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summary

Embedded real-time systems, essential in industries like automotive, avia-
tion, and medical devices, increasingly rely on multi-core platforms for effi-
cient parallel processing to meet rising computational demands. However,
they face significant challenges with energy consumption, particularly in
energy-constrained environments where high energy usage affects system
reliability and longevity. Consequently, researchers have focused on en-
hancing energy efficiency by dynamically adjusting the energy consumption
profiles of system components to align with workload demands by leverag-
ing energy management techniques such as dynamic voltage and frequency
scaling (DVFS) while meeting timing requirements.

In this work, we consider the problem of energy-aware speed assignment for
a hard real-time workload scheduled with an online global non-preemptive
work-conserving job-level-fixed-priority scheduler on a multi-core platform
with a discrete core-level DVFS model. Our solution determines a speed for
each job in the workload to reduce the energy consumption of the system
while ensuring the timing requirements of the workload. As we consider a
non-preemptive execution model, the timing uncertainties in the workload
can result in scheduling anomalies. Therefore, we use the schedule ab-
straction graph (SAG) [1], a reachability-based response time analysis tool
to explore all possible execution scenarios and identify any potential dead-
line violations.

The key idea of our work is to iteratively explore all execution scenarios using
SAG with all jobs running at the most energy-efficient speeds while readjust-
ing the speeds to resolve any potential deadline violation. To limit the speed
readjustment search space, we present a novel approach for identifying con-
nections between jobs scheduled on a multi-core platform, considering all
possible speed combinations with the selected speed settings.

Our evaluations show that our solution can reduce the energy consumption
of a system by 25.85%, on average with an average runtime overhead of 7.7
times higher than that of the schedulability analysis when running all jobs
at the highest speed, for the speed range {0.74,0.80,0.87,0.94, 1.00}. This
demonstrates a considerable energy reduction potential with energy-aware
speed assignment for static slack reclamation using a schedule abstraction
graph.
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Abbreviations

Symbols

Nomenclature

Abbreviation

Definition

G-NP-EDF Global Non-preemptive Earliest Deadline First
G-NP-FP Global Non-preemptive Fixed Priority
JLFP Job Level Fixed Priority

BCET Best Case Execution time

WCET Worst Case Execution time

P-EDF Partitioned Earliest Deadline First

SAG Schedule Abstraction Graph

DAG Directed Acyclic Graph

DVFS Dynamic Voltage and Frequency Scaling
DPM Dynamic Power Management

Symbol Definition

J A set of jobs

T A set of task

T A task with index i

t a time instant

J; Job with index i

d; The absolute deadline of the job J;

i The priority of the job J;

min max

r T

i LI
min max
cren O

Earliest and latest arrival time of a job J;
best case and worst case execution time of a job J;

Number of cores

m

m; core with index i

Es Energy consumption at speed S

&5 Energy consumption of job J; at speed Sy
Vaa Supply voltage

Cey Effective switching capacitance

S Speed

Sertt critical Speed

f Core frequency

fmin | fmaz Minimum and maximum frequency

E Set of edges

v Set of vertices

P Path

A Set of system availability intervals
Ranalysis Runtime of the analysis

Eanalysis Energy consumption with speed assignment of the

analysis

v



Introduction

Embedded real-time systems is pivotal across numerous industries, includ-
ing automotive, aviation, medical, industrial automation, and consumer elec-
tronics. These systems are often safety-critical, namely, a wrong action
or an action at the wrong time can result in human loss or damage to the
environment. Therefore, these systems need both functional and tempo-
ral correctness. For instance, in the automotive sector, real-time require-
ments need to be met to ensure that the anti-lock braking systems (ABS)
and airbags work according to the timing requirements of the safety stan-
dards [2].

The demand for increased computational power in embedded systems has
led to the widespread adoption of multi-core platforms [3]. Multi-core plat-
forms facilitate parallelism, enabling the handling of more complex tasks
concurrently [3]. Although these emerging architectures provide noticeable
performance benefits, coordinating real-time tasks and shared resources
across multiple cores while meeting strict timing constraints presents signif-
icant challenges [4]. Additionally, they also demand a significant amount of
energy to support the increasing number of cores [4].

1.1. Problem definition

While predictability, correctness, and performance are essential character-
istics of real-time embedded systems, energy consumption is also a crucial
design consideration, as it impacts battery life, reliability, and total cost of the
system [5]. Especially in energy-constraint embedded systems, the need for
energy-efficient systems is significant where increased energy consumption
can harm the system’s longevity, compromising the system’s reliability in
critical applications. High energy consumption can also result in increased
system heat dissipation, reducing the system’s functional correctness (reli-
ability) with increased system failure [5].

With efforts to reduce energy consumption at the hardware level with low-
power embedded systems, many researchers [6]-[11] have also focused on
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energy-aware scheduling to improve energy efficiency at the system level by
actively changing the power consumption profile of system components to
effectively match workload demands while ensuring the timing requirements
of the real-time systems. On modern embedded platforms, two widely em-
ployed techniques for this purpose are Dynamic Power Management (DPM)
and Dynamic Voltage and Frequency Scaling (DVFS).

DPM focuses on reducing energy consumption by entering the processor
into a low-power inactive state during periods of inactivity. This technique
primarily addresses static power consumption, which is the power dissipa-
tion due to leakage currents that persist as long as the system is powered
on, regardless of the system activity level. By maximizing the time the pro-
cessor spends in this low-power state, DPM can significantly reduce overall
energy usage, while ensuring that all real-time tasks are completed within
their deadlines.

On the other hand, DVFS operates by reducing the voltage and frequency
of the processor to effectively lower the dynamic power consumption, which
is the power associated with the active operation of the processor. How-
ever, a reduction in frequency also leads to an increase in task execution
times. Therefore, it is crucial to determine the optimal processor speeds that
balance energy savings while ensuring that all tasks meet their timing con-
straints. In an ideal scenario, DVFS processors would offer an unlimited,
continuous range of voltages and frequencies, a precisely defined power-
frequency relationship, and no overhead in switching speeds. However, the
practical DVFS implementations are constrained due to the significant cost,
complexity, and impracticality of an ideal DVFS [12]. This non-ideal DVFS
provides a limited selection of discrete voltages and frequencies and incurs
overhead associated with processor speed switching.

In energy-aware scheduling, the scheduler uses DVFS to reduce energy
consumption by utilizing the slack time, i.e., the time when the processor is
idle in a schedule. The scheduler extends task execution into this slack time
by lowering processor frequency with DVFS, thereby reducing energy con-
sumption. This technique is known as slack reclamation [11]. Static slack
reclamation approaches are design time solutions that consider the slack
time based on worst-case execution time (WCET) analysis. In practice, the
actual execution time (AET) is less than WCET. For a schedule based on
WCET, the difference between AET and WCET provides additional slack
time that is unclaimed by static slack reclamation. To reclaim the runtime
slack, an online slack reclamation technique known as dynamic slack recla-
mation [11] is used.

Energy-aware scheduling on multi-core platforms with DVFS has been stud-
ied extensively for a preemptive execution model. In this model, an execut-
ing job can be preempted by another higher-priority job to maintain schedula-
bility (the ability of the system to respect all deadlines under a given schedul-
ing policy). In contrast, the non-preemptive execution model which does
not allow preempting of jobs while executing, has received limited attention
[11], [13]. However, the non-preemptive execution model remains appeal-
ing in various applications where the characteristics of device hardware and
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software make preemption prohibitively expensive or impossible [14]. Com-
pared to preemptive algorithms, non-preemptive scheduling algorithms are
easier to implement, have lower runtime overhead, and require less mem-
ory [14]. Non-preemptive scheduling also makes programs more suitable
for worst-case execution time analysis, as it preserves the program locality
[8], [15]. As a result, non-preemptive scheduling has been widely adopted
in many avionics applications and embedded systems, particularly in small
embedded devices with limited memory capacity [16].

The previous works for energy-aware scheduling with the non-preemptive
execution model on a multi-core platform that ensures schedulability, such
as those discussed by Bambagini et al. [11], mainly focus on an offline
scheduling approach or a partitioned scheduling [17]. Although offline
schedule can provide optimal solution [11], it is often impractical for embed-
ded platforms due to memory constraints. This is because a table-based
offline scheduling solution requires considerable memory resources to store
the schedule [18]. Similarly, the partitioned multi-core scheduling approach
considers a multi-core scheduling problem as a multiple single-core schedul-
ing problem by assigning each task to a core. While partitioned scheduling
is highly studied, the effectiveness of partitioned scheduling is limited by the
partitioning or bin-packing problem, which is a known NP-hard problem [19].
Consequently, global scheduling [17] where a job can be assigned to any
core, has easier and more efficient load balancing across cores compared
to a partitioned scheduling approach as job assignment to the core is not
limited by sub-optimal partitioning heuristic [20].

1.2. Research goal

To the best of our knowledge, there has been no prior research address-
ing energy-aware online global hard real-time scheduling on multi-core plat-
forms using a non-preemptive execution model and discrete DVFS. This
thesis aims to introduce a static slack reclamation method for assigning
an energy-efficient speed to each job ' in a workload scheduled with an
online global non-preemptive work-conserving job-level fixed-priority(JLFP)
[21] scheduler on a multi-core platform with a discrete DVFS model, where
each core can execute at one of the predefined set of speeds. The objec-
tive is to maintain the schedulability of the system while reducing energy
consumption.

1.3. Challenges and research questions

While the non-preemptive execution model has lower runtime overhead and
more predictability than the preemptive execution model, the schedulability
analysis for the non-preemptive execution model with workload timing uncer-
tainties is difficult. As jobs cannot be preempted once execution is started,
the runtime uncertainties in the execution time or release time of a job can
result in scheduling anomalies that cannot be identified by utilization-based
schedulability tests.

A job is an instance of a task in a workload.
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(a) Scenario 1: J4 finishes execution at time 5 (b) Scenario 2: J1 finishes execution at time 3

Figure 1.1: Scheduling anomalies in non-preemptive scheduling

Example 1. Consider an example where three jobs are scheduled on a
single-core platform with a non-preemptive job-level fixed-priority schedul-
ing policy. Job J; starts the execution at time 0 as it has the highest priority
amongst ready jobs. As J; has execution time uncertainty, it can finish its
execution as early as 3 and as late as 5. Figure 1.1(a) considers the sce-
nario when J; finishes the execution at 5. Attime 5, J; is the highest priority
job amongst all the ready jobs. Therefore, J; will start its execution and all
jobs are scheduled successfully. Figure 1.1(b) considers the scenario when
J1 finishes the execution at 3. As .J; is the only ready job at time 3, J; starts
its execution. Due to the non-preemptive execution model, higher priority
job J3 has to wait for J, to finish its execution. This results in a deadline
miss for Js.

The schedulability analysis of a non-preemptive workload with timing uncer-
tainties is further complicated when scheduled on a multiprocessor with a
global scheduling policy where ready jobs can be assigned to any of the
available cores. The execution time variation results in core availability
time uncertainty. In addition to the multiple possible ordering anomalies
discussed in example 1, the core availability time uncertainty can result in
multiple possible core assignment anomalies.

This leads to our main research question.

RQ 1. How can jobs be scheduled at specific speeds with an online non-
preemptive global scheduling policy on a multi-core platform with discrete
speeds to reduce the energy consumption of a system, while ensuring that
jobs meet their deadline requirements?

1.4. Contributions

We present the first work in energy-aware online global hard real-time
scheduling with a non-preemptive job-level fixed-priority (JLFP) scheduling
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policy on a homogeneous multi-core platform with an arbitrary number of
cores and discrete speed settings. We propose a static slack reclamation
approach to assign an energy-aware speed to each job in the job set to
reduce energy consumption while maintaining the schedulability.

1.5. Thesis organization

The thesis is structured in six sections. Chapter 2 provides an overview of
previous works related to energy-aware real-time scheduling and schedu-
lability analysis for global non-preemptive scheduling. Chapter 3 describes
the system, workload, and energy models used in this work that defines
the scope of our work. Based on the existing work in schedulability anal-
ysis for the global non-preemptive execution model, chapter 4 discusses
the schedulability and response time analysis framework used in the pro-
posed solution. Chapter 5 presents an approach for energy-aware schedul-
ing of non-preemptive workload on a multi-core platform with discrete speed
DVFS. We further evaluate the presented approach for multi-core energy-
aware scheduling in chapter 6. Finally, we conclude the work in chapter 7
with a discussion on the presented approach and insights into future im-
provements.



Related work

This chapter reviews the related work on energy-aware scheduling and
schedulability analysis for homogeneous multi-core platforms using a global
non-preemptive execution model.

2.1. Energy-aware scheduling

2.1.1. Single-core energy-aware scheduling

Energy-aware scheduling has been extensively studied on single-core plat-
forms with both online and offline approaches for preemptive and non-
preemptive execution models. Since the scope of this thesis is energy-
aware scheduling on multi-core platforms with a non-preemptive execution
model, the related work for preemptive single-core scheduling is not dis-
cussed.

Zhang and Chanson [6] proposed the dual speed (DS) algorithm based on
the EDF policy for a single-core platform. This work considers periodic pre-
emptive jobs with non-preemptive critical sections (blocking sections). A
scenario where a high-priority job cannot be executed because a lower-
priority job is executing a critical section is defined as a blocking scenario.
The dual speed (DS) algorithm calculates two speeds: a low speed is de-
termined by assuming the task set is independent, whereas a high speed
is calculated by considering the blocking time caused by non-preemption
of critical sections. The algorithm runs each task at low speed most of the
time, switching to high speed only when a task is blocked. Lee et al. [22]
extended this work with a multi-speed algorithm that utilizes various speed
levels based on specific blocking situations to minimize energy consump-
tion.

Jejurikar et al. [7] proposed the stack-based slowdown algorithm, which min-
imizes transitions to a higher speed by computing different slowdown factors
based on the blocking task, building on the optimal feasibility test for non-
preemptive systems. Li et al. [8] introduced the individual speed algorithm
(ISA), which computes a unique speed for each task in a non-preemptive set,
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avoiding unnecessary preemption time overestimation and ensuring dead-
lines are met.

The global scheduling model with a work-conserving policy assigns a ready
job to any of the cores of a multi-core platform. As the before-mentioned
solutions [6]-[8], [22] do not consider the impact of global scheduling on
a multi-core platform, these solutions cannot be used for a system with a
global scheduler.

2.1.2. Multi-core energy-aware scheduling

Similar to single-core scheduling, multi-core energy-aware scheduling has
received significant attention due to the industry shift to multi-core platforms.
Still, it mainly focuses on the preemptive execution model. The work in the
non-preemptive execution model for tasks with explicit deadlines is limited
to offline or partitioned scheduling.

Homogeneous multi-core platforms

For preemptive scheduling on the homogeneous multi-core platform, Fu-
naoka et al. [23] proposes an optimal static algorithm for continuous fre-
quency scaling in multiprocessors based on the Largest Nodal Remaining
Execution time First (LNREF) [20] global scheduling algorithm. LNREF is
an optimal real-time scheduling algorithm for multiprocessors that ensures
any periodic task set with a utilization less than or equal to the number of
cores will be scheduled to meet all deadlines. The solution proposed by Fu-
naoka et al. [23] categorizes tasks into heavy and light tasks based on their
utilization. Each heavy task is assigned to a dedicated core while the light
tasks are scheduled on the rest of the cores. All cores assigned for the light
tasks follow uniform frequency assignments where all cores are allotted the
same speed.

Unlike Funaoka et al. [23], the Growing Minimum Frequency (GMF) algo-
rithm [9] assigns optimal frequency to each core on a multiprocessor sched-
uled with U-LLREF [24] optimal multiprocessor scheduling algorithm de-
signed for homogeneous multiprocessors. GMF leverages the incremental
testing approach of U-LLREF, which checks the schedulability of subsets of
tasks on subsets of processors by expanding these subsets one element at
a time. GMF adjusts the frequency of the processors tested by U-LLREF to
accommodate the current subset of tasks effectively and assigns different
speeds to each core from discrete speed ranges with uniform speed steps.

