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Abstract
Background This research investigates price forecasting for the Dutch intraday electricity market.
Trading volumes on this liberalized and close-to-delivery market have grown considerably as more
variable renewable energy has entered the energy mix. That imposes uncertainties to market partici-
pants and challenges to the balance between supply and demand as long as large-scale storage ismostly
unviable. Intraday trading is often incited by conditions that are unforeseen during day-ahead trad-
ing, which can be more or less drastic from hour to hour. The dynamic of day-ahead prices generally
represents a reasonable indication for the dynamic of intraday prices, although theymight abruptly di-
verge due to many nonlinear and unobservable factors. Complex and risk-introducing characteristics
such as high volatility, negative values, and spikes are typically pronounced in intraday markets and
necessitate reliable price forecasts.

Objective In the field of electricity price forecasting, there is limited attention for the intraday mar-
ket. Research mostly examines point forecasts in single-step-ahead horizons, while multi-step-ahead
horizons and interval forecasts are more applicable in practice as they offer a better foundation to base
trading and/or dispatch schedules on. This research provides benchmark accuracies for forecasting of
an aggregated price of the Dutch intraday market. While single-step-ahead point forecasts for that un-
researched market provide novel insights already, the scope of this research also includes multi-step-
ahead interval forecasts. Within that scope, this research evaluates accuracies attained by artificial
neural network models that—despite their successful application for day-ahead price and other time-
series forecasting—have not been studied extensively for intraday price forecasting. That includes a
multi-output quantile neural network. Finally, this research addresses a nuance that is regularly over-
looked; widely used scoring metrics usually represent merely an indication of overall accuracy that
might not match with what is deemed as superior in practice. Therefore, this research applies fore-
casts in an operational context to provide new insights into the evaluation of superiority.

Methodology A forecasting procedure organizes several stages of in-sample and out-of-sample test-
ing. It is systematic and similar to how forecasting is carried out in practice; the number of arbitrary
choices is kept as low as possible. Initialization on the period from 2016 through 2017 provides insight
into the size of the windows in rolling window estimation and into the selection of Dutch and German
features. Calibration accounts for potentially evolving market conditions and updates the feature and
hyperparameter sets during the out-of-sample rolling window estimation. Accuracies of point and in-
terval (quantile) forecasts from naive, regression, and artificial neural network models are evaluated
on the basis of scoring metrics (rMAE, MAE, MAPE, RMSE, PL, CRPS). Analysis of residual errors indi-
cates whether dynamics of the intraday price are captured adequately. A simulation of a generic system
comprising a battery and a wind turbine smartly dispatches stored energy according to a schedule op-
timized with model predictive control and future information on intraday price and generation. This
research investigates whether the superior forecast leads to a higher profit, or to a different dispatch
schedule altogether.

Conclusion The considered artificial neural network model based on a multilayer perceptron, which
is capable of incorporating nonlinear relationships, provides a superior point forecast in the out-of-
sample test. A similar architecture that is trained on the basis of several quantiles does not outper-
form a quantile regression averaging of the considered point forecasts, however. Relative and absolute
accuracies of all forecasts are shown to vary significantly with the delivery hour and with the price
regime. The year of 2018, with attained rMAEs and CRPSs as low as 0.81 and 3.53, is considerably more
challenging than the year of 2019, with attained rMAEs and CRPSs as low as 0.77 and 2.24, due to high
volatility andmany extreme prices. Results of the simulation demonstrate thatmore accurate forecasts
lead to slightly higher profits, although much of the essential information is captured by all forecasts.
The schedule itself is more sensitive to the price forecast, however, and dispatch frequency and volume
deviate more than 8% when based on different forecasts. Practitioners might take that into account
and not gravitate towards point forecasts merely on the basis of accuracy.
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1 Introduction
Similarly to most major electricity markets in Europe, liberalisation of the Dutch electricity market
started during the 1990s. From that point onward, the supply of electricity was no longer in hands of
a single monopolistic supplier and other parties were able to partake in trading activities by investing
in power plants and transmission lines, for instance. Consumers benefited from a transparent market
with more competitive pricing, among other things, and responsibilities of authorities shifted from
direct planning of supply to design and regulation. Market conditions have gradually turned more un-
certain in such ‘decentralised’ environments, and strategic analyses as well as scenario and risk man-
agement have become crucial factors to market participants in considerations of scheduling. As long
as large-scale energy storage is still mostly infeasible, there remains a fundamental requirement of
constant balance between energy supply and demand to ensure grid stability. That amplifies the need
of efficient matching of orders on day-ahead and intraday markets, where buyers and sellers of energy
enter into contracts close to the time of delivery. Reliable forecasts of the price of those contracts,
among other things, are indispensable for all parties involved in that process.

1.1 Research motivation

In the Netherlands, the ongoing growth of renewables in the energy mix has its origin around the
same time as market liberalization. Initiatives that support the move to a more carbon-neutral energy
mix, now heavily incentivized by political agendas and financial stimuli, flow from the the premise
that it plays a vital role in mitigating dependence on importing energy, and in reducing the effects of
global warming [38]. Generation of variable renewable energy sources, e.g. wind and solar, generally
deviatesmore from generation schedules than that of traditional energy sources. The increased level of
uncertainty that imposes to market participants leads to higher needs to balance portfolios just before
delivery on the intraday market, which allows for continuous trading throughout the day, and up to
5 minutes before delivery. A steep rise of Dutch intraday trading volumes is the result, with repeated
year-on-year growth figures between 30 and 70% during the last five years [23, 24, 25, 26, 27]. It is
not surprising that the vast majority of literature investigates the German market; in 2020, German
trading volumes were 216,221.3 and 63,627.0 GWh on day-ahead and intraday markets respectively,
which represents approx. 45% of the total traded volume on allmajor European day-ahead and intraday
markets [27]. To assess the added value of forecasting approaches it is vital to have access to benchmarks
and to historical data. A body of research where studies investigate the samemarket, which is often the
Germanmarket, is stimulating to both those ends. That does not imply that research on other markets
is unnecessary; smaller and less-studied markets may be able to expose how different conditions such
as market maturity, energy mix, and environmental circumstances affect forecasting. What is more,
discussing results on an unexplored market can set the benchmarks for future work.

The endeavour of forecasting the price of energy contracts has drawn broad academic and commercial
interest. Gaining insight into possible future price realisations, and investigating how to improvemod-
els and modeling approaches to reduce forecast uncertainties has the potential to improve decision-
making of market participants. That might lead to a more stable grid and increased profitability [43].
The price of short-term energy contracts is subject to many complex, nonlinear, and unobservable fac-
tors and exhibits challenging characteristics such as high volatility, negative prices, spikes, and jumps,
that are generally much more pronounced than in other commodity or stock markets [15]. The field
of time series forecasting offers many models and modeling approaches that are often tested exten-
sively and challenged repeatedly over a long period of time. Autoregressive integrated moving average
(ARIMA) models, for instance, are among the traditional models that have been demonstrated to gen-
erally offer dependable forecasts. On the other side of the spectrum are models that are less familiar,
and that are put forward as ‘challengers’. Nowadays, artificial neural networks (ANNs) are often found
in that category. The potential of various types of ANNs have been shown by research, and especially
the multilayer perceptron (MLP) and long short-term memory (LSTM) have been able to live up to the
proposition that ANNs are particularly applicable to highly nonlinear problems in time series forecast-
ing. That is not to say that they offer a ‘holy-grail’ solution to every problem; one should be aware of
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the specific challenges in terms of interpretability and optimisation that should be addressed thought-
fully. Besides the choice of models and optimisation, there are many more considerations regarding
features, out-of-sample testing, and evaluation of forecasts that need to be addressed.

1.2 Problem description

The numerousmodels andmodeling approaches that have been proposed to push performance beyond
that of benchmarks, and the comprehensive frameworks that offer guidelines and best practices [7,
64], demonstrate that electricity price forecasting is an advanced field of research. Nevertheless, the
attention for intraday markets is limited, despite their growing relevance. Many of the methodologies
and recommendations published in the more extensive body of research on day-ahead markets can
be utilized for the intraday market, but differences between the two require distinct approaches. For
one, the continuous trading of most intraday contracts versus the auction-based trading of day-ahead
contracts lead to fundamentally different circumstances regarding data availability.

Inward looking on intraday price forecasting shows that research scopes are often limited to (single-
step-ahead) point forecasts, although recent recommendations note that interval forecasts are an ob-
vious avenue for future work [78, 71]. By giving an indication of forecast uncertainty, interval forecasts
offer a richer and truer representation of reality. In consideration of real-world applicability, broad-
ening the research scope to include interval forecasts, and also assessing to what extent performance
holds up when forecasting in multi-step-ahead horizons might offer profound perspectives that are
novel to intraday price forecasting.

Ideally, gains from forecasts are evaluated in situations where they will actually be used [6]. In many
cases, that is not or not all a possibility, although some reluctance to base conclusions upon accu-
racy is appropriate. Those measures might not fully coincide with financial measures that are used
in operational contexts and thus might fail to address problems that are important to practitioners.
That matter is identified in literature and alternative approaches that consider optimal participation
of power plants are brought forward [85, 67]. Notwithstanding, a lot of research does not acknowledge
any theoretical-practical mismatch at all, and utilizes traditional measures only.

1.3 Research objective

The research objectives rest on forecasted series of the ID3 price index, which contains a single value
per hour in the case of single-step-ahead point forecasting. A forecasting model is trained on T ob-
servations of a target variable y ∈ ℜT and T observations of F explanatory variables X ∈ ℜT×F to
approximate the relationship between them. Subsequently, that model can be exploited (alias tested)
with observations of explanatory variables only, to forecast the target variable.

Training and testing is systematically performed, and parameters are re-adjusted continually. Explana-
tory variables are historical (and future) price variables as well as exogenous variables. The reduced
candidate set contains all explanatory variables that partake in the forecasting procedure, and is the
result of converting raw data to a candidate set of features and assessing how it can be reduced in size
at little or no cost to accuracy.

In consideration of the limited research and increasing intraday trading volumes on intraday markets
in general, there is the opportunity to investigate components that constitute a systematic forecasting
procedure. Furthermore, due to the lack of research on theDutch intradaymarket, there are opportuni-
ties to establish benchmark accuracies. The research objective is to evaluate forecasts of an aggregated
price for the Dutch intraday market from naive, regression, and ANN models. To push the boundaries
of the current body of research, not only point forecasting but also interval forecasting is investigated,
in single- and multi-step-ahead horizons. A systematic forecasting procedure ensures that there are a
limited number of arbitrary choices and that “what is considered optimal” is reconsidered repeatedly.
To assess whether theoretical superiority coincides with practical superiority, forecasts are evaluated
on the basis of accuracy as well as on the basis of profit when deployed in an operational context. Re-
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search questions direct this research to measurable findings that contribute to the field of electricity
price forecasting (EPF).

As there is no literature to directly compare results with, it is necessary that this research establishes
accuracies for relatively simple, linear models.

Research question 1 What accuracies do naive and regression models of varying complexity attain on
the task of point and interval forecasting of an aggregated price in single- and multi-step-ahead horizons?

Findings in literature demonstrate that ANNs models that are capable to learn nonlinear relationships
attain high accuracies in other (similar) markets. They might thus be able to provide more accurate
forecasts than the naive and regression models. This research investigates two such models, and ad-
dresses the complexities in training.

Research question 2 What accuracies do ANNmodels, including those withMLP and GRU architectures,
attain on the task of point and interval forecasting of an aggregated price in single- and multi-step-ahead
horizons?—Are their forecasts superior to those from naive and regression models?

Finally, forecasts are deployed in an operational context to assess whether theoretically-found superi-
ority coincides with practically-found superiority.

Research question 3 Does theoretical superiority of forecasts coincide with practical superiority, such
that more accurate forecasts lead to more profitable dispatch schedules in a generic simulation of an energy
plant with storage capacity?

1.4 Report outline

Chapter 2 illustrates the relevance and complexity of intraday markets through recent developments
and price characteristics. Chapter 3 explicitly states the procedures from raw data to a candidate fea-
ture set. Chapter 4 introduces the approach to point forecasting, and presents point forecastingmodels
in three distinct categories. Chapter 5 has a similar structure, but for interval forecasting. Chapter 6
describes the procedure of forecasting, specifically of initialization, calibration, and exploitation, and
explains how three intricacies are incorporated. Chapter 7 discusses results of the forecasting proce-
dure with special attention to the performance across the various models and intricacies. Chapter 8
establishes a case study where the dispatch of energy from a power plant with storage capacity is opti-
mized in a framework of model predictive control, and Chapter 9 presents results. Chapter 10 presents
conclusions, and finally Chapter 11 offers a discussion, that includes several avenues for future research
and limitations of this research.
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2 Intraday markets: Growing relevance and complexity
This chapter demonstrates the growing importance of the intraday market, and of intraday price forecasting.
It is concluded that in the Netherlands, there is a strong growth of variable renewable energy in consumption
and production in an otherwise mostly constant energy mix. That growth is expected to persevere. Uncertain
schedules of variable renewable energy sources introduce uncertainty on energy markets, and thus higher
volumes are traded on the intraday market than before. Energy trading is thus shifting closer to delivery and
the difference between volumes on day-ahead markets and intraday markets is shrinking every year. Dutch
intraday price has complex characteristics such as seasonality, spikes, and negative values. A distribution
with a high degree of skewness and kurtosis and that is inconsistent from year to year is the result.

2.1 Short-term trading and forecasting

The volatility and uncertainty that is inherent to variable renewable energy can have serious impact
on the trading of energy. For one, their almost zero marginal cost and therefore relatively low market
value can send day-ahead prices down considerably whenever their production becomes available. In
addition to that, they generally increase the need to adjust day-ahead positions on intraday and imbal-
ance markets [68]. Since the 1990s, variable renewable energy sources have become a more significant
part in energy mixes around the world, and their share is only expected to increase further for the
foreseeable future. The growth of variable renewable energy in the Netherlands becomes particularly
evident from the severe growth of solar and wind energy during the twenty years prior to 2020; from
a 0.8 to a 13.9% share in production and from a 0.2 to a 4.2% share in consumption. The shares in the
Netherlands are currently about half of those in Germany, which has undergone an even more severe
growth of solar and wind energy during this period; from a 1.0 to 28.5% share in production and from
a 0.4 to an 11.8% share in consumption. From the energy mixes of production and consumption in the
Netherlands, shown in Figure 1, it becomes apparent that solar and wind have been steadily growing
within an otherwise mostly constant landscape.
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Figure 1: Energy production and consumption in the Netherlands by energy source. Production (line) and consumption (dash).
Data from BP [13].

The growth of variable renewable energy in supply is a major factor that has urged the move towards
trading closer to delivery and thus the move towards trading on the intraday market. Figure 2 shows
the growth of intraday volumes for the Netherlands and for Germany. In addition, there is a move
towards trading closer to delivery within the intraday market; in 2019 for instance, the German market
saw 30% of the total hourly intraday volume traded within one hour before delivery while that was only
12% in 2012.

For successful integration of variable renewable energy sources into the energy system, it is crucial
that market players have access to forecasts of the primary elements of energy markets. The price
of energy on the short-term markets, as well as load and generation, are elements that literature is
concerned with most. The possible future realisations of these elements can then be used in a form of
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Figure 2: Energy volumes traded on the Dutch and German intraday and day-ahead markets. Data from EEX [22, 23, 24, 25, 26].

optimization. Typical examples of such “predict-then-optimize” frameworks are found in the design
and optimization of dispatch strategies for renewable generators [61].

2.2 Intraday market dynamics

Because trading volumes on the intraday market have risen considerably, it has become a more suit-
able place for parties to mitigate deviations from earlier accepted contracts. Still, actual supply might
deviate from planned schedules even after intraday adjustments and thus real-time balancing by sys-
tem operators has not become redundant. However, there is a shrinking amount of deviations settled
on the balancing market as market players become better at adjusting their schedules on the intraday
market, in spite of the growing uncertainty due to variable renewable energy [93]. Overall, the pur-
pose of the intraday market to limit severe shortfalls or surpluses seems to be fulfilled. What is more,
the interplay of the three major energy markets, and how it has shifted over time, demonstrates the
relevance of this market as well as of adequate price forecasts.

The intraday and day-ahead markets differ in terms of product opening and closing times. What is
more, the pricing mechanism of these two markets are fundamentally different. On the intraday mar-
ket, bid and ask orders placed for a certain product enter that product’s limit order book. A limit order
enters with a specified price and can match fully or partially with an opposing order, or remains in the
order book without a match. A market order gets matched instantly with the best opposing order. Due
to the “pay-as-bid” pricing mechanism of the continuous intraday market, orders for the same product,
that potentially enter the order book at almost the same point in time, can lead to contracts of very dif-
ferent prices [73]. There is a stark contrast with the pricing mechanism of the auction-based day-ahead
market, that makes use of a market clearing price (MCP); the price of the last accepted contract for a
product becomes the price for all contracts on that product.

A number of observations regarding trading behaviour can be done upon examination of the contracts
that were accepted for all products on an arbitrarily chosen day in the past, shown in Figure A.1. In
this particular subset, 80, 50, and 4% of all contracts were accepted no earlier than 4 hours, 2 hours,
and 1 hour before delivery. There were slightly less contracts that were accepted extremely close to
delivery than on an average day, as evaluated on the whole period these figures become 76, 47, and
6%. What generally holds true is that most high-volume contracts are accepted many hours before
delivery. Something that also regularly occurs are multiple contracts for different products, of equal
or varying volume, that are accepted at exactly the same time. An example of this occurring in Figure
A.1 are three transactions just before 06:00 for the products with delivery at 12:00, 13:00, and 14:00.
A possible explanation is that parties determine their position for multiple products at a certain time
before algorithmically placing bids or asks on all products at once. Extreme price variation between
contracts can be observed; on this day, there were a total of 7 occurrences where the price of two
contracts, that were for the same product and were accepted within 10 seconds of each other, differed
more than 25%.
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Unlike how the day-ahead market has an MCP for all products, the continuous intraday market has
no naturally occurring and uniquely defined price for each product. Therefore, EPEX has introduced
several intraday price indices: the ID1; the ID3; and the IDFull. These indices represent the volume-
weighted average price of all continuous trades for a product within respectively one hour, three hours,
or all hours before delivery of the product, respectively. Given a set Tt =

−3.25
−3Tt(td), that contains all

transactions for a product with time of delivery td in the time window from 3 hours to 15 minutes
before td. The ID3 index represents the volume-weighted average price of all transactions k ∈ Tt, and
is calculated by

ID3d,h =

(∑
k∈Tt

vk

)−1 ∑
k∈Tt

vkpk (1)

where vk is the volume and pk is the price of transaction k. This research is concerned with forecasting
the price of the ID3 index (alias ID3 price), although it is noted that the price of individual transactions
may vary considerably [52]. That holds true even within the 4-hour window before delivery, as demon-
strated by the trades shown in Figure A.1. Figure 3 shows the deviation between the price of individual
transactions and the ID3 price, i.e. pk − ID3d,h for k ∈ Td,h. Color represents the number of observa-
tions within a bin. Deviation is especially obvious for products with delivery from 15:00 through 23:00,
and prices of transactions are distributed rather uniformly around the ID3 price. Deviations of 5 to 10
€/MWh are not uncommon. Prices of transactions for products with delivery at night are relatively
more concentrated around the ID3 price.

Although the Dutch ID3 index does not represent the price of all intraday transactions, Figure 3 shows
that it at least represents the price of most transactions such that the ID3 price is considered as an
adequate indication of individual transactions. Forecasting the price of individual transactions adds
many complexities that lie outside the scope of this research. Similarly to earlier research [99, 71], this
research employs a time of forecasting that is four hours earlier than the time of delivery, i.e. tf = td−4.
The forecast is thus provided well before the start of the ID3 window, so that the practitioner has
enough time to exploit the forecast and also has a high probability to settle on a satisfactory price that
could be the ID3 price.
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Figure 3: Deviation between the price of individual transactions and the ID3 price. Color represents number of observations.
2015–2020. Data from EEX [28].

Empirical distribution Time series analysis is concerned with many distributional assumptions. Fig-
ure 4 shows the empirical distribution of the ID3 series and Table B.1 shows the main statistical prop-
erties. The distribution is clearly asymmetric (skewness much greater than 0), and it has heavier tails
than the fitted normal distribution (kurtosis much greater than 3). In practice, that is reflected by an
unequal spread of observations around the empirical mean and by more and/or more extreme out-
liers than when observations would be drawn from a Gaussian distribution with the same mean and
standard deviation. Figure B.1 shows the distribution for the German ID3 series. The German price
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distribution has lower skewness and kurtosis, and is thus more accurately approximated by a normal
distribution than the Dutch price distribution.
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Figure 4: Empirical distribution of the Dutch ID3 index. Color represents density. 2015–2020. Data from EEX [28].

The empirical distribution that is found for thewhole periodmight not be representative for all periods
that it comprises. For instance, periods of tightness between demand and supply, or of severe errors in
load and generation forecasts, might lead to considerably deviant distributions [114]. What is more, the
distribution might change as the market evolves over the years. To confirm whether the aggregated
distribution shown in Figure 4 is representative, the empirical distributions for individual years are
examined. Figure 5 shows that the distribution varies considerably from year to year. Particularly
remarkable is that 2019 is more symmetrical than other years, that 2018 has far more occurrences of
high prices, and that 2016 and 2020 have far more occurrences of low prices. In 2015, 2018, and 2020
prices are less concentrated than in other years. Figure B.2 shows the distributions for the German
ID3 series. For all considered years, the German price distributions are similar to the Dutch price
distributions. This result suggests that systematically lower or higher prices observed on a yearly scale
are due to effects that transcend national markets.

Particularly 2018 and 2019 are important for later stages of this research, as forecasts are evaluated
from an out-of-sample test of that period. While intraday price seems to be rather temperate for 2019,
it is far more extreme for 2018. That year saw an increase in electricity prices across Europe that was
especially severe for the Netherlands, which is explained mostly due to increases of carbon emission
allowances [25]. In 2020, the social distancing rules that were introduced in reaction to the COVID-19
pandemic led to a deeply rooted imbalance between supply and demand due to an abrupt global decline
in power consumption [27].
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Figure 5: Empirical distribution of the Dutch ID3 index as function of year. Data from EEX [28].

To further explore temporal variations in statistical properties, Figure 6 shows the kernel density esti-
mates when individually calculated for the hours of a day. Color indicates density. It can be seen that
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values are dispersed for all hours, although certainly to a higher extent during the day (from 06:00
through 18:00). Not only lower values, but also a more concentrated distribution is generally observed
during the night. Figure B.3 shows the kernel density estimates for the German ID3 series. German
prices are more concentrated than Dutch prices, and the difference between higher and lower prices
is more pronounced.
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Figure 6: Kernel density estimates of the Dutch ID3 index as function of delivery time. 2015–2020. Data from EEX [28].

2.3 Price characteristics

It is important that a number of challenging characteristics that spot prices have are dealt with. That
includes mean reversion, high volatility, seasonality, spikes, and negative values. What follows is a
short evaluation of these characteristics for the Dutch energy market.

Mean reversion While the prices of many other commodities evolve mostly unconstrained, the price
of energy gravitates around production costs. Although short-term price movements may diverge,
prices generally tend to revert to production cost levels [15]. Moreover, demand is highly influenced by
economic activity and by environmental conditions that are subject to mean reversion themselves [87].
It is not surprising therefore, that the mean reversion process is often used as basis for energy price
simulation [15, 75, 55].

Seasonality A prominent characteristic of intraday price is the existence of seasonal effects. Repeat-
ing patterns can therefore be observed on daily and weekly timescales, which arise from calendar-
dependent patterns that are naturally present in supply and demand. Autocorrelation finds the
strength of the linear relationship between a series and its lagged series, and can therefore give in-
sight into such repeating patterns. The autocorrelation shown in Figure 7 shows local maxima at every
24-hour multiple, which suggests a diurnal cycle. What is more, the local maxima at every 168-hour
multiple are especially obvious, which suggests weekly seasonality. When there is a significant corre-
lation with lag i, and lags i and j are also correlated, then autocorrelation might also find a significant
correlation with lag j although there might not be a significant correlation. For this reason, Figure 7
also shows partial autocorrelation, which demonstrates that correlations with the 1-, 2-, and 4-hour
lags are strong, while all others—including those with the 24- and 168-hour lags—are much weaker.
Figure B.4 shows the autocorrelation and partial autocorrelation for the German ID3 series. The cor-
relations are very similar, although the variation between relatively strong and weak correlations are
slightly more obvious for the German prices. The lags that are 24-hour multiples have similar corre-
lations for Dutch and German prices, but the lags that lie in between have stronger correlations in the
Dutch price series than in the German price series.

To further demonstrate seasonal effects, Figure B.8 shows the mean of the ID3 series evaluated on
different timescales. On an hourly scale, Figure B.8a shows that prices reach high values in themorning
at 08:00 and in the evening at 18:00, and low values at night at 02:00. This coincides with the peak
and base loads during the day. On a daily scale, Figure B.8b shows that prices reach high values at
the start of the work-week, especially on Tuesdays, and continuously decrease towards and during the
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Figure 7: Autocorrelation and partial autocorrelation of the Dutch ID3 index. Coefficients that are within the 95% confidence
interval are a lighter shade.

weekend. Finally, on a monthly scale, Figure B.8d shows that intraday prices reach higher values in
Winter months, especially from November till January, and reach lower values during the months of
spring. These seasonal effects seem to be comparable to what has been found in literature for similar
markets [66]. The whiskers in Figure B.8 represent the 95% and 50% quantile range. They are wide,
which indicates that price variability is high.

Extreme prices Figure 8 shows a normality test for the period from 2015 through 2020. A normally
distributed series is represented by a straight line. It is evident from the tails of the empirical distribu-
tion that extreme prices have a much higher probability of occurring than when assuming a Gaussian
distribution. Especially at the side of high prices, the empirical distribution starts to considerably de-
viate from a Gaussian distribution at about 100 €/MWh.
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Figure 8: Normality test for the Dutch ID3 index. 2015–2020. Data from EEX [28].

A characteristic of energy prices that contributes to this effect is the occurrence of many spikes. There
is no absolute consensus about their definition, although they are a major factor contributing to the
complexity of the series. Traditional mean-reverting jump-diffusion models intuitively model the
smooth variation in price and jumps in price. Spikes further complicate such models. As the reversion
rate and jump intensity, generally assumed to be constant, can be extremely high for spike periods and
are generally much lower for non-spike periods, regime-switching approaches might be necessary [12,
55].

Many approaches for labeling these short-lived yet extreme observations are put forward in literature,
ranging from simple thresholds such as thresholds at fixed price to more sophisticated thresholds such
as thresholds at matching kurtosis [51]. Regardless of what approach is favourable all things considered,
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treating a price series with any validated threshold approach will generally lead to a price series that is
significantly favorable to work with, compared to the original price series [51].

Figure 9 shows for the period from 2015 through 2020, the labeling of 414 occurrences of extreme price
with thresholds at fixed price. Dots indicate prices with an absolute value above 100 and a vertical line
indicates the first of consecutive occurrences. Figure B.6 shows the occurrence of extreme prices for
the German ID3 series. During all years, extreme prices were slightly less pronounced for the German
market, with a total of 193 occurrences. Occurrences where high or low prices are reached steadily—
without any extreme jumps—might be more explainable than true price spikes characterized by more
instantaneous jumps.
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Figure 9: Occurrence of extreme prices in the Dutch ID3 index. Data from EEX [28].

Negative prices In markets that demand a considerable amount of rebalancing close to delivery, grid
operators may be forced to occasionally offer prices that are negative to achieve market clearing. That
might happen when, for instance, low demand goes alongside unforeseen surges in supply due to un-
planned generation from variable renewable energy sources [75]. Contracts with negative prices are
not completely uncommon on intraday markets, and are large enough in number and magnitude to
push aggregated prices, including the ID3 index, to negative values as well.

Figure 10 shows for the period from 2015 through 2020 a total of 161 occurrences of negative prices
in the ID3 index. Aggregating all consecutive negative occurrences results in a total of 31 periods, and
the vertical lines indicate the start of each period. The vast majority of negative prices occurred in
in 2020, with 133 observations in 21 periods. Similar surges of negative prices were observed across
European markets at the time, induced by major imbalances due to COVID-19 restrictions [27]. Figure
B.7 shows the occurrence of negative prices for the German ID3 series. During all years, negative prices
occurred extremely more often in the German ID3 index, with a total of 1180 occurrences and 344 in
2020, which might suggest that more aggressive rebalancing is necessary for the German market. A
factor that might contribute to that effect is that the German energy mix contains considerably more
renewable energy. Because of the higher occurrence of negative prices, the German ID3 index is more
symmetrically distributed, which is reflected in the normality test shown in Figure B.5.
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Figure 10: Occurrence of negative prices in in the Dutch ID3 index. Data from EEX [28].
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3 Data and feature engineering
This chapter presents what types of raw data are available and explains how they are transformed into features
in the categories price, calendar, generation, load, and weather. It is concluded that besides a number of base
features, many other features should be considered that arise from lags/leads or from market integration. It
is concluded that German features should be considered in the full feature set. It is concluded that features
should be scaled so that they all have a similar scale. It is concluded that this research should investigate
the effects of scaling by means of standardization or normalization, as EPF research provides no preference
towards either one. It is concluded that the full feature set should be reduced in size. To that end, this research
utilizes a RF regression within a framework of recursive feature elimination to eliminate redundant features
from the full feature set.

