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ABSTRACT 
 
Path length measuring is a relevant engineering problem. Leonardo Da Vinci designed for the military 
appropriate equipment, the podometer, to do so.  Modern equipment such as step meters and map meters are 
quite similar to Da Vinci‟s design, despite geometrical statistical - stereological - methods based on theorems of 
Cauchy and Buffon that were potentially available for a long period of time for doing a better job. The theorems 
have moreover been applied earlier for the engineering purposes indicated in this paper. Even Saltikov‟s re-
introduction for quantitative image analysis purposes in 1945 was ignored. Gradually, the last half of a century, 
stereological methods became more popular in concrete technology. Nevertheless, the stereology-based global 
averaging operation required to make the step from materials technology to engineering properties is inherent to 
making errors, as the literature demonstrates. 
          The methodological framework has been described in earlier papers by this author as to path length 
measurements in sections of cracked concrete and on X-ray images of steel fibre reinforced concrete (SFRC). By 
laying side by side in this paper the direct engineering approach (from Da Vinci to map meter) and the science 
(stereology)-based approaches, the profit in economy and reliability can nevertheless be stressed. Particularly the 
element of geometric averaging based on simple mathematical-statistical notions is highlighted, because the 
literature reflects  still major violations to these scientific principles. Three-dimensional information in the 
indicated fields of materials engineering is also readily obtained, provided proper sampling is guaranteed.  
 
Keywords  
Concrete, fibres, cracks, podometer, map meter, Cauchy, Buffon, Saltikov, image analysis, 
geometric averaging. 
  
 

INTRODUCTION 
 

A quite common problem engineers are confronted with is how to measure path length, either 
in a plane (2D) or in space (3D). This problem could be expanded to surface area in 3D. This 
author has paid earlier attention to old roots of stereology, the proper science for solving such 
problems. Discussed were theorems of Cavalieri, Buffon and Cauchy and their impact was 
demonstrated on (also path) measuring methodology in concrete technology [1].  

The exposition “Da Vinci, the Genius” (Rotterdam, 2013) displayed (a model of) Da 
Vinci‟s podometer (Fig. 1), which convincingly proved path measuring equipment (in this 
case path length covered by the military in the field) to be even much older. Two modern 
developments relate to the podometer, i.e. the step meter, in the USA denoted a hike-o-meter, 
and the map meter, map measurer, opisometer,  mile-o-graph or curvi(o)meter. The first 
measures the number of steps and the path length covered by its user. The second measures 
route (path) length on a map. The similarity with the half a millennium earlier developed 
podometer is obvious (Fig. 2).  
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Fig. 1. Podometer on the exposition: “Da Vinci, the Genius”, Rotterdam 2013 
 

            

 

Fig. 2. Two types of map meters of which the similitude to that of Da Vinci is quite striking. 

Therefore, nowadays one could (and should) have been doing much better with 
Cauchy‟s methods of 1.5 century ago [2]. Basically, all is required is making normal 
projections of the route (path) on a number of randomly oriented straight lines, which 
thereupon renders possible easy measuring of these total projections. Averaging leads 
straightforwardly to an accurate estimate of path length, superior to that of the map meter. The 
step to measuring the length of a crack trace in a section is an obvious one. It can be shown 
that this approach can be replaced by counting intersections between the traces and randomly 
oriented grids of straight lines. This allows analysing in a very efficient way a large number of 
cracks in a section plane as to average or total crack length. The total length of steel fibre 
projections in an X-ray image of SFRC is solved in an analogous way. By using intersection 
counting instead of total projection measuring for SFRC, de facto we also conform to the even 
one century older Buffon set up [1]. 

All approaches could be extended to the most relevant 3D engineering world,  provided 
sampling is properly arranged. Most important is here to recognize that optimum path 
measuring methods were potentially available for a very long time. Unfortunately, the afore-
mentioned present-day experimental methodology did not exploit such potentials, instead 
harked back to practical solutions, like that of Leonardo Da Vinci.  
 