El Sayed et al. [25] presented a blocking-aware-based partitioning (BABP)
algorithm that addresses the problem of energy-aware static partitioning of
periodic, dependent real-time tasks to schedule with Partitioned Earliest-
Deadline-First (P-EDF) [17]. BABP assigns tasks with the same shared re-
sources to the same core to ensure the parallel tasks do not share resources.
Moreover, the BABP algorithm uses the DS algorithm [6] to execute tasks
at a low speed and switch to high speed in a blocking scenario as discussed
in subsection 2.1.1.

For non-preemptive scheduling on a homogeneous platform, Zhu et al. [26]
presented Global Scheduling with Shared Slack Reclamation (GSSR) al-
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gorithm, an energy-aware scheduling approach for a global multi-core plat-
form with a non-preemptive execution model for a frame-based task set.
In a frame-based task set, all tasks in the frame have a common deadline.
GSSR computes the minimum speed used to execute the selected task with-
out missing the deadline for the current frame while considering the slack
provided by the already executed jobs and maintaining a polynomial time
complexity.

Shieh et al. [27] proposes an offline and online approach for energy-aware
non-preemptive scheduling on a dual-core platform with two speeds. For the
offline approach, the authors present an integer linear programming (ILP)
formulation that decides the core and voltage assignment for each task. In
the online approach, authors present a heuristic that selects the task with
the earliest deadline and selects speed and core based on the workload
requirement of the ready job and core utilization.

Shieh et al. [10] extended the previous work by considering a system with
a homogeneous multi-core platform and discrete speed model for schedul-
ing an aperiodic non-preemptive task set. The authors present an offline
approach with an integer linear programming formulation that decides the
core and voltage assignment for each task. Additionally, they propose an
online heuristic for task-to-core mapping and voltage assignment for each
ready task. In their online approach, whenever a core finishes executing
a scheduled task, the system calculates the dynamic priority of each ready
task based on the ratio of the task’'s WCET to the remaining time until its
deadline. The dynamic priority is used to determine the task assignment for
the available core and required voltage for the selected task. Additionally,
voltage assignment also considers the timing requirements of all waiting jobs
to ensure scheduling feasibility.

The previously mentioned works in preemptive global scheduling [9], [23]
are based on scheduling algorithms LNREF and U-LLREF, which are not
optimal for non-preemptive scheduling. Although the work presented by Zhu
et al. [26] is close to our system model, GSSR considers a frame-based task
set where all tasks have a common deadline. Hence, this approach cannot
be directly extended to a periodic job set where each task has an explicit
deadline. Finally, the approach by Shieh et al. [27] is limited to two cores and
two speeds which cannot be applied to a multi-core platform with an arbitrary
number of cores and discrete speeds. The proposed solution for energy-
aware scheduling on a multi-core platform by Shieh et al. [10] is closest to
our system model as a job set from a periodic task set can be similar to an
aperiodic task set if each job in the job set is considered as an aperiodic
task. Although authors [10] provide a dynamic priority core assignment, no
scheduling guarantee or analysis (with or without the voltage assignment) is
provided for the proposed heuristic. As the goal of this thesis is to maintain
schedulability for a schedulable job set while reducing energy consumption,
the proposed heuristic cannot be used for this thesis goal since it does not
consider the impact of speed changes on tasks that are not in waiting task.
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Heterogeneous multi-core platforms

Guo et al. [28] presented an approach for energy-aware scheduling of spo-
radic parallel jobs on a clustered multi-core platform with a preemptive ex-
ecution model where the cores in the cluster are assigned the same fre-
quency. To partition the tasks on the cores, they proposed the concept
of the speed-profile to present the energy-consumption behavior for each
task and cluster. Similar to Guo et al. [28], Chen et al. [29] discusses the
energy-aware offline scheduling problem of dependent tasks upon a het-
erogeneous multiprocessor platform and presents a list-based scheduling
approach. The presented LESA algorithm assigns task priority considering
their dependency. Then, it defines an energy-based weight for each task
based on total available energy and allocates the task to a processor with a
defined speed, start time, and finish time.

For non-preemptive energy-aware scheduling on a heterogeneous platform,
Chniter et al. [30] proposes an integer linear programming (ILP) approach
to schedule re-configurable periodic tasks on heterogeneous cores by par-
titioning the task to match the energy consumption to the system’s battery
capacity. If the partitioning fails, task periods are adjusted and tasks are
remigrated to feasibly schedule the jobs under given energy constraints. All
discussed solutions [28]-[30] present a partitioned scheduling approach that
considers a multi-core scheduling problem as multiple single-core schedul-
ing problems with tasks assigned to a specific core. This approach cannot
be applied to our work as it considers the global scheduling model.

2.1.3. Summary

Although energy-aware scheduling has been studied for various system
models with different workloads and real-time constraints, the work for
energy-aware online scheduling with explicit deadlines on a multi-core plat-
form with a global non-preemptive execution model is missing. Additionally,
the approaches presented in the related works do provide a unique perspec-
tive to solve the energy-aware scheduling for the respective system models.
Still, none of the work can be directly applied to global multi-core hard real-
time scheduling with an arbitrary number of cores and discrete speed range
with a non-preemptive execution model and explicit deadline workload. The
related work is summarized in Table 2.1

2.2. Schedulability tests

Non-preemptive scheduling has received much less attention in research
compared to preemptive scheduling. However, it is widely used as a low-
overhead solution with high predictability [14]. These benefits are espe-
cially significant on multiprocessor platforms, where task migration over-
head is higher and more unpredictable. Non-preemptive scheduling pro-
vides more predictability in multiprocessor worst-case execution time anal-
ysis due to reduced migrations and a higher level of isolation [15]. To
the best of our knowledge, there exists no optimal scheduling policy for
global non-preemptive multi-core scheduling. Therefore, work-conserving
heuristics such as Global Non-Preemptive EDF and Global Non-Preemptive
Fixed-Priority [21] are commonly used scheduling policies for global non-
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preemptive scheduling. As the objective of our work is to reduce energy
consumption while ensuring the timing constraints, it is important to provide
timing guarantees for the system scheduled with the selected energy-aware
speeds. Therefore, this section will discuss the existing schedulability anal-
ysis for global non-preemptive scheduling.

Baruah et al. [31] introduced a sufficient but not necessary polynomial-time
schedulability test for global non-preemptive scheduling using the G-NP-
EDF algorithm for periodic task sets. This test accounts for the additional
interference time resulting from non-preemption. However, a key limitation
of this test is that it cannot guarantee the schedulability of a task set if any
task has an execution time longer than the shortest relative deadline among
the tasks. This constraint applies to a single-core non-preemptive platform,
where long execution times can block other tasks from meeting their dead-
lines. For multi-core scheduling, this constraint does not necessarily apply,
as tasks can be scheduled on different processors, allowing them to meet
their deadlines even if some cores are occupied for long periods.

Guan et al. [21], [32] presented three schedulability tests for global non-
preemptive fixed-priority (G-NP-FP) scheduling. By leveraging the "problem
window analysis” previously used for preemptive multiprocessor scheduling
[33], they first developed a linear-time general schedulability test that applies
to G-NP-FP as well as any work-conserving non-preemptive global schedul-
ing policy. Further, they proposed pseudo-polynomial time-complexity
schedulability test conditions for G-NP-FP and G-NP-EDF scheduling,
which provided significant performance enhancements over the initial linear-
time test.

Lee et al. [34] focuses on refining response-time bounds for global non-
preemptive multi-core scheduling to minimize unnecessary interference
from carry-in job sets. They define carry-in jobs as those released before
a specific time t and still executing at ¢. By leveraging these bounds, [34]
propose a tighter schedulability test for global non-preemptive fixed-priority
(NP-FP) scheduling. Their approach utilizes necessary conditions and takes
advantage of reduced interference caused by carry-in jobs.

Recently, Nasri et al. [1], [15] presented a reachability-based response time
analysis framework called a schedule abstraction graph (SAG). SAG gen-
erates a graph based on all possible scheduling decisions for a global non-
preemptive work-conserving scheduling policy. For each state in the graph,
it considers the impact of the scheduling decision and explores all possible
scheduling scenarios for a given job set to verify the schedulability while
providing response time bounds.

2.2.1. Summary

In summary, while Baruah et al. [31], Guan et al. [21], [32], and Lee et al. [34]
have primarily focused on providing sufficient schedulability tests tailored for
sporadic task sets, these tests tend to become overly pessimistic when ap-
plied to periodic tasks because they fail to discount many execution sce-
narios with sporadic task set that are not present with periodic task set.
Nasri et al. 's SAG framework [1], [15], although not an exact test, explores
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all possible scheduling scenarios and provides a tighter schedulability test
and a response-time analysis. SAG not only outperforms the other tech-
niques but also provides results within reasonable computation times. Un-
like [21], [31], [32], [34], SAG also considers the release jitter that may arise
due to timer inaccuracy, interrupt latency, or networking delays. Finally, by
exploring all possible scheduling scenarios, information from SAG can effec-
tively guide the assignment of speeds to jobs for energy-aware scheduling.

Table 2.1: The summary of related work

Reference Task_ Platform Task set Globa_l Preemption model Speed model Schedulability
scheduling scheduling guarantee
[6] Online Single-core Periodic - Non-preemptive sections | Two speed discrete Yes
[22] Online Single-core Periodic - Non-preemptive sections Discrete Yes
[71 Online Single-core Periodic - Non-preemptive Discrete Yes
[8] Online Single-core Periodic - Non-preemptive Discrete Yes
[23] Online Homogeneous multi-core Periodic Yes Preemptive . Stat|c. Yes
continuous/discrete
[9] Online Homogeneous multi-core Periodic Yes Preemptive Static discrete Yes
[25] Online Homogeneous multi-core Periodic No Preemptive Two speed discrete Yes
[26] Online Homogeneous multi-core Frame-based Yes Non-preemptive Continuous / discrete Yes
[27] Offline/Online | Homogeneous dual-core Aperiodic Yes Non-preemptive Two speed discrete No
[10] Offline/Online | Homogeneous multi-core Aperiodic Yes Non-preemptive discrete No
[28] Online Heterogeneous multi-core | Sporadic parallel No Preemptive Continuous / discrete Yes
[29] Offline Heterogeneous multi-core Dependent No Preemptive Discrete Yes
[30] Offline Heterogeneous multi-core Re—(;;r:lgdx;;able No Non-preemptive Discrete Yes
Our work Online Homogeneous multi-core Periodic Yes Non-preemptive Discrete Yes




System model

We address the problem of energy-aware scheduling of a finite set of non-
preemptive jobs 7 with hard real-time requirements on multi-core platforms
with identical cores. This chapter will discuss system models for the selected
problem.

3.1. workload and execution model
Workload Model: We define each job J; € J as

Ji = ([T;mn’,r;naz]’ [Cimln7 szax}vd%pi)v (31)
with the earliest release time r"", latest release time %%, best case exe-
cution time at the highest speed (BCET) C", worst-case execution time
(WCET) at the highest speed C"**, absolute deadline d;, and job priority
p;- We consider a discrete-time model where the job timing parameters are
integer multiples of the system clock. At runtime, each job may be released
at a time r; within the interval [r"™" r™2®] where at time instance ¢, a job .J;
is considered possibly released if t > ™" and certainly released if t > rmae,
This release jitter considers scenarios such as timer inaccuracies, interrupt
latency, and communication delays, which can result in variations in job re-

lease time [15].

The execution time variation of a job with execution time C; within the interval
[Cmin Cmae] results from factors such as caching, out-of-order execution,
input dependencies, and program path diversity [15]. Additionally, shared
resources requiring mutual exclusion are protected by FIFO spin locks [35].
Since we consider a non-preemptive execution model, the worst-case spin-
ning delay while waiting to acquire a lock is considered in the execution time
variation.

A job’s absolute deadline d; is fixed and independent of release jitter. The
job priority p; is decided based on the selected job-level fixed priority (JLFP)
algorithm or designer-assigned priority. We assume that the numerically

12
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lower value for p; implies higher priority. Ties in priority are resolved arbitrar-
ily and consistently. For ease of notation, we assume that the “<” operator
implicitly reflects this tie-breaking rule.

Scheduling Model: Each job must execute sequentially on a core, meaning
it cannot be split into smaller sections to run on multiple cores concurrently.
Thus, a job starting its execution on a core at time ¢ occupies that core until
time ¢ + C; and the core becomes available for other jobs at ¢t + C;.

A job is considered ready at time ¢ if it has been released and has not yet
started execution before ¢t. Jobs remain pending until completed, with no job-
discarding policy. We consider a work-conserving non-preemptive global
JLFP scheduler such as G-NP-EDF [21] or G-NP-FP [21] operating on a
homogeneous multi-core platform. This scheduler is activated whenever
a job is released or completed. The highest priority ready job is selected
and assigned to any available core at each invocation. We consider a non-
deterministic core-selection policy when more than one core is available
or executing a job, i.e., when a job is scheduled, it may be scheduled on
any available core. The scheduler does not leave a core idle if a ready job
exists. As the JLFP scheduler is deterministic, it always produces the same
schedule for a given execution scenario, where an execution scenario is
defined as follows (according to [1], [15], [36]).

Definition 1. An execution scenario v = {(r1,C1), (r2,C2),. .., (rn,Cn)},
where n = |J|, is an assignment of release times and execution times to
the jobs of 7 such that, V.J; € J, r; € [r™™ r™ma?] and C; € [C™in, Cmaez].

7

As we consider a hard real-time system, a job set 7 is schedulable under a
given JLFP scheduling policy only if no execution scenario of 7 results in a
deadline miss.

3.1.1. Job set generation from a periodic task set
Although the presented workload considers a job set, it supports commonly
used workload models such as periodic task sets. This section discusses
the approach for creating the job set from a periodic task set.

Job set formation: Consider a periodic task set 7 = {r,...,7,}, where
each task 7; is defined as

T = (EvDia [Cminvc;nax]vei)a

K2

with task period T;, relative deadline D;, execution time interval [C’imi“, comax],
and release time jitter ¢; . The task set 7 can be converted into 7 as defined
in eq. (3.1) as follows:

1. Compute the hyperperiod H = lem(T1,...,T,).

2. For each task 7;, calculate the number of jobs it releases within one
hyperperiod: n; = [4].

3. Generate the job set, 7 by including all jobs from all tasks within this
hyperperiod as

T ={Jik | Vi,1 <i<nVk,1<k<n;}.
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Job parameter assignment: After generating each job in the job set, the
timing parameters for each job (according to eq. (3.1)) can be assigned. The
kth job of 7; is defined as:

Jig = ([FER, i), (O, CF ™), di g, pik) -
The release interval of the job is defined as

i = (k= )T,

rie = (k= 1T; + &,
and the absolute deadline of the job is d; , = rgl,i“ + D;.

Job priority assignment: The priority p; ;. for job J; ;; is assigned according
to the selected scheduling policy or designer-assigned priority. For exam-
ple, the earliest deadline first (EDF) scheduling policy assigns priority for
each job based on the absolute deadline of a job'. The job with an earlier
(numerically smaller) absolute deadline will have a higher priority. As we
assume the numerically lower value of p; implies higher priority, job prior-
ity assignment, p; set to the absolute deadline of the job ensures priority
resulting from EDF policy.

Similarly, priority assignment with the rate monotonic (RM) scheduling policy
depends on the period of the task where a task with a smaller period will
be assigned a higher priority. Therefore, all jobs of the same task will be
assigned the same priority based on the period of the task.

3.2. Platform and speed model

We consider a homogeneous multi-core platform composed of m identical
processors represented by m = {m, 12, ..., 7, } and job-level dynamic volt-
age and frequency scaling (DVFS) with discrete speed range. Hence, each
core can scale with different DVFS settings independent of other cores
based on the assigned speed of the job to be dispatched on that core.

We define operating speed S as a normalized operating frequency. The
normalized operating frequency, S; is the ratio of the current core frequency
to the maximum processor frequency f?/f™*, where the core is running
with frequency f¢. The maximum core speed or the core speed at highest
fme? is defined as S™** = 1.0. Hence, the speed range has discrete values
within {S™i" §maz} where S™" and S™ are the minimum and maximum
speeds corresponding to f™" and f™%*, respectively.

