


Tactics in Agda using reflection
Paul van der Stel

2022–09–21

Master’s Thesis

Author Pieter Willem Paul van der Stel
Student number 4553799

Defence date 2022–09–21

Specialisation Software Technology
Master programme Computer Science

Faculty Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology



Abstract
In this thesis, we develop a new library for Agda named Attic, which allows us to create and compose
proof tactics that can be used to generate terms through reflection. Such tactics can be converted to
Agdamacros, allowing them to be used in term positions where they can generate term solutions of the
expected type. Tactics can make the development of proofs faster by making proofs easier to read and
write.

This project can be seen as a sister project to Ataca, which is an earlier attempt at developing tactics that
operate through reflection. Attic explores newmechanisms of operation, such as non‑determinismwith
iterators to allow for multiple solutions, and the use of deferred unification, so that the final proof term
is only fully constructed at the end of tactic evaluation.

To allow for the representation of both finite and infinite sequences that can be consumed step‑by‑step,
we have implemented the iterator data type in Agda. Although iterators existed in other systems previ‑
ously, an Agda implementation had not beenmade. These iterators underpin the branchingmechanism
in tactic instructions, and support operations that can be used to generate, transform and filter values.

Finally, we have implemented a number of tactics and operations that are commonly found in other
proof assistants. We also compare the resulting library to the Ataca library and examine the differences
in runtime for a small test case. While Attic is not yet a complete solution, we present new ideas thatmay
be incorporated in future tactic systems.



Preface
This thesis concerns the development of a library that facilitates the development of tactics for proof
authoring in the Agda programming language.

This thesis project has been performed within the Delft University of Technology, under supervision of
the TU Delft Programming Languages Group.

The Agda library that was developed as part of this thesis, Attic, allows us to create and compose tac‑
tics that can be used to generate proof terms. The tactics work through Agda’s reflection machinery.
The library contains various tools that are needed to run tactics, such as an interpreter‑based evaluation
mechanism that supports non‑determinism and deferred unification of terms. With these tactics it be‑
comes easier to write formal proofs in Agda, as proof authors no longer need to give full programs, but
can use tactics instead. The existing iterator type has also been implemented in Agda.

The thesis committee consists of Andy Zaidman, Jesper Cockx, and Wouter Swierstra.
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Samenvatting voor niet‑experts
This section is written in Dutch.

Computers zijn niet meer uit ons leven weg te denken. We vinden ze overal om ons heen. De pro‑
gramma’s die computers aansturen worden ook steeds complexer. Deze software komt overal voor:
de webbrowser op onze mobiele telefoons, de slimme apps op de televisie, en het navigatiesysteem
in de auto. Maar software is ook te vinden in de boordcomputer van een vliegtuig, in het systeem dat
de hartslag van een intensive care‑patient in de gaten houdt, en in de veiligheidssystemen van kernre‑
actoren. Voor dergelijke kritieke software is het belangrijk om te kunnen garanderen dat de software
goed werkt, en geen onverwachte fouten bevat.

Om zulke garanties te leveren is een formeel bewijs de gouden standaard. Met wiskundige bewijzen
kunnenwe aantonendat een programmavoldoet aan bepaalde eisen, en het certificeren. Deze bewijzen
worden wel erg lang, want hoe complexer een programma is, hoe complexer het bewijs wordt. Het zou
dus erg fijn als we dit werk konden automatiseren, zodat een computer dit bewijs voor ons kan leveren.
Opdezemanier kunnenwe software certificeren,maar hoevenweniet ons niet te verdiepen in eindeloze
bewijzen.

Computers kunnen ons inderdaad helpen bij het redeneren over zulke eisen. Dit gaat met behulp van
speciale programma’s: met bewijsassistenten (Engels: proof assistants) kunnen we logisch redeneren
over wiskundige stellingen. We definiëren eerst onze eis als een formele stelling, en daarna leveren
we het bewijs dat deze stelling waar is. Dit bewijs is ook een programma. Dit programma wordt heel
nauwkeurig nagekeken door de computer, en deze kan automatisch beredeneren of het bewijs inder‑
daad een geldig bewijs is voor de stelling. Als het bewijs ongeldig is, geeft de computer een fout. Zo
kunnen we wiskundige bewijzen digitaal uitdrukken.

Het ontwikkelen van een bewijs kan nog steeds complex en tijdrovend zijn, vooral voor grote en/of com‑
plexe stellingen. Omhet schrijvenvanbewijzenmakkelijker temakenhebbenveel bewijsassistenten iets
slims bedacht: tactieken. Deze geven aan hoe we het bewijs te lijf moeten gaan, en iedere tactiek kan
gezien worden als een stap om dichter bij een volledig bewijs te komen. Door tactieken te combineren
kunnenwedus vele stappen zetten, en uiteindelijk het bewijs afmaken. De bewijsassistent zet deze com‑
binatie van tactieken om in het veel grotere bewijs, en controleert of het bewijs klopt. Tactieken zorgen
er dus voor dat bewijzen korter worden, en dus gemakkelijker om te lezen en schrijven.

De programmeertaal Agda kan ook gebruikt worden als bewijsassistent. Hoewel Agda beschikt overmo‑
derne functies, heeft het geen ondersteuning voor tactieken. Dat betekent dat bewijzen in Agda volledig
moeten worden uitgeschreven.

Hetdoel vandeze thesis isomeenbibliotheekvan functies temakendiehetmogelijkmaaktomtactieken
teontwikkelen inAgda. Mijndoel is hierbij omdebeste eigenschappenvan tactieken in andere systemen
te gebruiken, maar de slechte of verwarrende eigenschappen eruit te laten. Zo wordt het mogelijk om
ook in Agda tactieken te gebruiken, die bewijzen korter kunnen maken en makkelijker leesbaar maken.
Hierbij onderzoekenwe nieuwe technieken die niet in bestaande systemen aanwezig zijn, waardoor het
opbouwen van het bewijs sneller gaat en het bestaan vanmeerdere oplossingenmogelijk is.
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1 Introduction
The programming language and proof assistant Agda does not have tactics. This thesis is about the
development of a library withwhich proof tactics can bewritten for the Agda programming language. In
this introductory sectionwewill giveanoverviewofautomatedproofs, introduce theAgdaprogramming
language, describe some challenges and approaches, and list our contributions.

1.1 Proof assistants
Automated proof checking is a discipline where computers are used to develop and verify formal proofs.
With proof checkers, a theorem can be expressed formally such that it can be mechanically checked by
a computer. The theorems we define must also be accompanied by a proof term, a computer program
which serves as an argument that the theorem holds. Through type checking, computers can decide
whether this proof term actually proves the theorem. Using computers to verify proofsmeans that there
is a smaller chance of errors. Checking also becomes faster, which is invaluable for large and complex
proofs.

The creation of such proof terms can be very long and complex, especially as theories become larger
andmore complicated. As a result, proof assistants have been developedwhich can better help humans
with authoring proofs. A person who wishes to prove a theorem will first write the theorem, and the
proof assistant will then guide the proof author through the proof interactively, step by step. Proof de‑
velopment typically happens in high‑level languages, which is elaborated on and turned into a lower
level (less expressive) language. These low‑level expressions are then checked by a small trusted kernel,
guaranteeing that the proof is actually correct [1].

One feature that severalmodernproof assistants have is tactics. Tactics are small programs that help the
proof author move towards a complete proof. Tactics typically perform a small operation, but they can
be composed and combined to generate larger tactics, which can solve theorems. They can be found
in a variety of proof assistants, being present in systems such as Coq [2], Idris [3], and Lean [4]. In fact,
tactics go a long way back, being described in 1984 [5]. With tactics, proof authors no longer need to
write out a full proof program. This makes it easier to understand the proof, as unnecessary details are
hidden and proofs become shorter.

1.2 Agda
Agda is a dependently typed programming language. It is both a general‑purpose language, but can also
be used as a proof assistant due to its dependent types [6]. While the programs written in Agda can be
regarded as formal proofs, Agda has does not have tactics. Instead, programsmust be written out in full
notation, although this is made far less cumbersome through implicit parameters, instance arguments,
and the many modern and convenient features found in other programming languages that Agda has
adopted. Despite these features, writing a proof in Agda is often still not as convenient as writing some
tactics which can automatically construct a proof for the theorem.

Instead of tactics, Agda does have a powerful reflection API. Through this reflection API metaprogram‑
ming becomes possible; it is possible to write Agda programs that write Agda programs. Such metapro‑
grams are exposed as macros. Macros are unlike the macros one might encounter in other languages,
which are usually based on text substitution (either naïve such as in C [7] or hygienic such as in Lisp [8]),
or in some way expand or modify the term they are working on. Instead, macros in Agda operate within
the type checker that Agdaprovides. A result of this design choice is that Agdamacrosoperateonamuch
higher level than macros in other languages; they can programmatically consume or generate all kinds
of terms directly, as these terms are simply abstract syntax trees of the Agda source code.

Typically, the macros operate on holes, which are part of the program that are yet to be filled in with a
term. The compiler is designed to deal with these holes appropriately, and they enable various degrees
of interactivity while creating Agda programs. This quality of macros make them an interesting target
for the implementation of tactics in Agda. The ability to generate syntax elements and place that syntax
inside theholemeans that it shouldbepossible todynamicallyproducemacros,whichwill thengenerate
the syntax for a proof term that can then be used to fill the hole.
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1.3 Challenges
With the implementation of tactics come some challenges that we will attempt to address in this thesis.
The reflection API that Agda offers is quite comprehensive, which is both a good thing and a bad thing.
It exposes many of the functionalities that Agda uses internally to represent and type‑check programs.
This enables rich and complex reflection‑based programs that can perform many flexible tasks. At the
same time, this complexity and flexibility makes the API daunting to users of the languages who are not
accustomed toworkingwith this API directly. Although all the functionality the user could need is readily
available, they might still be unable to make use of it.

Instead, a library that supports the creation and evaluation of tactics should focus on abstracting away
the details and complexities that are not relevant to the creation and evaluation of tactics. While some
manual bookkeeping will still be required, a tactic script should not be complex to use. Yet at the same
time, the system should also be extensible enough that it remains possible to use more advanced fea‑
tures, both for lower‑level tactics contained within the library, as well as tactics created by end users.
Our tactic library comes with a number of tactics that abstract away basic operations, so that tactic de‑
velopment remains high‑level.

Tactic programsmust also be able to deal with backtracking. If a tactic program is not applicable to the
current state of the proof, we must be able to ‘take a step back’ and try another approach. At the same
time, wemust also not backtrack endlessly, or wemight spend toomuch time evaluating incorrect solu‑
tions, so thatwenever get to the solution(s)we are looking for. Wemust thus design tactics in such away
that the tactic author remains in control and can choose how failure cases are handled. To this end, we
have developed a branching instruction within our tactic language to facilitate non‑deterministic evalu‑
ation.

Another open challenge is performance of the tactic system. In prior work, the tactic language is often a
central feature, and would as a consequence be optimised so that it constructs terms quickly. Although
there is some prior work on tactics in Agda [9], the author has stated that this library suffers from some
performance issues. It is important that performance is kept in check, so that proof authors do not have
to wait unreasonably long for a tactic to succeed. We have made attempts to minimise the amount of
work that is done while evaluating tactics, to gain better runtime performance.

1.4 Structure and contributions
Wemake the following contributions:

• In section2wegive the theoretical background for automatedproofs andproof assistants. Wealso
introduce some aspects of the Agda programming language that will be relevant to this thesis.

• In section 3 we will introduce our first contribution: an iterator type in Agda. With this type, both
finite and infinite sequences can be represented. Iterators serve as a type with which branching
instructions are implemented.

• In section 4 we will introduce the Attic library. We will show the tactics that can be built with it,
and how they are used in practice.

• Section 5 presents a deep dive on the technical implementation of Attic. Herein lies our second
contribution: a tactic evaluation mechanism that supports non‑determinism through branching,
and uses deferred unification of terms.

• In section 6 we will draw a comparison between Attic and a previously developed library that sup‑
ports the creation of tactics in Agda.

• Section 7 describes future work that would improve Attic. This includes technical challenges, but
also describes possible extensions to the library.

• In section 8 we will mention works by others that relate to the concepts we have discussed in this
thesis.

• Finally, we conclude this thesis in section 9.

The source code for Attic can be found online, at https://github.com/pvdstel/Attic.
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2 Background
This sectionprovidesbackground informationonproof assistants, their theoretical foundations, and the
programming language Agda.

2.1 Proof assistants
Proof checking is the verification ofmathematical theories in an automated fashion. This is done by first
formalizing the theories, which involves specifying the primitive notions, axioms, definitions and proofs
of the theory to be verified [10]. The correctness of such a proof is then verified by a program called the
proof checker.

The development of such theories and their proofs can be complex and cumbersome. To make this
process feasible, proof checkers are usually part of a larger software suite called a proof assistant. The
core idea is that theuserof theproof assistant (alsoknownasaproof author) canwrite the theoryand the
corresponding proof in a high‑level programming language, fromwhich the proof assistant can generate
a proof term that can be verified by the proof checker.

Proof assistants typically offer some sort of interface through which proofs can be developed interact‑
ively. Since programming languages are most commonly text‑based, such an interface is commonly a
text editor with some additional support for the specific features of the proof assistant for which it is
being used. Such features usually include the ability to show which theories have or have not yet been
proven, as well as the current progress towards a complete proof. Some interfaces also allow the user
to refactor existing code, or help with automatically completing phrases in the code.

2.1.1 Proofs as programs

A proof checker will verify a theory within a certain frame of logic. This frame of logic lays out the basic
rules that theproof checkerwill followwhile attemptingproof verification. A common frameof logic that
is used for proof checking is type theory, because a type theory is a formal system that hasmeaning in the
fields of mathematics, logic and computer science. This property makes type theory a great candidate
for an application that exists on the intersection of these fields. Other frames of logic are also used in
the world of proof checkers; the proof assistant Isabelle supports multiple, with the most developed
instance being Isabelle/HOL, which uses higher‑order logic [11].

A type theory consists of a set of inference ruleswhich canbeused to infer judgements. Such judgements
expresswhat is truewithin the type theory. Applying the inference rules to existing judgementsmay lead
to new judgements. A judgement does not necessarily have meaning within the type system; the type
systemmerelydictates the ruleswithwhichnew judgements canbemade. Judgements canbewritten in
several ways, butwewill use the example e : R here. This judgement can have several interpretations.
Amathematician considers that e is an element of the set R , whereas a logician finds that e is a proof of
the proposition R , and a computer scientist holds that e is a termof the type R . Sincewe are interested
in proving theories using computers, let us consider the interpretations of the logician and the computer
scientist.

Fortunately, wemay consider the interpretations of formal proofs and computer programsas equivalent.
This property is known as the Curry–Howard correspondence, also known as the proofs‑as‑programs or
formulae‑as‑types interpretation [12]. In fact, Cartesian closed categories (of which sets are an example)
are also equivalent, resulting in a three‑way isomorphismwhich is sometimes called the Curry–Howard–
Lambek correspondence [13]. See fig. 1 for an illustration. Through this correspondence, a type can be
regarded as a proposition, and a term of that type will then be seen as a proof of that proposition. Thus,
we can use well‑typed software programs to express proofs for propositions.

This approach is exactlywhatmany proof assistantswill do behind the scenes. Proof authors specify the
theorem they want to prove, by declaring a value with a type annotation. This type is the theorem that
we wish to prove. The expression term that we assign to this value shows that the type is inhabited (a
value of the type exists), or alternatively, proves that the theorem which corresponds to the type holds.
We will illustrate this using listing 1. The first declaration, example , has the integer type. Its associated
implementation fills in an integer value, essentially showing that the type is inhabited, and thus proving

3



Proposition
Proof

Type
Program

Curry–Howard
correspondence

Set
Element

Figure 1: An illustration of the Curry–Howard correspondence. A set, type and proposition are equivalent, as are
elements, programs and proofs.

example :: Integer
example = 5

isIntTrue :: Integer -> Bool
isIntTrue 0 = False
isIntTrue _ = True

Listing 1: Some functions in Haskell, which can be interpreted as theorems and their proofs. The function
isIntTrue encodes the conversion of integers to booleans in the C and C++ programming languages, where zero
is regarded as false, and any nonzero value is regarded as true [14].

that a value of the integer type exists. In the second declaration, isIntTrue , we wish to show that if
we have a term of the integer type, we can derive a Boolean value from it. The type represents this as
a function that maps integers to Booleans. And indeed, the implementation of this function is able to
produce a Boolean value. Of course, these examples are fairly trivial, but they illustrate the ideawell. We
will provide more examples in section 2.3.3 once we have introduced the Agda language.

2.2 Reasoning with tactics
Proving theorems on computers tends to work slightly different compared to the traditional (human‑
written) method of reasoning. Traditional proofs tend to employ forwards reasoning, where we have a
set of premises, and then use inference rules to infer new premises, until we finally concludewith a goal.
As an example, if we wished to prove A ∧ B we would first prove A and B separately, and then combine
them to prove A ∧ B. Computers usually make use of backwards reasoning instead: we already have a
goal (our type/theorem) and then gradually transform and refine that goal until every subgoal has been
solved. To illustrate, if wewished toproveA∧B,wewould startwith that theoremas a goal. This goal can
be transformed into two subgoals A and B which we then need to prove. After both subgoals have been
proven, no subgoals are left, and we have proven that the original goal holds. Backwards reasoning is a
nice tool, because it allows us to reason about our goal and solve small parts of it, until the entire goal
has been solved.

Backwards reasoning can be implemented using a proof state. A proof state is the state of the proof
assistant, where it is used to keep track of the subgoals as we reason our way through the proof. For
example, the proof assistant Coq considers the proof state to consist of one or more unproven goals
[15, Proof mode]. Every time wemake an inference, we transform the proof state. Some inferences will
allow us to solve a subgoal immediately, whereas some others will require some more work and will
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spawn one or more new subgoals. This is all stored in the proof state. In addition to the list of unproven
goals, Coq also stores some additional data, including the currently focused subgoal (that means, the
subgoal which is the current subject of our inferences) [15, Proof mode]. While Coq does not explicitly
consider this to be part of the proof state, it is part of Coq’s internal state.

The ability to use computer programs to prove that a theorem holds is quite convenient. As long as we
can write a program term whose type is that of our theorem, we can prove that our theorem holds. But
as the theorems we wish to prove become longer and more complex, so do the programs that serve as
our proofs. It is hard for humans to read computer programs that are long and complex, compared to
source code that is more terse. In proofs especially, it would be useful if we could abstract away from
details that aren’t necessarily relevant, and could let these be filled in automatically.

This is where proof tactics come in. Tactics are, at their core, small programs that transform the proof
state in oneway or another. Some tacticsmay be able to prove a goal, inwhich case that goal is removed
from the list of unproven goals. This can happen when a goal is relatively simple; a nice example of
such a goal is one where a variable of its type is already in scope, which means that variable can just
be filled in by the tactic (in Coq this tactic is called assumption ). Tactics can also take an existing
goal, and replace it with one or more subgoals. A good example of this scenario is a value whose type
is a data type with several constructors. If we wish to match on this value and provide a proof for each
possible constructor, we could use the destruct tactic. It will replace the current goal with goals for
each possible constructor, thus allowing us to run a different tactic for each possible branch that might
exist.

Tactics allowus to abstract away complex operations, andallowus to remain focusedon the the relevant
parts of proving a goal. We can specify the operations that should happen, and the tacticswill attempt to
transform the goal. Sometimes tacticsmight not be applicable, inwhich case theywill either do nothing,
or they might produce an error. Combining tactics in various ways makes for a good way to solve many
goals. It is a quite powerful paradigm that enables proof authors to prove their theorems while at the
same time keeping the proof script itself short and readable. This makes it easier for others (including
the original author, should they revisit their proof later) to read and understand the proof.

A final point to note is that proof development using tactics can be interactive when using some proof
assistants. For example, Coq allows a proof author to step through their proof, inspect the proof state at
anypoint. Here, Coqwill displaywhichgoals are currently unproven, anddisplay the context of variables
that are in scope. Using this information, the author can see how the proof state has changed, and can
decide which tactic to apply next. This is particularly helpful when a sequence of tactics is not working
as expected.

2.3 Agda
In this subsection we will cover some of the basics of the Agda programming language, which is largely
the subject of this thesis. Agda’s type system supports dependent typing, making it also suitable as a
proof assistant. As such, we will give a small overview of dependent typing.

2.3.1 Dependent types

Many statically typed programming languages have support for type polymorphism. Thismeans that in‑
stead of defining a single type, we can define a whole family of types. A common example are collection
data structures, such as the ubiquitous list. Instead of defining a type IntegerList and a Boolean-
List , we can simply define the type List a , where a is a type that can be filled in later. We can
then declare values of type List Integer if we need a list of integers, and the compiler will abstract
away the implementation details. Parameterised types have existed for quite a while in programming
languages. Various languages such asML, CLU and Ada have supported some notion of type polymorph‑
ism [16]. Since then, many programming languages have adopted type polymorphism, some of these
being languages that are in widespread use [17], [18].

