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Abstract
In this research, a comparison between different
Instance Attribution (IA) methods and k-Nearest
Neighbors (kNN) via cosine similarity is conducted
on a Natural Language Processing (NLP) machine
learning model. The format in which the compar-
ison is made is by way of a human survey and
automated similarity comparisons of representative
vectors. The goal of this is to judge and com-
pare the effectiveness of each method’s results in
the context of a human’s language understanding
and ability to determine if a fact is true or not.
Through this research, it was found that for re-
sults obtained on the same input, IA methods were
preferred 32.5% more often than kNN. It is also
shown that this preference is not linked to the sim-
ilarity between the IA results and the kNN results.
Through these findings, it can be seen that when
understood through the lens of human comprehen-
sion, IA methods are much more effective at gen-
erating a set of influential training points from the
model’s training dataset.

1 Introduction
As more and more Artificial Intelligence and Machine
Learning tools are being made, the need to explain them also
rises[1]. Following this need, various methods have been
produced to audit these algorithms’ decision-making. One
such method is Instance Attribution (IA).

1.1 Instance Attribution
Instance Attribution is a method of Explainable Artificial
Intelligence (XAI) that, at its essence, will tell you how
influential different datapoints from the machine’s training
dataset are on its decision-making. Unique because it can
link as far back as the training data, Instance Attribution is a
powerful yet fragile way to help explain a machine learning
algorithm[2].

An example that is present in the current news cycle
would be using IA methods to find the artworks most influen-
tial in the generation of AI art[3]. All AI artwork generators
are trained using pieces from existing human artists. This
means that a piece of generated art might be derivative of a
certain artist’s style and previous works. However, due to the
black-box nature of these algorithms, they will not receive
any credit. Conceptually, IA methods make it possible to
trace a generated piece of AI art back to the training data and
give credit to the most influential artworks for the said piece.

1.2 Research Question
In order to further this relatively new field of Instance
Attribution, the research question that will be answered is:
How do different instance attribution methods compare to the
simplest instance attribution method, k-Nearest Neighbors

(kNN), in the representative space? This question is worth
answering because it is important to know what method to
use when doing instance attribution so that you can identify
what part of the training data is responsible for its decisions.

Using instance attribution, it can further be explained
how a machine is making its decisions and whether it is
arriving at the correct conclusion for the correct reason. As
opposed to stumbling across the correct conclusion as a
result of a misunderstanding derived from the training data.

It is essential to compare different IA methods and kNN
because it is the most naive method of doing instance attribu-
tion. Using it as a baseline for comparison is reasonable, and
can be used to show the relative improvement between other
methods.

1.3 Existing Work
There are previous works on instance attribution, with
methods such as FastIF1[4] and TracIn2[5] being created.
Additionally, there are also works that are closer to a
meta-analysis on the use of influence functions in Natural
Language Processing (NLP), and NLP as a whole. From the
broader use of NLP in identifying Fake News articles[1], to
the specific uses of influence functions for shining a light on
black box predictions[6] [7].

The opposing perspective also has had research done.
Such as the drawbacks of using influence functions to
improve deep learning algorithms[2]. This existing work
includes one particularly relevant paper that compares
different methods of instance attribution to one another in
terms of algorithmic improvement and correctness[8].

What is missing from these papers is a comparison to
the most naive method of instance attribution, k-Nearest
Neighbors via cosine similarity, as well as a human perspec-
tive on how relevant the results from the influence functions
are to the provided input. This is the gap that the research
question is striving to fill.

1.4 Results Summary
As a result of this research’s human survey, it can be seen
through the data that influential datapoints are approximately
32% more preferable than when retrieved using IA methods
as compared to kNN. Furthermore, the data shows that
the similarity between IA results and kNN results, when
measured by their representative vectors, does not influence
whether they are preferred or not.