 

SO, LET’S DO BETTER 
 
The question now to be raised is whether the length of a  curved line on a plane cannot be 
assessed in a more economic and accurate way. The wide variety of map meters that are for 
sale suggest that a negative answer should be given. However, here mathematical-statistical 
tools should be employed. Not new ones, because the method to be referred to here is due to 
Cauchy [2] and is more than one century old. Of historic relevance is that Steinhaus [3] was 
reported having used  Cauchy‟s method already before the nineteen thirties for the present 
purpose.   

The idea is not to concentrate directly on the route delineated on the map, but on its 
total projection on a line, which can easily be measured. This is repeated for a number of 
random or systematic directions, whereupon the total projected length is simply averaged. 
When L is the length of the route, its total projection in a direction β can be written as L‟(β). 
Hence, the result of averaging will be  

                                                     '( )
2

L L                                                                (1) 

allowing an easy assessment of the route‟s length. 
How many times should this operation be accomplished for a satisfying result? Kendall 

and Moran [4] give the following lower and upper bounds for 2n repetitions 
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whereby L is the true length and L2n its estimate for 2n repetitions.  For 2n x  , eq. (2) 
transforms into the well-known form  
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Both bounds have limiting values of 1 since sin 1x x  for 0x  . Let us take n=3 for 
getting an idea about  the  economy of the  approach. This leads  approximately to  
0.91<L2n/L<1.05,  which should be quite acceptable for normal applications.  
 
 

CRACKS IN CONCRETE 
 

In research one is frequently confronted with patterns of curved lines in a plane.  An example 
is the pattern of micro-cracks in a section of a (non-)loaded concrete specimen (Fig. 4). A 
quite complicated and laborious task would be to measure total crack length by a map meter.  
This was a problem frequently encountered in our research whereby the effects of loading 
type and level on damage characteristics (e.g. total crack length and orientation distribution) 
of different types of concrete were emphasized [5,6].   

Basically, the framed crack pattern (with A as frame area) can be treated similarly as 
before. For that purpose the contrast in the image plane should be improved. In the case of 
Fig. 4, the section surface had been sprayed by a fluorescent delineating the cracks, so that 
they can be photographed under illumination by UV light. Mostly, such images are digitized 
and measure-ment procedures automated. However, this leads to serious biases in obtained 
results, as again demonstrated in a recent publication [7].  Of course, this can easily be 
understood by using our imagination, seeing the differences resulting from conventional 
digitization illustrated in Fig. 3. In our research we have therefore copied the crack patterns 
manually, providing for an analogue image that can be subjected to the so called method of 
random (or directed) secants, the 1945-re-invention by Saltikov of Cauchy‟s theorems [8,9]. 
 

 

 

 
Fig. 3.  Analogue representation of smoothly curved crack trace in a section (left) is replaced 
by an orthogonal set of straight line segments due to a conventional procedure of digitization 
(right). 
 

Crack length in images such as Fig. 5 could be analysed (and indeed has been so)  by 
application of Cauchy‟s formula. Hence, a set of randomly or systematically oriented lines is 
projected onto the framed image. However, a far more economical approach involves using a 
grid of such lines covering the image and counting the number of  interesections, P, between 
the test lines (“secants”) and the cracks.  This is depicted in Fig. 5 by a superimposed 
orthogonal set of a limited number of  grids lines (the so called “Stroeven-concept”).    
 

 
Fig. 4. Part of a cross-section of a pre-loaded concrete specimen reveals myriads of small 

cracks that are visualized by the fluorescent spray technique [8]. 
 