3.1 Raw data

An increasing amount of high-resolution data regarding energymarkets and environmental conditions
is available to practitioners. The European Network of Transmission System Operators for Electricity
(ENTSO-E), for instance, sustains the ‘Transparency Platform’, which is part of an ambition to advance
the transparent sharing of data with market participants. The platform holds data on the energy mar-
ket including actual and forecasted load and generation that is hourly or intra-hourly, and updated
daily. In addition, there are parties that offer data commercially. Among those is EEX, that offers sub-
scription access to price data of all the European energy markets that they (EPEX SPOT) operate. For
this research, ENTSO-E and EEX are the main sources of raw data. Table 1 shows details. All data is
retrieved for the period from 2015.07 through 2021.07.

Ind. Type Resolution NL DE Source Public
Rp1 Transactions ID Continuous • EEX [28]
Rp2 Price ID (ID3) Hourly • Energy Charts [29] •
Rp3 Price DA (MCP) Hourly • • EEX [28]
Rg1 Generation* actual Hourly • • ENTSO-E [30] •
Rg2 Generation forecast DA Hourly • • ENTSO-E [30] •
Rg3 Generation forecast ID Hourly • ENTSO-E [30] •

Rl1 Load actual Hourly • • ENTSO-E [30] •
Rl2 Load forecast DA Hourly • • ENTSO-E [30] •

Table 1: Raw data

An abundance of data does not mean that forecasting becomes trivial; there remains the need to care-
fully engineer explanatory variables (alias features) to prevent over-fitting and to accurately capture
the target value [79]. What is more, features added to an already well-functioning model might not
increase—ormight decrease—performance, and the computational burden of adding explanatory vari-
ables can be substantial. Assessing the relevance of features in the full feature set is thus crucial.

3.2 Full feature set

Motivated by literature, various features are included in the full feature set FF . The set, shown in
Table 2, contains features that originate from 28 unique time-series and are assigned into one of five
categories. Most features are the result of basic computations on the raw data of Table 1. Whereas raw
data can come in any resolution and form, a featuremust have a single value per pre-defined time-step,
which is equal to one hour in this research.

Two concepts that this research employs to establish the full feature set are lags/leads and market in-
tegration. Utilizing lags/leads in time-series analysis amounts to creating many features from a single
time-series, where instances are shifted forward/backward in time. Market integration in time-series
analysis amounts to using features from a different market than the target market. This has been
shown to improve forecasting performance when dynamics of the considered markets are related [63,
103]. Many features in the full feature set are lags/leads, and many have both Dutch (NL) and German
(DE) variants.
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Ind. Time-series Lags/Leads Raw NL DE No.
Fp1 Price ID (ID3) {td − 168, td − 48} & [td − 24, tf ] Rp1, Rp2 • • 23
· · · · · · [td − 24, tf ] · · · · · · · · · · · ·
Fp2 Price ID (ID3) avg. (last week) Rp1, Rp2 • • 1
Fp3 Price ID (ID3) avg. [tf − 24, tf ] Rp1, Rp2 • • 1
Fp4 Price ID (ID3) avg. [tf − 168, tf ] Rp1, Rp2 • • 1
Fp5 Price ID (ID3) avg. [tf − 5040, tf ] Rp1, Rp2 • • 1
Fp2 Price DA (MCP) {td − 168, td − 48} & [td − 24, tf + 12]* Rp3 • • 36
· · · · · · [td − 24, tf + 12]* · · · · · · · · · · · ·
Fp7 Price DA (MCP) avg. (last week) Rp3 • • 1
Fp8 Price DA (MCP) avg. [tf − 24, tf − 1] Rp3 • • 1
Fp9 Price DA (MCP) avg. [tf − 168, tf − 1] Rp3 • • 1
Fp10 Price DA (MCP) avg. [tf − 5040, tf − 1] Rp3 • • 1
Fc1 Hour of day • 2
Fc2 Day of week • 2
Fc3 Month of year • 2
Fc4 Day of year • 2
Fg1 Generation actual [td − 24, tf − 1] Rg1 • • 21∗3
Fg2 Generation forecast DA [td − 24, tf + 5] Rg2 • • 37∗3
Fg3 Generation forecast ID [td − 24, tf ] Rg3 • 37∗3
Fg4 Generation error DA [td − 24, tf − 1] Rg1, Rg2 • • 21∗3
Fg5 Generation error ID [td − 24, tf − 1] Rg1, Rg3 • 21∗3
Fl1 Load actual [td − 24, tf ] Rl1 • • 21
Fl2 Load forecast DA [td − 24, tf + 12] Rl2 • • 37
Fl3 Load error DA [td − 24, tf − 1] Rl1, Rl2 • • 21

Table 2: Full feature set FF

What follows is a description of how the features that represent intraday price are calculated. Appendix
D explains the conversions from raw data to all other features in detail.

Because no historical data of the Dutch ID3 index is available, Fp1 requires manual calculation of the
volume-weighted average of individual transactions. Following Equation 1 and the rules given in the
official definition [31], the ID3 index is calculated from the transactions in Rp1, taking into account

• that the value of the ID3 index is the volume-weighted average price of transactions in the period
from 180 to 5 minutes before delivery;

• that cross-border transactions are included;
• that transactions where the bid and ask are from the same party (i.e. self-transactions) are not

included;
• and that ID3d,h = IDFulld,h in the case that the total volume of transactions within that period

does not reach 10MW.

The German ID3 index is available in Rp2 and thus requires no manual calculations. The features con-
tained in Fp1 are the lags of one week ago and of two days ago {td − 168, td − 48} and all lags from one
day ago through the time of forecasting [td − 24, tf ].

3.2.1 Correlation

Figure E.1 shows the correlation coefficients of the features considered in the full feature set with lag
-4. What follows are the most noteworthy correlations. There is a strong positive correlation of the
Dutch intraday price with the non-lagged, and 4-hour lagged intraday price of the Dutch and German
intraday and day-ahead markets, which demonstrates that price dynamics of these four markets are
connected to a substantial degree. Moving on beyond features of price, there is a reasonably strong
positive correlation of the Dutch intraday price with the forecasted load as well as with the actual load.
Naturally, the correlation of (NL, ID3, 0) with (NL, LOAD_A, 0) is higher than with (NL, LOAD_A, -4), al-
though it is still considerable. That holds true for all variables of which the 4 hour lagged version is the
most up-to-date version that can be employed. There is a strong correlation between solar generation
and the hour of the day, as well as a reasonably strong correlation between solar and wind generation
and month of the year. There are weak correlations between intraday price and renewable generation.
However, they might become stronger as renewable generation continues to grow in the energy mix.
There are strong positive and negative correlations between exogenous variables, which are not dis-
cussed here. It demonstrates that when employing all features of the full feature set, a lot of the same
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information enters the system. A sophisticated selection of features might be able to capture close to
all information with less features.

3.2.2 Transformation

Transformation of the full feature set amounts to scaling and spike reduction. Appendix C contains
some background.

Scaling When features have very dissimilar orders of magnitude, models might give more impor-
tance to certain features for no reason other than magnitude. Therefore, the full feature set is scaled
so that the orders of magnitude of all features are similar. Although neither the field of research nor
the utilised features of [91] match that of this research, it demonstrates that the optimal scaling ap-
proach can vary considerably for different models. To the best knowledge of the author, EPF literature
lacks a comparison of scaling approaches. This research considers the widely used standardization and
normalization, and utilizes the scaling that leads to optimal results.

Spikes The technique of thresholds at absolute value change is employed to reduce spikes, where the
threshold lies at a value of the interquartile range above and below the previous observation. It is not an
option to simply eliminate these points as that would introduce discontinuities in the series. Instead,
spikes may be replaced by a value that is based on the value of the threshold [90], or on the value(s)
of neighboring points [106, 34, 108], for instance. Considerations to somewhat preserve abnormal
conditions in training can justify reducing the magnitude of a spike, instead of denying its existence
entirely by concealing it between ‘normal’ values [90]. Therefore, this research employs an approach
where an identified spike is replaced by the threshold value.

3.3 Candidate feature set

Feature selection is an integral part of price forecasting, and the importance of properly selecting and
limiting the number of input features is undisputed in recent literature. Appendix C contains some
background. Feature selection is often unsystematic, however, or relies heavily on expert knowledge,
or is wrongfully of a linear nature [103, 94]. As a result, research is often based on feature sets where
many lags have been removed with little or no justification. Evaluations of such extensive feature sets
such as that shown in Table 3 are thus rarely found, although they do exist [59, 2].

This research employs a recursive feature elimination, which is a wrapper-based approach that
amounts to repeatedly selecting a feature subset, fitting observations on amodel, and reducing the sub-
set based on an evaluation of accuracy. Wrapper-based approaches are capable of evaluating features
jointly to infer relative usefulness and are thus equipped to take feature interaction into consideration.
In addition, the thoroughness by which wrapper-based approaches considermany subsetsmakes them
capable of finding an optimal candidate feature set. For that initial stage of feature selection, where
there is no need for repeated execution and it is the aim to find an optimal set of features, such an
approach is particularly suitable and the high computational cost is justified.
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4 Point forecasting
This chapter formalizes point forecasts as single-value estimations of future values. Accuracies of point fore-
casts are evaluated by means of scoring functions. The rMAE is employed so that forecasts can be evaluated
across problems. The sMAPE as well as the MAE and RMSE, that differently penalize outliers, accompany
the rMAE, as they are often used in other EPF research and provide slightly different notions of accuracy. It
is concluded that the (conditional) GW test should be employed to assess statistical significance of forecast
superiority, as it indicates which model is estimated to attain higher accuracies in a real time forecasting
application more reliably than the (unconditional) DM test. Naive models, regression models, and artificial
neural network models for point forecasting are proposed, that vary in terms of complexity and in terms of
capability to learn nonlinear relationships.

As a representation of future outcomes that are inherently uncertain, single-value (alias point) fore-
casts are always a simplified representation of reality. Nevertheless, point forecasts underlie decision-
making in many practices and within many fields, and are not simply put aside by more information-
laden representations, whenever they are available [39].

Assumed is a relationship between the target variable y and the explanatory variables X , represented
by y = f(X) + ϵ. Approximation of that relationship is a problem addressed in literature, where
fundamental models are proposed that, for instance, simulate the market clearing [72]. However, just
like the majority of literature, the research is not troubled by naivety in that respect. The intention is
rather that given explanatory variablesX , a forecasted series ŷ is calculated that is as close as possible
to the corresponding realized series y, i.e. ŷ = f̂(X) ≈ y.

4.1 Evaluation

4.1.1 Scoring metrics

A scoring function S is a formalization of what an accurate forecast is. Although many scoring func-
tions are proposed in literature, the squared error S(a, b) = (a− b)2, absolute error S(a, b) = |(a− b)|,
absolute percentage error S(a, b) = |(a − b)/b|, and relative error S(a, b) = |(a − b)/a| are employed
most often for evaluation in in the field of EPF.

Given a series of T forecasted values of a target variable ŷ = {ŷ1, . . . , ŷT } and the corresponding
series of T realized values of that target variable y = {y1, . . . , yT }. It is common practice to represent
the ‘accuracy’ of the point-forecasted series as a single value by means of the average score S̄ over all
observations, i.e.

S̄(y, ŷ) =
1

T

T∑
t=1

S(yt, ŷt) (2)

Optimization inmost supervised learning is achieved by tuning parameters based on theminimization
of that score. Properties that vary for different scoring functions might encourage practitioners to
employ certain scoring functions, some of which are addressed in Appendix F. It is not somuch that for
every problem, there exists a scoring function that is clearlymore suitable than all others; practitioners
should instead be aware of the biases that scoring functionsmight impose on the solution of a problem,
and should motivate choices accordingly. For the field of EPF, where published results and drawn
conclusions are often based on absolute scoring functions, [64] suggests that it should become the
norm to employ the relative mean absolute error (rMAE) (alias mean relative absolute error), which
normalizes the MAE score to what a reference forecast ŷ∗ achieves, i.e.

rMAE(y, ŷ, ŷ∗) :=
1

T

T∑
i=t

|yt − ŷt|
|yt − ŷ∗t |

(3)

When the rMAE is at least included in evaluation, accuracy can be more easily compared across prob-
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lems. To the best knowledge of the author, intraday price forecasting literature has not (yet) employed
the rMAE scoring function. Therefore, the research employs themean absolute error (MAE), rootmean
square error (RMSE), and symmetricmean absolute percentage error (sMAPE) to accompany the rMAE.
The MAE and RMSE are used widely and often exclusively in EPF and intraday price forecasting [78,
52, 71]. Like the rMAE, the sMAPE normalizes the score, such that evaluation of accuracy can be more
easily compared across problems..

Designing models to perform particularly well in the tails of the distribution is not within the scope of
the research. Literature demonstrates that models intended for extreme events should be specifically
trained for that task, and are oftenmerely a companion to more generally trainedmodels [47, 104]. For
that reason, this research optimizes based on minimization of the MAE, as it scores proportionally, in
contrast to the RMSE.

4.1.2 Statistical tests

Superiority Practitioners that have access to two or many forecasts from multiple forecast models
are necessitated to assess whether and when to exploit available models. For evaluation of inter-model
accuracy, conclusions regarding superiority that are drawn based on testing scores alone lack a proper
foundation whether there is any statistical significance, which makes them incomplete and thus un-
satisfying [18]. Hence, a number of statistical significance tests have emerged that can complement the
scores to ascertain whether superiority can be considered as anything other than a lucky performance.

The Diebold-Mariano (DM) test, introduced in [19], is a statistical test that is often used to that end
as it represents the last-presented methodology of most EPF and intraday EPF research [52, 99, 78].
The main intention put forward in [19] includes the evaluation of forecasts, but the succeeding twenty
years of literature shows that DM-type tests are often “unfortunately” employed for comparingmodels
in pseudo-out-of-sample environments as well—while more effective methods exist [18].

DM tests are asymptotic Z-tests of a null hypothesis that themean of the loss differential series is zero,
i.e.

H0 : E
(
∆A,B

t

)
= E

(
S(yt, ŷ

A
t )− S(yt, ŷ

B
t )
)
= 0 (4)

where S(·) is a scoring function such as the squared error or absolute error. Thus, DM tests test a
hypothesis by means of the parameters of the whole group, βA and βB . Hence, DM tests are uncon-
ditional; there is consideration for the forecast accuracy within the period of evaluation, but there is
no consideration for the expected forecast accuracy in the future. A DM test might therefore favor
a forecast from a model with many coefficients above a forecast from a model with only some, even
in the case that most coefficients are small and their estimates have enormous sampling variation in
finite samples [16]. As practitioners may very well favor the simpler model in such a case, DM tests
might point to impractical and thus undesirable conclusions.

The Giacomini-White (GW) test, introduced in [37], addresses that unconditional attribute, among
other things, as it tests a hypothesis by means of estimates of the parameters of the whole group
based on information up to time t, β̂A

t and β̂B
t [84]. As the accuracies of testing and future forecasting

depend on the same parameters, that is a better indicator of future performance. For that reason, the
research employs a GW test to assess superiority. A GW test comprises regressions of the difference
in the absolute forecast error from competing models over its lag and a constant, i.e.

∆A,B
i = α+ β ·∆A,B

i−1 + ϵi (5)

It tests the null hypothesis that the competing forecasts have equal conditional predictive ability. Sim-
ply put, forecast A is favored above forecast B if the forecasted value of the error gap between the two
forecasts is non-zero or exceeds a given threshold [32], i.e.

H0 : α+ β ·∆A,B
i−1 = 0 (6)
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Residuals The error between the forecasted and realized values (alias residuals) ϵ = ŷ − y provides
insight in the adequacy of a forecast to capture the characteristics of the target variable. An indication
that the vector of forecasted values ŷ = {ŷ1, . . . , ŷT } captures the information contained in the realized
values y adequately, is when the residuals vector ϵ resembles white noise. It can thus be validated
whether ϵ has an expected value of zero; whether its variance is constant over time; whether its values
are uncorrelated in time; and whether its values are normally distributed.

The characteristics of residuals are often overlooked, despite the fact that they can indicate when fore-
casts are unable to capture the characteristics of the original time series fully, and thus inherit charac-
teristics of the original time series [5]. Analysis of residuals ismostly ignored in EPF, although there are
examples where it is utilized to evaluate price forecasts of the day-aheadmarket [53, 109]. This research
provides the results of four concise statistical tests to assess whether the four desired characteristics
are attained by point forecasting.

4.2 Models

This section presents the considered naive, regression, and ANN point forecasting models, and shortly
describes how they obtain forecasts. What values are considered for the hyperparameters is included
in Appendix H. The aim of this research is not to find the forecast or model that attains the absolute
highest accuracy of the Dutch intraday price. Therefore, this research does not provide an exhaustive
overview of forecastingmodels, but rather discusses why a select number are evaluated. [62] contains a
comprehensive evaluation of accuracy for day-ahead price forecasting that includes many of the point
forecasting models proposed in recent years.

4.2.1 Naive models

The first type of considered models base their forecast on raw historical observations directly, with-
out learning any causalities, and are thus referred to as ‘naive’ models. In essence, they represent a
minimum-effort solution, and set the bar that forecasts from more sophisticated models should be
able to at least outperform.

Day-ahead price Considering the high correlation between prices of the Dutch day-ahead and intra-
day markets, it stands to reason that the market clearing prices (MCP) of the day-ahead market, that
are published for hours h ∈ {0, . . . , 23} of day d after 12:00 on day d− 1, can be exploited directly.

NVE.DA The naive model referred to as NVE.DA obtains a forecast of the ID3 price by assuming that
it matches the corresponding MCP value. The forecast for delivery on day d and hour h is formally
defined as ŷt = MCPt. That naive model is also employed in literature [71, 78].

Intraday price A naive approach to obtain a forecasted ID3 value from intraday prices is to simply
utilize the most recent ID3 price that is available at the time of forecasting.

NVE.ID The naive model referred to as NVE.ID obtains a forecast of the ID3 price by assuming that
it matches the volume-weighted average transaction price in the three hours before the time of fore-
casting. The forecast is formally defined as ŷt = −7

−4IDt.

Other naive approaches are to utilize different lags, e.g. the 24-hour or 168-hour lagged ID3 price, or
to calculate a slightly different aggregated price, e.g. the volume-weighted average transaction price
in the most recent 15 minutes of trading. The main issue with the second approach is that the most
recent 15 minutes of trading starts 4 hours and 15 minutes before the time of delivery, and might thus
not be very representative of especially the transactions that are close to the time of delivery. Besides,
for a market that does not always have a plethora of transactions, such a small window might result in
sensitivity to the price of abnormal transactions.

Complexity Complexity and computational cost of the considered naive models is low. There is no
training involved and there are no hyperparameters. Therefore, the naive models are insensitive to the
forecasting procedure.

As most intraday trading is incited by conditions that are unforeseen during day-ahead trading, the
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day-ahead market clearing price largely defines the intraday ID3 price, which is reflected in high cor-
relations. In the search of forecasts that are able to capture the dynamics of intraday price, forecasts
must thus be capable to learn to some extent what sets them apart. The forecast fromNVE.DA thus rep-
resents the forecast to at least outperform, and this research utilizes the forecasted series of NVE.DA to
calculate the rMAE score of other forecasts, i.e. NVE.DA attains an rMAE of 1.00.

4.2.2 Regression models

The second type of considered models base their forecasts on explanatory variables xf,t, and estimate
how a set of independent variables relates to the target variable of intraday price. The simplest ‘linear’
regression assumes a linear relationship β between one explanatory variable xt and the independent
variable yt, i.e. yt = β · xt and estimates what coefficient β̂ minimizes the residual error yt − ŷt over
t = {1, . . . , T} observations. Multiple linear regression extends that to any amount of explanatory
variables F , i.e. yt =

∑F
f=1 βf · xf,t. More sophisticated regression models exist, however.

Least absolute shrinkage and selection operator (LASSO) regression Given a target variable y =

{y1, . . . , yT } and explanatory variables X = {x⊤
1 , . . . , x⊤

F } where xf = {xf,1, . . . , xf,T }. A least
absolute shrinkage and selection operator (LASSO) regression introduces a regularisation term to the
cost function of an ordinary least squares regression, i.e.

T∑
t=1

(yt − ŷt)
2 = ∥y − βX∥22 + λ∥β∥1 =

T∑
t=1

yt −
F∑

f=1

βf · xf,t

2

+ λ

F∑
f=1

|βf | (7)

Minimizing the cost function for β will find the estimated coefficients, as a function of the regularisa-
tion parameter λ, i.e.

β̂(λ) = argmin
β∈RF


T∑

t=1

yt −
F∑

f=1

βf · xf,t

2

+ λ

F∑
f=1

|βf |

 (8)

Because of the added ‘penalty’ term, the problem is now penalized on the sum of the magnitudes of
the coefficients. Effectively, this constrains the magnitude of the coefficients to a certain range of
values, and a larger regularisation parameter λ leads to tighter constraints on the coefficients. As a
consequence of this, some coefficients may become zero, and the number of coefficients that are zero
increases as λ increases. In the extreme case that λ = ∞, all coefficients will be equal to zero, while
for λ = 0, the coefficients will be equal to what would be found when using an ordinary least squares
regression.

That effect can be illustrated for a two-dimensional problem. The ordinary least squares term of Equa-
tion 7 gives rise to elliptical-shaped contours that are centered at the maximum likelihood estimator.
On a single contour lie all sets of coefficients that lead to the same residual sum of squares. The higher
the features are correlated, the flatter these ellipses are. At the same time there is the penalty term
of Equation 7 that gives rise to a diamond-shaped region that is centered at the origin and whose area
shrinks with increasing λ. If we set that region fixed for a certain value of λ, the solution to Equation
8 is the first point where the elliptical contours, when expanding outward, hit the diamond-shaped
region. Because that region has sharp corners, the elliptical region has a high chance of hitting such
a point first, and because these corners lie on the axes, the coefficient of one of the features is zero
whenever that happens.

REG.LASSO Themodel based on a LASSO regression is referred to as REG.LASSO. Thatmodel employs
the features in the input feature set FI as explanatory variables, i.e. X ≡ FI , and thus has as many
regression coefficients as the number of features in FI . The forecast is formally defined as

ŷt =

F∑
f=1

β̂f · xf,t (9)
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The hyperparameters considered for REG.LASSO are the regularization parameter λ only.

Support vector regression (SVR) An SVR (alias support vector machine regression) utilizes the ϵ-
insensitive loss function, which does not tolerate errors that exceed ϵ. A transformation function ϕ(·)
is employed that transforms data points from the original ‘input space’ to a higher dimensional ‘feature
space’. It is attempted to construct a linear model in the feature space, that translates to a non-linear
model in the input space. If it is not able to achieve this task within the constraints, the inputs are
mapped into an ever higher dimensional feature space. Given a target variable y = {y1, . . . , yT } and
explanatory variables X = {x⊤

1 , . . . , x
⊤
T } where xt = {xt,1, . . . , xt,F }, for T observations and F fea-

tures. The linear function approximation can be denoted as

y = f(X) =

T∑
t=1

wtϕt(xt) + γ = w⊤ϕ(X) + γ (10)

where ϕ(·) is the nonlinear mapping function, w = {w1, . . . , wT } is the weight vector, and γ is a
bias term. The goal is to find a function, so that for all observations t, the absolute error between the
value of the target variable and value of the estimated variable does not exceed ϵ. At the same time,
the function should be as flat as possible. Therefore, the weight vector w should be minimized, e.g. by
minimizing the norm ∥w∥2, given the constraint on the error [45]. As that problemmight be infeasible,
two positive slack variables, ζt and ζ∗t , are introduced to the problem to allow for relaxed error levels

min R =
1

2
∥w∥2 + C

T

T∑
t=1

(ζt + ζ∗t )

s.t. yt −w⊤xt ≤ ϵ+ ζ∗t

w⊤xt − yt ≤ ϵ+ ζt

ζt, ζ
∗
t ≥ 0

(11)

In this problem, the regularization parameter C regulates the trade-off between generalization ability
and accuracy, and the error parameter ϵ regulates the tolerance to errors. When solving the problem
of Equation 11 by Lagrangian multipliers and dual optimization techniques that are explicitly stated in
[8], the solution is found to be

f(X) = (αt − α∗
t )K(xt,xs) + γ (12)

where αt and α∗
t are Lagrange multipliers. The solution to the problem can be found without consider-

ing explicitly the transformation ϕ(·) applied to the data, provided that there is a function that returns
the scalar product (alias kernel function), i.e. K(xt,xs) = ϕ⊤(xt)ϕ(xs), that computes the similarity
of two points. This research employs the widely used Gaussian radial basis function kernel

K(xt,xs) = exp
−∥xt,xs∥2

2σ2
(13)

as it can produce complex decision boundaries and adds only a single hyperparameter, the standard
deviation σ, to the SVR [65].

REG.SVR Themodel based on an SVR is referred to as REG.SVR. The hyperparameters considered for
REG.SVR are the regularization parameters C and the standard deviation of the Gaussian kernel σ.

Complexity Complexity and computational cost of the considered regression models is moderate.
There is training involved that does not require a sophisticated approach and there are a limited number
of hyperparameters. Those factors result in the regression models being moderately sensitive to the
forecasting procedure. Therefore, this research ensures that stages of training and hyperparameter
optimization are systematic.

Many other and more complex regression models exist, such as those based on decision trees or based
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on principal components. This research considers specifically LASSO regression and SVR as their com-
putational cost is relatively low, and they are among themost investigatedmodels in EPF. Besides that,
both REG.LASSO and REG.SVR have a relatively small number of important hyperparameters, thus re-
sults are more easily reproducible than with most other models.

4.2.3 Artificial neural network models

A popular group of models in the subspace of computational intelligence is that of artificial neural
networks (ANNs). Conceptually based on the learning process of neurons in a human brain, ANNs
have been introduced to many fields of research and a plethora of slightly and substantially different
networks with unique properties have emerged.

Feedforward neural networks Multilayer perceptron (MLP) neural networks, that are often regarded
as prototypical ANNs, have been demonstrated to perform well for EPF [41, 92, 62]. In contrast to
recurrent neural networks, these feedforward neural networks have no cycles. In between input and
output layers are one or many hidden layers that contain a given number of identical units. Each unit
is connected to all units in the next layer and as such constitute a ‘fully connected’ network. Figure I.1
shows the architecture of an MLP.

The units of an MLP neural network (alias neurons) are linear threshold units that take an input vector
x ∈ ℜX and weight matrix w ∈ ℜN×X , and utilize the weighted sum and an activation function ϕ(·) to
calculate their state. For layer l ∈ {0, . . . , L} the states of all units are given as

h(l) = ϕ(l)
(
w(l)h(l−1) + b(l)

)
(14)

where the first state vector is the input vector, i.e. h(0) ⇔ x, and the last state vector is the output
vector, i.e. h(L) ⇔ ŷ.

Important considerations in the design of MLPs, as well as for other ANNs, are the amount of hidden
layers and the amount of neurons in those layers. What generally holds true is that increasing the
number of hidden layers beyond what is optimal for the problem at hand easily induces over-fitting,
which goes at the cost of generalizability. Results might improve for the training data, but deteriorate
for the testing data. A similar seesaw effect is generally true for the number of neurons; the complexity
of the network and therefore the capability to account for more detailed relationships might improve,
over-fittingmight become a problem. Something that can benefit generalizability is randomly dropping
out a certain percentage of neurons during training, i.e. temporarily setting their weight to zero. The
weights of other neurons then adjust to account for that which is suddenly lacking. Generally, the
network thus becomes less sensitive to individual weights of neurons.

ANN.MLP The model based on an MLP neural network is referred to as ANN.MLP. The hyperparam-
eters considered for ANN.MLP are the number of hidden layers, the number of neurons in each layer,
the activation function, and the dropout rate.