The takeaways are that instance attribution methods, at
least FastIF and TracIn, are a more effective way of gener-
ating a set of influential datapoints for an NLP model when
measured through human language comprehension. An
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additional takeaway is that instance attribution methods yield
substantially different results than kNN. These differences
in similarity, while improving the IA results compared to
the kNN results, do not have a direct correlation with said
improvement to preference.

For purposes of reproducibility and transparency, the
implementation and brief setup instructions of the experi-
ment environment are available here:
https://github.com/HatchIing/InstanceAttribution.

2 Related Work

Influence functions as a technique are not new. The vast
majority of them are based on the statistic technique of
up-weighting a training point a very small amount to see how
model parameters change[9]. Kim et al (2015)[10] utilizes
an approach that makes use of clustering to understand
prototypes during training, though it doesn’t study deep
learning. The use of influence functions as an XAI method is
fairly new, starting from Wojnowicz et al. (2016)[11] to the
best of our knowledge.

Among the most referenced instance attribution meth-
ods are the ones described by Koh & Liang (2017)[6]
and Yeh et al (2018)[12]. Koh & Liang[6] use the more
traditional method from Hampel[9] to monitor the change in
a prediction when a training point is dropped. Their method
is also adopted by Guo et al (2021)[4] but is computationally
expensive. This expense is because it involves the inversion
of the Hessian matrix. Yeh et al[12] use the representer
theorem which claims that the top layer of a network can be
specified as a linear combination of values of the training
points at the last layer.

Instance attribution isn’t the only XAI method that has
been researched though. Most closely related to instance
attribution is feature attribution. Feature attribution shows
the influence of the input features and how much weight
each one has on the machine’s decision-making[13]. The
effectiveness of which has been measured by Nguyen et al
(2021)[14], showing that it is also a valuable method for
understanding and improving models.

As stated previously, instance attribution done by ’tra-
ditional’ means, such as described by Koh & Lang (2017)[6],
is expensive due to its scaling. As models become more
advanced and accurate they also implement more parameters,
which scale in O(n2)[5] for time complexity. Combine
this with the increasing scale of datasets which oftentimes
encroach into the millions (O(n)[8] for increasing dataset
size), it becomes readily apparent that newer, faster methods
of instance attribution are needed if there is a hope of keeping
up[4].

3 Problem Description
The research question of how different IA approaches
compare against kNN in the representation space can be
specified as comparative research. Through the course of this
research, there isn’t a new method being created, but rather
existing ones are adapted to fit the experiment and analysis
goes from there. This presents several problems that must be
solved in order to adequately answer the question.

3.1 NLP Model
The first problem is how to adapt the pre-trained model that
is used, ExPred[15], and the instance attribution methods that
need to be compared. It is necessary to use a pre-trained NLP
model in this research for convenience, consistency, and to
remain within the time constraints. To this end, a pre-trained
version of ExPred was provided and used.

ExPred is a two-part model based on the ’Explain and
Predict, and then Predict Again’[15] paper. It is multifaceted,
but for this application, only the fact-checking capabilities
will be used. The first part of ExPred is an explanatory model
that focuses on providing an explanation for the decisions
the model makes, helping users understand how and why
the model is making the choices it is making. The second
part is the classification model that, in the end, will give
the classification of whether the input claim and evidence is
’Supported’ or ’Refuted’.

The two-part structure of the pre-trained model is use-
ful for providing explanations, but it does make it more
troublesome to follow the gradients, even if only oracle
access is required. This is because the gradients of the
classification need to be used and not necessarily the ones
from the explanation.

3.2 IA Methods
The core of this research is the instance attribution methods,
FastIF and TracIn. Both are convenient in one way because
in order to get the necessary output of a list of training
datapoints and their influences, all that is needed is the model
itself, the input for the model, and the training dataset. In this
case that would be the ExPred model, a datapoint formatted
as an ExpredInput, and the FEVER[16] dataset.