We also consider job-specific critical speed S, which, as defined in [37],
is the operating speed that minimizes the energy consumption per cycle,
i.e., any lower speed results in higher energy consumption than energy con-
sumption at the critical speed. Hence the active operating speed range is
within {Sertt ... S§mary,

As observed in [38], the energy and time overhead of DVFS for common
embedded multiprocessors are negligible. Therefore, we do not consider

"EDF is a task-level dynamic priority policy but a job-level fixed-priority policy.
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them as a part of our scheduling model, but instead, we assume they have
been included in the value of the WCET of each job, given that the core
speed scaling only occurs before the start of execution of a job and its timing
overhead is predictable. The relation between the selected speed of the
core and the execution time of a job is defined by Equation 3.2.

Ci(S) = = (3.2)

3.3. Power and energy model

As we assume a platform that can assign the frequency and voltage to each
core individually, power consumption for each core in active state is charac-
terized by P which consists of static power consumption and dynamic power
consumption as shown in Equation 3.3.

P=P,+P, (3.3)

Dynamic power consumption Py is given by Equation 3.4, where C.; is the
effective switching capacitance, V,,, is the supply voltage, and f; is the core
frequency [39], [40].

Py =Cef.Vaa,> . fi (3:4)

The core frequency f is dependent on the supply voltage Vy; as Vg, lim-
its the highest frequency[11]. The frequency-voltage relation is given by
Equation 3.5 [41], where k is hardware-design-specific constant and V; is
the threshold voltage. Therefore, V4, is the required supply voltage for the
frequency f; ,
(Vaa — Vt)

f=k Vaa

Similarly, the static power consumption of an active core is given by eq. (3.6),
where, V4, is the selected core supply voltage for frequency f; and «; and
as are hardware-design-specific constants that are independent of active
application-specific parameters [38].

(3.5)

P, = 01.Vaq, +ao (3.6)
Hence the power consumption at speed S; is given by
P(Sl) = Cef.vddf.fi + al.Vddi + a9, (37)

where f; is the core frequency required for speed S;. The energy consumed
for the core at speed S for period 7 is given by Es = P(S) x 7. Based on
the Equation 3.2, The energy consumption for a job J;, E; s calculated as

Eis = P(S) x Cy(S). (3.8)



Schedule abstraction graph

The approach in this work uses a Schedule abstraction graph (SAG) to ex-
plore the different execution scenarios for a given job set and check the
schedulability of the job set with analyzed energy-efficient speeds. This
chapter introduces SAG, the reachability-based response-time analysis by
Nasri et al. [1], [15], [36] and describes how the SAG works.

4.1. Schedule abstraction graph

The SAG searches the space of possible decisions a scheduler can take
with a job-level-fixed-priority (JLFP) scheduling policy for a set of jobs J
by building a schedule-abstraction graph (SAG). SAG is a directed acyclic
graph (DAG) denoted by G = (V, E) and consists as follows:

Vertices

Each vertex v in the set of vertices V represents the system’s state af-
ter executing a set of jobs. Each state v € V for multi-core SAG analy-
sis maintains a set of system-availability intervals (defined in [1]), denoted
A=Ay, Ay, ... A, where A, = [AT" A™aeT] means that 2 cores can be
possibly available starting at time A7 and certainly available no later than
at time A7'**. These system-availability intervals represent the system non-
determinism due to workload timing uncertainties such as release time and
execution time.

For example, for a system with two cores, any time before A7*", no core
can be available for a job in the ready queue. Similarly, any time before
Azvin only one of the cores can be possibly available. For the time interval
[Apvin - Amaz] two of the cores are possibly available. From time AZ**®, two
of the cores are certainly available.

It is important to note that the system availability interval does not describe
the availability of a specific core. Therefore, for interval A; = [A7", ATez],
the one core that can possibly be available at time A7*™ may not be the
same as the one core that is certainly available at A7***.

16



4.1. Schedule abstraction graph 17

Example 2. Consider a system with m = 2 cores and suppose there are
two jobs scheduled on the cores with finish time intervals [5,10] and [4, 12].
In this example, t = 4 is the earliest time when one of the m cores is possibly
available for the next ready job. Similarly, from time 5, two cores can possibly
be available. At¢ = 10, at least one of the m cores is certainly available and
at ¢t = 12, two cores will be available. Therefore, the system availability
interval is calculated as 4; = [4,10] and A5 = [5,12].

Edges

The set of edges E, where each edge e = (v, v, J) between system states
(vertices) v and v’ describes a scheduling decision. An edge ¢ describes a
scenario where job J is scheduled considering availability at vertex v. The
resultant state is described in vertex v’ based on the system availability after
scheduling J.

Paths

A path P starting from vertex v; and ending with vertex v; is a possible
sequence of scheduling decisions from initial system state v; to v;. The set
of jobs dispatched on a path P is denoted as Jp.

4.1.1. Schedule abstraction graph construction

The schedule abstraction graph [1], [15], [36] is constructed with a breadth-
first approach. Once the initial state v; is added, all possible scheduling
decisions are considered based on system availability intervals, the set of
ready jobs, and the priority of a job amongst the ready jobs. For each of
these scheduling decisions, an edge is created connecting v; with the vertex
representing the state after the scheduling decision. This phase is known
as the expansion phase. Then, all of these new states are explored in a
breadth-first approach until all jobs are considered in each path. To avoid
the state space explosion, a merge phase is performed where newly created
states after the expansion phase are assessed to determine the possibility
of merging states. Two states are merged if any possible execution scenario
that can be explored from the selected two states can still be explored after
they are merged. The following sections will discuss the schedule abstrac-
tion graph phases in more detail.

Expansion phase

The objective of the expansion phase is to explore the outcome of different
scheduling decisions based on a system state. In this phase, (one of) the
shortest path(s) P in the SAG (connecting v; to v,) is explored by consider-
ing all jobs that can be a direct successor of state v,,. Ajob J'is said to be a
direct successor of a state v, if there exists an execution scenario in which
job J' is dispatched after state v, and before any other job. A new state is
created for each of these jobs by adding an edge to the SAG, connecting
the new state v;, and the terminal vertex of path P, v,.

To determine the direct successors of state v,, R a set of potentially ready
jobs for system state v, is identified. R’ is defined as follows (derived
from [1])
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RFE£J,eT\T". (4.1)

For each ready job J; € R”, we find the earliest and latest times it can start
after state v,. These times are called the earliest start time (EST) and the
latest start time (LST), denoted as EST;(v,) and LST;(v,). A job is eligible
as a direct successor of state v, if its EST;(v,) is no later than its LST;(v,,),
ie. if

Definition 2 (From [1]). A job J; € R” is a direct successor of v, only if
inequality (4.2) holds.

As a job cannot start execution before its earliest release time or before at
least one of the cores becomes available, the earliest time that J; can start
its execution after state v, is defined as

EST;(v,) = maz{r]™™, AT""(v,)}. (4.3)

The latest start time of a job after the system states v, is decided by two
properties of the scheduler: (i) The scheduler decides the next job to be dis-
patched based on the JLFP scheduling policy, and (ii) the scheduler follows
a work-conserving policy. According to property (i), a job can be a direct
successor of v, if it can start its execution before a higher-priority job is cer-
tainly released. the upper bound on the certain release of a higher-priority
job for J; is defined as follows[1]

thigh £ Héin{Tgmx ‘ Js € RP ANpg < pi}- (44)

Based on eq. (4.4), the latest time instant that J; can start executing af-
ter state v, is tpin, — 1. If J; is the highest priority job in RF (ie. p; =
minp, | J, € RY), then thign is set to oo and it does not bound the latest
start time of J;.

As the scheduler follows a work-conserving scheduling policy (based on the
property (ii)), the second upper bound on the latest start time for job J; after
state v, is t,. [1], the time at which the core is certainly available and a
possibly ready job is certainly released. As the scheduler will dispatch the
highest-priority job among the certainly released jobs in R¥, when at least
one of the cores is certainly available, the scheduler will assign the ready
job. Thus, job J; € R” will not be dispatched next after v, at any time later
than t,,.. Nasri et al. [1] defines ¢, as

toe 2 max{A7*" (v,), min{r7*" | J, € R"}}. (4.5)

Considering the two upper bounds from eq. (4.4) and eq. (4.5), the latest
time instant at which J; can start such that J; is a direct successor job of
state v, is

LST;(vp) = min{twye, thign — 1} (4.6)
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If job J; € RY satisfies inequality (4.2), J; is dispatched next after v, and its
earliest and latest finish times are [1]

EFT;(v,) = EST;(v,) + "™, 4.7)
LFT;(v,) = LST;(v,) + C"*. '

Once the job J; is dispatched after v,, a new system state fuz’, is created to

show the system state with the selected scheduling decision. To calculate
the system core availability for state v,,, two lists called PA and CA are cre-
ated. PA and CA contain lower and upper bounds on the time instants at
which each number of cores becomes possibly and certainly available at

system state v, respectively. PA and CA are calculated as follows [1]

PA 2 {max{EST;(v,), AT""(v,)}||2 < z < m} UEFT;,

4.8
CA 2 {max{EST;(v,), UA™ (y,)}]|2 < 2 < m} ULFT;. (%)

After creating the PA and CA list, both lists are sorted in non-decreasing
order and assigned to the core availability as follows [1]

Va, 1 < x <m, Ay(v,) < [PA,, CA,]. (4.9)

ry:[10,11] C;: [56] —
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Schedule abstraction graph expansion

Figure 4.1: Expansion of system state v,

Example 3. Consider a job set 7 with n jobs scheduled on a system with two
cores. A system state v,, has set of system availability intervals A(v,), where
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Aq(vz) = [10,10] and Ay (v, ) = [15,20]. The set of jobs dispatched on a path
connecting the initial state v; and v, is J* such that 7% = 7\ {J;, Ji.}.
Figure 4.1 shows the expansion of the system state v, to state v/,. Jobs J;
and J;, are potentially ready jobs at state v, with release time uncertainty.
As one core is possibly and certainly available at ¢ = 10, based on the
earliest release time of each job, the earliest start time EST;(v,,) is 10 while
EST}(v,) is 11. Since J; is the highest priority in R”, thign for J; is co. Thus
the latest start time for J; (LST;(v,)) is bounded by ¢,,. = 11 (according to
egs. (4.5) and (4.6)). For the job Jj, thign — 1 is 10 (according to eq. (4.4))
and ¢, = 11 (according to eq. (4.5)). Based on eq. (4.6), the latest start
time for J;, (LST (v,,)) is 10, as at time 11, a higher priority job J; will certainly
claim the system availability A;(v;).

The inequality (4.2) holds only for J;, as ESTy(v,.) is greater than LST (v,,).
Therefore, J; is the only direct successor of state v,. This results in sys-
tem states v/, connected to v, with an edge (v, v}, J;). The set of system
availability intervals for state v/, is calculated with egs. (4.7) to (4.9).

Similar to the example 3, each of the shortest paths is further explored in
the expansion phase.

Merge phase

A naive state expansion of the schedule abstraction graph can result in a
state space explosion for a job set with high timing uncertainty [1]. To reduce
the growth speed of the state space exploration, a merge phase is performed
after the expansion phase to merge the leaf vertices of two paths whose
future is the same or can be explored as a single state. As the expansion
phase relies on core availability, all future system states are reachable if sets
of dispatched jobs for two states are equal and if all of their core availability
intervals overlap. As defined by Nasri et al. [1], the criteria for safe state
merge is as follows

Rule 1. Two states v, and v, can be merged if 7 = 79 andVz,1 <z < m,
Az (vp) N Az (vg) # 0

the set of system-availability interval A(v,) in the merged state v, include the
availability intervals of both v, and v,. The set of system-availability interval
A(v,) is defined as (from [1])

Ag(v2) = [min AT (v,), A7 (vg), max AT (v,), A" (vg)]

(4.10)
Ve,1 <z <m.

The SAG construction algorithm [1] alternates between the expansion and
merge phases until all paths in the graph consider all jobs in the job set,
or any paths encounter a deadline miss. The correctness of the schedule
abstraction graph can be assessed based on theorem 1 by Nasri et al. [1]
which states that for any possible execution scenario, there exists a path in
the schedule abstraction graph that represents the schedule of all jobs in
the given scenario.
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Theorem 1. For any execution scenario such that a job J; € J finishes
at some time t, there exists a path P =< v1,...,vp,v, > in the schedule-
abstraction graph such that J; is the label of the edge from the state v, to
the state v, and t € [EFT;(v,), LET;(v,)]

4.2. Limitations of SAG

A schedule abstraction graph considers all different execution scenarios with
possible job orderings to determine the best-case and worst-case finish time
for a job. While exploring different states, SAG also analyzes the schedula-
bility of the job set by identifying the possible execution scenario where the
job’s latest finish time is higher than the job’s absolute deadline. In energy-
aware scheduling, SAG can be used to analyze the schedulability of the job
set with assigned job speeds.

The power minimization problem is NP-complete for the dynamic voltage
and frequency scaling (DVFS) model with a discrete arbitrary number of
speeds [42]. Thus, itis important to minimize the number of jobs considered
for speed readjustment in energy-aware scheduling. To effectively identify a
set of jobs that affects the response time of a job .J, a connection needs to be
identified between job J and other previously scheduled jobs while consid-
ering the impact of different speeds on each job. The schedule abstraction
graph implementation by Nasri et al. [1] considers a fixed-speed exploration.
Therefore, SAG does not explore all possible execution scenarios resulting
from varying job execution speeds.

This leads to the following sub-questions to the main research question.

SQ 1. How to extend the schedule abstraction graph to effectively explore
all possible execution scenarios for a given set of discrete speeds.

SQ 2. For any scheduled job J € 7 in the SAG, how to identify the set of
previously scheduled jobs that impact the response time of job J.

SQ 3. How to use the information provided by the SAG to effectively assign
an energy-efficient speed to each scheduled job.

To overcome the limitations of the schedule abstraction graph, we extend
the SAG to explore all possible execution scenarios with a given discrete
speed set and identify connections between the jobs. Finally, we use the
connection between jobs to identify energy-aware speeds for each job while
ensuring the timing constraints (if possible).



Energy aware scheduling

This chapter discusses the proposed solution for energy-aware speed as-
signment for jobs scheduled using a job-level fixed priority (JLFP) schedul-
ing policy, such as G-NP-EDF. The solution uses a Schedule Abstraction
Graph (SAG) [1] to explore all possible scheduling scenarios and verify the
schedulability of the job set with energy-aware speeds. Figure 5.1 describes
the approach for energy-aware speed assignment. The solution assigns a
speed to each job in the job set to reduce overall energy consumption while
maintaining the schedulability of the job set.

In the preprocessing stage, speeds that would certainly result in an un-
schedulable job set are removed by pruning the set of possible speeds for
each job to reduce the exploration space for speed assignment. Additionally,
an initial infeasibility check is performed based on the available valid speeds
(as defined in definition 3) to determine the schedulability of the job set for
the provided speed settings. After preprocessing, the SAG is generated to
explore the scheduling scenario in which all jobs are executed at their low-
est valid speed. This is achieved by adjusting the execution time according
to the lowest valid speed (as per eq. (3.2)). If the SAG completes the explo-
ration without any deadline violations, the job set is deemed schedulable at
the selected lower speeds, resulting in reduced energy consumption. How-
ever, if a deadline violation occurs, an ultimate Schedule Abstraction Graph
(ultimate SAG) is generated to explore all execution scenarios considering
all valid speeds.

Based on the scheduling scenarios in the ultimate SAG, the set of connected
jobs that influence the start and finish times of the job that violated its dead-
line is identified. After identifying these connected jobs, causal links are gen-
erated, representing sets of connected jobs within an execution scenario in
the ultimate SAG. An energy-aware speed readjustment is performed for
each unique causal link to resolve the deadline violation. If all causal links
are explored without achieving a successful speed readjustment, or if the
analysis runtime exceeds the timeout threshold, a timeout speed readjust-
ment is performed to assess the schedulability of the job set. If this timeout
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speed readjustment is unsuccessful, the job set is deemed unschedulable.
Preprocessing
(Section 5.1)

Is job set
feasible?

Explore SAG at all jobs running
at the lowest valid speed
(Section 5.2)

Deadline
violation?