Dependent types can take this a step further. ‘Ordinary’ parameterised types can only take other types
as arguments. On the contrary, dependent types are types expressed in terms of data, explicitly relating
their inhabitants to that data [19]. In other words, we can define polymorphic types whose member
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doubleVector : {n : N} → Vector A n → Vector A (n + n)
doubleVector as = as ++ as

Listing 2: A function in Agda that ‘doubles’ a vector.

values are explicitly related to the data that is used to instantiate that type. Dependent types can thus
blur the distinction between types and values.

A common example of a use of dependent type is the vector type. This type is essentially a list type, but
the length of this list is known and encoded in its type. A simplified vector type definitionwould look like
Vector A n , where A is the element type of the vector, and n is a natural number that expresses how
long the vector is. This definition is not just a single type, but it is a family of related types. We can now
specify how long a list is at the type level. As an example, the type Vector Boolean 3 specifies that
we have a vector of exactly three Boolean values. As type definitions becomemore precise, so too does
our knowledge of what values may inhabit these types, allowing us to rule out entire classes of bugs at
compile time.

But we could go even further than that. Let’s take a look at listing 2, where we define a function in Agda
named doubleVector that ‘doubles’ a vector. In practice this means that we simply concatenate the
vector to itself. However, the function’s implementation is not what wewish to focus on here; the type is
farmore interesting. In the type, we first declare an implicit parameter n whose type is a natural number.
Because the parameter is implicit, we usually do not need to fill it in manually as the compiler can infer
it automatically. Next, we indicate that our function accepts a value of type Vector A n , where A is a
type parameter of the vector’s elements, and n is a natural number representing the length of the vector.
Finally, we state that the return value of the function will be a vector of the same type of elements, but
it will be exactly twice as long. We can indicate this to the compiler by using the variable n again. The
Agda compiler will verify this property, and type checking of the function implementationwill succeed if
and only if Agda can prove that the return value has this expected length. Buggy implementations that
produce vectors of an incorrect length are thus ruled out at compile time. Rich type annotations can be
an effective tool for preventing faulty programs.

2.3.2 The Agda language

We have already seen a little bit of Agda code in listing 2, and on the surface it looks somewhat like
Haskell code. Indeed, its syntax is quite similar to what we are used to, coming from Haskell. Agda is far
more permissive about variable names, however, allowing most characters to be used in names, even
Unicode characters [6, Lexical Stucture]. But mere looks can be deceiving. Agda incorporates many of
the ideas that we have discussed so far (andmore). Its type system fully supports dependent types. This
allows Agda to be used as a tool formechanical proving [19]. Through dependent types, we can pick and
choose parts of our software system that wewould like to verify. In these places, we canmake our types
more precise so that the compiler can verify the behaviour we expect from the function.

To ensure that Agda can adequately type‑check expressions during compilation, several restrictions are
imposed on the definitions in Agda: definitions must be total. Arbitrary expressions might not produce
a value, or their computations might not terminate. Therefore not all expressions are admitted by the
compiler. As a result, we know that Agda programs are safe to evaluate, and by ‘safe’ wemean that pro‑
grams are guaranteed to produce a value within finite time. Totality is achieved by a number of checks
that the Agda compiler performs during each compilation. It guarantees that expressions are terminat‑
ing, it verifies that all definitions are complete, and it checks thatdefinitionsof data structures are strictly
positive.

• Termination checking refers to recursive functions, and Agda will only accept recursive schemas
that it can mechanically prove to be terminating. In practice this means that only obviously ter‑
minating definitions are accepted. Some definitionsmay be terminating, but if Agda cannot prove
it, they are rejected. It is possible to turn off termination checking for individual definitions using
a pragma ( TERMINATING ) which essentially asks Agda to just trust us. There is also an alternative
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pragma ( NON_TERMINATING ) that will also turn off the termination checker, but sets a flag which
causes Agda to not reduce that function during type checking. This flag can be considered to be
slightly safer, as it still admits non‑terminating programs but prevents them from being evaluated
during type checking.

• Completeness refers to function definitions that employ patternmatching. Agdawill require code
authors to handle every possible case that might occur. This is important, so that Agda programs
never run into a casewhere the desired behaviour is unspecified. Supposewehave a function that
accepts a Boolean value as its argument, but only has a case for the false value; the true value will
trigger the undesired undefined behaviour. This is an example of a partial function. The complete‑
ness checker will find partial functions andmark them as errors.

• Strict positivity checking applies to data types that are defined in Agda. To paraphrase from the
Agda documentation, this restrictionmeans that every constructor of a data type Amay only have
parameters that are non‑inductive (and thus do not mention A at all) or are inductive. Inductive
parameters may not have function types that use A in any of their parameters. If such definitions
were allowed, these constructors might result in programs that do not terminate. This check can
be disabled with the pragma NO_POSITIVITY_CHECK .

Agda has the notion of holes. If we are writing a program in Agda, wemight not be able to give a finished
program yet. So instead, we can place a hole there. These indicate a missing part of the source code,
and Agda will try to type‑check around it. If the editor that is used to edit the code supports Agda, it will
be able to highlight the holes and provide the user with relevant commands thatmay be executed in the
context of the hole. For example, a programmermay inspect the hole, see the type of the term expected
there, or see which bindings exist in the context. There are also editor commands to refine the hole, or
even to completely solve it in some cases. The automatic solver is adequate for some simple cases, but
cannot always handle more complex cases and is not extensible.

The holes and editor commands form the basis for interactive proof development. Each individual un‑
solved hole is akin to a goal thatmust be proven in Coq. Whenwe view the context and expected type of
the hole, we are essentially looking at the variables that are in scope and the goal that this hole repres‑
ents, which Coq also allows us to inspect. If we have come up with a term that might fit in there, which
could even be a termwith another hole, we can type that term in the hole and ask Agda to give the term
using an editor command. It will type‑check the term in the hole against the hole’s type and context, and
if it matches, the hole will be replaced by the term. Besides typing terms manually, we can also define
macros. These are Agda programs that can be run from the context of a hole, and could then generate a
term that fits inside the hole. This will be discussed in the next section.

Agda has both explicit and implicit parameters. Explicit parameters are the default and do not need
special syntax, but can be denoted by parentheses ( ) . Implicit parameters must always be indicated
by curly braces { } . Implicit parameters often do not need to be filled in, as the compiler can infer
them. Theyare alsohidden inmatches. They canbemadeexplicit by surroundinganargumentormatch
pattern with curly braces.

Function calls in Agdadonotnecessarily look like function calls. Dependingon the functionname, itmay
alsobeusedas amixfix operator [6,MixfixOperators]. A nice example is the consoperator for lists, whose
full name is _∷_ , but is used like h ∷ t (though _∷_ h t is also allowed, but is unconventional and
unexpected). Underscores in names mean that the name can be split up into multiple parts, with each
underscore representingaparameter. Forexample, the function if_then_else_ (whichunsurprisingly
is an if‑else expression) is used like if c then t else f . In this document we will typically refer to
these functions by their full name, including any underscores.

2.3.3 Unprovable theorems

In listing 1 we already gave some examples of the Curry–Howard correspondence, showing how types
can encode theorems, and how values that aremembers of this type (also referred to as inhabitants of a
type) serve as proof that the theoremholds. Butwith Agdawe can expressmore interesting types, which
thus allow us to define more interesting theorems.

A selection of these theories are shown in listing 3, andwewill go through them here. We first define the
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data ⊥ : Set where
-- No constructors; this Empty type cannot be instantiated.

data ⊤ : Set where
-- This Unit type only has the trivial tt constructor.
tt : ⊤

NonZero : N → Set
NonZero zero = ⊥
NonZero (suc _) = ⊤

1IsNonZero : NonZero 1 -- becomes ⊤
1IsNonZero = {! hole 1 !}

0IsNonZero : NonZero 0 -- becomes ⊥ ; unprovable
0IsNonZero = {! hole 2 !}

¬_ : Set → Set
¬ A = A → ⊥

¬¬-intro : ∀ {A} → A → ¬ ¬ A
¬¬-intro a = λ ¬z → ¬z a

¬¬-elim : ∀ {A} → ¬ ¬ A → A
¬¬-elim = {! hole 3 !}

Listing 3: A showcase of some theorems in Agda. The ⊤ (unit) type was adapted Agda’s built‑in definitions, and the
types ⊥ , NonZero , and ¬_ are taken from the standard library. The parts of codemarked in green are holes that
have not yet been solved.

empty type ⊥ and the unit type ⊤ . The empty type cannot be instantiated, and can thus be used to
create contradictions. The unit type can always be constructed, and its construction is trivial.

Our next step is the NonZero function. This function takes a natural number as its single argument. If
the number is zero, it will return ⊥ , and if the number has any other value (is non‑zero), it will return the
type ⊤ . In practice this means that we can only prove NonZero x for any x that is actually non‑zero,
as it is becomes impossible to construct a proof when x is zero. This is illustrated by the definitions
1IsNonZero and 0IsNonZero : the first one can be proved, but the latter one cannot. During type
checking Agda automatically reduces the type NonZero 1 to the ⊤ type, and NonZero 0 gets reduced
to ⊥ . Agda will also infer that hole 1 can be filled with the term tt , and hole 2 cannot be filled because
no term inhabits the ⊥ type.

The intuitionistic logic systemthatAgda isbuilt oncanalsoexpressnegation in thisway. Wehavedefined
the function ¬_ , which accepts a type A and then returns a function type. This function type expresses
that if we have a term of type A , we get a contradiction as we will need to instantiate the empty type,
which is impossible. We will call this function the negation type.

We will use this type to show how Agda’s logic differs from classical logic: double negation cannot be
eliminated. In classical logic, we can say that ‘not true’ is ‘false’, and that ‘not not true’ is ‘true’. We have
thus eliminated the double negation. This property does not hold for propositions in Agda: whilewe can
introduce double negatives, we cannot eliminate them. The double negative introduction is expressed
by ¬¬-intro . It expresses that if we have a value of type A , the existence of a theorem showing that
an instance of A exists leads to a contradiction would itself be a contradiction. But proving the double
negation elimination is impossible: the existence of a theorem showing that A leads to a contradiction
itself being a contradiction does not count as proof of A . The law of the excluded middle (p ∨ ¬p) does
not hold in Agda (and intuitionistic logic in general) [20, Negation].
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2.3.4 Tactics as reflection programs

Agda has no native support for tactics. All proof terms must thus be fully written out for the compiler
to accept. This is typically not a deal breaker, since Agda is a fully featured functional programming
language with an extensive official standard library. Implicit arguments can hide much of the complex‑
ity that is typically expected from proof programs, and Agda can often infer their values automatically.
Regardless, writing full program terms is not as convenient as combining a number of tactics that auto‑
matically expand to the full terms.

In place of tactics, Agda has a powerful reflection API which exposes compiler services. In the context of
computer programming, ‘reflection’ often refers to introspection; the ability of a program to examine its
own operations and structures [21], as well as the ability tomodify these operations and structures. The
reflection API would be a good candidate to implement tactics, as we could use it to generate terms that
serve as proofs. Agda’s reflection API is powered by the compiler, and can thus not be used at run‑time.
This is not a problem for the purpose of implementing tactics, since all proof termsmust be fully expan‑
ded at compile‑time already. As such, producing a executable binary program is not usually required
when authoring proofs in Agda, since successfully type checking the code is enough to verify that the
theories expressed by the code are proven.

The compiler‑based interface presents all the functionalities needed to inspect and generate syntax
terms and types. It also exposes a number of structures that are internal to the compiler, and although
they are largely abstracted away from the surface language as implementation details, these can be ac‑
cessed through the reflection services. The terms generated using this API are always syntactically well‑
formed, since the reflection programs do not operate on a textual representation of the code. Instead,
all operations operate on data types provided by the compiler, which are used to build syntax trees.

To run these reflection programs, they must be written as so‑called macros1. These macros are unlike
those found inmost other languages, which operate by text replacement (such as in the C programming
language [7]) or even as hygienicmacros that do not capture variables [8]. Instead they are regular Agda
functions that canperformany computation that canbe computed in Agda (that is, they should obey the
restrictions that Agda imposes). By marking this function as a macro (done by by defining them inside
a macro block in the program source code), Agda can then use these functions to manipulate other
elements of the source code.

The type of macro functionsmust be t1 → t2 → · · · → tn → Term → TC⊤. This means that themacro
can take an arbitrary number of arguments, followed by a value of type Term that represents the hole,
and produces a value of type TC ⊤ as its output. This output value is the sequence of instructions that
the compiler will execute in the context of the type checker when the program is run.

Holes in the Agda source code correspond to metavariables that Agda keeps track of internally. Such
metavariables are used to keep track of terms that aren’t fully known yet. In Agda parlance, these are
also known as metas (singular meta). We can solve a metavariable using the unify function that the
Agda reflection API exposes. The function takes two arguments, possibly containingmetavariables, and
Agda will try to resolve them. If this is not possible, a type error is raised. We will be creating and using
metavariables to construct terms that are not fully known yet. We should be careful however, as the
existence ofmetavariables that are unsolvedwill cause Agda to raise warnings that prevent compilation
from fully succeeding.

2.3.5 Universe polymorphism

In Agda types can be used as terms. This means that type expressions must themselves have a type.
These types are called sorts (also known as universes). A sort is a type whose members are types. The
basic sort in Agda is named Set , and it contains all the small types. The set of small types is essentially
the set of all types, except for Set itself. This avoids the typing rule Set : Set which would lead to a
logical contradiction similar to Russell’s paradox [6], [22].

This still leaves the question of what the type of Set should be. To avoid the contradiction, we can
define a new sort which contains the basic sorts, whichwe shall call Set1. And then the type of this sort

1There exist other ways to run metaprograms, but these are used for reflection programs that do not generate terms. Instead,
these methods are used to generate entire definitions.
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will in turn be Set2. We thus construct an infinite hierarchy of sorts, such that each sort is a member
of the next higher sort. To make working with these different universes easier, Agda has introduced the
primitive Level type, which represents a universe. By defining data structures to be polymorphic on
this type, it is possible to let these data structures work with all possible levels (universes) of data. The
most notable example is Set itself, which may take an argument of type Level . Polymorphic sorts
look like Set ℓ in Agda, where ℓ is the universe level argument.

The data structures and associated operations we define later in this document are almost all universe
polymorphic (there are some exceptionswhere polymorphism cannot be applied or is not needed). Due
to the design of certain structures, where types exist as fields within records, care must (and has) be
taken to ensure that levels are correctly specified.
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3 Iterators
This section describes an implementation of iterators in Agda, allowing for the generation of values that
continues either finitely or infinitely, while still allowing for interesting operations that are not possible
on structures from the standard library. Iterators are also used as the underlying data structure for the
library design that we describe in section 4 and section 5, allowing for flexibility in backtracking. Wewill
first give a case for iterators, then proceed with the overall design, follow that up with some useful op‑
erations that have been implemented for iterators, and finish this section with a selection of unsuitable
iterator designs.

3.1 The case for iterators
When finding a solution to a problem, a common scenario is having to choose from a range of possible
values. This range can either be finite (‘try these constructors’) or infinite (‘pick a natural number’). It
would thus be great if we could use a data structure that allows us to express both of these cases. Such a
data structure should allowus to transform, filter, and combine them, so thatwe can generate and select
the data we want.

In some languages, such as Haskell, this is fairly straightforward. We can simply define a list expression
by typing [1, 2, 3] to create a list that contains exactly, in order, the integer numbers 1, 2, and 3.
To create an infinite list, we can simply write [0..] , which will give us an endless list that contains all
natural numbers. This works, because Haskell maintains lists as a head and a tail, and due to its nature
of lazy evaluation, the infinite tail is only evaluated one number at a time, when needed. Haskell also
allows us to perform all kinds of interesting operations on these lists, allowing us to consume the values
contained therein, ormap to new (possibly infinite) lists. This is a simple and easy‑to‑understandway of
dealing with such streams of values.

Agda does not have syntax like [n..] to create infinite lists by default, so let us see how the Glasgow
Haskell Compiler implements it. For simplicity we will only describe the case for integers here. The
expression is transformed into the expression enumFrom n . The implementation of enumFrom and a
helper function is given in listing 4. The helper function, which takes a starting number and a delta to
add in each successive list item, constructs the actual list. The head of the list is the starting number, and
the tail is a recursive call with the delta added to the starting number.

enumFrom x = enumDeltaInteger x 1

enumDeltaInteger :: Integer -> Integer -> [Integer]
enumDeltaInteger x d = (x : enumDeltaInteger (x + d) d)

Listing 4: A simplified implementation of [n..] , adapted from the GHC source code [23, Enum.hs].

nats = 0 : map (+1) nats

Listing 5: An alternative definition of all naturals in Haskell.

This implementation is very similar to the alternative definition of natural numbers given in listing 5.
Here, we define a list where the first item is 0, and the accompanying tail is a recursive expression which
maps that same list using an incrementing function. Thus, every next value is one higher than the num‑
ber preceding it.

Unfortunately this approach cannot be used in Agda. Although Agda’s built‑in List data type is per‑
fectly adequate for a finite number of items, it is not capable of storing an infinite amount of them. Both
Haskell and Agda employ lazy evaluation, so both are able to store infinite lists, because the tails are not
evaluated; the tails are thunks. However, having an infinite list involves a recursive definition. Unless
Agda can prove that the recursion is structural, termination checking prevents the code frombeing com‑
piled [6, Termination Checking]. The recursive definitions we have seen to build the infinite lists do not
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function* natsFactory() {
let i = 0
while (true) {

yield i
i = i + 1

}
}

const nats = natsFactory();
nats.next() // 0
nats.next() // 1
nats.next() // 2
// ...

Listing 6: An example generator function in JavaScript enumerating all natural numbers in order. The function
natsFactory produces a new generator object when called. This generator object has a next function, which
will evaluate the next value in the generator and return it.

use structural recursion. Instead, these definitions make use of generative recursion, and are thus not
allowed in Agda, as the compiler cannot prove that these expressions terminate.

Of course, the built‑in List is not the only data type we have at our disposal. The standard library has
many types from which we may choose a suitable one. And indeed, the standard library has a module
named Codatawhich houses a collection of coinductive data types. Coinductive data types can be infin‑
ite. Of particular interest are the data types Colist and Stream , as these can represent the ranges of
values we would like to examine and search through.

• Colist is a data type that is similar to the built‑in List type, and also features many of the
same operations. It can be either finite or infinite, because in this version of the list data structure,
the tail is lazily evaluated. However, it does not have all operations that regular lists have. Most
notably the filter function is missing. This omission is reasonable, because depending on the
filteringpredicate, theremaynotbeanext itemthat satisfies it,makingan implementation inAgda
impossible.

• Stream is a data type that represents an infinite stream of items. This description already reveals
a problem: it cannot represent a finite number of items. Additionally, it suffers from the same
problems that Colist also has: it does not support all operations that the regular list does.

Similar structures also exist in other languages. For example, the Array type in JavaScript cannot
contain an infinite number of items. JavaScript is an eagerly evaluated language, so having an infinite
number of items would crash the runtime. However, modern versions of JavaScript have the concept of
generator functions. Generator functions are indicated by function* (note the asterisk) and produce
generator objects [24]. See listing 6 for an example.

While the generator function in listing 6 produces an infinite generator, it can also be finite. The concept
of generators extends to other languages like Python where they are called generators as well [25], but
also C# and Rust where these objects are called iterators [26], [27]. Literature on iterators predates all
of these languages, and describes them in the Alphard and Icon languages [28], [29]. They also exist in
the CLU language, but that implementation was based on Alphard [30]. In the rest of this document, we
will refer to these objects as iterators, unless we mention them in the context of a language which calls
them generators. In literature where ‘objects that can produce several values’ are first described, they
are mostly referred to as ‘generators’, and ‘iterators’ iterate over generators. However, due to naming
conventions in more modern languages that we are more familiar with, the name iterator stuck.

Each of these iterators, regardless of the ecosystem they are implemented in, can produce either a finite
or infinite number of output values. The example shown earlier in listing 6 will produce all natural num‑
bers, and thus is infinite. But we can also define iterators that output a finite number of values. Some
languages also support interesting operations on their iterators. For example, C# supports mapping, fil‑
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private
variable
ℓa ℓs : Level

data Step (A : Set ℓa) {S : Set ℓs} : Set (ℓa ⊔ ℓs) where
Done : Step A
Skip : S → Step A
Yield : S → A → Step A

record Iterator (A : Set ℓa) : Set (ℓa ⊔ (suc ℓs)) where
constructor iterator
field
{S₀} : Set ℓs
bound : Bound
state : S₀
next : S₀ → Step A {S₀}

Listing 7: The definition of Step and Iterator .

tering, grouping, andmany other operations on iterators through functions in the .NET standard library
[31].

3.2 Designing iterators in Agda
The design of iterators in Agda has gone through several iterations. This section describes the one that
was considered good enough for use in the library as described in section 5.

