
 
 

Delft University of Technology

Fully convolutional networks for street furniture identification in panorama images

Ao, Y.; Wang, J.; Zhou, M.; Lindenbergh, R. C.; Yang, M. Y.

DOI
10.5194/isprs-archives-XLII-2-W13-13-2019
Publication date
2019
Document Version
Final published version
Published in
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS
Archives

Citation (APA)
Ao, Y., Wang, J., Zhou, M., Lindenbergh, R. C., & Yang, M. Y. (2019). Fully convolutional networks for
street furniture identification in panorama images. International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences - ISPRS Archives, XLII(2/W13), 13-20.
https://doi.org/10.5194/isprs-archives-XLII-2-W13-13-2019
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.5194/isprs-archives-XLII-2-W13-13-2019
https://doi.org/10.5194/isprs-archives-XLII-2-W13-13-2019


FULLY CONVOLUTIONAL NETWORKS FOR STREET FURNITURE 
IDENTIFICATION IN PANORAMA IMAGES

Y. Ao1,*, J. Wang 2, M. Zhou 3, R. C. Lindenbergh 2, M.Y. Yang 1 

1Dept. of Earth Observation Science, Faculty ITC, University of Twente, The Netherlands -y.ao@student.utwente.nl, 
michael.yang@utwente.nl 

2Dept. of Geoscience and Remote Sensing, Delft University of Technology, The Netherlands – (jinhu.wang, 
R.C.Lindenbergh)@tudelft.nl

3Academy of Opto-Electronics, Chinese Academy of Sciences, China – zhoumei@aoe.ac.cn 

Commission II, WG II/4 

KEY WORDS: Panoramic Images, Semantic Segmentation, Street Furniture, Object Identification, Fully Convolutional Networks 

ABSTRACT: 

Panoramic images are widely used in many scenes, especially in virtual reality and street view capture. However, they are new for 
street furniture identification which is usually based on mobile laser scanning point cloud data or conventional 2D images. This study 
proposes to perform semantic segmentation on panoramic images and transformed images to separate light poles and traffic signs from 
background implemented by pre-trained Fully Convolutional Networks (FCN). FCN is the most important model for deep learning 
applied on semantic segmentation for its end to end training process and pixel-wise prediction. In this study, we use FCN-8s model 
that pre-trained on cityscape dataset and finetune it by our own data. The results show that in both pre-trained model and fine-tuning, 
transformed images have better prediction results than panoramic images. 

1. INTRODUCTION

Object detection for street details has been a popular research 
topic for its wide applications. The rapidly developing 
autonomous driving requires highly accurate objects recognition 
on the street scenes to achieve a satisfying performance and 
safety for self-driving cars (X. Chen et al., 2016). Also, object 
detection serves the tracking task as an observation and a 
successful object trajectory determination needs a large amount 
of the observations (Ess et al., 2010). Furthermore, in terms of 
the hot robotics field, the identification of the street details is 
necessary for outdoor mobile robots navigation (Benavidez & 
Jamshidi, 2011). In addition, as for the social aspect, street 
objects detection helps to inventory the real-world targets in an 
efficient way, which were annotated manually in the previous 
days (Creusen et al., 2012). 

Street furniture identification plays an essential role in object 
detection field since various kinds of furniture are contributing 
directly to the people’s daily safety. For examples, street lamps 
give cars and pedestrians sight support in the night and traffic 
signs warn the road users for upcoming dangerous situations 
which guarantee the smooth traffic flows. Street furniture 
identification has many applications including road maintenance 
and urban plannings. Moreover, the government needs position 
and type information of street furniture in order to maintain it 
when it’s broken or its visibility degrades over time (Hazelhoff 
et al., 2014). Urban planners require the existing street furniture 
information to locate the new ones. Those works are usually 
completed either by acquiring street furniture information 
manually or from laser scanning data, or by 2D image data. In 
this study, we propose to use panoramic image, which is 
infrequently used data for research, to experiment automatically 
perform the above-mentioned tasks. 

Panoramic images are more and more noticeable since their 360° 
perspective vision providing users with a broader view than 
normal images, while the cost of acquiring them is relatively 
low. They are increasingly used in many scenarios in the past 
few years, such as street view capture and indoor monitor. 
Panoramas also played an efficient role in the scientific 
researches like robot localization field (Marinho, Almeida, 
Souza, Albuquerque, & Rebouças Filho, 2017) and 3D structure 
reconstruction (Pintore, Ganovelli, Gobbetti, & Scopigno, 2016) 
for their inner three-dimensional information. But they have 
been rarely used in the conventional object identification in 
street environment. 