Also convenient is that the metrics by which FastIF
and TracIn measure influence do not matter. They only need
to be pertinent when relative to themselves in order to return
a ’most to least’ influential subset of training datapoints.

FastIF
The first chosen instance attribution method is FastIF[4].
FastIF is a method that uses simple modifications to influence
functions to significantly improve the run time. Apart from
the efficiency optimizations, the actual influence function
used by FastIF is very similar to the one described by Koh
et al. (2017)[6]. The main optimization used by FastIF



is to narrow down the search space by using kNN. This
would make the final result a subset of kNN, so the kNN
optimization was cut from the pipeline. This makes the run
time slower, but for the purposes of this experiment it is
necessary.

TracIn
The second instance attribution method is TracIn[5], a
method that tracks how loss on test points changes during the
training process whenever the training example of interest is
utilized. This method is also loosely based on the method
described by Koh et al. (2017)[6], however instead of
computing the inversion of the hessian matrix, which has a
size that is quadratic in the number of model parameters, it
uses random projections. This allows it to use sketches of the
loss gradients which can be reused to compute randomized,
unbiased estimators for the influence of given test points[5].

4 Methodology
The foundations for this research are the pre-trained ExPred
model[15] and the FEVER3 Dataset[16]. The different meth-
ods, k-Nearest Neighbors, FastIF, and TracIn, are able to be
adapted to an NLP Fact-Checking context by using these as
a base. This section will go over these foundations, methods,
and how they work individually. The implementations and
specifics on how they are adapted can be found in section 5.

4.1 FEVER Dataset
The FEVER dataset[16] is a large claim/evidence-based
dataset with 98,000 annotated datapoints in the training
set alone. Specifically, the Eraserbenchmark version[17] is
utilized because it has been modified for usability by simpli-
fying the datapoints and removing superfluous annotations
that would otherwise be clutter in this context.

Each datapoint is labeled either ’SUPPORTED’ or ’RE-
FUTED’, and contains annotated context for the claim in
the dataset along with the required identifiers. The provided
context is evidence relevant to the claim in the datapoint,
usually pulled from the corresponding Wikipedia article
about the same topic. Coupled with the fact that ExPred is
trained using the FEVER dataset, it is perfect for the use case
of this research.

4.2 k-Nearest Neighbor
The baseline instance attribution method is k-Nearest Neigh-
bors through cosine similarity. K-Nearest Neighbors is a
method of grouping similar datapoints based on their dis-
tance from the origin datapoint, then creating groups of size k.

The cosine similarity can be expressed as:
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Figure 1: The formula for finding the cosine distance between data-
points A and B. This formula is used for origin datapoint A and on
all other datapoints B. Sorting these distances and taking the closest
k datapoints yields the k-Nearest Neighbors.

The cosine similarity is also used when comparing the rep-
resentative vectors of the instance attribution and k-Nearest
Neighbors results. The comparison between representative
vectors is used to show that there is an appreciable difference
between the two, and to see whether or not there is a
correlation between their preference and similarity.

4.3 FastIF
As shown in Figure 2, the workflow of FastIF is a three-step
process.

Figure 2: A high-level overview of the FastIF pipeline. Showing
a subset of datapoints being selected from the training dataset via
kNN. Then the inverse Hessian-vector product is estimated. Then
the influence of the datapoints is calculated and the most influential
points are given.

For the purposes of this research, the first step where a
subset is chosen based on Facebook AI Similarity Search
(FAISS)[18] kNN is omitted for two reasons. The efficiency
of the influence function is not being analyzed, and in order
to avoid having the result simply be a subset of the kNN via
cosine similarity results.

The second step that FastIF takes is to estimate the in-
verse Hessian-vector product through the s-test. This can be
represented generally through the equation in Figure 3.

Figure 3: This equation shows the value that FastIF pre-computes
for each test datapoint ztest. H−1

θ is the inverse hessian product that
is calculated, ▽θL is the calculated loss for ztest and input θ[4]

Finally, FastIF will use the pre-computed s-tests to calculate



the influence of each datapoint as represented in Figure 4.