If we examine the earlier example with JavaScript’s generator functions (listing 6) we could wonder how
a JavaScript runtime would implement this iterator behind‑the‑scenes. Fortunately, the abstract pro‑
cedure is described in the ECMAScript specification [24]. Internally, the runtime builds a state machine
that stores the context in which the function is executing. Each time the next function is called, this
state machine resumes unwinding the iterator where it was last suspended, based on the state that the
runtimemaintains internally. If the generator function returns (which indicates that it has finished), the
runtime moves to a state where no further evaluation happens. What’s more, this next function is al‑
ways the same and immutable; the behaviour of the function depends solely on the internal state. As
a positive consequence, the function can be passed around without having to worry about maintaining
state.

This implementation is strikingly similar to the Alphard language, which defines generators as forms
(which are akin to a specification and implementation) that can generate values. In fact, it has a func‑
tion &init which is used to construct the initial state of the generator. It also has a &next function,
whichperforms thenext stepof the computation, basedon theprevious value. The languagehas built‑in
support for iterators, which can step through the generators and consume their values. These iteration
constructs are transformed into while‑loops during compilation, where the compiler uses inaccessible
hidden variables to manage the control flow.

This is a design which can serve well as an inspiration for Agda iterators. A similar approach has already
been built for Haskell [32]. This Haskell version is originally based on iterators as they are found in the
Rust programming language. It was subsequently optimised to perform faster in the Glasgow Haskell
Compiler using the results from [33]. This optimised version of the iterator works very well as a starting
point for building iterators in Agda; not because it performs very well in terms of runtime, but because
it has a property that the other implementations do not have. This property is that trying to retrieve the
next valuewill always output a result, even if that value does not exist. This is accomplished using a data
type which can express a lack of a value. In other words, this iterator is guaranteed to be productive,
which is a requirement in Agda. This property means that we will be able to implement operations that
are common for data structures that represent sequences. In later sections we will explore this further.
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3.2.1 First steps

Let us start defining our iterators by first defining a supplementary type: Step (shown in listing 7). This
type will represent the output that the iterator will be producing. Step has two type parameters: one
that that determines the output values that the step can carry, and the other is the type of the output
state that the step can hold. It has three constructors, all with a different purpose.

• Done . This output value indicates that the iterator has finished. A consumer of the iterator should
not attempt to obtain any more values.

• Skip . This output value indicates that there is no value here in the iterator, but that more values
can be obtained from the iterator. A consumer of the iterator should attempt to continue iterating.
Its single parameter is the output state of the iterator, which must be used to continue iterating.

• Yield . This output value signals that the iterator has yielded an output value. The constructor
carries both the next state of the iterator which must be used in the next iteration, as well as the
output value that can be used by a consumer of the iterator.

Butwhy have the Skip value? What is the point of indicating that a value does not exist? Surely it would
bepossible to continue iteratinguntil a suitable value is found? Unfortunately (or fortunately, depending
on thepoint of view) this is not as easy in Agda. Supposewehave an iterator that enumerates all naturals
in order, andwe filter it with a predicate that is satisfied if and only if the number is smaller than 10. Now,
if we decided to retrieve the first 11 results of this iterator, we would loop endlessly as an 11th number
could never be found. Agda does not allow this under normal circumstances, and this is what the Skip
result is useful for: it can tell us that there is no value when the filter predicate is not satisfied, but that a
satisfactory value may still exist in future iterations.

3.2.2 The Iterator record

Now let us take a look at the definition of the Iterator record (listing 7). It has two implicit parameters
(the universe level parameters, declared in the variable block), one explicit parameter (the output
type), and four fields that we will describe now.

• S₀ . The type of this iterator’s state. This field is implicit, and is thus not specified in the automat‑
ically generated record constructor. Instead, the value is automatically inferred from the initial
state value’s type. The state is encapsulated inside the record, and not very important to the out‑
side world.

• bound . Theupperboundon thenumberof items this iterator canyield. This value canbeusedasa
hint to iterator consumers, signalling how far an iterator must be unrolled to compute all possible
values.

The bound is represented by the Bound data structure in listing 8. It has two constructors; one to
indicate a concrete finite bound, and one to indicate an infinite bound. The constructor unboun-
ded indicates that the iterator potentially has an unbounded number of values it can produce. An
example of such an iterator would be one that yields all natural numbers. The second constructor,
bounded , signals themaximumnumber of attempts a consumer shouldmake at obtaining a value
from the iterator. Standard arithmetic functions (addition,monus,multiplication,maximum,min‑
imum) are provided for this type.

open import Data.Nat using (N)

data Bound : Set where
unbounded : Bound
bounded : N → Bound

Listing 8: The definition of the Bound type that is used for iterators.

14



It is expected that functions that create new Iterator instances will set this value to an appro‑
priate value. More information and concrete examples of this behaviour will be given in the sec‑
tion 3.3. Some functions that produce iteratorsmay use relatively slow computations to calculate
what the bound of the iterator will eventually be. However, in most cases this is perfectly fine due
to Agda’s lazy evaluation. As a result, many of these values will remain as thunks.

• state . The initial state of the iterator. It is possible to replace the state of an existing iterator to
essentially drop the first items up until this new state.

• next . The function that accepts an iterator state, and uses that state to generate the next step of
the iterator. This function decides whether the iterator will be done, skips the current iteration, or
produces a new value.

Every iterator has a field containing the typeof its state. This design choicewasmadebecause an iterator
can now describe itself, which allows for better encapsulation. An outside consumer of the iterator does
not need to be concerned about the type of the state, and must treat it as a black box. This design does
comewith someconsequences thatmust be kept inmind. Because the state type S₀ is containedwithin
the iterator, the iterator’s level must be at least the successor of the level of the value of S₀ . Thus,
the level of an iterator is either the level of the output value, or the successor of the level of the value
in S₀ , whichever is higher. Wrapping an iterator record inside of another data structure means that
this wrapping structure must accommodate the level change. Additionally, when an Iterator type
is described, use sites must also ensure that the level of the state type is declared. This makes using
iterators slightlymore cumbersome than they ideally would be, but this is still better than an alternative
design proposed in section 3.5.

3.2.3 Using iterators

Together, the fields state and next can emulate the JavaScript generator functions, or more broadly,
the iterator concept as found in many other languages [26]–[29]. Obtaining values from an iterator re‑
quires some more bookkeeping by the consumer, however. Values in Agda are immutable, so it is not
possible to modify the state of an iterator through the mutation of hidden variables.

Instead, consumers of an iterator can apply the next function to a state value with the corresponding
type. In the first iteration, this state value is the state field inside the iterator. The output value of
the next function is a Step . This step signals to the consumer which actions can be taken next. If the
iterator is done, the consumer should not attempt to retrievemore values from the iterator. If the iterator
signals a skip, it includes the next state to use as input to the next function. And finally, if the iterator
yields an output value, it includes both the next state, as well as the output value. Thus, unrolling the
iterator requires the use site to perform somework that would usually be done transparently behind the
scenes in other languages.

In practice, this is not too much of an annoyance when it comes to unrolling an iterator. Having the dis‑
tinct constructors from the Step type requires a consumer to handle all cases that may occur when
dealing with iterators. Depending on that specific implementation, a skip might invoke specific beha‑
viour to handle a missing value. So although passing on the state value is still mandatory in the current
implementation, the final implementation remains legible and easy to understand.

This implementation of iterators fulfils both of the requirements that the data structures wementioned
before cannot fulfil. Because iterators can signal that they are done, and their values are evaluated on‑
demand, they can represent sequences that are finite in length, but infinite sequences can also be cre‑
ated. The onus is on the consumer of the iterator to ensure that the computation is finite, to complywith
Agda’s termination rules. Iterators also supportmost operations that are desired for data structures that
represent sequences; these are detailed in section 3.3.

Let us finish this sectionwith an example of an iterator. So far, we have referred to an iterator that gener‑
ates all natural numbers numerous times, and an example of an implementation in JavaScript was also
shown. It is high time we show the implementation in Agda in listing 9. This iterator is unbounded, and
produces values of type N , the type of natural numbers in Agda. The state of the iterator is that also the
type of natural numbers. Our initial state value is the number 0 . The iterator always yields a value; the
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nats : Iterator N
nats = iterator unbounded 0 next
where
next : N → Step N
next i = Yield (suc i) i

Listing 9: An Agda iterator that enumerates all natural numbers.

empty : Iterator A
single : A → Iterator A
fromList : List A → Iterator A
toList : Iterator A → N → (List A)
map : (A → B) → Iterator A → Iterator B
filter : (A → Bool) → Iterator A → Iterator A

_∷_ : A → Iterator A → Iterator A
_++_ : Iterator A → Iterator A → Iterator A
concat : Iterator (Iterator A) → Iterator A
interleave : Iterator A → Iterator A → Iterator A

Listing 10: Simplified types of basic operators and combining functions for iterators.

next function returns the input state number as its output value, and the accompanying next state is
the successor of this input number.

3.3 Operations
As mentioned before, one of the core reasons that iterators were implemented in Agda is because they
support someoperations that the existingdata structures donot (and inmany cases, cannot support). In
this sectionwewill give an overview of some of these operations, and how they are implemented. Some
of these operations are relatively straightforward, while others are more complex. We will start with the
simpler operations, and then build our way to the more interesting ones. A simplified version of their
types are given in listing 10. Many of these functions are also described in [33], although we were not
aware of this work at the time of implementation.

First however, it would be useful to describe some of the utility functions that exist for iterators. These
are used throughout some of the other operations. The first utility function is the empty function. It
creates an iterator whose next functionwill unconditionally signal that the iterator is done, thus yielding
no items. The typeof its state is a level‑polymorphicunit typewhose level is automatically inferredby the
compiler, although variations of this function exist that explicitly fill in this level if it cannot be inferred.
A second function is the single function, which accepts a value of type A , and then returns an iterator
which produces that exact value once, and will then indicate that it is done. This iterator stores a value
of type Maybe A as its state. If this optional value is set, next will yield that value, alongwith an empty
optional state value. If it does not contain a value, the iterator will signal that it is done. The correct
bounds are set for both empty and single , to zero and one respectively.

To make iterators easier to use, utility functions that can convert from and to standard lists have also
been implemented. The most notable function here is the fromList function, which creates a new
iterator that yields exactly the items in the list, without skips, and then signals that it is done. The initial
state of the iterator is the given list. On every call to next , it takes the head of the list and yields it,
setting thenext state to the tail of the list. Thus, as the iterator is unrolled, each itemof the list is returned.
Similarly, there is a toList function which behaves exactly as its name implies: it turns an iterator into
a list of values. To prevent nontermination, a depth parameter is required, specifying how far the iterator
can be unrolled. Each yielded value is collected into the resulting list.

Let us now look at the map and filter functions, starting with map . This function accepts two para‑
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meters; a function f of type A → B , as well as a value of type Iterator A which we’ll call iterator
A. It will return a value of type Iterator B , which we’ll call iterator B. This iterator is almost the same
as the input iterator: the bound and state (and thus state type) are kept the same. The only difference is
in the next function. On every iteration, iterator B simply calls the next function from iterator A, and
discriminates on the result as follows:

• If iterator A produces Done , then iterator B returns a Done as well.
• If iterator A produces Skip , then iterator B returns a Skip with the unmodified state value.
• If iterator A produces Yield , then iterator B will also yield. The state is unmodified, but the value
contained within is mapped using the function f .

Thus, map produces a new iteratorwhose behaviour is only differentwhen the original iterator yields, by
mapping the yielded value internally. The filter function works roughly the same, in the sense that
it only changes the behaviour of the resulting iterator if the original iterator yields. Instead of amapping
function, filter accepts a predicate function of type A → Boolean that decides which elements to
keep and which to toss. Thus, each time iterator A produces a Yield , the predicate function is applied
to the value. If the predicate holds, a Yield is produced. If the predicate fails, a Skip will be generated
instead, to indicate the lack of a value.

3.3.1 Combining operations

In Agda, items can be prepended to a list using the _∷_ constructor. A similar operation is implemented
for iterators. It accepts two arguments, of type A and Iterator A . Internally, it will construct a new
iterator that will first yield the single value that is to be prepended, and will then defer to the iterator to
produce new steps. Although this behaviour is unlike the standard list, where prepending is the primary
way of constructing the list, the end result is the same when a consumer unrolls the iterator.

This concept canbegeneralised to theappend function,which typically appends two lists and is denoted
by _++_ . For the iterator variant, it takes two iterators of type Iterator A , and creates a new Iter-
ator A in which both iterators are appended. Internally, this new iterator uses a sum type for its state,
which can contain either the state of the first iterator, or that of the second iterator. It will first defer
its behaviour to the first iterator until it is done, and it will then switch to unrolling the second iterator.
Naturally, if the first iterator is infinite, the second iterator will never be used.

In turn, the append function can bemore generalised so that we get the concat function. This function
concatenates a list of lists (all of the same type) into a single list. Itwouldbe convenient ifwe coulddo the
same thing with iterators: combining an iterator of iterators into a single iterator. For this implementa‑
tion, more bookkeeping is required within the state structure. We need to distinguish two iterators here:
the outer iterator, which is the iterator of iterators; and the inner iterator, which is the iterator that was
last produced by the outer iterator. The resulting concatenated iterator maintains the state of both iter‑
ators, so that it can unroll the inner iterator and return its results, aswell as generate a new inner iterator
if the current one is finished. To prevent level escalations in Agda, the state record of concat does not
store the inner iterator directly. Instead, only the state and next function are stored.

As mentioned earlier, the append function will never get to the second iterator if the first one never fin‑
ishes enumerating items. There exist valid use cases where we would like to examine values from two
different iterators, however. To accommodate this use case, an interleave function was developed.
It accepts two parameters, both of type Iterator A , and creates a new iterator that first steps the
first iterator, and then steps through the second iterator, in alternating fashion. If one iterator is done,
it switches to the other iterator exclusively. If both are finished, it outputs a Done indicator. The inter‑
leaving operation can be used to combine two iterators in a fairer way.

3.3.2 Cartesian product

As a theoretical exercise, we have implemented a Cartesian operator that can compute the Cartesian
product of n iterators. This operation produces a new iterator that iterates each tuple in the Cartesian
product. In a Cartesian product between n sets, all possible n ‑tuples are enumerated (see fig. 2a for a
two‑dimensional example). The challenge here is to ensure that this works with the infinite sequences
that can be represented by iterators.
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(a) A Cartesian product of the alphabet and the natural
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(b)Usingdiagonalisation to traverse thedifferentelements
of the Cartesian product (finite example).

Figure 2: An example of a Cartesian product, along with an example ordering in which all elements are traversed in
a fair way.

When implementing a Cartesian product of potentially infinite sequences, it is important that the ele‑
ments are enumerated fairly. Suppose that we desired a Cartesian product of the alphabet and the nat‑
ural numbers (fig. 2a), it might be good enough to get the first letter A, and then simply produce the
values A1, A2, A3, etc., depending on the use case. But if we have a more complicated example, such as
N × N × N, and filter this iterator such that only the values (a, b, c) are kept if a2 + b2 = c2 (i.e. they
are a Pythagorean triple), wemight never find a result because one value grows faster than the other.

To remedy this problem, and ensure that elements are enumerated fairly, a suitable traversal strategy is
required. For our approach,wehave chosen to employ adiagonalisation strategy. An example is given in
fig. 2b. Here, we start with the element A1, then continuewith B1, then B2, then C1, and so on. Both iter‑
ators are stepped through at roughly the same speed, so there is no ‘starvation’. This traversal strategy is
similar to an enumeration of rational numbers that is used to show that the rational numbers are count‑
able [34]. We will use a generalised version of this approach to enumerate all possible combination of
iterator elements.

Implementing this diagonalisation process requires some bookkeeping. Let us again use the earlier ex‑
ample of the alphabet and the natural numbers. Let us call the alphabet sequence A , and the sequence
of natural numbers N . We could build the diagonalised Cartesian product for these two sequences iter‑
atively. The steps for this process are as follows:

• We step both iterators, and append the new value to the list of values we have already obtained
from the iterators. These lists are called As and Ns .

• We compute the reverse of Ns , which we shall call Ns′ .
• Zip As with Ns′ resulting in pairs of values.

Every time we perform this operation, we get a list of items in the Cartesian product we have not yet
seen before. Their order corresponds to the diagonalisation strategy described before. See fig. 3 for an
illustration. Note that each cycle in fig. 3 corresponds to a diagonal line in fig. 2b (the ones at a 45° angle,
so e.g. from D1 to A4 corresponds to cycle 3).

Naturally, this example is two‑dimensional, and it does not take into account the implementationdetails
that comewith iterators. Theexamplehere canbe scaledup to support theseuse cases. For this purpose,
the cycles in fig. 3 are denoted with numbers starting at zero. In the remainder of this section, we will
use the convention that list indexing is also zero‑based, i.e. the first element of a list exists at index 0.

Using this information, there is an observation we can make. In each cycle, the sum of the element’s
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Figure 3: An illustration of an algorithm for diagonalisation in a two‑dimensional Cartesian product. The numbers
along the bottom indicate the cycle number, starting at zero.

indices is equal to the cycle number. The letter A and the number 1 both have index 0, so the index sum
becomes 0, which is indeed the cycle number. The same goes for the elements A2 and B1, whose index
sums are both 1. And for A3, B2 and C1 it holds that their index sums are equal to 2. This pattern is not
limited to the two dimensions, and scales up well. Mathematically speaking, such a sequence of indices
can be seen as a composition of the cycle number [35]. Specifically, it is a k‑composition of n , where k
is the dimension of the Cartesian product and n the number of the cycle.

We can also use this pattern to find the elements in the Cartesian product. For each cycle, we can gen‑
erate all possible k‑compositions for that cycle number, and use the components of the composition as
indices to the values of the iterators. Internally, the Cartesian operator uses exactly this approach when
generating the combined iterator. Just like the example, the iteratorworks in cycles. It keeps track of the
current cycle using a simple counter variable, which is initialised to zero. We also store a list of compos‑
itions, whose associated elements should be returned next, in a list called the work list. The Cartesian
iterator is evaluated lazily; thenext computation is evaluatedonly if the iterator’s next function is called.
We will now describe how the next function operates. A visualisation is given in fig. 4. There are two
cases here:

• The worklist is empty. This scenario is the start of a cycle. We must first step all the iterators, and
thencomputewhichelementswill be returned in this cycle. Sowe indeedstep throughall iterators,
and store the values they produce in a vector. Each input iterator has its own vector of optional
values, which we use to store all elements it has produced. If the iterator yields a value, we use
the just constructor to store it, and if it skips we use nothing . If the iterator is done, no value
is appended. This is necessary, because eventually each element has to be combined with all
elements from every other iterator. We then check whether new items can actually be returned;
if every input iterator is done, eventually there are no more elements left to be produced. This
produces another two cases:

– No further items can be produced. The Cartesian iterator will return Done .
– More items can be produced. A newwork list is generated, containing all the k‑compositions
of the current cycle number. The cycle number is incremented by one. The iterator will then
produce a Skip instruction, carrying this new state.

• The worklist has items. We consider this scenario to be the middle of a cycle. The work list is split
into a head and tail. The head, which is a k‑composition, will be used to to index the k vectors of
itemswe have collected so far. This is donewith a k‑dimensional lookup function. We then decide
whether every iterator yielded a value at the respective index (meaning that the optional value we
looked up from the vector indeed carries a value). There are then two situations:

– Each iterator yielded a value. We can then return the tuple of all elements, using the Yield
constructor.

– At least one iterator did not yield a value. The tuple cannot be created, because a value is
missing. The iterator will return the Skip result.

Regardless of the case, the tail of the work list is used in the next state. No other state values are
updated. Sowego througheachof the compositions, until all compositions in this cyclehavebeen
explored.

There is one additional restriction that comes into play. One iterator may finish before another. This
means that some possible k‑compositions of the cycle number are invalid, because some of the indices

19



No

Look up head of worklist

Yes No
Worklist empty?

Step all iterators

YesCan new tuples
be enumerated?

Done

Generate new worklist

Skip
(with new iteration state)

No YesDid every iterator yield
at the index?

Skip
(with tail of work list)

Combine values
to output type

Start

Yield output value
(with tail of work list)

Figure 4: An illustration of the decisions that the Cartesian operation iterator makes.

their components representmaynot actually exist in the corresponding element vectors. Toprevent this
from happening, the algorithm generating the work lists takes the length of these vectors into account
when generating the compositions. We enforce this by declaring our operations with strong type signa‑
tures in Agda, using the Fin type to impose an upper limit on the indices. It thus becomes impossible
to generate indices that are out‑of‑bounds with regards to the vectors they are used for.

The operation is well‑typed: it supports combining an arbitrary number of iterators, of which each can
produce values of an arbitrary type. The only restriction on these types is that theymust have the same
universe level, but this limitation only exists because there has been no need to support this. Each value
in an output tuple must be combined into a single output value using a function, which the user of the
Cartesian operator also has to provide. The bound of the Cartesian product is estimated based on the
bounds of the input iterators, and inserted skips are taken into account during this computation. There
are some helper functions, whichmake using the operator easier; these are two‑ and three‑dimensional
versions of the Cartesian operator.