To recognize street furniture from the panoramic images, this 
study proposes to apply semantic segmentation on the images. 
The pixel-leveled method is achieved by an end-to-end deep 
learning model that is Fully Convolutional Networks and 
produces dense per-pixel labeled predictions. It will take a long 
time and demand a lot of resources to train an FCN model from 
the beginning. In view of our own small panorama dataset, we 
decided to fine-tune a pre-trained FCN model which was trained 
on a big dataset with a similar scenario to ours. In addition, we 
transform the panoramic images to conventional perspective 
images, since there is no available street-view panorama dataset 
that can be used by a pre-trained model. In this study, we will 
fine-tune the pre-trained FCN model with both panoramic 
images and transformed images and compare their predictions to 
see if the panoramic properties affect the training and predicting 
results. 

Below the related works of street furniture identification is 
presented in Section 2. Methods for image mapping, image pre-
processing and semantic segmentation by FCN model are 
explained in Section 3. Experiment procedure and results are 
given in Section 4. Conclusions are described in Section5. 
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2. RELATED WORK 
 

Many approaches have been developed for street furniture 
identification in the past years.  Surveying, satellite-based 
remote sensing and photogrammetry are worldwide spreading 
technologies. But for street details, they are inappropriate 
because they aim at mapping, not object detection. Airborne 
laser scanning and aerial nadir or oblique imagery are also not 
suitable for this application since they must have a centimetric 
resolution which needs to be acquired from a low altitude with a 
thus high cost due to the multi-flight for overcoming vertical 
occlusions (Paparoditis et al., 2012).  

 
For this street-level work, there are mainly two approaches, 3D 
data or 2D images. The 3D data usually acquired via two ways, 
3D models estimated from 2D images or 3D point clouds from 
laser scanning system. Saxena et al.  (2009) made 3D urban 
scene structure from monocular images, while Hu and Upcroft 
(2013) reconstructed 3D street view from stereo image pairs. 
However, their work focuses on using geometric characteristics 
extracted from those images. In this respect, mobile laser 
scanning (MLS) data which can avoid some occlusions on 
account of mobile characteristic and diverse sensors for different 
scanning platforms can directly acquiring more accurate spatial 
information (Alho et al., 2011). Pu et al. (2011) classified the 
street objects by introducing an initial vertically slicing method 
to recognize the shape of street furniture. Cabo et al. (2014) and 
Wang et al. (2017)  extracted pole-like street furniture from MLS 
point cloud data with voxel-based approaches. The difference 
lies in that the former uses square cube while the latter uses 
icosahedron to build a shape descriptor. Also, Rodríguez-Cuenca 
et al. (2015) applied the pillar structure to organize the point 
cloud and detect vertical urban elements by means of an anomaly 
detection algorithm. Nevertheless, MLS point cloud based 
approaches mainly consider the objects’ spatial characteristics 
and spatial relations which make it really difficult to identify 
close by and similar objects (Wang et al., 2017). Also, 
considering the cost of acquiring MLS point cloud data is much 
more than capturing images from the camera, MLS is not an 
optimal choice for this study.  

 
For 2D images such as street views and color images which are 
captured by cameras mounted on vehicles, image segmentation 
is regard as one of the most essential tasks for object extraction. 
A number of methods have been developed to solve this 
problem, from elementary pattern analysis like Hough 
transformation, via feature extraction-based tools like boosting, 
to more advanced machine learning and deep learning 
algorithms such as Support Vector Machines, Conditional 
Random Field, and Convolutional Neural Networks (Krylov et 
al. 2018). To detect specific objects effectively, researchers 
proposed their new machine learning descriptors or improve the 
results by integrating with someone else’s machine learning 
model, such as to extract utility poles (Zhang et al., 2018) by 
RetinaNet object detector (Lin et al., 2017). Thanks to the 
relentless success of machine learning algorithms, a lot of image 
processing methods have achieved satisfying semantic labeling 
results (Cordts et al., 2016).  

