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The Burg Algorithm for Segments

Stijn de Waele and Piet M. T. Broersen

Abstract—In many applications, the duration of an uninter- The usual way of combining the information of segments is
rupted measurement of a time series is limited. However, it is to take the average of the models estimated from the individual
often possible to obtain several separate segments of data. Thesegments [9]. This will reduce the variance present in the es-

estimation of an autoregressive model from this type of data is timate. H AR estimati thods al tai bi
discussed. A straightforward approach is to take the average Imate. However, estimation methods also contain a bias.

of models estimated from each segment separately. In this way, 1he bias in the AR parameters is proportional t livhere N
the variance of the estimated parameters is reduced. However, is the number of observations [10]. Taking the average of the

averaging does not reduce the bias in the estimate. With the Burg models estimated from the individual segments does not reduce
algorithm for segments, both the variance and the bias in the this bias.

estimated parameters are reduced by fitting a single model to all . .
segments simultaneously. As a result, the model estimated with The influence of the bias can be neglected when the number

the Burg algorithm for segments is more accurate than models Of observations per segment tends to infinity, whereas the

obtained with averaging. The new weighted Burg algorithm for number of segments is fixed. In this asymptotic regime, all

segments allows combining segments of different amplitudes. methods for obtaining a model from segments are equivalent.

Index Terms—Segmented data, time-series analysis. Therefore, the asymptotic regime cannot be used to discern

between the various methods for combining the information

in the segments. To do this, the situation with many segments,

each with a finite number of observations, has to be considered.
UTOREGRESSIVE (AR) modeling is used for analyzingn this regime, the bias in the estimated parameters becomes
stationary stochastic processes for many different applidaaportant.

tions, e.g., radar [1], geophysics [2], and economics [3]. A com-

parison of various estimators of AR-parameters showed that the II. THE BURG ALGORITHM FOR SEGMENTS

Burg algorithm [4], [5] is the preferred estimator for AR-param- ) ) )
eters [6]. The Yule—Walker algorithm can be severely biased.AN @utoregressive process is a (possibly complex-valued) sta-

After a large true reflection coefficient, estimates for highdfonary stochastic signai() generated by the following differ-
order reflection coefficients suffer from a bias of order 1 in€Nc€ equation [11]:
stead of the smaller bias of orderM hat is present in other
estimation methods. The least squares estimator and the for- o(n) — i+ Z ai(ax(n — i) — 1) = e(n) 1)
ward-backward least squares estimator have a greater variance !
than Burg. In addition, they may yield unstable models. In many
applications, the duration of one uninterrupted measuremeniieres(n) is a white noise signal. The mean of the signal is de-
submitted to practical limitations. However, it is often possiblgoted;.. In this processS segments are given. In each segment,
to obtain several separate segments of data. The Burg algoritia process is considered to be stationary. The Burg algorithm
has been reformulated so that it can be used to analyze this tjiesegments can be derived for segments of varying length. For
of data [7]. the sake of simplicity of formulae, the segments will be pre-
An example of the application of this generalized Burg alggumed to be of equal lengf¥i in the derivation given here. Ob-
rithm is the estimation of a sea clutter model from radar dateervationn of segment will be denoted:®(n),n = 1,---, N.
The advantage of estimating a clutter model from the data/t properties of the Burg algorithm for segments that are dis-
hand, rather than using a predefined model, is that the modetigsed are also valid for segments of varying length.
automatically adapted to the current environmental conditions.The Burg algorithm estimates the AR parameters by deter-
The clutter model can be used for target detection: Statisticaffyining reflection coefficients: that minimize the sum of for-
significant deviations from clutter indicate a possible target [8vard and backward residuals. The extension of the algorithm
The generalized Burg algorithm can be used to obtain an ag-segments is that the reflection coefficients are estimated by
curate clutter model by combining the information in adjacemtinimizing the sum of forward and backward residuals of all
range cells into a single clutter model. A more accurate cluttéggments taken together. This means a single model is fitted to
model results in more effective target detection. all segments in one time. This concept is also used for predic-
tion error methods in system identification, where the input to
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mean is subtracted instead of the true mean, this subtractionrith each iteration step. Therefore, the vectors of residuals from
troduces bias in the estimated AR parameters [11]. Treatmentloé previous stefp*»— 1 andi*’—1! do not have the same length
the mean for unsegmented data with maximum likelihood casf*!”! andb*l”!. The vectors of forward and backward residuals
be found in [13]. The mean can be estimated and subtracteddbthe previous step with the appropriate length are derwtéd
each segmentindividually. Alternatively, a single estimate of trdw°[?!:
mean can be obtained from all segments taken together. As this
estimate of the mean is more accurate, the bias in the model pa- 7l =(plr=tp 1) (V)
rameters caused by subtraction of the estimated mean will be w°lPl = (bs[p—ﬂ(l) .. bs[p—11(N —p)). (6)
reduced. When the segments are treated separately, the bias will
not decrease when the number of segments is increased. Obviajith these vectors, (4) can be rewritten as
ously, the single estimate for the mean should only be used when
all segments are obtained from signals with the same mean. ol =l kpmsm