> Return unschedulable [

Return energy-aware
speed assignment

Explore ultimate SAG
(Section 5.3.1)
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Figure 5.1: Energy aware speed assignment with SAG

Following a successful speed readjustment, valid speeds are recalculated
based on the results of speed readjustment, and SAG exploration contin-
ues until the exploration is complete. If the job set is schedulable when all
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jobs are executed at the highest speed under the selected JLFP scheduling
policy, the proposed solution provides an energy-aware speed assignment
while maintaining schedulability. The following sections discuss all stages
of energy-aware scaling in detail.

5.1. Preprocessing

The goal of energy-aware hard real-time scheduling is to reduce the energy
consumption of the system by executing jobs at a lower speed while ensur-
ing the timing requirement of the scheduled job set. As the speed of the core
is reduced, the execution time of a job scheduled on the core increases (ac-
cording to eq. (3.2)). The increased execution time for a job can result in an
unschedulable job set.

Example 4. Consider a job J; with release time (both 7" and r"e*) at
t = 0 and a deadline of t = 10. Job J; can be scheduled with speeds 0.5,
0.75, and 1.0 resulting in execution time (both C™" and C™**) 12, 8, and
6 units of time, respectively.

The earliest time J; can start its execution on an available core is its release
time, t = 0. If a core is available at ¢ = 0, job J running at speed 0.75 or
1.0 can complete the execution before its deadline at ¢ = 10. However, J;
running at speed 0.5 results in an execution time of 12 units, which exceeds
the deadline, leading to a guaranteed deadline violation.

The search space for a feasible energy-aware speed assignment (i.e., an
energy-aware speed assignment that does not violate the timing constraints
of the jobs) can be reduced by excluding any speed for a job that would
certainly result in deadline violations. Therefore, a preprocessing stage per-
forms an initial infeasibility check for a job set based on the system speed
configurations. During this stage, a set of potentially valid speeds is identi-
fied for each job in the job set. We define a potentially valid speed for a job
as follows

Definition 3 (Potentially valid speed). For a job J; € J, any core speed
S € {8t ... 8™} that results in CM*(S) < d; — "% is a potentially
valid speed.

Lemma 1. For ajob J; € J, any core speed S € Sl S™ar] that results
in Cme*(S) > d; — r™** will certainly make the job unschedulable.

Proof. As J; € J can be released as late as "%, there exists an execution
scenario where J; is released at r/***. Considering a scenario when J; is
released at "%, r/"** is the earliest time J; can start its execution. The
execution time of J; at speed S can be as long as C"**(S). Therefore,
there exists an execution scenario when the execution time of J; at speed
S is C"**(S). As the finish time of a job depends on the start time and the
execution time of the job, when the start time of J; is »]*** and the finish time
of J; resulting from C™%*(S) is later than d;, then there will be an execution
scenario where J; violates the deadline. O

After purging away all trivially non-valid speeds for a job, we create a speed
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space for the job, as defined below

Definition 4 (speed space). For ajob J; € 7, speed space (Z;) is the set
of potentially valid speeds for the job J, i.e.,

Zi — {S | S c {Sm’tl’ L 7Sma.’n} /\Cinm,ac(s) S dz _ T;nam} .

For energy-aware speed assignment for a job, speeds are only selected
from its speed space.

Based on the speed space for each job, the initial schedulability for the job
set can be assessed. As proven by lemma 2, if there is any job in the job set
with an empty speed space, no speed assignment can result in a feasible
schedule.

Lemma 2. If the speed space for a job J; € J is empty, then 7 is certainly
unschedulable.

Proof. According to definition 4, speed space is the set of potentially valid
speeds for the job J;. When the speed space is empty, there are no poten-
tially valid speeds for J;. Therefore, there exists no speed that can result
in the execution time of the job such that the job finishes before the dead-
line (based on lemma 1). As the job set is deemed schedulable only if no
jobs result in a deadline miss if all speeds are invalid for a job J; € 7, J is
certainly unschedulable. O

Once a speed space is generated for each job in the job set with at least one
speed in the speed space, the preprocessing stage is complete with speed
assignment search space for each job limited to valid speeds.

5.2. Creating schedule abstraction graph at the

lowest speeds

After the preprocessing is completed, all job execution times are calculated
based on the lowest speed in the job’s speed space, and the schedule ab-
straction graph is created. As a lower speed in the speed space of a job
results in lower energy consumption, all jobs running at the lowest speed in
their speed space generate an energy-aware schedule with reduced energy
consumption.

Algorithm 1 presents the algorithm for SAG generation with the lowest
speeds. In line 1, a set of variables is initialized to track the earliest and
latest finish times (denoted by FT!"" and FT!"**, respectively) for each job
across all execution scenarios explored so far. These variables are updated
whenever job J; is dispatched to a core (lines 12 and 13). We then calcu-
late The execution time intervals for each job according to the lowest speed
in their speed space to reflect the times resulting from the execution at the
lowest speed (line 2).

As discussed in chapter 4, a schedule abstraction graph is generated in an
iterative breadth-first approach until all paths represent a valid schedule for
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Algorithm 1 SAG exploration at energy-aware speeds

Input: Job set 7
Output: Schedulability result for the job set 7
1: VJ; € J,FTM" < 0o, FT"™  0;
2. VJ; € J, (J"”" — Om’"(mm{s | S € Z;}), Cmr « CM™®(min{S | S €
Zi})

3: Initialize G by adding v; = ({[0,0],...,0,0]});
4: while 3 path P from v, to a leaf vertex s.t. |P| < |J| do
5 P <+ the shortest path from v; to a leaf vertex v,;
6: RP « set of ready jobs obtained by eq. (4.1);
7: for each job J; € R” do
8: if J; can be dispatched after v, according to eq. (4.2) then
o: Calculate PA and CA lists with eq. (4.8);
10: Calculate v, core availability with eq. (4.9);
1: Build v,,;
12: FT" « min{EFT;(v,), FT;""};
13: FT{" + max{LFT;(v,), FT;"*"};
14: Connect v, to v;, by an edge with label J;;
15: while 3 path @ that ends to v, s.t. Rule 1 is satisfied for
v, and v, do
16: Merge v;, and v, by updating v;, using eq. (4.10);
17: Redirect all incoming edges of v, to v}’,;
18: Remove v, from V;
19: end while
20: if FT"“" > d; then
21: Return unschedulable;
22: end if
23: end if

24: end for
25: end while
26: Return schedulable;

all jobs in the job set 7. During the expansion phase (lines 5-14), one of
the shortest paths P is expanded by generating a new state v, for each
job J; and adding it to the graph via a directed edge from v, to v, (as ex-
plained in section 4.1.1). To prevent search space explosion, a merge phase
(as explained in section 4.1.1) is performed, wherein paths with intersecting
availability intervals and the same set of jobs are merged (lines 15-19). Af-
ter dispatching each job, the algorithm checks for any deadline violations
(lines 20-22). If the dispatched job meets the deadline constraints, the ex-
pansion and merging stages are repeated until all execution scenarios are
explored without any deadline violations. If a deadline violation is detected,
the job causing the deadline miss is returned, and the result is marked as
unschedulable.

As the finish time for a job J depends on its execution time and start time
(according to eq. (4.7)), resolving the deadline miss for .J requires adjusting
the speed for the job J and the jobs scheduled before J, such that their
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combined execution time result in a finish time for J that respects its dead-
line. To determine which set of jobs can resolve the deadline violation, the
connection between these jobs must be established.

5.3. Connection with dispatched job
This section describes an approach for identifying a set of jobs that can
resolve a deadline miss.

As discussed in section 5.2, the deadline violation can be resolved by read-
justing the speed of scheduled jobs. Since the platform has multiple cores,
jobs can be executed concurrently. Therefore, changing a job’s execu-
tion time does not necessarily affect the response time for all subsequently
scheduled jobs.

A ] 2
J1 VE; J1 Jz

np Z RSN nf, 7 R

\4

J2 J2
;| | | |
> t > t
0 20 0 20
(a) Scenario 1: All jobs running at speed 0.5 (b) Scenario 2: /3 running at speed 1.0
J1 I3 J1 I3

v

J2 J2
| | m_____]
> t > t
0 20 0 10
(c) Scenario 3: /; running at speed 1.0 (d) Scenario 4: /, running at speed 1.0

Figure 5.2: Impact of speed scaling on a multi-core platform

Example 5. Consider three jobs scheduled on a system with two cores
under the JLFP scheduling policy. Figure 5.2 shows the resultant scheduling
scenarios. Job J; and J3 are scheduled on core 7; while job J; is scheduled
on core my. Suppose the speed space for all three jobs is {0.5,1.0} and jobs
J1 and J3 have the same execution times 10 and 5 units, resulting from
executing the jobs at 0.5 and 1.0 speed, respectively. The execution times
for job J, are 20 and 10 units at speeds 0.5 and 1.0, respectively. All jobs
are released at time ¢ = 0 with the priority order p; < p2 < p3 (lower value
indicates higher priority). Figure 5.2(a) shows the execution scenario when
all jobs are executed at the speed 0.5. In this example, executing job J3 at
speed 1.0 reduces its finish time (shown in fig. 5.2(b)) while executing job
J1 at speed 1.0 reduces the start time for job J3, resulting in an earlier finish
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time for J3 (shown in fig. 5.2(c)). On the other hand, running job J; at the
highest speed does not impact the finish time for job J3 as the time J3 can
start its execution is not affected (shown in fig. 5.2(d)).

As computation complexity for identifying the combination of speed to re-
solve the deadline miss depends on the number of previously scheduled
jobs, it is important to limit the search space to the previously scheduled
jobs that affect the response time for the deadline miss job. Therefore, the
connection between the jobs needs to be established to optimize the speed
scaling.

In the schedule abstraction graph, when a new vertex v;) is generated by
expanding the path connecting the initial vertex v; and leaf vertex v, the
system availability interval for vertex vy, is calculated based on the finish time
of the job scheduled till the vertex v,. Similarly, the job’s start time in state
v, depends on the system availability interval of v;, (according to egs. (4.3)
and (4.6)). Therefore the start time interval of a job J (dispatched at state
v,) is due to the system availability provided by previously dispatched job(s)
whose finish time influences the system availability interval A, (v;,) (system
interval when one core is available). Hence, a change in the finish time of
job(s) that influences A, (v,,) can change the finish time for .J.

J1
EST ;:0 LST;:0
EFT ;: 10 LFT;:10

Vi
Aq:[0,0]
Az: [0,0]

V2
Aq:[0,0]
Ay : [10,10]

Vs
Ay :[10,10],
Ay : [20,20]

/3
EST 3:10 LST 3:10
EFT 3: 20 LFT3:20

/2
EST:0 LST:0
EFT 5: 20 LFTy:20

Vs
Ay :[20,20],
Ay : [20,20]

Figure 5.3: Schedule abstraction graph resulting from all jobs in example 5 running at speed

Example 6. Consider the system and workload from example 5. Figure 5.3
shows the resulting schedule abstraction graph with system availability in-
tervals when all jobs are running at the lowest speed (0.5). As observed
in fig. 5.3, the start time of job J; overlaps with the finish time of job J; as
the system availability interval A4, (v3) depends on the finish time of .J; while
As(v3) depends on the finish time of J. If J; is executed at speed 1.0, the
finish time of J; is reduced. This provides an earlier start time for J; which
reduces the finish time for J; (as observed in fig. 5.2(b)).
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One of the limitations of the schedule abstraction graph is that it can explore
the execution scenario based on each job set at a fixed speed. Although the
connection between jobs can be identified based on analyzing the start and
finish time with all explored scenarios, changing the speed of any job can
change the execution scenarios or even create new scenarios.

(a) Job set with execution time intervals at speed 0.5 and 1.0

Execution time | Execution time
Job Re.lease at speed 1.0 at speed 0.5 Deadline | Priority
time
min max min max
J1 0 3 5 6 10 10 High
J2 0 10 10 20 20 20 High
/3 0 2 2 4 4 10 Low
J4 4 1 1 2 2 9 High
J1 J4
EST7:0 LST7:0 EST4:6 LST4:10
EFT7:6 LFT7:10 EFT4: 8 LFT4:12

vy
A;:[812],
Ay: [20,20]

V3
Aq:[6,10],
Ay: [20,20]

EST:0 LST7:0
EFTy: 20 LFT;:20

(b) Scenario 1: All jobs running at speed 0.5

Vi
Az:[0,0]
Ap: [0,0]

J1
EST7:0 LST7:0
EFT7: 3 LFTy:5

vz
Ag:[0,0],

Iz
EST,:0 LST:0
EFT 5: 20 LFT:20

I3
EST3:3 LST3:4
EFT 3 7 LFT3:8

Az: [20,20] I
EST4:4 LST4:5

EFT4: 6 LFT4:7

Vs
Ag:[67]
Ap: [20,20]

Va4
A7:[7.8],
Ap: [20,.20]

J4
EST4:7 LST4:8
EFT4: 9 LFT;:10

Ve
Az:[910],
Ap: [20,20]

(c) Scenario 2: /; running at speed 1.0

Figure 5.4: Impact of speed change on execution scenarios



5.3. Connection with dispatched job 30

Example 7. Consider a job set with four jobs scheduled on a system with
two cores. The fig. 5.4(b) shows the schedule abstraction graph expansion
when all jobs are executed at the lowest speed. Jobs J; and J, are the
highest priority ready jobs at time 0 that are executed on two available cores.
The earliest time when at least one core is possibly available is at time ¢t = 6,
and it will certainly be available after ¢t = 10. Considering core availability
A;(vs), the next scheduled job certainly will be J, (highest priority released
job). This job violates its deadline constraints if the core becomes certainly
available any time aftert = 7.

If J, is executed at the speed 1.0 (to resolve the deadline miss), a new
execution scenario is generated where A" (v3) is at t = 3 and J3 can
start its execution on this core as J, is released at time 4. As observed in
fig. 5.4(c), the newly generated execution scenario adds a new job ordering
where J3 can be scheduled before J,.

Hence, changing the speed can lead to iterative sub-problems of speed
readjustment for resolving deadline misses, as each adjustment can intro-
duce new execution scenarios and job ordering. To effectively find the con-
nection between jobs, considering all speeds and resulting execution sce-
narios, the schedule abstraction graph needs to be updated to consider the
impact of different speeds on state space exploration. To solve this problem,
we present an ultimate schedule abstraction graph.

5.3.1. Ultimate schedule abstraction graph

The proposed ultimate schedule abstraction graph (ultimate SAG) extends
the concept of the schedule abstraction graph by exploring all possible ex-
ecution scenarios resulting from all speeds in the speed space for each job
in the job set. A schedule abstraction graph explores new states from a sys-
tem state v, based on the system availability intervals after v,. The set of
system availability intervals after the state v, is calculated according to the
execution times of the job J;, scheduled in the state v,. To explore states
considering all possible speeds for J;, we set the execution time interval for
J; to the the ultimate execution interval, UET;, which is calculated as follows

UET!"" = O™™(max{S | S € Z;}), (5.1)
UET"* = C"**(min{S | S € Z;}). '

To identify all possible execution scenarios till the deadline miss job J; is
scheduled, ultimate SAG is generated until all paths connecting the initial

state v, till all leaf vertices contain the job J;. The algorithm for ultimate
SAG generation is explained in algorithm 2.

To generate an ultimate schedule abstraction graph, the execution time in-
terval for all jobs in the job set is set to the ultimate execution time (according
to the eq. (5.1)). As discussed in the example 6, job start and finish times
can provide insight into the connection between the jobs. Therefore, the ul-
timate start time UST; and ultimate finish time UFT; intervals are calculated
for all jobs explored in the ultimate SAG (lines 12-15). The expansion (lines
7-16) and merge phase (lines 17-21) in the ultimate SAG is the same as the
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Algorithm 2 Ultimate SAG construction algorithm

Input: Job set 7 with the deadline miss job J; € J
Output: Schedule graph G = (V, E)
1: VJ; € J,UFT" 0o, UFTT" < 0, USTT" « oo, UST** < 0;
2: VJ;, € J,C; + UET,;
3: Initialize G by adding v; = ({[0,0],...,0,0]});
4: while 3 path P from v; to a leaf vertex s.t. J; ¢ J do

5 P <+ the shortest path from v, to a leaf vertex vy,
6: RT « set of ready jobs obtained by eq. (4.1);
7: for each job J; € R* do
8: if J; can be dispatched after v, according to eq. (4.2) then
9 Calculate PA and CA lists with eq. (4.8);
10: Calculate v, core availability with eq. (4.9);
11: Build v,,;
12: UFT"" < min{EFT;(v}), UFT]""};
13; UST{"™ < min{EST;(v},), UST{""};
14: UFT" « max{LFTi(vl’,), UFT""};
15: UST*** <= max{LST;(v,), UST;"**};
16: Connect v, to v;, by an edge with label J;;
17: while 3 path @ that ends to v, s.th. Rule 1 is satisfied for
v, and v, do
18: Merge v,, and v, by updating v;, using eq. (4.10);
19: Redirect all incoming edges of v, to v;;
20: Remove v, from V;
21: end while
22: end if

23: end for
24: end while

expansion and merge phase in the SAG. The ultimate SAG is explored until
all leaf vertices contain the job that violated the deadline miss.