 
Taking advantages of machine learning method to perform 
semantic segmentation and classification have become a general 
trend. Convolutional Neural Networks (CNN) is the cornerstone 
of various state-of-the-art approaches. Krizhevsky et al. (2012) 
used CNN to classify the large ImageNet dataset, which 
motivated many researchers to explore the capabilities of the 
networks for semantic segmentation. In the followed research, 
Fully Convolutional Network (FCN) presented by Long et al. 

(2015) is one of the most significant and popular methods among 
the subsequent techniques (Garcia-Garcia et al., 2017). FCN 
replace the fully connected layers of those existing classification 
model like AlexNet, VGGnet, and GoogLeNet with 
convolutional ones and transfer their classification scores into 
fine-tuning segments. Standing on the shoulder of the giants, 
many researchers have done further works in this field. Zeng et 
al. (2017) feed FCN with multi-view RGB-D data to do the 
segmentation and label job and Shelhamer et al. (2016) proposed 
an adapted FCN deal with video sequences data.  

 
In this paper, the baseline is also Fully Convolutional Networks 
but experimented with different data which is panoramic images 
from mobile mapping system.  

 
3. METHODOLOGY 

 
The proposed street furniture identification workflow is shown 
in Figure 1. Panoramic images are inputs of the study and they 
are firstly transformed into perspective images consecutively. 
Secondly, pre-processing is conducted on both panoramic 
images and transformed images. Then, a pre-trained FCN model 
is introduced to produce predictions directly, The next step is 
semantic segmentation by fine-tuning the FCN model with 
training images and produces predictions for testing images.  

 
Figure 1. Workflow of the proposed street furniture 

identification. 
 

3.1 Transformation 
 

The images used in this study are panoramic which are different 
from the normal images. Its 360° vision presents users a wide 
viewing angle as well as suffering from distortions especially at 
the top and bottom of the images. In order to make them similar 
to the training data of the pre-trained FCN model, the panoramic 
images need to be transformed to into normal perspective 
images. 

 
Panoramic images are captured by 360° cameras. They are 
transformed from the spherical image (Figure 2) into planar 
image by equirectangular projection which is a cylindrical 
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equidistant projection and the output is equidistant along the 
horizontal and vertical direction (Su & Grauman, 2017).  

 
Figure 2. A panoramic image on a sphere. The lines represent 

latitude and longitude. 
 

We can map the equirectangular images with a simple gnomonic 
projection for knowing every pixel ’s latitude and longitude on 
the sphere (Coors et al., 2018). The geometric principles of 
Gnomonic Projection are illustrated in Figure 3. 

 

 
Figure 3. Gnomonic Projection 

 
The principal point O is the center of the sphere, and every point 
on the sphere can be projected onto the plane that represents the 
2D perspective image through the radial from the center point. 
For example, point P on the plane is the projection of point P1 on 
the sphere. The projection equations (Weisstein, n.d.) are given 
as below: 
 

                                     𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙 𝑐𝑐𝑠𝑠𝑠𝑠(𝜆𝜆−𝜆𝜆0)
𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐

                             (1)         

                         y = cos𝜙𝜙0 sin𝜙𝜙−sin𝜙𝜙0 cos 𝜙𝜙 cos(𝜆𝜆−𝜆𝜆0)
cos 𝑐𝑐

              (2) 
            cos 𝑐𝑐 = sin𝜙𝜙0 sin𝜙𝜙 + cos𝜙𝜙0 cos𝜙𝜙 cos(𝜆𝜆 − 𝜆𝜆0)    (3) 

 
The transformation equation is for the plane tangent at the point 
having latitude and longitude (ϕ0, λ0) which is the Point S in 
Figure 3. The point with latitude and longitude (ϕ, λ) will be 
located on the plane with position (x, y). In the transformation 
procedure, we usually fix the output image size and then find the 
corresponding point P (x, y) of the point P1 (ϕ, λ). Therefore, we 
need to use the inverse equation of the above equation, which are 
given as below: 
 

                       ϕ = sin−1(cos 𝑐𝑐 sin𝜙𝜙0 + 𝑦𝑦 sin 𝑐𝑐 cos𝜙𝜙0
𝜌𝜌

)            (4) 

                     λ = 𝜆𝜆0 + tan−1( 𝑥𝑥 sin 𝑐𝑐
𝜌𝜌 cos𝜙𝜙0 cos 𝑐𝑐−𝑦𝑦 sin𝜙𝜙0 sin 𝑐𝑐

)         (5) 