Some steps of the derivation of the Burg algorithm will be polel —olel k;gs[zﬂ 7)
discussed to show the implications of fitting a model to all seg-
ments simultaneously. In the Burg algorithm, reflection coeffi- Using the standard inner produ@t, 7) = (X z;;)/N and
cientsk are estimated directly with a recursive algorithm [14]. Imorm || - || the criterionP can be written as
each recursion step, a single reflection coefficient is estimated.
To estimate thepth reflection coefficient an ARp) model is P(k,) = Z %(Hfs[p}H? + |5, (8)
fitted to the data with the firsp — 1 reflection coefficients
ki,-- -, kp_1 fixed to the value found in the previous steps. The o ] ] .
parametersiz[pl of stepp are related to the parameters of the 'S.ubstltut|on of (7) and some calculation yields thdf:;) is
previous step by the Levinson—Durbin algorithm [14]. The neffpinimal for

5

reflection coefficientt;, is determined by minimizing the sum Z (7°l), elel)
of the forward and backward residuals. The forward residuals L R . ’ ©
sIv] and the backward residudig?! for apth-order model and p = Kp = — .
Leqments ave defned a5 ! > H bR + i)
() =2°(n) + zp: aPla(n — i) As is the case for the standard Burg algorithm for a single
pt segment, the absolute valuegf is always smaller than unity.
n=p+1,---,N Therefore, the stability of the estimated AR model is guaran-
P ) teed. As the proof of the stability property is analogous to that
wll(n) =2*(n) + > a?l 2 (n +4) given in [14], it will not be given here.
i=1 The calculations required for the Burg algorithm for segments
n=1--,N—p. (2) are very similar to the calculations for Burg applied to each seg-

A il ch istic of the B laorithm is th ment separately. The difference is that the information contained
n essential characteristic of the Burg algorithm Is that "R the segments is combined in a single estimate, as given by (9).
number of residuals decreases with each recursion step. The Crjy, 11" standard criterion (3), all segments are weighted

terion to be minimized with respect &9, is the sum of absolute equally. This can be modified by introducing weighting factors
squares” of the forward residuals and the backward reS|duaIE;wS)2 for each segment in (3). Like the unweighted algorithm,
N N—p this weighted Burg algorithm for segments yields an estimated
P(k,) = %Z < Z |st1}] (n))? + Z |bsb1(n)|2> . (3) model that is guaranteed to be stable. This can immediately be
s=1 \n=p+1 n=1 seen from the fact that the weighted optimization problem can

