as an logical discriminator [82] (Chap. 4).

The measured mean stream-wise volume flux distribution along the x-axis is
given in Fig. 3.10 a). The blue graph corresponds to the superficial volume
flux in x-direction, while the black and red graph depicts the mean continuous
and mean disperse phase flux per channel cross section respectively. The
mean superficial volume flow deviates with ´5.56% at most from the nominal
flow rate, which is set by the syringe pumps (Qtot = 3.0 µl min´1). Ruling out
defective equipment or leakage flow, the deformation of the channel material
(polymethyldisiloxane - PDMS) explains the deviation. Taylor droplets are
found to exert pressure peaks to the wall while passing [2] and the ductility
of the channel material allows the wall to subside, while being pressurized
[31]. Thus, the pressure drop related channel expansion causes a decrease
of the mean velocity: the microchannel dilates. When recalculating the
volume flux Qi from the flow field by applying the reference areas dAi, the
volume flow per cross section appears to be too small. Assuming a correct
measurement procedure, this relates to an estimated cross section expansion
rate of 2.9% in channel width (3.3 µm) and height (2.8 µm).

Proceeding along the x-axis towards the droplet’s back cap (Fig. 3.10 a), the
volume flux of the continuous phase (black graph) decreases as the droplet
phase (red graph) occupies more space. The volume flux in the gutter and in
the wall film is present as well: the dimensionless volume flow of continuous
phase never drops below 2.1% at x

Hch
« ´1. Towards the droplet tip the
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Fig. 3.10: Analysis of the dimensionless volume flow in stream-wise Qx,i{Qtot and
in transverse direction inside and outside the Taylor droplets (Qy,i{Qtot
and Qz,i{Qtot) to demonstrate the coherence of the flow data. De-
picted are volume flows occurring through cross sections perpendicular
to the main flow direction (along the x-axis). The total volume flow
pQtot “ Qd ` Qcq is expected to match the measurement volume flow
measurement in x-direction (Qx{Qtot “ 1), while the volume flows in
transverse direction are expected to be zero due to conservation of mass
(Qy{Qtot “ Qz{Qtot “ 0). The indices d and c refer to the disperse
and continuous phase respectively. The stream-wise volume flux a) and
the transverse volume flux in y-direction b) represent the results of the
3D2C µPIV measurement, while c) depicts the reconstructed transverse
out-of-plane volume flux in z-direction. The stream-wise flux deviation is
attributed to the channel deformation p94.44% ˘ 1.2%qQtot, while the
deviation in y-direction highlights the accuracy of the µPIV measurement.
The reconstruction of the third velocity component carries a standard
deviation of ˘ 2.7% of Qtot along the longitudinal axis of the droplet.
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volume flux development reverses until only continuous phase is present
from x

Hch
ą 0 on.

Fig. 3.10 b) shows the mean transverse volume flux in y-direction along
the Taylor droplet main axis, that is expected to be zero. All fluctuations in
y-direction remain below 0.1%. This consideration reflects the measurement
error introduced by the applied µPIV measurement technique.

The mean volume flow based on the reconstructed (dashed lines) transverse
velocity component in z-direction is shown in Fig. 3.10 c). Due to the
symmetry of Taylor flows, the mean flux per cross section is expected to
cancel out. However, the mean residual flux amounts to ´0.001%˘ 2.7% of
Qtot. The maximum deviation amounts to -6% of Qtot. The result reflects
the accuracy of the applied reconstruction method, since the measurement
planes are carefully positioned with respect to the symmetry planes of the
microchannel. The subdivision of the channel volume into disperse and
continuous phase reveals that the deviation is located in both phases.

The error sources are identified to be the data filter (low pass filter for data
noise) and the determination of the derivatives (which acts as a high pass
filter for data noise) in addition to the dilation of the PDMS microchannel.
From this analysis, the standard deviation of the reconstruction error is
˘2.7% of the total volume flux Qtot, which is half as big as the reconstruction
error estimation in Fig. 3.8. The difference results from the integration step
taken to derive the absolute volume flow.
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Modeling the Taylor
droplet interface

4

Once there were some particles
Being lonely and anarchical
Intensely loved an interface

- liked strongly to adhere
Never could I break that brace

- even not with shear
That bond is quite remarkable

This chapter presents a geometric model to approximate the interface shape
of Taylor bubbles and droplets moving in rectangular micro channels. In order
to deduce the entire 3D interface geometry the following a-priori knowledge
is required: the cross sectional channel geometry, the droplet/ bubble length
and the flow related front and back cap deformation ratios retrieved e.g. from
instantaneous images of translating interfaces. The accuracy of the interface
shape model is benchmarked with experimentally generated average images
of the statistical distribution of a particulate tracer. In the experiment, the
fluidic material system, the aspect ratio of the channel cross section and the
droplet/ bubble length is varied. The mean overall deviation between the
model and the experimental data remains below 2%. The interface shape
model is applicable for horizontal pressure-driven liquid-liquid and gas-liquid
fluid systems in a range of Cac ă 0.01, Rec À 1 and Bo ! 1 with the liquid
continuous phase wetting the wall. The model can be applied e.g. to guide
the 3D flow field reconstruction of multiplane µPIV-measurements of Taylor
flows.
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4.1 Overview

A number of microfluidic applications employ two-phase flows using either
the continuous phase or the disperse phase of Taylor flows to implement
thermal [52, 67, 76], chemical [35, 60, 110] or biological processes [69, 123].
Chou et al. [22] published a recent overview on Taylor flow applications.
The validity range of the approximation is in the scope of dimensionless
numbers, which is addressed in theoretical work on microscopic Taylor flow
[V lahovska.2019, 9, 25].

For modeling purposes the volume and surface area is usually deduced e.g.
from optical images. Musterd et al. [87] delivered a detailed method to
extract this information from various commonly used channel geometries,
including a rectangular cross section. Their work assumes static flow condi-
tions (non-moving droplets/ bubbles) to calculate the droplet/ bubble shape.
Please note that in the following when referring to ’droplets’ also gas-liquid
fluid systems are addressed.

In droplet-based microfluidics, the droplet shape is strongly related to the
pressure drop during the transport of droplet trains [78]. For low capillary
numbers Cac “

u0,totηc
σ

the surface tension forces dominate the viscous forces.
The droplet front and back caps are deformed from their static spherical
shape when set into motion, due to the fluid forces exerted on the interface.

The accuracy of the interface shape model is benchmarked with particle
images of a Taylor flow investigation at a capillary number Cac “ 0.005. The
material system of the two-phase flow is varied as well as the aspect ratio Ar

of cross sectional channel geometry and the droplet length Ld.

The purpose of this geometrical interface approximation is to establish model-
based guidance for the 3D flow field reconstruction for multiplane µPIV-
measurements of Taylor flows. Thus, extensive CFD-modelling may be
avoided in favor of the presented analytical approximation. Furthermore,
the interface can be used e.g. to derive an analytical model for the relative
velocity of the droplets with respect to the total superficial flow velocity [1,
5, 43, 70].
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4.2 Modeling approach

Taylor droplets in rectangular micro channels do not occupy the entire cross
section of the channel [60]. The remaining fraction of continuous phase in the
channel corner is referred to as gutter [107]. The interface curvature in the
longitudinal direction of the gutter is assumed to be negligible and propose
a straight connection between the gutter entrances. The perpendicular
interface curvature at the gutter cross section is assumed to be circular [87].
This curvature can be expressed as the inverse of the local radius, named
gutter radius Rg. Thus at this location, solely the gutter radius itself relates
to the Laplace pressure via the interfacial tension σ.

The dynamic interface shape of moving Taylor droplets is not only linked to
the channel geometry and the free surface energy but also to flow-induced
forces [78]. The presence of the curved interfaces (caps) between translating
immiscible fluids causes flow deflection and recirculation in a frame of
reference moving with the droplet velocity. This change of flow direction
inside and outside the droplet exerts forces onto the interface. For surfactant-
free materials (gases/ liquids), the deformation of the droplet caps is directly
related to the interaction of the surface tension with the fluid forces normal
to the interface, while tangential fluid forces induce surface movements.
Thus, the actual droplet length determines the location of the flow deflection
at the caps, but not their deformation.

The wall film related forces determine the wetting conditions of the continu-
ous phase and thickness of the deposited fluid. Kreutzer et al. [62] provide a
description to assess the de-wetting conditions of the wall film. For the inves-
tigated case optimal wall wetting of the bulk phase and a regular deposition
of the Landau-Levich-Bretherton films with an evenly distributed wall film
thickness is assumed. The reported dimple between the gutter and the thin
film is neglected in the model to reduce complexity. Sobieszuk et al. [105]
summarize models of the lubricating liquid film at the channel walls and the
thickness of the gutter, which they refer to as the diagonal film thickness.

The correlations of Han and Shikazono [37] describe the dimensionless side
wall film thickness δ{Hch of Taylor flows in rectangular channel geometries in
case of low Reynolds numbers Rec “

ρcu0,totHch
ηc

, where ρc denotes the density
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Fig. 4.1: Droplet sketch to locate and estimate the gutter radius at the droplet front
Rg,f. A droplet with an aspect ratio (Ar “

Wch
Hch

“ 2) and a length ratio Ld
Wch

of 2 is depicted. In the droplet overview a) the boundaries of the frontal
cap, the back cap and the gutter surface are delimited with red, black and
blue lines respectively. Lines 1-4 and g define a quarter of the front cap
and are supported by the lines a and b to derive the frontal gutter radius
Rg,f (line g). The yellow dot marks the origin of the coordinate system.
The droplet motion is directed in positive x-direction. Exemplary, excerpt
b) details the quartered frontal droplet section to support the derivation
of the gutter radius. The circles indicate the nodes used approximately
equate Laplace pressures.

of the continuous phase. The surface tension forces dominate viscous forces
(Cac ! 1) which in turn prevail the inertial forces (Re ă 1). The Bond
number Bo “ ∆ρgH2

ch
σ

! 1 is small, since buoyancy effects are suppressed due
to the channel dimensions.

In Fig. 4.1 a sketch of the droplet interface is given to detail the geometry.
Three interface regions are defined for the derivation of the model. The
blue region depicts the area, where the Laplace pressure ∆p geometrically
depends on the gutter radius only. The red region shows the front cap (index
i = f) of the droplet, where the Laplace pressure depends on two principal
radii. The black region is the back cap of the droplet (index i = b), where the
geometrical conditions are similar to those of the front cap. Unless otherwise
stated, the calculations for the front and back cap are treated analogously.

For derivation purposes, only the front of the droplet is entirely depicted
and the blue (gutter) and red regions (front cap) are considered: The line
g indicates the border between the gutter and the front cap (blue and red
region). Line a and b are supporting lines, that are defined later. The Laplace
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pressure ∆pjg,i at the intersection of line g and line a depends on the gutter
radius alone. This location is the gutter entrance (solid circle, Fig. 4.1b). The
index j relates either to the static or the dynamic droplet shape (j “ stat or
dyn).

The intersection of the supporting lines a and b defines a proximate position
in the red region, where the Laplace pressure ∆pjab,i depends on two principal
radii of the front cap (dashed circles, Fig. 4.1b). Both Laplace pressures are
considered to be equal due to their spatial vicinity.

∆pjab,i « ∆pjg,i (4.1)

Later in the description of the model, the differences of the Laplace pressure
between the static and the dynamic case (Eq. 4.2) allow to derive the
dynamic gutter radii Rdyn

i as a function of the droplet length Ld, channel
width Wch and the below defined cap deformation ratio ki.

´

∆pstat
ab,i ´∆pdyn

ab,i

¯

«

´

∆pstat
g,i ´∆pdyn

g,i

¯

(4.2)

Following Stone and Leal [108], the shape of the cap in the x-y plane at z=0,
i.e., the symmetry plane in the z-direction, is approximated as an ellipse (line
1). Line 2 is the elliptical contour approximation in the symmetry plane in
y-direction, respectively. In the static case, lines 1 and 2 reduce to circles
with the radii Wch{2 and Hch{2. They limit the elliptical description for the
static case.

The ellipse line 1 of the droplet cap is described by the semi-major axis
a1,i and the semi-minor axis b1,i. The ratio of the two axes specifies the
cap deformation from the static circular shape. The flow field exerts forces
onto the cap and evokes the deformation. In the following, this geometrical
proportion is called cap deformation ratio kji (Eq. 4.3). This deformation
ratio has the same value for the z- and y-direction, i.e. for line 1 and 2.
This assumption especially holds true for channels with aspect ratio Ar “ 1.
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Furthermore, the deformation ratio are also applied for the lines 3 and 4,
describing the shape of the onset of the top and side wall films.

kji “
a1,i

b1,i
«
a2,i

b2,i
«
a3,i

b3,i
«
a4,i

b4,i
(4.3)

Under static conditions (i.e. in the absence of a flow) the ellipses indicated
by line 1-4 assume circular shapes and their corresponding deformation
factors reduce to 1. As soon as the flow exerts forces on the droplet interface
(dynamic conditions), the droplet back compresses and the droplet front
elongates in flow direction:

static : kji ÝÑ kstat
f “ kstat

b ÝÑ 1
dynamic : kji ÝÑ kdyn

f ą 1
kji ÝÑ kdyn

b ă 1

Implicitly, the following assumptions and simplifications are made to estimate
the gutter radii at the front Rdyn

g,f and the back Rdyn
g,b of a moving droplet:

• The adjacent flow fields of the droplet interface are stationary.

• Momentum transport normal to the interface changes the droplet shape
from its static shape at rest. The fluid flow is the source of deviation
from the static shape.

• The general interface contour in the symmetry planes (xy & yz) can be
approximated using an elliptical description.

• Channel height Hch, channel aspect ratio Ar, disperse phase length Ld

and the front and back cap deformation ratios kf and kb of in the z “ 0
center plane are known - either by experiment (images), a correlation
or other eligible sources.

• The elliptical deformation observed in the z “ 0 center plane is trans-
ferable to the y “ 0 symmetry plane and the border geometry of the
wall films.
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• The osculating circles of the ellipses vertices and co-vertices are suf-
ficient to estimate the curvature of the neighboring surface elements
(Fig. 4.1 a), intersection of the lines a-b and a-g) for a Laplace pressure
balance.

