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The Burg Algorithm for Segments
Stijn de Waele and Piet M. T. Broersen

Abstract—In many applications, the duration of an uninter-
rupted measurement of a time series is limited. However, it is
often possible to obtain several separate segments of data. The
estimation of an autoregressive model from this type of data is
discussed. A straightforward approach is to take the average
of models estimated from each segment separately. In this way,
the variance of the estimated parameters is reduced. However,
averaging does not reduce the bias in the estimate. With the Burg
algorithm for segments, both the variance and the bias in the
estimated parameters are reduced by fitting a single model to all
segments simultaneously. As a result, the model estimated with
the Burg algorithm for segments is more accurate than models
obtained with averaging. The new weighted Burg algorithm for
segments allows combining segments of different amplitudes.

Index Terms—Segmented data, time-series analysis.

I. INTRODUCTION

A UTOREGRESSIVE (AR) modeling is used for analyzing
stationary stochastic processes for many different applica-

tions, e.g., radar [1], geophysics [2], and economics [3]. A com-
parison of various estimators of AR-parameters showed that the
Burg algorithm [4], [5] is the preferred estimator for AR-param-
eters [6]. The Yule–Walker algorithm can be severely biased.
After a large true reflection coefficient, estimates for higher
order reflection coefficients suffer from a bias of order 1 in-
stead of the smaller bias of order 1/that is present in other
estimation methods. The least squares estimator and the for-
ward-backward least squares estimator have a greater variance
than Burg. In addition, they may yield unstable models. In many
applications, the duration of one uninterrupted measurement is
submitted to practical limitations. However, it is often possible
to obtain several separate segments of data. The Burg algorithm
has been reformulated so that it can be used to analyze this type
of data [7].

An example of the application of this generalized Burg algo-
rithm is the estimation of a sea clutter model from radar data.
The advantage of estimating a clutter model from the data at
hand, rather than using a predefined model, is that the model is
automatically adapted to the current environmental conditions.
The clutter model can be used for target detection: Statistically
significant deviations from clutter indicate a possible target [8].
The generalized Burg algorithm can be used to obtain an ac-
curate clutter model by combining the information in adjacent
range cells into a single clutter model. A more accurate clutter
model results in more effective target detection.
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The usual way of combining the information of segments is
to take the average of the models estimated from the individual
segments [9]. This will reduce the variance present in the es-
timate. However, AR estimation methods also contain a bias.
The bias in the AR parameters is proportional to 1/, where
is the number of observations [10]. Taking the average of the
models estimated from the individual segments does not reduce
this bias.

The influence of the bias can be neglected when the number
of observations per segment tends to infinity, whereas the
number of segments is fixed. In this asymptotic regime, all
methods for obtaining a model from segments are equivalent.
Therefore, the asymptotic regime cannot be used to discern
between the various methods for combining the information
in the segments. To do this, the situation with many segments,
each with a finite number of observations, has to be considered.
In this regime, the bias in the estimated parameters becomes
important.

II. THE BURG ALGORITHM FOR SEGMENTS

An autoregressive process is a (possibly complex-valued) sta-
tionary stochastic signal generated by the following differ-
ence equation [11]:

(1)

where is a white noise signal. The mean of the signal is de-
noted . In this process, segments are given. In each segment,
the process is considered to be stationary. The Burg algorithm
for segments can be derived for segments of varying length. For
the sake of simplicity of formulae, the segments will be pre-
sumed to be of equal length in the derivation given here. Ob-
servation of segment will be denoted .
All properties of the Burg algorithm for segments that are dis-
cussed are also valid for segments of varying length.

The Burg algorithm estimates the AR parameters by deter-
mining reflection coefficients that minimize the sum of for-
ward and backward residuals. The extension of the algorithm
to segments is that the reflection coefficients are estimated by
minimizing the sum of forward and backward residuals of all
segments taken together. This means a single model is fitted to
all segments in one time. This concept is also used for predic-
tion error methods in system identification, where the input to
the system is known, like in ARX modeling [12].

The advantage of this approach can be illustrated by looking
at two ways of dealing with the signal mean. Before estimating
the AR parameters of a signal with nonzero mean, the estimated
mean must be subtracted. Due to the fact that an estimate of the

1053–587X/00$10.00 © 2000 IEEE



DE WAELE AND BROERSEN: THE BURG ALGORITHM FOR SEGMENTS 2877

mean is subtracted instead of the true mean, this subtraction in-
troduces bias in the estimated AR parameters [11]. Treatment of
the mean for unsegmented data with maximum likelihood can
be found in [13]. The mean can be estimated and subtracted for
each segment individually. Alternatively, a single estimate of the
mean can be obtained from all segments taken together. As this
estimate of the mean is more accurate, the bias in the model pa-
rameters caused by subtraction of the estimated mean will be
reduced. When the segments are treated separately, the bias will
not decrease when the number of segments is increased. Obvi-
ously, the single estimate for the mean should only be used when
all segments are obtained from signals with the same mean.