The lemma 3 proves that ultimate SAG exploration explores all possible
execution scenarios, considering the speed space of the job.

Lemma 3. Consider a path () from a vertex v, to a leaf vertex v, in the
schedule abstraction graph (SAG) for the job set, 7, where each job J; € J
is assigned to a single arbitrary speed S € Z;. Then, any execution sce-
nario that can be observed from () is also observed in the ultimate schedule
abstraction graph for the job set, 7.

Proof. Consider a path @ from v; to a leaf vertex v, in the SAG for the job
set, J such that each job J; € Jg is assigned to a single arbitrary speed
S e Z,.

According to the eq. (5.1), the bounds on ultimate execution time inter-
vals are calculated based on execution times with the lowest and highest
speed in the speed space. Therefore, the execution time of J; € Jg with
speed S € Z;, [Cm(S), Cm*(S)] is a subset of its ultimate execution time

?
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[UET™", UET}"*"], i.e, C™"(S) > UET}"" and Cee(S) < UET".

According to theorem 1, for any possible execution scenario, there exists a
path in the SAG (and ultimate SAG) that represents the schedule of all jobs
in the given scenario. Therefore, there also exists a path P in the ultimate
SAG for an execution scenario where the execution time of jobs is the same
as VJ; € Jg where[C""(S), Cmaz(S)]. O

5.3.2. Causal connection

This section discusses an approach for identifying the connection between
the jobs based on the scenarios explored in the ultimate SAG. We define
the connection from a job J to another job that can impact the finish time of
J as a causal connection.

Definition 5 (Causal connection). Two jobs are considered to be causally
connected if considering all speed combinations for the jobs in 7, there
exists an execution scenario, where these jobs are executed on the same
core without any idle time in between. The causal connection is denoted
with =.

A Causal order is the order of execution for causally connected jobs.

Definition 6 (Causal order). Causal order is the temporal order in which
causally connected jobs are executed. For causally connected jobs Ji, J;
€ J, Jo = J; indicate that there exists an execution scenario where .J, is
executed after J; such that the jobs are causally connected.

As discussed in the example 6, in an execution scenario, an overlap' be-
tween the start time of a job and the finish time of another job is an indicator
for a causal connection. When the start and finish time intervals are cal-
culated considering all possible execution scenarios, the overlap does not
necessarily consider the execution order for the jobs.

Example 8. Figure 5.5 shows the ultimate SAG graph for four jobs sched-
uled on two cores. For ease of explanation, we do not merge the states in
this example. The ultimate execution time interval resulting from the job’s
speed space is also described in fig. 5.5. Job J; has multiple dispatch or-
ders in different execution scenarios resulting from release time uncertainty
with job J;. Due to multiple orders, the ultimate start time for J; is inflated.
Considering overlap condition in example 6 to identify causally connected
jobs from Ji, ultimate start time of J;, UST; ([1,5]) overlaps with ultimate
finish time of J3, UFT}; ([3,10]). Although the inflated ultimate start time of
J1 overlaps with the ultimate finish time of .J3, in every execution scenario J3
is certainly scheduled after J;. Therefore, J3 cannot be causally connected
with J; as it does not follow the causal order.

To identify the causal connection between two arbitrary jobs in the job set, J;
and J, where J, = Ji, the order of execution for J; and .J, needs to be
established. The ordering of the jobs depends on the number of possible

" In the discrete-time model, overlap in the time intervals is only considered for the overlap-
ping interval with more than a single time instance, as at a single time instance, the scheduling
decision is fixed.
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Figure 5.5: Incorrect causal connection between J; ad J3 based on the overlap

direct successors of the state. As the direct successors of a state are identi-
fied based on inequality 4.2 and egs. (4.3) and (4.6), the possibility for a job
order can be identified based on the release time interval of the jobs, the pri-
ority of the jobs, and the set of system availability intervals for the state. As
seen in example 8, ultimate start and finish time overlap does not guarantee
the causal order due to inflated ultimate start and finish time interval.

As the JLFP scheduler selects the highest priority ready job, the priority
of the jobs can be an indicator of the possible ordering. As observed in
example 8, [USTy" U STi"*] overlaps with the ultimate finish time interval
[UFT™™ UFT™*] of a higher priority job .J;. As J; has a higher priority
than J; and certainly releases before r***, J; executes before J; in every

execution scenario.

Although in example 8, .J> has a lower priority than J;, as seen in ultimate
SAG states, v, v4, and vy, there is an execution scenario where J, executes
before J;. At the state vo, J> is considered as a direct successor of v, only
when J, starts its execution as late as when J; is not certainly released,
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assuming that J; is not yet released.

The earliest time J; can start its execution, a higher priority job .J; is certainly
released hence J3 cannot start its execution until J; is dispatched.

As observed in example 8, the priority of jobs is an indicator for determining
the order of execution of the jobs. Forjobs J1, J; € J,lemmas 4 and 5 shows
the conditions to verify if job J; can be dispatched before J; when U ST, of
job Jy overlaps with U F'T; of job J;. Additionally, lemma 6 shows that even
if the UST, of job J, overlaps with U F'T; of job J; but the conditions from
lemmas 4 and 5 are not satisfied, then J; is certainly dispatched after J; in
every execution scenario and cannot provide an earlier start time for .J,.

Lemma 4. Let 7P denote a set of jobs that are dispatched in ultimate SAG
before the deadline miss job J, is dispatched in all paths. For jobs Ji, Js €
JP, ifUST, N UFT, # () A p1 < po, then there exists at least one execution
scenario in the ultimate SAG where J, is scheduled before J.

Proof. Considertwo jobs .J;,.J; € J suchthatp; < p, and UST,NUFT, # (.
Assume that t is a time instance such that t € USTo N UFT;. As ¢ lies in the
overlapping region of UST, and UFT,, there exists a scenario in ultimate
SAG where system availability interval allows J, to start the execution at
time ¢.

Similarly, an execution scenario exists in ultimate SAG, such that J; finishes
its execution at time ¢. In the execution scenario when J; finishes its exe-
cution at time ¢, according to eq. (4.7), the start time of J; must be before ¢.
As the earliest start time of a job in an execution scenario is calculated by
eq. (4.3), the earliest release time of J;, 77" must be before ¢, i.e. r[*" < t.

The ultimate SAG and SAG explore all execution scenarios based on the
JLFP scheduling policy where the highest priority ready job is selected to
execute on an available core. If J, starts its execution at ¢, when a higher
priority job, J; is potentially released, J; must already dispatched when J;
starts its execution at ¢ or J; will start its execution at time ¢; such that¢ < t;
and J, start the execution at t5, where t5 > ;.

Therefore, when UST, N UFT; # @ A p1 < po, then there exists at least
one execution scenario in the ultimate SAG where J; is scheduled before
Jo. O

Lemma 5. Let 7 denote a set of jobs that are dispatched in ultimate SAG
before the deadline miss job J,; is dispatched in all paths. For jobs Ji, Js €
TP, ifUST; N UFTy # O A py < py A USTT"™ < r3'9% then there exists
at least one execution scenario in the ultimate SAG where J; is scheduled
before Js.

Proof. Considertwo jobs .J;,.J> € J suchthatp; > p, and USToNUFT; # 0
with UST]"" < rirer According to the JLFP scheduling policy and eq. (4.6),
the inequality 4.2 only holds for a lower priority job .J; when UST?"" is before
Jo’s certain release time 75'%*. As UST]"" < r5'%*, there must be at least
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an execution scenario where J; starts the execution before J; is certainly
released. O

Lemma 6. Let 7 denote a set of jobs that are dispatched in ultimate SAG
before the deadline miss job .J; is dispatched in all paths. For jobs J, Js €
JP, if USTy N UFT, # 0 A py < p1 A USTT™ > r0a%, then there is no
execution scenario in the ultimate SAG where J; is scheduled before Js.

Proof. Considertwo jobs .J;, .Js € J suchthatp; > p, and USToNUFT; # 0
with USTT"" < rire* . According to the JLFP scheduling policy and eq. (4.6),
the inequality 4.2 only holds for a lower priority job .J; when UST"“" is before
Jo’s certain release time r5'*. As UST}"™ > r7'*, higher priority job .J, is
certainly released before the earliest time J; starts its execution in ultimate
SAG. Therefore, there will be no execution scenario in ultimate SAG where
J1 executes before Js. O

Based on the lemma 6, causal connection between two jobs can be identi-
fied based on the Rule 2.

Rule 2 (Causal connection). Ajob J, € J is causally connected with a job
J1 e J (ie. Jo = Jy) if USTy, N UFT; # 0 and at least one of the following
conditions is satisfied:

* p1 < po (based on lemma 4),
« USTT™ < e (based on lemma 5).

Based on the causal connection between jobs, the set of jobs can be iden-
tified that influences the job that missed its deadline.

5.3.3. Causal link

After the causal connections between the jobs are identified considering
all execution scenarios in the ultimate SAG, the search space for speed
readjustment can be limited to the the sequence of jobs causally linked to
the deadline-missed job. In this sequence, each job influences the start time
of the subsequent job, thereby reducing the search space to those jobs that
directly affect the timing of the missed deadline.

Example 9. Consider four jobs scheduled on two cores. When all jobs are
running at the lowest speed in their respective speed space, job J, violates
its deadline constraint. Figure 5.6 shows the resulting ultimate SAG until J,
is dispatched in all paths. According to rule 2, causal connections for all jobs
are identified, where J, = Js3, J, = Ji, and J3 = J, while J; and J, have
no causal connection. Based on the causal connections, the finish time of
J4 can be reduced by adjusting the speed of J,, J3, and J; as the finish
time of J3 and J; influences the start time of J4. Similarly, the finish time of
J3 can be reduced by adjusting the speed of .Js, further improving the finish
time of J,. Therefore, to resolve the deadline violation of .J;, sequences of
causally connected jobs J, = J;3 = J; and J, = J; can be used for speed
readjustment.
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Ultimate
Job Re.lease execution time Deadline Priority
time
min max
J1 /1 0 4 8 10 0
UST 1 :[0,0]
UFT1: 148 /2 0 2 4 10 1
/3 0 2 4 10 2
/4 0 2 4 10 3
Jz
UST y: [0,0]
UFT 2: [2,4]
Causal connection
J4 = J3
V&
UST 3: [2,4]
UFT 3: [4,8] J2 = J1
/3= 72
J4
UST 4: [4,8]
UFT 4: [6,12]

Figure 5.6: Ultimate schedule abstraction graph for workload in example 9

The sequence of causally connected jobs starting from the deadline miss
job is called a causal link. A causal link is defined as follows.

Definition 7 (Causal link). A causal link is a sequence of jobs executed
consecutively on the same core, without any idle time between them, in an
execution scenario considering all possible speed combinations, beginning
with the job that missed its deadline.

When two jobs are causally connected to each other (resulting from multiple
execution orders), the connection needs to be recorded in the causal link
only once as another causal link can be generated to indicate an alternate
execution order based on another causal connection.

Example 10. Consider four jobs scheduled on two cores. When all jobs are
running at the lowest speed in their respective speed space, job J, violates
its deadline constraint. Figure 5.7 shows the resulting ultimate SAG until J,
is dispatched in all paths. As observed, J; and Js have multiple execution
orders due to timing uncertainty at v. The causal connections for all jobs
are identified according to rule 2, where J; has no causal connection. When
a causal link is generated based on a sequence of causally connected jobs,
Jys = J3 = Jo, the causal link cannot be extended further even when J; =
Js as Js is already part of the causal link. Alternatively, considering J, = Js,
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another causal link J, = J, = J3 can be generated for the execution order
where J; is executed after Js.

. Ultimate
Release time execution time
Job Deadline| Priority
min max min max
/1 0 0 12 20 20 0
J1
UST 1 : [0,0] /2 0 1 2 4 10 1
UFT j: [12,20]
- /3 0 1 2 4 10 2
Aq:[00],
Ay [12,20] /4 2 2 2 4 10 3
J2
UST »: [0,1] A
UFT 2: [2,5] UST 3 : [0,0]
UFT 3: [2,4] Causal connection
Vs vy
Ag:[25], Ay:[24] J4 = /3
Az: [12,20] Ay: [12,20]
J2 = )2
/3 /2
UST 3:[0,5] UST 3: [0,4]
UFT3: [2,9] vs UFT2: [2,8] /3= Jz
Ag:[49],
Ay: [12,20] 2= J3
J4
UST 4: [4,9]
UFT 4: [6,13]

V6
Ag:[6,13],
Ay [12,20]

Figure 5.7: Ultimate schedule abstraction graph for workload in example 10

The objective of the causal link is to identify causally connected jobs to re-
duce the finish time of the deadline miss job. When a job, J; is certainly
scheduled after the deadline miss job, adding J; to the causal link cannot
resolve the deadline violation.

Example 11. Consider four jobs scheduled on two cores. When all jobs are
running at the lowest speed in their respective speed space, job J; violates
its deadline constraint. Figure 5.8 shows the resulting ultimate SAG until J3
is present in all paths. Based on the causal connections identified according
to rule 2, the finish time of J3 can be improved by adjusting the speed of Js.
Additionally, the finish time of J, can be improved by adjusting the speed of
Jy4. Considering the causal link J3 = J» = Jy, the last job J, cannotimprove
time for J3 as J, has a causal connection to J; and J; executes after Js in
every execution scenario. Therefore, adding J, to causal link J; = J; does
not help resolve the deadline violation.

Lemma 7. Consider a causal link from deadline miss job Jy till a job J, with
a causal connection to another job, J,. If J5 has a causal connection to Jy
but J; does not have a causal connection to J,, no execution scenario in
ultimate SAG exists where Js is dispatched before J,.
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. Ultimate
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Figure 5.8: Ultimate schedule abstraction graph for workload in example 11

Proof. (proof by contradiction) Suppose there exists an execution scenario
in ultimate SAG where J; is dispatched before J;. According to rule 2, a
causal connection must follow causal order. If J; has a causal connection
to J,, there exists at least one execution scenario in ultimate SAG where J,
is dispatched before J,. If J is dispatched before J;, then the lower bound
on the ultimate finish time of .J,, UFT5", should be before the upper bound
on the ultimate start time of .J;, UST?'**. Given this scenario, there would be
an overlap between [UST?"" UST7'**] and [UF T4, UFT}"**]. According
to rule 2, if the ultimate start time of J; has an overlap with the ultimate
finish time of Js, J; should be causally connected to J,, unless there exists
no execution scenario where J; is dispatched before J;. Since J; does not
have a causal connection to .Js, it follows that for every execution scenario
in the ultimate SAG, J; must be dispatched after J;. This contradicts the
initial assumption, so the lemma holds. O

Based on lemma 7 and example 10, a job can be added to a causal link if it
satisfies rule 3.

Rule 3. For a causal link L starting from the deadline miss job J,, if a job J;
is causally connected to the last job in L, it is considered as a valid causal
connection for L only if it satisfies following conditions:

* J; ¢ L,
« If J; = Jg, then J; = J; (according to lemma 7).

Algorithm 3 presents the approach for generating a causal link. The causal
link is generated with an iterative depth-first approach where valid causal
connection(s) are identified (based on rule 3), starting from the deadline
miss job.