• The Laplace pressure difference of those neighboring interfacial points
is negligible.

• The interfacial tension σ is constant in the proximity of the gutter
entrance.

The Laplace pressure difference across the interface of the static and dynamic
flow condition at the gutter entrance in Eq. 4.2 is approximated with the
following principle radii of the sectional ellipse of the lines a and b (Fig.
4.1a).

∆pjab,i “ σ

˜

1
Rj
a,i

`
1
Rj
b,i

¸

(4.4)

At the beginning of the gutter (line g, Fig. 4.1a) the surface curvature is
composed of the gutter radius Rg,i alone.

∆pjg,i “ σ

˜

1
Rj

g,i

¸

(4.5)

Applying Eq. 4.4 and 4.5 to Eq. 4.2 and marking the respective static and
dynamic terms produces ultimately an implicit description of the dynamic
gutter radius.

0 “ `

˜

1
Rstat
a,i

´
1

Rdyn
a,i

¸

`

˜

1
Rstat
b,i

´
1

Rdyn
b,i

¸

´

˜

1
Rstat

g,i
´

1
Rdyn

g,i

¸

(4.6)
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Note, that the solution is independent of the interfacial tension σ. Thus,
the solution for the gutter radii is considered to hold also for flows in the
presence dilute surfactant load as long as the interfacial tension gradients
are small at the gutter entrances. The application of a zero-finding algorithm
results in the dynamic gutter radii, which are used in the later described
construction of the 3D droplet interface.

Relating the gutter radius Rj
g,i to the droplet height pHch ´ 2δq, a non-

dimensional gutter radius is defined.

kjg,i “
Rj

g,i

Hch

´

1´ 2δ
Hch

¯ (4.7)

The wall film thickness δ and the diagonal film thickness of the gutter δg pre-
sented by Han and Shikazono [37] are used to derive a theoretical estimation
of a mean non-dimensional gutter radius:

kjg,theo “

´

δg
Hch

´ δ
Hch

?
2
¯

`?
2´ 1

˘

1
´

1´ 2δ
Hch

¯ (4.8)

For static conditions, an infinitesimal layer of continuous phase is assumed
to remain in the wall films (δ CacÝÑ0

ÝÝÝÝÑ 0). The received static theoretical
dimensionless gutter radius is applied in the presented model in order to
reference the static condition of the interface shape and can be expressed
as

kstat
g,theo “

´

δg
Hch

¯

`?
2´ 1

˘ . (4.9)

Apart from the description of the sectional ellipse line a (Fig. 4.1b) the
system of equations of the front is entirely symmetric to that of the droplet
back. However, when a flow related pressure gradient compresses the back
of the droplet (kdyn

b ă 1) and elongates the front (kdyn
f ą 1), the expression
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for the osculating circles of the sectional ellipse line a needs to be based on
different vertices: The co-vertex is used for the frontal cap

Rdyn
a,f “

a12

b1
, (4.10)

while the main vertex is specifies the cap radius on the backside.

Rdyn
a,b “

b12

a1
(4.11)

Applying the definition of the gutter radius (Eq. 4.7) in the expression
for the semi-minor axis of the sectional ellipse b1 results from geometrical
consideration:

b1 “

ˆ

Hch

2 ´ δ

˙

?
2´Rj

g,i

´?
2´ 1

¯

“
Hch

?
2

2

ˆ

1´ 2δ
Hch

˙ˆ

1´ 2kjg,i
ˆ

1´ 1
?

2

˙˙

. (4.12)

The corresponding semi-major axis a1 is calculated using the elliptical de-
scription of line 1 (Fig. 4.1b) on the xy-symmetry plane and its semi-major
a1 and -minor b1 axis. y1 denotes the intercept in y-direction of line 1 leading
to a1 as the according x-axis intercept x1:

a1 “ x1 “
a1

b1

a

b2
1 ´ y

12 (4.13)

a1 “ kji b1 (4.14)

b1 “

ˆ

Wch

2 ´ δ

˙

“
Hch

2

ˆ

Ar ´
2δ
Hch

˙

(4.15)

4.2 Modeling approach 63



y1 “

ˆ

Wch

2 ´ δ

˙

´

ˆ

Hch

2 ´ δ

˙

“
Hch

2 pAr ´ 1q (4.16)

For the supporting line b in the proximity of the gutter entrance (Fig. 4.1b)
the radius Rj

b,i of the osculating circle is derived. The expression is derived
for the intersection of line a and b.

Rj
b,i “

1
a24b24

b

pa24y2
ab ` b

24z2
abq (4.17)

The height zab on which the intersection is located is estimated from geomet-
ric considerations in Fig. 4.1b with

zab «
“

a2 ´Rj
g,i
‰

`
Rj

g,i
?

2

«
Hch

2

ˆ

1´ 2δ
Hch

˙ˆ

1´ 2kjg,i
ˆ

1´ 1
?

2

˙˙

. (4.18)

The corresponding intercept on the y-axis is formulated as

yab “
b2

a2

b

a22 ´ z2
ab, (4.19)

where a2 denotes the semi-major axis of the ellipse at line b in z-direction
and b2 represents the according semi-minor axis in y-direction:

a2 “

ˆ

Hch

2 ´ δ

˙

“
Hch

2

ˆ

1´ 2δ
Hch

˙

(4.20)

b2 “

ˆ

Wch

2 ´ δ

˙

´ y2 “
Hch

2

ˆ

Ar ´
2δ
Hch

˙

´ y2. (4.21)
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The ellipse line 3 at the onset of the top wall film delivers the y-axis intercept
y2 for the sectional ellipse line b (Fig. 4.1b) applying the corresponding
semi-minor and-major axis a3 and b3:

y2 “
b3

a3

a

a2
3 ´ x

22 (4.22)

a3 “ kjfb3 (4.23)

b3 “

ˆ

Wch

2 ´ δ

˙

´Rj
g,i

“

ˆ

ArHch

2 ´ δ

˙

´ kjg,i pHch ´ 2δq

“
Hch

2

ˆˆ

Ar ´
2δ
Hch

˙

´ 2kjg,i
ˆ

1´ 2δ
Hch

˙˙

. (4.24)

The x-position x2 at which the top film ellipse is evaluated is equal to the
semi-major axis a4 of the side film ellipse line 4 (Fig. 4.1b):

x2 “ a4 “ kji

ˆˆ

Hch

2 ´ δ

˙

´Rj
g,i

˙

“ kji
Hch

2

ˆ

1´ 2δ
Hch

˙

`

1´ 2kjg,i
˘

. (4.25)

For the static case Cac ÝÑ 0, the cap deformation ratio reaches unity kstat
f “

kstat
b ÝÑ 1 and the wall film thickness is infinitesimal δ ÝÑ 0. The flow

related front and back deformation of the droplet caps kdyn
f and kdyn

b can be
extracted e.g. from experimental images of the Taylor flow. Calculating the
capillary number and Reynolds number delivers the wall film thickness δ{Hch.
Inserting the summarized conditions and equations (4.7 - 4.25) into (4.6)
delivers the final description. As a final step, the dynamic front and back
gutter radii Rdyn

g,i (kdyn
g,i ) are calculated using a zero-finding algorithm.
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The difference between the front and the back gutter radius results from the
different deformation of the front and back caps. The relation of the proposed
geometrical approximation summarizes as follows: With rising viscous forces
(rising Ca-number) the pressure drop along the droplet increases. The rear
cap is compressed while the front cap is elongated with respect to the main
flow direction (bullet shape of the droplet). Accordingly, the front gutter
radius is larger than the rear gutter radius. The above system of equation
delivers the quantitative connection between the cap deformation and the
gutter radii. Additionally, the location of the gutter entrances is determined
with respect to the cap tips and an entire boundary framework for the droplet
shape.

4.3 Geometric boundary framework

The geometric representation of the droplet interface is constructed in a quar-
ter section of the channel volume, making use of the existing flow symmetry.
The front and back cap deformation ratios kji are assumed to generally deliver
a measure describing the deformation of the entire associated cap region (Eq.
4.3). Thus, these deformation ratios are applied to the lines 1-4 (Fig. 4.1).
The dynamic gutter radii Rdyn

g,i (kdyn
g,i ) are positioned at a distance xjg,i from

the tip (coordinates r0, 0, 0s) and tail (coordinates r´Ld, 0, 0s) towards the
center of the droplet. Geometric considerations and inclusion of Eq. 4.25
deliver:

∆xjg,i “ kji

ˆ

Wch

2 ´ δ

˙

` a4 (4.26)

“ kji
Hch

2

„ˆ

Ar ´
2δ
Hch

˙

`

ˆ

1´ 2δ
Hch

˙

`

1´ 2kjg,i
˘



.

For droplets shorter than a critical dimensionless length of Lcrit
Wch

ď pxjg,f ` x
j
g,bq

the actual location of the gutter radii with respect to the droplet front and
back cap-tips would lack physical meaning. In those cases, shorter droplets
need to develop bigger gutter radii to accommodate the dispersed phase. The
minimal dispersed phase size (Lmin

Wch
Ñ 1) has a gutter radius of approximately
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Fig. 4.2: Geometric boundary frame representation of the Taylor flow interface
shape model (Ar “ 1.5;Ld{Wch “ 1.5). The yellow dot represents the
interface front tip. The droplet length Ld and the front and back cap
deformation ratios ki are expected to be experimentally determined by
e.g. imaging of the xy-symmetry center plane. The lines A-B-C show the
outlines of the wall films.

half the channel height (kg,i Ñ 0.5). To preserve the deformation information
of the caps, a scale factor c enlarges both gutter radii obtained from the
model:

c “ Ar

˜

1
kjg,f ` k

j
g,b

¸˜

kjg,f ` k
j
g,b

2 ` Ar ´
L

Wch

¸

(4.27)

Subtracting the gutter radiiRj
g,i from the half of the droplet width pWch{2´ δq

and height pHch{2´ δq yields the respective semi-minor axis b3 and b4 of the
wall film onsets (pos. 3 & 4, Fig. 4.1).

In order to avoid sharp edges on neighboring interface sections at the side
wall films, the x-coordinates of the side film onset (line 4) are joined with the
x-coordinate of the gutter radii postulating a z-dependent cosine function
(dashed lines, side view, Fig. 4.2).
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4.4 Interface construction sequence

The interface construction routine is implemented in a Matlab script. The
iterative progression of the calculation begins at the center points of the
ellipses at the top wall film. Moving outwards towards the border of the
top film (Fig. 4.2: Top view), the routine advances against the positive
z-direction towards the xy-center plane of the droplet. At each iteration step,
the supporting points of the particular front and back ellipses are computed
applying the above explained geometric boundary framework. Subsequently,
the front and back ellipses are tangentially connected to form a smooth
outline (Fig. 4.2: Top view). Finally, the entire resulting surface quarter is
copied, mirrored and rearranged to form a closed interface. The starting
point of the construction sequence causes an optical artifact: The outline
of the top wall film is visible in the grid structure, while the outline of the
sidewall film is not visible (e.g. Fig. 4.3a). Nonetheless, both are present
(see Fig. 4.2, lines A-B-C).

4.5 Visualization and application

In order to demonstrate the capability of the Taylor flow interface shape
model, four different geometrical settings are chosen as shown in Fig. 4.3:
two droplet lengths (Ld{Wch “ 1 and « 1) for two aspect ratios (Ar “

1, 2). These are representative for Taylor-droplet shapes reported in many
applications.

A widely used 1st order estimate for the volume Vd of the Taylor droplet is a
confining cuboid of the dimensions HchWch Ld [87]. However, a significant
amount of continuous phase is accommodated outside the caps and in the
gutters [107]. The deviation of this basic cuboid geometry from the here
presented approach is depicted in Fig. 4.4 for a channel aspect ratio of Ar “ 1
and Cac “ 0.002.

The confining cuboid approach overestimates the volume of elongated
droplets about 15%, while for shorter droplets Ld

Wch
« 2 it overestimates

the volume up to 31%. The shortest droplet length is a sphere Ld
Wch

« 1 that is
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Fig. 4.3: Visualization of commonly used droplet sizes in two different channel
geometries: Aspect ratio Ar “ 1, a) long (2Wch) and b) short (1Wch)
droplet. Aspect ratio Ar “ 2, c) long (2Wch) and d) short (1Wch) droplet.
The flow is directed along the positive x-axis and the tip of the interface is
marked with a yellow dot. The starting point of the construction sequence
causes an optical artifact: The outline of the top wall film is visible in the
grid structure, while the outline of the sidewall film is not visible (e.g. Fig.
4.3a). Nonetheless, both are present (see Fig. 4.2, lines A-B-C).
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Fig. 4.4: Comparison of the droplet volume Vd with that of the bounding cuboid
(HchWchLd) in dependence of the dimensionless droplet length Ld

Wch
in-

cluding the flow induced deformation at Cac “ 0.002 at Ar “ 1. The
basic 1st order confining cuboid approach overestimates the volume of
elongated droplets of about 15%. The cuboid model for shorter droplets
Ld
Wch

« 2 exposes a volume overestimation of up to 31%. The shortest
droplet length is a sphere Ld

Wch
« 1 that is confined in a cuboid of HchW

2
ch,

which overestimates the reference sphere by a factor of 1.9. The viscous
forces of the flow deform the spherical shape and result in additional
disperse phase accommodated in the confining cuboid.

confined in a cuboid of HchW
2
ch, which overestimates the reference sphere by

a factor of 1.9 (black dot, Fig. 4.4). The viscous forces of the flow deform the
spherical shape and result in additional droplet volume Vd accommodated in
the confining cuboid.