Figure 4: Equation for how FastIF calculates the influence of input
z. stest is the s-test described above. ▽θL is the calculated loss
between every iterated test point zi and input θ.

At this point, FastIF would also be collecting the different
influences from however many parallel processing threads
it created and averaging them in order to output the final
results. However, in this research, it was not possible to use
parallel processing4 so this step is effectively omitted due to
only one thread being used. So there is no need for further
computation.

4.4 TracIn
TracIn finds the influence of specific training examples by
summing up the loss in all iterations that it was used. In
order to approximate the idealized influence of a particular
training example on a given test example, that is induced
by the training process whenever the training example is
utilized, TracIn uses the equation shown in Figure 5.

Figure 5: The summation of loss gradients ℓ through all iterations
of weights wt and a fixed test point z′. The initial parameter vector
before starting the training process is w0, and the final parameter
vector is wT .

Simply approximating the idealized influence in this way
would require TracIn to keep track of parameters, all training
points used at each iteration, and essentially replay the train-
ing process. In order to avoid this, TracIn uses a checkpoint
technique for practical heuristic influence, as described in
Figure 6.

Figure 6: Equation describing TracIn’s checkpointing method for
calculating approximate influence. Shows summation of the dot
product between the loss gradient ▽ℓ of test point z′ and input point
z, multiplied by ni where ni is the step size of iteration i.

Doing so allows the first-order approximation of the influence
to approximate the parameter vector at the specific iteration
where a given training example is visited. This does assume
that the step size is kept constant between checkpoints and
that each training example is visited only once.

4See Section 8: Discussion for full explanation.

4.5 Comparison Methodology
The general method that the research uses is to adapt the
instance attribution methods so that they are able to take
ExPred as the input model, and FEVER as the training
dataset that is to be targeted. After the instance attribution
methods are modified to these requirements, datapoints from
the validation set of FEVER are chosen to be run. Along with
the results from the k-Nearest Neighbors, the top influential
training points are then taken from each.

Automated Comparison
The results from the instance attribution methods are com-
pared to the results from kNN by the cosine similarity of their
representative vectors. By doing this the semantic difference
between the two can be seen. This means that it can be shown
whether or not the instance attribution methods yield sig-
nificantly different results from the nearest neighbors method.

This comparison is then combined with the results from the
survey and analyzed. The goal is to observe whether there is
a correlation between the similarity of the methods and how
they fare in the human survey portion of the research.

Manual Comparison
For the manual comparison, the instance attribution and kNN
results are trimmed down to the top 5 so that the subsets are
more manageable to a human when reading them. Afterward,
they are further formatted to where they only show the claims
and the labels, along with the original input claim from the
validation dataset.

Figure 7: An example of a question from the survey. The provided
claim from the validation dataset is shown on top and the choice
is between either the instance attribution results (FastIF or TracIn)
or the kNN results. Options are randomized as well as question
order. For every provided claim there are two questions using it, one
comparing FastIF to kNN and one for TracIn and kNN.

This is then presented to human participants, in the form
of a Google Forms Survey[19]. The survey will record the
answers which will show the number of times one method
was chosen over another. This shows a preference for either
the instance attribution or k-Nearest Neighbors results.



The requirements for participants are that they have at
least a basic understanding of computer science and machine
learning, as well as being fluent in English. The participants
are selected for the survey through convenience sampling
and perform the survey individually.

The results of the survey are then analyzed to show
preference between the instance attribution methods and
kNN. Background information such as the similarity between
the results, based on their representative vectors, and relative
similarity is also compared to the results of the survey.
Through this analysis, conclusions can then be drawn about
how the results answer the research question.

5 Experimental Setup
The setup for the experiment can be generalized into four
parts: the adaptation of the instance attribution methods,
running the instance attribution methods, creating the survey,
and administering the survey.