The input to algorithm 3 is a causal connection vector that maintains causal
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connections for each job in the job set. In line 1, we initialize the link counter
(linkCounter) and the feasible solution counter (solutionCounter) to keep
track of the number of unique link explorations and the number of feasible
solutions, respectively. We also maintain the energy-aware speed readjust-
ment solution (energy AwareSolution), which includes the energy consump-
tion of the solution and the set of readjusted jobs along with their respective
adjusted speeds. The energy consumption of energy AwareSolution is initial-
ized to co.

To generate the causal link, £ the valid causal connection (or one of the valid
causal connections if more than one) of the last job in £ is added to the link
and the process is repeated with the last job of the causal link until the last
job has no valid causal connection (lines 4-12).

When the last job of the causal link has multiple valid causal connections,
to select one of them, we use branching heuristics based on the proper-
ties of the causally connected job. ValidConnections keeps track of valid
connection(s) of jobs in the causal link. The valid connections are ordered
according to the branching heuristic and the first job in the ordered set is
selected to extend the causal link. To order the valid causal connections,
one of the following heuristics is used

 First-connection: Maintain the order of valid causal connections as
specified by the causal connection vector,

* High-out: Sort the valid causal connection job set in decreasing order
based on the number of causal connections each job has, with jobs
having the highest number of causal connections first,

* Low-out: Sort the valid causal connection job set in increasing order
based on the number of causal connections each job has, with jobs
having the fewest causal connections first,

* Longest-job: Sort the valid causal connection job set in decreasing
order based on the worst-case execution time (WCET) at speed 1.0,
with jobs having the longest WCET first,

» Shortest-job: Sort the valid causal connection job set in increasing
order based on the worst-case execution time (WCET) at speed 1.0,
with jobs having the shortest WCET first,

Each of the unique causal links is explored for speed readjustment (dis-
cussed in section 5.4) to resolve the deadline violation (lines 13-16). Since
causal links involving the same set of jobs in different orders will result in the
same speed readjustment, we consider two causal links, £, and L, to be
unique only if 7% # 72, where 7! and 72 are jobs in £, and L, respectively.
The set of previously explored links is maintained in exploredLinks.

As seen in example 7, changing the speed can change the execution sce-
nario, resulting in a causal connection break of the explored causal link. Ad-
ditionally, for a causal link that follows the correct causal order, running all
jobs at the highest speed might not provide enough reduction in finish time
due to limitations of finish time gains with the highest speed. If the speed
readjustment does not provide a feasible solution to resolve the deadline
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violation, a new causal link is generated by backtracking to the last unex-
plored connection and exploring the new connection until the last element
in the link has no valid causal connection (lines 26-29).

As causal link exploration adds a runtime overhead to the analysis for resolv-
ing a deadline miss, we use a link exploration threshold, \. If the number
of unique explored causal links reaches X or all unique causal links are ex-
plored without a successful speed readjustment solution, the deadline viola-
tion is resolved with a pessimistic approach discussed in section 5.5, where
the speed for all causally connected jobs is readjusted to the highest speed.
The link exploration threshold is used to limit the runtime overhead resulting
from resolving a single deadline.

Although the first successful speed readjustment solution can be used to
resolve the deadline violation, further exploration of unexplored causal links
can provide a better energy-aware speed readjustment solution. Therefore,
we use a feasible solution threshold, K to indicate the number of feasible
solutions explored before determining an energy-aware speed readjustment
solution. While a feasible solution threshold is not reached, causal link gen-
eration and exploration are continued. The energy consumption of every
feasible solution is compared with the energy consumption of an existing
energy-aware speed readjustment solution and the solution with the lower
energy consumption is maintained as an energy-aware speed readjustment
solution.

5.4. Energy-aware speed readjustment

This section describes the approaches presented for energy-aware speed
readjustment using a causal link to resolve the deadline violation of a job.
The objective of energy-aware readjustment is to assign a speed to each
job in the causal link to resolve the deadline miss.

One of the approaches for the speed readjustment is to check different
speed settings for the causal linking by iterating through the speed com-
binations, starting from the deadline miss job.

Example 12. Consider four jobs scheduled on two cores. When all jobs
are running at the lowest speed (0.5) in their respective speed space, job J,
violates its deadline constraint (shown in fig. 5.9(a)). As the highest priority
job J; is released at time 0, we assume that core 75 is claimed by J; till time
30.

Based on rules 2 and 3, causal link is identified as J, = J; = J>. To re-
solve the deadline violation for J,, different speed combinations for jobs Jy,
Js. and J, can be explored. Starting from the first job in the link, running
Jy4 at a higher speed (1.0) does not resolve the deadline violation (shown
in fig. 5.9(b)). As there are no other speeds to check for J,;, a speed com-
bination is tried with connected job J; set to a higher speed while J, and
Jy are executed at the lower speed (0.5). As observed in fig. 5.9(c), this
speed combination does not resolve the deadline miss. Since J; has no
other speed, we try a speed combination with both J; and .J; set to the
highest speed while J; is executed at the lowest speed (0.5). This speed
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Algorithm 3 Causal link generation algorithm

Input: Causal connection vector CCV, deadline miss job .J;, link exploration

threshold, )\, and feasible solution threshold, K

Output: Casual link £

Qg wh 2

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33: end while

linkCounter < 0, solutionCounter < 0;
energy AwareSolution.energy < oo;
L+ (Ja);
ValidConnections + ();
exploredLinks < {};
Order the valid causal connection(s) of J; from CCV according to the
selected branching heuristic and add to ValidConnections;
while linkCounter < A and solutionCounter < K do
while ValidConnections.last is not empty do
J < First element removed from the end ValidConnections
Add Jto £
Sort the valid causal connection(s) of .J (according to rule 3) ac-
cording to the selected branching heuristic and add to ValidConnections;
end while
if £ is not in exploredLinks then
Add L to exploredLinks;
Increase linkCounter by 1;
readjustmentSolution <— Explore speed readjustment with Z;
if readjustmentSolution.successful then
Increase solutionCounter by 1;
RE < readjustmentSolution.energy;
EE < energyAwareSolution.energy;
if RE is lower than EE then
energy AwareSolution <— readjustmentSolution;
end if
end if
end if
while ValidConnections.last is empty do
Remove ValidConnections.last;
Remove L.last;
end while
if £ is empty then
Break;
end if
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Figure 5.9: Speed readjustment by searching through different speed settings

combination resolves the deadline miss and provides a successful speed
readjustment solution (shown in fig. 5.9(d)).

Example 12 describes the speed readjustment approach where different
speed combinations are explored starting from all jobs set to the lowest
speed. In scenarios, where all jobs need to be executed close to their high-
est speed to resolve the deadline miss, the low to high-speed combination
search can result in significant exploration time. To avoid this, we use a
directional search through speed combinations by determining the search
direction with the speed slack. The low-speed slack, LO is defined as fol-
lows.

Definition 8. For the speed readjustment with a causal link £ for the dead-
line miss job Ji, the low-speed slack is the absolute difference between the
LFT; and d, when all jobs in £ are executed at the lowest speed in their
respective speed setting.

In contrast, the high-speed slack, HO is defined as follows.

Definition 9. For the speed readjustment with a causal link £ for the dead-
line miss job Jj, the high-speed slack is the absolute difference between the
LFT} and di, when all jobs in £ are executed at the highest speed.

When HO > LO, we use a low-high speed combination search (similar to
example 12) as the finish time of the deadline miss job is closer to its dead-
line when all jobs are running at lowest speed than the finish time when all
jobs in the causal link £ are executed at the highest speed. Conversely,



5.4. Energy-aware speed readjustment 43

a high-low speed combination search is used when LO > HO, where all
jobs in L are set to the highest speed and speed combination with reduced
speeds are explored until a deadline violation.

Algorithm 4 presents the approach for directional search-based speed read-
justment of a causal link £. We first calculate HO and LO to determine the
direction of the search. As discussed in section 5.3.3, the speed readjust-
ment with a causal link with all jobs set to the highest speed can result in an
unsuccessful speed readjustment due to limitations of finish time gains or
causal link break from speed changes. Therefore, if the deadline violation is
not resolved with all jobs in £ running at the highest speed, then the speed
readjustment is deemed unsuccessful and another causal link is generated
for the speed readjustment.

If all jobs in £ running at the highest speed can resolve the deadline violation,
the direction of the search is selected based on HO and LO.

In the low-high search-based speed readjustment, each job’s speed is ini-
tially set to the lowest value in its speed space, and the speed combination
is explored. While not all jobs have reached the highest speed (1.0), the
algorithm identifies the first job in £ with a speed below 1.0 and increases
its speed (lines 6-13). The speeds of all preceding jobs in the causal link
are reset to their lowest values. If this updated speed combination leads to
a successful speed readjustment, the result is returned. If not, the process
continues until all jobs in £ reach the highest speed.

For high-low search-based speed readjustment, each job’s speed is initially
set to the highest speed (1.0), and the speed combination is explored. While
the speed combinations lead to a successful speed readjustment, the algo-
rithm identifies the first job in £ with speed above the lowest speed in its
speed space and decreases its speed. The speeds of all preceding jobs in
the causal link are reset to the highest speed, and the speed combination
is explored. This process is continued until the speed combination leads
to a deadline violation. After the first deadline violation, the last successful
solution is returned (lines 18-38).

To limit the number of speed combination exploration of a single causal link,
we use a search space threshold, £&. When the number of explorations ex-
ceeds &, the result from the last exploration is returned.

The main drawback of the directional search-based speed readjustment ap-
proach is the high exploration overhead. We propose a heuristic approach
based on speed slack distribution to avoid the analysis runtime overhead
resulting from high exploration time. According to eq. (3.8), running shorter
jobs at a higher speed incurs less energy overhead compared to longer jobs
as energy is dependent on the execution time. Considering the impact of ex-
ecution time on the energy, we propose a heuristic to increase (or decrease)
the speed of jobs such that the combined difference in the worst-case ex-
ecution time due to speed changes is close to low-speed (or high-speed)
slack.

Example 13. Similar to example 12, consider four jobs scheduled on two
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Algorithm 4 Directional search-based speed readjustment

Input: Causal link £, search space threshold ¢
Output: Speed readjustment result
1: function lowHighSearch( )
speedCombination < the lowest speed for each job in L;
readjustmentResult < explore speedCombination;
exploreCount « 1;
while —readjustmentResult.successful or exploreCount < ¢ do
J; + the first job in £ with speed below 1.0;
if J; exists then
Increase the speed of job J;;
Set the speeds of all preceding jobs in £ to their lowest values;
readjustmentResult <— explore speedCombination;
exploreCount « exploreCount + 1;
12: else
13: Break;
14: end if
15: end while
16: return readjustmentResult;
17: end function
18: function highLowSearch( )
19: speedCombination < the highest speed for each job in L;

N
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20: readjustmentResult < explore speedCombination;

21: while readjustmentResult.successful or exploreCount < ¢ do
22: J; + the first job in £ with speed above its lowest speed;
23: if J; exists then

24: Decrease the speed of job J;;

25: Set the speeds of all preceding jobs in £ to 1.0;

26: result < explore speedCombination;

27: exploreCount +— exploreCount + 1;

28: if result.successful then

29: readjustmentResult < result;

30: else

31: Break;

32: end if

33: else

34: Break;

35: end if

36: end while

37: return readjustmentResult;

38: end function

39: result.successful < false ;

40: LO <« Low-speed slack of Z;

41: HO + High-speed slack of L;

42: result < Explore speed combination with £ running at 1.0;
43: if result.successful then

44; if HO > LO then

45: result « lowHighSearch();
46: else

47:

48: result « highLowSearch();
49: end if

50: end if

51: return result
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cores. When all jobs are running at the lowest speed (0.5) in their respective
speed space, job J, violates its deadline constraint. The low-speed slack
for causal link £, LO is 3. As J, is the shortest job, we assign a higher
speed to J;. As the speed for J, is set to 1.0 and the change in WCET
is less than LO (as shown in fig. 5.9(b)), we increase the speed of the next
shortest job (based on WCET at speed 1.0), Js. Since the combined change
in WCET (1+2) resulting from changing J, and Js is greater than or equal to
LO, the slack distribution is complete and the updated speed combination
is explored. The resulting execution scenario is the same as fig. 5.9(d).

As seen in example 13, a successful readjustment is achieved with just one
exploration, compared to three explorations for example 12.

Algorithm 5 presents the proposed solution for speed slack distribution-
based speed readjustment. For low-speed slack distribution, all job speeds
are set to the lowest speed in their speed space and the speed of the short-
est job (based on WCET at speed 1.0) is increased until the combined differ-
ence in the worst-case execution time due to the speed increase is greater
than or equal to the low-speed slack (lines 3-17). Although the exploration
time of casual link is reduced with speed slack distribution-based speed
readjustment, for low-speed slack distribution of a £, the speed combination
result is fixed as the approach is deterministic. Therefore, if a speed com-
bination with a low-speed slack distribution provides unsuccessful speed
readjustment (due to a causal link break), a speed combination is gener-
ated based on a high-speed slack distribution. If speed readjustment is
successful for all jobs in the causal link running at the speed 1.0, then the
high-speed slack is identified. Similar to the search-based approach, if all
jobs in the causal link running at the speed 1.0 result in an unsuccessful
speed readjustment, then a new causal link is generated.

For high-speed slack distribution, all jobs are set to speed 1.0 and the speed
of the longest job (based on WCET at speed 1.0) is reduced (similar to ex-
ample 13) until the combined difference in the worst-case execution time
due to the speed decrease is less than the high-speed slack (lines 19-36).
Compared to the search-based speed readjustment approach, speed slack
distribution-based speed readjustment has a lower exploration time over-
head due to limited speed combination exploration (max three).

After a successful speed readjustment is complete, the speed space for the
readjusted jobs is updated to exclude any speeds lower than the readjusted
speed. Additionally, the schedule abstraction graph (from section 5.2) is
reverted to its state before any of the readjusted jobs are dispatched, and
the SAG exploration resumes from there.

The ultimate SAG (from section 5.3.1)) is also reverted to its state before any
of the readjusted jobs are dispatched. As a result, the exploration of ultimate
SAG (for a potential future deadline violation) is restricted to the execution
scenarios that are possible with the updated speed space of readjusted jobs.
This means that any execution scenarios arising from the removed speed
are no longer explored. Additionally, the ultimate start and finish time bounds
of the readjusted jobs are reset to their initial values ([oo, 0]).
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Algorithm 5 speed slack distribution-based speed readjustment

Input: Causal link £
Output: Speed readjustment result

1: function getSpeedCombination(slack)

2 speedCombination «+ ()

3 if slack is LO then

4: speedCombination < lowest speed for each job in L;
5: idx « indices of £ sorted by increasing WCET at speed 1.0;
6: reducedWCET <« 0;
7 while reducedWCET < slack do
8 id + idx.first

o: if speedCombination[id] is 1.0 then
10: Remove idx.first from idx;
1: else
12: oldET « WCET of L[id] at speed speedCombination[id];
13: Increase the speed of speedCombination[id] to the next
higher speed in Z;4;
14: newET + WCET of L[id] at speed speedCombination[id];
15; reducedWCET < reducedWCET + oldET — newET;
16: end if
17: end while
18: else
19: speedCombination < speed 1.0 for each job in £;
20: idx <« indices of £ sorted by decreasing WCET at speed 1.0;
21: increasedWCET <« 0;
22: while idx is not empty do
23: id < idx.first
24: if speedCombination[id] is lowest speed in Z;; then
25: Remove idx.first from idx;
26: else
27: oldET + WCET of L[id] at speed speedCombination[id];
28: Decrease the speed of speedCombination[id] to the next
lower speed in Z,4;
29: newET <« WCET of L[id] at speed speedCombination[id];
30: increasedWCET < increased WCET + oldET — newET;
31: if increasedWCET > slack then
32: Increase the speed of speedCombination[id] to the next
higher speed in Z,,;
33: Remove idx.first from idx;
34: end if
35: end if
36: end while
37: end if
38: return speedCombination;

39: end function

40: result.successful < false ;

41: LO <« Low-speed slack of £;

42: LSCombination < getSpeedCombination( LO );

43: result < explore LSCombination;

44: if —result.successful then

45; speedCombination < the highest speed for each job in L;

46: result < explore speedCombination;

47: if result.successful then

48: HO «+ High-speed slack of £;

49: HSCombination <—getSpeedCombination( LO );
50: result «+ explore HSCombination;

51 end if

52: end if

53: return result;
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5.5. Timeout

The speed readjustment has added time for exploring different speed com-
binations on each unique causal link. In certain scenarios, exploration time
can be significantly high, particularly when there are many deadline misses
to address or a high number of unique causal links without successful speed
readjustment. Additionally, the search threshold (discussed in section 5.4)
and link exploration threshold (discussed in section 5.3.3) limit the causal
link exploration.