The interface shape model can be applied directly, when the cap deformation
ratios ki and the droplet length are experimentally available from images
and the channel geometry is known. However, given a relation between
the cap deformation ratio and the capillary number Cac, an entire scope of
Taylor droplet shapes is at hand with a relatively small computational effort.
Sauzade and Cubaud [101] propose a capillary number dependent quotient
of the front and back deformation ratio kdyn

b {kdyn
f to quantify the overall

deformation of their droplets. However, to calculate the individual front and
back gutter radii, a discrimination between the front cap and the back cap
deformation is necessary, and therefore their relation can’t be applied.
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A manually fitted impression of the deformation ratio in dependence of the
capillary number is depicted in in Fig. 4.5. The underlying data consists
of measurements of Helmers et al. [42] and their interface deformation
estimation derived from the simulation of Taha and Cui [109] in combination
with the particle image data presented later in this study. The static cap
shape of the interface is assumed to be circular (grey line). When exposed
to a viscous flow (Cac ą 0), the back cap geometry is compressed (kb ă 1,
black points), while the front cap is elongated (kf ą 1, gray points). Based on
this rough assessment, the corresponding dimensionless gutter radii of the
deformed caps are calculated with the above presented model and referenced
with the theoretical dimensionless gutter radius (blue line, Fig. 4.5) to enable
a comparison to the theoretical gutter radius, which is implicitly delivered by
the side wall- and diagonal gutter film thickness δg of Han and Shikazono
[37] (Eq. 4.8).

For Cac ă 0.004 the theoretical gutter radius is higher than the mean dynamic
gutter radius received from this study. The maximum deviation is about
1%. Regarding flows with higher capillary numbers, the theoretical value
decreases due to the significant thickening of the gutter film. The gutter
radii of the model actually increase further. Based on this comparison the
validity range of the model is estimated to span from static flow conditions
(Cac “ 0) to a maximum of Cac “ 0.01. Obviously, this interrelation needs
to be investigated more thoroughly with a considerably increased number
of data points. Additionally, the inertia effect needs to be investigated, to
systematically clarify the role of the Reynolds number on the deformation of
the Taylor droplet shapes.

4.6 Results and discussion

In this section the position and shape of the interface between the model
and the measurements is compared. The quality of the model is tested
with respect to the following geometrical and material parameters: the
channel aspect ratio, the dimensionless droplet length, and the material
system. At first, the flow related dilation of the PDMS-channel geometry is
addressed. Secondly, a deviation map gives an qualitative and quantitative
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Fig. 4.5: Deformation ratios ki of the droplet caps in dependence of the capillary
number: Measurements and manual estimation of the data trend. Result-
ing gutter radii in comparison to a literature based theoretical approach.
Given the manual estimation of the cap deformation ratios the gutter radii
appear to be in good agreement.
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impression based on the exemplary droplet already addressed in Fig. 3.5.
Subsequently, a more detailed plane-wise shape comparison between the
Taylor droplet shape model and the measurements is conducted. Finally, an
overall shape assessment with the statistical droplet measurements is given
and discussed.

4.6.1 Deformation of the PDMS-Channel

The initial positioning of the measurement plane in z-direction is referenced
by focusing on the channel top and bottom wall and measuring the according
objective position. After establishing a continuous Taylor droplet flow the
pressure drop across the disperse phase and film deforms the ductile PDMS-
channel up to 5% in z-direction. Hence, the referenced top and bottom walls
of the channel slightly expand their distance.

A compensation of the channel deformation is performed by adjusting the
relevant model channel height to the dimensions of the deformed experimen-
tal setup. The following presented data sets are all treated with this adaption
procedure.

4.6.2 Shape deviation between model and measurement

The accuracy of the suggested Taylor flow interface shape model is at first
visualized mapping the deviation r

Wch
from the experimental data onto the

theoretical surface (Fig. 4.6a). The color coding uses dark red to indicate
a positive discrepancy in case the measurement overshoots the model with
more than `5%. Dark blue displays negative differences of ´5% and more.
The range between ˘2.5% is purposely marked gray to emphasize the model
surface fraction that does not deviate significantly from the measurement.
Thus, most of the model interface does achieve non-significant deviations.
Due to the location asymmetry of the significant shape deviations with respect
to the flow axes, the discrepancies are attributed to measurement artifacts
rather than to the flow conditions. The top of the 3D-deviation map is not
closed, since at this position no measurement data is available. Instead, the
grid structure of the model is depicted.
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Fig. 4.6: a) Surface map (top view) of the relative deviation location. Dark red and
blue colors indicate a deviation beyond ˘5%. Gray color specifies value
between ˘2.5%. b) Probability density distribution of the relative shape
deviation. A slight skew towards positive values is present with a minor
positive shift.
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The probability density distribution P of the relative shape deviation r
Wch

is computed and shown in Fig. 4.6b). Almost the entire distribution is
located well between ˘5%. The location of the peak deviation in the graph
indicates a minor skew towards a positive shape deviation (+7.5‰): The
model underestimates the measured interface position, which corresponds to
a mild underestimation of the approximated droplet volume. The modeled
droplet is slightly too small.

A measurement plane wise itemization assesses the relative deviation inde-
pendent of its direction, as a function of the droplet length, aspect ratio and
material system (Fig. 4.7). At first, longer droplets Ld

Wch
ą 1 are considered

(Fig. 4.7a). The mean shape deviation of the droplets inside the investigated
aspect ratio Ar “ 1 channel remains below an relative error r

Wch
of 2.5%

for all measurement planes. Taking the standard deviation into account,
the maximum relative error is 3.6% at a channel height of 42.8 µm. A clear
influence of the material parameter is not observable.

The droplet shape model of a Taylor flow inside a channel of aspect ratio
Ar “ 2 exhibits a growing deviation with increasing channel height. The
mean discrepancies between measurement and model stay below 5% but
roughly double compared to the corresponding channel of aspect ratio Ar “

1.

The mean relative shape deviation short Taylor droplets ( Ld
Wch

« 1) stays
below 2.5% (Fig. 4.7b). The deviation even decreases until the gutter height
is reached at Hch « 25 µm.

Approaching the top wall film of the interface (Fig. 4.7a), the mean deviation
rises up to 3.5% for water/DMSO. Taking the standard deviation into account
at this height level, the maximum deviation of 5.2% is reached. No clear
difference between the droplet materials was noticed.

Continuing from the section-wise model assessment, an overall accuracy of
the modeled interface with respect to the measurement is given in Fig. 4.8.
Measurement cases A to E reflect the droplet material system variation along
with the geometrical variation of the aspect ratio and the droplet length.
The mean relative deviation is provided as well as the respective standard
deviation to indicate the accuracy of the proposed Taylor flow interface shape
model.
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Fig. 4.7: Comparison of the relative in-plane shape deviation between model surface
and average particle images of elongated a) ( Ld

Wch
“ 1.31 ¨ ¨ ¨ 1.66) and short

droplets b) ( Ld
Wch

« 1) for different height positions z as shown in Fig. 3.5).
The relative deviation of the long droplets is well below 5% with maximum
values in the z = 35 to 45 µm range corresponding to regions with larger
deviations in Fig. 4.6). The example for Ar “ 2 shows a deviation twice
as big at the slanting top part of the droplet. The same trend holds for the
short droplets. Despite the increased relative error in the proximity of the
curved droplet top, the proposed interface shape model fits well for both
investigated material systems.
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Fig. 4.8: Comparison of the overall shape deviation between model interface and
the averaged particle images. The mean deviation for all shapes and
materials stays well below the 5% mark.
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All mean relative shape deviations are quantified to be below 5% (dashed
reference line, Fig. 4.8). The model comparison exhibits the maximum
relative shape deviation in case E: the long water/ glycerin droplet measured
in a channel of aspect ratio Ar “ 2.

The material variation indicates a decreased accuracy for the water-DMSO/
octanol system. The interfacial tension (σ “ 2.26 mN m) as well as the
viscosity ratio ηd

ηc
“ 0.43 are smaller than that of the water-glycerin/ octanol

system (σ “ 5.89 mN m, ηd
ηc
“ 2.62). The capillary number of the continuous

phase is held constant at Cac “ 0.005 to preserve a comparable force balance
between the outer viscous forces and the interface tension forces. Thus, the
viscosity ratio indicating the momentum transfer into the droplet is likely to
be the reason for the increase of the material related relative shape deviation.
As Balestra et al. [11] and Rao and Wong [97] show, the momentum coupling
has an influence on the relative velocity and the droplet shape. In addition
the model appears to represent elongated droplets better than the minimal
sizes around the dimensionless droplet length of 1. This effect is anticipated,
since the deformation leads to an increased accommodation of disperse phase
compared to a non-deformed reference sphere (Fig. 4.4).

The mean overall deviation for all cases is found to be below 2%. When taking
the standard deviation into account the relative deviation stays below 3%.
Hence, the proposed interface shape model for Taylor flow at low capillary
numbers does represent real flow conditions with good accuracy.

4.7 Conclusion

In order to enable a model based guidance for the 3D flow field reconstruction
for multiplane µPIV-measurements of Taylor flows in rectangular micro chan-
nels, an analytic interface shape approximation for low capillary numbers is
proposed. Based on the flow dependent droplet dimensions in the droplet
symmetry plane an elliptical shape deformation is assumed. Given the flow
dependent elliptical front and back cap deformation ratio, the droplet length
and the channel aspect ratio, the front and back gutter radii can now be
determined. The interface shape construction sequence uses a framework of
geometric boundary conditions to calculate the 3D-distribution of interface
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nodes. The proposed model can be applied for rectangular channels of vary-
ing aspect ratio Ar “ r1...2s (and possibly beyond) and dimensionless Taylor
droplet length Ld

Wch
Á 1.

The capillary numbers covered by the analytical approximation are set in a
range that is suitable not only for applications but also for theoretical work
on microscopic Taylor flow. In terms of Reynolds numbers, the approxima-
tion is restricted to flows dominated by viscous forces, since the modeled
deformation at the back of the droplet begins to deviate beyond the onset of
inertia forces [64]. To the best of my knowledge, this model is the first work,
that delivers an approach to analytically asses the deformed shape of moving
Taylor droplet and the size of the gutter radii.

Verifying the performance of the model, an experimental investigation of
continuous Taylor flows is conducted. An optical scanning procedure com-
bined with a microscope objective of small depth of focus records images of
tracer particles, which are immersed in Taylor droplets. An image processing
procedure is developed that creates average particle image slices of a rep-
resentative mean Taylor droplet. Those scans provide accurate information
about the mean interface position of the flow.

Varying the geometry in terms of aspect ratio as well as in terms of dimen-
sionless droplet length and the material system of the droplet, results in a
mean overall deviation of less than 2% with respect to the channel width.
When comparing the interface shape model with the particle image data of a
3D-scan, the proposed analytic model is found to represent the low capillary
number Taylor droplets accurately.
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Flow field of a viscous
Taylor droplet

5

Once there were some particles
They flew towards tough obstacles
Following tightly the stream,

with rollercoaster screams
Dreading to find their team,

shot at with laser beams
A particle’s life ’s no popsicle

This chapter presents a µPIV measurement of the 3D2C velocity distribution
of Taylor droplets moving in a square horizontal microchannel at Cac =
0.005 and Rec = 0.051. The third velocity component is reconstructed
and an accuracy assessment of the reconstruction is presented based on a
volume flow balance of the 3D3C velocity field. The velocity field allows to
investigate the 3D flow features such as stagnation regions and the shear rate
distribution. The maximum shear rate is located at the entrances and exits of
the wall films and at the corner flow (gutter) bypassing the Taylor droplet.
The regions of high strain correspond to the cap positions of the Taylor
droplets. An experimental data set allows visualization of the streamlines of
the velocity distribution on the interface of a Taylor droplet and to directly
relate it to the main and secondary vortices of the droplet phase velocity field.
The measurement data is provided as digital resource for the validation of
numerical simulation or further assessment.
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The µPIV-measurement of a 3D flow field relative to the interface of Taylor
droplets in motion is evaluated. The 3D velocity field on selected symmetry
planes is detailed to introduce comparability to other studies and to visualize
the hydrodynamic features. For this purpose, the vector component matrices
upx, y, zq, vpx, y, zq and wpx, y, zq are referred to as U , V and W respectively.
Secondly, the shear rate distribution of the flow is analyzed to indicate regions
of maximum strain. Finally, the application of the λ2-criterion allows the
visualization of the position of the wall-driven main vortices as well as a
much less prominent compensating secondary vortex structures inside and
outside the Taylor droplets.

If not stated otherwise, the velocity information is presented in a moving
frame of reference relative to the droplet velocity ud. The corresponding
streamline representations of the flow are given either in symmetry planes
or at locations, where the 2D reference section is not expected to exhibit
velocities normal to the section (i.e. the droplet interface).

All representations of Taylor droplet interfaces in the following apply the
analytical interface approximation of Mießner et al. [82] (Chap. 4). In the
following, when the outcome of this work is described and discussed, it is
referred to the results of a single Taylor droplet - despite the large number of
statistically incorporated Taylor droplets.

5.1 Overview

A good comprehension of the three dimensional (3D) velocity distribution
and its derived quantities, e.g. the shear rate magnitude and distribution, is
important for optimal process design. The interaction of advection and diffu-
sion influences the efficiency of multiphase processes, while the resilience of
educt or product against shear forces limits the applicable velocity gradients
[72].

For low capillary numbers Cac “
u0,totηc

σ
, the flow inside and around Taylor

droplets is dominated by surface tension forces. Avoiding high shear forces
necessitates reduced velocity gradients in small channel dimensions. Thus,
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the viscous forces dominate the inertia forces Rec “
ρcu0,totHch

ηc
ď 1. Buoyancy

forces are negligible, since the Bond number Bo = ∆ρgH2
ch

σ
! 1.

A number of numerical studies are published to clarify the influence of
the 3D velocity distribution of pressure driven Taylor flows in rectangular
microchannels on the involved processes. Hazel and Heil [38] investigated
the propagation of a semi-infinite bubble at 0.001 ď Cac ď 10 and Rec ! 1.
Taha and Cui [109] performed CFD modeling of the rising slug flow inside
square capillaries (0.001 ď Cac ď 3, Rec ! 1). Raimondi et al. [96] simulated
the mass transfer in square microchannels for liquid–liquid slug flow (0.001 ď
Cac ď 10 and Rec ! 1) and Guido and Preziosi [34] studied the droplet
deformation of Taylor flows (0.001 ď Cac ď 1, Rec ď 50). Falconi et al. [28]
presented an experimental study for vertical pressure driven Taylor flow in
rectangular minichanels (Cac “ 0.1, Rec “ 7). Bordbar et al. [14] reviewed
the slug flow in microchannels with respect to numerical simulation and
applications. Kumari et al. [63] published a study on the flow field and
heat transfer in slug flow in microchannels with respect to the influence
of the bubble volume. Recently, an analytical solution of the Taylor flow
in an elongated ellipsoid droplet in the frame of 2D Stokes equations is
published by Makeev et al. [77]. Their solution delivers a benchmark to
evaluate numerical algorithms that aim to calculate the flow in and around
Taylor droplets. The work clearly links the driving velocity distribution on
the droplet interface to the circulation of the flow inside: A single vortex
develops in ’bypass’-mode, and a set of three vortices result from the ’slug
flow’-mode.