Some steps of the derivation of the Burg algorithm will be
discussed to show the implications of fitting a model to all seg-
ments simultaneously. In the Burg algorithm, reflection coeffi-
cients are estimated directly with a recursive algorithm [14]. In
each recursion step, a single reflection coefficient is estimated.
To estimate the th reflection coefficient an AR model is
fitted to the data with the first reflection coefficients

fixed to the value found in the previous steps. The
parameters of step are related to the parameters of the
previous step by the Levinson–Durbin algorithm [14]. The new
reflection coefficient is determined by minimizing the sum
of the forward and backward residuals. The forward residuals

and the backward residuals for a th-order model and
segment are defined as

(2)

An essential characteristic of the Burg algorithm is that the
number of residuals decreases with each recursion step. The cri-
terion to be minimized with respect to is the sum of absolute
squares of the forward residuals and the backward residuals

(3)

The forward and backward residuals can be expressed in
terms of the forward and backward residuals of the previous
step:

(4)

For the remainder of the derivation of the Burg estimate, it
is convenient to express these equations in vector notation. The
following vectors will be used:

(5)

In addition, the residuals of the previous iteration step are
used in (4). As stated before, the number of residuals decreases

with each iteration step. Therefore, the vectors of residuals from
the previous step and do not have the same length
as and . The vectors of forward and backward residuals
of the previous step with the appropriate length are denoted
and :

(6)

With these vectors, (4) can be rewritten as

(7)

Using the standard inner product and
norm the criterion can be written as

(8)

Substitution of (7) and some calculation yields that is
minimal for

(9)

As is the case for the standard Burg algorithm for a single
segment, the absolute value of is always smaller than unity.
Therefore, the stability of the estimated AR model is guaran-
teed. As the proof of the stability property is analogous to that
given in [14], it will not be given here.

The calculations required for the Burg algorithm for segments
are very similar to the calculations for Burg applied to each seg-
ment separately. The difference is that the information contained
in the segments is combined in a single estimate, as given by (9).

In the standard criterion (3), all segments are weighted
equally. This can be modified by introducing weighting factors

for each segment in (3). Like the unweighted algorithm,
this weighted Burg algorithm for segments yields an estimated
model that is guaranteed to be stable. This can immediately be
seen from the fact that the weighted optimization problem can
be translated into the original optimization problem with scaled
observations instead of . Since stability of the
original solution (9) is guaranteed forall sets of observations,
this proves that the estimated model found with the modified
criterion will also be stable.

An example of the application of the weighted algorithm is
the situation where the various segments are realizations of a
stochastic process with the same autocorrelation function but
with a different variance. This can be taken into account by using
the inverse of the standard deviationof the segment as weight

in the weighted algorithm.
The estimate found from several short segments will be less

accurate than the estimate from one uninterrupted measurement.
This is caused by the fact that for thefirst observations of a
segment the residuals are not calculated since not all previous
observations required for these residuals are known. Therefore,
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only NS-pS residuals are available. If one uninterrupted mea-
surement of length NS is available, only the firstresiduals are
not calculated, leaving NS-p residuals. Moreover, the maximum
model order that can be considered a candidate for order selec-
tion is higher for the uninterrupted measurement.

The number of parametersthat is used to describe the data
can be obtained by order selection using an order selection cri-
terion such as Akaike’s information criterion (AIC) [15]. When
only one segment of length is available, the AIC is given by

AIC RES (10)

where RES is equal to the residual variance of the model of
order . When a single model is estimated fromindependent
segments of length , the variance of the estimated parameters
asymptotically decreases by a factor of. This means the AIC
for segments (AICS) is given by

AIC RES (11)

When the model order, which is considered is greater than
0.1 , finite sample effects must be taken into account [6]. If the
segments are dependent, in (11) should be replaced by the
effective number of degrees of freedom.

III. A VERAGING METHODS

With averaging methods, the information of the segments is
combined by averaging the results of the individual segments.
In this way, the variance of the estimate is reduced. However,
averaging does not reduce the bias present in the estimates. The
exact result of this approach depends on the model representa-
tion that is used. For a general representation, which is denoted

, the averaging method can be written as

(12)

Some representations used for averaging are the following:

• first autocorrelations ;
• first autocovariances ;
• reflection coefficients ;
• parameters in the difference equation .

