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ABSTRACT

The analytial solution is derived for rotational fritional �ow in a shallow layer of �uid in whih the top

and bottom Ekman layers join without leaving a fritionless interior. This vertial struture has signi�ant

impliations for the horizontal �ow. In partiular, for a layer of water subjeted to both a surfae wind

stress and bottom frition, the vortiity of the horizontal �ow is a funtion not only of the url of the

wind stress (the lassial result for deep water known as Ekman pumping) but also of its divergene. The

importane of this divergene term peaks for a water depth around 3 times the Ekman layer thikness. This

means that a url-free but non-uniform wind stress on a shallow sea or lake an, through the dual ation

of rotation and frition, generate vortiity in the wind-driven urrents.

We also �nd that the redution of three-dimensional dynamis to a two-dimensional model is more subtle

than one ould have antiipated and needs to be approahed with utmost are. Taking the bottom stress

as dependent solely on the depth-averaged �ow, even with some veering, is not appropriate. The bottom

stress ought to inlude a omponent proportional to the surfae stress, whih is negligible for large depths

but inreases with dereasing water depth.
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1 Introdution

The e�et of frition in rotating �ows is governed by the Ekman number, and it is well known (Prie et

al., 1987; Cushman-Roisin & Bekers, 2011) that, for an Ekman number muh smaller than unity, the role

of frition is signi�ant only in thin layers near the top and bottom boundaries, alled Ekman layers, and

oasionally near lateral boundaries, in so-alled Stewartson layers (Bennetts & Hoking, 1973). Away from

these boundary layers, in the body of the domain alled the interior, the e�et of frition is felt indiretly.

The primary signature is the Ekman pumping, a vertial veloity that starts at the base of the top Ekman

layer as proportional to the url of the surfae stress and ends at the top of the bottom Ekman layer as

proportional to the url of the bottom stress. On the β−plane, the surfae and bottom stresses may di�er,

and the Ekman veloity may vary over the vertial, but on an f−plane, the Ekman pumping veloity must

be uniform over the vertial, and the surfae and bottom stresses be equal (Cushman-Roisin & Bekers,

2011).

The situation beomes muh more omplex when the rotating domain is shallow enough for the top and

bottom Ekman layers to merge, leaving no fritionless interior. The behavior of the vertial veloity is muh

riher, and the onept of Ekman pumping is no longer helpful. The bibliography of this work is limited

beause, although the governing equations are straightforward, the analytial solution of the linearized

problem is tedious and tends to obsure the properties of the �ow.

Extending Ekman's seond paper on fritional rotating �ows (Ekman, 1923) and with the fous on

storm surges in shallow seas, Welander (1957) onsidered the ase when �the depth of fritional in�uene�

is omparable to the water depth and arrived at the onlusion that the wind-stress divergene may be of

the same importane as the wind-stress url in governing the streamfuntion of the depth-averaged �ow,

but he did not onsider the vertial veloity and quikly proeeded to the time-dependent ase of a storm

surge. In the 1970s, when eletroni omputers �rst beame available and used for storm surge foreasting,

they were not yet apable of handling three-dimensional grids, and a �urry of work ensued to redue the

3D equations to 2D equations by pre-solving for the vertial pro�le of the horizontal veloity. This work

(Jelesnianski, 1970; Forristall, 1974; Cheng et al., 1976; Nihoul, 1977) largely foused on the e�ets of

a vertially varying eddy visosity to obtain the bottom stress in terms of the depth-averaged horizontal

veloity. No attention was paid to the vertial veloity. A deade later, as 3D numerial models ame into

being, Lynh and O�er (1985) paid renewed attention to the vertial struture of visous rotating �ow

in order to provide analyti solutions as test ases for 3D hydrodynami models. Like their predeessors,

they hose depth-varying eddy visosities and took the bottom stress as aligned with and proportional to

the depth-averaged veloity. Their solutions are ast as solutions to an eigenvalue problem in the vertial,

whih requires the numerial solution of a 1D equation.

In this work, we ask di�erent questions: What happens to the onept of Ekman pumping when the

Ekman number is not small? What is the vertial pro�le of the vertial veloity? How do loal wind-stress

url and divergene a�et the depth-averaged �ow? And, under whih onditions an the bottom stress be

taken as parallel to the depth-averaged veloity? The answer to the latter points to unexpeted di�ulties

in the redution of 3D dynamis to a 2D model and might ast doubts on the auray of past 2D models.