On the other hand, detailed measurements of the velocity field in and around
microscopic Taylor droplets in rectangular microchannels are reported by
Kinoshita et al. [57]. They used a high-speed confocal scanning procedure
that enables multiple measurement planes with 2D velocity information. An
integration of the continuity equation results the out of plane component.
The scanning process of the high-speed confocal scanner with Nipkow disk
allows measurements at the following approximated dimensionless numbers:
Cac = 0.0015, Rec = 0.00025, Ar = 1.72, MD˚ = 0.032. Herein, Ar denotes
the aspect ratio relating the channel width to its height, while MD˚ “ MD

Hch

refers to the measurement depth MD of a single optical slice of the experi-
mental setup divided by the channel height Hch. The same research group
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extended their technique and report a simultaneous measurement of a Taylor
droplet including its surrounding [91]. An approach to distinguish between
tracer particles of different fluorescent color enabled them to discriminate
between the phases. The measured Taylor flow features dimensionless num-
bers, which are comparable to those of this study (Cac = 0.003, Rec =
0.001, Ar = 2.44, MD˚ = 0.084). Mohammadi and Sharp [85] summarized
the experimental methods to access the velocity distribution of Taylor flows.
Meyer et al. [80] investigate vertically rising Taylor bubbles in a rectangular
mini channel. They measure the velocity field of the continuous phase in
the slugs and in the film to support a numerical simulation that provides the
entire flow. (Cac = 0.1, Rec = 8, Ar = 1, MD˚ = 0.015). Khodaparast et al.
[55] develop a measurement system (micro particle shadow velocimetry -
µPSV) to investigate Taylor flow in circular microchannels in detail [56]. The
dimensionless parameters are: Cac = 0.0003 - 0.09, Rec = 0.1-10, MD˚ =
0.071. The measurements of Ma et al. [74] reveal a viscosity ratio depen-
dent change of flow topology inside their droplets that move in rectangular
microchannels. They base their findings on the flow field measurements of
two focal plane positions (Cac = 0.001-0.1, Rec = 0.1-10, Ar = 1.33, MD˚

= 0.099). Liu et al. [72] provide a µPIV investigation of the internal flow
transitions inside droplets traveling in a rectangular microchannel. Their
measurements sample the 3D velocity field solely in the symmetry plane (Bo
= 0.0043, Cac = 0.005-0.26, Rec = 0.1-10, Ar = 1.5, MD˚ = 0.090).

In this chapter, the inherent physics of a Taylor flow are experimentally cap-
tured at low Cac and Rec to generate benchmark data to support parametric
CFD-studies. The hydrodynamic features of Taylor droplets are investigated
in a horizontal square microchannel (Cac = 0.005, Rec = 0.051, Ar « 1,
MD˚ = 0.056). Based on a multiplane µPIV measurement, the 3D2C velocity
field is experimentally measured inside and outside of Taylor droplets. The
full 3D3C velocity field is reconstructed (Sec. 3.5.1) using the continuity
equation. The stagnation regions of the flow relative to the droplet motion
are presented and the normalized shear rate distribution is deduced (Sec.
2.4.2) and shown. This delivers information on the location with maximal
strain. The position is of interest for handling delicate products or sensitive
educts. This novel approach yields an experimental data set that allows the
visualization of the streamlines of the velocity distribution on the interface of
a Taylor droplet and to directly relate it to the main and secondary vortices
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of the velocity field. The measurement data is provided as digital resource
for the validation of numerical simulation or further assessment.

5.2 2D2C Velocity field at the center plane

At first, the discussion of the normalized relative 2D2C field at the central
symmetry plane of the Taylor droplet (Fig. 5.1) asses the quality of the
ensemble correlated multiplane µPIV measurement. The droplets translate
from left to right with a mean velocity of ud = 4.2 mm s´1. The droplet
interface is indicated with the analytical shape approximation.

Fig. 5.1 a) depicts the vector field of the relative flow at the x-y symmetry
plane. Only every 4th vector in longitudinal direction is plotted to main-
tain the clarity of the graph. The wall-driven main vortices are already
recognizable in the vector plot.

In Fig. 5.1 b) the corresponding streamline representation of the flow is given
in combination with a color coding of the normalized stream-wise relative
velocity. The main vortices are evident inside and outside of the droplet.
The maximum stream-wise absolute velocity at the center of the droplet’s
main vortex is 1.72ud. Also, the secondary vortex structures inside the front
and the back cap of the droplet are captured clearly. The rear secondary
vortex has roughly half the size of the secondary vortex in the front cap. The
stagnation points at the cap tips are prominent.

The color coding in Fig. 5.1 c) shows the measured transverse velocity of the
Taylor flow. The reference axis of the flow direction is changed to a radial
representation r “

?
x2 ` y2. The flow in radial direction away from the

x-axis is positive (red), while flow towards the center of the micro channel
is negative (blue). The maximum radial velocities are a factor of about 3.5
times smaller than the droplet velocity ud. Inside the secondary vortices at
the front and back of the droplet the magnitude of transverse velocities are
a factor of 10 smaller than the droplet velocity ud. A vector addition of the
relative flow field inside the secondary vortices shows that the local velocity
magnitude decreases below 0.005ud. Despite the large dynamic range of
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Fig. 5.1: Exemplary ensemble correlated µPIV measurement of the normalized
relative velocities inside and outside of a Taylor droplet at the x-y center
plane of a square microchannel. The droplet translates from left to right.
The yellow dot shows the downstream pointing droplet tip at the origin
coordinate system. The black contour line represents the interface position
[82] (Chap. 4). The velocity information is depicted in a moving frame
of reference. a) 2D2C vector plot of the measurement showing the flow
field relative to the droplet movement (ud = 4.2 mm s´1). For clarity 3 out
of 4 vectors in x-direction are omitted. b) Associated streamline plot of
the relative flow field with the normalized stream-wise relative velocity
being color coded. c) Associated streamline plot of the relative flow field
with transverse velocities being color coded. The color coding uses the
radius r “

a

x2 ` y2 as reference. Red represents flow away from the
centerline (x-axis) in positive radial direction, while blue color indicates
flow against the radial direction towards the centerline. The entire 3D2C
data set is given in the supplementary material of this article, along with a
plane-wise representation of the measured data
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the measurement, the delicate flow structures of the secondary vortices are
clearly present in the streamline plot.

5.3 3D3C Velocity distribution

The streamlines on the Cartesian symmetry planes of the droplet allow to
compare the quality of the measured velocity distribution (x´ y center plane:
U, V ) to the reconstructed flow distribution (x´ z center plane: U,W ). The
color coded velocities of the flow relative to the interface are depicted in Fig.
5.2. Negative values indicate velocities directed against the chosen reference
axis while positive values point into the positive direction. In addition, a
streamline representation is given for each data slice based on the respective
in-plane components. The droplets translate from left to right.

The stream-wise velocity components are emphasized in Fig. 5.2 a), thus
solely measured information is color coded. Despite the difference in spatial
resolution between data in the x-y plane (∆x “ ∆y = 1.8 µm) and the
resolution in z-direction (∆z = 5.4 µm) the symmetry of the measurement
with respect to the x-axis is obvious. Approaching the droplet rear cap
from the tailing slug, the fluid at the channel centerline decelerates in the
proximity of the stagnation point. Through the entire rear secondary vortex,
the liquid moves slowly with almost the x-velocity of the interface ud. Further
along the x-axis the fluid accelerates, when it enters the wall-driven main
vortex and decelerates towards the frontal secondary structure. Beyond the
frontal stagnation point the outer fluid accelerates again into the wall-driven
main recirculation. In the proximity of the wall, proceeding from the droplet
front to its back cap, the fluid decelerates at the on- and off-set of the wall
film.

Based on the reconstructed third velocity component W in the z-direction
(explained in Sec. 3.5.1) and the measured transverse velocity V , The
normalized radial transverse velocity is shown Urpr, θ, xq in Fig. 5.2 b). The
color coding labels velocities blue when pointing towards and red when
pointing away from the x-axis (channel center). The reconstruction of
W “ Ur in the x-z plane with y “ 0, where V py “ 0q “ 0, is in good
agreement with the measured transverse velocities V “ Ur in the x-y plane
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Fig. 5.2: Measured (U, V ) and reconstructed W velocity data of the normalized
relative flow field in and around Taylor droplets. A streamline repre-
sentation is given for each data slice based on the respective in-plane
components. The droplets translate from left to right. The yellow dot
shows the downstream pointing droplet tip at the origin coordinate system.
The velocity information is depicted in a moving frame of reference. a)
The measured stream-wise relative velocity component is color coded. The
streamline representation of the flow field reveals symmetric features of
the measurement in the x-y plane in comparison to the reconstruction in
the x-z plane. b) The radial transverse velocity component Urpr, θ, xq is
color coded: blue pointing towards and red away from the x-axis (chan-
nel center). c) Isosurfaces are added to b) (Ur

ud
“ 0.175) to visualize the

transverse velocities.
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with z “ 0, where W pz “ 0q “ 0. Also, the amplitude of both positive and
negative transverse velocities inside the droplet are similar. However, the
velocity development from the stagnation points towards the upper channel
wall shows that the reconstruction overestimates the z-component.

In general, the flow features along the z-axis are less frail in comparison to
the x-y symmetry plane due to the lower spatial resolution. Additionally, the
streamline representation of the flow field reveals the highly symmetric fea-
tures of the measurement in the x-y plane in comparison to the reconstruction
in the x-z plane.

Isosurfaces of the transverse velocities are added (Ur

ud
“ 0.175) to visualize the

symmetry of the 3D spatial distribution of the transverse velocities (Fig. 5.2
c). The features of the isosurfaces are generally symmetric. However, their
relative position at the channel top compared to the location with respect to
the side walls reveal slight asymmetry. The amplitude of the reconstructed
velocities in z-direction is too pronounced: While the isosurfaces of the
disperse phase remain inside the droplet in the proximity of the side wall,
they clearly breach the interface towards the top wall. This corresponds to
the considerations on the volume flow of Sec. 3.5.2.

5.4 Relative velocity field on the interface of
the Taylor droplet

The fluid motion that is directed perpendicular to a droplet interface causes
the interface to deviate from its shape at rest [82] (Chap. 4). A clean
interface can not resist shear forces, thus tangential velocity components
cause the fluid at the interface to move: Momentum coupling across the
interface transfers kinetic energy into the droplet phase. Thus, the flow of
the continuous phase drives the velocity field inside the droplet.

Fig. 5.3 a) shows the vector field of the interpolated velocity distribution on
the interface. The top wall film is covered with a white area to mark a lack of
available data. The velocity magnitude on the front and back caps is smaller
than the interface movement in the proximity of the wall films. The interface
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movement in the gutter region is directed from the front to the back of the
droplet. The velocities along the gutter interface range between the fast wall
movement and the slow movements on the caps.

In Fig. 5.3 b), the direction of the interface motion is given as a streamline
representation. The color coding indicates the normalized relative velocity
component in stream-wise direction. Fluid moving in positive x-direction
relative to the velocity of the droplet is shown in red, while blue indicates
motion against the downstream direction. White color shows interface
regions that do not move with respect to the overall translation of the droplet.
As expected, two stagnation points are identified: One is located at the front
tip and one at the back tip of the droplet. In addition, two annular stagnation
regions can be seen, where the forward moving core of the droplet flow
separates from the backwards directed motion of the wall-driven interface.

The radius dependent transverse velocities of the interface movement are
given in Fig. 5.3 c) as color coding. Red shows the fluid motion outwards
to the wall, while blue indicates the inwards movement towards the x-axis.
In combination with the streamlines, the stagnation points at the droplet
front and back tips can be seen clearly. At the front tip, fluid elements of the
interface converge into the stagnation point. At the back tip, the diverging
stagnation point shows that a new interface is generated.

The annular stagnation region at the on- and offset of the wall films (and the
gutters) is clearly recognizable in the transverse component of the interface
motion. At the droplet front, fluid elements below a certain distance from
the channel center are pulled inwards to the stagnation point. Fluid elements
beyond that distance are directed outwards and are either transported into
the wall films or through the gutters. At the end of the gutter and of the wall
films the interfacial fluid is transported inwards towards the rear annular
stagnation region. Here it meets with the outwards directed interface motion,
which is driven by the rear main vortex.

The annular stagnation regions can be observed best in a rear view (Fig. 5.3
d) and a front view (Fig. 5.3 e) of the Taylor droplet. The color coding shows
the transverse velocity component on the interface. The diverging stagnation
point of the rear cap tip (Fig. 5.3 d) is complemented with a converging
annular stagnation region. A small vortex structure is found where the fluid
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Fig. 5.3: Interpolation of the 3D-Velocity field on the interface of the Taylor droplet.
The velocity information is depicted in a moving frame of reference. a) In-
plane 2D vector representation of the velocity field on the mobile droplet
interface. The sampling is reduced in x-y direction to improve the clarity
of the graph. b) Streamline plot of the in-plane velocity distribution on
the Taylor droplet interface. The color coding indicates the normalized
stream-wise relative velocity of the flow. In the droplet frame of motion
the walls move in negative x-direction. At the droplet top, no data is
available. Thus, the section is covered with a corresponding white surface.
c) In addition to the streamlines on the droplet interface, the color coding
shows the radius dependent transverse velocity component (red - away
from the x-axis; blue - towards the x-axis). d) Rear view d) and front view
e) of the droplet indicating the same quantities as in c)
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elements meet, that leave the wall film and the gutter. Symmetry suggests
that a similar structure should be present at the corresponding location on
the wall in y-direction. However, the spatial resolution in z-direction does
not allow to detect any small filaments. In the front view (Fig. 5.3 e) of the
droplet interface motion a divergent annular stagnation region produces a
new interface, which converges into the frontal stagnation point.