Another representation that can be used for averaging is the
power spectrum or, equivalently, theentire covariance
function . The average of the entire covariance function of
AR processes cannot be written as the covariance function of
an AR process because the average of the entire covariance
function of AR processes is the covariance function of an
ARMA process. However, an AR process can
be fitted to this average covariance function by determining the
AR model with the smallest error with respect to the average
covariance function. This model is completely determined
by the first autocovariances. As a result, this procedure is
equivalent to averaging the firstautocovariances.

Three distinct estimators for the autocovariancecould be
used for averaging: the unbiased sample covariances, the biased
sample covariances, and covariances calculated from the Burg
reflection coefficients. The unbiased sample covariances may

yield an estimate that is not a valid covariance function because
it is not positive definite [11]. The biased sample autocovari-
ances contain the same large bias as the Yule–Walker estimator.
The Burg covariance function is guaranteed to be positive defi-
nite and contains only a small bias. Therefore, the Burg covari-
ance function will be used. Similarly, the correlation function
will be calculated from the Burg reflection coefficients.

In the asymptotic regime, all representations and
used for averaging are equivalent. However, for finite

samples, the various approaches have some distinguishing
properties. The average of parametersis not guaranteed to
yield a stationary model as the average model. The remaining
representations mentioned do result in a stationary model
under all conditions. A comparison of reflection coefficients

and parameters as a representation for averaging showed
that averaging reflection coefficients is more accurate [9]. For
speech processing, a comparison of a wider range of averaging
methods showed that averaging autocovariancesprovides
the most accurate model [16].

A common disadvantage of averaging methods is that the bias
in the estimated parameters is not reduced as a result of aver-
aging. The bias in the parameters is dependent on the number
of observations. Exact results for the bias are difficult to ob-
tain. Approximate results using Taylor expansion for the least-
squares AR estimator show that the biasfor the reflection co-
efficient of an AR(1) process is inversely proportional to the
number of observations per segment[10]

(13)

This bias is called Taylor bias. The bias will increase for
higher model orders and for a greater dynamic range in the spec-
trum. This is proved in [10] for processes of orderequal to
2. For the Burg estimator, no theoretical results have been ob-
tained. However, simulations showed that the bias in the Burg
estimator is similar to the bias in the least-squares estimate [10].

The variance of the estimated parameter for an AR(1) process
is proportional to 1/ . This is reduced by a factor ofas a result
of averaging independent contributions

var (14)

Since the contribution of the bias to an error measure such as
the prediction error PE is given by the square of the bias

(15)

the bias will be negligible with respect to the variance if the
number of segment is small compared with the number of
observations . However, as the number of segments increases,
the variance is reduced, whereas the contribution of the bias will
remain the same. Then, the influence of the bias will become
important. The lack of an exact theoretical description is not
a great problem for the current investigation. It is sufficient to
acknowledge the existence of the Taylor bias and the fact that
averaging does not diminish this bias.

Since the Burg algorithm for segments fits a model to all seg-
ments simultaneously, it is expected that the Taylor biasin



DE WAELE AND BROERSEN: THE BURG ALGORITHM FOR SEGMENTS 2879

this estimate will be small. An expression for the bias incan
be obtained by using a second-order Taylor approximation of the
estimate (9) for [17]. For simplicity of formulae, the analysis
is again restricted to segments of equal length. Each segment’s
contribution to the expectation of the denominator is assumed
to be equal to the signal variance. This is a sufficiently ac-
curate approximation for the current calculation. The resulting
expression for the bias is

cov

var (16)

For independent segments, the (co)variances in this expres-
sion reduce to times the (co)variance in a single segment. As
a result, the bias can be expressed in terms of the bias in a
single segment

cov

cov (17)

Substitution of (13) for yields that the bias is inversely pro-
portional to the total number of observations

(18)

IV. COMPARISON OFAVERAGING METHODS ANDBURG

Burg for segments is compared with the averaging methods in
two simulation experiments. In the first experiment, the two ap-
proaches are compared in an example with a moderate number
of segments. In the second experiment, a very large number of
segments is analyzed to study the bias present in both methods.
Finally, some comments are made regarding the number of com-
putations required for the various methods.