                                        ρ = �𝑥𝑥2 + 𝑦𝑦2                                (6) 
                                        c = tan−1 𝜌𝜌                                    (7) 

 

It is not possible to map the whole panoramic image in one 
direction. Therefore, we choose four directions each range 90 
degrees along the great circle of the sphere which is also the 
horizontal middle line of the panoramic image. In vertical 
direction, the mapping range is 120 degrees, which is ±60 
degrees of the great circle. We do not project the whole content 
in the vertical direction because the top and bottom parts are not 
region of interest and the projection of 120 degrees is the best-
performing one. The transformed image is shown in Figure 4 (b) 
and the projection of four directions is margined with red lines. 

 

 
(a) 

 
(b) 

Figure 4. Transformation of the panoramic image. (a) The 
original panorama. (b) The transformed image. The red lines 
represent the margin of each direction’s projection. 

 
3.2 Image Pre-Processing 

 
Image pre-processing in this study consists of two aspects, i.e. 
cropping and data augmentation. The image size of the 
panoramic image is 5400 x 2700 pixels and the size of the 
transformed image is 5400 x 1800 pixels. Both images are too 
large to train in the model for our hardware condition constraint, 
hence cropping is needed. Data augmentation aims to enhance 
the contrast of the transformed images since low-contrast details 
in the original image may affect the training results and increase 
the images for training. 

 
3.2.1 Image Cropping 

The size of cropping image set as 700 x 900 pixels, which is an 
appropriate size in consideration of our GPU capability and the 
remaining semantic information within single cropped image. 
Each image in the training data will be cropped in to 16 small 
images. Figure 5 shows how to crop the images with red and 
yellow lines enclosing the small images. The layout of the small 
images is organized in four directions with every four images in 
one direction and the four images have a little overlap at the 
edge. It can be observed that the cropping preserves significant 
fields and clips the unwanted parts. 
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(a)                                                                                                        (b) 
Figure 5. Image cropping. (a) Cropping arrangement of the original panoramic images. (b) The transformed images. 

 
 

3.2.2 Data Augmentation 
Image augmentation is applied on the cropped image with 
contrast enhancing degree from 1.3 to 1.8 as shown in Figure 6. 
The enhancement parameter is set based on experiments. When 
the parameter sets below 1.3 the images do not change 
obviously, and if it sets exceeding 1.8 it’s overdone for the 
invisible dark details.   

 

                  
(a)                        (b)                       (c) 

Figure 6. Image contrast enhancement. (a) The original image. 
(b) The adjusted image with enhancing parameter 1.3. (c) The 
adjusted image with parameter 1.8.   
                                                                                               

3.3 Fully Convolutional Networks 
 

Fully Convolutional Networks is one of the cutting-edge 
architectures for semantic segmentation and have been carried 
out with many networks. As the cornerstone of the semantic 
segmentation field, FCN could be a stable architecture for a new 
used type of images. The chosen FCN-8s model in this study is 
based on VGG16 net, for it contains more details in prediction 
than FCN-16s and FCN-32s and it performs better on VGG16 
net than AlexNet or GoogLeNet (Long et al., 2015). The FCN 
architecture is shown in Figure 7. It contains convolutional 
layers, max pooling layers, drop out layers, and deconvolutional 
layers. The prediction layers in the figure are convolutional 
layers with output channel number same as the class number, 
which means they can be interpreted as intermediate predictions. 
Furthermore, the net does not get results directly from the 
deconvolutional layers. It uses skip architecture which adds fuse 
operations aiming to take advantage of both predictions from 
pool3 and pool4 to optimize the results. The activation function 
used in the convolutional layers is ReLU (Rectified Linear Unit), 
which result in much faster training (Krizhevsky et al., 2017). 
The equation of ReLU is given below: 
 

                                     f(x) = max (x, 0)                             (8) 
 

To calculate the loss of the net, we use softmax with cross-
entropy. Softmax normalizes the classification to probability 
distribution which means transforming the output of the net as 
the probabilities of one pixel belonging to a class. Cross-entropy 
loss function acts as a measurement of loss between the 
probability distribution from softmax and the corresponding 
ground truth. The smaller the cross entropy, the more alike the  

 
Figure 7. FCN Architecture
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probability distribution. The formula of cross-entropy is given as 
below:  
 

                         CE(p, q) = −∑𝑝𝑝(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)                    (9) 
 

p(x) is the expected probability that is represented by binary 
indicator, and q(x) is the predicted probability. The sum is over 
the all classes.  