Recurrent neural networks Feedforward neural networks can be limited by the fact that the incorpora-
tion of temporal dependencies requires additional features. As the number of input features increases,
the size of the network will increase rapidly because of the fully connected nature, which might lead to
a considerable increase of computional cost. Recurrent neural networks (RNNs) address that limitation
as they are of a chain-like nature. Essential to the successes of RNNs are networks with two particular
kinds of gated units, namely the long short-term memory (LSTM) unit and the gated recurrent unit
(GRU). These gated units ease optimization and reduce learning degeneracies that more traditional
RNNs suffer from. The feature that traditional recurrent units lack, and that is shared by both these
units, is that instead of replacing the value of activation with a new value for every new input, the new
value is added to the previous value with a certain weight. This procedure not only allows the units to
maintain important features for longer, but also effectively creates ‘shortcut’ paths to bypass multiple
temporal steps. In an RNN, an index t indicates the position in a sequence and the state of the system
h(t) is a nonlinear mapping, i.e. h(t) = f(h(t−1), x(t)).

What follows are the recurrent stages of what is often regarded as a ‘typical’ LSTM unit, that is, the
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original unit as proposed in [48] with the addition of a forget gate as proposed in [35]. Peephole con-
nections as proposed in [36] have been neglected as they complicate the learning process [113].

An LSTM unit employs three gates that control the flow of information. Generally, the activation of a
gate is approximated by a linear combination of the previous hidden state h(t−1) and the current input
x(t), and a nonlinear activation function ϕ(·), i.e.

g(t) = ϕ
(
W ·

[
h(t−1), x(t)

]
+ b
)

(15)

The forget gate is designed to decide what portion of the previous cell state c(t−1) is remembered in
the current cell state c(t). The previous hidden state h(t−1) and the current input x(t), as well as the
accompanying weight vectors that are combined into a matrix Wf , pass through the gate. By means
of a sigmoid activation function, values between 0 (forget) and 1 (keep) are obtained for the activation
of the forget gate. In Equation 15, g(t) ⇔ f (t), W ⇔ Wf , and b ⇔ bf . The input gate is designed
to decide what portion of the current candidate cell state is added to the current cell state. By means
of a sigmoid activation layer, values are obtained for the activation of the input gate. In Equation 15,
g(t) ⇔ i(t),W ⇔ Wi, and b ⇔ bi. Bymeans of a hyperbolic tangent activation function, values between
−1 and 1 are obtained for the current candidate cell state, i.e.

c̃(t) = tanh
(
Wc ·

[
h(t−1), x(t)

]
+ bc

)
(16)

The current cell state ct is determined by the previous cell state c(t−1) and activation of the forget gate,
and the current candidate cell state c̃t and activation of the input gate. The candidate memory content
is thus added to the existing memory content, i.e.

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ c̃(t) (17)

The output gate is designed to decide what portion of the cell state is output. By means of a sigmoid
activation layer, values are obtained for the activation of the output gate. In Equation 15, g(t) ⇔ o(t),
W ⇔ Wo, and b ⇔ bo. Finally, the activation of the output gate is multiplied by the hyperbolic tangent
of the cell state, and the current hidden state of the LSTM unit obtains a value, i.e.

h(t) = o(t) ⊙ tanh(c(t)) (18)

A variation and simplification of the LSTM unit is the GRU. Unlike an LSTM unit, a GRU does not have
a separate cell state and, thereby, no controlled exposure of its memory content. The hidden state is
exposed without any control. An LSTM—which has input, forget, and output gates—can control the
amount of content being added to the cell state independent of the forget gate, while a GRU—which
has reset and update gates only—can control the portion of the previous hidden state that is added
to the current candidate hidden state, but has no way to control the portion of the current candidate
hidden state that is added to the current hidden state.

The reset gate is designed to decide what portion of the previous hidden state is added to the current
candidate hidden state. In Equation 15, g(t) ⇔ r(t), W ⇔ Wr, and b ⇔ br. The current candidate
hidden state is obtained by

h̃(t) = tanh
(
Wh ·

[
r(t) ⊙ h(t−1), x(t)

]
+ bh

)
(19)

The update gate is designed to decide what portion of the previous hidden state and current candidate
hidden state are added to the current hidden state. In Equation 15, g(t) ⇔ z(t), W ⇔ Wz , and b ⇔ bz .
The current hidden state of the GRU is obtained by a linear interpolation between the previous hidden
state and the current candidate hidden state, i.e.

h(t) = (1− z(t))⊙ h(t−1) + z(t) ⊙ h̃(t) (20)

The superiority of GRU over LSTM networks or vice-versa is dependent on the problem at hand. What
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is often stated about GRU networks and the ‘compactness’ of their two-gated design is that their com-
putational cost is lower, but they can have slightly less representational power.

ANN.GRU Themodel that is based on aGRUnetwork is referred to as ANN.GRU. Similarly to ANN.MLP,
the hyperparameters considered for ANN.GRU are the number of hidden layers, the number of neurons
in each layer, the activation function, and the dropout rate.

Complexity Complexity and computational cost of the considered ANN models is high. There is
training involved that requires a sophisticated approach and there are many hyperparameters. Those
factors result in the ANN models being sensitive to the forecasting procedure.

Besides that, a recurrent neural network architecture such as ANN.GRU introduces certain complexities.
Firstly, ANN.GRU requires that the input is structured as three-dimensional tensors that incorporate a
time-step dimension. This research utilizes a conversion from a two-dimensional structure that is
required by the regression models and by ANN.MLP, to a three-dimensional structure. That conversion
sorts the two-dimensional structure by time-step, and because dimensionsmust agree throughout the
three-dimensional structure, adds zero-columns for time-steps of features that are not considered. In
the following example, the 24-hour lag of the second base feature f = 1 is not available, such that
x−24
t,1 = 0 for all observations t ∈ T . For features f ∈ F and observations t ∈ T , the two-dimensional

conversion is

x
−24
0,1 · · · x−4

0,1 · · · x−24
0,F · · · x−4

0,F
...

...
...

...
x−24
T,1 · · · x−4

T,1 · · · x−24
T,F · · · x−4

T,F

→


N/A

x−24
0,1 0 · · · x−24

0,F · · · x−4
0,1 · · · x−4

0,F
...

...
...

...
...

x−24
T,1 0 · · · x−24

T,F · · · x−4
T,1 · · · x−4

T,F


That two-dimensional structure is then converted to the three-dimensional structure shown in Fig-
ure 11 where the z-dimension represents the time-step (lag/lead). In consideration of that required
structure, it becomes clear that difficulties arise when sequential time features and regular features
are utilized. In that case, a hybrid model can divide features between different layers [62], although
that does not lie in the scope of this research.
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Figure 11: Three-dimensional input structure
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5 Interval forecasting
This chapter formalizes interval forecasts as the region between two quantile forecasts or between two expec-
tile forecasts, that are obtained when a bias embodied by the quantile loss function or expectile loss function
is purposefully introduced to the models. It is concluded that it is generally desirable that an interval forecast
has high reliability, then has high sharpness, and then has high resolution. Scoring functions help to evaluate
whether an interval forecast has reliability, sharpness, and resolution. The upper and lower quantile forecasts
of an interval are evaluated separately based on the PL, and all intervals are jointly evaluated based on an
estimation of the CRPS for a finite grid of equidistant quantile forecasts.

Onmany levels of decision-making, the incorporation of uncertainty into forecasts is invaluable. Some
applications require the full probability of the target variable, for instance, while others require estima-
tion of the target variable in the tail of the distribution [97]. In contrast to a point forecast, an interval
forecast can effectively represent the uncertainty that is inherently associated to the estimation of a
value that is not yet realized.

An interval forecast consists of upper and lower bounds that together establish the range where the
realized value is estimated to lie within, given a certain probability (alias nominal coverage rate). There
are fundamentally different approaches to calculate bounds, although many are underlied by the dis-
tribution of the point forecasting error or by the distribution of the target value. There exist more
general regressions than mean and median regressions, such as quantile regression, which has me-
dian regression as a special case but can also estimate in the tail of a distribution. In contrast to linear
regressions, quantile regressions have no assumptions of a particular parametric distribution of the
response variable, nor of a constant variance. Widely used for the bounds of intervals are therefore
quantile forecasts. For an interval forecast with a nominal coverage rate of (1 − τ), the bounds then
correspond to the α-quantile forecasts where α ∈ {τ/2, 1− τ/2}, i.e.

Ît =
[
ζ̂
(τ/2)
t , ζ̂

(1−τ/2)
t

]
(21)

Given is a series of T realized values y = {y1, . . . , yT }. In a quantile regression

yt = ζ
(α)
t + ϵ

(α)
t (22)

it is assumed that the α-quantile of the residuals is zero, i.e. P (ϵ
(α)
t ≤ 0) = α, which is unlike in a linear

regression, where it is assumed that the mean of residuals is zero, i.e. E(ϵt) = 0. The estimate of the
α-quantile ζ̂(α) can be obtained by sorting the series in ascending order or by solving

min
ζ(α)

T∑
t=1

ρ(α) · |yt − ζ(α)| (23)

where the check function ρ(α) handles that penalization is asymmetric, i.e.

ρ(α) =

{
(1− α) if yt < ζ(α)

α if otherwise
(24)

The α-quantile lies where α · T realized values are smaller than ζ(α). From this it can be inferred that
the 0.5-quantile represents the median of the series. As the quantile level represents the probability,
i.e. the proportion of the observations, that are associated with a quantile, there is an innate restriction
that the α1-quantile must be greater than the α2-quantile in the case that α1 > α2. Models that es-
timate quantiles separately might lead to this restriction being unsatisfied, such that quantiles might
cross each other (alias quantile crossing) with an invalid distribution as a result. The problem of quan-
tile crossing can be a addressed by simply reordering of quantiles [107], or by introducing constraints to
the optimization problem [14]. The latter significantly increases complexity and computational cost. As
this research focuses on a relatively limited set of quantiles, quantile crossings are not addressed. How-
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ever, as the number of estimated quantiles increases, such that distances between quantiles decrease,
the problem of quantile crossing becomes more severe [57]. Therefore, this research does evaluate
interval forecasts on the number of quantile crossings.

Closely related to quantiles are expectiles, where the L1 (absolute distance) term in Equation 23 is re-
placed by an L2 (quadratic) term and the estimated α-expectile η̂(α) is obtained by solving

min
η(α)

T∑
t=1

ρ(α) · (yt − η(α))2 (25)

The 0.5-expectile represents the mean of the series. A quantile is not affected when values in the
series change within the range that lies above the quantile, i.e. [ζ(α), ∞); transformation of the right
half of the distribution does not affect the 0.5-quantile, nor any lower quantiles. That is fundamentally
different in the case of an expectile, however, as transformation of any part of the distribution affects
all expectiles [97, 112].

While numerically finding quantiles requires linear optimization [58], finding expectiles requires
quadratic optimization [80], which is something that can becomemore demanding in terms of compu-
tational cost. Although the problemof quantile crossing happens similarly for expectiles (alias expectile
crossing), it occurs less often and thus requires less attention [105, 57].

5.1 Evaluation

Evaluation of point forecasts is based around the deviation between forecasted values and realized
values. It is not surprising therefore, that evaluation of interval forecasts is based around the deviation
between forecasted intervals and realized intervals. This is not always self-evident however, as there is
an intricate interplay between the coverage of an interval and its width.

5.1.1 Reliability and sharpness

The twomain concepts that formalize the desires for interval forecasts are reliability (alias calibration)
and sharpness (alias resolution). Reliability is concernedwith the desire that, in essence, realized values
should be indistinguishable from random draws of the estimated probability distribution, or else a
systematic bias is introduced. Given a series of T forecasted quantile values ŷ(α) = {ŷ(α)1 , . . . , ŷ

(α)
T }

and a series of realized values y = {y1, . . . , yT }. It is calculated whether the realized value was smaller
than the forecasted quantile value, i.e. whether it was “covered”

ξ
(α)
t =

{
1 if yt < ζ̂

(α)
t

0 if otherwise
(26)

for t ∈ {1, . . . , T}. The expected value of the binary sequence that arises a(α)k = E(ξ(α)) and the devia-
tion from perfect reliability (alias probabilistic bias) b(α)k = α − a

(α)
k , are an indication of the reliability

of a series of forecasted quantile values and are easily visualized in a reliability diagram. Most diagrams
in literature show the empirical coverage rate against the nominal coverage rate or the deviation from
perfect reliability against the nominal coverage rate. In these diagrams, perfect reliability is given by
the diagonal line y = x and horizontal line y = 0, respectively. In any case, a reliability diagram is a
summary of the calibration assessment of several quantiles or intervals so that with a single glance, one
can see whether a method tends to systematically under- or overestimate the uncertainty. Judgment
whether the quantiles or intervals attain satisfactory coverage is not an absolute truth but for practi-
tioners to assess per case [85]. Sharpness is concerned with the desire that the more concentrated an
interval is, at constant reliability, the better. Intuitively, sharpness is thus concerned with the width
of distribution. The width of the interval between the two quantile values with nominal coverage rate
(1− α) can be defined as

δ
(α)
t = ζ̂

(1−α/2)
t − ζ̂

(α/2)
t (27)
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Ameasure of overall sharpness is the expected valueE(δ(α)). It is noted that in real world applications,
conditional heteroscedasticity may lead to substantial variability in the width of intervals; simply em-
ploying the average width might then be an inadequate characterization of sharpness [40]. Although
sharpness and resolution are oftenmentioned in a single breath, they may be distinguished; sharpness
is concerned with the average width of intervals, and resolution is concerned with their width vari-
ability. Interval forecasts that have low variability in width, i.e. low resolution, typically originate from
simpler models, while more advanced models are able to incorporate varying confidence.

In general, reliability is regarded as themost important desire; an interval forecast with high reliability
and low sharpness may have wide intervals, it is still more dependable than the unjustly concentrated
interval forecast with low reliability and high sharpness. Of two forecasts with similar reliability and
similar sharpness, the one with higher resolution is favored.

5.1.2 Scoring metrics

Just like the scores for point forecasts, there exist scores for quantile forecasts. Thewidely used quantile
scoring function (alias pinball loss function)

QS(ζ̂(α)t , yt, α) =

{
(ζ̂

(α)
t − yt) · (1− α) if yt ≤ ζ̂

(α)
t

(yt − ζ̂
(α)
t ) · α if otherwise

(28)

is asymmetric in the sense that it penalizes differently when the realized value is smaller or greater
than the forecasted quantile value. For quantiles below the middle-quantiles, a higher penalization is
for realized values that are smaller than the forecasted quantile, and vice versa for quantiles above the
middle-quantile.

Unlike the quantile score, that considers a specific point in the distribution, the continuous ranked
probability score (CRPS) considers the distribution as a whole, and requires no predefined classes such
as quantiles. The CRPS is a quadratic metric for the difference between a theoretical cumulative distri-
bution and an empirical cumulative distribution, and is thus formally defined for a distribution func-
tion F (x)

CRPS(F, yt) =
∫
ℜ
(F (x)− 1{x > yt})2 dx (29)

which can be equivalently denoted as a scaled integral of the quantile score over all quantiles

CRPS(ζ̂(α)t , yt) = 2 ·
∫ 1

0

QS(ζ̂(α)t , yt, α) dα (30)

An approximation of the score can be given if one has quantile forecasts for a finite grid of quantiles
{αi, . . . , αI} that are equidistant [11]. Given forecasted quantile values for a total of H equidistant
quantiles ζ̂(α)

t = {ζ̂(α1)
t , . . . , ζ̂

(αH)
t }

CRPS(ζ̂(α)
t , yt) ≈

2

I
·

I∑
i=1

QS(ζ̂(αi)
t , yt, αi) (31)

The CRPS is thus intrinsically an aggregate metric for all target quantiles, while the pinball loss is
calculated for each target quantile individually before non-compulsory averaging [49].

5.2 Models

This section presents the considered naive, regression, and ANN interval forecasting models, and
shortly describes how they arrive at a forecast. What values are considered for the hyperparameters is
included in Appendix H.
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5.2.1 Naive models

NVE.Q.DA In the extension of NVE.DA is a naivemodel for quantile forecasts, referred to asNVE.Q.DA.
The residual errors ϵ are calculated between the forecasted series p̂ and realized series p of the in-
sample period, i.e. ϵ = |p̂ − p|. From this series of T residual errors, the quantile value is calculated,
i.e. Q(α)(ϵ), that is by definition larger than α · T residual error values. Because it is the absolute error,
the interval forecast of nominal coverage τ is then obtained by adding (and subtracting) the quantile
value of the residual errors to (and from) the out-of-sample forecasted values. The forecast is formally
defined as q̂(α)t = p̂t + sign(τ − 0.5)Q(τ)(ϵ).

NVE.Q.PNT A second naive model, referred to as NVE.Q.PNT employs the exact same approach as
NVE.Q.DA, but bases itself on the forecast of the point forecasting model that attains the highest accu-
racy. This model can thus not be regarded as truly naive when a sophisticated point forecast must be
provided. Under the assumption that such point forecasts are available, NVE.Q.PNT can be regarded as
a naive interval forecasting model.

5.2.2 Regression models

Quantile regression appeals because it can describe the relationship between the price and independent
variables not only on themean, but also on the tails of the conditional price. Because a set of coefficients
for each quantile is obtained, asymmetric effects of the independent variables can be investigated,
which might bring insight on whether features affect the price differently at different price levels. In
quantile regression, that is reflected in the cost function, which is minimized as

β̂τ (λ) = argmin
βτ∈RF

{
T∑

t=1

(
τ − [pt ≤ βτxt]

)(
pt − βτxt

)}
(32)

Contained in the Iverson bracket [pt ≤ βτxt] is the statement whether the true price value is lower
than or equal to the estimated price value, i.e. whether there is a positive or negative error. Changing
τ changes the ratio of the penalty terms τ and τ − 1, and thus changes how severe over-predictions are
penalized compared to under-predictions. It then easily becomes clear that for τ = 0.5, the quantile
regression is equivalent to the linear regression, for |τ |/|τ − 1| = 1.

A regressionmodel for interval forecasting utilizes quantile regression averaging, as introduced in [81].
Unlike in regular quantile regression, not the features xt = [x1

t , . . . , x
F
t ] but forecasts xt = [p̂1t , . . . , p̂

M
t ]

are utilized as explanatory variables to arrive at a forecast. Selecting the more valuable point forecasts
by eliminating those that are redundant by L1-norm regularization can improve accuracy [101].

REG.Q.QRA However, this research utilizes a small number of point forecasts such that regularized
quantile regression averaging is not required. Therefore, this research considers only a model based
on quantile regression averaging model without regularization, referred to as REG.Q.QRA.

5.2.3 Artificial neural network models

ANN.Q.MLP The considered ANN model for point forecasting, ANN.MLP, is employed similarly for
interval forecasting. To that end, the same architecture is utilized as shown in Figure I.1, but now with
an output layer that contains as many nodes as quantiles, i.e. h(L) = ŷ = {q̂(α)}. That network is then
trained with the quantile loss function of Equation 28, where each output node receives a unique αl.
The model is referred to as ANN.Q.MLP.
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6 Forecasting procedure
This chapter establishes a forecasting procedure that contains sub-procedures of initialization, calibration,
and exploitation. In initialization, the size of training and testing windows of the rolling window estimation
are investigated. Also, the candidate feature set is reduced by means of an RF regression within a frame-
work of recursive feature elimination. Although optimality is found at approximately 15 features, a reduced
candidate feature set of 100 features is employed as input to more refined feature selection. In calibration,
model hyperparameters are optimized by training models within a framework of TPE. It is investigated how
performance holds up when forecasting multiple steps ahead.

This research establishes a forecasting procedure to systematically execute an out-of-sample test with
an ‘initialization’ procedure, a ‘calibration’ procedure, and an ‘exploitation’ procedure. For reliable
evaluation of accuracies it is vital that the procedure does not interact with observations used in ex-
ploitation before exploitation. Hence, this research divides the four-year period from 2016 through
2019 into two two-year periods, so that the period from 2016 through 2017 can be used unhesitatingly
for initialization, and the period from 2018 through 2019 can be used for exploitation. A schematic
walkthrough of the forecasting procedure is shown in Figure 12.

Initialization procedure

• Reduce full feature set
• Determine size of training/testing windows

Calibration procedure

• Reduce candidate feature set based on Xtrn
• Determine optimal hyperparameters based on Xval

Exploitation procedure

• Train model based on Xtrn, Xval
• Test model based on Xtst

Roll forward
Xtrn, Xval, Xtst

Figure 12: Schematic walkthrough of the forecasting procedure.

In machine learning procedures, it is good practice to split observations in a training set, validating
set, and testing set. The training set is used to fit models, and the validating set is used as guidance.
The testing set does not partake in that process, so that it can be used to estimate real-world accuracy.
In contrast to fixed split approaches, cross-validation approaches use multiple splits such that obser-
vations can be used more than once. Cross-validation splits are particularly useful when data is scarce,
and they can give a better idea of the variability and robustness of a model fit than fixed splits. Rolling
cross-validation approaches are suitable when observations are dependent. They prevent, for instance,
that training sets lie after testing sets, to prevent that models can peek into the future.

In rolling cross-validation, a model is fit using all observations that lie within a training window Wtrn,
before it is used to forecast the observations that lie within a testing window Wtst. The windows are
then ‘rolled’ forward one or multiple steps. In essence, a rolling cross-validation is similar to what
forecasting procedures in practice are like; observations in the testing set are for delivery times that lie
in the future and that are truly unknown, and windows are rolled forward as a new realized observation
becomes available. In a rolling window cross-validation, both the head and tail of the training window
advance so that the training set does not grow, while in a rolling origin cross-validation, only the head
of the training window advances so that the training set grows. This research employs the former,
because utilizing more observations for training does not necessarily result in more accurate models
[33]. That is in compliance with recent research in the field of EPF [67, 3, 78].
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6.1 Initialization procedure

The initialization procedure comprises stages that investigate the reduction of the full feature set and
that investigate the sensitivity of accuracies to sizes of training and testing windows.

6.1.1 Stage A: Candidate feature set

The initialization procedure commences with a stage that reduces the full feature set. A RF regression
is fit repeatedly to the initialization period, and after every iteration, the least important features are
eliminated. It eliminates 50 features per iteration to come to 500 features, then eliminates 10 features
per iteration to come to 100 features, and then eliminates 1 feature per iteration to come to 50 features.
The stage of recursive feature elimination is executed in a rolling cross-validation. The model is fitted
onNtrn = 12 · (30 ·24) (approx. 12 months) observations to forecastNtst = 12 · (30 ·24) (approx. 1 month)
observations. Scores are averaged over these folds before elimination.

6.1.2 Stage B: Training and testing windows

Although rolling cross-validation is considered as one of the standard approaches in out-of-sample
tests for time-series forecasting and EPF, the convention of arbitrarily choosing the size of the rolling
window, i.e. the number of observations in the training set Ntrn, to some value between 6 and 12
months is criticized [50, 33, 70]. Findings that forecast accuracy varies considerably for varying sizes
of the training window support the statement that different sizes should be considered. To the best
knowledge of the author, there is no attention for this topic within the field of intraday EPF. For that
reason, this research pays attention to the size of the training window, and incorporates a stage of
training window sensitivity in the initialization procedure.

Research on EPF generally employs cross-validations wheremodels are refit every hour, i.e. Ntst = 1. It
is indeed plausible that the highest accuracies are attained when models are fit with observations that
are as close as possible to the target observation. However, it is unclear how sensitive accuracies are to
widening this gap. For that reason, this research pays attention to the size of the testing window, and
incorporates a stage of testing window sensitivity in the initialization procedure.

This research evaluates all models with initial hyperparameters repeatedly on the initialization period
by means of rolling window cross-validation, where every iteration employs a different size for the
training window, i.e. Ntrn = {2 · (24 · 30), 6 · (24 · 30), 12 · (24 · 30)} (approx. 2 months, 6 months, and 12
months respectively), as well as different sizes of the testing window, i.e. Ntst = {24, 24 ·7, 1 · (24 ·30)}
(approx. 1 day, 1 week, and 1 month).

6.2 Calibration procedure

Because the formation of energy price is subject to many different factors that might evolve over time,
elements in the forecasting procedure that are based on the assumption that parameters are constant,
may lead to accuracies turning sub-optimal over time. For that reason, this research establishes the
calibration procedure that is executed before the exploitation procedure. The calibration procedure
comprises stages that reduce the candidate feature set and that find optimal hyperparameters based
on the observations in Wtrn and Wval.

Research on EPF generally identifies a single set of features and a single set of hyperparameters for
every model that are deemed as optimal, and that are utilized throughout the out-of-sample test. In-
stead of employing a single calibration, this research employs repeated calibration, which means that
each exploitation is preceded by a calibration. Neither a single nor repeated calibration are expected to
attain accuracies that are truly optimal, because only observations can be used that are available at the
time of forecasting. It is expected, however, that repeated calibration attains higher accuracies than a
single calibration.
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6.2.1 Stage A: Input feature set

The calibration procedure commences with a stage that reduces the candidate feature set FC , which
is very similar to the stage of reducing the full feature set FF in the initialization procedure. The
candidate feature set is reduced from 50 features to 15 features by eliminating 1 feature per iteration,
to obtain the input feature set FI ⊆ FC .

To prevent that the forecasting procedure over-fits the selection of features to the RF regressionmodel
that is used in recursive feature elimination, the features of the input feature set are joined by the
[td−24, tf ] lags of the intraday ID3 index and the [td−24, td+9] lags and leads of the day-ahead market
clearing price. Those features represent all intraday and day-ahead prices of the 24 hours before and
after the time of delivery, that are available for forecasting. Together with the optimized input feature
set, they represent a reliable feature set.

6.2.2 Stage B: Hyperparameters

The calibration procedure continues with a stage that finds optimal hyperparameters. A model is fit
to the calibration set, and every iteration employs a different set of hyperparameters. This stage is
performed with Ntrn = 12 · (30 · 24) (approx. 12 months) and Ntst = 1 · (30 · 24) (approx. 1 month).

It is the objective to find the set of hyperparameters h⋆ = argminh∈H S(h), that is optimal given an
objective scoring function S(·), and given all possible hyperparametersH. It can be a challenge, because
the score as a function of a hyperparameter set, i.e. S(h), is a black box function. Therefore, the search
for h⋆ is restricted to repeatedly evaluating the score for hyperparameter sets hi ∈ H. Grid-search is
among the algorithms that search exhaustively and in an unguided way, and is effectively applied in
literature [17], although the computational cost can be substantial for a fine-grain search space. Enter
informed search algorithms, that transcend the naivety of grid searches or random searches by passing
on past results through the optimization procedure. In Bayesian search algorithms, a surrogate func-
tion is responsible for updating the prior probability P

(
S(h)

)
with a sample h and its score y = S(h)

to get a better posterior probability P
(
y|h
)
. An acquisition function is responsible for guiding the

sampling process to where likeliness of finding the optimal solution is highest.

The surrogate function in a tree-structured parzen estimator TPE does not model P
(
y|h
)
directly, but

instead uses the probability of h given y, the probability of y, and Bayes’ rule to calculate

P
(
y|h
)
=

P
(
h|y
)
· P
(
y
)

P
(
h
) (33)

At the core are two kernel distribution functions l(h) and g(h), that are often chosen as Gaussian [10],
and that are based on the samples that yield a score above or below a pre-defined threshold value y∗,
respectively

P
(
h|y
)
=

{
l(h) if y < y∗

g(h) if y ≥ y∗
(34)

The acquisition function in a TPE is based on expected improvement

EIy∗(h) =

∫ y∗

∞
(y∗ − y)P

(
y|h
)
dy (35)

and following the derivations that are explicitly stated in Bergstra et al. [10], proportionality is found
as

EIy∗(h) ∝
(
γ +

g(h)

ℓ(h)
(1− γ)

)−1

(36)

where γ = P
(
y < y∗

)
. Thus, for the expected improvement to grow, the term g(h)/l(x) must shrink,
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such that a hyperparameter set h is chosen that has a high probability under l(h) and low probability
under g(h). Because l(h) is a distribution, hyperparameters that are drawn from it are likely in the
neighborhood of the maximum improvement, but not exactly equal to it. In addition, selected hyper-
parameters might not actually improve performance as the surrogate function is merely an estimate
of the objective scoring function. The expected improvement thus guides the algorithm in a way that
balances exploration and exploitation.

TPE performs the optimization that is described above for all hyperparameters separately, and thus
has no ability to account for interdependencies thatmight exist between hyperparameters. Potentially,
this could lead to a hyperparameter set that is deemed optimal, although it might be slightly different
than the truly optimal set identified by exhaustive search algorithms. This research still employs a
Bayesian search with TPE, as many hyperparameters needs to be reconsidered many times, such that
an exhaustive search would result in an excessive computational cost.

As an example, the results of this stage for a RF regression are shown in Figure 13. For one hyperpa-
rameter and 50 iterations of the TPE, Figures 13a and 13b show the distribution of the input, and the
distribution of the search, respectively. Figure 13c shows the score. Color indicates the iteration; the
darker, the later the iteration. The distributions shown in Figures 13a and 13b show that the TPE search
does not perform a uniform search, as it evaluates some values more often than others. There is a bias
towards the region that is deemed as optimal with more certainty after each iteration.
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Figure 13: Hyperparameter optimization with TPE for RF regression

6.3 Exploitation procedure

The exploitation procedure comprises a stage that obtains forecasts for the observations in Wtst.