To manage the runtime of the energy-aware speed assignment analysis,
a timeout threshold is implemented. When analysis runtime exceeds this
threshold or if causal link exploration is pruned due to search and link explo-
ration thresholds, speed readjustment for a deadline violation is performed
by setting the causally connected job set to the highest speed, without ex-
ploring individual unique causal links. We define causally connected job set
as follows

Definition 10. Causally connected job set for a deadline miss job J,, de-
noted by CCy, is a set of unique jobs from all possible causal links starting
from Jj,.

Algorithm 6 Causally connected job set generation

Input: Causal connection vector CCV, deadline miss job J,
Output: Causally connected job set CCy
1: ES < {Jd}
2: CCy + {}
3: while ES is not empty do
4: J + Job removed from ES
5: connections «+ CCV].J]
6 for each job J' in connections do
7 if J/ ¢ CC,4 then
8: Add J' to CCy,
o: Add J’ to ES

10: end if
11: end for

12: end while
13: return CCy

Algorithm 6 presents the approach for generating the causally connected
job set CC, for a deadline miss job J; through an iterative exploration of all
unique connections starting from J;. One of the inputs to the algorithm is
the causal connection vector, CCV that consists of causal connections for
each jobin J.

In line 1, explore set, ES is initialized with the deadline miss job, J;. The
set ES maintains all jobs whose connections have yet to be explored. Si-
multaneously, an empty set CCy is initialized at line 2 to hold the causally
connected job set.

In each iteration (lines 3-12), a job from ES is removed, and its causal con-
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nections are identified from CCV. Every causally connected job that is not
recorded in CC, is added to CC,. Additionally, this job is also added to ES
for further exploration of its connections. This process continues until ES
is empty, meaning that all connected jobs have been fully explored and no
unexplored connections remain.

Lemma 8 shows that if the job set is schedulable when all jobs are executed
at the highest speed, then running the causally connected job set for the
deadline-violating job J; at the highest speed will resolve the deadline miss
for Jg.

Lemma 8. Consider a job set J that is schedulable at the highest speed
S§™e* = 1.0 on a given system. If running each job J; € J at min{S|S € Z;}
results in a deadline miss at job J4, then running all jobs in CC4 at S™** will
certainly resolve the deadline violation of J,.

Proof. Assume that the job set 7 is schedulable at the highest speed §™**
on a given system. According to the definition 10, the causally connected
job set CC, consists of jobs from all possible causal links. These causal con-
nections are identified based on all possible speed combinations. Therefore,
the causal connections from J; when all jobs are executed at the highest
speed are also considered.

This ensures that any job influencing the finish time of job J; when all jobs
are executed at the highest speed is included in CC,. If 7 is schedulable at
the highest speed $™**, then running CC, at the highest speed creates the
execution scenario similar to all jobs running at the highest speed, solving
the deadline violation of .J;. O

The timeout approach prioritizes analysis runtime over energy reduction by
reducing the exploration time for speed readjustment. It pessimistically as-
signs all connected job sets to the highest speed for each detected deadline
violation, to avoid exploring individual causal links.

Similar to the speed readjustment approaches discussed in section 5.4, the
speed space for each readjusted job and SAG state space is updated. After
speed readjustment, energy-aware speed assignment analysis continues
with all jobs running at the lowest speed in the speed space until the analysis
is complete.



Empirical evaluation

We conducted experiments to answer the following questions: (i) How much
energy reduction is achieved with the proposed solution? (ii) What is the
analysis runtime overhead of the energy-aware speed assignment com-
pared to the schedule abstraction graph-based schedulability analysis? (iii)
How do energy-aware speeds impact the schedulability of the job set? (iv)
How do the job set parameters impact the obtained energy reduction and
analysis runtime overhead? (v) How do the job set parameters impact the
obtained energy reduction and analysis runtime overhead?

6.1. Experimental setup

To answer these questions, we conducted experiments on the proposed
solution with a wide range of synthetic task sets. This section discusses the
experimental setup used for these experiments.

Baselines: To evaluate the impact on energy reduction and runtime over-
head of energy-aware speed assignment, we compared two variations of
the energy-aware speed assignment approach (as discussed in fig. 5.1) with
every job executed at the highest speed (referred to as 'Single speed anal-
ysis’). Since no directly comparable work exists, this evaluation highlights
the performance of our approach with a schedule abstraction graph-based
schedulability analysis framework. The first variation uses the directional
search-based speed readjustment approach (as presented in algorithm 4),
while the second variation uses the speed slack distribution-based speed
readjustment (as explained in algorithm 5). Additionally, we also evaluate
the impact of pessimistic timeout speed readjustment (referred to as All-
connected-high speed readjustment) (as discussed in section 5.5) on en-
ergy reduction and analysis runtime.

Since the speed slack distribution-based speed readjustment is a heuristic
approach, we anticipate a lower runtime overhead with comparable energy
reduction compared to the directional search-based speed readjustment.
The energy reduction and analysis runtime overhead of the pessimistic time-

49
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out speed readjustment is expected to be lower than both variations, as
it avoids exploring individual causal links. Given that all approaches use
schedulability as a criterion for successful speed readjustment, the schedu-
lability is expected to match that of the job set running at the highest speed.

Evaluation platform: The experiments were performed using the DelftBlue
supercomputer at Delft High-Performance Computing Center [43], which
hosts Compute nodes with Intel Xeon E5-6248R 24C 3.0GHz CPUs and
192 GB of Memory per node. The analysis was implemented as a single-
threaded C++ program.

Metrics: We use the following metrics to evaluate the performance of the
presented energy-aware speed assignment approach.

* Energy reduction: As the goal of energy-aware speed assignment
is to reduce the energy consumption with static slack reclamation, the
key metric for determining the effectiveness of the proposed solution is
energy reduction compared to the energy consumption with the speed
assignment where the highest speed is assigned to all jobs. The en-
ergy consumption of the job set for a given speed assignment is cal-
culated as the sum of the energy consumption of each job in the job
set with the assigned speed, i.e., the energy consumption due to the
idle core is not considered.

The energy reduction percentage is calculated as

H 8(’”67' 1 ware
Energy reduction (%) = (1 — —erergudwarey g0,
Enigh

where Ecpergyaware iS the energy consumption of the job set with the
energy-aware speed assignment, while &4, is the energy consump-
tion of the job set with all jobs running at the highest speed. The
higher number of energy reduction indicates better performance of the
energy-aware speed assignment.

» Analysis runtime overhead: As the proposed approach performs
energy-aware speed readjustment in addition to the schedulability
analysis with a schedule abstraction graph, we evaluate the analysis
runtime overhead of the energy-aware speed assignment compared to
the runtime of schedule abstraction graph schedulability analysis. The
Analysis runtime overhead is a ratio of the total runtime of the energy-
aware speed assignment (including the schedulability analysis) to the
runtime of the schedulability analysis with the schedule abstraction
graph when all jobs are executed at the highest speed. Analysis run-
time overhead is calculated as

RenergyAware

Analysis runtime overhead =

high
where Repergyaware 1S the total runtime of the energy-aware speed as-
signment (including the schedulability analysis with SAG, as proposed
infig. 5.1), while Ry, is the runtime of the schedulability analysis with
the SAG when all jobs are executed at the highest speed. The lower
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value of analysis runtime overhead indicates better performance of the
energy-aware speed assignment.

» Schedulability ratio: Since we consider a hard real-time system, the
objective of energy-aware speed assignment is to reduce the energy
consumption of the job set without violating the deadline constraints
of the job. The schedulability ratio is calculated as the ratio of job sets
deemed to be schedulable divided by the number of considered job
sets. For the schedulability analysis with all jobs executing at the high-
est speed, the job set was claimed unschedulable if an execution sce-
nario with a deadline miss was found. For the schedulability analysis
with the energy-aware speed assignment, the job set was considered
to be unschedulable if the energy-aware speed readjustment was un-
successful for a deadline miss.

Energy and speed model: The power and speed model is based on the
model by Park et. al. [38]. The authors considered a system with a Sam-
sung Exynos 4210 processor (based on the ARM Cortex-A9 core) which is
commonly used for embedded system applications. They obtained values
for the coefficients C.¢, o1, and a, by performing a power characterization
procedure by analyzing the measured load current of an active processor
with different frequencies f; (and required voltages for the frequencies V4, ).
The values for V4, and f; are provided in table 6.1, where speed S, is the
ratio of the selected frequency with the highest frequency (As mentioned in
the system model).

According to the power characterization by park et. al. [38], C.; is 0.446,
aq is 0.1793, and «y is set to —0.1527. The energy consumption of a job is
calculated by eq. (3.8), where the power consumption of an active processor
at speed S is given as (from park et. al. [38] and based on eq. (3.7))

P(S) = 0.446.Vyq, 2. f; + 0.1793.Vq, — 0.1527.

Table 6.1: Voltage V4, (V') and clock frequency f;(GHz) levels for Samsung Exynos 4210
(from Park et. al. [38])

DVFS level | Vq4q, f; Si
Level 1 1.2 1.4 1.0
Level 2 1.15 1.3122 | 0.94
Level 3 1.1 1.2218 | 0.87
Level 4 1.05 | 1.12870 | 0.8
Level 5 1.0 1.0327 | 0.74

The resulting speed range for this experiment is {0.74, 0.80,0.87,0.94,1.00},
where 0.74 is S™™". As we consider speed range from {Srtl ... Smar},
any speed S; € {S™n, ... 8™} is removed in preprocessing if S; < S,
i.e., energy consumption of speed S; is higher than next speed in discrete
speed range( £(S;) > E(Si+1))-

Job set generation: We generated 100 synthetic periodic task sets for each
data point using the technique described by Emberson et al. [44]. For each
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task set, we created a job set (as discussed in section 3.1.1) with priority
assignments based on the earliest deadline first (G-NP-EDF) scheduling

policy.

To randomly generate a periodic task set with n tasks and a given uti-
lization U, we first randomly generated n period values in the range
[10, 100]ms with a granularity of 5ms using a log-uniform distribution (Similar
to Nasri et. al. [1], [15]). Next, we generated n task-utilization values that
sum to the expected utilization U using the RandFixedSum algorithm [45].
Based on the periods and task utilization values, we calculated the worst-
case execution time (WCET), C™** for each task with best-case execution
time (BCET), CI™", set to 0.6 x C/ma*,

When generating the job set, the release jitter o is set to 100 microseconds.
To effectively evaluate the impact of energy-aware speed assignment, we
excluded any task sets that were trivially unschedulable, i.e., the task sets
that were unschedulable even without execution time variation or release
time jitter (note that this initial test serves as a necessary schedulability test
but is not sufficient due to the possibility for schedulability anomalies under
non-preemptive conditions). We also excluded any task sets with more than
100, 000 jobs per hyperperiod.

For energy-aware speed assignment analysis, we set the timeout threshold
(as discussed in section 5.5) to 9000 seconds. Once the analysis runtime
exceeds this threshold, all deadline misses are addressed using the time-
out speed readjustment approach. As default analysis parameters, We used
first-connection branching for causal link exploration with the link exploration
threshold X\ set to 50 and the feasible solution threshold K set to 1. For
the directional search-based speed readjustment, the default search space
threshold ¢ was set to 100.

6.2. Impact of system utilization

The goal of this experiment is to evaluate the impact of increasing total utiliza-
tion on energy-aware speed assignment analysis. We considered a system
with four cores (m = 4) and six tasks (n = 6). The total system utilization U
was chosen from 10 — 70% utilization (with m = 4).

Figures 6.1 and 6.2 illustrate the impact of increasing utilization on different
speed readjustment approaches (discussed in sections 5.4 and 5.5). As
expected, the energy reduction declines with increasing utilization U since
increasing total utilization decreases the static slack available for energy
reduction. Figure 6.1(a) describes the schedulability ratio of the job sets.
The schedulability of job sets with energy-aware speed assigned with dif-
ferent speed readjustment approaches is consistent with the baseline. This

Table 6.2: The number of schedulable job sets in fig. 6.2(a) that required speed readjustment
over increasing utilization.

Utilization (%) | 10% | 20% | 30% | 40% | 50% | 60% | 70%
Count 0 3 25 52 41 29 5
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Figure 6.1: Impact of utilization on schedulability ratio following a (a) necessary test, (b)
sufficient test.

indicates that every job set that is deemed schedulable by the schedule ab-
straction graph remains schedulable when job execution time intervals are
based on the assigned energy-aware speed.

Figure 6.2(a) shows the impact of increasing utilization on energy reduction
of schedulable task sets. As seen in table 6.2, all job sets at 10% utilization
are trivially schedulable with the lowest speed in the speed setting, without
any speed readjustments. When all jobs are running at the lowest speed
0.74 is close to 32%, which is the upper bound on energy reduction with the
speed range selected for the experiments.

To evaluate the impact of different speed readjustment approaches,
figs. 6.2(c) and 6.2(d) shows the effect of increasing utilization on the
schedulable job sets that required speed readjustment. As seen in
fig. 6.2(d), analysis runtime overhead for schedulable job set increases with
increasing utilization as the number of speed readjustments in the energy-
aware speed assignment analysis also increases. Energy reduction and
analysis runtime overhead for all speed readjustment approaches are simi-
lar up to 30% utilization, as limited speed adjustments are needed to make
the job sets schedulable at this level.

From 40% utilization, the highest energy reduction is observed with the
search-based speed readjustment approach. This method conducts a di-
rectional search through multiple speed combinations of a causal link to re-
solve deadline misses, resulting in significantly high runtime overhead. The
distribution-based approach achieves slightly lower energy reduction than
the search-based approach, as it uses a heuristic to assign speeds to jobs
in a causal link. However, the distribution-based method offers significantly
lower runtime overhead than the search-based approach. As expected, the
All-connected-high approach results in lower energy reduction and runtime
overhead, as it assigns the highest speed to all connected jobs, unlike other
approaches that adjust speeds for individual causal links.
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Figure 6.2: Impact of utilization on (a,c,e) energy reduction (with schedulable job sets, speed
readjusted job sets, and speed readjusted job sets with 100% schedulability, respectively)
and (b,d,f) analysis runtime overhead (unschedulable job sets, schedulable speed readjusted
job sets, and schedulable speed readjusted job sets with 100% schedulability, respectively )
for different speed readjustment approaches.

The analysis runtime overhead for unschedulable job set is shown in
fig. 6.2(b). These job sets were found to be unschedulable both when all jobs
were running at the highest speed and when using energy-aware speed as-
signment analysis. When a job set is unschedulable, the distribution-based
approach incurs more runtime overhead than the search-based approach as
the search-based approach executes the causal links at the highest speed to
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determine the search direction and only starts the speed combination search
if the highest speed solves the deadline miss. In contrast, the distribution-
based approach initially explores low-speed slack distributions before check-
ing if the causal link at the highest speed solves the deadline miss. When the
deadline miss cannot be solved, this additional exploration for each causal
link leads to higher runtime overhead.

As seen in the fig. 6.1(a) and table 6.2, only five schedulable job sets were
evaluated at 70%. To mitigate any bias from the schedulability ratio at high
utilization, we repeated the experiment with 100 job sets that are schedu-
lable at the highest speed (the job sets follow the sufficient schedulability
test). The results exhibit a similar trend as observed in figs. 6.1(b), 6.2(e)
and 6.2(f).

It is worth noting that the counter-intuitive drop in energy reduction at 30%
utilization is due to a skewed task utilization distribution. At this utilization, a
single task is assigned a very high utilization (over 22.5%), while the remain-
ing tasks contribute to less than 7.5% utilization. This imbalance observed
at 30% utilization, in several outliers of fig. 6.2(a), limits energy reduction be-
cause the high-utilization task must run at a higher speed due to low slack,
increasing energy consumption. The impact of a high-utilization task on
energy reduction is significant if the high-utilization task has a considerably
short period, causing frequent blocking of other tasks, or a considerably long
period, resulting in prolonged high-speed execution.