The stationary stochastic process used in these simulations is
generated by an AR(10) process with ten equal reflection coef-
ficients . The value of is varied to generate a range of signals
with different properties. From this signal, an AR(10) model is
estimated with Burg for segments and the averaging methods.
The mean of the signal is considered known. The difference be-
tween the true signal properties and the estimated signal prop-
erties is expressed using the model error ME [18]. The model
error is a normalized version of the one-step-ahead prediction
error PE

ME
PE

(19)

where PE is the expectation of the squared difference between
and the one-step-ahead prediction based on the pre-

vious observations and the estimated model

PE

(20)

TABLE I
COMPARISON OF THEBURG ALGORITHM FOR SEGMENTS(BURG-S) AND THE

AVERAGING METHODS FORS = 10 SEGMENTS OFN = 20 OBSERVATIONS

EACH. THE SIGNAL IS GENERATED BY AN AR(10)-PROCESSCHARACTERIZED

BY THE PARAMETER h. THE MODEL ERRORME WAS AVERAGED OVER 50 000
SIMULATION RUNS FOREACH VALUE OF h

The expectation is the average over all possible realiza-
tions of the process and not the fit to the realization used
for parameter estimation.

The model error contains contributions of both the variance
and the squared bias in a way that is significant for the use of
the models. The behavior of the Burg algorithm can be described
using the finite sample formulae for the prediction error PE [6].
If one uninterrupted measurement is available, the model error
would be approximately equal to the number of parameters 10.

In the first simulation experiment, the various methods have
been compared for segments of observations.
This example is representative for radar processing practice. The
results are given in Table I. The value for the model error calcu-
lated using the finite sample formulae is 14.7. The results for the
new Burg algorithm remain more or less the same for all values
of , whereas the averaging methods deteriorate for large values
of .

As stated before, there are no theoretical results for the bias
in the Burg estimator. However, the bias can be examined in
simulations by taking a very large number of segments. Then,
the variance of the estimates is greatly reduced by averaging,
whereas the bias remains present. In this way, a clear picture
of the bias in the averaging methods is obtained. This has been
done in the second simulation experiment, where the various
methods have been compared for 10 000 segments of
20 observations. The results are given in Table II. The value
for the model error that is calculated using the finite sample
formulae is 14.4.

The Burg algorithm for segments effectively combines the in-
formation in the segments, thus reducing the Taylor bias. The
model error is only a result of the variance of the estimated pa-
rameters as predicted by the finite sample formulae. The aver-
aging methods are biased. For all of the averaging methods, the
bias increases for higher values of. This agrees with the be-
havior of the bias in simple model structures, as described in
[10]. The exact amount of bias depends on the model represen-
tation used for averaging. A comparison of the results of the
two simulation experiments clearly shows that the deterioration
of the averaging methods in the first experiment can be ascribed
to the bias.



2880 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 10, OCTOBER 2000

TABLE II
COMPARISON OF THEBURG ALGORITHM FOR SEGMENTS(BURG-S) AND THE

AVERAGING METHODS FORS = 10 000 SEGMENTS OFN = 20 OBSERVATIONS

EACH. THE SIGNAL IS GENERATED BY AN AR(10)-PROCESSCHARACTERIZED

BY THE PARAMETER h. THE MODEL ERRORME WAS AVERAGED OVER 100
SIMULATION RUNS FOREACH VALUES OFh

It can be concluded that the Burg algorithm for segments pro-
vides more accurate models than any of the averaging methods.
How does it compare with the averaging methods in terms of nu-
merical workload? As remarked in Section II, the calculations
for Burg for segments are very similar to the calculations for
Burg applied to each segment separately. This means that the
computational effort required for averaging methods and Burg
for segments are practically the same. However, averaging co-
variances, correlations, and parameters requires a transforma-
tion of the estimated reflection coefficients to the representa-
tion used for averaging. Therefore, the number of calculations
required for these methods will be somewhat greater. A draw-
back of the Burg algorithm for segments is that exchanging a
single segment for a new segment requires new processing of
all segments. The estimate of the first reflection coefficients will
be different as a result of the new segment. This reflection co-
efficient is used to find the residuals with (4). In this way, the
new segment influences the contribution of all other segments
for subsequent reflection coefficients.

V. CONCLUSIONS

The Burg algorithm for segments effectively combines the
information contained in segments of data. The new weighted
Burg algorithm allows combining segments of different ampli-
tudes. The estimated model is stable under all conditions. The
Burg algorithm for segments has been compared with averaging
methods. The numerical workload is comparable with that of
the averaging methods. With averaging methods, the variance
in the estimated parameters is effectively reduced. However, the
Taylor bias is not diminished. The influence of this bias be-
comes more prominent when the number of segments is large
or when the process under consideration deviates considerably

from white noise. With the Burg algorithm for segments, both
the variance and the bias in the estimated parameters are re-
duced. As a result, the Burg algorithm for segments provides
more accurate models than the averaging methods.
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