6.3.1 Stage A: Out-of-sample forecast

After the initialization procedure and the first calibration procedure, the first exploitation procedure
commences. The exploitation procedure is where a model is exploited to obtain a forecast. It em-
ploys the input feature set FI and the hyperparameter set decided upon in the most recent calibration
procedure.

Exploitation complexity is one of the factors that separates the considered models. Exploitation com-
plexity of the naive models is low, as there is no training or testing involved. Exploitation complexity
of the regression models is moderate, as they require training and testing, although training is very
straightforward. Exploitation complexity of the ANNmodels is high, as they require training and test-
ing, and training is complicated. Attained accuracies are therefore not only sensitive to the utilized
features and hyperparameters, but also to the approach of training.

This research utilizes the validating set, that is also utilized in the stage of hyperparameter optimiza-
tion, to improve reliability of training ANN models. After every epoch, i.e. every pass through the
training set, the ANN model is exploited on the validating set, to check whether gains in accuracy on
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the training set are due to overfitting. This concept is referred to as early stopping [111]. On the basis
of initialization set it is found that and an early stopping criterion that demands an improvement of
the MAE that is at least 0.1 €/MWh over every 25 epochs leads to reliable training. With those parame-
ters, training prevents accuracy gains for the training set without accuracy gains for the validating set;
training is patient enough that it progresses through local minima; and training is not unnecessarily
long.

6.4 Walkthrough

A detailed walkthrough of the forecasting procedure is shown in Table G.1. The pseudocode walk-
through distinguishes the start of the out-of-sample set start, the end of the out-of-sample set end,
the forecasting model model(h) with hyperparameter set h, the candidate feature set X , the number
of observationsN , the windowW , the observation t, the number of observations before re-calibration
T , the iteration i, and the number of iterations I .

6.5 Intricacies/Experiments

The level of intricacy that a forecasting procedure has is not a judger of quality per se. Especially
not upon elucidation that and why intricacies are awarely ignored [52]. The forecasting procedure, as
presented up to this point, provide enough of a framework to evaluate the overall accuracies attained
by the different models. Nevertheless, there remain certain intricacies that might benefit the practical
use, accuracy, and/or understanding of the forecasting procedure. The following addresses three such
intricacies and indicates why they are within the scope of this research.

6.5.1 Multi-step-ahead horizon

This intricacy lies within the scope of this research because earlier intraday research does not investigate how
accuracy holds up for the more practically applicable multi-step-ahead horizons. Besides that, multi-step-
ahead forecasts are required for the operational context of the simulation discussed in Chapter 8.

The benefits of extending the forecasting procedure to include multi-step-ahead forecasting become
evident in light of the practical use of forecasts and their role in risk estimation. It is a challenge to
maintain accuracy, while there is a growing gap in time between the forecasted observations and the
realized observations, i.e. ‘true’ information that is available to the forecaster. Most simple frameworks
for multi-step-ahead forecasting rely either on recursive (alias iterative) or direct (alias independent)
schemes, although others exist that combine principles of the two [9, 83].

Recursive schemes utilize one model f̂ for all lead times, that is trained to provide a single-step-ahead
(4-hour ahead) forecast based on a total of d+ 1 previous observations. It is thus an estimation of the
true model f , i.e.

yt = f(yt−4, . . . , yt−4−d) + w (37)

where w is an error term. To obtain a forecast with a look-ahead-time of H hours into the future from
a certain time N , i.e. ŷN+H , a recursive scheme utilizes model f̂ to obtain a forecast ŷN+1, then adds
this forecast as input to f̂ to obtain a forecast ŷN+2, and continues until it provides a forecast ŷN+H ,
i.e.

ŷN+h =


f̂(yN−4, . . . , yN−4−d) if h = 0

f̂(ŷN+h−1, . . . , ŷN−1, yN−4, . . . , yN−4−d+h) if h ∈ {1, . . . , d− 1}
f̂(ŷN+h−1, . . . , ŷN+h−d) if h ∈ {d, . . . , H}

(38)

Dependent on the lead time, only realized observations y, amix of realized observations y and forecasts
ŷ, or only forecasts ŷ are used as input. Themain drawback of recursive schemes is its sensitivity to the
accumulation of errors. As future forecasts are based (partially) on earlier forecasts that are repeatedly
passed along the forecasting procedure, errors in earlier forecasts propagate, what can become espe-
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cially problematic for lead times that lie further away than the furthest lag, such that there are only
forecasts, and no more observations, in the system.

In contrast to the single-model setup of recursive schemes, direct schemes utilize one trained model
f̂h per each lead time, that are separately trained to provide an h-step ahead forecast, i.e.

yt = fh(yt−4, . . . , yt−4−d) + w (39)

h ∈ {1, . . . , H}. To obtain a forecast ŷN+H , that is for a look-ahead-time of H hours, a direct scheme
utilises the model f̂H

ŷN+H = f̂H(yN−4, . . . , yN−4−d) (40)

Although a direct scheme does not suffer from the propagation of errors, it cannot account for poten-
tial interdependencies that may exist between lead times. Besides that, the computational cost that
is associated with training numerous separate models greatly exceeds that of recursive schemes. Es-
pecially for models that are computational costly, such as the considered ANN models, that might be
problematic.

The naivemodelNVE.DA can be used directly formulti-step-ahead forecasting, albeit for a finite number
of steps restricted by the number of published market clearing prices. The series could be extended by
forecasts of the market clearing price, but that lies out of the scope of this research. REG.LASSO and
ANN.MLP can be utilized for look-ahead-times further than 9 hours, however, and this research exploits
them in a direct scheme for multi-step-ahead forecasting.

6.5.2 Separate models per delivery hour

This intricacy lies within the scope of this research because earlier intraday research does not investigate
whether trainingmodels separately on individual delivery hours improves accuracy. Intraday price forecasting
might benefit especially, as certain information that is published/gathered during the day can only be utilized
for certain delivery hours. Something that can be incorporated easily when training separate models.

As shown in Figure B.8, one of the major effects of seasonality is observed in the variation of ID3 price
for the hours of a day. The majority of literature address these effects to some extent by introducing
calendar features. As this might not be exhaustive, Marcjasz, Lago, and Weron [69] propose to address
each hour of the day separately. To that end, it proposes a single-output procedure, where separate
models are trained/tested on a subset of the observations that includes only one of the 24 hours of a
day, and a procedure that takes advantage of a multi-output structure of ANNs. An apparent downside
to a procedure that employs separate models per hour is that it is computational costly [69]. Besides
that, there is the implication that the training and testing sets—that might be reduced by a factor of
24—might not be broad enough to generalize [52]. To the best knowledge of the author, there is no
attention for this topic within the field of intraday price forecasting. For this reason, this research pays
attention to the intricacy of separate models per hour.

Findings of Marcjasz, Lago, and Weron [69] are that a multi-output procedure outperforms a single-
output procedure, both in terms of computational cost and of accuracy. For day-ahead forecasting,
where all 24 market clearing prices of the next day are forecasted at once, that research demonstrates
that a multi-output procedure is beneficial. As intraday forecasting happens continuously throughout
the day, however, training a multi-output ANN is not possible because the requirement of multiple
target values at each point in time is not satisfied. Therefore, this research addresses the intricacy of
separate models per hour with a single-output procedure.

An especially interesting benefit of utilizing a single-output procedure, is that it can underlie analysis
of whether feature usefulness varies for the different hours of the day. This might be able to sup-
port, for instance, findings from Kremer, Kiesel, and Paraschiv [60] that in comparison to the prices
of morning, afternoon, and evening products, the prices of night products are more driven by pure
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price information and less by fundamentals such as the slope of the merit order curve and expected
conventional capacities.

6.5.3 Classification of extreme prices

This intricacy lies within the scope of this research because occurrences of extreme price are particularly
present in aggregated Dutch intraday price. Especially in this market, participants might benefit from knowl-
edge about these occurrences—to take advantage of extreme prices or otherwise to evade them.

This research investigates whether posing the problem as a classification problem benefits the capa-
bility of ANN.MLP to estimate occurrence of extreme prices. To that end, the target variable is modified
to be a binary value that labels the price as being extreme or not. As the target variable is not con-
tinuous anymore, the architecture and training of ANN.MLP requires slight modification; activation of
the output layer is on the basis of a sigmoid function so that the output of the network represents the
probability of the target variable being an extreme price, and the network is trained on the basis of a
binary cross-entropy loss function. That model is referred to as ANN.C.MLP.

What prices are labeled as extreme and what is an adequate confidence is highly dependent on the
practical application. This research assumes that one wants to know with a confidence of 75% whether
an extreme price occurs that is considered as 75 €/MWh or higher. The forecasted observations yt from
the ANN.C.MLP are binarized and get 1 if ŷt ≥ 0.75, and 0 otherwise, and can then be evaluated against
the binarized realized observations, i.e. ŷt ∗ yt for t ∈ {1, . . . , T}.

To assess whether posing the problem as a classification leads to a more accurate classification, ac-
curacy of the forecast from the ANN.C.MLP is evaluated against that of the 0.25-quantile forecast from
ANN.Q.MLP. That quantile forecast ζ(α)t represents a forecast with 25% confidence that the target obser-
vation is smaller, i.e. 75% confidence that the target observation is higher. The forecasted observations
are binarized and get 1 if ζ(α)t ≥ 75 and 0 otherwise, and can then be evaluated against the binarized
realized observations.
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7 Results I
Many small results of the forecasting procedure constitute to the bigger result that a more detailed procedure
that avoids overfitting leads to slightly higher accuracies. Besides that, it provides insight into the selection
of features and hyperparameters, that vary considerably as time progresses. It is demonstrated that the year
of 2018, with high volatility and extreme prices, is more challenging than the year of 2019. Overall, the
multilayer perceptron ANN for point forecasting obtains the most accurate forecast with rMAEs of 0.81 and
0.77, while the multilayer perceptron ANN for quantile forecasting is outperformed by the model based on
quantile regression averaging that attains CRPSs of 3.53 and 2.24. In a multi-step-ahead horizon, results
demonstrate that accuracy remains steady until the point that no more market clearing prices are available,
after which it rapidly deteriorates.

The point and interval forecastingmodels discussed in Chapters 4 and 5 are employed in the forecasting
procedure described in Chapter 6, that is an execution of initialization, as well as repeated execution of
calibration and exploitation. The forecasting procedure is programmed in PYTHON. The SCIKIT-LEARN
library for machine learning [89] is the programming basis for the considered regression models, and
the KERAS library for ANNs [56] is the programming basis for the considered ANN models.

7.1 Point forecasting

In the results of point forecasting, the initialization, calibration, and exploitation procedures are elab-
orately addressed. When discussing accuracies, it is explicitly noted that it concerns the accuracy at-
tained by the forecast of a particular model. Referring to the accuracy attained by the model itself would
disregard that it is very sensitive to many choices, and would demand an even more elaborate analysis.

7.1.1 Initialization procedure

This section presents the results of the initialization procedure, that is an out-of-sample forecast eval-
uation of 2017. Based on this procedure, it is investigated how the feature set is reduced and what the
effect is of widening or narrowing the training and testing windows of the rolling cross-validation.

Candidate feature set For the candidate feature set, there is a size where near-optimal performance
meets high reduction. It is shown in related research that that point generally lies at sizes smaller than
50 features [103, 59, 2]. Accuracies of the RF regression when reducing beyond 100 features are shown
in Figure 14.
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Figure 14: Accuracy in terms of RMSE as function of the number of features. RF regression. Initialization procedure.

Remark 1 Accuracies decrease slightly but steadily from sizes of 100 to 30 features. Only when
reducing beyond a size of 10 features does accuracy decrease rapidly. At a size of approximately 15
features, near-optimal performance and high reduction meet. This research does not continue with
such a limited feature set however; in a setting of recursive feature elimination, feature importance
might vary considerably for different models [103] and as time progress. Also, the results shown in
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Figure 14 are highly aggregated. Although more features might not benefit the overall accuracy much,
they might benefit, for instance, accuracies for certain hours of the day or for certain price regimes.

This research employs a candidate feature set at a size of 50 features, that is further reduced to a size
of 15 features in the calibration procedure. A candidate feature set that is broad but not so broad that
computational cost is excessively high, combined with a second stage of feature reduction, is a fine-
grain approach to feature selection. It can showwhether the candidate feature set is utilized differently
over time, for instance. Table 3 shows the 50 features included in the candidate feature set. Features
are sorted by name because feature importance might not be representative of actual usefulness due
to the broadness of the set, and might thus be misleading information.

(NL, ID3, -20) (NL, LOAD_A, -4) (NL, GEN_E1_S, -23) (DE, LOAD_A, -5) (DE, GEN_F1_WON, 12)
(NL, ID3, -7) (NL, LOAD_F, -24) (NL, GEN_E1_S, -18) (DE, LOAD_F, -23) (DE, GEN_F1_WOFF, -3)
(NL, ID3, -4) (NL, LOAD_F, -21) (DE, ID3, -168) (DE, LOAD_F, -17) (DE, GEN_F2_S, -9)
(NL, MCP, -1) (NL, LOAD_F, 0) (DE, ID3, -10) (DE, LOAD_F, -12) (DE, GEN_F2_WON, -20)
(NL, MCP, 0) (NL, GEN_A_WON, -13) (DE, ID3, -4) (DE, LOAD_F, 8) (DE, GEN_F2_WOFF, -21)
(NL, MCP, 1) (NL, GEN_A_WON, -11) (DE, MCP, -168) (DE, LOAD_E, -4) (DE, GEN_F2_WOFF, -6)
(NL, MCP, 2) (NL, GEN_F1_WOFF, -21) (DE, MCP, -18) (DE, GEN_A_WOFF, -11) (DE, GEN_F2_WOFF, 3)
(NL, LOAD_A, -15) (NL, GEN_F1_WOFF, -7) (DE, MCP, -10) (DE, GEN_F1_WON, -17) (DE, GEN_F2_WOFF, 6)
(NL, LOAD_A, -12) (NL, GEN_F1_WOFF, 4) (DE, MCP, -4) (DE, GEN_F1_WON, -3) (DE, GEN_F2_WOFF, 11)
(NL, LOAD_A, -7) (NL, GEN_F1_WOFF, 5) (DE, MCP, 0) (DE, GEN_F1_WON, 4) (DE, GEN_E2_S, -8)

Table 3: Candidate feature set FC . Initialization procedure.

Remark 2 Many types of features are represented, and slightly more than half of the features are
German features. The Dutch and German features of the most recent ID3 are included, i.e. (NL, ID3,
-4) and (DE, ID3, -4), as well as the non-lagged MCP, i.e. (NL, MCP, 0) and (DE, MCP, 0). What strikes
is that the Dutch features of slightly-lagged and slightly-leading MCP are included, i.e. (NL, MCP, -1),
(NL, MCP, 1), and (NL, MCP, 2), but not their German counterparts. What also strikes is that the German
features of ID3 andMCP of one week ago are included, i.e. (DE, ID3, -168) and (DE, MCP, -168), but not their
Dutch counterparts. Wind generation and load are represented by many types of features, while solar
generation is representedmostly by features of solar generation forecast errors, i.e. (NL, GEN_E1_S, -23),
(NL, GEN_E1_S, -18), and (DE, GEN_E2_S, -8).

Size of the training and testing windows Table 4 shows the accuracies that the forecasts from
REG.LASSO and ANN.MLP attain in single-step-ahead forecasting as function of the sizes of training
and testing windows. Sizes range from relatively narrow to relatively broad, i.e. from 1 month to 1 year
for training, and from 1 week to 6 months for testing.

Remark 1 As naivemodels obtain forecasts without training and testing, their accuracy is unaffected
by the sizes of training and testing windows.

Remark 2 For the regression and ANNmodels, the size of the testing window becomes insignificant
as the trainingwindowwidens. For a narrow trainingwindow it is beneficial to employ a narrow testing
window, i.e. refit models more often. A wide training window thus benefits accuracy significantly.

Period 2017
Scoring metric MAE (€/MWh)
Training window 1m 6m 1y
Testing window 1w 1m 6m 1w 1m 6m 1w 1m 6m
NVE.DA 6.82
NVE.ID 8.95
REG.LASSO 5.92 5.95 6.31 5.81 5.84 5.92 5.86 5.85 5.89
ANN.MLP 5.99 6.02 6.19 5.68 5.69 5.81 5.64 5.64 5.65

Table 4: Accuracy in terms of MAE as function of sizes of training and testing windows. Initialization procedure.

Transformation Two conclusions regarding feature transformations are that normalization results in
slightly more accurate forecasts than standardization, and that reducing spikes does not benefit accu-
racy at all. Normalization is thus the only transformation that is utilized in calibration and exploitation.
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7.1.2 Calibration & Exploitation procedures

This section presents the results of the calibration and exploitation procedures, that is a systematic
out-of-sample test of the period from 2018 through 2019. Based on this procedure, it is investigated
what accuracies are attained by the considered models. In consideration of the results shown in Table
4, this research utilizes a trainingwindow of 1 year and a testingwindow of 1month for the exploitation
procedure. These windows result in near-optimal accuracies at a computational cost that is acceptable
considering the available resources.

After 1 · (30 · 24) observations (approx. 1 month) are forecasted, the windows are rolled forward and
the observations in the training and validating windows are utilized to find out what features and
what hyperparameters should be used for the model that is exploited to forecast the next 1 · (30 · 24)
observations. The following presents results from the stages of calibration regarding feature selection
and hyperparameter optimization.

Calibration of input feature set In calibration, an RF regression is employed in a recursive feature
elimination to determine which of the features included in the candidate feature set should be in-
cluded in the input feature set. Figure 15 shows which features are included after each calibration.
Bars represent the relative feature importance as determined in initialization. This stage of calibration
is unaffected by the model that is exploited; these results are thus universal for all regression and ANN
models. Again, features are sorted by name.

Remark 1 Of the 50 features in the candidate feature set, there are a total of six dominant features,
that are selected in all or almost all calibrations. Those are the Dutch features of non-lagged, slightly-
lagged, and slightly-leading MCP, the German feature of non-lagged MCP, and the Dutch feature of
most-recent ID3. All dominant features are thus features of price. Dutch features of price are more
useful than their German counterparts, as they are selected more frequently.

Remark 2 Findings in [103] demonstrate that many German and Belgian features of renewable gen-
eration and load are among the 15most useful features for Dutch day-ahead price forecasting, and their
feature importance is of similar magnitude as that of features of price. Figure 15 shows that German
features of renewable generation and load are also selected, and are even more useful than their Dutch
counterparts, as they are selected more frequently. Among the Dutch and German features of genera-
tion and load, there seems to be no dominant features that are selected repeatedly, however, as many
features of generation and load are selected at least in three calibrations. That result for the Dutch
intraday market, combined with the results in [103] for the Dutch day-ahead market, suggests that the
effects of exogenous variables on the price of energy are already largely reflected in the price of the
day-ahead market, or in past prices of the intraday market. A similar conclusion to that drawn in [52],
for the German intraday market.

Remark 3 Of the 50 features in the candidate feature set, there are a total of six features that are not
included in any of the input feature sets. That includes three of the four features of solar generation.

A less elaborate proceduremight base its choice of the input feature set on afixed cut after the 15 highest
ranked features in the candidate feature set, for instance. In consideration of feature importances, the
six dominant features would be included, and then nine other features. The information contained in
the many features of generation and load would then not be used optimally.

Remark 4 As time progresses, Figure 15 shows that different features of generation and load become
more or less useful, and either make or do not make it into the input feature set. Despite the clear
dominance of a limited number of features, the feature with the fifth-highest feature importance in
the candidate set, i.e. (DE, MCP, 0), does not make the input feature set in two calibrations. Calibration
thus tailors the forecasting procedure to the inconstant distribution of feature importance. This might
be even more essential as the share of renewable generation grows further in the energy mix, or in
markets where features are less dominant.

Remark 5 There is no clear trend in the selection of features of renewable generation. Although the
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Figure 15: Input feature set FI as function of calibration iteration. Exploitation procedure.

share of renewable generation has increased significantly over 2018 and 2019, features of renewable
generation are not selected more often as time progresses.

Remark 6 Findings of [103] show that feature importances of an RF regression can bemore concen-
trated than that of other regression models. Thus, the feature importances shown in Figure 15 do not
represent an absolute truth.

Calibration of hyperparameters In calibration, it is then determined what values should be employed
for the hyperparameters of themodel. To that end, Bayesian hyperparameter optimization is employed
with a tree-structured parzen estimator and 100 iterations. Figure 16 shows what accuracy REG.LASSO
attains in terms of MAE, for every iteration of the tree-structured parzen estimator. Color indicates
the calibration; the darker, the earlier the calibration. Figure 17 shows which regularization parameter
λ is selected as optimal after each calibration.

Remark 1 Figure 17 shows that what is estimated to be the optimal hyperparameter varies consid-
erably for different calibrations. For the search space of the regularization parameter λ (alpha), which
is from 0 to 10, the variation of the optimal hyperparameter between consecutive calibrations exceeds
0.1 several times.

Effect of calibration As that result does not necessarily mean that more accurate forecasts are ob-
tained, the effect of calibration on the overall accuracy that REG.LASSO attains for the period of 2017 is
evaluated in different scenarios of feature and hyperparameter calibration. Similar results are found
for other models. A calibration of 12 indicates that the calibration is performed after every 1 · (30 · 24)
observations on the validating set, i.e. the 1 · (30 · 24) observations that precede each testing set. A cal-
ibration of 1 indicates that the calibration is performed only once, and on the 12 · (30 · 24) observations
that precede the first testing set.

Remark 1 Repeated calibration leads to a slightly more accurate forecast with a MAE that is 0.14
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Figure 16: Accuracy in terms of MAE as function of TPE iteration. REG.LASSO. Calibration procedure.
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Figure 17: Value of the regularization parameter λ (alpha) as function of calibration iteration. REG.LASSO. Calibration procedure.

€/MWh lower thanwith single calibration. That result suggests that incorporating repeated calibration
in the forecasting procedure is beneficial.

Period 2017
Scoring metric MAE (€/MWh)
Feature calibration 1 1 12 12
Hyperparameter calibration 1 12 1 12
REG.LASSO 5.72 5.80 5.77 5.86

Table 5: Accuracy in terms of MAE as function of calibration. Single-step-ahead point forecasting. Exploitation procedure.

Overall accuracy Table 6 shows the accuracies that the considered point forecasting models attain
for single-step-ahead (4-hour-ahead) forecasting. A visualizations of the point forecasts, for a short
slice of the out-of-sample test, is shown in Figure J.1.

Remark 1 The accuracies attained by allmodels are higher, i.e. lowerMAE values are attained, for the
period of 2019 than for the period of 2018. This result demonstrates that accuracies vary considerably
when viewed on a yearly scale, which is also true when viewed on monthly, daily, or hourly scales.
In consideration of the significant price deviation shown in Figures 5 (yearly) and B.8 (monthly, daily,
hourly), that is not surprising. A factor that might contribute to better accuracies for 2019 is that the
average ID3 value over 2019 (41.85 €/MWh) is considerably lower than that over 2018 (52.93 €/MWh).
Moreover, prices in 2018 are more volatile, and there are more occurrences of extreme price.

Remark2 Of the naivemodels,NVE.DA attains the highest overall accuracy. Asmost intraday trading
is incited by conditions that are unforeseen during day-ahead trading, the market clearing price largely
defines the ID3 price, especially under stable conditions. NVE.DA thus represents the model to beat,
and this research utilizes the forecasted series of NVE.DA to calculate the rMAE score of other models,
i.e. NVE.DA attains an rMAE of 1.00 for both periods.

Remark 3 The rMAE compensates for variations of price from year-to-year, because the reference
model that is NVE.DA also attains a better accuracy for 2019. Still, the rMAEs attained by all regression
and ANNmodels are considerably lower for 2019 than for 2018. This result demonstrates that the gains
from using more sophisticated models than NVE.DA are higher for 2019 than for 2018.

Remark 4 Of the considered models NVE.ID clearly attains the worst overall accuracies. That result
reflects that the ID3 price generally deviates so much within a few hours, that the price of four hours

37



7 Results I

ago does not hold up as an accurate estimate. The 4-hour gap between the time of forecasting and time
of delivery is thus a major limiting factor for the accuracy of NVE.ID. As NVE.ID offers better accuracies
than all other naive approaches based on intraday price, it is concluded that naive approaches based on
intraday price do not provide reliable forecasts.

Remark 5 The forecasts from all regression and ANN models attain better accuracies than NVE.DA
and thus are capable to infer to a varying degree what drives intraday prices to deviate from day-ahead
prices.

Remark 6 ANN.MLP achieves the highest overall accuracy on both periods, and attains aMAE of 6.55
€/MWh for 2018 and 4.33 €/MWh for 2019.

Period 2018 2019
Scoring rMAE sMAPE MAE RMSE rMAE sMAPE MAE RMSE
metric (-) (%) (€/MWh) (-) (-) (%) (€/MWh) (-)
NVE.DA 1.00 15.19 8.06 12.83 1.00 14.33 5.63 9.30
NVE.ID 1.36 20.76 10.99 16.44 1.33 18.43 7.50 12.26
REG.LASSO 0.84 12.96 6.80 11.11 0.79 11.38 4.47 8.17
REG.SVR 0.89 13.43 7.17 12.93 0.81 11.52 4.57 8.49
ANN.MLP 0.81 12.47 6.55 10.82 0.77 11.04 4.33 8.02
ANN.GRU 0.90 13.64 7.21 11.89 0.84 12.27 4.72 8.59

Table 6: Accuracy in terms of rMAE, sMAPE, MAE, and RMSE. Single-step-ahead point forecasting. Exploitation procedure.

Similarly to the year of 2018, the year of 2020 is also characterised by many extreme prices. Figure 9
shows that there are more in 2018 but that they are even more severe in 2020, however. Besides that,
Figure 10 shows that there are only two occurrences of (consecutive) negative prices in 2018, while there
aremanymore in 2020. The year of 2020 is considered as a period that is extremely far from normal; it
is left out of consideration in the results that follow as it would influence the results to a great extent.
But a separate out-of-sample test of 2020 demonstrates exactly how challenging that year is; forecasts
from NVE.DA, REG.LASSO, and ANN.MLP attain sMAPEs of 24.55, 19.70, and 19.85 %.

In-depth accuracy Table 6 is an aggregated representation of accuracy. More insightful are Figures 18
and 19, that show the accuracy that the considered models attain for the period of 2019 as function of
delivery hour and of price range, respectively. Figures K.1 and K.2 show similar results, for the period of
2018. To improve readability, many figures in this chapter connect markers by lines. It should be noted
that lines do not suggest interpolation, as most figures have discrete x-axes such as delivery hours or
look-ahead-times.

Remark 1 Figure 18 shows that accuracy varies considerably for different delivery hours. Besides
absolute accuracies, relative accuracies also vary considerably; the forecast from NVE.ID attains the
best accuracy of all forecasts at 04:00, for instance, while it generally attains the worst accuracies.
Already with the limited number of forecasts that this research considers, that result suggests that a
model based on composite forecastingmight attain a better overall accuracy than the overall accuracies
attained by its individual forecasts, such as demonstrated in [77].

Remark 2 Figure 18 demonstrates the benefits of sophisticated models, as the naive model NVE.ID
based on intraday price does not provide a reliable forecast. For certain delivery hours, e.g. at 04:00
and at 15:00, the forecast is rather accurate. For other hours, the forecast is extremely inaccurate, e.g.
at 09:00 and during night hours. The naive model NVE.DA based on day-ahead price generally provides
a more accurate forecast, although it is still unreliable for certain delivery hours. That variability is
less severe for the regression and ANNmodels. Although their accuracy is still worse during day hours
than during night hours, they provide forecasts that are more accurate and that remain steadier across
delivery hours. Those are thus regarded as more reliable point forecasts.

Remark 3 Figure 18 demonstrates that the general shape of the forecasts from all models is similar,
and that accuracy converges during night hours. It is especially during the morning and evening, that
the simpler REG.LASSO and ANN.MLP models attain higher accuracies than the more complex REG.SVR
and ANN.GRU models. That result suggests that in the forecasting procedure, the more complex mod-
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els do not reach their full potential. They might be limited by the amount of training data or lose
generalizability despite the efforts to fight overfitting.
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Figure 18: Accuracy in terms of MAE as function of deliver hour. Single-step-ahead point forecasting. Exploitation procedure. 2019.