. be translated into the original optimization problem with scaled
The forward and backward residuals can be eXpressedoWservationsuSa:S(n) instead ofz®(n). Since stability of the

terms of the forward and backward residuals of the preV'OBﬁginal solution (9) is guaranteed fail sets of observations,

step: this proves that the estimated model found with the modified
fS[P](n) - fS[P—l](n) + kpr[p—H (n —p) CritAerion will i:llsolc ?ﬁ Stabllg. ; . hted alcorithm
bl () = b=t () + k;fs[f’_”(n +p). @ n example of the application of the weighted algorithm is

the situation where the various segments are realizations of a
For the remainder of the derivation of the Burg estimate gtochastic process with the same autocorrelation function but
is convenient to express these equations in vector notation. ¥} @ different variance. This can be taken into account by using

following vectors will be used: the inverse of the standard deviatiohof the segment as weight
w?® in the weighted algorithm.
Pl = (Pl p 1) (V) The estimate found from several short segments will be less
ool = (p°lPl(1) .. Pl (N — p)). (5) accurate than the estimate from one uninterrupted measurement.

This is caused by the fact that for thdirst observations of a
In addition, the residuals of the previous iteration step asegment the residuals are not calculated since not all previous
used in (4). As stated before, the number of residuals decreasleservations required for these residuals are known. Therefore,
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only NS-pS residuals are available. If one uninterrupted megdeld an estimate that is not a valid covariance function because
surement of length NS is available, only the fisggesiduals are it is not positive definite [11]. The biased sample autocovari-
not calculated, leaving NS-p residuals. Moreover, the maximuemces contain the same large bias as the Yule—Walker estimator.
model order that can be considered a candidate for order selElse Burg covariance function is guaranteed to be positive defi-
tion is higher for the uninterrupted measurement. nite and contains only a small bias. Therefore, the Burg covari-
The number of parametepsthat is used to describe the datance function will be used. Similarly, the correlation function
can be obtained by order selection using an order selection evill be calculated from the Burg reflection coefficients.
terion such as Akaike’s information criterion (AIC) [15]. When In the asymptotic regime, all representatiaps R, & and
only one segment of lengtN is available, the AIC is given by a) used for averaging are equivalent. However, for finite
9 samples, the various approaches have some distinguishing
AIC(p) = In(RESp)) + Np (10) properties. The average of parameters not guaranteed to
yield a stationary model as the average model. The remaining
where RE$p) is equal to the residual variance of the model ofepresentations mentioned do result in a stationary model
orderp. When a single model is estimated frafrindependent under all conditions. A comparison of reflection coefficients
segments of lengthV, the variance of the estimated parameters and parameters as a representation for averaging showed
asymptotically decreases by a factor%fThis means the AIC that averaging reflection coefficients is more accurate [9]. For

for segments (AICS) is given by speech processing, a comparison of a wider range of averaging
9 methods showed that averaging autocovariangegrovides
AIC,(p) = In(RESp)) + %_ (11) the most accurate model [16].

A common disadvantage of averaging methods is that the bias
When the model order, which is considered is greater tharin the estimated parameters is not reduced as a result of aver-

0.1N, finite sample effects must be taken into account [6]. If theging. The bias in the parameters is dependent on the number

segments are dependefity in (11) should be replaced by theof observations. Exact results for the bias are difficult to ob-

effective number of degrees of freedom. tain. Approximate results using Taylor expansion for the least-
squares AR estimator show that the Widsr the reflection co-
lll. AVERAGING METHODS efficient of an AR(1) process is inversely proportional to the

With averaging methods, the information of the segmentsr?gmber of observations per segmen{10]

combined by averaging the results of the individual segments. b= B — Ik 1 13
In this way, the variance of the estimate is reduced. However, = E(k) —k~ N’ (13)
averaging does not reduce the bias present in the estimates. The . . . . . -
exact result of this approach depends on the model represeFtt&]ll‘—?hIS bias is called Taylor bias. The bias will increase for

: . : L |%her model orders and for a greater dynamic range in the spec-
tion that is used. For a general representation, which is denote . .
o, the averaging method can be written as rum. This is proved in [10] for processes of orgeequal to