The formula relating the number of points P per unit of total test line length and 
averaged over a number of systematically oriented grids  is given by 

                                                       ( )
2A LL P                                                                       (4) 

in which LA is the total crack length per unit of frame area and ( )LP   is the number of 
intersection points P per unit of the total length of grid lines in a particular direction β 
averaged over a systematic set of grid orientations. Eq. (4) directly reflects Cauchy‟s 
relationship in eq. (1); it offers a very economic and reliable approach to analysing multiple 
curved lines in a plane. This application does not have to be restricted to line patters on 
microlevel. Landscape images produced by airplane or helicopter photography can and have 
been analysed the same way. Only in the latter case one could imagine Da Vinci‟s podometer 
to be emoployed for checking the results!  
         Note that the discussion so far was restricted to 2D space. The world around us is  3D, 
however. Also for this situation Cauchy presented a formula relating the surface area, S, of an 
object in space to its average total projected area, 'A , on a random or systematic set of planes 

                                                                  2 'S A                                                                   (5) 
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Fig. 5. Manually copied crack pattern of a full section image of a conventionally-sized 

prismatic concrete specimen (note the aggregate grain sections). Orthogonal line grids are 
superimposed for intersection counting, yielding measurements in horizontal and vertical 

directions, respectively (as indicated). 
      

This has been demonstrated allowing to interprete the results of the directed secants 
approach to 2D crack patterns into crack surface area in the real 3D concrete world [5,6].  The 
appropriate formula for a system of cracks dispersed in 3D can be demonstrated equal to 

                                                              2V LS P                                                                                                       (6) 

in which SV represents the crack surface area per unit of volume. The averaging of the point 
intersection density PL has to be accomplished over a set of uniformly at random oriented  
images; a complicated action in concrete technology! However, in the so called “Stroeven-
concept” (inspired by Saltikov [6,9]), secants scanning can be restricted to orthogonal 
directions in axial sections (Fig. 5). This is possible in concrete subjected to prevailing tensile 
or compressive stresses leading to an axis of symmetry in the internal crack structure. For a 
complete methodological treatment, the interested reader is referred to a series of relatively 
old publications, such as [5]. 

 
STEEL FIBRES IN CONCRETE 

 
As depicted in Fig. 6, the similitude with the cracks in a section is obvious. The X-ray image 
can be subjected to a grid of parallel lines whereupon the number of intersections is counted. 
Hence, eq. (4) holds also for this case, whereby the projected fibre length is denoted by L‟.   

                                                             ' ( )
2A LL P                                                               (7) 

When expanding the information to 3D, the only tricky element is the derivation of the 
relationship between total fibre length in 3D, L, and its projected value, L‟.  In fact, we deal 
with the theorem of Cauchy that constitutes the  basis for global averaging. Since this is a 
common operation required for relating information on material structure to global 
engineering  properties, we will later on present the simple proof of the theorem. Since it 
combines geometry and statistics, it is part of the disciplines of geometrical statistics, 
geometric probability theory and stereology.  
        
 

 
 

 
 

Fig. 6. SFRC specimen of 70x200x1000 mm (top) is sliced at regular distances to produce 10 
tiles. An X-ray radiograph of such a “vertical slice” is shown at the bottom); gravitation 

during compaction was in vertical direction (perpendicular to top surface) [10]. 
 
         Generalizing the approach, path length in 3D can be considered consisting of a sequence 
of straight „unit‟ length elements. For the proof of Cauchy fibres can be considered composed 
of a sequence of straight unit length elements, so fibres can be of arbitrary length and curved.  
Fig. 7 presents a detail of projected mono-size steel fibres (in a tile of SFRC) and the unit 
sphere composed of the unit fibre elements collected and united with one end in the origin of 
the sphere.  The length of the narrow strip on the sphere‟s surface for fibres enclosing an 
angle θ with vertical direction z represents the relative frequency of such fibres, being sin θ. 
Consequently, when distributed  isotropic  uniformly at  random (IUR) in bulk,  frequency 
will be  a function of sin . Or in other words, the number density of fibers enclosing the 
same angle θ with the z-axis in Fig. 7 is a function of sin . So, the frequency distribution of 
IUR fibers in 3D can be expressed by  

                                                              3( ) sin
2Df                                                        (8) 
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Note that this sine-weighed orientation distribution is not produced in „compucrete‟ set ups 
whereby fibre orientation is defined by connecting “randomly” generated nodal points, 
leading to biases in applications in which this „compucrete‟ is employed.   