5.1 IA Method Setup
The first step to setting up the experiment was to adapt both
methods to be able to take ExPred and the FEVER dataset as
inputs.

FastIF
For FastIF, it is fairly straightforward to adapt the method
itself to the model. By separating the classification module
from the explanation module within the ExPred PyTorch
Model object and only calculating the gradient of the classi-
fication module, the two-part layout of ExPred is no longer
an issue.

In order to allow FastIF to take in the FEVER Dataset,
a custom PyTorch Dataloader had to be made with a cus-
tom collate function that converted the datapoint into an
ExpredInput. Additionally, the collate function does the
pre-processing on it so that the datapoint could be given to
the ExPred model when FastIF called it.

Apart from that, the adaptation of FastIF is mainly matching
data types between it and ExPred. An example would be
when FastIF needs to know the output of ExPred, a few lines
had to be added to the code to extract the vector that ExPred
outputs and make it usable for FastIF. Small changes such as
this make up the majority of this portion of the setup.

TracIn
TracIn is less straightforward to adapt because it is more
specialized towards instance attribution on an image clas-
sification model based on resnet[20]. However, most
functionalities inside TracIn that had to deal with resnet
were mainly optimizations that would make the computation
faster. Meaning they could be subverted or removed without

affecting the method itself.

There is one substantial functionality within TracIn that
had to be subverted though. TracIn creates an idealized
version of the input classification, which is doable with
pictures. By using resnet and the fact that there is a set
number of pixels it is possible to create a best-fit example
based on the model weights. However, this does not work
with natural language processing, so it had to be removed. It
is most likely possible to adapt TracIn to where it can create
an idealized version of the input claim, but it was outside the
scope of this research and its constraints.

In the end, TracIn is implemented much the same way
as FastIF. Though the specific pipeline for computing
influences is different, much of it is interchangeable. Such
as the method for getting gradients and iterating through the
training data. The same custom DataLoader from the FastIF
implementation was also used for the TracIn implementation.
This is because the DataLoader only needs to be able to
iterate through the training data and format each point to
where ExPred accepts it, there is no interaction between the
DataLoader and the method per se.

5.2 k-Nearest Neighbors
The implementation for k-Nearest Neighbors is very simple.
The method takes in the input claim, a number for k, and
the training dataset. It then transforms the input claim into a
vector and compares it to all datapoints in the training dataset
which are also turned into vectors as it iterates.

By using the cosine distance between the claim and all
datapoints in the training dataset, the closest points are able
to be selected and returned as the results.

5.3 IA Methods Execution
The second step in setting up the experiment is to restrict the
training dataset for each input selected from the validation
dataset. This is done purely because of time constraints. To
do this, a balanced subset of the original training dataset was
created based on their direct relation to the input claim. Then
a random sample of constant size from the training data is
appended to it.

The related subset is created by searching the training
data for keywords that appear in either the claim or the
evidence. The search is done for specific keywords to avoid
redundancy with kNN.

After all relevant datapoints are collected, the subset is
balanced by removing either supported or refuted claims
until they are equal. This is to avoid over-representing either
side and accidentally influencing the instance attribution
methods. Afterward, a random sample of 300 datapoints is
taken from the training dataset. Combined, these two subsets
create the trimmed set that is fed to the IA methods.



After the IA methods are run on the trimmed datasets,
the automated comparison takes place using the same cosine
similarity function from the kNN implementation. All sets
of influential datapoints from both FastIF and TracIn are
compared to the sets from kNN via cosine similarity and the
results are stored for analysis.

5.4 Survey Creation
The third step is to compile the results and use them to create
the user study. To do this the top five influential points were
taken for each of the 10 claims. Since there were 10 claims
that were run, between the three methods there are 30 sets
of top 5 influential datapoints. These were then formatted
by trimming everything but the claim and the label. Leaving
each influential datapoint in the form of ’claim [label ]’.
These trimmed results were then used to create the survey in
Google Forms.