Remark 4 As there are an equal number of observations for every delivery hour in training, vali-
dating, and testing sets, the learning process of models is not biased towards improving accuracy for
certain delivery hours. There are many more observations for price ranges close to the average price,
however. The regression and ANN models are therefore biased towards learning for those “common”
price ranges. Furthermore, dynamics in extreme price regions might be much less explainable than
in the common price ranges. As a consequence, all accuracy profiles shown in Figure 19 are U-shaped,
from which it becomes apparent that accuracy deteriorates for occurrences of extreme price. Still, ac-
curacies are in the lower part of the U-shape for the large majority of observations, as more than 90%
of observations lie in the range [20, 60), and more than 95% of observations lie in the range [10, 70).
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Figure 19: Accuracy in terms of MAE as function of price range. Single-step-ahead point forecasting. Exploitation procedure. 2019.

Superiority Figure 20 shows the results of the GW-test for the forecasts from the consideredmodels.
It supports what is reported in terms of accuracy. The forecast from ANN.MLP is superior to all other
forecasts. Furthermore, the forecast from all the regression and ANN models are superior to those
from the naive models. For the regression models, the null hypothesis that the competing forecasts of
REG.LASSO and REG.SVR have equal conditional predictive ability cannot be rejected.

Residuals Figure 21 shows the residual errors ϵ = y−ŷ of the forecast from REG.LASSO for the period
of 2019, and Figure 22 shows how they are distributed.

Remark 1 The mean of that forecast lies very close to zero, which demonstrates that there is almost
no bias toward over- or underestimation. Figure 22 shows that the distribution has positive kurtosis,
i.e. the tails of the distribution are heavier than if the residuals were normally distributed. The distri-
bution also has positive (right) skewness, i.e. the positive residuals are more extreme than the negative
residuals, where positive residuals represent underestimation. Figure 8 shows that there are many
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Figure 20: GW-test. Single-step-ahead point forecasting. Exploitation procedure. 2018 & 2019.

more extremely high prices that lead to relatively large under-estimations than extremely low prices
that lead to relatively large over-estimations.

Remark 2 Although the mean is close to zero, Figure 21 shows that there is significant variation
in residuals around the mean. Moreover, Figure 23 shows that there is still serial correlation in the
residual time-series. For a white noise series with no seasonality, at least 95% of the coefficients should
lie within the confidence interval ±2/

√
T . Figure 23 shows that some coefficients lie considerably

outside that range.
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Figure 21: Residuals. ANN.MLP. Single-step-ahead point forecasting. Exploitation procedure. 2019.

Figure 24 shows the quantile values of the residual errors, aggregated by 7*24 observations (approx. 1
week), as an indication of variance.

Remark 3 The variance is certainly not constant. Especially at the edges of the distribution, i.e. for
quantiles that lie outside the interquartile range, the average residual error varies considerably, and
even the center quantile varies up to 5 €/MWh from week to week.

The mean of the residuals lies close to zero, but residuals are distributed with fat tails and still show
some degree of serial correlation. Furthermore, there is some degree of heteroscedastic. The error
term thus does not resemble white noise, which suggests that a more sophisticated approach might
be able to capture the intraday price dynamics to a larger extent than the models considered in this
research.
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Figure 22: Distribution of residuals. ANN.MLP. Single-step-ahead point forecasting. Exploitation procedure. 2019.
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Figure 23: Autocorrelation and partial autocorrelation of residuals. Coefficients that are within the 95% confidence interval are a
lighter shade. ANN.MLP. Single-step-ahead point forecasting. Exploitation procedure. 2019.
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Figure 24: Quantile values of residuals. ANN.MLP. Single-step-ahead point forecasting. Exploitation procedure. 2019.
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7.2 Interval forecasting

The previous section addresses the initialization and calibration procedures elaborately. As these pro-
cedures are very similar for interval forecasting, this section presents results of the exploitation pro-
cedure only.

7.2.1 Exploitation procedure

Overall accuracy Table 7 shows the scores that the interval forecasts of the considered interval fore-
casting models attain for a single-step-ahead horizon. A visualization of the interval forecast from
ANN.Q.MLP is shown J.2. The CRPS is an aggregated score for all intervals at once, while the two pin-
ball losses are calculated for each interval separately. This research utilizes an equidistant quantile grid
α = {0.05, 0.1, . . . , 0.95} that gives rise to an interval grid with a step size of 10%, i.e. {0.1, 0.2, . . . , 0.9}.
Results concentrate on the 0.1, 0.5, and 0.9 intervals, that represent narrow, medium, and wide inter-
vals, respectively.

Remark 1 From the CRPSs and PLs it becomes clear that just like for point forecasting, 2018 is a
relatively challenging year for interval forecasting. The results in Table 7 show that the attained CRPSs
and PLs are worse for 2018 than for 2019. In addition to that and something that would not be visible
when considering the average PL, is that the PLs of the upper and lower quantile forecasts of an interval
are also more segregated for 2018.

Remark 2 Of the naive models, the forecast from NVE.Q.DA attains the worst accuracies and a CRPS
of 3.64 for the period of 2019. NVE.Q.PNT utilizes the same approach as NVE.Q.DA but on the basis on
themore sophisticated forecast from REG.MLP. That forecast attains a considerably better CRPS of 2.51.
That result demonstrates that the considered naive approach of interval forecasting can be successful,
although it relies on the accuracy attained by the underlying point forecast.

Remark 3 Of themore sophisticatedmodels, the forecast from REG.Q.QRA attains the best accuracies
and a CRPS of 2.24 for the period of 2019.

Remark 4 For 2018, the forecast from ANN.Q.MLP is not able to outperform NVE.Q.PNT. Its ability to
generalize on observations with high volatility and many extreme prices is thus limited.

Period 2018 2019
Scoring CRPS PL CRPS PL
metric (-) (-) (-) (-)
Interval 0.1 0.5 0.9 0.1 0.5 0.9
Quantile 0.45 0.55 0.25 0.75 0.05 0.95 0.45 0.55 0.25 0.75 0.05 0.95
NVE.Q.DA 4.45 3.97 4.05 3.22 3.60 1.21 1.80 3.64 2.78 2.83 2.30 2.48 0.97 1.10
NVE.Q.PNT 3.58 3.21 3.29 2.55 3.00 0.92 1.56 2.72 2.11 2.14 1.76 1.88 0.75 0.91
REG.Q.QRA 3.53 3.20 3.30 2.51 3.04 0.88 1.46 2.24 2.13 2.17 1.72 1.90 0.69 0.88
ANN.Q.MLP 4.11 3.97 4.05 3.22 3.60 1.21 1.80 2.53 2.18 2.20 1.79 1.90 0.72 0.86

Table 7: Accuracy in terms of CRPS and PL. Single-step-ahead interval forecasting. Exploitation procedure.

In depth accuracy For interval forecasts, there are more desires to bear in mind than for point fore-
casts; an interval forecast represents a closer approximation of reality that must not portray uncer-
tainty incorrectly. Therefore, interval forecasts are evaluated in terms of reliability and sharpness as
well. Table 8 shows different metrics that are more directly interpretable than those of Table 7. There
is the average width of the interval, the percentage of realized observations that are contained in the
interval (alias coverage), and the number of occurrences of non strictly increasing quantile values (alias
quantile crossings).

Remark 1 For all forecasts, empirical coverages are reasonably close to nominal coverages. Only
the empirical coverages of NVE.Q.DA and NVE.Q.MLP deviate more than 4%. The 0.5 interval deviates
the most, as that interval is the most challenging of the three due to having a very high density of
observations.

Remark 2 Accuracies and widths reported in [54], that contains a similar analysis but of the German
intraday market for the period of July 2014 through September 2016 (approx. 3 years), are of a similar
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order of magnitude as those shown in Tables 7 and 8. Accuracies reported in [54] are slightly better,
although the naive forecast of that research attains slightly better accuracies as well. In contrast to the
results shown in Table 7, results of [54] show that forecasts from a model equivalent to NVE.Q.QRA are
not superior to those from a model equivalent to NVE.Q.PNT.

Remark 3 The problem of quantile crossings becomes particularly apparent in view of the forecast
from ANN.Q.MLP; for 2019, there are a total of 157 observations that have one or more quantile cross-
ings. While that result is for the quantile grid of α = {0.05, 0.1, . . . , 0.95}, more accurate estimations
of the true distribution would require an even finer grid of quantiles, and many more quantile cross-
ings. That result demonstrates that although the forecast from ANN.Q.MLP is rather certain for 2019,
demonstrated by a relatively low CRPS and relatively narrow widths, the problem of quantile crossings
is more severe than in its less certain and wider interval forecast for 2018.

Period 2018 2019
Scoring Width Coverage QC Width Coverage QC
metric (€/MWh) (%) (-) (€/MWh) (%) (-)
Interval 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9
NVE.Q.DA 1.56 9.38 31.53 9 45 88 0 1.70 9.60 30.87 13 58 94 0
NVE.Q.PNT 1.31 7.52 25.78 9 45 88 0 1.31 5.51 23.45 13 59 95 0
REG.Q.QRA 1.70 10.13 32.74 11 54 91 5 1.09 6.24 20.30 10 51 92 17
ANN.Q.MLP 1.80 9.98 31.81 11 53 91 23 1.20 6.62 18.55 10 50 88 157

Table 8: Accuracy in terms of width, coverage, and quantile crossings. Single-step-ahead interval forecasting. Exploitation
procedure.

7.3 Intricacies

Multi-step-ahead Figure 25 shows the MAE scores that the considered point forecasting models at-
tain for multi-step-ahead forecasting.

Remark 1 Figure 25 demonstrates that accuracy rapidly deteriorates when no more published mar-
ket clearing prices are available, and forecasts are basedmostly on features of generation and load. It is
difficult to conclude based on accuracy whether look-ahead-times further than 9 hours represent us-
able forecasts. For that reason, Chapter 9 investigates whether forecasts of look-ahead-times up to and
including 20 hours (far) lead to higher profits than forecasts of look-ahead-times up to and including
9 hours (moderate) or 5 hours (near).
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Figure 25: Accuracy in terms of MAE as function of look-ahead time. REG.LASSO. Multi-step-ahead point forecasting.
Exploitation procedure. 2019.

Figure 26 shows the CRPS scores that the considered interval forecastingmodels attain for multi-step-
ahead forecasting.

Remark 1 Figure 26 shows that the CRPS increases monotonically with increasing look-ahead-time.
This effect follows an S-shaped curve. A relatively steep regime starts at a look-ahead-time of 9. Left
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of this regime, the model can base itself on realized MCP values, while right of this regime, the model
cannot base itself on realized MCP values.

Remark 2 Figure 26 shows that the number of quantile crossings decreases with increasing look-
ahead-time. Figure 27 shows that the intervals widen with increasing look-ahead-time. As the separa-
tion of quantiles increases, the number of quantile crossings decreases.
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Figure 26: Accuracy in terms of CRPS as function of look-ahead time. ANN.Q.MLP. Multi-step-ahead interval forecasting.
Exploitation procedure. 2019.

Figures 27 and 28 show the width and coverage deviation of the intervals, respectively, as function of
look-ahead-time.

Remark 1 Figure 27 shows that the width increasesmonotonically with increasing look-ahead-time,
which indicates that the model is less certain about the estimation, the further the target variable is
into the future. Like the CRPS shown in Figure 26, this effect follows an S-shaped curve. Within the
flatter regimes, the look-ahead-time has minor effects on the width.

Remark 2 Figure 28 shows that the coverage deviation of the wider intervals (70–90%) generally
decreases as look-ahead-time increases and the average width of the intervals increase. The wider
intervals at nearer look-ahead-times are generally too wide, as too many observations are covered.
The opposite is true for those intervals at further look-ahead times. Empirical coverages of the wider
intervals do not diverge more than 3% from nominal coverages, which suggests that reliability is good
even at relatively far look-ahead-times of 20.

Remark 3 For the narrower intervals (10–30%), coverage deviation varies more considerably and
is less a function of look-ahead-time. By definition, those intervals cover less observations, which is
why they are more sensitive to slight misestimations. Empirical coverages of the narrower intervals
often divergemore than 4% from nominal coverages, which demonstrates that the reliability of narrow
intervals at further look-ahead-times is questionable.

Separate models per delivery hour The aim of training separate models per delivery hour is to inves-
tigate whether more accurate forecasts can be attained, but also to stress that separate models can
incorporate different features reflecting updated information, although that does not lie within the
scope of this research.

Remark 1 The accuracy that the forecasts from the 24 REG.LASSO models jointly attain for the
year of 2019 is 4.45 €/MWh, and thus only slightly more accurate than the forecast from only one
REG.LASSO model that attains 4.47 €/MWh. That result suggests that—if not provided with updated
information—none of the 24 REG.LASSO models are more capable to learn what drives intraday prices
in their corresponding delivery hour than the single REG.LASSO model. A single set of regression coef-
ficients is not more optimal for some delivery hours than for others.

Remark 2 The 24 separate models might be limited by the number of observations in the severely
reduced training sets. Further research is needed to assess whether the 24 separate models can out-
perform the single model when given more observations for training and/or updated information.
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Figure 27: Width as function of look-ahead-time.
ANN.Q.MLP. Multi-step-ahead interval forecasting.

Exploitation procedure. 2019.
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Figure 28: Coverage deviation as function of look-ahead-time.
ANN.Q.MLP. Multi-step-ahead interval forecasting.

Exploitation procedure. 2019.

Classification of extreme prices The aim of the classification problem is to estimate with 75% confi-
dence whether prices exceed 75 €/MWh. The classification-forecast from ANN.C.MLP and the quantile-
forecast from ANN.Q.MLP are evaluated for the year of 2018 as it contains many occurrences of extreme
prices.

Remark 1 Both approaches to classification do not result in adequate accuracy, which is reflected
mostly by the attained number of false negatives that can be detrimental to risk strategies; of the total
number of observationswith a price higher than 75 €/MWh, 83% and 86%were incorrectly classified by
ANN.Q.MLP and ANN.C.MLP, respectively. ANN.Q.MLP performs slightly better in terms of false positives,
with a total of 16 false positives against 131 from ANN.C.MLP. That result demonstrates that extreme
prices in the Dutch market are very difficult to forecast with a simple approach, and that posing the
problem as a classification is not an approach that outperforms a regression-based classification.
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8 Point forecasting andmodel predictive control: Energy plantwith
storage capacity

This chapter introduces a simulation of an energy plant with storage capacity that smartly dispatches gen-
erated energy to the Dutch intraday market. The aim is to investigate whether superiority that is evaluated
theoretically is also found when evaluated practically. Model predictive control handles optimization of the
dispatch schedule by charging and discharging the battery with generated energy, and is supplied with in-
formation on future price and generation. A base case is established based on a hypothetical wind plant and
battery, as well as additional cases that show whether outcomes are sensitive to system parameters.

Only in a practical scenario does the value of a point forecast become apparent; when it translates
into actual profit, for instance. In a mostly flat market, sophisticated price forecasts—no matter how
accurate—might not lead to more profitable schedules than naive forecasts, while in a volatile market,
even mildly accurate forecasts might lead to more profitable schedules. Therefore, it is beneficial to
assess not only accuracy but also the impact of a forecast on decision costs and profit [96].

This research establishes a simulation that investigates an energy plant with storage capacity. The
system has access to price forecasts of the intraday market and uses model predictive control to set-
tle on a dispatch schedule. The objective of the simulation is not to offer an as-realistic-as-possible
outlook on real-world performance. Rather, it is used to see whether and how a system that is a simu-
lation of reality reacts to different price forecasts. The system is therefore a simplified representation
of reality while being sophisticated enough to offer insights. While [101] has an aim similar to that of
this research, with a trading strategy that buys and sells on the Polish day-ahead and balancing mar-
kets, results are purely profit oriented, and it does not state elaborate details about the system. [82]
investigates a system similar to that of this research, but does not aim to deduce the impact of price
forecasts.

8.1 System description

Because the system is reduced to only the core components, case parameters are mostly universal,
and conversion to different energy plants with different types of storage capacities is straightforward.
What follows is a description of the system, where attention is given to several assumptions that might
affect results when altered. As it is the aim to infer the effect of price forecasts, full knowledge about
future generation, for instance, eliminates the effects that uncertainty would have on the results. The
downside of that assumption is that absolute results of the simulation might not fully represent real-
world results, however.

Figure 29 shows a schematic overview of the system, with the various subsystems that interact. There
are the system parameters, that define the specifications of the battery. There is the forecasting proce-
dure that provides a multi-step-ahead point forecast of the ID3 index to the model predictive control,
and the energy plant that provides the volume of generated energy to themodel predictive control. The
model predictive control minimizes an objective function, based on system constraints, and controls
how the battery should discharge. The battery provides the model predictive control with an update of
its level of charge. Finally, there is the intraday market that provides the true price of the ID3 index.

8.1.1 Base case

The component of the energy plant in the base case is a hypothetical wind plant, because wind energy
is the largest variable renewable energy source in terms of volume in the Dutch energy mix, as shown
in Figure 1. Because high-resolution data of historic generation from actual wind plants in the Nether-
lands are not publicly available, this research employs the aggregated generation of all wind farms
installed on land [30], i.e. all onshore wind plants. Two transformations are performed on that series.
Firstly, it is averaged for each hour of 2018 and 2019, so that it becomes a one-year series. Secondly,
it is normalized so that for every month there is a total generation of 300 MWh. Because an averaged
and normalized one-year generation profile is utilized, the effects of varying generation volumes from
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Model predictive control

minBI, BO
Q̂ =

∑N−1
k=0 −

(
− BO(k) · ηO · P̂ (k) −

(
CI · BI(k) + CO · BO(k)

))

Forecasting procedure

Forecasted price

Energy plant

Generation Intraday market

Realized price

Energy storage

B(k + 1) = B(k) + BI(k) · ηI + BO(k)

System parameters

ηI , ηO , N , CI , CO

System constraints

Equation 42

P̂ (k)

EI(k)

B(k)

BI(k)

BO(k)

EO(k) = −BO(k) · ηO
Q(k) = −BO(k) · ηO · P (k)−

(
CI ·BI(k) + CO ·BO(k)

)

P (k)

Figure 29: Schematic overview of the system.

month to month and from year to year are eliminated, and the effect of different price forecasts, and
that of varying price characteristics of 2018 and 2019, can be assessed. The transformed generation
profile has a nominal power of approx. 1.3 MWh, which coincides with the specifications of the rela-
tively small onshore wind turbine SIEMENS SWT-1.3-62, six of which are operational for the wind farm
Beabuorren in Friesland, The Netherlands [86]. The subsystem of the energy plant is thus reduced to
a generation profile, of which the system has full knowledge.

The component of energy storage in the base case is a large-scale stationary energy storage product in
the form of a rechargeable lithium-ion battery. The base case follows the specifications of the TESLA
MEGAPACK [98]. The battery is assumed to have a fixed maximum capacity of 10 MWh, and a fixed
minimum capacity of 0MWh, fixedmaximum charge and discharge rates of 5MWh per hour, and fixed
charging and discharging efficiencies of 95%, i.e. a fixed round-trip efficiency of approx. 90%. There
is also a cost of usage, that incorporates that the lifetime of the battery is affected when repeatedly
charging and discharging the battery, that is assumed to have a fixed value of 3 €/MWh. The subsystem
of energy storage is thus reduced to a capacity range, charging and discharging rates and efficiencies,
and a cost of usage [82].

Another important consideration is the look-ahead-time. Lower look-ahead-times mean that the pro-
vided forecasts are relatively accurate, but that the system might be limited to identify low and high
prices within that time. Higher look-ahead-times mean that the provided forecasts are relatively inac-
curate, and the systemmight base choices on incorrect information. The base case utilizes multi-step-
ahead forecasts with look-ahead-times up to and including 9 hours.

8.1.2 Additional cases

In the Netherlands, the photovoltaic power potential is relatively low. Besides that, wind and solar
plants have inherently different generation profiles, asmany evening/night/morning hours can provide
wind energy but no solar energy. As prices are generally higher during the day, which is also when there
is solar generation, the system might work well on the basis of solar generation as well. To investigate
the effect of the energy plant, this research investigates an additional case based on a solar generation
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profile. The optimal schedule might be sensitive to the specifications of the battery as well. First
and foremost, the capacity of the battery might limit the amount of time that the system can wait
before it offers energy to the market. Furthermore, high charging and discharging constraints might
limit the system to employ an aggressive schedule, so that it is more reliant on longer periods of high
prices. Profits are also sensitive to the specifications of the battery, as cost of usage and charging and
discharging inefficiencies are a significant cost to the system. Finally, the optimal schedule might
be sensitive to the look-ahead-time. It is investigated whether the moderate look-ahead-time of 9
hours that is utilized in the base case is indeed an optimal balance between a lack of information and
misinformation, and it is investigated what the effect is of increasing and decreasing the look-ahead-
time. This research investigates additional cases with look-ahead-times up to and including 20 hours
(long) and 5 hours (short).

8.2 Optimization problem

Output variables of the system constitute the dispatch schedule, and are the amount of energy supplied
to the batteryBI(k) and the amount of energy that is drawn from the batteryBO(k). The volume that is
dispatched is−BO(k) ·ηO. Input variables of the system are what the system bases its optimal dispatch
schedule on, and are the amount of energy generated by the energy plant EI(k), the amount of energy
stored in the battery B(k), and the forecast of the Dutch ID3 price index P̂ (k).

The objective of the system is to maximize an objective variable, the estimated profit Q̂, by controlling
the amount of energy supplied to the battery BI(k) and drawn from the battery BO(k). The energy
drawn from the battery, minus what is lost due to discharge efficiency, is dispatched according to a
hypothetical transaction on the intradaymarket. At a sampling instant k, Q̂(k) is defined as the amount
of energy dispatched, i.e. −BO(k) · ηO(k), times the estimated ID3 price P̂ (k), minus the costs of the
battery, i.e. CI · BI(k) + CO · BO(k). This research refers to Q(k) and Q̂(k) as profit and estimated
profit, although a more delicate approach that takes into account trading activity would be necessary
for them to be more representative of real world profits.

In state space description, the system is formalized as an explicit discrete time-invariant system, where
the state vector x(·), input vector u(·), state matrix A, and input matrix B are defined as[
B(k + 1)

]︸ ︷︷ ︸
x(k+1)

=
[
1
]︸︷︷︸

A

[
B(k)

]︸ ︷︷ ︸
x(k)

+
[
ηI 1

]︸ ︷︷ ︸
B

[
BI(k) BO(k)

]⊤︸ ︷︷ ︸
u(k)

(41)

Model predictive control (alias receding horizon control) is a control scheme that optimizes for a finite
number of future states in the prediction horizon, then executes the first step of the found solution,
and then re-optimizes on a horizon that is shifted one step into the future. That makes it particularly
suitable for the problem at hand, as updated forecasts and system states can be provided continu-
ously. Model predictive control utilizes an objective function and constraints that together formalize
the problem for the prediction horizon K. The optimization must satisfy all equality and inequality
constraints. The energy stored in the battery at the next sampling instant B(k + 1) is equal to the en-
ergy stored in the battery at the current sampling instant B(k) plus the energy supplied to the battery
BI(k) times the charge efficiency ηI , plus the energy drawn from the battery BO(k). The amount of
energy that exits the system EO(k) is equal to the energy generated EI(k), minus the energy supplied
to the battery BI(k), minus the energy drawn from the battery BO(k) times the discharging efficiency
ηO. The energy stored in the battery B(k) cannot lie outside capacity constraints. The energy drawn
from the battery BO(k) cannot be absolutely larger than the energy stored in the battery B(k). Finally,
the amount of energy that is supplied to the battery BI(k) and drawn from the battery BO(k) cannot
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be more than the maximum charge/discharge rate.

min
BI , BO

Q̂ =

K∑
k=1

−
(
−BO(k) · ηO · P̂ (k)−

(
CI ·BI(k) + CO ·BO(k)

))
s.t. B(k + 1) = B(k) +BI(k) · ηI +BO(k)

EO(k) = EI(k)−BI(k)−BO(k) · ηO

0 ≤ B(k) ≤ 10

0 ≤ BI(k) ≤ 5

− 5 ≤ BO(k) ≤ −B(k)

(42)

8.2.1 Assumptions

In the base case, a constraint is added to this problem that all energy that is generated enters the battery
before it is dispatched, i.e. there is an equality constraint BI(k) = 100% ·EI(k). All generated energy is
thus dispatched, and the system has no destination for energy other than dispatch after transacting on
the intradaymarket. Without that constraint, the systemwould charge the battery only when deeming
that it increases estimated profit. ConstrainingBI(k) = 100%·EI(k) eliminates the effects of the cost of
usage and of inefficiencies of the battery on choices that the system makes for charging, such that the
battery specifications affect the absolute profit only. That constraint is thus very important in forcing
all schedules to start with the same initial situation, so that the effect of changing the price forecast is
separated from other effects.

It is assumed that all offers that are hypothetically placed for dispatch are accepted for the realized ID3
price of the product in question, although in reality that would require matching counteroffers. The
4-hour gap between forecasting and delivery provides a broad window wherein offers of the ID3 price
can be be accepted. Also, the system never dispatchesmore than 95%·2.5MWh. Offers of such volumes
are very common on the Dutch intraday market, demonstrated by the distribution of offer volumes in
2018 and 2019, shown in Figure A.2. Therefore, it is assumed that the gross income from dispatch is
simply the amount of energy dispatched times the realized ID3 price, i.e.

∑T
t=1 EO(t) · P (t).

8.2.2 Evaluation

When all realized system outputs, i.e. BI(t) and BO(t) for t = {1, . . . , T}, are determined from the
optimization problem of Equation 42, the profit Q can be calculated, i.e.

Q =

T∑
t=1

−BO(t) · ηO · P (t)−
(
CI ·BI(t) + CO ·BO(t)

)
(43)

The schedules are evaluated on the profitQ and on rel. profit, i.e. the profit normalized by that attained
by a reference schedule. Furthermore, they are evaluated on the percentage of hours that the system
dispatches (alias dispatch frequency), and the average volume of dispatch (alias dispatch volume). The
dispatch frequency and volume are linearly related because all generated volume is dispatches, and
thus shine a different light on the same result.

Two reference schedules are added to the evaluation. The first reference schedule, referred to as Direct
feed, involves no optimization or forecasting. That schedule simply dispatches all energy generated
during an hour for the ID3 price of that hour, such thatEO(t) simply equalsEI(t) for all t and the profit
is
∑T

t=1 EI(t) ·P (t). The second reference schedule, referred to as True price, is optimized based on the
true intraday price. The system thus has full knowledge of price and generation and thus provides
an upper limit for schedules that are optimized based on price forecasts. Direct feed is utilized to
normalize the profits of other schedules, i.e. the rel. profit of Direct feed is 100%.
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9 Results II
This chapter discusses results from the case study. It is concluded that the system attains higher profits when
exploiting a schedule that is based on a more accurate forecast. With a schedule based on the most accurate
point forecast, that from ANN.MLP, the system attains a profit that is 94.5% of the reference profit that is based
on a practically infeasible direct feed strategy. Even based on the least accurate forecast, that from NVE.DA,
the system is able to attain 93.1% of the reference profit. It is concluded that it is not so much the accuracy
of the forecast than its shape, that is important to attain profit. In terms of dispatch frequency and volume,
the schedules are more divergent, however, and especially for a smaller storage capacity, the schedules based
on forecasts from REG.LASSO and ANN.MLP become relatively high frequency and low volume schedules, with
more than 8% higher dispatch frequencies than the schedule based on forecasts from NVE.DA. It is concluded
that the considerable reduction of point forecast accuracies for further look-ahead-times does not mislead the
system and deteriorate profits, as it amasses approx. 3% more profit with schedules based on forecasts for
further look-ahead-times.

The multi-step-ahead point forecasts discussed in Chapter 7 are employed in the case study described
in Chapter 8. The case study is programmed in MATLAB. It is formulated as a linear programming that
is solved with the YALMIP toolbox for modeling and optimization [110].

Results are discussed as much as possible in relative terms, as absolute results are sensitive to system
parameters. Of the in Chapter 7 considered forecasts, only the forecasts from NVE.DA, REG.LASSO, and
ANN.MLP are considered in this chapter, as they have relatively low computational costs and very similar
conclusions would be drawn based on the forecasts from other models. The schedules are evaluated
for the full period of 2018 through 2019, as well as per year separately. The period of 2018 is identified
earlier to be amore challenging year with higher volatility andmore extreme prices, such that forecasts
attain worse sMAPE scores for 2018 than for 2019.

9.1 Base case

Table 9 shows how the schedules based on the different price forecasts perform.

Remark 1 Table 9 shows that the schedule based on the true price attains the highest rel. profit
of 104.5% over the full period. As this schedule can take advantage of extreme prices of which it has
perfect knowledge, this schedule performs unrealistically well and provides an upper limit for the other
schedules. That schedule is the only to attain a rel. profit higher than 100% given the parameters of
the base case.

Remark 2 Intraday prices are higher for the period of 2018, which is reflected by the fact that all
schedules attain profits that are more than 30% higher for 2018 than for 2019.