The projection image obtained by X-raying is 2D random when obtained from an IUR 
fiber dispersion in 3D; the image displays projections of pieces of fibres included in a tile 
with thickness t sawn from larger SFRC units (Fig. 6, at the top). Projection direction is 
perpendicular to the tile‟s surface. 

It can be shown that an analysis by the sweeping test line system allows bridging the 
dimensional gap between intersection density of line grid and fiber projections, LP , and fibre 
length per unit of volume, VL . Hence, [11,12]             

                                                                    3
2

V LL P
t

                                                              (9) 

which is basically similar to eq. (2) covering the case of dispersed cracks in concrete. It also 
directly reflects Cauchy‟s expression in eq. (5).  Eq. (8) will yield an unbiased estimate of 

3VL . 
         An estimate for fibre length per unit of volume, VL  can also be based on counting fibre 
intersections in a section plane. For an IUR fibre dispersion, a single image will suffice (for 
getting a reliable estimate, we need more section images, of course). For the more realistic 
case of non-IUR fibres, a random set of section images would be required, a too complicated 
set up in concrete technology. The estimate is given by the Cauchy expression 

                                                                      3 2V AL N                                                          (10) 

Herein, AN stands for the number of fibers per unit of the section area.  
        Still, the section plane misses 50% of the fibers in its near neighborhood [8]. This is due 
to the probability of intersection of section and fibre that is proportional to the tangent height 
of the fibre perpendicular to the section plane. This equals cosθ in the coordinate system of 
Fig. 7. Hence, spatial fibre orientation distribution is given by                                          

                                                              3( ) sin 2
AN Df                                                        (11) 

Obvioulsly, Fig. 6 presents a non-isometric case that more closely represents the 
situation in engineering situations. Also in this case (like with the cracks) application of the 
„Stroeven concept‟ is possible because an axis of symmetry is generally due to the impact of 
compaction by vibration.  Formulas have been published in numerous articles to which the 
interested reader is referred [11,12,13]. Formulas directly reflect the theorems of Cauchy and 
Buffon, (and application for similar cases by Steinhaus in 1930), however the methodology 
had to be re-introduced by Saltikov in 1945. 

  

Fig. 7.  Visualization by sphere model of orientation distribution of mono-size fibre elements 
(visualized for illustrative purposes in X-ray projection image (left)) in SFRC specimen. Fibre 

elements are considered translated from bulk to join in one of their ends in point O. As a 
consequence, other ends will UR cover the surface of the sphere with unit radius (right). 

 
        As promised, here are the global 2D and 3D averaging  operations underlying Cauchy‟s 
formulas 
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CONCLUSIONS 

Da Vinci‟s podometer was a practical concept for measuring path length. Engineering 
modernized the concept into a range designs for step and map meters. Modernization should 
have been based however on already for six or seven generations available geometrical 
statistical methodology. Moreover, the theoretical concepts were also used for the purpose of 
path length measurements by Steinhaus, but generally overlooked.  

In concrete technology, the practical impact of the theorems of Cauchy and Buffon was 
not understood for a long time. Even Saltikov‟s implementation of such theorems into a 
practical methodology for path measuring (i.e., directed and random secants) was overlooked 
for quite some time.  Gradually, the last half of a century this economic and reliable 
approaches to analyzing crack and fibre dispersions in concrete became more widespread 
[14,15]. 

In addition to providing modern methodology for path measuring, the theorems provide 
the basic principles for geometric averaging. In that respect, the concrete literature is still full 
of misunderstandings and misinterpretations. The spacing concept for fibres is just a single 
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„Stroeven concept‟ is possible because an axis of symmetry is generally due to the impact of 
compaction by vibration.  Formulas have been published in numerous articles to which the 
interested reader is referred [11,12,13]. Formulas directly reflect the theorems of Cauchy and 
Buffon, (and application for similar cases by Steinhaus in 1930), however the methodology 
had to be re-introduced by Saltikov in 1945. 