In the survey, participants are presented with the claim,
and two options in the form of a multiple-choice question as
shown in Section 4. One option is either the formatted results
of FastIF or TracIn, and the other option is kNN.

The participants are asked to: ”Choose the set of sen-
tences that would influence your decision making toward
saying True or False.” and were informed that ”The given
claim will not always be true.”.

5.5 Administer Survey
Finally, the last step is to administer the survey to par-
ticipants. Participants for the survey all had a baseline
understanding of computer science and machine learning
algorithms.

In total there were 20 participants that were selected
via convenience sampling. The survey was set up to not
record any data apart from the answers to the questions.
Additionally, the survey was set to randomize the order of the
20 questions and to randomize the order of the two options
in each question.

During the survey, participants were instructed to stay
in contact in case they had any questions or if a survey
question was unclear. Most participants were brought into a
voice call as they either had questions about how to answer or
because the compression that Google Forms uses on images
made them difficult to read on their end. After all the surveys
were administered, Google Forms automatically shows the
statistics for the results.

5.6 Metrics
The metrics that the results will be analyzed on are each
method’s preferences from the survey and the cosine similar-
ity.

Preference is shown through the survey from how often

the respective option was picked. Every question is a choice
between either FastIF/TracIn and the kNN results, so the
frequency that one is picked over the other shows their
preference.

The similarity is shown through cosine similarity be-
tween FastIF/TracIn results and kNN results. All results
are converted into a representative vector and compared as
described above.

6 Results
The results of the survey show that the difference between the
instance attribution methods is relatively negligible. How-
ever, they are much preferred to the subset generated by kNN.

Comparing the cosine similarity of the FastIF and TracIn
results with the kNN results shows that there is no relation to
the similarity and whether either option was selected during
the survey.

6.1 Survey Results

Table 1: Survey Results

QUESTION FASTIF KNN TRACIN KNN
BOWEN 0.7 0.3 0.8 0.2
CAMDEN 0.55 0.45 0.7 0.3
ILLINOIS 0.8 0.2 0.7 0.3
KESHA 0.65 0.35 0.8 0.2
PANDA 0.6 0.4 0.6 0.4
RIPON 0.55 0.45 0.5 0.5
SHADOW 0.65 0.35 0.75 0.25
SILVER 0.6 0.4 0.7 0.3
VIETNAM 0.75 0.25 0.55 0.45
WOZNIAK 0.6 0.4 0.7 0.3

0.645 0.355 0.68 0.32
The questions are represented by an identifiable keyword from

the given claim. Each pair of columns (FASTIF - KNN,
TRACIN - KNN) show the percentage of times they were cho-
sen for the respective question.

Table 1 illustrates the results of the survey. It is immedi-
ately apparent that the influence functions are preferred to
kNN, with the influence functions being selected a combined
66.25% of the time.

Individually, TracIn was selected more than FastIF. However
the difference is only 3.5% higher than FastIF, and because
of the small sample size, it can not be reliably argued that one
is preferred over the other. Therefore, stating that they are
more or less comparable is a more conservative conclusion.

One thing that was seen through the results of the sur-
vey is that there was not a single question where kNN was
preferred over the instance attribution option. At most, the
preference closes in on being a 50/50 choice between the
two. Meaning that the selection of one over the other is
closer to being a random selection as opposed to one driven



by understandability.

This survey outcome shows that the best-case scenario
for kNN is that its results are at the same level of preference
as the instance attribution results. Though this only happens
for the ’Ripon’ question where it is close to 50% preference
in both FastIF and TracIn comparisons.

An insight into why this could be the case is seen through
the participants’ responses when asked about their ’general
thoughts’ about the survey. There were some thoughts that
were expressed by almost all of the participants:

• When neither option had something (keyword/direct re-
lation to prompt) to do with the question. They preferred
the option with a seemingly wider variety of informa-
tion.