' 2. For the Burg estimator, no theoretical results have been ob-

.1 s tained. However, simulations showed that the bias in the Burg
=3 Z @ (12) estimator is similar to the bias in the least-squares estimate [10].
° The variance of the estimated parameter for an AR(1) process
Some representations used for averaging are the followinds proportional to 1¥. This is reduced by a factor 6fas a result
« p first autocorrelationg , - - -, pp; of averagingS independent contributions
* p first autocovarianceg, - - -, K,,; 1
» reflection coefficientsiy, - - -, kp; var(a) ~ SN
« parameters in the difference equation- - -, a,.
Another representation that can be used for averaging is theéSince the contribution of the bias to an error measure such as
power spectrumh(w) or, equivalently, theentire covariance the prediction error PE is given by the square of the bias
function R. The average of the entire covariance functiorbof 1
AR(p) processes cannot be written as the covariance function of v~ ~3
an AR(p) process because the average of the entire covariance N
function of S AR(p) processes is the covariance function of athe bias will be negligible with respect to the variance if the
ARMA (Sp, (S —1)p) process. However, an AR) process can number of segmen$ is small compared with the number of
be fitted to this average covariance function by determining tiobservationsv. However, as the number of segments increases,
AR(p) model with the smallest error with respect to the averagie variance is reduced, whereas the contribution of the bias will
covariance function. This model is completely determinegmain the same. Then, the influence of the bias will become
by the firstp autocovariances. As a result, this procedure important. The lack of an exact theoretical description is not
equivalent to averaging the firgtautocovariances. a great problem for the current investigation. It is sufficient to
Three distinct estimators for the autocovariadteould be acknowledge the existence of the Taylor bias and the fact that
used for averaging: the unbiased sample covariances, the bismeztaging does not diminish this bias.
sample covariances, and covariances calculated from the Bur&ince the Burg algorithm for segments fits a model to all seg-
reflection coefficients. The unbiased sample covariances nragnts simultaneously, it is expected that the Taylor biam

(14)

(15)
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this estimate will be small. An expression for the biagircan TABLE |

; ; _ ; ; MPARISON OF THEBURG ALGORITHM FOR SEGMENTS (BURG-S) AND THE
be obtained by using a second-order Taylor approximation of tr%’/ERAGING METHODS FORS = 10 SeGMENTS DEN — 20 CHSEUAT IONS

estimate (9) foik [17]. For simplicity of formulae, the analysis Each. THe SiGNAL IS GENERATED BY AN AR(10)-PROCESSCHARACTERIZED
is again restricted to segments of equal length. Each segmeRt'sHE PARAMETER k. THE MODEL ERRORME WAS AVERAGED OVER 50 000

contribution to the expectation of the denominator is assumed SIMULATION. RUNS FOREACH VALUE OF h

to be equal to the signal varianed. This is a sufficiently ac- Model Error ME
curate approximation for the current calculation. The resulting h Burg-S Averaging Methods
expression for the bias, is p R k a
0.5 16 47 4] 138 370
1 1 0.4 15 26 23 79 149
b.~———cov ol ol 2|72 4 ||l 2 03 14 18 16 46 149
7T gt 82 Z( ’ >’Z 2(H I+l ) 0.2 14 15 14 30 52
° ? 0.1 15 13 14 23 34
1 1,0 siine  —sfln2 0.0 15 13 14 19 24
+ ki—o5 var <Z §(||US[ N2 + [ty ). (16) 0.1 15 14 14 18 2
B 0.2 15 17 16 20 25
. . o 0.3 16 24 22 25 34
For independent segments, the (co)variances in this expres- 0.4 17 45 18 37 50
sion reduce t times the (co)variance in a single segment. As 0.5 18 102 84 64 84

a result, the bias, can be expressed in terms of the bias in a

single segment . . . :
g g The expectatio’{-} is the average over all possible realiza-

1/1 1 tions of the process(n) and not the fit to the realization used
b, ~ 3 <F cov <<@[117@[11>7 5(”5[11“2 + ||E[l1||2)> for parametgr estim;ti)c)n_
1 1 1 The model error contains contributions of both the variance
+ k1—; cov <§(||Em||2 + ||m[”||2)>) = §b' (17) and the squared bias in a way that is significant for the use of
o the models. The behavior of the Burg algorithm can be described
Substitution of (13) fob yields that the bias is inversely pro-using the finite sample formulae for the prediction error PE [6].