A comparison of the relative radial location of the two annular stagnation
regions shows, that both of them follow the shape of the channel cross
section. However, the frontal stagnation region reaches in an outwards
direction further into the gutter region and results in a pillow shape. In
contrast, the rear stagnation region is shifted inwards towards the center axis
of the microchannel and maintains a more oval shape.

5.5 Stagnation regions

The 3D distribution of stagnation regions inside and outside of the Taylor
droplet (Fig. 5.4) is investigated using the relative flow field. Its absolute
magnitude is computed, the scalar values are normalized with the droplet
velocity (

a

pU ´ udq2 ` V 2 `W 2{ud) and the result is projected on the in-
terface and the x-y and x-z symmetry planes. In addition, isosurfaces of
the relative velocity magnitude at a dimensionless level of 0.075 indicate
stagnation regions. The threshold corresponds roughly to a fraction of less
than 1% of the present continuous phase kinetic energy. It is chosen such
that all stagnation regions are clearly visible.

At the back (Fig. 5.4 a) and at the front (Fig. 5.4 b) of the droplet, the
stagnation region breaches the interface and indicates its location with
respect to the droplet shape. At the droplet back the region is connected,
while at the front, the stagnation point at the droplet tip is separated from
an annular stagnation region. The outer shape of both stagnation regions
clearly follow the cross section shape of the microchannel.

To show the relative location of the stagnation regions with respect to each
other Fig. 5.4 c) shows an elevated side perspective. At the location of the
annular stagnation region, the outer vortices attach to (droplet front) or
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Fig. 5.4: Visualization of stagnation regions using isosurfaces (Threshhold: 0.075).
The depicted scalar quantity is the absolute value of the relative velocity
field. The velocity field information is depicted in a moving frame of
reference. Rear view a), front view b) and elevated side view c) visualize
the 3D location of the stagnation regions with respect to the droplet
interface. In a), b) and c) the streamlines on the interface indicate the
motion of the droplet surface. d) reveals according stagnation regions
inside the droplet and the location of the core of the main disperse phase
vortex. The interface shape at the droplet top film is covered in white,
since no data is available that can be projected to this location
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detach from (droplet back) the interface. Here, the hydrodynamic forces
of the flow interact strongly with the interface to deform the droplet [40].
The corner of both outer stagnation regions mark the entrance of the gutter,
where continuous liquid bypasses the droplet. The streamline pattern of the
interface motion coincides with the visualization of the absolute magnitude
of the relative velocity.

Without the interface, one can observe the entire extent of the stagnation
regions (Fig. 5.4 d). The isosurfaces cover a major part of the secondary
vortices inside the droplet caps. Additionally, the annular core structure of
the wall-driven main vortex of the disperse is prominent, since it is a region
of low relative velocity compared to the motion of the Taylor droplet. The
position agreement of the main vortex center on the x-z symmetry plane
and the location of 3D stagnation region at the vortex core demonstrates the
symmetry of the 3D-flow field.

5.6 Shear rate distribution

The shear rate is related to the magnitude of the strain. Its normalized
absolute amplitude is used to establish a scalar quantity to visualize the
strain distribution in and around the Taylor droplet as well as to locate the
strain maxima (Fig. 5.5).

The shear rate distribution on the symmetry planes in x-y and x-z direction
shows the expected general increase from the microchannel center towards
the walls (Fig. 5.5 a). The wall shear rate decreases in the proximity
of the cap interface, since at these stagnation regions the velocities and
their gradients are low. At the longitudinal center of the main vortices, the
relative wall motion that drives the flow causes a clear shear rate increase.
A comparison of the shear rate on the symmetry planes reveals a general
similarity. However, the errors introduced by the reconstruction (above
the cap stagnation points in z-direction) and the noise increase due to the
derivatives have a recognizable impact. In addition, delicate structures on
the x-y plane can not be observed in the perpendicular plane.
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Fig. 5.5: Absolute values of the normalized shear rate inside and around Taylor
droplet indicating strain. The velocity information is depicted in a moving
frame of reference. a) Normalized shear rate distribution on the symmetry
planes (x-y and x-z direction) of the flow. b) Isosurfaces (dimensionless
threshold level: 1.5) to expose the location of maximum strain. The
maximum strain is located at gutter and wall film entrances and respective
exits. The interface model is artificially closed at the top film
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The normalized shear rate information at the interface position and isosur-
faces of an elevated shear rate (dimensionless threshold level: 1.5) enables
analysis of the impact of the strain location on the Taylor droplet shape (Fig.
5.5 b). At the droplet front cap, the strain location coincides with the posi-
tion of pressure build up. Fluid decelerates and the continuous phase either
evades the interface and converges into the gutter and the wall films or the
flow is forced to reverse with respect to the droplet translation. The position
of the shear rate maximum overlaps with the corner of the annular stagnation
region, which can be identified in Fig. 5.4 c). The pressure increase at the
stagnation region squeezes and elongates the front cap in flow direction from
its spherical shape at rest.

At the droplet back cap, the strain location coincides with the position of
pressure release. The continuous phase accelerates and diverges from the
wall films and the gutters until it merges with the reversing flow of the rear
main vortex. The location of the shear rate maximum at the back coincides
with the corner position the annular stagnation region (Fig. 5.4 c). The
interface is being pulled towards the wall. In combination with the pressure
build up at the rear stagnation point, a compressed deformation in the main
flow direction is achieved with respect to the undeformed static droplet
shape.

5.7 Vortex strength: λ2-criterion

The λ2-criterion corresponds to the pressure minimum on a planar section
through the flow and is applied to represent vortex core geometry [48]. A
vortex is defined as a connected region, where λ2 is negative. Hence, only
negative values are depicted in Fig. 5.6.

Two sections through the scalar field of the λ2-criterion on the symmetry
planes of the Taylor flow (x-y and x-z direction) (Fig. 5.6 a) enable to detect
the main features and to judge the data quality. On the x-z plane, the main
wall-driven vortices are as clearly recognizable as they are on the delicately
featured x-y plane. However, the velocity derivatives in z-direction amplify
the noise of the reconstructed velocity z-component.
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Fig. 5.6: Application of the λ2-criterion to visualize the vortices inside and outside
of the Taylor droplet. Solely negative values are depicted, since only
connected negative regions represent the pressure minima of vortices. The
presented velocity information is depicted in a moving frame of reference.
a) Scalar representation of the λ2-criterion on the symmetry planes of
the Taylor flow (x-y and x-z plane through the origin): The derivatives
of the veloctiy reconstruction introduce a significant amount of noise.
b) The fluid motion on the interface causes the inner circulation of the
Taylor droplet. The streamline pattern of the interface motion is depicted
separately to improve the clarity of Fig. 5.6 c) and d). c) Isosurface
visualization of the vortices inside the disperse phase only: The main
vortex is about 4 times stronger compared to the front vortex, which in
turn is about 3 times stronger than the rear secondary structure. Derivative-
induced noise is clearly visible at the main vortex in the proximity of the
top wall. The threshold of the main vortex (blue isosurface) is set to
-1.28 to follow the outline of the vortex in the x-y symmetry plane. For
the secondary vortices different threshold levels are chosen for the front
(-0.24, magenta isosurface) and the back of the droplet (-0.08, green
isosurface) to visualize their 3D extent inside their respective caps. d) λ2
representation of the continuous phase flow is added: The recognition of
coherent structures becomes increasingly difficult due to the noisy data at
the wall
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The fluid motion on the interface causes the inner circulation of the Taylor
droplet. The streamline pattern of the interface motion is depicted separately
from the vortex visualization to maintain clarity (Fig. 5.6 b). Isosurfaces
are used inside the disperse phase only, to visualize both: the large main
vortex and the smaller counter rotating secondary structures of the front
and back of the droplet caps (Fig. 5.6 c). The main vortex (blue isosurface)
is not strictly toroidal as one might expect from Taylor flows in circular
tubes, but its structure reflects the square channel geometry. The extent
of the main vortex in the plane of the cross section diagonal and along
the main flow axis is decreased towards the droplet front. Nonetheless,
the main recirculation maintains its symmetry with respect to the channel
dimensions. The noise, attributed to the squared and summed derivatives of
the reconstructed velocity components, is noticeable in the proximity of the
top wall of the channel.

The location of the secondary vortices (green and magenta isosurface) that
compensate the rotation direction of the main recirculation coincide with
the stagnation region identified in Fig. 5.4. Despite their low values of λ2

both structures are clearly detectable and carry a channel related symmetry.
In addition, the shape and orientation of the secondary vortices match the
location of the streamline pattern on the droplet interface (Fig. 5.6 b).

In the droplet frame of motion, the wall movement directly drives the main
vortices in the slug between the droplets. It also moves the separating film
between the wall and the droplet. The flow inside the droplet is generated by
the momentum transfer across the interface and therefore the velocity on the
interface drives both, the main and the secondary vortices inside the droplet.
The magnitudes of the interface velocities determine the spatial extension of
vortices. While the main vortex is powered by the strong streamwise flow
of the wall film, the secondary vortices are driven by transverse velocities,
which are an order of magnitude smaller.

Adding the λ2 vortex detection of the continuous phase to the graph, the
presence of the main vortex of the adjacent slug can only be anticipated (Fig.
5.6 d), yellow isosurface). Despite choosing the identical threshold as for the
main vortex in the droplet (-1.28), the noise of the reconstructed data set
prevents a clear detection of its structure.
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5.8 Conclusion

A µPIV study on the 3D2C velocity distribution of Taylor droplets moving in a
square horizontal microchannel is conducted. The third velocity component
is reconstructed and the result is verified (Sec. 3.5.2) based on the volume
flow in stream-wise and transverse flow directions. The Taylor droplets
dilate the PDMS channel walls and cause the stream-wise volume flow to be
underestimated up to ´4.7%. The mean deviation of reconstructed velocity
in z-direction is found to be ˘2.7%, while the maximum deviation amounts
to -6% of Qtot. In y-direction the deviation of the ensemble correlation µPIV
is quantified to reside below ˘0.1%.

The completed 3D3C velocity field is used to investigate the stagnation
regions of the 3D flow. In combination with the interface approximation
of Mießner et al. [82] (Chap. 4), the location of the stagnation regions
reveals expectable stagnation points at the cap tips of the Taylor droplet. In
addition, an annular stagnation region is visualized closer to the walls, where
the main outer vortices attach to or detach from the interface. It is at this
location, that the hydrodynamic forces applied on the interface cause the
droplet deformation.

The maximum shear rate is found at the entrances and exits of the wall
films and the corner flow (gutter) bypassing the Taylor droplet. This strain-
ing location macroscopically corresponds to the cap position of the Taylor
droplets.

For the first time, an experimental data set allows to visualize the streamlines
of the velocity distribution on the interface of a Taylor droplet and to directly
relate it to the main and secondary vortices of the velocity field. A small
vortex structure is found in the stagnation region at the back of the droplet,
where the fluid elements that leave the wall film and the gutter meet.

The evaluation methods which have been developed for this study allow
to investigate laminar quasi-stationary and pulsating flows. Determining
the shear rate distribution helps to effectively handle fragile educts and/
or products in single phase as well as in multiphase microfluidic flows, e.g.
organ-on-a-chip applications and cell handling applications using droplets
[24].
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Pressure field and
energy dissipation

6

Once there were some particles
Their moves were clearly visible
Excited bright, exposed to pressure
Plain delight, agreed to measure
Results turned out - a major treasure

In this study, the 3D pressure field is reconstrcuted and the 3D contributions
of the energy dissipation is derived from a 3D3C velocity field measurement
of Taylor droplets moving in a horizontal microchannel (Cac “ 0.0050, Rec “
0.0519, Bo “ 0.0043, λ “ ηd

ηc
“ 2.625). The pressure field is devided in a

wall-proximate part and a core-flow to describe the phenomenology. At the
wall, the pressure decreases expectedly in downstream direction. In contrast,
a reversed pressure gradient is found in the core of the flow that drives the
bypass flow of continuous phase through the corners (gutters) and causes
the Taylor droplet’s relative velocity between the faster droplet flow and the
slower mean flow.

Based on the pressure field the driving pressure gradient of the bypass flow is
quantified and verified by a simple estimation method: the geometry of the
gutter entrances deliver a Laplace pressure difference. As a direct measure
for the viscous dissipation, the 3D distribution of work done on the flow
elements is calculated, that is necessary to maintain the stationarity of the
Taylor flow.
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The spatial integration of this distribution provides the overall dissipated
energy and allows to identify and quantify different contributions from the
individual fluid phases, from the wall-proximate layer and from the flow
redirection due to presence of the droplet interface.

For the first time, deep insight is gained into the 3D pressure field and the dis-
tribution of the energy dissipation in the Taylor flow based on experimentally
acquired 3D3C velocity data. The 3D pressure field of and the 3D distribution
of work is provided as supplementary material to enable a benchmark for
CFD and numerical simulations.

A comparison between the pressure distribution and the curvature-derived
Laplace-pressure on the interface of a Taylor droplet identifies the source
of the motion-related droplet deformation. Next, the pressure gradient
that drives the by-pass flow through the gutters is quantified, and an easy-
to-access estimation method is verified. The analysis of the 3D pressure
distribution inside and outside the Taylor droplet explains the mean pressure
profile in stream-wise direction. Finally, the energy dissipation of the droplet
is discussed based on the 3D distribution of the work done on the Taylor
flow.

In the following sections, the Taylor droplets move in the positive x-direction.
Their front tip is situated in the origin of the coordinate system, while their
back cap tip is located at x{Hch “ ´1.58.