• When an option was more or less a rehashing of the same
sentence (As is often the case with kNN results). They
preferred the other option.

Both of these opinions lend themselves to choosing instance
attribution the majority of the time.

6.2 Similarity Comparison

Figure 8: The y-axis shows cosine similarity between the influence
function (Blue for FastIF. Red for TracIn) and the corresponding
kNN results. The x-axis shows the preference of the influence func-
tion from the survey (I.E. .6 means it was picked 60% of the time
over the kNN option). The blue and red lines are the best-fit lines
for FastIF and TracIn respectively.

The similarity between the representative vectors of the
influence functions and their corresponding kNN results is
shown in Figure 8.

The scatter plot shows that in both cases the similarity
and the preference do not have a strong relation, as seen by
the best-fit line being almost horizontal in both cases. What
can also be seen is that the overall similarity is low, with only
one datapoint approaching a cosine similarity of 0.5.

Although the level of difference does not necessarily
have an effect on the level of preference, it does mean
that instance attribution methods not only yield different

results than kNN, but also that those differences make them
preferable to kNN.

7 Responsible Research
Due to the fact that this research required human participants,
there are ethical considerations that need to be explained.
Along with considerations about the participants’ selection
and privacy, extra consideration must be taken for what data
if any is stored on them.

7.1 Human Participation and Considerations
The requirement for participants was that they had at least
a baseline understanding of machine learning/computer
science, and must be fluent in English. Finding participants
that fit these criteria is not difficult as they are not overly
specific, however, the research had to be done in quite a short
amount of time. Due to the time constraints, it was necessary
to reach out to people through personal connections, meaning
that the participants were friends and family.

Though this did make it possible to finish the survey,
even during the holiday season, it is something that needs
to be stated. As in one way or another, the participants are
not completely emotionally unbiased. This does mean that
participants were solicited purely through personal connec-
tions and were not promised or given anything additional to
participate.

The procedure for the survey can roughly be divided
into three steps. Making contact with the participants, where
their consent is gained and they are informed generally
about the survey. The conduction of the survey itself, where
participants fill out the survey. Then finally, a quick talk after
the survey about their general thoughts and feelings about
the survey and their answers.

Firstly, participants are asked if they would be able to
fill out the survey. If yes, they are informed about what
is expected from them. These expectations are outlined in
the introduction of the survey as well. Additionally, they
are informed about what information would be collected on
them, which in this case is only their answers as that is the
only thing pertinent to the research.

While filling out the survey, most participants were in a
voice call as the compression that Google Forms uses made
some of the multiple-choice options hard to read on their
monitors. In the case an option was illegible they were sent
the full-resolution picture through direct messages.

While in the voice calls, a concerted effort was made
to not answer questions that by themselves or through their
answers, would affect the way the participant answered the
question in a biased way.



After the survey, almost all participants were asked
about their opinions on it. It was also restated to most of
them that nothing about their personal information is saved
and only their responses are recorded, which themselves are
also anonymous.

7.2 Replicability
If the research was to be reproduced there are several items
that need to be considered: the selection of the participants,
the restrictions on time, and the hardware requirements.

The selection of participants, as stated earlier, was done
through convenience sampling in order to expedite the pro-
cess and increase the chance that they accept to participate.
This does lead to a personal connection with the participants
and could in one way or another influence the results of the
survey.

The restriction on time affected more than just the se-
lection of participants. The results of the influence functions
were also restricted because it was impossible to run them on
the entire dataset in a timely fashion. Details on these dataset
restrictions are detailed in section 5: Experimental Setup.

Lastly, the hardware that was used is important because
the functions are specific to graphics cards with CUDA
cores. This decision was made to speed up processing time,
and for simplicity when writing the code. The fact that
CUDA cores are required does mean that if someone tries to
run the program on a device without a compatible graphics
card, it will not work.