3.4 Instances
In some other functional languages, there exist type classes. A type class is an interface that defines
some kind of behaviour. For example, the Haskell language defines the Eq type class, which defines
equality and inequality. It means that terms of types that are an instance of Eq can directly be checked
for equality using the function (==) (or (/=) if inequality is desired). In Agda this concept of type
classes is called instance arguments [6, Instance Arguments] and are indicated in source code with the
keyword instance .

There existmany interfaces forwhich instances canbedefined. Agda’s standard library defines anumber
of these interfaces as well. In particular, we are interested in the following interfaces:
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• Functor. If a type is an instance of the functor interface, it indicates that the type can be mapped
over. It declares a single function named fmap in Haskell, and in Agda this function is named
_<*>_ . This function has two parameters: the first is a mapping function of type A → B , and the
second is the data structure that is to be mapped.

A common example of a type that is an instance of the functor interface is the List type. If a
mapping function A → B exists, an object of type List A can be easily converted to one of type
List B . It may be no surprise that the List implementation of the functor interface is simply
the map function.

Likewise, the functor implementation for Iterator is the map function as defined for iterators.
It allows for a mapping from values of type Iterator A to values of type Iterator B , given
that a mapping A → B exists. This functor is an instance of the functor as defined by the Agda
standard library, so it can be used just like any other instance.

• Monad. Monads provide a standardised way to chain various operations into a longer process.
This chain of operations represents a deferred computation that is only executed when its output
value is evaluated. We will not attempt to give a full explanation or examples of monads here, but
there exist several in existing literature [36]. Regardless, there are typically at least two functions
that must be implemented for a type to be considered a monad:

return :: A → M A
(>>=) :: M A → (A → M B) → M B

The type M is the monadic data type, and A and B are placeholder types.

The return function is able to wrap any value into the monadic data structure. For Iterator ,
this is the single function, which accepts a single value and returns a singleton iterators, which
yields only that exact value, and then announces that it has reached the end.

The other function, (>>=) (pronounced ‘bind’), is used to chain the next step of a computation.
For iterators, this implementationwas inspired by the List version of the bind operation. In lists,
each individual item of the list is mapped to a new list, and this list of lists is then flattened (using
the concat function) into a single list. The samehappenswith iterators: each value in the original
iterator (of type Iterator A ) is mapped to an iterator, so we end up with a nested iterator (of
type Iterator (Iterator B) ), which is then used as the input to the iterator concat function,
so that a combined iterator producing all the values is returned.

The bind function that we define for iterators is not compatible with the instance type that Agda’s
standard library declares. The standard library is too restrictive. Thus, Iterator was not made
an instance of the standard library’s monad structure. Fortunately, it does not have to be made
an instance, and Agda will allow us to use the syntactic sugar for binding (do‑notation), as long as
we use the names _>>=_ or _>>_ and bring them in scope. This can be accomplished locally
through the let or where syntax.

3.5 Unsuitable designs
While designing iterators, several implementations of iterators were developed that ultimately did not
turn out to be suitable for use. Somewere not usable for use in other parts of the system,whereas others
were completely impractical, regardless of use. This section will describe two of these implementations
for the sake of completeness.

The initial versionof iterators inAgdawas intended tobe to the versiondevelopedby [33]. This definition
uses an encapsulated state type parameter to hide the state type from the outside world. At the time
when we first began working on iterators, we were not yet fully aware of how such encapsulation might
work in Agda. The resulting implementation thus has type parameters for both the output type and the
state type, shown in listing 11. The state parameter S was made implicit. This allows Agda to fill in the
parametermost of the time, and only requires a programmer tomanually fill in the parameter if its value
cannot be determined automatically.

21



record Iterator {S : Set ℓs} (A : Set ℓa) : Set (ℓs ⊔ ℓa) where
constructor iterator
field
bound : Bound
state : S
next : S → Step {_} {_} A {S}

Listing 11: A version of the Iterator record, using a type parameter for its state type.

This approach, with the added state type parameter (compared to storing the type as a record field) has
some advantages, but also disadvantages. The first advantage is that having the state type as a type
parameter means that the overall type of the iterator record has a level that is the least upper bound of
the levels of the state and the output type. Compare this to the final implementation, where this level
is the least upper bound of the level of the output type, and the successor of the level of the state type.
Dealing with the state type in this way is also very intuitive.

Having an additional state parameter in the type is also the main disadvantage of this implementation.
It requires functions that deal with the iterators to take this implicit parameter into account, or Agda
will warn that a metavariable (the one representing this implicit parameter) is unsolved. Worse, it also
requires types that contain the iterator to declare which type will be used for the state, which either
introduces various restrictions if a constant type is used, or requires the wrapping type to also have a
second type parameter for the state, which may not always be possible. Overall, the implementation
works well, but it is very cumbersome to use. Several variants of this design were built, and all suffered
from this issue.

The Step still has the additional type parameter to specify the type of the state value. There is no
real need to embed the type parameter here. In the current design, the parameter is still implicit. It
was however moved after the output type parameter, which is an explicit parameter. So if the implicit
parameter has to be filled in explicitly, it is easier to do so, as its placementmeans that the implicit level
parameters need not be filled in.

An entirely unsuccessful variant of the iterator was onewhere all the state datawas contained in the out‑
put value as well. This was accomplished using the built‑in sigma type2, used in a non‑dependent way.
The first element would be the output value, whereas the second element would contain the state data.
Each operation on an iterator would wrap the state type in yet another layer, in the resulting iterator.
This design is similar to a (non‑existent) variation of the Colist data structure in the Agda standard lib‑
rary, modified such that it has an additional constructor that represents skips, making it a combination
of the Colist and Delay types from the standard library.

This approach proved to become unwieldly very quickly, as each next function must be able to deal
with the growing complexity. A proof‑of‑concept was developed, but due to these issues and the devel‑
opment pains that followed from them, it was not developed any further. We do not recommend that
anyone tries this approach, as we cannot conceive of a use case where an approach like this onemay be
relevant.

2The sigma type (also written as Σ‑type) is a dependent pair of two values, where the type of the second value can depend on
the first value. Its full type can be found in the Agda documentation, or built‑in files [6, Built‑ins, The Σ‑type]
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4 Attic usage
Before diving into the technical aspects that make up the Attic library, we will first explore it by giving
examples of tactic usage. Wewill start by providing some examples of howAttic tactics can be used, and
how they can be used to fill term positions. We will then give some high‑level tactic programs that can
fill holes. From there we will move to the implementation of lower‑level tactics. The core instructions
and the evaluation mechanism is detailed in section 5.

4.1 Defining and using tactic macros
Just like other proof assistants (this includes Agda), Attic uses backwards reasoning. Itmaintains a proof
state consisting of unsolved goals, the focused goal, and solutions we have found so far. Attic tactics
are programs that manipulate this proof state. These tactics are themselves written in Agda, and are
executedby the compiler. Theyare constructedof instructions that canbe interpretedby theAttic library.
These programs can be combined and composed in a standardised way, and can then be turned into
macros so that they can be used in term positions within Agda. The details of these structures and their
implementation can be found in section 5.

Let us first take a look at the snippet of Coq code below. We first state a theorem, which is a logic expres‑
sion for which we will need to supply a proof. In mathematical notation, this theorem says ∀p(p → p),
which is a self‑implication and thus trivially true (‘if we have P, we can derive P’). In the proof, we intro‑
duce all variables that exist in the theorem (that is, p ) using the intros tactic. We then prove that we
can indeed derive p by using the assumption tactic, which tries to use the variables which are already
in scope to prove the theorem. Naturally, this is a trivial proof, but it allows us to illustrate Attic well.

Theorem self_implication : forall (p : Prop), p −> p.
Proof.

intros.
assumption.

Qed.

In Agda we can write an equivalent proof. Observe the code snippet below. The type A is not explicitly
defined here, but is declared as a generalizable variable [6, Generalization of Declared Variables]. We
declare self-implication , with a type equivalent to ∀p(p → p). The proof is quite simple; we have
introduced the variable p on the left hand side of the function definition, and use this variable as the
proof that we can derive p from p .

self-implication : A → A
self-implication p = p

Let us see how we can express this solution with a tactic. Attic comes with some common tactics built‑
in; here we will use the intro and assumption tactics. Attic has no built‑in intros tactic, but does
have tactics that repeatedly apply another tactic. To achieve this repetition, we can define intros as
repeatTry 10 intro , which attempts to apply the intro tactic at most 10 times. This number can
be made as arbitrarily high as desired. Once that is done, we just need to combine these two tactics to
achieve a program that will find the same output as the Coq tactic does. See the code below. Here we
use Agda’s do‑notation, which will be desugared by the compiler to use the _>>_ function behind the
scenes [6, Syntactic Sugar]. In Attic, _>>_ implements a sequencing operation.

selfImplication′ = do
intro
assumption

macro selfImplication = asMacro selfImplication′

After defining the selfImplication′ tactic program, we need to turn this program into amacro. This
can be achieved using the asMacro function provided by Attic, which accepts a tactic program, and
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si-hole : A → A
si-hole = {! selfImplication !}

si-term : A → A
si-term = λ z → z

si-macro : A → A
si-macro = selfImplication

Listing 12: Different ways to use macros in Agda. The highlighted code denotes a hole.

returns a function that can be executed by the Agda compiler. This means that this function accepts a
single Term argument that represents the hole, and returns a TC value that represents the computation
to be executed. Other types cannot be macros.

When invoked, the macro will gather relevant information to create an initial proof state. This proof
state is a value that Attic maintains internally. It is similar to the proof state that can be found in Coq,
which stores the list of (sub)goals, and the currently focused goal. Attic also stores this information, and
additionally uses its proof state to keep track of the solutions that were generated by the tactics. While
tactic programs are able to access and update this proof state, it is not directly visible to the proof author
(unless it is logged to Agda’s debug console using debugging commands). We can not create a partial
proof script with Attic, apply that, see which goals are unsolved, and continue writing our proof script.
This means that Attic is not a very interactive proving mechanism, at least not as interactive as Coq and
Agda. But we can still use Attic a little interactively, and we will now describe how.

So let us see how Attic tactics can actually be used when they are turned into macros. The different
steps and possibilities are shown in listing 12. We start out with the example si-hole , of which we
have declared the type, but we still need to give an actual function definition. So we have left the actual
implementation as a hole. We have however entered the name of our tactic macro into the hole, and
if we use an editor that supports interactive Agda code editing, we can now start using this macro. We
have several options at our disposal that we can use to fill the hole. These options are provided by the
Agda compiler. We’ll be describing these options here.

The first option is to ask Agda to elaborate and give the value we have placed in a hole. This is precisely
what we have done to obtain the value in the second definition si-term . When we use this command,
Agdawill process the stringwehaveplaced inside thehole, so theholewe left in listing12will be resolved
to the macro we defined earlier. Agda will then elaborate the macro, which means that it will execute
the macro function. The hole will be used as the argument to the function. Any of the reflection calls
that change the type checker’s state are evaluated by the compiler, and if the function does not error,
the hole is replaced by the value that the function assigned to the hole (if any). For si-term the tactic
has generated the identity function as a solution, and Agda accepted this solution and has replaced the
hole with the lambda function. This is an example of an edit‑time3 tactic: the tactic is fully evaluated at
edit time, and this results in the proof term being present in the source code.

The second option is to simply use the give command, which will replace the hole with the value inside
of the hole. While Agda will type‑check the value before filling it into the hole, it will not reduce the
expression but instead leave it as‑is. This is what has been donewith the si-macro example. Agda can
recognizewhenmacros are used in termpositions, andwill elaborate themat compile time,making this
a compile‑time tactic. Thus, if the tactic implementation changes, the term that is generated to prove
si-macro may also change, without any further changes needed from the proof author. Elaboration of
the macro does happen every time however, and the resulting expression is fully type‑checked.

Both ways of running the tactics have their advantages and disadvantages. If the edit‑time way is used
and the theorem changes, the author may need to update the proof term that now exists in the source
code. Changing a tactic might be easier and faster. On the other hand, if a tactic searches for a value

3The term “edit‑time” is a wordplay on the words “run‑time” and “compile‑time”, and refers to the timewhen a program is still
being written in an editor [3], [37]. Edit‑time tactics can play a role in interactive code editing.
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to fill in this, that process might need some time. Storing the solution in the source code might then be
faster to compile. The best approach should be considered on a case‑by‑case basis.4

4.2 Tactic implementations
Here we will give an high‑level overview of the implementation of common tactics. We will not go into
the core instructions and evaluation mechanisms here; these implementation details are given in sec‑
tion 5. Insteadwe start with the implementation of a trivial tactic, and slowly build our way up to amore
complex example, and finally give the implementation of the intro tactic. Each implementation has a
corresponding description that explains it.

4.2.1 Filling in terms

Wewill start by giving an example tactic that does exactly one thing: it fills in the variable that is lexically
the closest in the current scope. The code for this tactic is given in listing 13. Internally, Agda uses De
Bruijn indices to represent variables [6, Reflection]. De Bruijn indices are “a notational system where
occurrences of variables are indicated by integers giving the ‘distance’ to the binding λ instead of a name
attached to that λ” [38]. So instead of referring to variables by names, we refer to them by a number. In
the original paper describing these indices, only positive natural numbers were used, but in Agda these
indices start at zero. Thus, the variable 0 is the variable closest to us, and as the number increases, we
are referring to variables farther away. Agda’s reflection API also uses this representation for variables,
so Attic also uses it by extension, as it uses the reflection API under the hood.

fillVar0 : Attic ⊤
fillVar0 = do
goal ← getGoal
let solution = var 0 []
solveGoal goal solution

macro fillVar0′ = asMacro fillVar0

fillVar0Demo : Bool → Bool
fillVar0Demo b = fillVar0′

Listing 13: An example tactic that fills in the closest variable in the context.

The example in listing 13 consists of three parts: a tactic implementation, a macro definition, and the
demo that we use themacro for. The fillVar0 tactic has the type Attic ⊤ , which indicates that this
value is in fact an Attic tactic, and when evaluated produces a value of the unit type, so it has no usable
output value. When the tactic is evaluated, it first obtains the currently focused goal. It then creates a
piece of Agda syntax using the var constructor. This constructor represents a variable indicated with
a De Bruijn index, and some optional arguments which we do not use here. It then marks the goal as
solved, using the solutionwe created here. This tactic is not very smart; it will try this solution regardless
of whether the variable exists, or if its type is assignable to the goal type.

Next, we define amacro based on this tactic. We do this using the macro keyword and Attic’s asMacro
function. Defining amacro is important, because the compiler will then let us use the program in a term
position, or let us run it from a hole. The asMacro function wraps the tactic program so that it can be
executed by Agda’s reflection machinery.

Finally, we have defined a functionwhere wewant to use the tacticmacro we have defined. This is not a
complicated function, and it only exists for demo purposes. The function accepts a Boolean value, and
returns a Boolean value. The parameter is bound to the name b . Within the function body, b can be

4It is also possible tomix both approaches. By default Attic produces an error if a tactic leaves unsolved goals. We can however
use an admit tactic which will mark every unsolved goal as solved, using each goal’s metavariable as its solution. Agda will turn
metavariables into holes during the unquoting process. Using the elaborate and give command to turn the tactic solution into a
termwithholes,we can then continue to solve theseholeswithother tactics, orwecould even fill them inmanually. This approach,
where tactics are used to refine a hole in a big step, has been informally referred to in our discussions as ‘refine on steroids’.
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fillNat : N → Attic ⊤
fillNat n = do
(goal , type) ← getGoalAndType
(def (quote N) []) ← reduce type
where
t →
failure $ errStr "The expected type is not a natural."

nmbr ← quoteTC n
solveGoal goal nmbr

macro fillNat′ = asMacro $ fillNat 23
macro fillNat″ = λ x → asMacro $ fillNat x

fillNatDemo : N → N
fillNatDemo n = fillNat′
fillNatDemo″ : N → N
fillNatDemo″ n = fillNat″ 23

Listing 14: An example tactic that fills in a natural number.

referred to as variable 0 when using De Bruijn notation. Instead of using a syntax term for the function’s
body, we use the macro we have defined earlier, which fills in the value for us: the function ultimately
returns b again.

4.2.2 Tactics with parameters

Let us investigate another example, but this time we’ll fill in a natural number. This tactic will be a little
bit smarter, and it also has support for parameters, so that it can fill in any natural number. The tactic is
given in listing 14. We again have three parts to this example: the tactic implementation, the definition
of twomacros, and two demos, both using one of the macros.

The fillNat function takes a natural number, and returns a tactic that will fill the currently focused
goal with that number. The basic concept is still the same; we retrieve a goal and we eventually solve
that goal. But this timewe also retrieve the goal’s type. This is the type for which we are currently trying
to construct a term. It is stored in the Goal structure, but this is a nice shorthand to retrieve both values
at the same time. The type is reduced, to ensure that it is in a weak head normal form [6, Reflection],
which allows us to match on it even if the type was not yet in the form we expected. We then have an
assertion that the expected type isN, the natural numbers type. If it is, all is good and we can continue.
If it is not, we produce a failure.

Next, we create a numeric syntax term (the nmbr variable) and use that term to solve our goal. Note
the usage of the quoteTC function. This is a tactic that wraps the Agda API function of the same name.
Insteadofmanually constructing thesyntax,wesimplyaskAgda togenerate thesyntax termthatbelongs
to thenumeric valuewewant to fill in. In this casewemainly use it for demonstrationpurposes; for small
values it ismore sensible tomanually construct the syntax. For larger values, it ismuchmore convenient
to use the automatic quoting.

We thenhave to turn the tacticprogram intoamacro, so that theprogramcanbeexecutedat compilation
time. We do this with the asMacro function again. For demonstration purposes, we have created two
variants of the tactic here. In the first macro, we have hard‑coded the value 23, so the macro can be run
without any arguments. In the secondmacro, the value wewish to fill in has beenmade a parameter for
the macro, so it has to be provided at the use site. Despite these differences, both demo functions are
the same and return 23 in this example.

4.2.3 A complete tactic: intro

Finally we will demonstrate one larger tactic program: the intro tactic. Although this program cannot
fully fill in a termby itself, it can refine the goal thatmust be filled in. intro is usedwhen variables need
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combine : Bool → N → Bool × N
combine b n = b , n

combine′ : Bool → N → Bool × N
combine′ = λ b → λ n → b , n

Listing 15: Two different but equivalent styles of defining functions.

intro : Attic ⊤
intro = do
(goal , type) ← getGoalAndType
pi a@(arg argInfo _) b@(abs paramName returnType) ← reduce type
where t → do

failure $ strErr "Expected a function type, got " ∷ termErr t ∷ []
let paramBinding : Binding

paramBinding = paramName , a
body ← newUnknownMetaContext $ paramBinding ∷ Goal.context goal
meta ← getMeta! body
let v = visibility argInfo

lmbd = lam v (abs paramName body)
bodyGoal : Goal
bodyGoal = (record { type = returnType

; hole = body
; meta = meta
; context = paramBinding ∷ Goal.context goal })

solveGoal goal lmbd
addFocusGoal bodyGoal

macro example = asMacro (intro >> fillNat 23)

introDemo : N → N
introDemo = example

Listing 16: An example tactic that generates a lambda, using a natural number for the lambda’s body.

to be bound. The intro tactic does exactly this, and generates lambda terms. This is illustrated with
listing 15. The first function definition is an ordinary function. The second function definition is what we
would get by applying the intro tactic twice: two lambdas that bind both function parameters, with
the inner lambda returning the result of the computation.

The intro tactic implementation is shown in listing 16. The overall structure is similar to the earlier
examples: we have the Attic program, the macro definition, and finally the demo where the macro is
used. We will be going through this example step by step, starting with the tactic program:

• We again collect both the goal and the expected type. The type is reduced, so that we can match
on it.

• If the type is a function type (represented by pi in Agda), we bind the information we need to
named variables and continue on. If the type is not a function type, we return a failure, as there is
nothing that we can introduce.

• Next, we generate a new binding. This binding will be added to the telescope of the lambda that
we will eventually be generating.

• We generate a new meta term using the compiler, and extract the actual Meta value. This term
will be used to create a new hole. The metavariable will be used to create the goal representing
this new hole.
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• Then we generate the actual lambda term that will serve as the solution. To do so, we also need
some other values that the compiler requires. The body of the lambda is the meta term we just
created, so the body of the lambda is left unspecified. The compiler will treat it as a hole.

• We then generate the goal that represents the bodymetavariable. The intro tactic cannot gener‑
ate a complete term on its own, it merely refines an existing hole. So the body still has to be filled
in, a fact that will be represented by this goal.

• The original goal is thenmarked as solved, using the lambda term as the solution.

• Finally, the lambdabodygoal (which represents theunknown term) is added to the list of unsolved
goals. It is also set as the focusedgoal. A tactic that is executedafter intro can thus automatically
work on this new goal.

Now that we have the tactic program, we convert it to a macro using the asMacro function again. But
as stated before, the intro tactic cannot generate a complete term on its own; it will leave a hole in
the lambda’s body. Attic will produce an error if unsolved goals remain at the end of a tactic execution,
so it is important that all goals are solved. To remedy this, we have re‑used the fillNat tactic from
listing 14. This tactic solves the hole. The fillNat tactic is chained to the intro tactic. As a result, a
lambda function is generated first, and then the hole inside of the lambdawill be filled with the number
we passed to the fillNat tactic.