Remark 3 Intraday prices are also more volatile for the period of 2018, which is reflected by the fact
that the schedule based on the true price attains a rel. profit that is approx. 7% higher for 2018 than
for 2019. The schedules based on NVE.DA and REG.LASSO are only able to convert the higher volatility
into a 5% higher rel. profit for 2018 than for 2019, which might reflect the fact that forecast accuracies
are relatively slightly better for 2019 (sMAPE of 14.33%, 11.38%) than for 2018 (sMAPE of 15.19%, 12.96%).
All schedules are thus able to take advantage of the stronger presence of minimum-maximum pairs in
more volatile market conditions and therefore come closer to the generated value.

Remark 4 Absolute and relative profits are only marginally sensitive to the three different forecasts,
and deviate only about 1%. Based on the forecast fromNVE.LASSO, the system is able to obtain a profit in
2018 that is 0.7% higher than based on the forecast fromNVE.DA, although the forecast fromNVE.LASSO
attains an accuracy that is 2% lower in terms of sMAPE. A factor that contributes to the insensitivity is
that the system bases its decisions largely on the estimation where low and high occurrences of price
are during the day, which follows a seasonal profile that is captured quite well by all forecasts. Next to
accuracy, it is thus important that the profile of the forecasted and realized prices are of a similar shape.
Something that is also concluded in [82]. Another factor that contributes to the insensitivity is that
discharging of the battery, i.e. dispatching of energy, happens at a limited discharge rate. The system
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is thus forced to ‘spread out’ dispatch over a region of high prices instead of concentrating all dispatch
on a single occurrence of high price which would introduce sensitivity caused by slight misestimations
of local maxima.

Remark 5 In terms of dispatch frequency and offered average volume, the schedules based on the
different forecasts are more dissimilar however. Based on REG.LASSO, the system dispatches energy
in almost 8% more instances than that based on NVE.DA. With that higher offer frequency comes a
reduced average volume. The schedule based on REG.LASSO is thus characterized as a relatively high
frequency and low volume schedule.

Remark 6 With the parameters of the base case, none of the profits attained by schedules based on
forecasts are higher than that of direct feed. However, that schedule represents consistently offering
all generated energy on the intradaymarket, which is assumed to be infeasible in reality because it may
violate market trading constraints and may be subject to a high degree of unaccepted offers.

Profit Rel. profit Dispatch Dispatch
(k€) (%) frequency (%) volume (MWh)

Period Full 2018 2019 Full 2018 2019 Full 2018 2019 Full 2018 2019
Direct feed 333.1 186.2 147.0 100 100 100 100 100 100 0.42 0.42 0.42
True price 348.2 200.2 148.0 104.5 107.6 100.7 23.9 24.0 23.9 1.57 1.57 1.57
NVE.DA 310.1 177.5 132.6 93.1 95.4 90.2 21.2 20.5 21.9 1.77 1.83 1.72
REG.LASSO 311.9 178.8 133.1 93.6 96.1 90.6 28.8 29.1 28.5 1.30 1.29 1.32
ANN.MLP 314.8 180.0 134.8 94.5 96.7 91.7 27.5 29.0 25.9 1.37 1.30 1.45

Table 9: Performance of schedule in terms of profit, rel. profit, dispatch frequency, and dispatch volume. Wind plant. Storage
capacity of 10 MWh.

For a one-week period in 2018, for the system based on a wind plant, and for the schedule based on
REG.LASSO, the system variables as function of time are shown in Figure 30. What generally holds true
for this system is that a large portion of energy is generated during night hours, when the ID3 price
index is usually lower than during day hours.

Remark 7 What the schedule thus successfully does is store the energy generated during night
hours, to increase the volume that it offers on the intraday market at estimated local maxima dur-
ing day hours. This results in repeated cycles of slow charge and fast discharge.

Remark 8 Because generation is rather continuous throughout the day, the system can discharge
and then charge the battery in a rapidly repeating cycle. In the one-week period shown in Figure 30,
there are no occurrences where the battery is exploited near its maximum capacity of 10 MWh.

9.2 Additional cases

Impact of storage capacity The storage capacity can greatly impact the schedules. With a smaller
battery, the schedule must dispatch energy more frequently and might need to settle with smaller
price differences. With a larger battery, the system is more capable to hold on to a lot of energy that it
can potentially hold onto until it estimates very high prices. It is still constrained by look-ahead-time
and by maximum charge/discharge rates, however. Table 10 shows how the schedules based on the
different price forecasts perform, when the system has a smaller battery with a maximum capacity of
5 MWh and maximum charge/discharge rates of 2.5 MWh/hour or a larger battery with a maximum
capacity of 20 MWh and maximum charge/discharge rates of 10 MWh/hour.

Remark 1 Table 10 shows thatwith a smaller battery, the system is indeed forced to exploit schedules
that dispatch more often. The dispatch frequencies of all schedules increase more than 9%. Besides
that, the rel. profit of the schedules based on NVE.DA and REG.LASSO decrease more than 2%. The rel.
profit of the schedule based on the true price, which is now less capable to amplify volume during high
prices, is hit even harder by the smaller battery, however, and decreases more than 6%.

Remark 2 With a larger battery, the schedules are able to attain higher profits, at lower dispatch
frequencies. The system is less limited by the storage capacity, and can keep charging the battery more
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Figure 30: System variables as function of time. REG.LASSO. Wind plant.

often, so that more energy can be dispatched at high prices. The gains are clearly less when utilizing a
20 MWh instead of a 10 MWh battery, than when utilizing a 10 MWh instead of a 5 MWh battery.

Remark 3 With a smaller battery, the schedules diverge even more in terms of dispatch frequency.
With a storage capacity of 5 MWh, the schedule based on REG.LASSO dispatches energy in approx. 11%
more instances than that based on NVE.DA, while that is approx. 7% with storage capacities of 10 and
20 MWh.

Figure 31 shows the system variables for the schedules based on NVE.DA and REG.LASSO. In that slice
of the full period, three gray areas highlight two occurrences where the schedules diverge and an oc-
currence where the schedules are exactly the same.

Remark 1 The first gray area (2019.08.09 at 18:00) highlights an occurrence where the REG.LASSO
forecast (orange, dotted) provides an accurate estimation of the local maximum, and thus the system
chooses to amplify the volume dispatched at that time (red, dotted). The NVE.DA forecast (orange,
line) does estimate a local maximum, but does not provide an accurate estimation and thus the system
chooses to dispatch energy continuously (red, line). That occurrence demonstrates that the schedule
is affected by how well the vertical location, i.e. price, of true local maxima/minima are estimated.

Remark 2 The second gray area (2019.08.11 at 20:00) highlights another occurrence where the
REG.LASSO forecast provides a more accurate estimation of the local maximum. Although both sched-
ules dispatch the same amount of energy, the dispatch of the schedule based on REG.LASSO coincides
with the true local maximummuch better. That occurrence demonstrates that the schedule is affected
by how well the horizontal location, i.e. time, of true local maxima are estimated.

Remark 3 The third gray area (2019.08.12 at 07:00) highlights an occurrence where the REG.LASSO
and NVE.DA forecasts are different but of a similar shape, and lead to the exact same choice of charging
and dispatch in both schedules. That occurrence demonstrates that the shape of the forecast can be
enough for the system to base its choices on.

Impact of generation profile The generation profile of a solar plant is very different to that of a wind
plant. Both have dynamics that are unexpected, but the solar generation profile brings spikes in gen-
eration and many hours that no generation occurs, while a wind generation profile is generally more
smooth and there are far less occurrences of no generation. The employed generation profiles of solar
and wind for in summer and winter are shown in Figures L.1 and L.2. The volumes of these profiles
are averaged over 2018 and 2019, and normalized to a monthly generation of 300 MWh. Therefore, the
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Figure 31: System variables as function of time. NVE.DA (line) & REG.LASSO (dotted). Wind plant. Storage capacity of 5 MWh.

Profit Rel. profit Dispatch Dispatch
(k€) (%) frequency (%) volume (MWh)

Period Full
Storage capacity 5 10 20 5 10 20 5 10 20 5 10 20
Direct feed 333.1 100 100 0.42
True price 328.9 348.2 356.9 98.0 104.5 106.9 36.0 23.9 20.2 1.04 1.57 1.86
NVE.DA 300.1 310.1 313.8 90.1 93.1 94.2 31.5 21.2 18.0 1.19 1.77 2.10
REG.LASSO 302.8 311.9 315.3 90.9 93.6 94.7 41.9 28.8 24.5 0.90 1.30 1.54
ANN.MLP 304.3 314.8 318.3 91.4 94.5 95.6 39.5 27.5 23.6 0.95 1.37 1.59

Table 10: Performance of schedule as function of storage capacity. Wind plant.
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generated volume per spike is very high for the solar plant. Table 11 shows how the schedules based on
the different price forecasts perform, when the system is based on generation from a solar plant.

Remark 1 Because of themany hours where there is no solar generation at all, the system dispatches
less often, which is reflected in lower dispatch frequencies for all schedules. The schedules based on
forecasts from REG.LASSO and ANN.MLP are affected most, as they dispatch more than 5% less often
than in the case of a wind plant.

Remark 2 Both profits and dispatch frequencies for the different schedules are much more even
in this case, which demonstrates that the solar generation profile reduces the gains from employing
sophisticated forecasts.

Profit Rel. profit Dispatch Dispatch
(k€) (%) frequency (%) volume (MWh)

Period Full
Direct feed 353.7 100 100 0.42
True price 345.8 97.8 21.0 1.79
NVE.DA 316.4 89.5 19.0 1.97
REG.LASSO 318.6 90.1 22.9 1.64
ANN.MLP 318.9 90.2 22.4 1.67

Table 11: Performance of schedule. Solar plant. Storage capacity of 10 MWh.

For a one-week period in 2018, for the system based on a solar plant, and for the schedule based on
REG.LASSO, the system variables as function of time are shown in FigureM.2. What generally holds true
for this system is that no energy is generated during night hours, when the ID3 price index is usually
lower than during day hours.

Remark 3 Therefore, hours where solar generation is high generally coincide with high prices and
the system is not often forced to store energy for very long. Figure M.2 shows it does occur, however,
that not all of the stored energy can be dispatched during a localmaximum, such that remaining energy
is stored until the next occurrence of high price.

Remark 4 Because generation is rather sporadic, the schedules are very dependent on the battery
capacity. In the one-week period shown in Figure M.2, there are already two occurrences where the
battery is exploited near its maximum capacity of 10 MWh.

Impact of look-ahead-time With a higher storage capacity and greater look-ahead-time, the schedule
becomes less of a repeated cycle that does not bump into constraints of battery storage as often, and
that can spot high prices further away in time. Table 12 shows how the schedules based on the different
look-ahead-times perform. The results are discussed only for the forecast from REG.LASSO, as very
similar conclusions would be drawn for the forecasts from other models.

Remark 1 With further look-ahead-times and based on true price, the system amasses approx. 5%
more profit as it becomes more capable to spot local minimum-maximum pairs that are more sepa-
rated. The opposite is true for nearer look-ahead-times. Results regarding sensitivity to the storage
capacity, shown in Table 10, suggest that that effect would be even stronger in the case of more storage
capacity, as 10 MWh might constrain the ability to store energy over the full horizon.

Remark 2 Results of the forecasting procedure show that accuracies at look-ahead-times beyond 9
hours deteriorate rapidly, demonstrated by the S-shaped curve shown in Figure 25. While the forecast
attains a MAE of 4.47 €/MWh for a look-ahead-time of 0 hours, the forecast attains MAEs of 5.50
€/MWh or higher at look-ahead-times greater than 9 hours, and MAEs of 7.00 €/MWh at look-ahead-
times further than 12 hours. Despite that considerable reduction of accuracy, the system is able to
amass approx. 3% more profit based on a forecast with a look-ahead-time of 20.

Remark 3 An important contribution to that effect is the way that the model predictive control
optimization works. Even though the inputs that are deemed optimal for the steps with look-ahead-
times further than 12 hours, i.e. {u(13), . . . ,u(20)} might be rather inaccurate, the system does not
execute those inputs right away, and executes only the first inputu(0) before re-optimizing on a horizon
that is shifted one step into the future. The step with a look-ahead-time of 13 hours now coincides

54



9 Results II

with a look-ahead time of 12 hours and the employed price forecast is thus already more accurate. The
system is thus slightly less sensitive to inaccuracies further along the prediction horizon, as long as
they offer a reasonable indication of local maxima. Upon inspection of the forecasted series for near,
moderate, and far look-ahead-times, shown in Figures J.3 through J.6, it is concluded that although
the forecast becomes less detailed for further look-ahead-times, the estimation of the daily price cycle
remains reasonably accurate.

Profit Rel. profit Dispatch Dispatch
(k€) (%) frequency (%) volume (MWh)

Period Full
Look-ahead-time 5 9 20 5 9 20 5 9 20 5 9 20
Direct feed 333.1 100 100 0.42
True price 327.5 348.2 364.5 98.3 104.5 109.4 32.5 23.9 19.3 1.16 1.57 1.95
REG.LASSO 303.7 311.9 321.2 91.2 93.6 96.4 37.2 28.8 20.8 1.01 1.30 1.80

Table 12: Performance of schedule as function of look-ahead-time. Wind plant. Storage capacity of 10 MWh.
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This research investigates the accuracies that naive, regression, and ANN models attain when fore-
casting an aggregated price of the Dutch intraday market. Six models for point forecasting and four
models for interval forecasting are considered in single- and multi-step-ahead horizons, that employ
Dutch and German features of price, calendar, generation, and load. A systematic forecasting proce-
dure is established that limits the number of arbitrary choices and ensures that the out-of-sample test
is similar to how forecasting is carried out in practice. To investigate whether theoretical and practical
superiority coincide, point forecasts are deployed in an operational context where a battery dispatches
generated energy according to a schedule optimized with model predictive control.

Dutch intraday price Dutch aggregated intraday price has statistical properties that are challenging
for accurate forecasting. That includes high volatility, negative prices, and spikes, some of which are
slightly more pronounced than for the often-studied German intraday market. The out-of-sample test
is on the years of 2018 and 2019; the former represents a year withmany high prices and high volatility,
while the latter represents a year where prices exhibit less extreme dynamics.

Initialization The forecasting procedure starts with execution of an initialization procedure on the
period from 2016 through 2017, that reveals how the full feature set can be reduced in size to improve
generalizability and decrease computational cost. Results of correlation and reduction demonstrate
that although features of generation and load slightly benefit the accuracy of intraday price forecasts,
several features of price are clearly dominant in terms of usefulness. Besides that, results show that cer-
tain German features are useful—or even more useful than their Dutch counterparts. Results demon-
strate that the size of the testingwindowhardly affects the accuracy of the regression and ANNmodels,
given a large enough training window. It is thus concluded that monthly retraining suffices, and that
evolution of the Dutch intraday market is not so rapid that regression and ANN models cannot reach
(close to) their full potential if not retrained hourly, daily, or weekly.

Calibration & Exploitation The forecasting procedure continues with repeated execution of calibra-
tion and exploitation procedures on the period from 2018 through 2019, which is an out-of-sample test
that systematically trainsmodels and obtains forecasts in exploitation, and that repeatedly reconsiders
the candidate feature set and hyperparameters in calibration. What is considered as the optimal model
is thus not deemed to be a fixed entity. Results demonstrate that several dominant features of price
are identified as most useful in almost every calibration, while the usefulness of other features varies
considerably in each calibration. Results also show that the optimal values of hyperparameters vary
considerably in each calibration.

Point forecasting Results for single-step-ahead (4-hour ahead) point forecasting demonstrate that
day-ahead price dynamics offer a reasonable indication of intraday price dynamics. Still, the forecasts
from the considered regression and ANN models attain better accuracies than the naive models, and
are especially more dependable throughout day-hours that generally coincide with high prices. The
regression and ANN models are thus capable to infer—to a greater or lesser extent—what drives in-
traday (ID3) prices to deviate from day-ahead (MCP) prices. In the out-of-sample test and the volatile
year of 2018, the forecasts from the multilayer perceptron ANN attains the highest accuracies with an
rMAE of 0.81 and a MAE of 6.55 €/MWh. Accuracies are much better for the less extreme year of 2019,
where the same model attains an rMAE of 0.77 and a MAE of 4.33 €/MWh. Although at least 90% of
the observations in the out-of-sample test lie in a price region for which accuracies do not deteriorate,
results demonstrate that accuracies of all forecasts deteriorate for occurrences of extreme price. Al-
though the mean of the residuals lies close to zero, residuals are distributed with fat tails, they still
show some degree of serial correlation, and are heteroscedastic. It is thus concluded that the error is
not random, which suggests that a more sophisticated approach might be able to capture the intraday
price dynamics to a larger extent. For multi-step-ahead point forecasting, the main limiting factor
becomes the fact that market clearing prices of the forecasted delivery hour are not available for look-
ahead-times greater than 9 hours and results demonstrate that accuracies deteriorate to an increasing
degree after that point, while remaining rather steady up to that point.
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Interval forecasting Single-step-ahead interval forecasting requires a slightly more detailed evalu-
ation. Results show that all the regression and ANN models obtain interval forecasts that attain an
empirical coverage rate that deviate at most 4% (2018) and 2% (2019) from the nominal coverage rate.
Results also show that the regression andANNmodels are capable of achieving interval forecasts where
the width varies considerably, and thus are capable to reveal more or less certainty about future prices.
For the volatile year of 2018, the interval forecast from thenaivemodel based on themost accurate point
forecast provides a better interval forecast than both the regression and ANN models. That result sug-
gests that in a challenging period with many high prices, a more specifically trained point forecasting
model might represent a more dependable foundation for interval forecasting. For the more temper-
ate year of 2019, results demonstrate that it becomes beneficial to utilize a more sophisticated interval
forecasting model as both the regression and ANN models outperform the naive models. That comes
at the cost of more quantile crossings, however, and the employed grid of 18 quantiles already leads to
157 observations with one or more quantile crossings in the forecast from ANN.Q.MLP. A model based
on quantile regression averaging achieves the highest accuracy in the out-of-sample test, equal to a
CRPS of 3.83 for 2018 and 2.24 for 2019. It is concluded that the regression and ANN models provide
forecasts with adequate reliability and sharpness.

Simulation This research establishes a simulation to investigate the practical applicability of intra-
day price forecasts and to assess whether theoretically superior point forecasts result in more prof-
itable dispatch schedules. To that end, point forecasts are deployed in the operational context of a
generic system comprising an energy plant with storage capacity that dispatches generated energy af-
ter transacting on the Dutch intraday market. The dispatch strategy is optimized by means of model
predictive control with full knowledge of generation and forecasted price in a receding horizon. The
setup is deliberately simple, but does take efficiencies, cost of usage, and charge/discharge limitations
into account. Results show that the dispatch strategy exploits especially estimation of local minimum-
maximum pairs, and charges the battery when prices are relatively low to amplify the volume that is
dispatched when prices are relatively high. Results demonstrate that the forecasts from all considered
models are generally able to detect where local minima and maxima lie. As the strategy is largely de-
pendent on the estimation of the timing of such pairs, and less so on the estimation of their absolute
height, the dispatch strategies that arise from the different point forecasts result in very similar profits,
such that the system attains a profit in 2018 with a schedule based on a more accurate forecast that is
only 0.7% higher than that based on the least accurate forecast, despite the fact that the more accurate
forecast attains a more than 2% higher accuracy in terms of sMAPE. Trading behaviour varies consid-
erably when employing a different forecast, however, as the dispatch frequency with those forecasts
varies more than 8% or more than 10% with a smaller battery. This research concludes that for the
considered system, gains in accuracy are not reflected linearly in profit, but differences between fore-
casts do provoke the system to alter dispatch behaviour. Results demonstrate that the offered value
is very sensitive to costs of using the battery; improvements of battery efficiency can enhance prof-
its, and particularly higher storage capacities and charge/discharge speeds can improve the gains from
employing a forecast-driven strategy. Furthermore, it is concluded that the considerable reduction
of point forecast accuracies for longer look-ahead-times does not mislead the system and deteriorate
profits, as the system amasses approx. 3% more profit with schedules based on forecasts for longer
look-ahead-times.
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This research demonstrates that an aggregated price for the Dutch intraday market can be forecasted
with more or less accuracy, by the considered naive, regression, and ANN models. Performance is
evaluated in the established forecasting procedure on the out-of-sample period from 2018 through
2019, and can serve as benchmarks for future research. In the field of electricity price forecasting, many
intricacies can easily blur what is deemed optimal in a real-world scenario. This research attempts be
elaborate by considering both point and interval forecasting, in single- andmulti-step-ahead horizons.
Also, it considers various models that are more or less complex in terms of interpretability or in terms
of training, and evaluation is taken well beyond the metrics of accuracy. As forecasting is often the
means to a goal, intentions can lie far apart. There might still be discrepancies with the interest of
practitioners for whom accuracy might be a less important consideration than model interpretability,
or for whom it may be critical to recognize extreme prices, for instance. Nevertheless, approaches and
results presented in this research can offer a foundation for those and for other specific real-world
interests.

11.1 Avenues for future research

The following addresses several avenues for future research.

Individual trades To establish benchmark performance for the Dutch intraday market, this research
employs a price index that is an aggregated price which is frequently employed for intraday price fore-
casting. Performance can thus be easily compared, also with results from (past or future) studies where
availability of data on individual trades is limited. However, this research demonstrates that prices of
individual trades can vary to a great extent within such an aggregated price, however. Because practical
implementation of intraday price forecasts might depend on individual trades, future research might
consider forecasting the distribution of individual trades, such that it can be estimated, for instance,
when prices of individual trades are more or less scattered around the aggregated price.

Other and/or more advanced models and approaches This research offers a foundation for an intraday
market that is not earlier studied. For that reason, this research does not employ the most advanced
models and approaches in all stages of the forecasting procedure. Therefore, it is encouraged that fu-
ture research considers other and/or more advanced models and approaches that might outperform
the benchmark accuracies put forward in this research. Explicit examples of this are approaches that
combine forecasts from multiple models [20], that ultimately utilize those forecasts that are assumed
to be most accurate at the time of forecasting, such that they often outperform individual models.
Another example is the recently proposed LASSO regularized quantile regression averaging for inter-
val forecasting [101] that smartly “selects” what point forecasting models to include in the quantile
regression.

Feature transformations Future research might investigate to a greater extent the possible transfor-
mations of features. Although many transformations might benefit performance of models similarly
and therefore might not change the perspectives on superiority, they might represent straightforward
and undemanding means to more accurate forecasts. An explicit example are the many different vari-
ance stabilizing transformations investigated in [102].

Residual errors Results of residual error analysis demonstrate that the point forecast that attains
the highest overall accuracy is not able to capture all dynamics of the target variable. It is encouraged
that future research utilizes a more iterative procedure, where model adequacy is fed back and model
building is repeated until it provides satisfactory forecasts [90]. It is also encouraged that future re-
search investigates whether results from a similar analysis can be used to improve accuracy, or whether
different models lead to different residual error characteristics.

Stochastic model predictive control For the case study, this research employs deterministic point fore-
casts as input to an optimization in a setting of model predictive control. Future research might con-
sider optimization that incorporates uncertainty. An explicit example is using the bounds of interval
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forecasts as an indication of certainty, as in [101]. More advanced is deriving scenario forecasts from
interval forecasts [76] and utilizing two-stage or multi-stage stochastic model predictive control [44,
42]. A stochastic approach complicates the optimization, but results in a case study that is more rep-
resentative of reality, wherein more sophisticated strategies can be exploited and evaluated.

More realistic trading In the case study, this research does not take into account actual trading on
the intraday market. Future research might incorporate a more realistic simulation of trading. An
explicit example is the incorporation that the strategy obtains profit only when asks/bids are matched
by actual orders—both in price and in volume—and that otherwise it might be necessary to enter
the balancing market. The day-ahead market could be integrated into the system as well, so that the
strategy enters the intraday market only when there are opportunities on top of accepted day-ahead
offers, for instance. When more realistic trading is incorporated in the case study, future research
might also consider more sophisticated metrics of profit and risk. A relevant metric might then be the
Sharpe ratio, which summarizes the first twomoments of the return distribution as the ratio of return
over volatility.

Unconstrained charging When the constraint on charging BI(k) = 100% · EI(k) is removed from
the case study, it can be investigated whether the dispatch schedules diverge if the system is free to
choose whenever to charge and discharge the battery. In that case, energy that the system chooses not
to supply to the battery, i.e. EI(t) − BI(t), can be considered as energy that may be dispatched to a
different destination.

Close the loop This research stresses that differences in accuracy, and superiority of forecasts that
are confirmed not to be by chance, do not necessarily translate to more or less profitable trading or
dispatch strategies. Rather, strategies can be highly dependent on certain time ranges, price ranges, or
other detailed accuracies that undermine the superiority that is evaluated on the basis of overall accu-
racy. Future research might therefore consider catering the forecasting procedure towards obtaining
forecasts that benefit a simulated strategy. For instance, by utilizing a metric of profit as loss function
that would ‘close the loop’ between the forecast and the strategy, which might lead to novel insights
on superiority.

11.2 Limitations

The following addresses several limitations of this research.

Computational power This research pays attention to the repeated optimization of hyperparameters,
as well as to proper training of neural networks. Due to limited availability of computational power it
is not able to be exhaustive in every regard, however. In hyperparameter optimization, for instance,
more computational power could underlie a finer-grain search space, as well as more iterations for the
search. It is expected that that might slightly improve accuracy.

Separatemodels per delivery hour This research does provide extensive analysis of separatemodels per
delivery hour, although it might improve overall accuracy, as well as improve accuracy for particularly
the time ranges where the occurrence of extreme prices are relatively high. Moreover, separate models
for every hour of the day could utilize a separate input feature set, which could particularly improve
the accuracies of multi-step-ahead forecasts. The availability of market clearing prices could then be
variable, instead of being restricted at the minimum of 9 hours for all delivery hours.

Coarse grid of quantiles This research does not evaluate a fine grid of quantile forecasts, but instead
focuses evaluation on only one narrow, one medium, and one wide interval. They are assumed to be
representative of the performance across the whole distribution, although a more accurate estimation
of the true distribution requires more quantiles.

Quantile crossing The crossing of quantiles is often addressed by re-sorting quantiles, althoughmore
sophisticated approaches exist. It is assumed that resolving the quantile crossings has only a minor
effect on the evaluation of accuracy contained in this research, thus the number of quantiles crossings
is mentioned but they are not resolved. In the case that a finer grid of quantiles is utilized, the effect
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becomesmore severe, however. What ismore, quantiles that are exploited in a stochastic optimization,
for instance, should never cross.

Raw data This research employs a lot of raw data on Dutch and German generation and load that
originates from one source [30]. Besides examining whether there is strong correlation among the
features of these connected markets, which might suggest that data is reliable, there are no explicit
checks of trustworthiness. As this research does not harness any second-opinion on reliability, it can
not be guaranteed and might be limited.
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Figure A.1: Time, volume, and price of Dutch continuous hourly intraday trades. Included are trades for all products with delivery
on 2019.05.10. Size represents volume, color represents price. The line represents the time of delivery td. The dotted line represents the

time of forecasting tf = td − 4. Data from EEX [28].
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Figure A.2: Empirical distribution of the volume of offers for continuous hourly products of the Dutch intraday market.
2015–2020. Data from EEX [28].
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B Dutch and German intraday markets

Statistical property

Region NL DE

Min. -121.31
Max. 523.68

Mean 40.933
Std. 18.027

Skew. 3.1521
Kurt. 43.348

Obs. 52608

Table B.1: Statistical properties of the Dutch and German ID3 indices 2015–2020. Data from EEX [28] and Energy Charts [29].
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Figure B.1: Empirical distribution of the German ID3 index. 2015–2020. Data from Energy Charts [29]
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Figure B.2: Empirical distribution of the German ID3 index as function of year. Data from Energy Charts [29]
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Figure B.3: Kernel density estimates of the German ID3 index as function of delivery time. Color represents density. 2015–2020.
Data from Energy Charts [29]
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Figure B.4: Autocorrelation and partial autocorrelation of the German ID3 index. Coefficients that are within the 95% confidence
interval are a lighter shade. 2015–2020. Data from Energy Charts [29]

−4 −3 −2 −1 0 1 2 3 4

0

500

Theoretical (-)

Em
pi

ri
ca

l (
-)

Figure B.5: Normality test for the German ID3 index. 2015–2020. Data from EEX [28].
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Figure B.6: Occurrence of extreme prices in the German ID3 index. Data from EEX [28].
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Figure B.7: Occurrence of negative prices in the German ID3 index. Data from EEX [28].
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Figure B.8: Seasonality of intraday price on different timescales. Data from EEX [28].
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C Features

Scaling Two often-found scaling approaches are referred to as normalization and standardization.
In scaling by means of normalization, all observations t of a feature f are scaled so that they all lie in
the interval [0, 1], i.e. x′

f,t = (xf,t − minxf )/(maxxf − minxf ). This involves a linear scaling of the
distribution, which might introduce vulnerabilities when outliers are so extreme that the majority of
the values are pushed into a short interval. In scaling by means of standardization, all observations of
a feature are scaled so that they have zero mean and unit variance, i.e. x′

f,t = (xf,t − x̄f )/σxf
. Scaling

Two often-found scaling approaches are referred to as normalization and standardization. In scaling
by means of normalization, all observations t of a feature f are scaled so that they all lie in the interval
[0, 1], i.e. x′

f,t = (xf,t − minxf )/(maxxf − minxf ). This involves a linear scaling of the distribution,
which might introduce vulnerabilities when outliers are so extreme that the majority of the values are
pushed into a short interval. In scaling by means of standardization, all observations of a feature are
scaled so that they have zero mean and unit variance, i.e. x′

f,t = (xf,t − x̄f )/σxf
.