 
The model accepts images of any size, therefore we can directly 
make predictions of our own images from the pre-trained FCN 
model. In the fine-tuning procedure, considering that our dataset 
is highly like the training dataset of the pre-trained model and 
our dataset is small. We decide to only adjust the top layer, such 
that the generic features and specific features can be kept as 
much as possible. 

 
3.4 Accuracy Assessment 
 

Performance of the pre-trained FCN model and the fine-tuning 
are assessed by testing images with annotation. Two metrics will 
be used to evaluate the semantic segmentation results. Accuracy 
and IoU (Intersection over Union). The equations are given as 
below: 

 
Accuracy = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)⁄  
IoU=𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑇𝑇)⁄  

 
Here, TP is the pixel number of true positive which means the 
correct predicted pixels. FN is the pixel number of false negative 
which is the unpredicted ground truth pixels. FP is the pixel 
number of false positive which represents the wrongly predicted 
pixels. The two metrics are calculated for every class and then 
averaged. 

 
4. EXPERIMENTS AND RESULTS 

 
4.1 Dataset 

 
4.1.1 Overview 

The data used in this study are provided by Delft University of 
Technology (TU Delft), which consists of 200 panoramic 
images. The images were captured on TU Delft campus by 
Ladybug3 panoramic camera of the Fugro Drive-Map mobile 
laser scanning system. The overall trajectory is shown in Figure 
8. 

 

 
Figure 8. Overview of the trajectory with starting point and 

ending point. 
 
4.1.2  Annotation 

All training and testing images are annotated by MATLAB tool 
Image Labeler. We label the images to three classes, light poles, 
traffic signs, and background. Only the first two classes are 
target objects of interest in this study. The light-poles include the 
whole pole and the light part on the top, excluding the hanging 
advertisement boards and traffic signs. And the traffic signs class 
does not contain the poles that hold them. Figure 9 shows an 
example of the ground truth. For transformed images, the 
annotations are also projected to match them.  
 

 
Figure 9. An example of annotation of object of interest. Light 
poles are in red and traffic signs are in yellow. Background is in 
black. 

 
4.2 Pre-trained FCN Predictions 
 

The pre-trained FCN model we use is FCN-8s model trained 
with cityscapes dataset. Cityscapes dataset is a large-scale street 
scenes dataset acquired from 50 cities in Germany with dense 
pixel annotations and it has 30 classes including our needed 
poles and traffic signs (Cordts et al., 2016). It contains urban 
scene captured from a car’s angle of view which is very similar 
to our data. The source code is publicly available (Lyu, 
Vosselman, Xia, Yilmaz, & Yang, 2018). 

 
We directly predict 100 testing images of both panorama and 
transformed images by the pre-trained FCN model in the Google 
Cloud Platform with single GPU NVIDIA Tesla K80. The 
predictions are shown in Figure 10. 
 
It can be seen from Figure 10 that performance of directly 
predicting from the pre-trained FCN model is not good in both 
panoramic images and transformed images. Not only the shape 
is poorly predicted with coarse edges, but also there are many 
noises in the prediction. In addition, the pole class in the pre-
trained model represents various kinds of poles, which makes the 
predictions consist of many segments of pole class which are not 
labeled in the ground truth. 
 

4.3 Fine-tuning 
 

In order to make the pre-trained FCN model more appropriate 
for our dataset and eliminate the noises in the prediction, we 
modify the last convolutional layer with a new one that the 
output channel number equal to our class number. The new last 
layer’s weights are initialized randomly and then train the net 
with the training images. Then the whole net is fine-tuned 
separately by both panoramic images and transformed images. 
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(a)                                               (b) 

                     
  (c)                                                 (d)     

Figure 10. Predictions of pre-trained FCN model. (a) (b) The 
predictions and labeled ground truth of panoramic images. (c) (d) 
The predictions and labeled ground truth of transformed images. 