6.1 Overview

To control the flow stability of subsequent Taylor droplets one needs to
understand and control the pressure drop inside and outside the disperse
phase. The challenge becomes obvious when considering microchannel-
parallelization as a commonly used strategy to increase the throughput.
Uniform flow conditions are desirable to achieve continuous and stable
processes in all branches of a parallelized microreactor [10]. Fluctuations
of the two-phase flow change the product quality, since the process deviates
from the optimal working point.
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The stabilization of parallel flows requires to control the individual droplet
formation at low capillary number and low Reynolds number. This for-
mation process feedbacks sensitively to downstream pressure changes in a
microchannel. The droplet shedding frequency as well as the droplet length
are affected by pressure shifts [118]. At a constant volume flow rate and for
a given surfactant-free material combination between two immiscible phases,
only the droplet length determines its hydraulic resistance. The hydraulic
resistance influences the actual droplet velocity, which finally determines the
droplet residence time in a microchannel [41]. Thus, to control the flow
stability of a Taylor droplet chain one needs to understand and control the
pressure drop inside and outside the disperse phase.

Droplets in rectangular capillaries are less often addressed theoretically and
fewer models exist than for Taylor flow in circular capillaries - pioneering
work for the latter has been published by Bretherton [15]. An early correla-
tion for rectangular capillaries that describes the pressure drop was published
by Lockhart and Martinelli [73] in the form of friction factors. To date a
variety of analytical models have been published: The relevant forces have
been explained by Kreutzer et al. [61] and later expanded by Abiev [4]. The
pressure profile is analyzed and the relevant flows for the pressure drop are
recognized [3]. This author suggests to use the shape of the Taylor droplet
interface to determine the local pressure distribution. Balestra et al. [11]
and Vivekanand and Raju [114] add simulative work to the problem. Yue
et al. [126] developed a correlation for liquid/liquid slug flow in rectangular
microchannels and Ładosz and von Rohr [65] extended their models and
focused on the influence of the wall-film as proposed by Jovanović et al.
[51].

Experimentally, a variety of measurement approaches have been used to
characterize the pressure fluctuations and frictional pressure drop caused
by Taylor droplets in microchannels. Techniques such as optical tweezers
[49], Laplace-pressure sensors [2, 99, 124] and also membrane cavities
in DRIE-echted reactors have been used [86] in devices of small channel
height Hch ă 500µm. In larger microchannels, mostly adapted conventional
pressure sensors were applied, which allow to measure the total pressure at
the entrance and exit of the microchannel to calculate the pressure drop along
the entire channel [75, 89, 116]. Despite relying on integral information
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about entire droplet chains, Wang et al. [117] showed the importance of the
wall contact angles for the magnitude of the pressure drop. The pressure
drop caused by droplet trains in pressure-driven flows has been examined
by Jakiela [45], who also worked on the influence of droplet length and
presents a measurement device for networks.

All of these approaches measure either the pressure at a distinct position
at the channel walls or integrally over a number of droplets. For modeling
purposes and further understanding of the underlying effects, spatially re-
solved pressure measurements are necessary. However, a 3D pressure field of
a Taylor droplet extracted from a measurement has not yet been published.

With the intention to close this gap, this study is based on the µPIV-measurement
of Mießner et al. [83] (Chap. 5). Their study provides the 3D3C velocity field
in and around quasi-stationary Taylor droplets moving in a horizontal square
microchannel. In the underlying experiment the surface tension forces domi-
nate the viscous forces. Thus, the capillary number is small Cac “

Ūηc
σ
! 1.

Herein, σ is the interface tension, ηc denotes the dynamic viscosity of the
continuous phase and Ū “ Qc`Qd

Ach
represents the total superficial velocity of

the flow. This average velocity is derived from the total volume flow through
the area of the channel cross-section Ach, where Qc and Qd are the volume
flows of the continuous and the disperse phase, respectively.

In this context, the droplet velocity ud is not useful for the definition of di-
mensionless numbers, since it is a flow dependent variable [41]: Continuous
phase bypasses the droplet through the gutters from the droplet front to
its back and causes a relative velocity urel “ ud ´ Ū of the Taylor droplet.
Therefore, the droplet travels faster than the average flow Ū depending
among other variables on the magnitude of the average flow velocity. Please
note, that the total volume flow calculated from the velocity field [83] (Chap.
5) is smaller (94.44% ˘ 1.2 %) than the superimposed volume flow Qtot

discussed above due to channel deformation. This circumstance impacts the
direct calculation of the relative velocity from the setup data given in Tab.
3.2.

A low Reynolds number Rec “
ρcŪHch
ηc

ď 1 relates the weak inertia forces to
the dominating viscous forces and indicates Stokes-flow conditions. Herein,
ρc denotes the density of the continuous phase, and Hch is the channel height.
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A low Bond number Bo = ∆ρgH2
ch

σ
! 1 indicates a negligible influence of

the buoyancy forces on the droplet shape. Herein ∆ρ denotes the density
difference between the two phases, and g is the gravitational acceleration.
The governing forces for the investigated Taylor flow given in descending
order are the interfacial tension forces, the viscous forces, the buoyancy
forces and the inertia forces (Cac “ 0.0050, Rec “ 0.0519, Bo “ 0.0043).

In this study, the measured 3D3C velocity field of Taylor droplets [83] (Chap.
5) is used two-fold: to reconstruct and investigate the 3D pressure field as
well as to derive and discuss the contributions of the energy dissipation in
the Taylor flow.

• At first, the Navier-Stokes equation is applied to the velocity field of the
Taylor flow and the subsequent spatial integration calculates the 3D
field of the pressure in and around a Taylor droplet. In this context, the
calculation of the momentum thickness helps to discriminate between
wall-influenced flow and the remaining core of the flow. While the
gradient of the pressure inside the wall-layer points downstream as ex-
pected, a pressure gradient inversion with respect to the flow direction
is found, and experimental evidence of the postulation of Abiev [3] is
provided. This reversed pressure gradient in the core of the flow drives
the bypass flow of continuous phase through the corners (gutters) and
gives rise to the Taylor droplet’s relative velocity [41]. To quantify the
driving pressure gradient along the gutter, the Taylor droplet interface
approximation of Mießner et al. [82] (Chap. 4) is applied twice: to
evaluate the experimental data of the pressure field directly at the in-
terface position and subsequently to establish and verify an estimation
method for the calculation of the gutter gradient.

• Secondly, the viscous forces of the flow field and the velocity distribu-
tion is used to calculate the 3D field of work done on the flow elements.
This work maintains the stationarity of the Taylor flow. The spatial
integration of this distribution allows to identify and quantify different
contributions to the losses of the flow: e.g. the properties of the indi-
vidual fluid phases, the wall-influence and the flow redirection by the
interface (Fig. 6.1). The total work done on the flow represents the me-
chanical energy introduced to the Taylor flow to maintain stationarity,
i.e. to compensate for the viscous dissipation.
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Fig. 6.1: Qualitative sketch comparing the viscous dissipation of a single-phase
flow with that of a Taylor flow: In a stationary flow subjected to internal
friction, energy is dissipated and work W˚

i needs to be done on the
flow to compensate for the loss of mechanical energy. a) A stationary
laminar viscous single-phase flow in a straight microchannel (blue dashed
line) needs work done on the flow to solely overcome the wall-shear,
thus the increase of work inflow direction is linear. The presence of a
droplet interface redirects the flow field, adds energy loss to the shear
contribution and increases the amount of work done on the flow at the
droplet caps, where the directional change takes place (solid black line).
b) In a stationary Taylor droplet chain, the contribution of each droplet
sums up to an overall increased amount of work done on the flow (thin
red line) in comparison to the single-phase flow
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Three major benefits can be drawn from this work: i) the experimental vali-
dation of the analytical quantification method that estimates the magnitude
of the reversed pressure gradient in the gutter of Taylor droplets, ii) the 3D
pressure field and iii) the 3D distribution of mechanical work done on the
flow. The pressure and the data of work done is offered as supplementary
material to enable a benchmark for CFD and numerical simulations.

6.2 Pressure difference on the droplet interface

The flow field in and around a moving Taylor droplet deforms the interface
from its shape at rest. Abiev [3] suggests to make use of the flow related
interface deformation to estimate the pressure distribution. The geometry-
based model data and a flow-based approach based on experimental data
is used to quantify and compare the pressure difference on the droplet
interface in Fig. 6.2. The pressure differences are normalized with the driving
pressure for a single-phase Poiseuille-flow of continuous phase material
(QHP, c “ Qtot) through an equivalent channel cross section of droplet length
Ld. A positive pressure refers to forces that act on a area element dA against
the outwards pointing surface normals (Fig. 2.6b): As a result the pressure
pushes the interface inwards. The interface is moved outwards at regions of
negative pressure. The green arcs mark the geometric entrances and exits of
the gutters.

Fig. 6.2a shows the Laplace-pressure difference (Eq. 2.9) derived from the
geometric interface approximation. The interface approximation produces
artifacts when used as the source for second-order information (e.g. the
interface curvature). The 2D Laplace-pressure profile on the interface exhibits
discontinuities at the joints of different interface parts: i) at the entrances
and exits of the gutter and the wall-film and ii) at the joints of the wall-
films. In addition, the droplet interface at the wall-film does not show any
sign of deformation which is in contradiction to the findings of [62]. Both,
the artifacts and the absence of pressure in wall-films are the result of the
simplification of the geometric boundary conditions and the assumptions
that allowed to retrieve geometric first-order information, like the location of
the Taylor droplet interface.
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Fig. 6.2: Pressure distribution on the interface of a moving Taylor droplet. The
approximate interface shape model of Mießner et al. [82] (Chap. 4)
delivers the position of the dynamically deformed interface. Positive
pressure (red) pushes the interface inwards (Fig. 2.6b). The interface
is moved outwards at regions of negative pressure (blue). The green
lines indicate the entrance and exit of the gutter that accommodates
the bypass flow of the continuous phase. A rear view of the respective
pressure distribution on the droplet interface enhances comparability. a)
The difference between the curvature distribution of a Taylor droplet at
rest and in steady motion allows to calculate the pressure distribution
from the Laplace-pressure of both cases. The result relies entirely on
the accuracy of the curvature of the interface approximation. b) The
3D velocity data of the µPIV measurement of [83] (Chap. 5) is used in
the Navier-Stokes equations to calculate the pressure distribution on the
interface of a moving droplet. Additionally, the fluid motion on the 2D
interface is interpolated and represented with streamlines.
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Despite these drawbacks, qualitative information on the droplet deformation
from its static shape can be observed. The elongation of the front cap is
caused by a suction region at the droplet’s tip (blue) and followed by a region
of positive pressure that moves the interface inwards. At the droplet’s back
cap the interface is initially pulled outwards behind the gutter exits and
wall-film regions and subsequently compressed at the tip. Both qualitative
results correspond to the cap deformation described by the experimentally
derived correlation of Helmers et al. [40].

Fig. 6.2b depicts the pressure difference derived from the velocity field (Eq.
2.7 used in Eq. 2.4) at the interface of the Taylor droplet. In addition to the
pressure information, the streamlines of the interface motion are shown [83]
(Chap. 5).

The white area at the top wall-film artificially closes the droplet. The interface
gap exists due to a lack of measurement data. However, the flow symmetry
allows access to the pressure conditions in the films at the side wall-film
instead.

The effect of the front cap elongation and the back cap compression is clearly
present in the measurement-based pressure. The general magnitude range of
the pressure distribution is comparable between the two approaches. The
cap deformations arise from the relative motion of the main vortices in the
slugs. The ring shape stagnation region at the droplet front indicates the
location where the slug’s wall-driven vortex attaches to the interface, while
it detaches again at the droplet front tip. The pressure rises due to the
viscous displacement that takes place between attachment and detachment.
The influence of the detachment is smaller than predicted by the geometric
representation (Fig. 6.2a). At the droplet back, inverted flow conditions with
respect to the interface cause the back cap compression.

The pressure evolution from the wall-film entrance at the droplet front
towards its rear exit shows a series of pressure changes. At the frontal
stagnation region, the liquid of the continuous phase is either redirected to
the droplet tip or in the direction of the wall-film. At the onset of the film the
outer liquid is forced into the film and the pressure rises. After the transport
of fluid through the film, the film-thinning increases the pressure. At the exit
of the film, the liquid flows towards the ring-shaped stagnation region at
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the back, where it slows down again. This series of pressure changes feed
back to the interface and coincide with the location where the onset of the
bullet-shape for increased Cac is situated [109].

The pressure distribution along the gutter appears to be different compared
to the geometric approach. While the magnitudes of the pressure at the gutter
entrances are similar, the distribution in gutters deviates. The geometric
approach delivers positive Laplace-pressures, while the flow-based pressure
carries a negative sign. However, in both cases the pressure decreases from
the front to the back of the gutter. Thus, the pressure gradient points into
the same direction - against the flow direction of the Taylor droplets. This
confirms the postulated pressure gradient inversion with respect to the flow
direction by Abiev [3].

6.3 Pressure gradient of the by-pass flow in
the gutter

An estimation of the pressure gradient along the gutter allows the determi-
nation of the volume flow through the gutter and calculation of the relative
velocity [41]. Based on the droplet interface geometry, two possibilities to
analytically obtain the pressure along the gutter are feasible: an evaluation
of i) the curvature difference distribution between the static and the dynamic
Taylor droplet shape (Fig. 6.2a, Eq. 2.9) and ii) the Laplace-pressure differ-
ence between the mean gutter radius at the front and back of the gutter. The
gutter radii are calculated as a by-product of the interface approximation
[82] (Chap. 4).

The measurement-based pressure difference is used as a reference to asses
the accuracy of the theoretical approaches (Fig. 6.3). For this purpose, the
distribution in the gutter is averaged in transverse direction (blue triangles).
The measurement resolution in the x-direction of the source velocity field
serves as sampling grid distance in flow direction. The schematic inset of
Fig. 6.3 visualizes the sampling method for the gutter gradient. The offset of
pressure at the back end of the gutter is removed. The result is normalized
with the driving pressure of a single-phase Poiseuille-flow of continuous phase
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material (QHP, c “ Qtot) through an equivalent channel of gutter length Lg

to quantify the influence of the droplets presence.

A linear fit to the averaged pressure difference (blue solid line) allows to esti-
mate the overall gutter pressure gradient of the experiment. The confidence
interval of the slope (˘9.1%) is calculated to quantify the influence of the
standard deviation of the measurement from the linear fit on the gradient
(blue area).