6.3. Impact of causal link branching heuristic

For energy-aware speed readjustment, causal links are generated using a
depth-first approach, with a branching heuristic (discussed in section 5.3.3)
guiding the connection selection. To understand the impact of branching
heuristics on energy-aware speed assignment analysis, we considered a
system with four cores (m = 4) and six tasks (n = 6), with the total sys-
tem utilization set to U = 40%. The branching heuristic for the analysis is
selected from five heuristics presented in section 5.3.3.

As the branching heuristics are used to generate the causal link through a
depth-first approach, the effectiveness of these heuristics is expected to in-
fluence the causal link exploration overhead. As observed in fig. 6.3(a), the
choice of branching heuristic has minimal impact on energy reduction, with a
slight increase observed for distribution-based with the longest-job branch-
ing heuristic. The longest-job branching heuristic selects the job with the
highest worst-case execution time when generating the causal link. Since
the distribution-based approach initially performs low-speed slack distribu-
tion by increasing the speed of the smallest job in the link, the slack distri-
bution is more likely to be successful with longer jobs. This results in fewer
cases of high-speed slack distribution, leading to a marginally higher energy
reduction.

Regarding analysis runtime overhead, the impact of branching heuristics
is minimal with increased analysis runtime overhead for high-out heuristics
with search-based speed readjustment. This increase in average runtime
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Figure 6.3: Impact of branching heuristics on (a) energy reduction and (b) analysis runtime
overhead with various speed readjustment methods.

overhead is attributed to outliers, as the median and interquartile range of
the box plot align with other heuristics. High-out heuristics select jobs based
on their number of causal connections, which results in longer causal links.
The exploration time for a causal link in search-based speed readjustment
is proportional to the number of jobs within the link, meaning longer causal
links incur higher runtime overhead.

6.4. Impact of search space threshold

In directional search-based speed readjustment, the search space for each
causal link is bounded by the search space threshold. This experiment an-
alyzes the impact of search space threshold £ on energy-aware speed as-
signment analysis for schedulable job sets that require speed readjustment.
We considered a system with four cores (m = 4), six tasks (n = 6), and
U = 40%. The search space threshold ¢ was varied from the range 10 to
150 in increments of 10. As observed in fig. 6.4(a), the search space thresh-
old has minimal impact on energy reduction with average energy reduction
improved by just 1% at £ = 40 compared to £ = 10. This minor increase
in average energy reduction is attributed to the edge case scenarios when
restricted search space causes causal link exploration to fail. When the
search space threshold is raised, fewer causal links are pruned, leading to
a modest improvement in energy reduction for these outliers.

This trend is evident with the outliers in fig. 6.4(b). For a small value of ¢,
runtime overhead is high as many causal links are explored and pruned due
to a lower search space threshold. As ¢ increases, fewer causal links are
explored since a feasible solution is found with increased search space, as
seen at £ = 40. However, beyond ¢ = 40, the runtime overhead grows
again as exploring each causal link takes longer. Notably, the search space
threshold has a very low impact on median values for runtime overhead, as
¢ primarily affects the scenarios when the feasible solution for speed setting
is considerably far from the lowest speed for multiple causal links.
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Figure 6.4: Impact of search space threshold £ on (a) energy reduction and (b) analysis
runtime overhead with search-based speed readjustment.
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Figure 6.5: Impact of feasible solution threshold K on (a) energy reduction and (b) analysis
runtime overhead with various speed readjustment methods.

6.5. Impact of feasible solution threshold

This section discusses the effect of exploring multiple feasible solutions for
a single deadline violation in schedulable job sets that require speed read-
justment. The threshold for the number of speed readjustment solutions ex-
plored for each deadline violation is defined by K. With an increasing value
of K, more feasible solutions are explored before deciding on an energy-
aware solution. We considered a system with four cores (m = 4), six tasks
(n = 6), and U = 40%, with the feasible solution K varied from 1 to 10. As
seen in fig. 6.5(a), increasing the value of K results in a slight improvement
in energy reduction for distribution-based speed readjustment. However,
with an increasing value of K, a significant runtime overhead is incurred for
both speed readjustment approaches as exploration time for each deadline
violation is considerably increased. This can be observed in fig. 6.5(b).
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Figure 6.6: Impact of link exploration threshold X on (a) energy reduction and (b) analysis
runtime overhead with various speed readjustment methods.

6.6. Impact of causal link exploration threshold
In energy-aware speed readjustment, causal links are generated to reduce
the search space for speed readjustment. To investigate the impact of the
number of causal links explored on energy-aware speed assignment, we
considered a system with four cores (m = 4), six tasks (n = 6), 40% uti-
lization (U = 40%), and varied link exploration threshold X from 10 to 100 in
increments of 10.

As seen in figs. 6.6(a) and 6.6(b), A has no impact on energy reduction or
runtime overhead, as the number of unique causal link explorations rarely
exceed A threshold. Since K = 1, the speed readjustment for a deadline
violation is completed when a single feasible solution is found. Even for K
threshold till 10 (from fig. 6.5), the maximum number of unique causal link
exploration for a deadline violation speed readjustment was 32, which did not
exceed the causal link exploration threshold as A\ was set to 50. Although we
expect to see a minor decline in the runtime overhead and energy reduction
of outliers with very low values of \.

6.7. Impact of the number of tasks

This section discusses the impact of the number of tasks on energy-aware
speed assignments with different speed readjustment approaches by ana-
lyzing schedulable job sets that require speed readjustment. For m = 4
and U = 40%, we selected the number of tasks n per task set from
{5,6,7,8,9,10,11,12}.

As observed in fig. 6.7(a), the impact of increasing the number of tasks with
constant utilization shows no significant trend in energy reduction. However,
there is a noticeable drop in energy reduction at n = 5 due to skewed task
utilization distribution, similar to the energy reduction drop observed at U =
30% in fig. 6.2(a).

Considering the analysis runtime overhead for schedulable job sets that re-
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Figure 6.8: Impact of the number of tasks on analysis runtime of (a) distribution-based and
(b) search-based speed readjustment approach with the proportion of time spent on each
step of energy-aware speed assignment

quired speed readjustment, fig. 6.7(b) demonstrates a higher runtime over-
head for search-based speed readjustment compared to the distribution-
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based approach, due to the low exploration overhead of the distribution-
based approach. Additionally, as the number of tasks increases with con-
stant utilization, there is a corresponding increase in the number of jobs
and execution scenarios, leading to higher analysis runtime and causal con-
nection amongst jobs. This trend can be observed in fig. 6.9(b), where the
number of jobs resulting in timeouts increases with the number of tasks. As
discussed in section 5.5, when the energy-aware speed assignment analy-
sis runtime exceeds the timeout threshold (9000), any subsequent deadline
miss is resolved by assigning the causally connected job set of deadline
miss job to the highest speed. Figure 6.7(c) shows that even after excluding
the runtime overhead for all job sets that exceed the timeout threshold, the
overall pattern of runtime overhead across an increasing number of tasks
remains consistent. As observed in fig. 6.7(d), the average runtime over-
head of the search-based speed readjustment approach is attributed to the
average required speed readjustment and high exploration overhead.

Figure 6.8(a) shows that the average analysis runtime of distribution-based
speed readjustment increases with increased number of tasks. In con-
trast,fig. 6.8(b) reveals that the search-based approach leads to a signif-
icant increase in analysis runtime, with a substantial portion of the time
dedicated to speed readjustment exploration. This exploration time is no-
tably higher compared to the distribution-based method. Unlike distribution-
based speed readjustment, the proportion of speed readjustment explo-
ration for the search-based approach slightly increases with an increased
number of tasks, largely due to the added overhead from the increase in
causal connections.

Although ultimate SAG generation is generally expected to have a higher
runtime than SAG due to high execution time uncertainty, figs. 6.8(a)
and 6.8(b) show that ultimate SAG has a lower overhead than SAG genera-
tion. This behaviour can be attributed to the fact that the ultimate execution
time bound is recalculated after each speed readjustment, and the ultimate
SAG is only explored until the last deadline miss is detected. Additionally,
the ultimate SAG approach may offer a greater potential for state merging,
which can reduce the number of states that need to be explored, ultimately
leading to a lower runtime.

Finally, fig. 6.9(a) shows the schedulability ratio as the number of tasks
increases, which remains consistent across both variations of the energy-
aware speed assignment approach.

6.8. Impact of number of cores

We evaluate the effect of increasing the number of cores on energy-aware
speed assignment analysis by analyzing schedulable job sets that require
speed readjustment. we vary the number of cores m from 2 to 8 with the
number of tasks n configured as 1.5 x m, and the utilization U was set 40%,
maintaining a constant core-to-task and core-to-utilization ratio.

Similar to section 6.7, no significant trend in energy reduction was observed
in fig. 6.10(a) as the utilization is fixed. However, as shown in fig. 6.10(b),
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Figure 6.9: Impact of the number of tasks on (a) schedulability and (b) timeout count with
various speed readjustment methods.
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Figure 6.10: Impact of the number of cores (a) energy reduction and (b) analysis runtime
overhead with various speed readjustment methods.

the analysis runtime overhead of the search-based approach significantly
increases with the number of cores, as a high number of cores leads to more
execution scenarios and causal connections. Since the core-to-task ratio
and core-to-utilization ratio are fixed, the impact of an increasing number
of tasks is balanced. As seen in fig. 6.11(b), the increase in the number
of cores results in more timeout scenarios due to higher analysis runtime
overhead. Finally, fig. 6.11(a) demonstrates that, over varying the number
of cores, the schedulability ratio of the job sets remains consistent with the
baseline where all of the jobs are assigned to the highest speed.

6.9. Impact of execution time variation

This section discusses the impact of execution time variation on energy-
aware speed assignment using different speed readjustment approaches by
analyzing schedulable job sets that require speed readjustment. We con-
sider a system with four cores (m = 4), six tasks (n = 6), 40% utilization

o0 @o® O
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Figure 6.12: Impact of execution time variation on (a) energy reduction and (b,c,d) analysis
runtime overhead with various speed readjustment methods.

(U = 40% ), and the execution time variation for the task set was altered
from 0% to 60%. For example, when the execution time variation was set to
60%, C™" for each task was set to 0.4 x Cmee,

As observed in figs. 6.12(a) and 6.12(b), reducing the best-case to worst-
case execution time ratio results in slightly higher energy reduction and
marginally lower analysis runtime overhead for both speed readjustment
approaches. Increasing the value of the best-case to worst-case execution
time ratio decreases the execution time variation, which further reduces the
number of possible execution scenarios attributed to timing uncertainty, re-
sulting in a lower number of execution scenarios explored in the schedule ab-
straction graph. This reduction in execution scenarios leads to fewer causal
connections and blocking scenarios for a job, thereby lowering exploration
overhead while allowing for slightly improved energy reduction.



Conclusion

7.1. Summary of contributions

We introduced a novel energy-aware online global scheduling approach
using a non-preemptive job-level fixed-priority (JLFP) policy on a homoge-
neous multi-core platform with arbitrary cores and discrete speed settings.
To the best of our knowledge, this is the first solution to address this prob-
lem, employing static slack reclamation to assign energy-efficient speeds to
each job while maintaining schedulability.

To address the main research question defined in section 1.3, the presented
approach uses a schedule abstraction graph (SAG), a reachability-based
response time analysis tool, to perform schedulability analysis with the se-
lected speeds. The core idea of our energy-aware scheduling method is to
explore various execution scenarios with SAG by initially assigning all jobs
in the job set at the lowest speed and then readjusting the speeds if a dead-
line violation is detected. To optimize this process, we identify connections
between jobs based on execution scenarios, which helps narrow the search
space for speed adjustments.

This method ensures that the energy-aware speed assignments maintain
the schedulability of the job set under the chosen JLFP scheduling policy
on a multi-core platform.

7.2. Conclusions

Coming back to the research questions SQ 1 to SQ 3 defined in section 4.2,
in this dissertation, we showed that

63
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SQ1 We presentan ultimate SAG to explore all possible execution sce-
narios for a given set of discrete speeds by adjusting the execu-
tion time intervals for each job to reflect the effect of all feasible
speeds.

SQ 2 For any scheduled job J € 7, we explore all possible execution
scenarios in ultimate SAG and use rules 2 and 3 to generate a
set of previously scheduled jobs that impact the response time of
J based on the start time and finish time of jobs in ultimate SAG.

SQ 3 After exploring all possible execution scenarios in ultimate SAG,
we generate causal links for job J € J which are limited to
the set of previously scheduled jobs that impact the response
time of J and perform speed readjustment with search-based or
distribution-based approach.

We examined the impact of different workloads and analysis-specific pa-

rameters on energy reduction and runtime overhead. Our analysis revealed

that the task set utilization significantly impacts energy reduction, as higher
utilization leads to reduced static slack. Additionally, the skewness in task
utilization distribution affects energy reduction performance due to the
limited potential for energy savings. Other workload and analysis-specific
parameters had minimal impact on energy reduction. The analysis-specific

parameters are also interconnected which can be leveraged to achieve a

trade-off between energy reduction and runtime overhead.

For increasing the value of utilization with m = 4, n = 3 and speed range
{0.74,0.80,0.87,0.94,1.00} (as discussed in section 6.2), our solution, on av-
erage, achieved energy reduction of 26.3% using the search-based speed
readjustment approach and 25.85% using distribution-based speed readjust-
ment heuristic, all while maintaining the schedulability. Although the search-
based approach offered a slightly greater reduction in energy consumption,
it came with a significantly higher runtime overhead. Specifically, the aver-
age runtime overhead for the search-based approach was 82.6 times higher
than that of the schedulability analysis when running all jobs at the highest
speed, compared to an overhead of 7.7 with the distribution-based approach.
The lowest average runtime overhead of 3.8 was achieved with the timeout
speed readjustment (referred to as All-connected-high speed readjustment)
with an energy reduction of 22.5%.

In conclusion, energy-aware speed assignment using a schedule-
abstraction graph has demonstrated substantial energy reduction potential
with static slack reclamation.

7.3. Future work

The power and energy model used in our presented work does not consider
idle energy consumption, i.e., the energy consumption of the core when
no jobs are executing. While considering the idle energy consumption, our
work can be extended with an integrated DVFS and DPM solution.

One of the approaches can include speed assignment based on a trade-off
between energy reduction with DVFS and DPM. When the slack time is short
and jobs cannot be delayed, the system could reduce speed via DVFS to
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save energy while still meeting deadlines. Conversely, when there is ample
slack and the required speed to utilize this slack is below the critical speed,
the system could reduce speed to the critical speed and then use DPM to
put the processor into sleep mode during the remaining idle time.

In scenarios where DPM offers various sleep modes with increasing energy
savings, a trade-off between DVFS and DPM can be achieved by selecting
a sleep mode with higher energy savings instead of further reducing speed.
However, DPM involves a noticeable switching time, which should be fac-
tored in when choosing the sleep mode.

The energy overhead of the DVFS speed transition can also be considered
for the energy assignment to avoid executing jobs at higher speeds when
the transition overhead outweighs the energy savings.

Our proposed speed model currently assumes core-level DVFS, where the
core’s speed can be adjusted to match the job’s speed assignment. While
this offers high granularity in the speed changes, core-level DVFS increases
the implementation complexity of the hardware platform. Therefore, alterna-
tive DVFS models, such as assigning a fixed speed to cores or tasks, could
be explored.

Since our solution performs static slack reclamation based on the worst-
case execution time (WCET), any potential energy savings from differences
between WCET and actual execution time remain unclaimed. To address
this, a dynamic slack reclamation approach could be developed, using our
solution as the default speed assignment.

Finally, our solution is designed for homogeneous multi-core platforms with
m cores. It can be extended to heterogeneous platforms with ¢ clusters of
identical cores, where tasks within a cluster are scheduled using a global
JLFP policy. This could be implemented by running ¢ energy-aware speed
assignment analyses with respective power models and speed-to-execution
time functions. Further research could explore a more complex system
model, where jobs migrate between clusters based on workload require-
ments and energy-saving trade-offs.
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