 
 

We have cropped the training images and augmented their 
contrast, hence our training image size decreased, and the 
quantity increased from 100 to 3200. The change of dataset 
makes the training images retain the details with no need to 
resize as well as enlarges the batch size from 1 to 8 under the 
hardware constraint. The base learning rate is set as 1𝑒𝑒−4. We 
do not want the weights to update too fast to keep the meaningful 
information in the original weights from the pre-trained model.   
 
We have trained the model for 20000 interactions, stopped when 
the loss has become extremely small and nearly do not change 
anymore. Then with the finetuning model, we predict the testing 
images again. The predictions in the same location are shown in 
Figure 11. 
 
Figure 11 presents the details of prediction results of fine-tuning. 
Comparing the predictions with the corresponding labeled 
ground truth. Although they are still not smooth enough at the 
edges, the shapes of segments are very close to their label. The 
performance of the finetuning are better with transformed 
images than original panoramic images. The whole image 
predictions of fine-tuning are shown in the Figure 12. The light-
pole is more completely predicted in the transformed image and 
more traffic signs are predicted in the transformed image than 
panoramic image.  
 

 

  
                       (a)                                             (b) 

  
                       (c)                                            (d) 

Figure 11. Predictions of fine-tuning. (a) (b) The prediction and 
labeled ground truth of panoramic images. (c) (d) The prediction 
and labeled ground truth of transformed images. 

 
 
4.4 Evaluation 
 
The two results from pre-trained FCN model and fine-tuning 
are evaluated in aspects of accuracy and IoU, which are given 
in the Table1 and Table2 respectively. 
 

It can be seen from the accuracy tables that the transformed 
images are predicted 0.62% more accurate than panoramic 
images. For light poles class, panoramic images have higher 
accuracy than transformed images, vice versa in the traffic sign 
class. 
 
It varies more in IoU for it is a very sensitive metric. The mean 
IoU of pre-trained model is only several percentage which means 
there are many unexpected pixels are classified to the two classes 
including the noises and various poles. After fine-tuning, the 
mean IoU have increased by 26% and 33% in the prediction 
results of panoramic images and transformed images. Both light 
poles and traffic signs have higher IoU in the prediction of 
transformed images than panoramic images. Both predictions of 
light poles are better than predictions of traffic signs. 

 
Class Panoramic 

Images 
Transformed 

Images 
Light Poles 74.06% 68.30% 
Traffic Sign 71.24% 78.16% 

Average 72.65% 73.23% 
Table 1. Accuracy of the results from pre-trained FCN model. 

 
Class Panoramic 

Images 
Transformed 

Images 
Light Poles 96.72% 94.13% 
Traffic Sign 84.62% 88.47% 

Average 90.68% 91.30% 
Table 2. Accuracy of the results from fine-tuning. 
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(a)

(b) 
Figure 12. (a) The panoramic image and its protections. (b) The transformed image and its predictions. 

 
 

Class Panoramic 
Images 

Transformed 
Images 

Light Poles 2.33% 2.26% 
Traffic Sign 3.43% 3.88% 

Average 2.88% 3.07% 
Table 3. IoU of the results from pre-trained FCN model. 

 
Class Panoramic 

Images 
Transformed 

Images 
Light Poles 38.44% 39.66% 
Traffic Sign 20.62% 33.16% 

Mean 29.53% 36.41% 
Table 4. IoU of the results from fine-tuning. 

 
 

5. CONCLUSIONS AND FUTURE WORK 
 

In this paper, we compare the semantic segmentation results of 
pre-trained FCN model and fine-tuning. There are obviously big 
improvements in the fine-tuning results, which means although 
the datasets are very alike, the model can not be directly used on 

a new dataset to produce predictions. At the same time, we 
transform the panoramic images to perspective images and 
compare the performance of the state-of-the-art semantic 
segmentation model FCN implemented on the two very different 
kinds of images. Panoramic images have worse predicting 
results than transformed images in both pre-trained model and 
fine-tuning model. It indicates that the panoramic properties are 
not very fitted for normal deep learning model or it is because 
the pre-trained model we use was not trained on a panorama 
dataset. When apply deep learning model on panoramas, the 
images need to be pre-processed or the using network needs to 
be adjusted. We have done the method of pre-processing 
panoramic images in this paper. And also inspired by the 
appearance of SphereNet (Coors et al., 2018), modifying the 
network further by taking the special characteristic into 
consideration is the direction of our future work.  
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