4

portional to the total number of observatiaNsS If one uninterrupted measurement is available, the model error
would be approximately equal to the number of parameters 10.
bs ~ L_ (18) In the first simulation experiment, the various methods have
NS been compared fof = 10 segments ofV = 20 observations.
This example is representative for radar processing practice. The
IV. COMPARISON OFAVERAGING METHODS AND BURG results are given in Table I. The value for the model error calcu-

] ) ] lated using the finite sample formulae is 14.7. The results for the
Burg for segments is compared with the averaging methods{g,y gurg algorithm remain more or less the same for all values
two simulation experiments. In the first experiment, the two ag , \whereas the averaging methods deteriorate for large values
proaches are compared in an example with a moderate numbey,
of segments. In the second experiment, a very large number ohg stated before, there are no theoretical results for the bias
segments is analyzed to study the bias present in both methgdspe Burg estimator. However, the bias can be examined in
Finally, some comments are made regarding the number of cagfiyjations by taking a very large number of segments. Then,
putations required for the various methods. _ ~ the variance of the estimates is greatly reduced by averaging,
The stationary stochastic process used in these simulationgijreas the bias remains present. In this way, a clear picture
generated by an AR(10) process with ten equal reflection cogf-he hias in the averaging methods is obtained. This has been
ficients/. The value of: is varied to generate a range of signal§gne in the second simulation experiment, where the various

with different properties. From this signal, an AR(10) model ig,ethods have been compared for= 10 000 segments df =
estimated with Burg for segments and the averaging methods. ghservations. The results are given in Table II. The value

The mean of the signal is considered known. The difference Bg; the model error that is calculated using the finite sample
tween the true signal properties and the estimated signal prgfiinulae is 14.4.

erties is expressed using the model error ME [18]. The modelre gyrg algorithm for segments effectively combines the in-
error is a normalized version of the one-step-ahead predictidmation in the segments, thus reducing the Taylor bias. The

error PE model error is only a result of the variance of the estimated pa-
PE— o2 rameters as predicted by the finite sample formulae. The aver-
ME(y, ) = NST 19) aging methods are biased. For all of the averaging methods, the

=

bias increases for higher values/afThis agrees with the be-
where PE is the expectation of the squared difference betwégivior of the bias in simple model structures, as described in
x(n) and the one-step-ahead predictitfm) based on the pre- [10]. The exact amount of bias depends on the model represen-

vious observations and the estimated model tation used for averaging. A comparison of the results of the
. ) two simulation experiments clearly shows that the deterioration
PE=E{(z(n) — &(n))"} of the averaging methods in the first experiment can be ascribed

=E{(x(n) + a1x(n — 1)--- + a,x(n —p))?}.  (20) to the bias.
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TABLE I from white noise. With the Burg algorithm for segments, both

COMPARISON OF THEBURG ALGORITHM FOR SEGMENTS (BURG-S) AND THE the variance and the bias in the estimated parameters are re-
AVERAGING METHODS FORS = 10000 &GMENTS OFN = 20 OBSERVATIONS . .
EACH. THE SIGNAL IS GENERATED BY AN AR(10)-FrocessCHArACTERIZED ~ dUCEd. As a result, the Burg algorithm for segments provides
BY THE PARAMETER h. THE MODEL ERRORME WAS AVERAGED OVER 100 more accurate models than the averaging methods.
SIMULATION RUNS FOREACH VALUES OF h

Model Error ME REFERENCES
h Burg-S Averaging Methods [1] S. Haykin, Nonlinear Methods of Spectral Analysi$. Haykin,
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