The Laplace-pressure difference due to the geometric droplet deformation
is averaged in the same manner (˝) and a linear fit allows to estimate the
pressure gradient in the gutter. Clearly, the slope of the model surface fit
is half as steep as the pressure gradient of the measurement is (-55.4%).
We attribute the deviation between the Laplace pressure difference of the
gutter entrances (black dashed line) and the model’s mean curvature dis-
tribution (black dotted line) to the simplifications introduced to calculate
the grid points of the interface shape. Thus, the curvature difference of the
approximate interface can not be used to estimate the gutter gradient.

In contrast, the calculation of the gutter gradient with the Laplace-pressure
difference between the mean gutter radius at the front and back of the gutter
leads to a suitable estimation (Fig. 6.3, dashed line). The result lies well
inside the variance of the measured slope (`2.7%). The gray area indicates
the sensitivity to a ˘25% slope change of the gutter radius approach. Thus,
the approach of Helmers et al. [41] to estimate the driving pressure gradient
of the gutter from the gutter radii is confirmed by the results presented
here.

6.4 3D pressure field

In disregard of a reference pressure and of the Laplace-pressure at rest, the
presented 3D field solely shows the pressure that drives the flow inside
and outside of the Taylor droplet. The flow is directed from left to right.
Streamlines in a frame of reference relative to the droplet motion are given
on half of the central symmetry plane (Fig. 6.4a). Bernoully’s principle does
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Fig. 6.3: Mean pressure gradient that drives the bypass flow through the gutter
as a function of gutter lengths. Offsets are removed to directly compare
between measurement data (blue) and two model-based estimations of
the pressure gradient in the gutter. The linear fit of the measurement
data (solid blue line) is used as reference. The blue area visualizes the
uncertainty of the slope (˘9.1%), based on the deviation of the linear fit
(blue line) from the measurement (blue triangles). The gutter radii at
the entrance and exit of the gutter (green lines on the interface) are used
to directly estimate the pressure gradient. The slope (black dashed line)
agrees with the measured pressure gradient along the gutter. The gray
area visualizes the sensitivity of the pressure gradient on the gutter radius
estimation (˘25%)
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not apply, since the viscous forces are 20 times stronger than the inertia
forces (Rec “ 0.05, Stokes-flow conditions).

The pressure field of the Taylor droplet generally shows two different regions
for its evolution: The pressure field in a layer close to the wall δ2 and in
the remaining core of the field. Inside the wall-proximate layer the pressure
decreases as expected in stream-wise direction. However, the direction of the
pressure gradient reverses in the core of the flow.

In the core flow, the pressure builds up at the droplet front due to viscous
displacement. The outer main vortex in the slug is forced to change direction
due to the interface at the droplet front. This elevated pressure in front of
the droplet is the actual pressure source that drives the by-pass flow through
the gutters [3] and gives rise to the relative velocity.

The wall-driven main vortex B inside the droplet strongly changes the flow
direction to evade the secondary vortices (A, C) that connect the inner to the
outer field. Two regions of the droplet’s main vortex inner region B stand
out: the converging rear develops a positive pressure, while the diverging
front shows a negative sign.

The fundamental change of pressure conditions between the outer layer δ2

and the core of the flow is attributed to the presence of shear at the wall (Fig.
6.4a). In case of the experimental conditions applied here, the thickness of
the wall-sproximate layer amounts to δ2. Perpendicular to the center plane
(Fig. 6.4a), four sections are chosen to investigate the pressure evolution
from the wall (Fig. 6.4b) towards the core of the flow (Fig. 6.4e). The
black line indicates the position of the Taylor droplet interface. The pressure
distribution at the wall (Fig. 6.4b) correlates with the droplet motion:
increased pressure on the left causes the droplet motion downstream towards
the right, while showing a decreasing pressure level.

To emphasize the change of the pressure gradient from the wall towards the
core of the flow (Fig. 6.4b-e), the pressure is averaged in the z-direction to
receive a pressure profile in downstream direction (Fig. 6.4f-i). A linear fit
illustrates the change of pressure gradient (red lines). An inversed pressure
gradient with respect to the flow direction is present at a wall distance
of ỹ “ δ2

Hch
“ 1{15. It seems that the core flow is moved through the

microchannel and causes the shear-related pressure loss in the wall-layer.
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Fig. 6.4: Pressure in- and outside a moving Taylor droplet. The distribution on
the x/y-symmetry plane a) shows an increased pressure in front of the
droplet due to viscous displacement in comparison to the droplet rear.
This pressure difference drives the flow through the gutter. The curved
thick black line shows the position of the interface. The ring-vortices are
labeled A, B and C from the droplet front to the back, with B denoting
the main wall-driven vortrx and A and C indicating the secondary vortices
in the respective droplet caps. The thick dashed line delimits the wall-
proximate momentum-layer at δ2. The thin black lines indicate the location
of perpendicular pressure field sections (b-e) inside the wall-layer. The
diagrams on the right (f-i) show the mean pressure along the x-axis of the
according pressure field section. The linear fits (solid red lines) show a
change of pressure gradient (slope) towards an inverted pressure gradient
in the core flow as a function of the wall distance. The inversion of the
gradient is reached at a wall distance of about ỹ “ δ2

Hch
.
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Inside the core flow, the viscous displacement of the recirculating main
ring-vortices give rise to an elevated pressure.

In Fig. 6.5, the consideration of mean pressure profiles along the downstream
direction provides an overview for the discussion of the pressure. For this
purpose, a wall-proximate layer of thickness δ2 is discriminated from the core
of the flow as well as the droplet from the bulk. The color-coding indicates
the disperse phase with red and the continuous phase with blue, while the
core of the flow is represented with a thick line and the wall-layer with a
thin line. The constant contribution of the Laplace-pressure is added to the
droplet’s pressure profiles to visualize the pressure jump at the interface.

Inside the wall-layer of both phases (Fig. 6.5, thin lines) the mean pressure
decreases as expected in downstream direction. The elevated droplet viscosity
λ “ ηd{ηc “ 2.625 causes a higher pressure drop in the momentum layer of
the droplet in comparison to the layer of the continuous phase.

In the core flow of the droplet, a clear reversed pressure gradient is present
in either phase (Fig. 6.5, thick lines). An expected maximum of the pressure
is found at the rear stagnation point of the droplet (red thick line). The
pressure fluctuation induced by the rear secondary vortex is followed by
an almost linear pressure increase. The pressure fluctuations of the frontal
secondary ring-vortex end in a local minimum at the frontal singularity of
the droplet.

The evolution of the mean pressure in the core flow of the continuous phase
(Fig. 6.5 thick blue line) along the droplet also shows the reversed pressure
gradient. Most of the profile is almost constant from the back to the front
of the droplet. The reversed pressure increase that drives gutter flow is
located between the frontal gutter entrance and the frontal onset of the
wall-film. Further downstream, the pressure is almost constant again. This
again confirms the postulated pressure gradient inversion with respect to the
flow direction by Abiev [3].
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Fig. 6.5: Mean pressure profile evolution along x-axis of a moving Taylor droplet
including the Laplace-pressure jump. The pressure inside (red lines) and
outside (blue lines) of the droplet is divided into wall-proximate region
(thin lines) and the core of the two-phase flow (thick lines). The flow is
oriented in the positive x-direction. Inside a wall distance of ỹ ď δ2, an
expected pressure gradient can be observed: the pressure decreases from
the droplet back to its front (thin lines). However, viscous displacement
in the core of the flow (thick lines) causes an inversion of the pressure
gradient from front to back [3]. The inversion drives the bypass flow of
the continuous phase from the droplet front to the back and is the cause
of the relative velocity of the Taylor droplet [41].
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6.5 3D distribution of work done on the flow

The distribution of the work done on the flow allows to locate the major
contributions to the energy loss of the flow. For visualization reasons, the
distribution of the work done W˚ is scaled with the number of sampling
points ΠiNi of the velocity field (Fig. 6.6). The droplet moves in the positive
x-direction.

The work distribution in the central symmetry plane is shown in Fig. 6.6a.
The interface shape is indicated with a thick black line. The streamlines
relate the flow field to the distribution of work done on the flow.

Deceleration work (blue) is mainly performed due to the directional change
of downstream velocity component of the flow field. Consequentially, the
peak deceleration is located at the annular stagnation regions, where the
fluid of the main vortices is forced to reverse direction.

Acceleration work is performed (red) in the caps of the Taylor droplet and
inside the wall-influenced layer δ2. The counter rotating secondary vortices
(A, C) in the caps are driven by and receive their energy from the adjoining
wall-induced main vortices. Except for the strong directional change of the
main vortices, the fluid close to the wall is accelerated due to the no-slip
condition at the wall. The layer-thickness of apparent acceleration amounts
roughly to δ2 and coincides with the momentum layer thickness where also
the wall-related pressure gradient is situated (Fig. 6.4a).

Inside this layer, wall-proximate sections through the field of work are pre-
sented in Fig. 6.6b-e. It is noteworthy that in transverse direction the
acceleration regions are spread mainly over the width of the wall-film of the
Taylor droplet. With increasing wall distance ỹ the deceleration of the flow
grows where the droplet interface redirects the flow.

The respective z-averaged profiles of work done on the flow W˚ along the
flow direction are given in Fig. 6.6f-i. Moving step-wise inwards from the
wall, the acceleration intensity increases between f-g, and decreases when
reaching δ2 (Fig. 6.6i). In the case of this experiment, the momentum layer
thickness δ2 is a valid measure to distinguish the wall-proximate flow from
the core of the Taylor flow.
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Fig. 6.6: Work done on the flow in- and outside a moving Taylor droplet. The
color-coding uses red to show work done for acceleration and blue for the
deceleration of fluid. The curved thick black line represents the droplet
interface. The distribution of work in the flow field of a moving Taylor
droplet on the x/y-symmetry plane a) shows that the secondary vortices
(A, C) inside the caps are mainly accelerated by the flow, while the center
of the main vortex B is constantly decelerated. The fluid close to the
wall is mainly accelerated since the wall-shear impact on the steadily
moving Taylor droplet needs to be compensated for. The thick dashed line
delimits the wall-proximate momentum layer δ2. The wall-shear-related
acceleration is situated inside the wall layer δ2 at the wall (b-e). The thin
black lines show the location of perpendicular work distribution sections
near the wall (ỹ ď δ2

Hch
). The diagrams on the right (f-i) show the mean

work distribution along the x-axis of the according sections of the field.
The mean work done to accelerate the fluid increases at first with growing
wall distance and decreases again towards a wall distance of δ2
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6.6 Energy dissipation of a Taylor droplet

The cumulated energy dissipation of a Taylor droplet is shown and discussed,
which is in its dimensionless form equivalent to the overall pressure drop of
the Taylor droplet (Eq. 2.16). Thus, the cumulated work done on the flow is
quantified, because the energy loss of a Taylor flow due to viscous dissipation
equals the work done on the flow to maintain the flow stationary.

Since indirect and derived data on the loss of energy is provided, the results
of three different methods are applied and compared. These calculations
are based on i) the resistance forces at the interface of the droplet and the
microchannel wall W˚

F , ii) the actual work done on the flow field W˚
u and

iii) the pressure loss at the channel wall W˚
∆p,wall. As reference quantity, the

work done on a comparable single-phase flow is used Wref (Eq. 2.14). The
discussion of the results always begins at the tip of the rear cap (x{Hch “

´Ld{Hch “ ´1.58) and proceeds in flow direction (positive x-direction).

i) The cumulated work that is necessary to overcome the resistance forces
at the interfaces is given in Fig. 6.7. The thin gray and black lines
represent the work done on the gutter and the wall-film of the Taylor
droplet interface Γ (Fig. 2.2) respectively. A summation of the latter
results the red line, which shows the force-related total work done on
the droplet interface displacement. Only those parts of the interface
that are parallel to the flow direction contribute to the force-related
flow resistance. The actual gutter and wall-film do not contribute. The
forces at the front and back caps provide the main resistance, which
agrees with the observations and findings of Bretherton [15], who
related the interface forces to the pressure drop. The blue line shows
the contribution of the cumulated shear forces at the wall that needs
to be overcome by the flow. The shear-related work done W˚

F,τ shows
an almost linear contribution to the resistance along the entire droplet.
The influence of the entrances and exits of the wall-films slightly raise
the otherwise steady increase. The force contributions of the channel
wall and the droplet interface show an almost equal magnitude at the
front tip of the droplet. A combination of the influence of all force-
related work results in the thick black line. At the tip of the front cap,
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the resistance forces require W˚
F px{Hch “ 0q “ 1.114 times the work

done on the reference single-phase flow.

ii) Fig. 6.8 shows the cumulated work done on the considered flow field
(Eq. 2.19). The total work is given by the thick black line. The almost
linear increase of the cumulated work along the Taylor droplet results
in a magnitude of W˚

u px{Hch “ 0q “ 1.458 at the droplet tip. The
contributions are presented differentiating between disperse phase and
continuous phase (red and blue) as well as between the wall-layer δ2

and the core of the flow (thin and thick lines). The work done on the
wall proximate layer of the disperse and continuous phase accounts for
2.7% and 5.9% of the total flow related work W˚

u , respectively. Thus,
the major contributor for the energy loss is the core of the flow with
91.4%. At x

Hch
“ 0, the dissipation contribution from the core of the

disperse phase (thick blue line) amounts to 67.3% of the total work
done on the flow (black line). The according contribution from the
core of the disperse phase amounts to 24.3% of the total work done
on the flow. The ratio of 2.77 between the work done contributed
from the core flows corresponds remarkably well to the viscosity ratio
λ “ 2.625. The finding that the droplet contributes less with the cap
recirculation, while the continuous phase adds the major amount of
work at the caps, is mainly attributed to the changed cross-section area
ratio in the droplet.

iii) A comparison between three approaches to calculate the total energy
loss (Eq. 2.17-2.19) along the flow direction is presented in Fig. 6.9.
The work received from the 3D flow field is given by the thick black
line. The thick gray line indicates the shear and drag forces-based work
at the channel walls and the droplet interface. Gray dots show a wall
pressure-based approach to calculate the energy loss (Sec. 2.4.7b). As
a first order simplification a linear fit (dashed line) allows to determine
the total energy loss. The light gray area indicates ˘10% deviation
from the linear fit.