7.3 FAIR Research
The FAIR Guiding Principles for Scientific Data Manage-
ment and Stewardship by Wilkinson et al. (2016)[21] are
guidelines that are widely used to standardize scientific data
management. Following the guidelines is good practice when
working with research that deals with software and data.

Findable
Findable means that the research’s software, implementation,
and metadata, are easily findable by both humans and ma-
chines. To facilitate this, all word is being uploaded to the
TU Delft Repository, and the implementation has been made
public on GitHub.

Accessible
Accessible means that the research’s software, implemen-
tation, and metadata, are easily accessible and retrievable.
Through the same channels that the research and related ma-
terial was made findable, it is also accessible through the
same channels.

Interoperable
Interoperable means that the research software is able to be
used with other data or through different means. This is

achieved simply by providing the source code for the imple-
mentation along with instructions on how to set up the envi-
ronment. After the initial setup, it is entirely possible to swap
out the different parts of the experiment for other ones.

Reusable
Reusable means that the research is able to be used and mod-
ified through standard means. This research is made reusable
through the implementation instructions in the GitHub repos-
itory. Though it has to be restated that a graphics card with
CUDA cores is required to run the experiment as is.

8 Discussion
A direct comparison for this research could not be found
as other research relevant to instance attribution does not
have the human component. While a direct comparison
might not be possible, it is possible to say that the results
of this research are supported by the general consensus that
influence functions are an improvement over kNN methods
for instance attribution[4] [5] [8].

Several aspects of the research could have been done
differently. Given more time and resources it would have
been possible to run the instance attribution methods on the
entire FEVER dataset. Not being able to do so makes it so
that the results have an inherent flaw because the instance
attribution methods were run on a fraction of the dataset that
the model was trained on.

For full context, the FEVER training dataset has 97,955
datapoints. That number is trimmed down to 350 datapoints
between the relevant subset and randomly selected datapoints
combined. Even with this massive reduction in dataset size,
all query runtimes added up to around 20 hours.

Additionally, the time constraint could have been alle-
viated to some extent if parallel processing was able to be
used. This was impossible however due to a bug in PyTorch.
The bug made it impossible to utilize a DataLoader with
anything other than 0 workers. Which means only the main
process can be utilized.

In the future, possibly with a different version of Py-
Torch or with different hardware, it would be possible to up
the number of workers and speed up the execution time. The
only difference that would need to be made is to change the
number of workers when declaring the DataLoader.

This research could also be improved in the future by
selecting participants in a different manner other than
convenience sampling. The use of convenience sampling
was, again, due to time constraints. However, given more
time it would be possible to find a bigger sample size of truly
non-biased participants.

Most improvements to the research have to do with ex-
panding the scope. Comparing more instance attribution
methods, different nearest neighbor methods, using different



parameters, etc. Expanding the scope of the comparisons
would allow for a broader, but also more detailed, analysis.

9 Conclusions and Future Work
The results show that instance attribution methods, specif-
ically FastIF and TracIn, are better methods at generating
an understandable set of influential training datapoints than
k-Nearest Neighbors via cosine similarity. The 32.5%
difference in favorability between the two methods illustrates
that there is a significant improvement. Even though instance
attribution methods are more expensive at run-time, they
yield a better result.

It can also be concluded that the similarity between the
influential training datapoints from the instance attribution
and the k-Nearest Neighbors methods did not have an effect
on their favorability during the survey. This means that
regardless of the similarity, the k-Nearest Neighbors results
are not preferred over instance attribution. At most, they will
exhibit similar favorability.

Future work for this research would be to compare the
increase in preference to the increase in time complexity for
different methods. A major restraining factor during this
research was the time investment in running the instance
attribution methods. So the logical question to ask is at
what complexity, dataset size, model depth, e.t.c., does the
increase in usability given by instance attribution get out
weighted by the increased resource and time investments.
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