Spikes Energy prices are characterized by the occurrence of spikes, and Figure 9 confirms that to be
true for the Dutch intraday market. Spikes can affect forecasting accuracies negatively because many
forecasting models are sensitive to extreme observations [1]. The presence of spikes might therefore
limit models to infer relationships properly not only in the tails, but in the centre of the distribution
as well. That is not to say that spikes are always strictly unwanted in EPF; the ability to forecast spikes
can be a major source of profits, and literature underlines the importance to certain market partic-
ipants [67, 46, 21, 4]. Because spikes can also cause major losses in the slightest amount of time, it
seems compulsory for market participants to arm themselves. There is no necessity for a one-fits-all
approach; forecasting procedures that have a stage for ‘normal’ price forecasting and a stage for spike
forecasting are not uncommon [21]. The specific design and evaluation of models around capability to
forecast spikes lies outside the scope of this research, however. Spikes Energy prices are character-
ized by the occurrence of spikes, and Figure 9 confirms that to be true for the Dutch intraday market.
Spikes can affect forecasting accuracies negatively because many forecasting models are sensitive to
extreme observations [1]. The presence of spikes might therefore limit models to infer relationships
properly not only in the tails, but in the centre of the distribution as well. That is not to say that spikes
are always strictly unwanted in EPF; the ability to forecast spikes can be a major source of profits, and
literature underlines the importance to certain market participants [67, 46, 21, 4]. Because spikes can
also cause major losses in the slightest amount of time, it seems compulsory for market participants
to arm themselves. There is no necessity for a one-fits-all approach; forecasting procedures that have
a stage for ‘normal’ price forecasting and a stage for spike forecasting are not uncommon [21]. The
specific design and evaluation of models around capability to forecast spikes lies outside the scope of
this research, however.

Feature selection Typically, feature selection approaches are based on identifying what themost use-
ful input features are from a set of candidate features. ‘Usefulness’ referring to what features have the
highest relevancy to the output, subject to a condition of minimal redundancy to other input features
[94, 74]. A proper reduction of the full feature set has the potential of lowering computational cost,
enhancing the interpretability of results, combating the curse of dimensionality, and limiting output
variability. The large feature space of the full feature set shown in Table 2 is bound to result in prob-
lems with regard to the curse of dimensionality and computational cost. An initial stage of feature
selection is thus imperative. Particularly [100] emphasizes the importance of embedded feature se-
lection in the form of least absolute shrinkage and selection operator (LASSO) regression and elastic
net regression. Approaches similar to those utilised in LASSO and elastic net regression might not be
optimal for models that are of a nonlinear and non-parametric nature like ANNs, however [74]. One of
the very few researches devoted to the Dutch electricity market, [103], contains an extensive analysis
of feature selection. It utilises four models in a framework of recursive feature elimination (RFE). A
finding of [103] is that the input feature set derived from the relative feature importance of a support
vector regression (SVR) is optimal for all considered models, and that the model that attains the high-
est accuracy, regardless of the input feature set, is based on random forest (RF) regression. Absolutely
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optimal is thus the RF regression combined with the input feature set derived from the relative feature
importance of an SVR.
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D Raw data to full feature set

Price features Fp2 through Fp5 contain the average values of the ID3 index during the same day last
week, during the 24 hours preceding tf , during the 168 hours (7 days) preceding tf , and during the 5040
hours (30 days) preceding tf , respectively.

The MCP of the day-ahead market is published by EPEX SPOT for every hour of the day. It is therefore
very straightforward to obtain Fp6, the MCPs of the day-ahead market, fromRp3. The number of MCPs
that are available depends on whether the time of forecasting is before or after the time that Rp3 is
updated (12:00); the number of future values that are available is minimal (equal to 12) when the time
of forecasting tf is 11:00 and maximal (equal to 36) when tf is 12:00. The features contained in Fp6 are
the lags of one week ago and of two days ago {td − 168, td − 48} and all lags/leads from one day ago
through 12 hours after the time of forecasting [td − 24, tf + 12].

Fp7 through Fp10 contain the average values of the MCP, and are analogous to those of the ID3 index.

Calendar features Fc1 through Fc4, the hour of day, day of week, month of year, and day of year,
should not be represented by their numerical values (e.g. 0–23 for hour of day) because that leads to a
discontinuity between the end and start of successive cycles. One option is to encode these features by
a one-hot-encoding, where every value except one becomes a separate binary column. It is important
to leave one value out to prevent that the correlation matrix of features is singular. In such a cate-
gorical encoding all information of successive hours and days is lost. Although that is not necessarily
problematic for low cardinality and a large enough training set, it leads to many additional features, 29
features to represent only the hour of the day and the day of the week. To limit the amount of features
at this stage, one can also use a numerical encoding with built-in cyclicity, using a two dimensional
circle-projection by means of sine and cosine transformations, for instance.

For features related to time, one-hot-encoding is more often found in literature, although examples of
cyclical transformations can be found aswell [3, 88]. To the best knowledge of the author, EPF literature
lacks a comparison of these two encoding approaches. The research employs cyclical transformations
for Fc1 through Fc4.

Generation & Load features Fg1 and Fl1, the actual generation and load, follow without calculation
from Rg1 and Rl1. The features contained in Fg1 and Fl1 are the lags from one day ago to one hour
before the time of forecasting [td − 24, tf − 1].

Fg2 and Fl2, the forecasted generation and load, follow without calculation from Rg2 and Rl2. The
number of lags/lead that are available depends on whether the time of forecasting is before or after the
time that Rg2 and Rl2 are updated (18:00); the number of future values that are available is minimal
(equal to 5) when the time of forecasting tf is 17:00 and maximal (equal to 29) when tf is 18:00.

The features contained in Fg2 and Fl2 are all lags/leads from one hour through 5 hours after the time
of forecasting [tf + 1, td + 5]. Fg4 and Fl3, the forecast error of generation and load, are the difference
between actual and forecasted generation and load. To take into account whether there was over- and
underestimation, they are calculated by subtraction, not by absolute difference. The features contained
in Fg4 and Fl3 are all lags from one day before delivery through one hour before the time of forecasting
[td − 24, tf − 1].

There is also a second type of raw data on generation Rg3, which has only a German variant. This
is an updated forecast of generation that is published during the day of delivery. Fg3 and Fg5, the
intraday variants of generation forecast and error, follow from Rg1 and Rg3. The number of lags/lead
that are available depends on whether the time of forecasting is before or after the time that Rg3 is
updated (08:00); the number of future values that are available is minimal (equal to 0) when the time
of forecasting tf is anywhere from 23:00 through 07:00 and maximal (equal to 15) when tf is 08:00.
The features contained in Fg3 are all lags from one day before delivery through the time of forecasting
[td − 24, tf ]. The features contained in Fg5 are all lags from one day before delivery through one hour
before the time of forecasting [td − 24, tf − 1].
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In the full feature set, all features on generation (actual, forecast, and error) are separate for solar,
onshore wind, and offshore wind plants.
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Figure E.1: 2016 & 2017. Correlation of features in the candidate set with lag of -4. Size represents absolute correlation coefficient,
color represents correlation coefficient. For size reference, the auto-correlation coefficient (equal to 1) of (DE, GEN_F1_S, 0) is included.

(NL, ID3, 0) and (DE, ID3, 0) are not in the candidate feature set, but is included to investigate correlation.
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F Properties of scoring functions

One of the properties of scoring functions is whether errors are scored proportionally. The squared er-
ror, for instance, has a slope that grows ever-steeper as forecasted and realized values lie further apart,
and it is therefore disproportional in penalization. Strategies based on minimization of the squared
error are thus biased towards reducing errors in the tails as opposed to reducing errors in the centre
of the distribution. A second property is whether the score has the same dimension as the input. Of
the scores discussed earlier, only the absolute error has that property. In the field of EPF, it can thus
be interpreted directly as a €/MWh score. Furthermore, there is the property whether two problems
that are different absolutely but equal relatively are scored equally, i.e. whether S(a, b) = S(c, d) given
a/b = c/d. That property might be important to consider when, for instance, the score should be inde-
pendent of the currency of the problem. Finally, then there is the property whether over or under pre-
dictions that are equal in absolute terms are scored by equal magnitude, i.e. whether S(a, b) = |S(b, a)|
[95].
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G Forecasting procedure

Require: model(h) and X

Require: T , I
Require: Ntst > 0, Nval > 0, Ntrn > 0, start, and end

1: Wtst ← [ start, start +Ntst ) ▷ Set testing window
2: Wval ← [ Wtst[0]−Nval, Wtst[0] ) ▷ Set validating window
3: Wtrn ← [ Wval[0]−Ntrn, Wval[0] ) ▷ Set training window

4: t← 0 ▷ Set observation

5: whileWtst[0] ≤ end do

6: Xtst ←X(Wtst) ▷ Set testing set
7: Xval ←X(Wval) ▷ Set validating set
8: Xtrn ←X(Wtrn) ▷ Set training set

9: if t (mod T ) = 0 then

10: whileXtst has more than 15 features do

11: fit model(h) on Xtrn
12: reduce Xtst, Xval, Xtrn by 1 feature ▷ RFE

13: end while

14: i← 0 ▷ Set iteration

15: while i < I do

16: select hi ▷ TPE
17: fit model(hi) on Xtrn
18: employ model(hi) on Xval

19: i← i+ 1 ▷ Update iteration

20: end while

21: h← optimal hi

22: end if

23: fit model(h) on Xtrn, Xval
24: employ model(h) on Xtst

25: Wtst ← [ Wtst[0] +Ntst, Wtst[−1] +Ntst ) ▷ Update testing window
26: Wval ← [ Wval[0] +Ntst, Wval[−1] +Ntst ) ▷ Update validating window
27: Wtrn ← [ Wtrn[0] +Ntst, Wtrn[−1] +Ntst ) ▷ Update training window

28: t← t+ 1 ▷ Update observation

29: end while

Table G.1: Pseudocode walkthrough of the exploitation procedure
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H Hyperparameters of considered models

Regularization parameter λ Uniform [0, 10]

Table H.1: Hyperparameters of REG.LASSO

Regularization parameter C Uniform [0, 20]

Standard deviation of the Gaussian kernel σ Uniform [0, 20]

Table H.2: Hyperparameters of REG.SVR

Number of hidden layers Choice {1, 2}
Number of neurons (1 layer) Choice {25, 50, 75, 100, 150, 200}
Number of neurons (2 layers) Choice {25, 50, 75, 100, 150, 200}
Dropout rate Choice {0, 0.1, 0.2}
Activation function Choice {tanh, relu}

Table H.3: Hyperparameters of ANN.MLP

Number of hidden layers Choice {1, 2}
Number of neurons (1 layer) Choice {25, 50, 75, 100, 150, 200}
Number of neurons (2 layers) Choice {25, 50, 75, 100, 150, 200}
Dropout rate Choice {0, 0.1, 0.2}
Activation function Choice {tanh, relu}

Table H.4: Hyperparameters of ANN.GRU
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Figure I.1: Architecture of an MLP. For F inputs, C outputs, and m(l) neurons per hidden layer.

Number of epochs Choice [50, 100, 200]

Batch size Choice [16, 32, 64, 128, 256]

Learning rate 0.01
Early stopping min_delta 0.1
Early stopping patience 25

Table I.1: Parameters of training.
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J Forecast visualization
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Figure J.1: Visualization of a slice of the forecasted and realized series. Single-step-ahead point forecasting. Exploitation procedure.
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Figure J.2: Visualization of a slice of the forecasted and realized series. ANN.MLP.Q. Single-step-ahead interval forecasting.
Exploitation procedure.

Multi-step-ahead
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Figure J.3: Visualization of a slice of the forecasted and realized series. REG.LASSO. Multi-step-ahead point forecasting.
Look-ahead-time of 0 hours. Exploitation procedure.
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Figure J.4: Visualization of a slice of the forecasted and realized series. REG.LASSO. Multi-step-ahead point forecasting.
Look-ahead-time of 9 hours. Exploitation procedure.
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Figure J.5: Visualization of a slice of the forecasted and realized series. REG.LASSO. Multi-step-ahead point forecasting.
Look-ahead-time of 13 hours. Exploitation procedure.
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Figure J.6: Visualization of a slice of the forecasted and realized series. REG.LASSO. Multi-step-ahead point forecasting.
Look-ahead-time of 20 hours. Exploitation procedure.
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K Accuracy
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Figure K.1: Accuracy in terms of MAE as function of deliver hour. Single-step-ahead point forecasting. Exploitation procedure.
2018.
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Figure K.2: Accuracy in terms of MAE as function of price range. Single-step-ahead point forecasting. Exploitation procedure. 2018.

XXVII



L Generation profiles

Aug 5
2018

Aug 12 Aug 19 Aug 26

0

1

2

3
S WOFF WON

 Delivery time

 V
ol

um
e 

(M
W

h)

Figure L.1: Averaged and normalized generation profiles of onshore wind, offshore wind, and solar generation. Summer.
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Figure L.2: Averaged and normalized generation profiles of onshore wind, offshore wind, and solar generation. Winter.
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Figure M.1: System variables as function of time. REG.LASSO. Wind plant.
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Figure M.2: System variables as function of time. REG.LASSO. Solar plant.
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Abstract

This research provides benchmark accuracies for forecasting of an aggregated price of the Dutch intraday market. While point
forecasts in a single-step-ahead horizon for that unresearchedmarket provide novel insights already, the scope of this research also
includes interval forecasts in a multi-step-ahead horizon. A forecasting procedure is established that organizes several stages of
in-sample and out-of-sample testing so that the number of arbitrary choices regarding features and hyperparameters is kept as low
as possible. It is concluded on the basis of accuracies attained by naive, regression, and artificial neural network models that the
models that are capable to incorporate linear and nonlinear relationships are able to infer to some degree what drives intraday and
day-ahead prices, and obtain superior forecasts, especially for the period of 2018 and its many extreme observations. Furthermore,
it is addressed whether superiority in terms of accuracy coincides with what is deemed as superior in practice. A simulation of
a generic system, which consists of a battery and a wind turbine located in the Netherlands, smartly dispatches stored energy
according to a schedule optimized with model predictive control based on point forecasts of intraday price. It is concluded that,
in general, higher profits are obtained with more accurate point forecasts and that different point forecasts lead to very different
dispatch schedules that vary more than 10% in terms of dispatch frequency.

Electricity price forecasting, Dutch intradaymarket, Machine learning, Artificial neural networks, Quantiles, Intervals, Model predictive control, Dispatch
strategy

1. Introduction

In the Netherlands, the ongoing growth of renewables in
the energy mix has its origin around the same time as mar-
ket liberalization. Initiatives that support the move to a more
carbon-neutral energy mix, now heavily incentivized by polit-
ical agendas and financial stimuli, flow from the the premise
that it plays a vital role in mitigating dependence on import-
ing energy, and in reducing the effects of global warming [16].
Generation of variable renewable energy sources, e.g. wind and
solar, generally deviates more from generation schedules than
that of traditional energy sources. The increased level of un-
certainty that imposes to market participants leads to higher
needs to balance portfolios just before delivery on the intraday
market, which allows for continuous trading throughout the
day, and up to 5 minutes before delivery. A steep rise of Dutch
intraday trading volumes is the result, with repeated year-on-
year growth figures between 30 and 70% during the last five
years [8, 9, 10, 11, 12]. The endeavour of forecasting the price
of energy contracts has drawn broad academic and commer-
cial interest. Gaining insight into possible future price reali-
sations, and investigating how to improve models and model-
ing approaches to reduce forecast uncertainties has the poten-
tial to improve decision-making of market participants, which
in turn might lead to a more stable grid and increased prof-

itability [19]. The price of short-term energy contracts is sub-
ject to many complex, nonlinear, and unobservable factors and
exhibits challenging characteristics such as high volatility, neg-
ative prices, spikes, and jumps, that are generally much more
pronounced than in other commodity or stock markets [6].

1.1. Problem description
The numerous models and modeling approaches that have

beenproposed to pushperformance beyond that of benchmarks,
and the comprehensive frameworks that offer guidelines and
best practices [3, 25], demonstrate that electricity price fore-
casting is an advanced field of research. Nevertheless, the at-
tention for intraday markets is limited, despite their growing
relevance. Many of the methodologies and recommendations
published in the more extensive body of research on day-ahead
markets can be utilized for the intradaymarket, but differences
between the two require novel approaches. For one, the con-
tinuous trading of most intraday contracts versus the auction-
based trading of day-ahead contracts lead to fundamentally dif-
ferent circumstances with regard to data availability. Inward
looking on intraday price forecasting shows that research scopes
are often limited to (single-step-ahead) point forecasts, although
recent recommendations note that interval forecasts are an ob-
vious avenue for future work [30, 28]. By giving an indication of
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forecast uncertainty, interval forecasts offer a richer and truer
representation of reality. Ideally, superiority is evaluated in sit-
uations where forecasts will actually be used [2]. Inmany cases,
that is not or not all a possibility. Therefore, some reluctance to
base conclusions upon traditional measures only might be ap-
propriate; these measures might not fully coincide with finan-
cial measures that are used in an operational context and thus
might fail to address problems that are important to practition-
ers. Thismatter has been identified in literature and alternative
approaches that consider optimal participation of power plants
have been brought forward [33, 27]. Notwithstanding, a lot of
research does not acknowledge any theoretical-practical mis-
match at all, and utilizes traditional measures only.

1.2. Research objective
In consideration of the limited research and increasing in-

traday trading volumes on intraday markets in general, there
is the opportunity to investigate components that constitute a
systematic forecasting procedure. Furthermore, due to the lack
of research on the Dutch intraday market, there are opportuni-
ties to establish benchmark accuracies. The objective of this
research is to evaluate forecasts of an aggregated price for the
Dutch intraday market from naive, regression, and ANN mod-
els. To push the boundaries of the current body of research,
not only point forecasting but also interval forecasting is in-
vestigated, in single- and multi-step-ahead horizons. A sys-
tematic forecasting procedure ensures that there are a limited
number of arbitrary choices and that “what is considered opti-
mal” is reconsidered repeatedly. Evaluation of point forecasts
is based on widely-used absolute scores, and on relative (e.g.
rMAE) scores that offer a more general indication of accuracy.
It is furthermore investigated whether forecasts capture the
dynamics of intraday price adequately based on residual error
analysis. Evaluation of interval forecasts is based on an aggre-
gated scoring metric for quantile forecasts (CRPS), and the 0.1,
0.5, and 0.9 intervals are assessed in terms of reliability and
sharpness. To assess whether theoretical superiority coincides
with practical superiority, forecasts are evaluated on the basis
of accuracy as well as in an operational context. This research
establishes a simulation of a generic system that consists of
a battery and a wind turbine located in the Netherlands, that
smartly dispatches stored energy according to a schedule op-
timized with model predictive control and future information
on intraday price and generation. It is investigated whether the
theoretically superior point forecast leads to a higher profit, or
to a different dispatch schedule altogether.

2. Dutch intraday market

In the Netherlands, there is a strong growth of variable re-
newable energy in consumption and production in an other-
wise mostly constant energy mix. That growth is expected to
persevere. Uncertain schedules of variable renewable energy
sources introduce uncertainty on energymarkets, and thus higher
volumes are traded on the intraday market than before. Energy
trading is thus shifting closer to delivery and the difference be-
tween volumes on day-ahead markets and intraday markets is
shrinking every year. Dutch intraday price has complex charac-
teristics such as seasonality, spikes, and negative values, which
leads to a distribution that has a high degree of skewness and
kurtosis.

Given a set Tt =
−3.25
−3Tt(td), that contains all transactions for

an intraday product with time of delivery td in the time window
from 3 hours to 15 minutes before td . The ID3 index represents
the volume-weighted average price of all transactions k ∈ Tt,
and is calculated by

ID3d,h =

∑
k∈Tt

vk


−1 ∑

k∈Tt

vk pk (1)

where vk is the volume and pk is the price of transaction k. This
research is concerned with forecasting the price of the ID3 in-
dex (alias ID3 price), although it is noted that the price of indi-
vidual transactions may vary considerably [21].

Prices of the more often studied German intraday market
have similar statistical properties althoughDutch intraday prices
are slightly more extreme. Themain differences during the pe-
riod from 2015 through 2020 are

that the German ID3 index has more occurrences of nega-
tive price;

that the Dutch ID3 index has more occurrences of extreme
prices;
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Figure 1: Kernel density estimates of the Dutch ID3 index as function
of delivery time. 2015–2020. Data from EEX [13].

A challenging empirical distribution is the result that is in-
consistent from year to year, shown in Figure 2. Particularly
2018 and 2019 are important for later stages of this research,
as forecasts are evaluated from an out-of-sample test of that
period. While intraday price seems to be rather temperate for
2019, it is far more extreme for 2018. That year saw an increase
in electricity prices across Europe that was especially severe for
the Netherlands, which is explained mostly due to increases of
carbon emission allowances [10]. In 2020, the social distancing
rules that were introduced in reaction to the COVID-19 pan-
demic led to a deeply rooted imbalance between supply and de-
mand due to an abrupt global decline in power consumption
[12].

3. Data and feature engineering

An increasing amount of high-resolution data regarding en-
ergymarkets and environmental conditions is available to prac-
titioners. The European Network of Transmission System Op-
erators for Electricity (ENTSO-E), for instance, sustains the ‘Trans-
parency Platform’, which is part of an ambition to advance the
transparent sharing of data withmarket participants. The plat-
formholds data on the energymarket including actual and fore-
casted load and generation that is hourly or intra-hourly, and
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Figure 2: Empirical distributions of the Dutch ID3 index for different
years. Data from EEX [13].

updated daily. In addition, there are parties that offer data com-
mercially. Among those is EEX, that offers subscription ac-
cess to price data of all the European energy markets that they
(EPEX SPOT) operate. For this research, ENTSO-E and EEX are
the main sources of raw data. Table 1 shows details. All data is
retrieved for the period from 2015.07 through 2021.07.

Ind. Type Resolution NL DE Source Public
Rp1 Transactions ID Cont. • [13]
Rp2 Price ID (ID3) Hourly • [14] •
Rp3 Price DA (MCP) Hourly • • [13]
Rg1 Generation* actual Hourly • • [15] •
Rg2 Generation fore-

cast DA
Hourly • • [15] •

Rg3 Generation fore-
cast ID

Hourly • [15] •

Rl1 Load actual Hourly • • [15] •
Rl2 Load forecast DA Hourly • • [15] •

Table 1: Raw data

Motivated by literature, various features are included in the
full feature set ⊆ FF . The set, shown in Table 2, contains fea-
tures that originate from28unique time-series and are assigned
into one of five categories. Most features are the result of basic
computations on the raw data of Table 1. Whereas raw data can
come in any resolution and form, a feature must have a single
value per pre-defined time-step, which is equal to one hour in
this research.

Two concepts that this research employs to establish the
full feature set are lags/leads and market integration. Utiliz-
ing lags/leads in time-series analysis amounts to creatingmany
features from a single time-series, where instances are shifted
forward/backward in time. Market integration in time-series
analysis amounts to using features fromadifferentmarket than
the target market. This has been shown to improve forecasting
performance when dynamics of the considered markets are re-
lated [24, 39]. Many features in the full feature set are lags/leads,
and many have both Dutch (NL) and German (DE) variants.

4. Point forecasting

As a representation of future outcomes that are inherently
uncertain, single-value (alias point) forecasts are always a sim-
plified representation of reality. Nevertheless, point forecasts
underlie decision-making in many practices and within many
fields, and are not simply put aside by more information-laden
representations, whenever they are available [17].

Assumed is a relationship between the target variable y and
the explanatory variables X, represented by y = f (X) + ϵ. Ap-
proximation of that relationship is a problem addressed in lit-
erature, where fundamental models are proposed that, for in-
stance, simulate themarket clearing [29]. However, just like the
majority of literature, the research is not troubled by naivety
in that respect. The intention is rather that given explanatory
variables X, a forecasted series ŷ is calculated that is as close as
possible to the corresponding realized series y, i.e. ŷ = f̂ (X) ≈ y.

4.1. Scoring metrics
A scoring function S is a formalization of what an accu-

rate forecast is. It is not so much that for every problem, there
exists a scoring function that is clearly more suitable than all
others; practitioners should instead be aware of the biases that
scoring functions might impose on the solution of a problem,
and should motivate choices accordingly. For the field of EPF,
where published results and drawn conclusions are often based
on absolute scoring functions, [25] suggests that it should be-
come the norm to employ the relativemean absolute error (rMAE)
(alias mean relative absolute error (MRAE)), which normalizes
the MAE score to what a reference forecast ŷ∗ achieves, i.e.

rMAE(y, ŷ, ŷ∗) B
1
T

T∑
i=t

|yt − ŷt |
|yt − ŷ∗t |

(2)

When the rMAE is at least included in evaluation, accuracy can
be more easily compared across problems. To the best knowl-
edge of the author, intraday price forecasting literature has not
(yet) employed the rMAE scoring function. Therefore, the re-
search employs themean absolute error (MAE), rootmean square
error (RMSE), and mean absolute percentage error (MAPE) to
accompany the rMAE. The MAE and RMSE are used widely and
often exclusively in EPF and intraday price forecasting [30, 21,
28]. Like the rMAE, the MAPE normalizes the score, such that
evaluation of accuracy can bemore easily compared across prob-
lems.

4.2. Residuals
The error between the forecasted and realized values (alias

residuals) ϵ = ŷ − y provides insight in the adequacy of a fore-
cast to capture the characteristics of the target variable. An in-
dication that the vector of forecasted values ŷ = {ŷ1, . . . , ŷT }
captures the information contained in the realized values y ad-
equately, is when the residuals vector ϵ resembles white noise.
It can thus be validatedwhether ϵ has an expected value of zero;
whether its variance is constant over time; whether its values
are uncorrelated in time; and whether its values are normally
distributed.

The characteristics of residuals are often overlooked, de-
spite the fact that they can indicate when forecasts are unable
to capture the characteristics of the original time series fully,
and thus inherit characteristics of the original time series [1].
Analysis of residuals is mostly ignored in EPF, although there
are examples where it is utilized to evaluate price forecasts of
the day-ahead market [22, 40]. This research provides the re-
sults of four concise statistical tests to assess whether the four
desired characteristics are attained by point forecasting.
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Ind. Time-series Lags/Leads Raw NL DE No.
Fp1 Price ID (ID3) {td − 168, td − 48} & [td − 24, t f ] Rp1, Rp2 • • 23
· · · · · · [td − 24, t f ] · · · · · · · · · · · ·
Fp2 Price ID (ID3) avg. (last week) Rp1, Rp2 • • 1
Fp3 Price ID (ID3) avg. [t f − 24, t f ] Rp1, Rp2 • • 1
Fp4 Price ID (ID3) avg. [t f − 168, t f ] Rp1, Rp2 • • 1
Fp5 Price ID (ID3) avg. [t f − 5040, t f ] Rp1, Rp2 • • 1
Fp2 Price DA (MCP) {td − 168, td − 48} & [td − 24, t f + 12]* Rp3 • • 36
· · · · · · [td − 24, t f + 12]* · · · · · · · · · · · ·
Fp7 Price DA (MCP) avg. (last week) Rp3 • • 1
Fp8 Price DA (MCP) avg. [t f − 24, t f − 1] Rp3 • • 1
Fp9 Price DA (MCP) avg. [t f − 168, t f − 1] Rp3 • • 1
Fp10 Price DA (MCP) avg. [t f − 5040, t f − 1] Rp3 • • 1
Fc1 Hour of day • 2
Fc2 Day of week • 2
Fc3 Month of year • 2
Fc4 Day of year • 2
Fg1 Generation actual [td − 24, t f − 1] Rg1 • • 21∗3
Fg2 Generation forecast DA [td − 24, t f + 5] Rg2 • • 37∗3
Fg3 Generation forecast ID [td − 24, t f ] Rg3 • 37∗3
Fg4 Generation error DA [td − 24, t f − 1] Rg1, Rg2 • • 21∗3
Fg5 Generation error ID [td − 24, t f − 1] Rg1, Rg3 • 21∗3
Fl1 Load actual [td − 24, t f ] Rl1 • • 21
Fl2 Load forecast DA [td − 24, t f + 12] Rl2 • • 37
Fl3 Load error DA [td − 24, t f − 1] Rl1, Rl2 • • 21

Table 2: Full feature set FF

4.3. Naive models
In essence, naive models represent a minimum-effort so-

lution, and set the bar that forecasts from more sophisticated
models should be able to at least outperform.