Finally, we have the demo function on which the tactic macro is used. This is an ordinary function, but
this time no parameters are matched on the left hand side of the function definition. Instead, these are
bound by the tactic. The generated function returns the constant value 23.
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5 Attic
The library that was developed as part of this thesis is the Attic library. The name is a play on the words
‘tactic’ and ‘Ataca’, the name of a similar project which will be discussed later5. Although Attic does con‑
tain some of the standard tactics, its intended purpose is to mostly be a foundation upon which more
specialised tactics can be developed. It also houses the iterators as detailed in section 3.

The following section, section 5.1, focuses on the overall architecture of the Attic evaluation pipeline.
This is considered an introductory section, and does not focus on implementation details and choices;
these are described in subsequent sections. First, section 5.2 discusses a number of fundamental data
structures. Section 5.3 lays out the instructions that are present in the Attic library, and the specified
behaviour. Then, section 5.5 describes how these instructions are evaluated to produce a final proof
state which can be used to fill in holes.

5.1 Overall architecture
The Attic library comes with a number of well‑known tactics built‑in, which can be used right away. But
thegoalofAttic is not just toprovideanumberof tactics thatare commonly found inotherproof assistant
systems, but also to let end users define their own tactics. This can be achieved by combining existing
tactics, or by writing entirely new tactics that manipulate the proof state in a novel way. Regardless,
Attic needs to be flexible enough that all these use cases are accommodated. Thus, providing a number
of fixed tactic programs that are able to execute certain actions will not be good enough.

Attic has been designed in such a way that tactic programs are first constructed using a fixed number
of core instructions. These core instructions can be combined and chained to create new tactics, as
they together produce the desired behaviour from the resulting program. They can also be combined
with existing tactics, allowing for composition. In this way, tactics can even be dynamically generated.
Combining and chaining tactics is an easy process, because the monadic bind operation is used for this
purpose, for which Agda has support in the form of syntactic sugar: do‑notation [6, Syntactic Sugar].

Once the tactic programs are fully constructed, they must be evaluated. A visual overview of this evalu‑
ation is given in fig. 5; the following text describes it in more detail. The evaluation of a tactic program
amounts to running each of the instructions that it comprises, and keeping track of the programs’s proof
state as it is modified by the tactic instructions. This interpreter is also capable of evaluating computa‑
tions that have side effects. These side effects are interactions with the Agda compiler, to gather inform‑
ation or create new metavariables. During the composition of tactic instructions, these computations
are delayed. When interpreting the tactic program, these delayed computations are executed, and their
results are used in the rest of the tactic’s evaluation.

After the tactic is fully evaluated, the resulting proof state is checked for validity, and the solutions found
(if any) are then submitted to the Agda compiler, where they are either accepted or rejected. This hap‑
pens through the unify function that Agdaprovides. No solutions are final during the evaluationphase,
butmay turnout tobe valid in theunificationphase. Wecall thisdeferredunification: weonly unify terms
when we have generated the full solution. In the end, the Agda compiler acts as the final gatekeeper to
ensure that the solutions proposed by the Attic tactics are valid. Depending on the outcome of this op‑
eration, the tactic runner may be able to backtrack and find another solution to try.

This loop of backtracking and trying other candidate solutions is guarded by a fuel parameter that lim‑
its the number of iterations that can be performed. It starts out with the default value, which is set to
10,000 (ten thousand), and decrements upon every evaluation. The next iteration then starts with this
decremented value. The starting fuel number can be customised by the user if necessary. Eventually,
tactic evaluation will result in one of the following states:

• Finished. This value indicates that the tactic was successfully evaluated. At least one tactic branch
proposed a solution that was accepted by the Agda compiler.

5Wordplay appears to be all too common in the circles of proof assistants. The name of the Agda programming language was
derived from a Swedish song ‘Hönan Agda’ [39] (literally ‘The hen Agda’). This is a reference to the Coq proof assistant, whose
name means ‘rooster’ in French, but is itself also a reference to CoC (the Calculus of Constructions) and Thierry Coquand, one of
the initial authors of Coq [40].
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Figure 5: An overview of the evaluation of tactics.

• Exhausted. This value indicates that no valid solution was found, and that all possible solutions
that could be generated by the tactic have been evaluated. This suggests that the tactic developer
should change the tactic so that it proposes different solutions that might work.

• Incomplete. This value indicates that no valid solution was found, and that the maximum search
depth was reached. There may have been valid solutions that were never evaluated. This status
suggests that the tactic developer should optimize the tactic to produce fewer results, or if that is
not possible, increase the maximum search depth.

• Fatal error. If at any point during tactic evaluation a runtime error occurs, evaluation is terminated
immediately. This error will be presented to the developer, along with relevant error information.
Such errors include unsolved holes remaining after evaluation, no hole being focused, or an in‑
variant not holding. The runtime does not recover from fatal errors, as these likely indicate an
unexpected failure that ought to be fixed.

5.2 Core structures
During execution Attic maintains an internal state which is composed of several data structures. This
internal state is integral to the evaluation of tactics, as it represents the current proof state, and also
holds the solutions that were selected for the goals.

The first structure is an analogue to data that can be obtained from the Agda compiler. In Agda, terms
that are yet to be filled in are represented by metavariables. These are opaque values to consumers of
the Agda API, but they do have meaning for the internals of the Agda compiler. Although metavariables
are typically referred to as meta or metas in Agda parlance, we will refer to them as metavariables to
avoid confusion with the built‑in Meta type and the meta constructor of type Term .

Since Attic tactics operate on holes in term expressions, there is always an initial hole for which an ex‑
pression must be generated. This hole is represented by the meta constructor, which contains both
the Meta value, as well as the list of variables in scope that are available to the metavariable. This list
is called a telescope. It is important that this telescope is well‑maintained and correct, as the compiler
asserts this correctness during some interactions, and candidate solutionsmay depend on the variables
listed in this telescope, for which a valid telescope is required. When obtaining or creating holes, Attic
internally creates an instance of the custom MetaTerm record type, which stores both themetavariable
and its associated telescope. An equality function ( _meta=_ ) that decides whether two instances of
MetaType are equal is implemented, which is based on the Agda primitive primMetaEquality , which
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implements equality for the opaque values of type Meta . We use these function (as well as its negative
variant _meta≠_ ) to find and filter goals, as metavariables are used to uniquely identify goals. This is
further detailed below.

Goal

Attic has defined additional record types to store the proof state. The first notable type is the Goal type,
of which each instance corresponds with a hole in Agda. It stores various fields which are relevant to
when examining andmanipulating goals:

• Type. The type of a hole is stored inside the goal. Although it is possible for a type in Agda to be
partially defined (types in declarations can also have holes, and thus contain metavariables), At‑
tic is designed with the expectation that holes are well‑typed. There are no technical limitations
within Attic itself that prevent partial types from being accepted, although some tactics might as‑
sert various properties about the type, and produce a fatal error if such an assertion does not hold.

• Hole. The Agda term representing the hole is stored. In practice this will always be the constructor
meta . While this information itself is not particularly useful during tactic evaluation, it is crucial in
the final phase of unification, as the Agda compiler expects a value of type Term here.

• Metavariable. The metavariable representing the hole is stored in the Goal structure, using the
MetaTerm type described earlier. It is used to uniquely identify a goal. Initially derived from the
term that will end up in the hole field. This value could theoretically be used to reconstruct both
the hole and context fields of a Goal record, but for convenience reasons, these two fields are still
kept as separate fields.

• Context. When dealing with goals, its ‘context’ refers to the variables that are in scope for that
goal, also known as its environments. Keeping track of this telescope is important when finding
solutions, and for certain interactions with the Agda compiler.

The context field especially is an improvement compared to existing systems [9]. Previous systems did
not explicitly keep track of this value (or had a way to derive it). Instead, they relied on frequent use
of the getContext function that the Agda reflection API provides. Using this function requires less
internal bookkeeping, but makes it harder to store a goal for later use.

Solution

In order to represent solutions to goals, the record type Solution is introduced. It keeps track of the
following two fields:

• Goal. The goal for which it represents a solution. The metavariable that is stored inside this goal
is also used as a uniqueness value to identify the solution.

• Solution. The solution for the goal. This is a value of type Term . Later, the Agda compiler is able
to unify the hole of the goal with this term.

Proof state

Finally, these types are all combined in a type that represents the entire proof state. The ProofState
is composed of the following fields:

• Goals. The list of unsolved goals. When a goal is solved, it is removed from this list.

• Solutions. The list of solutions. These solutions include the goal value (see above), so no informa‑
tion is lost when adding a solution to the list.

• Focused goal. An optional value representing which goal is currently in focus. For some tactics it
is required that only a single goal in the list of goals is focused. If a goal is specified by this field,
then this is the goal that will be used. If no value is given, the first goal in the list of unsolved goals
is used, if one exists.
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doublePair : Σ[ (x , y) ∈ (N × N) ] y ≡ x * 2
doublePair = (2 , 4) , refl

Listing 17: An example of a constrained type, using a dependent pair.

private
variable
ℓ : Level

{-# NO_POSITIVITY_CHECK #-}
data Attic (A : Set ℓ) {ℓs : Level} : Set (ℓ ⊔ suc ℓs) where
value : A → Attic A
failure : List ErrorPart → Attic A
error : List ErrorPart → Attic A
tryCatch : (try : Attic A {ℓs}) → (catch : Attic A {ℓs}) → Attic A
primitiveTC : TC (Attic A {ℓs}) → Attic A
updateState : (ProofState → Attic A {ℓs} × ProofState) → Attic A
branch′ : (iter : Iterator {ℓs = ℓs} (Attic A {ℓs})) → Attic A

Listing 18: The definition of the Attic type, which represents the tactic program instructions.

The concept of a focused goal is not a new one; other proof assistants are already keeping track of the
goal that is currently being solved. It is adopted here as well, so that the built‑in tactics can always get
the right goal to operate on. It also enables tactic authors to explicitly set the goal they would like to
solve, and potentially solve goals out‑of‑order.

As its name implies, the field containing solutions is used to store the solution to each goal. These solu‑
tions should not be considered as definite solutions yet; rather they are candidate solutions for which
unification will be attempted in the unification stage. If Agda decides that the solution is invalid, Attic
will discard the solution and propose another solution, if one exists. As such, Attic employs deferred
unification, and only tries to unify when the tactic program finds a solution.

For anexampleof suchan invalid solution, consider the following. Agda’s type systemallowsus to create
types such that twoholes emerge in such away that the type of the first hole depends on the secondone.
Suppose we have a dependent pair of two naturals where the second natural must be twice as large as
the first. This type, along with one of its infinitely many solutions, could be expressed as in listing 17.

In the proof expression, the constructor refl is the only constructor of the structural equivalence type.
If the tactic that was used to fill the second hole is not aware of this constraint, it may have suggested
a value that ultimately turns out to be invalid (such as (0, 1) where 1 is not equal to 2× 0). This
discrepancy will be caught by the Agda compiler as it tries to unify the values with the type it is solving
for.

5.3 Instructions
Fundamentally, Attic tactics are guided search programs. The problem space they work on is the range
of values that inhibit the type of the hole that is to be filled. The term that fits the hole is the solution to
the problem. Within the Attic library, the instructions that represent these programs are defined by the
data structure shown in listing 18. Each constructor in this definition will be explained.

Note that Attic A is polymorphic on type parameter A , which is constrained to type Set ℓ . This
makes it suitable for holding all types of values. The branch′ constructor stores an iterator, and to
accommodate this data structure, an additional level parameter ℓs is specifiedon Attic A . Theoverall
type of Attic is a Set whose level is a combination of these variables. The parameter ℓs itself is
propagated through thevarious constructors. Althoughwehave removed implicit parameters frommost
code snippets, we decided that omitting the parameter herewould result in amore confusing definition.
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Themeaning of the several constructors on Attic is defined as follows:

• value . This constructor carries a single value. This value canbe the result of another computation.
Usually this constructor is used as an intermediate instruction. In tactic programs, it also ends up
as the leaf of the instruction tree, since each tactic instructionmust eventually carry a valueof type
A . Using a tactic that carries the unit type’s only possible value is a common option.

• failure . This instruction is used to signal that the tactic program is unable to produce a valid
solution. For example, a tactic that can only fill in holes whose type is numeric may produce this
instruction when it is used to fill in a hole where a Boolean value is expected. It is important to
note that this is considered a recoverable failure; the interpreter may backtrack (if possible) and
find other candidate solutions. The sole argument to this constructor carries information about
the failure that occurred.

• error . Used to signal that a fatal error has occurred. This instruction is generated when an er‑
roneous situation is encountered which would result in undefined behaviour. It is also produced
when an invariant does not hold. For example, a higher‑level instruction that adds a goal to the list
of unsolved goals may verify that no goal with that metavariable is stored. If there is one, it would
produce an error with the appropriate error details, as this state is likely the result of a user error.
The choice to include fatal errors that trigger immediately is an explicit design choice, following
the “fail‑fast”‑technique [41]; some conditions should not allow the program to continue running
in a possibly corrupt state.

• tryCatch . Used to handle failures, and potentially recover from them. This instruction carries to
values of Attic A inside. Uponevaluation, the first instructionwill be executed. If this instruction
produces a success result or a fatal error, this result is immediately propagated. But if the first
instruction produces a soft failure, the second instruction will be executed, and its result is then
returned without modification. A wrapper named try exists, which simply does nothing when a
soft failure occurs.

• primitiveTC . Represents an instruction that requires interaction with the Agda compiler. Such
an operation is typically a primitive reflection operation, whose return value is usually either of
type TC A (where A is a type parameter) and in some cases TC ⊤ , a special case where the
return value has the unit type.

This instruction requires that the primitive operation produces a value of type Attic A , which is
the next instruction the interpreter evaluates. Accordingly, there is a utility function which is able
to ‘lift’ any such operation producing TC A to TC (Attic A) so that it may be embedded in the
primitiveTC instruction.

• updateState . A lower level instruction which allows for updating the state of the interpreter. Its
only parameter is a function which accepts a ProofState value, and produces a pair of Proof-
State and Attic A . In practical terms, this function takes the current state, and based on that
state, it generates the new state and the next instruction that the interpreter will execute.

We do not expect that this instruction will be used directly, in most scenarios. Rather, it makes
more sense to write some high‑level tactic programs that use updateState internally. These
high‑level tactics can then be used when composing larger tactic problems. For example, there is
a tactic named solveGoal which takes a Goal and Term value, and thenmanipulates the state
such that the goal is removed from the list of unsolved goals, and the solution is added to the list
of solutions. It produces an empty instruction of type Attic ⊤ .

Of course it is perfectly feasible towrite a tactic thatmanipulates the state in anotherway. It is also
possible to manipulate the state in such a way that it becomes corrupt; the instruction does not
contain any safeguards that verify the correctness of the new state object. It is possible to create
a wrapper instruction, say updateStateSafe , which performs exactly this tasks. As part of this
work, this functionality was not implemented.

A variant thatwas implemented is a read‑only version of the instruction, named useState . This
function takes a single function of type ProofState → Attic A , which only requires that the
next instruction be generated, based on the current state. Internally, useState constructs an
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updateState instruction which maintains the current state. Because it does not allow for the
generation of a new state and the added convenience of using a shorthand make this function
more attractive than directly using updateState .

• branch′ . When this constructor is encountered, the interpreter is instructed tobranch the current
flow of execution. Internally, it holds an iterator of instructions. This operation is the backbone of
the backtracking functionality. It allows the user to specify several possible options as candidate
solutions. Usingan Iterator hereensures that the system isas lazyaspossible, as iterator values
are only materialised when they are required.

This instruction also has several functions that wrap its functionality. Note that the default func‑
tion is named branch′ . This name is intentional, as it is notmeant to be the default instruction in
day‑to‑day use. There is also a function named branch , whichmaps an object of type Iterator
A to Iterator (Attic A) . This shorthand function ismuchmore convenient, as it allows a user
to specify the values to branch on, rather than the tactic instructions. Similarly, there is a function
named branchList which acts as a similar shorthand, but for list values.

5.4 Instances
The Attic data structure supports anumberof operations that are common inprogramming languages
with functional paradigms. For the purposes of Attic, implementing the functor and monad interfaces
was enough. These are the same interfaces that are implemented by iterators (section 3.4); functor and
monad. The functor interface is implemented so thatwemay turn anAttic instruction of one type into an
Attic instruction of another type. The monad interface is implemented as it is a good way to implement
the chaining of instructions. Both interfaces have thus been implemented for the Attic data structure.
The branch′ instructionwraps an iterator, which requires two level parameters in its definition. This is
unfortunately not compatible with Agda’s standard library. Again, this is not a big problem, since Agda
gives us the flexibility to define these functions anyway, and use them if we define them locally. It is still
an inconvenience, however, especially if we wish to use the categorical implementations of Attic and
those from the standard library in the same scope.

The functor interface is fairly straightforward. If a function of type A → B is given, an instruction of type
Attic A can bemapped to a value of type Attic B using the fmap function. Any values inside of the
instruction are mapped as well. For example, instructions that execute a function on the Agda compiler
API (and thus wrap a TC value) are mapped using a functor implementation of TC values.

Each Attic constructor has its own implementationwithin bind . For the value constructor, the value
binding function is directly applied to the value it carries. The failure and error constructors both
only propagate theirmessages. In the tryCatch case, thebindoperation is applied toboth instructions
it contains. For the primitiveTC operation, the binding operation is applied to the Attic value that
is carried by the TC value. With updateState , the instruction of the function’s return value is bound.
The branch′ performs a mapping operation on the iterator, using the bind function as the mapping
function.

5.5 Interpretation and branch evaluation
The Attic evaluation mechanism consists of three functions, that can together be used to fully evaluate
tactics. There is one function, runAttic , that evaluates Attic instructions, and keeps track of the
proof state as it does so. It decides whether the instructions were able to find a candidate solution. The
second function, unifyAtticResult , will determine whether the solution is valid. To determine this,
it will use the compiler API to propose the solution. If the solution is accepted, the function produces
a success result. But if the solution is not accepted, it will result in a failure signal. Finally, the third
function evaluateAttic wraps both of these functions, and is able to backtrack to other candidate
solutions, and test those.

5.5.1 Tactic success evaluation

The initial tactic evaluation occurs in the function runAttic , whose type is given below. runAttic
requires two arguments, and produces a result output type. The first two arguments are rather straight‑

34



AtticClosure A = Attic A × ProofState

Rest A = Iterator (AtticClosure A)

OptionalRest A = Maybe (Rest A)

data AtticResult {a : Level} (A : Set a) : Set a where
atticSuccess : ProofState → OptionalRest A → AtticResult A
atticFailure : List ErrorPart → OptionalRest A → AtticResult A
atticError : List ErrorPart → AtticResult A

data UnificationOutcome {a : Level} (A : Set a) : Set a where
unificationSuccess : UnificationOutcome A
unificationFailure : OptionalRest A → UnificationOutcome A
unificationError : List ErrorPart → UnificationOutcome A

data EvaluationOutcome : Set where
finished : EvaluationOutcome
incomplete : EvaluationOutcome
exhausted : EvaluationOutcome
fatalError : List ErrorPart → EvaluationOutcome

Listing 19: Additional data structures used for Attic evaluation. Somedeclarations anddetails havebeenomitted
from these definitions for printing purposes.

forward; the first is the tactic that needs to be evaluated, and the second argument is the proof state that
will beused to evaluate the tactics. The return typeof this function requires somemore explanation. The
outer type is TC , which means that the function is able to interact with the Agda compiler. The value
it contains is one of type AtticResult , whose definition is given in listing 19. This type distinguishes
three possible results: success, recoverable failure, or a fatal error.

runAttic : Attic A →
ProofState →
TC (AtticResult A)

If evaluation of the tactic is a success, an atticSuccess is returned,which contains both the final proof
state, and possibly a rest which will be discussed soon. The tactic might also produce a recoverable fail‑
ure, signalled by atticFailure . These failures are expected, and should be recovered from. Another
solution should be tried, as this one is invalid, and the backtracking mechanism should be invoked. Fi‑
nally, tactic evaluation can also result in runtime errors, which are expressed by the atticError con‑
structor. These errors indicate a unexpected exceptional behaviour, and may mean that the proof state
is invalid. These errors should not be recovered from.

Both the success and recoverable failure carry an optional rest value. The runAttic function can only
evaluate a single branch at once. When a branching instruction is encountered, it will only attempt to
evaluate the tactic program at the head of the branching instruction. Any remaining tactic programs are
not evaluated, but are stored alongside the current proof state, so that their evaluationmay be resumed
at a later point. This is representedby the AtticClosure type in listing 19. The Rest type is an iterator
of these closures, and an optional version of this type is also defined.

The implementation of runAttic is mostly straightforward. Each of the instruction is evaluated with
the main purpose of modifying the proof state. This proof state is passed along with each recursive call.
The details for the different instructions in Attic is given below:

• value . This instruction produces atticSuccess with the current proof state as its argument.
This result indicates that a candidate solution was found. No rest is returned.