Judged from the total energy loss at the front tip of the Taylor droplet
(x{Hch “ 0), the drag and shear forces alone deliver the lowest estimate
of the energy loss W˚

F “ 1.11 “ 0.76W˚
u . The linearized wall-pressure

based approach estimates W˚
∆p,wall “ 1.25 “ 0.86W˚

u performs better.
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Fig. 6.7: Accumulated work due to drag forces from the onset of the rear cap (x{Hch
= -1.58) towards the droplet front (x{Hch = 0). The accumulated forces
along the gutter regions (thin light gray line) contribute less drag than the
film regions (gray line). The addition of the interface forces of the gutters
to those of the films results the drag force evolution along the moving
Taylor droplet (red line). The shear forces at the channel walls (blue line)
also contribute to the energy loss of the Taylor flow. The addition of the
interfacial forces and the wall-shear forces gives the overall drag force
profile in flow direction (thick black line). In total, wall-shear forces and
interface forces contribute almost evenly. While the shear forces exhibit
a steady increase along the droplet, the contribution of the interface is
mainly attributed to the cap regions
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Fig. 6.8: Accumulated absolute work from the onset of the rear cap (x{Hch = -1,58)
towards the droplet front (x{Hch = 0). The flow is oriented in the positive
x-direction. The absolute work done inside (red lines) and outside (blue
lines) the droplet is divided into wall-proximate region (thin lines) and
the core of the two-phase flow (thick lines). The sum of all contributions
results the total work done (thick black line) that is necessary to sustain
the stationary two-phase flow
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Fig. 6.9: Comparison between different dimensionless indicators of the work: The
cumulated work derived from flow field a) is compared to the shear and
drag forces at the channel walls and the droplet interface b) and the work
estimated from the pressure profile at the wall c). All quantities are refer-
enced with the work of a Hagen-Poiseuille flow in a square pipe of equal
cross section Ach and channel length Lch “ Ld. The reference channel is
filled with the continuous phase of the Taylor flow and experiences the
volume flow of Qref “ Qtot “ pQd `Qcq of the Taylor flow
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The cumulated work done on the flow W˚
u amounts to 1.471 times the

work done on the reference case of the single-phase flow in a square
channel.

All presented approaches to quantify the energy dissipation of the two-phase
flow are derivations of high order. They indirectly depend on the recon-
structed 3D flow field to a variable degree: While pressure-based work
W˚

∆p,wall involves double differentiation and an integration, the interface
force-related work W˚

F is subject to additional conversion and integration
steps. Since the work done on the flow W˚

u includes only double deriva-
tives, the result is considered to be more reliable. From this perspective, the
tendency towards lower magnitudes of total work done on the Taylor flow
correlates with a decreasing accuracy due to the indirectness of the quan-
tification approaches. In addition, the force-based approach W˚

F does solely
include forces in flow direction and omits contributions of the transverse
flow.

6.7 Conclusion

For the first time the pressure field of a moving Taylor droplet has been
extracted based upon experimental work. Despite the approximate character
of the interface representation [82] (Chap. 4) and the mentionable noise
level of the processed experimental data [83] (Chap. 5), a coherent overall
picture of the 3D pressure field in and around a moving Taylor droplet is
established.

The distinction between a wall-proximate momentum layer of thickness δ2

and a core flow reveals a reversal of the pressure gradient from the wall
towards the center of the flow. In the wall-proximate momentum layer, the
pressure decreases in flow direction as one would expect from a pressure-
driven laminar single-phase flow. However, the pressure gradient reverses
when reaching the core of the flow. Here, the flow is governed by viscous
displacement and builds up a pressure gradient from the droplet front to
its back. Thus, the expectation of a reversed pressure gradient as stated by
Abiev [3] is confirmed.
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A straightforward estimation method is experimentally verified to quantify
the reversed pressure gradient that drives the bypass flow of the continuous
phase through the gutters and causes the relative velocity of Taylor droplets
[41]. The approach overestimates the measured driving pressure gradient by
2.7%.

The curvature-based Laplace-pressure distribution on the droplet interface
is deduced from the interface approximation [82] (Chap. 4). It resembles
the measurement-based pressure distribution on the droplet interface only
qualitatively. Thus, the interface approximation does not allow a precise
calculation of second order information like the curvature distribution. How-
ever, it delivers accurate first order information, e.g. the location, the volume
and the surface area of dynamically deformed Taylor droplet interface.

The 3D distribution of work done on the flow is divided into acceleration
and deceleration. The fluid inside the wall-proximate momentum layer
at the wall-films and inside the droplet caps is mainly accelerated, while
the remaining flow undergoes deceleration. The constant change for the
circulating liquid between acceleration and deceleration causes additional
energy loss in comparison to the laminar flow in a straight pipe.

As a measure for the overall energy loss of the moving droplet the drag forces
at the droplet and channel interface are compared to the cumulative work
done on the flow field to overcome internal friction. The comparison shows
that a consideration of the drag forces alone does not deliver all information
on the losses of the flow. The governing viscous forces that act inside and
outside the Taylor droplet also contribute to the overall energy loss. The
energy loss calculated from the work done on the flow is 31.6% higher than
the result received from the approach based on the drag-forces.

The 3D pressure field and the distribution of work done on the investigated
Taylor flow enables benchmarking for numerical simulations and is published
as supplementary material.
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Main conclusions and
outlook

7

Once there were some particles
Whose turns seemed random - farcical
Dark long nights were measured through
Next Evaluation - than review
Now their moves fill articles

This chapter summarizes the main findings of the Chapters 4-6 and provides
an overview on the achievements of the work described in this thesis. The
order of the presented content is preserved with respect to its presentation
in the respective chapters. Secondly, an outlook is given on the possibilities
that open future research.

Conclusions

In order to provide a model-based guidance for multiplane µPIV-measurements
of the 3D flow field of Taylor flows in rectangular micro channels, an ana-
lytic interface shape approximation for low capillary numbers is proposed
(Chap. 4). Based on the flow-dependent droplet dimensions in the droplet
symmetry plane an elliptical shape deformation is assumed. Given the dy-
namic front and back cap deformation ratios (Eq. 4.3), the droplet length
and the channel aspect ratio, the mean front and back gutter radii (Eq. 4.7)
can now be determined.
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Geometric boundary conditions are defined to calculate a 3D-distribution
of interface nodes (Sec. 4.3). The proposed model can be applied for
rectangular channels of varying aspect ratio Ar “

Wch
Hch

“ r1...2s (and possibly
beyond) and dimensionless Taylor droplet length Ld

Wch
Á 1. The capillary

numbers covered by the analytical approximation are set in a range that is
suitable not only for applications but also for theoretical work on microscopic
Taylor flow. In terms of Reynolds numbers, the approximation is restricted to
flows dominated by viscous forces, since the modeled deformation at the back
of the droplet begins to deviate beyond the onset of inertia forces [64].

This approximation is the first work that delivers an approach to analytically
asses the dynamically deformed shape of a moving Taylor droplet and the
dimensions of the curved interface radii at the gutter (Sec. 6.3). The Laplace
pressure difference between the gutter entrances over the distance of the
gutter length allows to estimate the pressure gradient of the bypass flow
through the gutters. The latter evokes the excess velocity between the droplet
velocity and the mean velocity of the entire flow. The gradient estimation
for the bypass flow through the gutters is valid for the range of Cac À 0.02
and Rec À 10. Beyond those force ratios the flow ripples the interface shape
at the onset of droplet back cap and the description wall film thickness
looses validity. Additionally, the interface approximation can be used to
visualize and investigate flow quantities (e.g. velocity, pressure) directly at
the interface.

The evaluation methods, which have been developed for this work, gener-
ally allow to investigate laminar quasi-stationary and pulsating flows (Sec.
3.3). The methodology to asynchronously record, extract (raw image pre-
processing) and compile (image shift for the in- and out-of-plane alignment)
raw images of a two-phase flow that is subjected to stability fluctuations is
essential to the successful quantitative analysis of the reconstructed 3D3C
velocity field of inside and outside of moving Taylor droplets. An important
part is the statistical analysis of the apparent droplet length distribution (Fig.
3.4) on all measurement planes to maximize the amount of flow information
and to minimize the overall influence of the droplet length fluctuation. This
procedure is the key-method that enables the successful accurate extraction
of 3D3C velocity field from conventional multiplane 2D2C µPIV experiments
investigating fluctuating Taylor flows.
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The µPIV study on the 3D2C velocity distribution of Taylor droplets al-
lows to reconstruct third velocity component (Sec. 3.5). It establishes a
qualitatively and quantitatively verified 3D3C velocity field of a mean Taylor
droplet and investigates the 3D flow features (Chap. 5). For the first time,
an experimental data set allows to visualize the streamlines of the velocity
distribution on the interface of a Taylor droplet (Fig. 5.3) and to directly
relate it to the main and secondary vortices of the velocity field (Fig. 5.6).

Determining the shear rate distribution helps to effectively handle fragile
educts or products in single phase as well as in multiphase microfluidic
flows, e.g. organ-on-a-chip applications and cell handling applications using
droplets [24]. The maximum shear rate is located in the continuous phase
at the entrances and exits of the wall films and the corner flow (gutter)
bypassing the Taylor droplet (Fig. 5.6). Thus, shear sensitive educts or
products need to be placed inside the droplet if possible.

For the first time the pressure field of a moving Taylor droplet has been
extracted based on experimental work. Despite the approximate character of
the interface representation and the mentionable noise level of the processed
experimental data, a coherent overall picture of the 3D pressure field in and
around a moving Taylor droplet is established (Chap. 6).

The distinction between the momentum layer of thickness δ2 and a core flow
that is governed by viscous displacement (Sec. 2.4.1) reveals a pressure
gradient reversal from the wall towards the center (Fig. 6.4). At the wall
the pressure decreases as expected in the flow direction, while in the core
of the flow it is directed against the flow direction. Thus, the analytical
prediction of a reversed pressure gradient in the gutter as stated by Abiev
[3] is confirmed.

A straightforward estimation method is verified (Fig. 6.3) to quantify the
pressure gradient that drives the bypass flow of continuous phase through
the gutters and gives rise to the excess velocity of Taylor droplets [40]: The
Laplace pressure difference received from the mean gutter radius difference
between the droplet front and its back. The approach slightly overestimates
the measured driving pressure gradient by 2.7%.

The 3D scalar field of work done on the flow is divided into acceleration
and deceleration work (Fig. 6.6). The fluid inside the momentum layer
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at the wall films and inside the droplet caps is mainly accelerated, while
the remaining flow undergoes deceleration. The constant change for the
circulating liquid between acceleration and deceleration causes additional
energy loss in comparison to the laminar flow in a straight pipe.

As a measure for the overall energy loss of the moving droplet, a compari-
son of the cumulative forces at the droplet and channel interface with the
cumulative work done in the flow field (Sec. 6.6) shows that a consideration
of forces does not result in the complete information on the flow losses.
The governing viscous forces that act inside and outside the Taylor droplet
contribute significantly to the overall energy loss.

Despite mainly referencing a single flow situation (Ca “ 0.005, Re “ 0.051),
this thesis provides an extensive and detailed insight into the physics of the
viscous Taylor flow. Especially, since it is being based on experimental work,
it provides a unique spatially well-resolved reference case to benchmark
numerical parameter studies on digital microfluidics.

Outlook

The application of Taylor droplets e.g. in chemical processes to achieve
process intensification necessitates stable process conditions at an optimal
working point. Fluctuations of any kind are therefore depreciated in this
context. The fluctuations of a Taylor droplet chain in a long microchannel
express themselves as a velocity distribution, a droplet length distribution,
and a droplet shedding frequency distribution.

The reason for the droplet velocity distribution in Taylor flows differs from
that of freely moving consecutive droplets: Disregarding possible buoyancy
differences between the freely rising droplets due to a size distribution, a
preceding droplet wake increases the velocity of a following droplet. In con-
trast, the bounding walls of the microchannel enforce similar hydrodynamic
conditions for the individual droplets of the Taylor flow.

The droplet parameters velocity, length and time (frequency) are interde-
pendent. They ultimately result from a feedback mechanism between i) the
pressure conditions at the flow-focusing-junction (the driving pressure of

130 Chapter 7 Main conclusions and outlook



the two phases and the Laplace pressure across their interface) and ii) the
overall pressure loss in the channel on the generation of new droplets.

In order to gain control of the velocity distribution of a Taylor flow that
exhibits a droplet length distribution, the excess velocity of individual Taylor
droplets needs to be controlled. The flow could be manipulated such, that
all droplets translate with the same droplet velocity (i.e. with the total
superficial velocity of the flow). It is not possible to prevent the Taylor flow
from inducing the viscous displacement at the droplet front cap that builds
up the driving pressure gradient of the bypass flow towards the droplet
back. However, the flow conditions in the gutter are available to minimize
the volume flow through the bypass. The hydraulic transmittance of the
gutter can be influenced by the surface mobility of the droplet interface, the
cross-sectional area of the gutter, the length of the gutter (related to the
droplet length) and the viscosity of the continuous phase. A parameter study
could be performed to clearly isolate the influences of

• the microchannel aspect ratio,

• the droplet length,

• the viscosity ratio between the involved phases, and

• a possible influence of a rising momentum transfer from the bulk phase
into the droplets at elevated Rec.

The prevention of a droplet length distribution would be more desirable,
since it is the length fluctuation itself that causes the velocity distribution
over the Taylor droplet chain. In order to gain insight into the formation of a
Taylor droplet at flow-focusing-junctions a phase averaged high-speed 3D3C
µPIV study of the Taylor droplet formation would allow to investigate the
physics in detail.

From a process point of view it is important to investigate how the convection
conditions change with respect to the application of physiological fluids (e.g.
blood, blood plasma, protein samples). The assumption of a Newtonian
fluid behavior often fails with the latter. Shear thinning behavior could have
a significant effect on the relative flow through the gutters and with that
on the excess velocity between the droplet and the mean velocity of the
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flow. In order to maintain optimal process conditions it is favorable to gain
knowledge and control on these effects.
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η Dynamic viscosity
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2 Line 2, Fig. 4.1

3 Line 3, Fig. 4.1

4 Line 4, Fig. 4.1

a Line a, Fig. 4.1
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i Index

n Image control variable

r Radial direction

x x-direction
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y y-direction
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