Day-ahead price The naive model referred to as NVE.DA
obtains a forecast of the ID3 price by assuming that it matches
the corresponding MCP value. The forecast for delivery on day
d and hour h is formally defined as ŷt = MCPt. That naive model
is also employed in literature [28, 30].

Intraday price A naive approach to obtain a forecasted
ID3 value from intraday prices is to simply utilize the most re-
cent ID3 price that is available at the time of forecasting. The
naive model referred to as NVE.ID obtains a forecast of the ID3
price by assuming that itmatches the volume-weighted average
transaction price in the three hours before the time of forecast-
ing. The forecast is formally defined as ŷt =

−7
−4IDt.

As most intraday trading is incited by conditions that are
unforeseen during day-ahead trading, the day-aheadmarket clear-
ing price largely defines the intraday ID3 price, which is re-
flected in high correlations. In the search of forecasts that are
able to capture the dynamics of intraday price, forecasts must
thus be capable to learn to some extent what sets them apart.
The forecast from NVE.DA thus represents the forecast to at
least outperform, and this research utilizes the forecasted se-
ries of NVE.DA to calculate the rMAE score of other forecasts,
i.e. NVE.DA attains an rMAE of 1.00.

4.4. Regression models
Least absolute shrinkage and selection operator (LASSO) regres-

sion The second type of considered models base their fore-
casts on explanatory variables x f ,t, and estimate how a set of
independent variables relates to the target variable of intraday
price.

Given a target variable y = {y1, . . . , yT } and explanatory vari-
ables X = {x⊤1 , . . . , x⊤F } where x f = {x f ,1, . . . , x f ,T }. A LASSO re-
gression introduces a regularisation term to the cost function

of an ordinary least squares regression, i.e.

T∑
t=1

(yt − ŷt)2 = ∥y − βX∥22 + λ∥β∥1 (3)

Minimizing the cost function for β will find the estimated co-
efficients, as a function of the regularisation parameter λ, i.e.

β̂(λ) = arg min
β∈RF


T∑

t=1

yt −
F∑

f=1

β f · x f ,t


2

+ λ

F∑
f=1

|β f |

 (4)

Because of the added ‘penalty’ term, the problem is now pe-
nalized on the sum of the magnitudes of the coefficients. Ef-
fectively, this constrains the magnitude of the coefficients to a
certain range of values, and a larger regularisation parameter
λ leads to tighter constraints on the coefficients. The model
based on a LASSO regression is referred to as REG.LASSO. That
model employs the features in the input feature set FI as ex-
planatory variables, i.e. X ≡ FI , and thus has as many regres-
sion coefficients as the number of features in FI . The forecast
is formally defined as

ŷt =

F∑
f=1

β̂ f · x f ,t (5)

The hyperparameters of REG.LASSO are only the regularization
parameter λ.

Support vector regression (SVR) An SVR (alias support vec-
tor machine regression) utilizes the ϵ-insensitive loss function,
which does not tolerate errors that exceed ϵ. A transformation
function ϕ(·) is employed that transforms data points from the
original ‘input space’ to a higher dimensional ‘feature space’. It
is attempted to construct a linear model in the feature space,
that translates to a non-linear model in the input space. If it
is not able to achieve this task within the constraints, the in-
puts aremapped into an ever higher dimensional feature space.
Given a target variable y and explanatory variables X, for T ob-
servations and F features. The linear function approximation
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can be denoted as

y = f (X) =
T∑

t=1

wtϕt(xt) + γ = w⊤ϕ(X) + γ (6)

where ϕ(·) is the nonlinear mapping function, w = {w1, . . . , wT }
is the weight vector, and γ is a bias term. The goal is to find
a function, so that for all observations t, the absolute error be-
tween the value of the target variable and value of the estimated
variable does not exceed ϵ.

This research employs thewidely usedGaussian radial basis
function kernel

K(xt, xs) = exp
−∥xt, xs∥2

2σ2 (7)

as it can produce complex decision boundaries and adds only
a single hyperparameter, the standard deviation σ, to the SVR
[26].

The model based on an SVR is referred to as REG.SVR. The
hyperparameters of REG.SVR are the regularization parameters
C, the width of the ϵ-insensitive tube ϵ, and the standard devi-
ation of the Gaussian kernel σ.

4.5. Artificial neural network models
Feedforward neural networks Multilayer perceptron (MLP)

neural networks, that are often regarded as prototypical ANNs,
have been demonstrated to perform well in the area of EPF
[23]. In contrast to recurrent neural networks, these feedfor-
ward neural networks have no cycles. In between input and
output layers are one ormany hidden layers that contain a given
number of identical units. Each unit is connected to all units
in the next layer and as such constitute a ‘fully connected’ net-
work.

The units of an MLP neural network (alias neurons) are lin-
ear threshold units that take an input vector x ∈ ℜX and weight
matrix w ∈ ℜN×X , and utilize the weighted sum and an activa-
tion function ϕ(·) to calculate their state. For layer l ∈ {0, . . . , L}
the states of all units are given as

h(l) = ϕ(l)(w(l) h(l−1) + b(l)) (8)

where the first state vector is the input vector, i.e. h(0) ⇔ x, and
the last state vector is the output vector, i.e. h(L) ⇔ ŷ.

The model based on an MLP neural network is referred to
as ANN.MLP. The hyperparameters of ANN.MLP are the num-
ber of hidden layers, the number of neurons in each layer, the
activation function, and the dropout rate.

Recurrent neural networks Feedforward neural networks
can be limited by the fact that the incorporation of temporal
dependencies requires additional features. As the number of
input features increases, the size of the network will increase
rapidly because of the fully connected nature, whichmight lead
to a considerable increase of computional cost. Recurrent neu-
ral networks (RNNs) address that limitation as they are of a
chain-like nature. Essential to the successes of RNNs are net-
works with two particular kinds of gated units, namely the long
short-term memory (LSTM) unit and the gated recurrent unit
(GRU). These gated units ease optimization and reduce learning
degeneracies that more traditional RNNs suffer from.

An LSTM unit employs three gates that control the flow of
information. Generally, the activation of a gate is approximated
by a linear combination of the previous hidden state h(t−1) and

the current input x(t), and a nonlinear activation function ϕ(·),
i.e.

g(t) = ϕ
(
W · [h(t−1), x(t)] + b

)
(9)

A variation and simplification of the LSTM unit is the GRU. Un-
like an LSTMunit, a GRUdoes not have a separate cell state and,
thereby, no controlled exposure of its memory content. The
hidden state is exposed without any control.

Themodel based on aGRUnetwork is referred to asANN.GRU.
Similarly to ANN.MLP, the hyperparameters of ANN.GRU are
the number of hidden layers, the number of neurons in each
layer, the activation function, and the dropout rate.

5. Interval forecasting

On many levels of decision-making, the incorporation of
uncertainty into forecasts is invaluable. Some applications re-
quire the full probability of the target variable, for instance,
while others require estimation of the target variable in the tail
of the distribution [36].

Widely used for the bounds of intervals are quantile fore-
casts. For an interval forecast with a nominal coverage rate of
(1 − τ), the bounds then correspond to the α-quantile forecasts
where α ∈ {τ/2, 1 − τ/2}, i.e.

Ît =
[
ζ̂(τ/2)

t , ζ̂(1−τ/2)
t

]
(10)

Given is a series of T realized values y = {y1, . . . , yT }. In a quan-
tile regression

yt = ζ
(α)
t + ϵ

(α)
t (11)

it is assumed that the α-quantile of the residuals is zero, i.e.
P(ϵ(α)

t ≤ 0) = α, which is unlike in a linear regression, where it
is assumed that the mean of residuals is zero, i.e. E(ϵt) = 0.

5.1. Reliability and sharpness
The two main concepts that formalize the desires for in-

terval forecasts are reliability (alias calibration) and sharpness
(alias resolution).

Reliability is concerned with the desire that, in essence, re-
alized values should be indistinguishable from random draws
of the estimated probability distribution, or else a systematic
bias is introduced. Given a series of T forecasted quantile val-
ues ŷ(α) = {ŷ(α)

1 , . . . , ŷ(α)
T } and a series of realized values y =

{y1, . . . , yT }. It is calculated whether the realized value was
smaller than the forecasted quantile value, i.e. whether it was
“covered”

Sharpness is concerned with the desire that the more con-
centrated an interval is, at constant reliability, the better. In-
tuitively, sharpness is thus concerned with the size of distribu-
tion. The size of the interval between the two quantile values
with nominal coverage rate (1 − α) can be defined as

δ(α)
t = ζ̂

(1−α/2)
t − ζ̂(α/2)

t (12)

Ameasure of overall sharpness is the expected value E(δ(α)). It is
noted that in real world applications, conditional heteroscedas-
ticity may lead to substantial variability in the width of inter-
vals; simply employing the average width might then be an in-
adequate characterization of sharpness [18].

In general, reliability is regarded as the most important de-
sire; an interval forecast with high reliability and low sharpness
may have wide intervals, it is still more dependable than the
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unjustly concentrated interval forecast with low reliability and
high sharpness. Of two forecasts with similar reliability and
similar sharpness, the one with higher resolution is favored.

Just like the scores for point forecasts, there exist scores for
quantile forecasts. The widely used quantile scoring function
(alias pinball loss function)

QS(ζ̂(α)
t , yt, α) =

(ζ̂(α)
t − yt) · (1 − α) if yt ≤ ζ̂(α)

t

(yt − ζ̂(α)
t ) · α if otherwise

(13)

is asymmetric in the sense that it penalizes differentlywhen the
realized value is smaller or greater than the forecasted quantile
value. For quantiles below the middle-quantiles, a higher pe-
nalization is for realized values that are smaller than the fore-
casted quantile, and vice versa for quantiles above the middle-
quantile.

Unlike the quantile score, that considers a specific point in
the distribution, the continuous ranked probability score (CRPS)
considers the distribution as a whole, and requires no prede-
fined classes such as quantiles. The CRPS is a quadratic metric
for the difference between a theoretical cumulative distribu-
tion and an empirical cumulative distribution, and is thus for-
mally defined for a distribution function F(x)

CRPS(F, yt) =
∫
ℜ

(F(x) − 1{x > yt})2 dx (14)

which can be equivalently denoted as a scaled integral of the
quantile score over all quantiles

CRPS(ζ̂(α)
t , yt) = 2 ·

∫ 1

0
QS(ζ̂(α)

t , yt, α) dα (15)

An approximation of the score can be given if one has quan-
tile forecasts for a finite grid of quantiles {αi, . . . , αI} that are
equidistant [5]. Given forecasted quantile values for a total of
H equidistant quantiles ζ̂(α)

t = {ζ̂
(α1)
t , . . . , ζ̂

(αH )
t }

CRPS(ζ̂(α)
t , yt) ≈

2
I
·

I∑
i=1

QS(ζ̂(αi)
t , yt, αi) (16)

The CRPS is thus intrinsically an aggregate metric for all tar-
get quantiles, while the pinball loss is calculated for each target
quantile individually before non-compulsory averaging [20].

5.2. Naive models
In the extension of NVE.DA is a naive model for quantile

forecasts, referred to as NVE.Q.DA. The residual errors ϵ are
calculated between the forecasted series p̂ and realized series
p of the in-sample period, i.e. ϵ = | p̂ − p|. From this series of
T residual errors, the quantile value is calculated, i.e. Q(α)(ϵ),
that is by definition larger than α · T residual error values. Be-
cause it is the absolute error, the interval forecast of nomi-
nal coverage τ is then obtained by adding (and subtracting) the
quantile value of the residual errors to (and from) the out-of-
sample forecasted values. The forecast is formally defined as
q̂(α)

t = p̂t + sign(τ − 0.5)Q(τ)(ϵ).
A second naive model, referred to as NVE.Q.PNT employs

the exact same approach as NVE.Q.DA, but bases itself on the
forecast of the point forecasting model that attains the highest
accuracy. This model can thus not be regarded as truly naive
when a sophisticated point forecast must be provided. Under
the assumption that such point forecasts are available, NVE.Q.PNT
can be regarded as a naive interval forecasting model.

5.3. Regression models
Quantile regression appeals because it can describe the re-

lationship between the price and independent variables not only
on the mean, but also on the tails of the conditional price. Be-
cause a set of coefficients for each quantile is obtained, asym-
metric effects of the independent variables can be investigated,
which might bring insight on whether features affect the price
differently at different price levels. In quantile regression, that
is reflected in the cost function, which is minimized as

β̂τ(λ) = arg min
βτ∈RF

 T∑
t=1

(
τ − [

pt ≤ βτxt
] )(

pt − βτxt

) (17)

Contained in the Iverson bracket
[
pt ≤ βτxt

]
is the statement

whether the true price value is lower than or equal to the es-
timated price value, i.e. whether there is a positive or nega-
tive error. Changing τ changes the ratio of the penalty terms τ
and τ−1, and thus changes how severe over-predictions are pe-
nalized compared to under-predictions. It then easily becomes
clear that for τ = 0.5, the quantile regression is equivalent to
the linear regression, for |τ|/|τ − 1| = 1. The model based on
quantile regression is referred to as REG.Q.LIN.

A second regression model for interval forecasting utilizes
quantile regression averaging, as introduced in [31]. Unlike in
regular quantile regression, not the features xt = [x1

t , . . . , x
F
t ] but

forecasts xt = [p̂1
t , . . . , p̂

M
t ] are utilized as explanatory variables

to arrive at a forecast. Selecting the more valuable point fore-
casts by eliminating those that are redundant by L1-norm reg-
ularization can improve accuracy [38].

However, this research only utilizes a small number of point
forecasts such that regularized quantile regression averaging is
not required. Therefore, this research considers only a model
based on quantile regression averaging model without regular-
ization, referred to as REG.Q.QRA.

5.4. Artificial neural network models
Themodel ANN.MLP for point forecasting is employed sim-

ilarly for interval forecasting. To that end, the same architec-
ture is utilized, but now with an output layer that contains as
many nodes as quantiles, i.e. h(L) = ŷ = {q̂(α)}. That network
is then trained with the quantile loss function of Equation 13,
where each output node receives a unique αl. The model is re-
ferred to as ANN.Q.MLP.

6. Forecasting procedure

This research establishes a forecasting procedure to sys-
tematically execute an out-of-sample test with an ‘initializa-
tion’ procedure, a ‘calibration’ procedure, and an ‘exploitation’
procedure. For reliable evaluation of accuracies it is vital that
the procedure does not interact with observations used in ex-
ploitation before exploitation. Hence, this research divides the
four-year period from 2016 through 2019 into two two-year pe-
riods, so that the period from2016 through 2017 can be used un-
hesitatingly for initialization, and the period from2018 through
2019 can be used for exploitation.
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6.1. Initialization
The initialization procedure commences with a stage that

reduces the full feature set. A RF regression is fit repeatedly to
the initialization period, and after every iteration, the least im-
portant features are eliminated. It eliminates 50 features per
iteration to come to 500 features, then eliminates 10 features
per iteration to come to 100 features, and then eliminates 1 fea-
ture per iteration to come to 50 features. The stage of recursive
feature elimination is executed in a rolling cross-validation.

This research evaluates all models with initial hyperparam-
eters repeatedly on the initialization period by means of rolling
window cross-validation, where every iteration employs a dif-
ferent size for the training window, i.e. Ntrn = {2 ·(24 ·30), 6 ·(24 ·
30), 12 · (24 · 30)} (approx. 2 months, 6 months, and 12 months
respectively), as well as different sizes of the testing window,
i.e. Ntst = {24, 24 · 7, 1 · (24 · 30)} (approx. 1 day, 1 week, and 1
month).

6.2. Calibration
The calibration procedure commences with a stage that re-

duces the candidate feature set FC , which is very similar to the
stage of reducing the full feature setFF in the initialization pro-
cedure. The candidate feature set is reduced from 50 features
to 15 features by eliminating 1 feature per iteration, to obtain
the input feature set FI ⊆ FC . This stage is performed with
Ntrn = 12 · (30 · 24) (approx. 12 months) and Ntst = 1 · (30 · 24)
(approx. 1 month).

The calibration procedure continues with a stage that finds
optimal hyperparameters. A model is fit to the calibration set,
and every iteration employs a different set of hyperparameters.
This stage is performed with Ntrn = 12 · (30 · 24) (approx. 12
months) and Ntst = 1 · (30 · 24) (approx. 1 month).

Grid-search is among the algorithms that search exhaus-
tively and in an unguided way, and is effectively applied in lit-
erature [7], although the computational cost can be substan-
tial for a fine-grain search space. Enter informed search algo-
rithms, that transcend the naivety of grid searches or random
searches by passing on past results through the optimization
procedure. In Bayesian search algorithms, a surrogate function
is responsible for updating the prior probability P

(
S (h)

)
with a

sample h and its score y = S (h) to get a better posterior proba-
bility P

(
y|h)

. An acquisition function is responsible for guiding
the sampling process to where likeliness of finding the optimal
solution is highest.

At the core of a tree-structured parzen estimator are two
kernel distribution functions l(h) and g(h), that are often cho-
sen as Gaussian [4], and that are based on the samples that yield
a score above or below a pre-defined threshold value y∗, respec-
tively

P
(
h|y) = l(h) if y < y∗

g(h) if y ≥ y∗
(18)

The acquisition function in aTPE is based on expected improve-
ment

EIy∗ (h) =
∫ y∗

∞
(y∗ − y)P

(
y|h)

dy (19)

and following the derivations that are explicitly stated in [4],
proportionality is found as

EIy∗ (h) ∝
(
γ +

g(h)
ℓ(h)

(1 − γ)
)−1

(20)

where γ = P
(
y < y∗

)
. Thus, for the expected improvement to

grow, the term g(h)/l(x) must shrink, such that a hyperparam-
eter set h is chosen that has a high probability under l(h) and
low probability under g(h).

6.3. Exploitation
After the initialization procedure and the first calibration

procedure, the first exploitation procedure commences. The
exploitation procedure is where a model is exploited to obtain
a forecast. It employs the input feature set FI and the hyperpa-
rameter set decided upon in the most recent calibration proce-
dure.

6.4. Multi-step-ahead forecasting
In contrast to the single-model setup of recursive schemes,

direct schemes utilize one trained model f̂h per each lead time,
that are separately trained to provide an h-step ahead forecast,
i.e.

yt = fh(yt−4, . . . , yt−4−d) + w (21)
h ∈ {1, . . . , H}. To obtain a forecast ŷN+H , that is for a look-
ahead-time of H hours, a direct scheme utilises the model f̂H

ŷN+H = f̂H(yN−4, . . . , yN−4−d) (22)

Although a direct scheme does not suffer from the propaga-
tion of errors, it cannot account for potential interdependen-
cies that may exist between lead times. Besides that, the com-
putational cost that is associated with training numerous sep-
arate models greatly exceeds that of recursive schemes. Espe-
cially formodels that are computational costly, such as the con-
sidered ANN models, that might be problematic.

The naive model NVE.DA can be used directly for multi-
step-ahead forecasting, albeit for a finite number of steps re-
stricted by the number of publishedmarket clearing prices. The
series could be extended by forecasts of the market clearing
price, but that lies out of the scope of this research. The con-
sidered regression andANNmodels can be used for look-ahead-
times further than 9 hours, however, and this research employs
them in a direct scheme for multi-step-ahead forecasting.

Many small results of the forecasting procedure constitute to
the bigger result that a more detailed procedure that avoids over-
fitting leads to slightly higher accuracies. Besides that, it provides
insight into the selection of features and hyperparameters, that vary
considerably as time progresses. It is demonstrated that the year of
2018, with high volatility and extreme prices, is more challenging
than the year of 2019. Overall, the multilayer perceptron ANN for
point forecasting obtains the most accurate forecast with rMAEs
of 0.81 and 0.77, while the multilayer perceptron ANN for quantile
forecasting is outperformed by the model based on quantile regres-
sion averaging that attains CRPSs of 3.53 and 2.24. In amulti-step-
ahead horizon, results demonstrate that accuracy remains steady
until the point that no more market clearing prices are available,
after which it rapidly deteriorates.

7. Point forecasting and model predictive control: En-
ergy plant with storage capacity

Only in a practical scenario does the value of a point forecast
become apparent; when it translates into actual profit, for in-
stance. In a mostly flat market, sophisticated price forecasts—
no matter how accurate—might not lead to more profitable
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schedules than naive forecasts, while in a volatile market, even
mildly accurate forecasts might lead to more profitable sched-
ules. Therefore, it is beneficial to assess not only accuracy but
also the impact of a forecast on decision costs and profit [35].

This research establishes a simulation that investigates an
energy plant with storage capacity. The system has access to
price forecasts of the intraday market and uses model predic-
tive control to settle on a dispatch schedule. The objective of
the simulation is not to offer an as-realistic-as-possible outlook
on real-world performance. Rather, it is used to see whether
and how a system that is a simulation of reality reacts to differ-
ent price forecasts.

7.1. Base case
The component of the energy plant in the base case is a hy-

pothetical wind plant, because wind energy is the largest vari-
able renewable energy source in terms of volume in the Dutch
energy mix. Because high-resolution data of historic genera-
tion from actual wind plants in theNetherlands are not publicly
available, this research employs the aggregated generation of all
wind farms installed on land [15], i.e. all onshore wind plants.
Two transformations are performed on that series. Firstly, it is
averaged for each hour of 2018 and 2019, so that it becomes
a one-year series. Secondly, it is normalized so that for ev-
ery month there is a total generation of 300 MWh. Because
an averaged and normalized one-year generation profile is uti-
lized, the effects of varying generation volumes from month
to month and from year to year are eliminated, and the effect
of different price forecasts, and that of varying price charac-
teristics of 2018 and 2019, can be assessed. The transformed
generation profile has a nominal power of approx. 1.3 MWh,
which coincides with the specifications of the relatively small
onshore wind turbine SIEMENS SWT-1.3-62, six of which are
operational for the wind farm Beabuorren in Friesland, The
Netherlands [34].

The component of energy storage in the base case is a large-
scale stationary energy storage product in the formof a recharge-
able lithium-ion battery. The base case follows the specifica-
tions of the TESLA MEGAPACK [37]. The battery is assumed to
have a fixed maximum capacity of 10 MWh, and a fixed mini-
mum capacity of 0MWh, fixedmaximum charge and discharge
rates of 5 MWh per hour, and fixed charging and discharging
efficiencies of 95%, i.e. a fixed round-trip efficiency of approx.
90%. There is also a cost of usage, that incorporates that the
lifetime of the battery is affected when repeatedly charging and
discharging the battery, that is assumed to have a fixed value of
3 €/MWh. The subsystemof energy storage is thus reduced to a
capacity range, charging and discharging rates and efficiencies,
and a cost of usage [32].

7.2. Optimization problem
The objective of the system is tomaximize an objective vari-

able, the estimated profit Q̂, by controlling the amount of en-
ergy supplied to the battery BI(k) and drawn from the battery
BO(k). At a sampling instant k, Q̂(k) is defined as the amount
of energy EO(k) times the estimated ID3 price P̂(k), minus the
costs of the battery, i.e. CI ·BI(k)+CO ·BO(k). This research refers
to Q(k) and Q̂(k) as profit and estimated profit, although a more
delicate approach that takes into account trading activity would
be necessary for them to be more representative of real world
profits.

Model predictive control (alias receding horizon control) is
a control scheme that optimizes for a finite number of future
states in the prediction horizon, then executes the first step of
the found solution, and then re-optimizes on a horizon that is
shifted one step into the future. Thatmakes it particularly suit-
able for the problem at hand, as updated forecasts and system
states can be provided continuously. Model predictive control
utilizes an objective function and constraints that together for-
malize the problem for the prediction horizon K. The optimiza-
tion must satisfy all equality and inequality constraints.

min
BI , BO

Q̂ =
K∑

k=1

−
(
EO(k) · P̂(k) − (

CI · BI(k) +CO · BO(k)
))

s.t. B(k + 1) = B(k) + BI(k) · ηI + BO(k)

EO(k) = EI(k) − BI(k) − BO(k) · ηO

BI(k) = 100% · EI(k)

0 ≤ B(k) ≤ 10

− BO(k) ≤ B(k)

0 ≤ BI(k) ≤ 5

− 5 ≤ BO(k) ≤ 0

(23)

All energy that is generated enters the battery before it is dis-
patched, i.e. BI(k) = 100% · EI(k). Without that constraint, the
system would utilize the battery only when deeming that it in-
creases estimated profit. Given the considerable cost of usage
and inefficiencies of the battery, it would then be utilized only a
couple of times per day, and the dispatch frequency would thus
increases significantly. The resulting schedulemight be subject
to a high degree of unaccepted offers in reality. Furthermore,
there are trading constraints in place on the intraday market
that such a schedule might not conform to. Another reason to
constrain BI(k) = 100% · EI(k) is that it eliminates the effects
of the cost of usage and of inefficiencies of the battery on the
schedule. These battery specifications now only affect the ab-
solute profit.

It is assumed that all offers that are hypothetically placed
for dispatch are accepted for the realized ID3 price of the prod-
uct in question, although in reality thatwould requirematching
counteroffers. The 4-hour gap between forecasting and deliv-
ery provides a broad window wherein offers of the ID3 price
can be be accepted. Also, the system never dispatches more
than 95% · 2.5 MWh. Offers of such volumes are very common
on the Dutch intraday market.

When all realized system outputs, i.e. BI(t) and BO(t) for
t = {1, . . . , T }, are determined from the optimization problem
of Equation 23, the profit Q can be calculated, i.e.

Q =
T∑

t=1

EO(t) · P(t) −
(
CI · BI(t) +CO · BO(t)

)
(24)

The schedules are evaluated on the profit Q and on rel. profit,
i.e. the profit normalized by that attained by a reference sched-
ule. Furthermore, the schedule is evaluated on the percentage
of hours that the system dispatches (alias dispatch frequency),
and the average volume of dispatch (alias dispatch volume). The
dispatch frequency and volume are linearly related because all
generated volume is dispatched. They thus shine a different
light on the same result.
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Two reference schedules are added to the evaluation. The
first reference schedule, referred to as Direct feed, involves no
optimization or forecasting. That schedule simply dispatches
all energy generated during an hour for the ID3 price of that
hour, such that EO(t) simply equals EI(t) and the profit is

∑T
t=1 EI(t)·

P(t). The second reference schedule, referred to as True price, is
optimized based on the true intraday price. The system thus
has full knowledge of price and generation and thus provides
an upper limit for schedules that are optimized based on price
forecasts. Direct feed is utilized to normalize the profits of
other schedules, i.e. the rel. profit of Direct feed is 100%.

It is concluded that the system attains higher profits when ex-
ploiting a schedule that is based on a more accurate forecast. With
a schedule based on the most accurate point forecast, that from
ANN.MLP, the system attains a profit that is 94.5% of the reference
profit that is based on a practically infeasible direct feed strategy.
Even based on the least accurate forecast, that from NVE.DA, the
system is able to attain 93.1% of the reference profit. It is concluded
that it is not so much the accuracy of the forecast than its shape,
that is important to attain profit. In terms of dispatch frequency and
volume, the schedules are more divergent, however, and especially
for a smaller storage capacity, the schedules based on forecasts from
REG.LASSO and ANN.MLP become relatively high frequency and
low volume schedules, with more than 8% higher dispatch frequen-
cies than the schedule based on forecasts from NVE.DA. It is con-
cluded that the considerable reduction of point forecast accuracies
for further look-ahead-times does not mislead the system and dete-
riorate profits, as it amasses approx. 3% more profit with schedules
based on forecasts for further look-ahead-times.

8. Conclusion

The considered artificial neural network model based on a
multilayer perceptron, which is capable of incorporating non-
linear relationships, provides a superior point forecast in the
out-of-sample test. A similar architecture that is trained on
the basis of several quantiles does not outperform a quantile
regression averaging of the considered point forecasts, how-
ever. Relative and absolute accuracies of all forecasts are shown
to vary significantly with the delivery hour and with the price
regime. The year of 2018, with attained rMAEs and CRPSs as
low as 0.81 and 3.53, is considerably more challenging than the
year of 2019, with attained rMAEs and CRPSs as low as 0.77 and
2.24, due to high volatility andmany extreme prices. Results of
the simulation demonstrate that more accurate forecasts lead
to slightly higher profits, although much of the essential in-
formation is captured by all forecasts. The schedule itself is
more sensitive to the price forecast, however, and dispatch fre-
quency and volume deviate more than 8% when based on dif-
ferent forecasts. Practitionersmight take that into account and
not gravitate towards point forecasts merely on the basis of ac-
curacy.
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