• failure . This instruction produces atticFailure with the details from the instruction. This
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result indicates that this branch of execution did not produce a candidate solution, but backtrack‑
ing to another branchmay yield a result. No rest is returned.

• error . This instruction produces atticError with the details from the instruction. This res‑
ult indicates that a fatal error occurred which is likely due to a user error. No recovery should be
performed after this error is raised. It also does not return a rest.

• tryCatch . This instruction first evaluates the first instruction contained within. If this is a soft
failure, return the result of evaluating the second instruction, otherwise (in case of success or fatal
error) pass on the result of evaluating the first instruction.

• primitiveTC . This instruction evaluates the TC operation contained in the instruction. It then
recursively calls runAttic on the resulting instruction, along with the same proof state, and
returns the output of the recursive call.

• updateState . The function that the constructor carries is applied to the current proof state. The
function will produce a new proof state and next instruction as its output. Together, this new in‑
struction and proof state are used to continue evaluation.

• branch′ . In this case, the next step of the iterator in the instruction is computed. Now, there are
again three cases. If the iterator produced a Done , an atticFailure and no rest is returned. If
the iterator produced a skip , an atticFailure is returned, along with the tail of the iterator.
If the iterator produced a Yield , a recursive call is made to runAttic to run the instruction,
and the rest of the recursive call is combined with the rest of the recursive call before returning
the output of the recursive call. This ensures that no instructions are forgotten, and due to this
ordering it is also ensured that the instructions are evaluated in theorder inwhich they aredefined.
The current proof state is included when the rest iterator is constructed.

5.5.2 Unification

The second stage of interpretation is unification. This stage is handled by the unifyAtticResult ,
whose type is given below. It accepts a single argument, which is the output of runAttic . It will decide
which action to take based on the value of this value. It returns a value of type UnificationOutcome ,
which is defined in listing 19.

unifyAtticResult : AtticResult {ℓs} A →
TC (UnificationOutcome {ℓs} A)

There are three possible tactic evaluation results. If the evaluation succeeded, this means that a can‑
didate solution exists here. This solution is first checked to see if any goals are left unsolved; if that is
the case, a fatal error is raised. Otherwise, each element in the list of solutions is processed, so that the
originalmetavariable is unifiedwith the associated solution. This unification is done through the unify
function, which is part of the compiler API that Agda exposes. If all solutions are unified without errors,
a unificationSuccess value is returned. It does not carry any further information, as a solution was
found.

Alternatively, if unification fails, or if the tactic evaluation failed in the first place, the value unifica-
tionFailure is returned. This value carries the rest, so that backtracking to partially evaluated Attic
programs is possible. No specific failuremessage is attached to this outcome, as wewill likely backtrack
from this failure. Finally, if the original tactic produced a fatal error, that error is propagated here. The
constructor unificationError is used to indicate this outcome. It has only the error message as its
parameters, and no rest to backtrack to.

5.5.3 Evaluation and backtracking with rollbacks

The two previous functions are combined in the evaluateAttic , which is able to comprehensively
evaluate Attic tactics, and can take branching instructions into account as well. Its type is given below.
It accepts the maximum search depth, the tactic program to evaluate, and the initial proof state with
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which the evaluation is executed. It then evaluates this to an EvaluationOutcome , which is described
in listing 19.

evaluateAttic : (searchDepth : N) →
Attic A →
ProofState →
TC EvaluationOutcome

The searchDepth parameter is used to determine the starting amount of fuel that this function can
‘spend’ on recursion, to guarantee termination. Specifically, it is used as the input to a local function that
is used for looping through recursion. On every recursive call, the fuel parameter is decremented. When
the number reaches zero, all processing is terminated, and the outcome is incomplete , signalling that
no valid solution was found, but that more solutions might exist. Proof authors should either optimize
their tactics to produce fewer invalid solutions, or increase the search depth parameter.

Internally, evaluateAttic constructs a local function that respects the remaining fuel to ensure ter‑
mination, takes an AtticClosure (which is a product of tactic program and the state with which it
should be executed), and finally has a Rest parameter to facilitate backtracking. The local function
first constructs a computation that evaluates the tactic and tests its solution, using the previous two
functions. The evaluation of this computation happens within runSpeculative . This function is part
of the Agda compiler API, and allows us to run a TC computation speculatively. At the end of the com‑
putation, we can instruct the compiler to either keep the modified compiler state, or roll back to the
state as it was before we performed the computation. In practice this means that we keep the compiler
state if unification succeeds, because we have found a solution. But if unification fails, the state is rolled
back, as the new compiler state might contain problematic data. For example, a tactic might create a
new metavariable and then fail. If the state is not rolled back, the metavariable will never be solved,
causing Agda to emit warnings for this unsolvedmetavariable. If Agda is launched non‑interactively (e.g.
through a shell script), its exit code will indicate a failure. This property is undesirable, and is thus being
remedied with state rollbacks. Unfortunately this solution does not work as well as we had hoped and
may result in Agda compiler panics. See section 7.3 for more details.

The local function will discriminate on the output of the unification. If the unification was a success,
the function can return immediately, with the finished constructor. This indicates to any callers that
a valid solution was found. Alternatively, if the tactic evaluation or unification produced a fatal error,
this error is simply passed on in the result through the fatalError constructor. The most interesting
behaviour occurswhen a recoverable failure is returned. First, the returned rest (if it exists) is prepended
to the existing iterator of rests, so that we can find the next program in either the freshly‑returned rest,
or the pre‑existing rest. The next step in this iterator is then computed. If the iterator is done, the value
exhausted is returned to signal that all possible solutions of this tactic are evaluated. If the generator
yields a tactic closure, wemake a recursive call with that closure, a decremented fuel value, and the tail
of the rest iterator. If the rest iterator skips, we still make that recursive call, but since we have no tactic
closure,weuseabackup AtticClosure value,whose sole Attic is an immediate failure. This ensures
that search can continue, and that skips in the rest iterator still count towards the search depth, while
incurring little overhead.

5.5.4 Macro conversion

The evaluateTactic function is used in the asMacro function,which accepts a tactic programof type
Attic A , and turns it into a function of type Term → TC ⊤ . This type can be used for macros. The
Agda compiler will use the current hole as the argument for the Term parameter. The TC ⊤ value that
is returned by asMacro is the computation that will try to solve that hole by filling in a suitable value.

When the final parameter, the hole, is specified the asMacro function will do a number of things. It
will first infer the type of the hole, and gets context of the hole. It also gets the metavariable that is
associated with the hole. Based on the data collected here, it will create a Goal value that matches the
hole, with the type, context and metavariable all set to the appropriate values. Then, the initial proof
state is initialised. This proof state contains no solutions, has only the goal we just created in its list of
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macro doNothing = asMacro (exact tt)

theorem : ⊤
theorem = {! doNothing !}
-- The given hole is not an unsolved meta: tt
-- when checking that the expression unquote doNothing has type ⊤

Listing 20: An examplewhere Agdahas automatically decidedwhat the correct solution to the hole shouldbe,mean‑
ing that it will not generate a metavariable. If Attic is used on such a hole, it will error. This code demonstrates that;
if the ‘give’ command is used on the hole, the error below it will be returned.

goals, and also has that same goal focused. The evaluateAttic function is used next, to evaluate the
Attic program against this proof state. If a valid solution is found, asMacro simply returns. In the failure
cases, the function will raise a type error with a relevant message.

These generated macros can then be used in the place of terms, as the compiler will expand them to
proper terms. The tactics are then used as compile time, and can be referred to as compile‑time tactics.
Alternatively, a proof author could place the tactic inside of a hole, and ask the compiler to expand the
term. The hole will then be replaced with the term that is generated. Should the tactic implementation
change, the term will not be modified. This is known as an edit‑time tactic. Whichever application is
best depends on the needs and wishes of the proof author, and the proof they are working on. Both
workflows are equally well supported by the compiler.

An interesting point to note is that Attic requires that the hole term is, in fact, the meta constructor,
which carries a metavariable. Otherwise, there would be nothing to solve. This might appear to be a
redundant check, but it really is required tohandle somecases. For example, Agdamay fill in the solution
when it can definitely determine what the solution is. An example is given in listing 20. If we declare a
variable of the unit type ⊤ , leave its value as a hole, and then try to run a tacticwithin that hole, Atticwill
immediately produce a type error. The error reads “The given hole is not an unsolved meta: tt” which
implies that Agda automatically filled in the tt value for the hole (in this case, through eta‑expansion
for records [6, Record Types]). This behaviour was unexpected for holes, however. We have not seen any
other instances where the metavariable is replaced with another syntax term, but more may exist.

5.6 Safety of implementations
Back in section 2.3.2 we described some of the checks that Agda runs to ensure that the code we write
is total. These checks are mechanical termination checking, coverage checking for completeness, and
strict positivity enforcement on data types. Termination and positivity checking can be disabled for
definitions by placing a pragma above it. Such pragmas have been applied to various functions and
data types in Attic.

Perhaps the most notable pragma has been included in listing 18 already. This code listing contains the
definition of the Attic instruction type. The Attic type is used throughout the library, and represents
the underlying instructions that are evaluatedwhen a tactic program is run. Itmight be surprising to see
that this fundamental structure is considered unsafe by Agda. But Attic appears in the types of the
parameters of some of its constructors. Thus, the definition is not strictly positive. The non‑inductive
recursive use of Attic is however required to provide functionality such as compiler interactions or
branching.

Additionally, a handful of functions in Attic make use of unsafe recursion. These uses mostly occur in
the functions that process values of the Attic type directly. One example is runAttic , which is the
function we described in section 5.5.3. The bind and fmap functions for Attic similarly require that
the terminationchecker isdisabled for theirdefinitions. Inpractice these functionswill always terminate,
as they still represent a finite tree structure. Agda is however unable to prove that they will terminate
because the definitions do not look like inductive data types syntactically.

A consequence of the use of unsafe code is that Attic cannot be used in files where the --SAFE option
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-- Get focused goal or first goal
getFocusedGoal : ProofState → Maybe Goal
getFocusedGoal state =
ProofState.focusedGoal state <|> head (ProofState.goals state)

-- Gets the currently focused goal
getGoal : Attic Goal
getGoal = useState λ state →
maybe′ return (error $ errStr "No goal is focused.") (getFocusedGoal state)

Listing 21: The implementation of the getGoal tactic, which obtains the current goal.

-- Adds a goal to the list of goals
addGoal : Goal → Attic ⊤
addGoal goal = updateState λ state →
goalDoesNotExistOrSolved goal state ,
record state { goals = goal ∷ ProofState.goals state }

Listing 22: The implementation of the addGoal tactic, which adds a goal to the list of unsolved goals.

is used, as Agda will then not allow the usage of the unsafe pragmas. This also applies transitively to
modules that are imported by that file. It thus becomes impossible to use Attic tactics in a file where
the safety option is enabled. A workaround is disabling the safety option temporarily, and then making
use of the tactics to generate a term that is stored in the source code. Once the term is filled in using the
tactic (this can be done with the Elaborate and give command that Agda‑aware editors provide), Attic is
no longer necessary, and the safety option can be re‑enabled.

5.7 Common abstractions
Someof the operations in the Attic type are rather low‑level. It is possible to build abstractions on top
of these instructions that make it easier to perform common operations. The most notable instruction
here is the updateState constructor. This constructor makes it possible to read and change the proof
state during tactic evaluation. It is quite powerful, but can also be a bit cumbersome to use directly.
Thus, it makes sense to abstract away some state‑related operations that are often used. Various such
operationshavebeenbuilt into theAttic library, because theycanbeused inmost tacticprograms. These
tactic programs can then be composed with or embedded into other tactics to form larger programs.

5.7.1 Building blocks

Let us take a look at one of these tactics that are used as building blocks, the getGoal tactic. It is
shown in listing 21. The tactic works as follows. At its core, the tactic is an updateState instruction,
and thus carries a function that receives the state, and produces a product of the next proof state and
next instruction. But in this tactic we have used the useState function, which allows us to consume
the state, but not modify it. It does require us to produce the next instruction to execute.

The instruction we generate depends on whether a focused goal can be found. The getFocusedGoal
function tries the focused goal that is stored within the proof state, but falls back to the first goal in the
goals list if no focused goal is set. If the list of goals is empty (meaning that the first goal does not exist),
getFocusedGoal will indicate that no focused goal exists by returning an empty optional value. The
optional eliminator maybe′ is used to branch on the existence of a focused goal: if the goal exists, we
wrap it in the Attic type using the return function. If the goal does not exist, a fatal error is generated.
The getGoal tactic is used fairly often, since the information contained within the goal (and often the
goal itself) is necessary for use in other tactics.

Another example of a tactic that deals with the current proof state is the addGoal tactic, shown in
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-- Construct trivial iterators
someNaturals = fromList $ 1 ∷ 2 ∷ []
someStrings = fromList $ "A" ∷ "B" ∷ []

branching : Attic ⊤
branching = do
n ← branch someStrings
m ← branch someNaturals
log "branching" Debug $
errStr $ "(\"" str+ n str+ "\" , " str+ (showN m) str+ ")"

failure $ errStr ""

Listing 23: An example tactic that prints the values it obtains frombranching instructions. Printing is done using the
log tactic. The _str+_ function is the string concatenation function.

("A" , 1)
("A" , 2)
("B" , 1)
("B" , 2)
No solution was found (options exhausted).

Listing 24: The output from the logging demo in listing 23. The debug buffer and evaluation result are combined.

listing 22. As its name implies, it adds a goal to the list of unsolved goals. This tactic does change the
current proof state, and as such uses the updateState instruction directly. It returns a product of the
next instruction, and the accompanying proof state. The state that is returned is simply the old proof
state, but the list of unsolved goals has been changed to one where the new goal has been prepended
to the existing list of goals. This is achieved using Agda’s syntax for records; we can create a new record
based on an existing one, and change only some fields. The next Attic instruction we generate here is
more interesting. It is an invariant that checks whether the goal does not already exist, and that the goal
was not already solved previously. If the invariant holds, the instruction is a no‑op. If the invariant does
not hold, a fatal error is generated and execution is halted immediately. After all, if the goal already exist
in the proof state, adding it again is a user error. Abstractions such as getGoal thus make it easier to
perform common operations without having to deal with low‑level instructions, but can also make the
program safer by using invariants that rule out certain incorrect behaviours.

There are various other tactic programs that are not intended to be used as standalone programs, but
are meant to be used as building blocks to build other tactics. For example, there is a solveGoal
tactic, which accepts a Goal and a solution Term . It will then use these two values to construct a new
Solution object, adds that to the list of solutions, and removes the goal from the list of unsolved goals.
It includes an invariant which verifies that the goal exists and is unique within the list of unsolved goals.
Another tactic is the admitAll tactic, which takes all unsolved holes, and turns them into solutions,
where the solution is the original hole. These solutions are then added to the list of solutions. In the
end each hole will thus be unifiedwith itself, which is essentially a no‑op and leaves those holes as open
interaction points. This is useful for debugging purposes, because Attic verifies that no unsolved goals
remain, and as far as Attic cares, all goals are resolved. Agda will still list them as unsolved. The tactic
can thus be used to expand the macro to a termwhere the holes are still present.

For debugging purposes, a tactic named log exists. It is a small abstraction over Agda’s internal de-
bugPrint function, but produces values of type Attic ⊤ , so that can be used in tactic programs. The
debug printing function is at its core an operation with a side effect; the information we would like to
print will be shown in the Agda Debug Buffer. The log tactic requires three arguments, the first is a
string describing the component that is doing the logging, the second is the log level (debug, info, error).
Finally, the body of the log is a list of ErrorPart , Agda’s built‑in data structure to describe errors. It
supports strings, terms, and qualified names. These contents are passed to debugPrint as‑is, as it
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uses the same data structure to describe its messages. An example of the log tactic usage is shown in
listing 23. Two iterators are defined, both producing two elements. We also have a tactic that branches
onbothof these iterators, turns the values it gets into a string representation, and then logs these strings.
Finally, the tactic produces a soft failure so that backtracking will be initiated. When using this tactic on
a hole, Agda shows the output in listing 24. Evaluating this tactic resulted in the expected values being
printed, and the tactic did not find a viable solution.

5.7.2 Combinators

In addition to these building blocks that perform relatively simple tasks, it is also possible to build in‑
structions that are more complex. The examples so far have been smaller tactics that abstract away
state updates, or perform tedious operations that could also be done by hand. Implementing larger pro‑
grams requires more care, but can be very valuable when complex tactics need to be developed. This
is where combinators come in; functions that can combine tactics to produce new behaviour. In other
proof assistants these are sometimes referred to as “tacticals” [1].

We will first take a look at the multi function, which accepts a list of goals and a single tactic, and then
evaluates the tactic on each of these goals. The type is given below. A polymorphic version of the unit
type is chosen here so that it is compatiblewith all universe levels; its level is automatically inferred from
the implementation of the function.

multi : ∀ {ℓ} {A : Set ℓ} → List Goal → Attic A → Attic ⊤ℓ

This function arose from the need to apply the same tactic to a list of goals. Semantically, it should be
possible to execute the tactic program on each of the goals in parallel; the holes must be independent.
The instructionwas originallymeant to be a constructor of the Attic type, with the interpreter running
the tactic on each goal independently, and combining the results afterwards. This turned out to be im‑
possible to implement, as the runAttic functionmust also deal with the rests generated by branching
instructions. If the single tactic thatwe apply to every goal is a branching tactic, combining all their rests
so that each possible permutation is evaluated is not feasible.

Fortunately, we can avoid this problem by not implementing multi as a core instruction. If instead of
parallelising the evaluations, we serialised them, we could use the default chaining operation to auto‑
matically evaluate all possible permutations. The multi function can therefore implement the exact
behaviour we want to have, but without a dedicated instruction. By manipulating the proof state care‑
fully, it is possible to run the tactic on all the goals serially.

For each goal, we can generate an updateState instruction which captures the starting state. It re‑
turns a nearly empty proof state, which has that goal set as its only unsolved goal, as well as its focused
goal, and contains no solutions. The instruction it returns is one that runs the Attic instruction that
is to be executed for each goal, with another updateState instruction chained to it. This additional
instruction captures the state after the tactic was evaluated. It will check whether the original goal now
has a solution. If the solution exists, it will take all solutions from the after state, add them to the starting
state, and return this new state. If the solution does not exist, it will return the starting state without
modifications. The instruction it returns will always be the program produced by the recursive call to
multi (with the tail of the goals list), so that all goals will be processed by the tactic.

The tactic is evaluated in relative isolation, so it is not possible to access solutions that were previously
found, or even other goals. This is not a use case that Attic was designed for: goals are meant to be
mostly independent. If one tactic fails, the entire multi program will produce a failure, due to the
sequential nature and implementation of the Attic composition. We consider this to be working as
intended however, since the same behaviour would have been implemented for a ‘parallel’ version of
the function. It can be worked around by using the tryCatch instruction, which can be used to catch
soft failures and produce a success instead.

Using the multi function, we can implement another tactic combinator that works on multiple goals.
In Coq, the operator ; (semicolon) exists. When used as t1; t2, its meaning is informally described as
“apply t2 to every subgoal produced by the execution of t1 in the current proof context” [42]. We can now
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emulate this tactic using the functionalities provided in Attic. The largest challenge is deciding which
goals are generated in t1, and then running t2 on only those goals.

In Attic, this tactic has been named _ : ▷+·_ , and is defined as a left‑associative infix operator, allowing
for chaining. When used as a : ▷+· b , it will produce a tactic that first captures the starting state. It
will then execute tactic a as usual, but it will chain another instruction to it to capture the ending state.
The goals that exist in the before and after states are examined, and all the goals that exist after a was
evaluated, but not before, are selected. This list of goals is then used as the input to the multi tactic,
along with the tactic b that is to be executed on all these new goals. If no new goals are created, tactic
b is not executed, but the whole : ▷+· operation succeeds.

This method of computing which new goals have been created is not entirely safe. In theory, the first
tactic a can do anything with the current proof state as it pleases. It could clear all goals, add bogus
goals that do not relate to the original hole, or modify existing goals (by replacing them, but keeping
its identifying metavariable the same). The best that the _ : ▷+·_ function can do to work in the most
general case is to compare the lists of goals, and decide which goals are new. The tactic a is simply
treated as a black box. In practice, this approach works very well, and as long as tactics do not perform
any unsafe state modifications (or indeed any other changes we have not thought of), this combinator
works as expected. Due to implementation details of multi , the b tactic does not have access to
previously found solutions, or other unsolved goals.
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6 Evaluation
The work whichmost closely resembles, and has served as a direct inspiration for Attic, is the Ataca pro‑
ject originally developed by Jesper Cockx [9]. Ataca aims to fulfil the same purpose as Attic: both share
the goal of providing proof authors with tactics, but more importantly the ability to create new tactics.
Both libraries make use of Agda’s reflection API to carry out their tasks. Although their inner workings
are not the same, both libraries share a similar architecture. They take different approaches and make
different choices in certain trade‑offs. As a result, we believe it makes sense to directly compare the pro‑
jects, as both have their own strengths andweaknesses that the other does not. This sectionwill outline
a comparison between the Ataca and Attic projects. We will describe some of the similarities between
the projects, but the main focus here will be the points where both projects differ from one another.