  

Fig. 7.  Visualization by sphere model of orientation distribution of mono-size fibre elements 
(visualized for illustrative purposes in X-ray projection image (left)) in SFRC specimen. Fibre 

elements are considered translated from bulk to join in one of their ends in point O. As a 
consequence, other ends will UR cover the surface of the sphere with unit radius (right). 

 
        As promised, here are the global 2D and 3D averaging  operations underlying Cauchy‟s 
formulas 
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CONCLUSIONS 

Da Vinci‟s podometer was a practical concept for measuring path length. Engineering 
modernized the concept into a range designs for step and map meters. Modernization should 
have been based however on already for six or seven generations available geometrical 
statistical methodology. Moreover, the theoretical concepts were also used for the purpose of 
path length measurements by Steinhaus, but generally overlooked.  

In concrete technology, the practical impact of the theorems of Cauchy and Buffon was 
not understood for a long time. Even Saltikov‟s implementation of such theorems into a 
practical methodology for path measuring (i.e., directed and random secants) was overlooked 
for quite some time.  Gradually, the last half of a century this economic and reliable 
approaches to analyzing crack and fibre dispersions in concrete became more widespread 
[14,15]. 

In addition to providing modern methodology for path measuring, the theorems provide 
the basic principles for geometric averaging. In that respect, the concrete literature is still full 
of misunderstandings and misinterpretations. The spacing concept for fibres is just a single 
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example. Therefore, the aim of this paper was laying side-by-side the engineering approach 
from Da Vinci, the modern step and map meters, and the materials science-based approaches 
making profitable use of the appropriate geometrical-statistical principles underlying 
optimized path measuring methodology in 2D as well as 3D.   
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ABSTRACT 
 
It is now widely understood that heritage masonry largely owes its longevity to the sacrificial weathering of 
traditional lime mortar which protects the valuable masonry units. The importance of sensitively employing 
compatible mortars has been stressed in recent decades, against the backdrop of damaging interventions. 
However inappropriate materials are still being used on traditional / heritage substrates; of concern is the 
emergence of ‘conservation’ pre-mixed lime mortars with undisclosed additives which affect the working and 
final characteristics of the mortar. This paper examines a modern dry hydrate NHL mortar, a premixed NHL 
‘conservation mortar’ and a general purpose cement mortar, and reviews them against the compatibility 
credentials set down by historic lime mortars in Scotland. Samples are lab-cast, aged 3 months and tested under 
mechanical and physico-chemical methods; microstructural data is derived through Mercury Intrusion 
Porosimetry. It was found that the premixed NHL ‘conservation mortar’ is less compatible than a cement mortar 
for heritage masonry substrates, owing to the water repelling agents which prohibit the sacrificial weathering 
phenomenon. 
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INTRODUCTION 
 
Much of the present-day conservation work on heritage structures is directly attributable to 
previous interventions involving incompatible materials. Still, however, the use of 
incompatible materials persists. Notably, some modern ‘conservation mortars’ are available 
containing undisclosed additives – additives which profoundly alter the performance 
characteristics of the material. 

Technical compatibility between mortar and masonry unit centres upon the ethos that 
the masonry units themselves hold higher heritage value than the mortar with which they are 
laid[1]. A mortar which sacrifices itself to best preserve the masonry unit is a technically 
compatible mortar. Credentials for technical compatibility were identified[2].  

The technical compatibility requirements fall under two distinct classes, mechanical and 
physico-chemical. The mechanical requirements stem from the structural role of the mortar in 
heritage masonry, as a deformable cushion: the mortar should sacrificially yield to limit stress 
on the masonry units. The physico-chemical requirements stem from the mortar’s role as a 
permanent poultice within the masonry: it should wick away moisture and sacrificially 
weather to the benefit of the masonry units. The present work reviews selected modern 
mortars against these technical requirements of mechanical and physico-chemical, set down 
by the historic example.  
  

Piet STROEVEN32 