Ataca has served as the main inspiration for the Attic project. In fact, some of the core concepts are dir‑
ectly adapted. As described in section 5 (which details the inner workings of Attic), Attic uses a system
where tactic programs are a chain of instructions. These instructions are then interpreted by a function
that canexecuteandevaluate them. Atacausesa similar implementation. Some instructionsarepresent
in both projects (albeit with a different name), whereas others exist in only one of the two projects. Still,
the core concept of dynamically generating programs that are then interpreted, with the goal of produ‑
cing a solution for the hole the program executes in, was inspired form the Ataca implementation. The
mechanism of turning such a chain of instructions into a TC operation is also inspired by Ataca, but
behave differently. The toMacro function in Ataca simply prints some diagnostic output and runs the
tactic program. On the other hand, the asMacro function in Attic first collects the necessary data to
create the initial goal and proof state, and then starts the process of finding and trying out the candidate
solutions.

6.1 Performance
Upon introduction to the Ataca project, it was mentioned that the performance degraded as tactic pro‑
grams became bigger, or had to do more searching. One of the design goals of Attic was ensuring a
consistent performance. This means that the evaluation time of tactics should not become extremely
long as the tactic instruction grows. Historically, no attempt was made to investigate why the runtime
of Ataca tactics would become longer. This thesis will also not investigate this phenomenon, beyond
some surface investigations. However, it is thought that the performance issues are related to the fre‑
quent use of compiler services, requiring many type checking operations.

As a result, in Attic the number of direct interactions with the compiler are minimised. This is achieved
by changingwhat data is storedbyAttic as the tactic programsare evaluated. For example, in Atacamost
tactics tend to start with a call to inferType on the hole. The Agda compiler will then decide the type
of the hole, which is vital information when a term must be constructed to fit in the hole. Attic, on the
other hand, will ask the compiler what the hole’s type is at the start of evaluation, and then passes this
value around using the Goal record. As the goal is stored, we no longer need to ask the compiler to infer
it. When new goals are created during evaluation, these are also assigned a goal type value if the type is
known.

Another example is the tracking of the current context. In Ataca, the context is always obtained using
a call to the getContext function. Obtaining the context in this way may occur several times during
the evaluation of a tactic program. Attic again changes this approach, and stores the context within its
Goal data structure. It will collect the context from the compiler at the start of the program, and from
that point onward the tactic author is responsible for ensuring that the context is set to the correct value.
Reducing the dependency on the compiler interface should speed up tactic evaluation.

To check this, we have set up an experiment tomeasure type checking times, and compare the resulting
times of Ataca and Attic. Both tactic libraries are not very extensive, and only contain basic tactics. If we
wish to directly compare both libraries, we should only use tactics that are supported by both libraries.
We have thus settled on using the intro tactic (which introduces a local variable/generates a function)
and the exact tacticwhich fills in an Agda term. These tactics exist in both libraries. The exact test code,
as well as the numeric results are given in appendix B, but we will discuss the experiment itself here.
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introTest0 : N
introTest0 = solution

introTest1 : N → N
introTest1 = solution

introTest2 : N → N → N
introTest2 = solution

introTest3 : N → N → N → N
introTest3 = solution

Listing 26: The automatically generated experiment test cases.

repeat : N → Tac ⊤ → Tac ⊤
repeat zero tac = return tt
repeat (suc k) tac = tac >> repeat k tac

repeatTry : N → Tac A → Tac ⊤
repeatTry zero tac = return tt
repeatTry (suc k) tac = (tac >> repeatTry k tac) <|> return tt

Listing 27: Different implementations of a tactic repeater. repeat is originally implemented in Ataca, andwehave
added the repeatTry implementatation. The Tac type is equivalent to the Attic type.

The idea here is quite simple: through automated code generation, we create a number of definitions.
Each definition is a functionwith n parameters of typeN, and returns a value of typeN. We can generate
several of these by ranging n from 0 to 100, and placing them in the same file; see listing 26 for an
illustration. By generating a large number of test cases with increasing complexity, our hope was to
observe a meaningful difference in performance between Ataca and Attic. Although we expected there
to be a slight difference, we did not expect this difference to be very meaningful.

The tactic we used to generate the term value for these definitions was fairly simple. In both Ataca and
Attic we repeatedly applied the intro tactic, up to 100 times. This was followed by a single application
of the exact tactic, which simply fills in the value 5.

We ran these tests on Agda 2.6.2.2, on Ubuntu 20.04.4 LTS, which itself ran within Windows Subsystem
for Linux 2 on Windows 10 21H2. The host machine uses an Intel® Core™ i7‑8750H CPU and has access
to 16 gigabytes of RAM. The test module was named Perftest.agda . We obtained the type checking
times by first deleting the Agda interface files ( .agdai ) which store the results of the type‑checking
process [6, Interface files], and then running agda -vprofile.modules:100 Perftest.agda . This
option enables profiling functionality andmakes Agda print howmuch time it spent (inmilliseconds) on
type‑checking each module, allowing us to exclude the time it spent type‑checking imported modules.
We have used this metric as our data source.

It turns out that the observable difference was enormous, far beyond what we initially expected. This
difference turned out to be unfair, since the implementation of repeated application that Ataca uses by
default is not veryoptimised. Itwill execute the tactic 100 times exactly. Once the intro tactic no longer
succeeds, it will never succeed again, but Ataca continued regardless. Attic uses a different implement‑
ation, where the repeated application is stopped once the tactic fails the first time, which can save a lot
of time. After all, if a tactic fails once, applying it again should generally not work. The implementation
difference is shown in fig. 6. To eliminate this difference, we have implemented the optimised version in
Ataca as well. We have measured the performance for both the unoptimised and the optimised version,
in both libraries. We refer to these as the slow and fast version respectively. The performance difference
between these implementations illustrates that, although their observable behaviour is the same, their
runtimes are very different. Writing code that does not perform lots of useless work remains imperative.
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Figure 6: A comparison of type checking times between Ataca and Attic.

An interesting point to note is that, in some cases, the Agda compiler does not seem to finish type check‑
ingwithin a reasonable time. Especially with the slow implementations, Agda starts using unreasonable
amounts of memory (around four gigabytes) and does not finish type checking, even if left undisturbed
for several minutes. CPU and memory usage remains high, but the Agda executable does not exit. The
slow Ataca implementation reached 8 parameters, but did not exit at 9. The fast Ataca implementation
reached 23 parameters. The slow Attic implementation reached 26 parameters, and the fast Attic imple‑
mentation reached 31 parameters before Agda seemed to hang on type checking.

A scatter plot of theperformance is given in fig. 6. This scatter plotwasnotmadeusing theaverage values
shown in appendix B, but uses all measurements we have collected. We have drawn exponential trend
lines through the points, but these primarily exist to illustrate and guide visually, as we are not sure that
the increase in time is accurately characterised by an exponential function. We also wish to point out
that the timeswe havemeasured here are cumulative; every successivemeasurement includes the time
of the previous measurement. The slow Ataca implementation performs the slowest, and is the earliest
to stop working. The fast Ataca implementation starts out faster than the slow Attic version, but they
soon switch places with Attic overtaking Ataca. The fast Attic implementation outpaces the others, and
is the last to cause Agda to hang.

These results should be taken with a grain of salt. The tactics are not particularly complex, and do not
involve any of the branching and backtracking mechanisms that Attic features, but Ataca lacks. Con‑
versely, we have not used tactics that deal with complicated types, as Attic cannot deal with these yet,
while Ataca can (this will be discussed in section 7.2). We are also unsure why Agda seems to hang in
some of our test cases, this might require further investigation.

6.2 Data storage
Compared to Ataca, Attic stores some additional information during evaluation. Although this optimisa‑
tion was originally intended to increase the runtime performance of the tactics (see section 6.1), it also
enables greater flexibility when implementing a tactic program. Most notably, the ability to set the con‑
text on aper‑goal basis turns out to be very useful. While thismachinery does requiremorebookkeeping
on the side of Attic, the flexibility we gain makes up for this.

Take for example the destruct tactic. This tactic takes an existing hole, and fills it with a term that
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discriminates on a value, so we may get multiple branches. In each branch of the resulting term, a new
hole is created. This allows us to continue evaluating tactics for each branch of the destruct term. Some
of the resulting patterns in the branches might bind new variables in the context. We would like the
bindings of each branch to be available to each of their respective holes (and the associated goals) that
are created.

The ability to set the context per‑hole is something that is not currently available in Ataca. This means
that setting the context of these holes is not possible. Attic stores the context of a hole inside the Goal
structure that is used to represent that hole. Choosing to focus on a different goal makes it possible to
switch between contexts easily, without having to ensure that the current context in which we are oper‑
ating (which can be modified with extendContext or inContext ) is set to the correct environment.
Interactions with the compiler that depend on the context are wrapped such that the context is always
set using inContext . Other operations within Attic abstract away from this notion of a global context,
and keep the context local to the goals.

6.3 Branching
Ataca and Attic use different methods to allow the selection of multiple options. Ataca comes with the
chooseTac instruction, which takes two Tac programs. It will try to execute the first program. If that
succeeds, the resulting state is preserved. If the first program fails (that is, it produces no solutions), the
state is rolled back and the second program is executed. The automatic state rollback happens because
of Agda’s built‑in runSpeculative function, which accepts a TC operation that returns a Boolean
value as its output. If the value is false, the state is rolled back. If the value is true, the Agda compiler will
retain the state. By chaining and nesting the chooseTac instruction, it becomes possible to produce a
list of different options that can be tried. It does not support backtracking, however.

Attic on the other hand takes a different approach. It has the branch′ instruction, which contains an
iterator of Attic tactic programs. Each of these tactic programs could generate a (partial) candidate
solution for the hole(s) they act on. If the program fails to generate a solution, the next program (if any)
is obtained from the iterator, and executed. If a program manages to produce a solution, the solution
is submitted to the Agda compiler for unification. If this process succeeds, a solution was found and we
are done. If the proposed solution is rejected, the branch′ iterator state is used again to generate the
next tactic programwhich, if it exists, is then evaluated to see if it yields a solution.

6.4 Unificationmethods
The timing of unification between Ataca and Attic differs greatly. Both libraries use the unify function
that is provided by Agda. This function accepts two terms, and unifies both terms, potentially solving
metavariables in the process. This is also the function that allows us to set the content of a hole, if we
unify the hole metavariable with a term. The main difference is in when the function is used. In Ataca,
unification happens instantly. If a tactic program has a candidate solution for an open term position,
it will immediately make a call to unify . Attic however is more lazy; if a tactic produces a candidate
solution, this solution will be added to a list of solutions. Once the tactic is fully evaluated, the list of
solutions is processed one by one, and each solution is unified with its associated metavariable. Within
Attic, this is known as deferred unification, since the final step of actually committing to a solution is only
done when an entire branch of the tactic program is evaluated.

Both approaches have their own advantages and disadvantages. In Ataca, a possible solution is unified
immediately. This is relatively straightforward to implement, it ensures that the compiler knows about
this value, and we will know about type errors instantly if the value results in one. Ease of implementa‑
tion shouldbe readily apparent, becausewheneverwecomeupwitha candidate solution,wecan simply
use that solution, and if it does not work we can catch the error and handle it appropriately. The second
point is the use of the termwhen obtaining type checking information. If a term is filled in, the compiler
can often use that value tomake new inferences about the types that are expected in other position, and
refine them further. Finally, it is useful to get immediate feedback if it turns out that a value cannot be
used. Trying to unify an invalid valuewith the existing solutions is a clear signal that this path should not
be explored further, if other choices can bemade.
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The deferred unification approach has its own advantages. The main advantage is that it gives proof
authors greater control over how non‑deterministic tactics generate solutions. This makes Attic more
flexible. Using the primitives that Attic provides for iterators (as well as some of tactics that encapsulate
iterator functionality) many different combinations can be constructed. Backtracking can also become
cheaper; instead of having to rely on the compiler to indicate that something is awry, we can rule out
entire values easily before a unification attempt is made. These benefits aren’t easily achieved with im‑
mediate unification.

The biggest drawback of deferred unificationmight be the lack of type information that the compiler can
provide when deferred unification is used. Figuring out what the type of a goal should be can be very
challenging in some cases. Inductive data types have recursive definitions, so someof their constructors
have parameters that are the same type as the constructor’s type. Internally, Agda represents this as a
variable that points to a location in the type’s telescope. We cannot use this type directly, because that
telescope may not always be available. Instead, it is possible to normalize the types, and substituting
any variables that reside in them. Such a normalisation is complex, and Agda does not offer an API that
does this for us. It could be implemented manually in Attic, but the information we gain from it is likely
not as complete as the rich type information that Agdaoffers. For example, determining indices on types
would require evenmore pattern matching beyondmere substitution.

6.5 Backtracking
Another difference between Ataca and Attic is the backtracking mechanism. Ataca does feature some
backtracking. This is achieved using an instruction that attempts to execute one tactic program first,
and if that fails it tries the second tactic. If a tactic produces a failure (explicitly, or due to a unification
failure) this mechanism is triggered. Many of these failures will be the result of catching errors that were
thrown from the type checker.

A failure mechanism also exists in Attic, but Attic makes the distinction between two types of errors. It
supports hard errors which indicate a failure state from which no recovery should be attempted, and
the interpreter will not attempt to backtrack from these. Alternatively, there are soft errors which simply
indicate that evaluation of the current branch should not continue. These errors are recoverable and
as such the interpreter will continue with another branch, if one exists. Most tactics will produce the
soft failure (not applicable, no solution exists), whereas the hard failure is reserved for erroneous states
(invariant does not hold, no unsolved goal exists). Agda’s type checker should not produce errors during
evaluation, only during the unification phase.
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7 Future work
In this sectionwewill discuss some of thework that could be done to improve the Attic project. Some of
these topics consist of features for which there was not enough time to complete them in the timeframe
of this project. Others are suggestions that would improve the reflection API in Agda. And finally, some
are bugs in the project that were known at the time of writing, but have as of yet not been resolved.

7.1 Propagation of solvedmetavariables
As goals get solved by tactics, the metavariables that they represent get solved. This solving is done
at the end, using the unify function from the compiler API. A goal is marked as solved by removing
it from the list of unsolved goals, and adding a solution (that points to the original goal) to the list of
solutions. Other goals remain unchanged. This is a problem, because these other goals may depend on
the metavariable that we have just solved.

Instead of leaving the other goals unchanged, we should propagate our solution through the other un‑
solved goals. If any of these goal’s types contain themetavariable thatwe have solved, we should substi‑
tute this metavariable with a concrete (or rather, more refined) term. This currently does not happen. If
deferred unification was not used, and immediate unification was used instead, we could simply query
the compiler for the expected type. Because of deferred unification, we cannot do this. To implement
this properly, we would have to implement some of the functionality that the compiler’s type checker
already implements, but is not accessible to Agda code.

7.2 Normalisation of types containing variables
Attic was built on the assumption that the type of a hole (and by extension, a goal) is known. This way,
each tactic could simply examine the goal’s target type and decide whether it applied to this goal, and if
so, how to proceed to generate a term for this type. In practice this turns out to be harder than expected
when generating subgoals. Suppose that we use a tactic to generate a value of type Vec Bool 2 , and
use repeated application of the constructor tactic to fill it. This tactic should, through repeated trial,
find a value that fits in this hole. The correct first step of the solution is to use the _∷_ constructor, which
will spawn two subgoals. One subgoal has the type Bool , and the second has the type Vec Bool 1 .

In practice this turns out to bemuchmore complicated. The _∷_ constructor has a number of paramet‑
ers, both explicit and implicit (see listing 28). Internally these variables depend on each other, which
Agda represents internally using variables in De Bruijn notation. See fig. 7 for an illustration.

_∷_ : {a : Level} →
{A : Set a} →
{n : N} →
(x : A) →
(xs : Vec A n) →
Vec A (suc n)

Listing 28: The full type of the vector _∷_ constructor.

When Attic evaluates the constructor _∷_ , it will naively decide that the type of the second hole must
be Vec (var 2) (var 1) , which is simply the type that the compiler gives us when we query the
constructor type and match these up with the type arguments on the original vector type. This is per‑
fectly fine when these variables are actually in scope (as sorts), but when we store this type in a goal
as‑is (without the type telescope) Agdawill rightfully complain that De Bruijn index 2 does not exist. Our
problem would be solved entirely if we could resolve this type to Vec Bool 1 before turning it into a
goal, as this would eliminate the variables from the type, andwewould once again have a concrete type.

In practice this turns out to be quite complicated. We would need to traverse the type expression and
substitute all var termsby the term they actually point to. Thiswouldnotbe entirely trivial, but itwould
bedoable. Wecanstep througheachof the typeparametersone‑by‑one, and replace thevariables,while
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Figure 7: Internal representation of the parameters of the _∷_ constructor of the Vec type in Agda’s standard
library, including implicit parameters. Their types are shown as well. The parameters are a (level of the data struc‑
ture), A (the type of elements it contains), n (the length of the vector), x (the head of the vector), xs (the tail of
the vector). De Bruijn indices are indicated with arrows and colour coded.

wealso extend our telescope at each step tomake sure that the DeBruijn indices remain in lockstepwith
our parameters. More difficulties appear when we have to start resolving the type indices (which is, for
the Vec type, only the length parameter n ). With every next tail, the length value decreases. Ensuring
that this solution works for any indexed data type is not trivial, and would require pattern matching
to figure out what the next index should be. To make matters worse, types are sometimes simply not
concrete. Universally quantified typeswill always contain variable terms, as they necessarily refer to the
variable that is generalised over.

A solution to this problem is not obvious to us. It may be possible to implement an algorithm that can
handle all these cases well. But at the same time we must wonder whether implementing such an al‑
gorithm in Attic would be worth it. After all, the Agda compiler already handles these cases. Perhaps it
would be favourable to build a hybrid system, where unification typically happens at the end (keeping
the deferred unification for most cases) but also allowing some terms to be unified early. Once unifica‑
tion of such a term occurs, we could interrogate the compiler about our existing unsolved goals, and see
if it has refined them, and if so, adopt these refined types and replace the ones we currently have stored.

7.3 Garbage collection of metavariables
When tactics create new subgoals, theymust create ametavariable which represents the subgoal’s hole.
Metavariables can only be created through compiler interactions, as they are part of the compiler’s in‑
ternal state. When metavariables are not solved, the compiler will emit warnings for them, and com‑
pilation will fail. As such, section 5 describes a rollback mechanism: if evaluation of a branch does not
succeed, the entire compiler state is rolled back (using the runSpeculative operation). The rollbacks
act as a garbage collection mechanism for metavariables that are no longer in use.

However, it turnsout that this approach is not correct. When theAttic interpreter encounters abranching
instruction, itwill evaluate only the first branch. Theother possible branches are storedawayas closures
which can be evaluated later, such that computation resumes where it left off. The unfortunate reality is
that this approach does not take side effects into account.
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Figure 8: An evaluation flow displaying how incorrect garbage collection results in an Agda panic.

This is illustrated with an example in fig. 8: we have a tactic which creates a metavariable (meta 1) and
then branches. The first branch creates its own metavariable (meta 2) but ultimately fails to produce a
useful result. The compiler state of the entire path is rolled back, so that all metavariables we created
along the way are destroyed. Evaluation resumes in the second branch, which also generates its own
metavariable (meta 3). But when this path attempts to usemeta 1 in any way, the compiler immediately
panics and halts computation, telling us that the metavariable does not exist. This is true; the rollback
destroyed the metavariable, but Attic is not aware of this fact.

Obviously,meta1 should still exist in the secondbranch, butmeta2 shouldnot. Thebestway to solve this
wouldbe to introduce rollbackopportunities inmoreprogram locations, so thatmore granular rollbacks
can be performed. Such a solution would allow us to delete meta 2 from existence, without affecting
meta 1. Regrettably, we are unsure how such granular rollbacks can be implemented given the current
evaluation design of Attic, and the available API functions that Agda exposes. Perhaps it would be best
to not use closures at all, but to simply restart the entire evaluation for every branch. This would at least
allow us to start from an empty state, so there would be nometavariable pollution from other branches.

An alternative to the granular rollbacks would be to keep track of the metavariables that have been cre‑
ated and ensure that they are, in some way, cleaned up when the tactic evaluation finishes. This would
require some refactoring of the current Attic evaluationmechanism, butwould likely not require any sig‑
nificant architectural changes. We can then, at the end, filter outwhichmetavariableswere never paired
with a solution, and ensure that they no longer result in compiler warnings. The best way to do this is
to ask Agda to forget about the metavariable, but this is not currently possible. Instead, we could unify
the metavariable with a simple term (such as tt , true or zero )6. Such a solution ensures that the
metavariable is no longer unsolved, and since it is not used anywhere, we can fill in whatever term we
please. We do believe that this solution is not a very nice one, and ought to be described as ‘a bit of a
hack’.

6A caveat we wish to note is that unifying with a simple term only works if that term is an instance of the hole’s type. If the
term is of a different type, Agdawill reject this unification. In Attic this would work well, because all generated holes have the type
unknown . Any closed term can thus be used as a solution. In the general case, this is untrue.
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Alternatively, changes couldbemade to theAgda reflectionAPI toallow for thedeletionof unusedmetav‑
ariables. Instead of unifying the metavariables with a useless term, we could simply ask Agda to delete
them. This is a potentially dangerous operation, as deleting a metavariable that is used elsewhere may
result in the panicswedescribed earlier. An nicer approachwould be to ask Agda to ‘forget’ aboutmetav‑
ariables that are not used anywhere, so that we do not get warnings if one is not solved. This approach
could still cause problems for users of the reflection API, if they ask Agda to garbage‑collect the unused
metavariables and then try to use these deletedmetavariables. We do not know how feasible such func‑
tionality would be, and if the current Agda compiler implementation would allow for it.

7.4 Name preservation in the reflection API
Internally, Attic keeps track of the (string) names of variables it creates. This is achieved because the
data type that Attic uses to represent telescopes7 has a string name annotation for each variable. When
Attic generates a match pattern on a constructor, it will use the names of that constructor’s parameters
internally. This is admittedly a heuristic, as the reflection API does not allow us to specify a name when
declaringmatch pattern variables, only an index. When Agda pretty‑prints the pattern to source code, it
will try to use the same name as the constructor’s parameters specify, but if that name is already taken
it will generate fresh names. The functions that deal with telescopes ( getContext and inContext )
also do not use any string names.

In most cases this is not a problem. Attic generates variables using De Bruijn indices, and uses these in‑
ternally for all purposes, as they arenot ambiguous. There is an edge case that canbeencounteredwhen
we elaborate and give a tactic in which not all metavariables are solved (and thus result in holes in the
source code). Although thesemetavariables were createdwith the correct context, Agda’s pretty‑printer
can (and will) assign different names to the variables in patterns and the variables that are associated
with ametavariable. For example, if wematchonanatural number, and generate a patternmatch for the
suc constructor, Agda will pretty‑print this pattern as (suc n) . Attic correctly prepends this variable
to the telescope. Butwhenwe then execute theGoal Type and Context editor command in the generated
hole, Agda will say that the first variable in the context is “ x : N (not in scope)”, as Agda has internally
assigned another variable name (‘x’) to the new variable that Attic prepended to the telescope.

This is not a major problem, and will be automatically corrected when we reload the file. Reloading
causes Agda to match the names in the metavariable context with the names in the pattern. Still, it is
a mildly annoying problem that cannot be worked around by Attic. Fixing this gap requires a change to
the Agda compiler API, providing the ability to specify names of variables. This would not be a trivial
change, however. Adding string names here and there would require breaking changes to the API, and it
would likely introduce problems, as the ambiguity of strings are the main reason that De Bruijn indices
are used in the first place.

7.5 Less restrictive type assignability
Some tactics require a function that decideswhether a value canbeused in a certain place. This requires
checking type compatibility. Take for example the assumption tactic, which goes through the variables
that are already in scope, and tries to solve the current goal with each of these variables. Should any
variable fit, it will certainly be found. However, we could reduce the number of tries by first filtering the
the list of variables in scope to only those that have a chance of fitting. After all, a natural number could
never be used where a Boolean value is expected.

This couldbedecidedbya function. The functioncould take two types, and thendecidewhether theyare
‘compatible’ enough to warrant trying. We are purposefully not defining this compatibility, because it is
intended to be a heuristic that is good enough formost purposes. The actual assignability should always
be checked by the compiler. This brings us to the issue at hand; Attic currently has a rudimentary (and
incorrect) assignability check, which uses the standard library to check if types are definitionally equal.
This check is too restrictive, and rules out variables thatmay actually fit, even though their types (which
includes implicit arguments) are entirely equal. By removing the filtering behaviour, the assumption

7The telescope that Attic uses is simply the Telescope type as defined in Agda’s standard library.
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tactic behaves correctly again, but it may suggest solution that could be quickly ruled out by a heuristic.
In the future, this heuristic could be added.

7.6 Less restrictivemulti‑operator
The multi operator (see section 5.7.2) evaluates the same tactic on a list of goals. It currently creates
an entirely new proof state for each goal it evaluates, which contains only that one goal in the list of
unsolved goals, focuses that single goal, and contains no solutions. Tactics thus do not have access to
any previously found solutions, and are not able to make changes to the existing proof state. It could
almost be said that the tactic runs in some sort of ‘sandbox’, completely isolated from the other tactics.
This also makes it easier to observe what the tactic has done, and copy the solutions it has found to
the original proof state. Perhaps this could be improved in the future, so that tactics that are run within
multi retain access to the original proof state, including its unsolved goals and found solutions.

7.7 Development of more tactics
A fairly obvious improvement thatwebelieve still should be touchedon is the lack of usable tactics. Attic
contains a few tactics, but nowhere near enough to be a viable tool to prove complex theorems. Attic
was not intended to be a fully featured proof assistant built on top of Agda. Instead, its purpose is to be
library upon which new approaches to tactics can be developed, with which authors can develop new
tactics. Still, shipping with a number of tactics built‑in would be a welcome addition.

7.8 Improvements to cartesianN
The Cartesian operator thatwas implemented for iterators (section 3.3.2) was originally implemented as
a demonstration of the power of iterators, showing that non‑trivial operations on these data structure
are feasible, while adhering to the totality requirements that are set by Agda. The operation is already
quite general; it supports an arbitrary number of iterators, each with their own type, and requires users
of the operation to provide a function that combines each of these values into a single value. The only
restriction is that each of these types must have the same level. It is almost certainly possible to gener‑
alise the type of the operation even further, such that every type can have a different level. This was not
implemented in Attic because we have not deemed it necessary to do so for our purposes, but a more
general implementation would be desirable.

A small performance improvement could be achieved by storing the iterator elements differently. Every
time the source iterators are stepped, the resulting output values are appended to the end of the vectors
we use to store the obtained elements. This makes it easier to index the elements later. Appending to
the right is a relatively slow operation because of how lists are implemented. By using left‑append only,
and changing how indexing is performed, this slowdown can be avoided. We do not expect this change
to result in a significant speed‑up.
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8 Related work
This section describes some of the previously existing works that relate to the problem that this thesis
attempts to solve. We have already discussed themain inspiration, Ataca, in section 6. This section aims
to give a further overview of related techniques and approaches.

Beforediving into the relatedwork,we firstwish tonote thatAgdadoeshaveamechanism forautomated
proof search [6, Automatic Proof Search (Auto)]. This function is exposed to editors that are aware of
Agda through editor commands, where it is typically named ‘Auto’. It is also referred to as ‘Agsy’, which
is the external tool that implements the search algorithm. Any solution that is generated by Auto is still
checked for correctness by Agda. Auto cannot usually find solutions for larger problems, and there are
various other limitations [6]. It ships with Agda and is written in Haskell, making it hard to customise,
and in some cases it will generate solutions that turn out to be invalid. Despite these limitations, it is still
a useful tool for both proving and programming.

8.1 Auto in Agda
Using Agda’s reflection interface to implement programs that search for solutions is not a new idea. In
fact, this appears tobe theprimary reason for its existence [6]. Anearlier approachat simplifying theuser
experience of creating custom tactics is ‘Auto in Agda’ [43]. (Note that this is not the auto functionality
we described above.) In this work a library is developed which allows for proof search within Agda itself.
It has the advantage ofwriting proofs in Agda itself, so users neednot learn a new language inwhich they
must express proofs. Instead of writing tactics directly, users of the library are expected to create hints,
which are the rules that may be used during resolution. These hints can be added to a hint database,
which is then fed into the auto tactic that creates the initial proof state. Both values are then passed
into a solve function, which aims to find solutions to the open goals that still remain.

In some regard, ‘Auto in Agda’ is similar to Attic. Both are libraries that use the reflection API to prove the‑
orems. Both systems generate a data structure of candidate solutions which they search through; a rose
tree in ‘Auto in Agda,’ and an iterator in Attic. The way iterators are used could be seen as a flattened
depth‑first search through a tree. Overall though, the libraries are quite different; instead of trying to
automatically find solutions using user‑defined rules, Attic operates through user‑defined programs to
generate and evaluate candidate solutions, using non‑deterministic tactic programs and compiler func‑
tionality. It may be possible to emulate ‘Auto in Agda’ in Attic by creating a branch′ instruction that
tries many different (possibly high‑level) tactics.

8.2 Tactics in the Coq realm
The language Ltac (often written as Ltac when typesetting is not available) is the default tactic language
for theCoqproof assistant [15, Ltac]. Ltac has servedasa superficial inspirationofwhat the tactics inAttic
should look like. Ltac aims to be “the real link between the primitive tactics and the implementation
language (Objective Caml) used to write large tactics” [2]. It is designed in particular to deal with the
details of proof automation that can be tedious for humans. A specification of the Coq internals is not
required to write tactics, the code length is shorter and more readable, and as a consequence of the
latter proofs are more maintainable [2]. Attic aims to fulfil these outcomes as well. By providing the
building blocks to define user‑created proof tactics, both Ltac and Attic enable authors to write large
tactics that manipulate the proof state on a high level. The proof tactic itself does not have to be large;
it can be composed of smaller tactics, resulting in a tactic that is shorter, easier to read, and thus easier
to maintain.

We have chosen not to emulate Ltac in full; instead we have adopted only some of its syntax and se‑
mantics. The original Ltac has been described as having unclear semantics, lacking expressivity, and
being error‑prone and fragile, among other accusations [15, Ltac2] that we would prefer to avoid. Work
on a successor to Ltac has already begun in past years; Ltac2 was meant as a proposal to replace Ltac
[44] and has since grown to become an experimental part of Coq, with the authors encouraging users to
test it [15, Ltac2]. Ltac2 is designed to be similar to Ltac, while avoiding its pitfalls and adding language
features that are commonly found and desired in modern languages. For example, it has a type system,
and allows for the definition of data types. It also provideswell‑definedmonadic semantics and ensures
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that all variables are bound statically. As our language is defined as a domain‑specific language in Agda,
we get most of these benefits automatically.

Additionally, aproof automationeffort using reflectionhasalsobeendeveloped forCoq. TheRtac system
was developed tomake it less cumbersome to build reflective tactics in Coq [45]. Instead of building full
proof objects, computations that result in a proof term can be used to prove a theorem. Rtac tactics are
fully evaluated insideCoq, just likeAttic tactics (andother reflectionprograms)areevaluated insideAgda.
Reflection tactics in Coq do turn out to be much faster than regular proofs written in Ltac (not manual
proof term construction) in some cases, even though they are checked twice; once for constructing the
proof, and once for checking by the proof kernel [46].

8.3 Edit‑time tactics in Idris
Idris is another programming language with support for dependent types. Although it can be used as a
proof assistant, it is intended to be a general purpose programming language, as an answer to the ques‑
tion “What if Haskell had full dependent types?” [47] and touts modern features that mature languages
already support, but are not as prevalent inmost proof assistants. Idris has the concept of editor actions
backed by the compiler machinery, which is similar to the editor commands that we have seen in Agda.
These editor actions are hard‑coded into the Idris compiler, and adding new commands would require
modifying the compiler source code, which is not very practical. To make the creation of custom editor
actions more accessible, metaprogramming support was added to Idris by [3].

Much of the work done in [3] focuses on the compiler infrastructure that is required to support meta‑
programming. This includes communicationwith the compiler, serialisation of data, and the definitions
of data structures in the Idris standard library. Such a reflection API has already been added to Agda
previously [48] and was used to create proofs through reflection [49], [50]. As a demonstration, [3] has
added a two customeditor actions that canperformvarious tasks. The first action, whenused on a value
declaration, can add an accompanying definition clause. The second action is a tactic named Hezarfen,
which is able to decide intuitionistic propositional logic theorems.

Although Attic and ‘Edit‑Time Tactics in Idris’ do not attempt to accomplish exactly the same goal, there
are somesimilarities betweenAttic and the Idris sideof tactic implementations. InAgda the TC monad is
used to specify computations that involve the compiler, while in Idrisweuse the Elab monad (which is a
shorthand for elaborator reflection). Similar data and operations are provided by both compilers. Both
libraries by default operate on the raw syntax terms that the compiler provides. But Attic introduces
non‑determinism and deferred unification to reflection‑based tactics. Perhaps it could be said that the
tactics in [3] are currently more similar to the Ataca project than they are to Attic.

8.4 Iterators: backtracking and streaming
In [51], a library named LogicT is presented with which backtracking computations can be added to any
Haskell monad. This paper gives an overview of existing mechanisms for backtracking, including the
List monad, as well as the MonadPlus interface. It extends these mechanisms with new operations
that are intended to make the existing non‑determinism evaluations fairer. For example, it adds an in‑
terleave operator which, as its name implies, takes two non‑deterministic values and interleaves the res‑
ults they produce. Another example are the cut functions, which allow for pruning of the search results.
These implementations have been adapted to the iterator type, allowing users to create and combine
iterators in fair ways. Iterators also serve as the primary data structure that is used for backtracking in
the Attic type, fulfilling the same role as the backtracking mechanisms in Haskell.

Iterators are indirectly based on [33], specifically the data types Step and Iterator that are defined
inside the Attic library, which are based on the Step and Stream types respectively. Unfortunately,
we were not aware of this contribution until relatively late in the writing of this thesis, and have re‑
discovered many of the ideas and operations implemented therein. The same operations that exist on
the Stream type can be implemented for Iterator : both supportmapping, filtering and folding. The
concat function is also implemented for nested iterators, and when composed with map serves as the
implementation for themonadic bind function. We have added the bound field, which can give a rough
estimateof how long the sequence shouldbe,which canbeauseful indicator for consumers of iterators.
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9 Conclusion
In this thesis we have implemented a new library with which proof authors can write their own custom
tactics for Agda. These tactics are based on the reflection system that Agda exposes, and can be turned
into Agda macros with ease. In addition to a new way of writing macros, we have implemented a new
data structure in Agda that can represent both finite and infinite sequences, opening up new possibil‑
ities in Agda. Together, these implementations can suggest solutions, check these solutions with the
compiler, and fill holes in the source with correct terms.

From the start, there have been twomain goals: the tactic systemmust offer backtracking mechanisms
and let users control evaluation; and usage of tactics must not be too complex and low‑level. Addi‑
tionally, as a secondary goal, the performance of tactic evaluation should be good. With these goals
in mind we have built a the machinery that can support a tactic language with non‑deterministic evalu‑
ation strategies. We have also implemented tactics that abstract awaymany of the common operations
that are required to generate terms that serve as proofs. This allows for the development of high‑level
proof scripts. These tactics can be composed, adapted or combined in other ways to facilitate complex
problem solving behaviour.

To make searching for values easier, we have implemented an iterator type in Agda. With iterators it is
possible to generate infinite sequences, but they may also stop producing new values. These iterators
can be combined in interesting ways, and can be used for serious applications. Iterators also serve as
the data type that is used for the branching instruction in tactics. As a result, tactics can theoretically
branch on infinitely many values. Evaluation still remains finite, but may be incomplete.

Attic is still highly experimental, and the tactic library is still very incomplete. Basic theorems can be
proven with Attic, but generating terms for larger and/or more complex types is still out of reach. This is
mostly due to issues in Attic that have not been solved yet. We suspect that themost problematic issues
so far are types containing variables (section 7.2) and the lack of solution propagation when metavari‑
ables are solved (section 7.1). These problems are both related to the deferred unification mechanism
that Attic employs: usually one would rely on the compiler to tell us which type is expected, but here we
cannot do that, as we have tried to minimise our interactions with the compiler.

One of the secondary goals of the thesis project was to build a system whose runtime performance is
better than that of the Ataca project. From the small performance comparison, we can conclude that
Attic appears to perform better in terms of run time. An extensive comparison is not yet possible; both
Attic and Ataca are stubs of tactic languages, and both languages do not have enough tools available to
significant conclusions about their performance.

Overall, webelieve that this project has resulted in useful insights regarding tactics in Agda. Addingback‑
tracking mechanisms to the core instructions means that tactics become much more flexible, and can
allow tactic authors to find solutionsmore easily. At the same time, the deferred unificationmechanism
makes it so that gathering type information is much harder than we would like. The various optimisa‑
tions do make the evaluation of tactics quite a bit faster. Perhaps a hybrid approach could be created
from the best of both worlds, where stored solutions can be committed halfway, and new information
would then be retrieved from the compiler. We are sure that this brings about more engineering chal‑
lenges, but might also result in a sweet spot of tactic development for Agda.
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A Glossary
• API: An interface between different software components, where one piece of software exposes
services or routines to another piece of software.

• Closed term: A term that contains no free variables.

• Desugaring: The removal of syntactic sugar. Syntactic sugar is syntax that only exists for con‑
venience of reading and writing code, but is not actually a language construct. Syntactic sugar is
usually transformed into another lower‑level representation.

• Edit‑time: The term “edit‑time” is a wordplay on the words “run‑time” and “compile‑time”, and
refers to the time when a program is still being written in an editor [3], [37].

• Metaprogramming: Metaprograms are programs that operate on programs. By extension, meta‑
programming is the act of programming programs that operate on programs. This typically refers
to the creation of programs that write or modify programs.

• Pragma: A comment that specifies additional information to the compiler. These comments are
not ignored by the compiler, but actually carry meaning that may change the compiler’s output.

• Telescope: Within the Agda compiler, a telescope is a list of variables that are bound in the current
scope. In some telescopes, each entry has an associated string name; other telescopes only carry
the types.

• Thunk: A value that is yet to be evaluated. In Haskell (and by extension Agda) these objects are
used to implement lazy evaluation, which means that an expression is only evaluated when it is
actually required.
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B Ataca and Attic time comparison
This appendix contains the code and results of the performance comparison between Ataca and Attic.
Listing 29 displays the code of which the type checking time was measured in the Ataca library, and list‑
ing 30 displays the code of which the type checking type was measured in the Attic library. Each meas‑
urement was run five times, to rule out random noise. Table 1 lists the averages of our measurements.
The baseline compilation times are given in table 2, to give an overview of how long type checking takes
when no tactic macros are used. Details of this experiment and discussion can be found in section 6.1.

module Ataca.Perftest where

open import Data.Nat using (N)
open import Data.Unit.Polymorphic renaming (⊤ to ⊤ℓ; tt to ttℓ)
open import Ataca.Tactics.BasicTactics
open import Ataca.Tactics.Exact
open import Ataca.Tactics.Intro
open import Ataca.Core
open import Ataca.Utils

repeatTry : N → Tac A → Tac ⊤ℓ
repeatTry zero tac = return _
repeatTry (suc k) tac = (tac >> repeatTry k tac) <|> return _

intros100Slow = repeat 100 (intro' <|> return _)
intros100Fast = repeatTry 100 intro'

solution′ = intros100Fast >> (exact' {A = ⊤} (quoteTerm 5))

macro
solution = runTac solution′

-- Paste generated cases below this line

introTest0 : N
introTest0 = solution

introTest1 : N → N
introTest1 = solution

introTest2 : N → N → N
introTest2 = solution

introTest3 : N → N → N → N
introTest3 = solution

-- etc...

Listing 29: The performance evaluation code in Ataca. This code includes the repeatTry function we added,
which allows Ataca to runmuch faster than the default implementation.
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module AtticTest.Perftest where

open import Data.Nat using (N)
open import Attic.BasicTactics
open import Attic.Macro
open import Attic.Monad
open import Attic.Tactics.Exact
open import Attic.Tactics.Intro

intros100Slow = repeat 100 (try intro)
intros100Fast = repeatTry 100 intro

solution′ = intros100Fast >> (exactSyntax (quoteTerm 5))

macro
solution = asMacro solution′

-- Paste generated cases below this line

introTest0 : N
introTest0 = solution

introTest1 : N → N
introTest1 = solution

introTest2 : N → N → N
introTest2 = solution

introTest3 : N → N → N → N
introTest3 = solution

-- etc...

Listing 30: The performance evaluation code in Attic.
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Max. parameters Ataca slow (ms) Ataca fast (ms) Attic slow (ms) Attic fast (ms)
0 629.6 200.4 349.8 57.4
5 10200.8 574.8 1954.6 194.2
8 27352.4 1493.2 3175.6 512.8

10 2244.6 4894.2 748.0
15 7087.4 7679.0 1976.4
20 15068.0 12133.2 5164.6
23 26459.4 20922.2 7302.4
25 23241.6 11094.6
26 31073.4 11854.8
30 22633.4
31 31172.6

Table 1: Averages of the type checking times. Empty cells represent the lack of a measurement value because the
compiler did not finish type checking.

Baseline measurement Ataca slow (ms) Ataca fast (ms) Attic slow (ms) Attic fast (ms)
1 181 184 53 53
2 181 195 55 52
3 189 181 53 55
4 187 183 55 55
5 180 183 52 56

Average 183.6 185.2 53.6 54.2

Table 2: Baseline compilation times for both methods if no tactic macros are used.
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