2 Top-to-Bottom Ekman Dynamis

We are onsidering a shallow �ow of water of uniform density subjet to an imposed surfae stress at the

top and no slip along a �at horizontal bottom.

We solve the lassial Ekman dynamis problem in the ontext of the following assumptions: f -plane
(with f > 0 for onveniene), low-Rossby number (to permit the neglet of nonlinear advetion terms

and failitate the analysis), hydrostati balane (∂p/∂z = −ρg), onstant density ρ (no strati�ation), �at

bottom and rigid lid (−H ≤ z ≤ 0, H = onstant), eddy visosity model with uniform eddy visosity ν,
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and imposed surfae wind stress (τx, τy funtions of x and y).

We reognize that the neglet of the temporal derivatives and nonlinear advetion terms is not justi�ed

in many irumstanes, but we nonetheless ignore those terms here to plae the fous on the ombined role

of Coriolis and frition fores in a mathematially tratable fashion, with the underlying hypothesis that

the main �ndings of our study will ontinue to hold at least qualitatively in the broader dynamial setting

that inludes temporal derivatives and nonlinear advetion terms. It also happens that the assumption of

a low Rossby number and temporal Rossby number is justi�able whenever the sales of the problem obey

the following relations:

Ek =
ν

fH2
≥ 1, Ro =

U

fL
=

τ

ρf2HL
≪ 1, RoT =

1

fT
≪ 1, (1)

in whih L and U are horizontal length and veloity sales, T is the time sale, and τ is a sale for the

wind stress. Suh relations are not unrealisti for shallow water �ows. For example, the values f ∼ 10−4
/s,

H ∼ 10 m, L ∼ 10 km, T ∼ 2× 105 s (= several days), τ/ρ ∼ 10−4
m

2
/s

2
, frition veloity u∗ =

√

τ/ρ ∼
10−2

m/s, U ∼ τ/ρfH ∼ 0.1 m/s, and ν ∼ u∗H ∼ 10−1
m

2
/s do meet the preeding riteria (Ek ∼ 10,

Ro ∼ 0.1, and RoT ∼ 0.05).

We begin the analysis by expressing the horizontal pressure gradient fore in terms of geostrophi �ow

omponents:

−fvg = −
1

ρ

∂p

∂x
(2)

+fug = −
1

ρ

∂p

∂y
, (3)

from whih follows that on an f -plane, the geostrophi �ow is without divergene:

∂ug
∂x

+
∂vg
∂y

= 0. (4)

It is also z-independent by virtue of the hydrostati balane with onstant density.

The equations governing the three veloity omponents u, v and w are:

−fv = −fvg + ν
∂2u

∂z2
(5)

+fu = +fug + ν
∂2v

∂z2
(6)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (7)

There are three boundary onditions at eah horizontal boundary.

• At the bottom, we impose no �ow on the fritional and impermeable bottom:

u = v = w = 0 at z = −H. (8)

• At the top, we impose a surfae wind stress and no vertial �ow through the rigid lid:

ρν
∂u

∂z
= τx, ρν

∂v

∂z
= τy, w = 0 at z = 0. (9)

The rigid-lid approximation (w = 0) is made for the same reason as stated above, namely to keep the fous

on the ombined role of Coriolis and frition fores with a minimum of other dynamis.
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We note that the set of Equations (5)-(6)-(7) ontains a total of �ve z-derivatives while we have spei�ed
six boundary onditions in the z-diretion. Thus, the system is over-spei�ed by one, and we ought to

expet a onstraint on some of the variables that enter the equations, partiularly a relationship between

the geostrophi veloity (ug, vg), whih is the horizontal pressure gradient in disguise, and the wind stress

(τx, τy).

The situation an be antiipated by onsidering the ase of a deep water olumn ompared to the Ekman

layer thikness, de�ned as

d =

√

2ν

f
. (10)

If d ≪ H, frition is signi�ant only in top and bottom boundary layers that oupy muh less than the

water depth, leaving a fritionless and geostrophi interior. In this ase, surfae Ekman dynamis generates

a so-alled Ekman pumping vertial veloity through the interior (Cushman-Roisin and Bekers, page 254)

proportional to the wind stress url:

winterior =
1

ρf

(

∂τy
∂x

−
∂τx
∂y

)

, (11)

while bottom Ekman dynamis generate an interior vertial veloity proportional to the vortiity of the

geostrophi �ow (Cushman-Roisin and Bekers, page 249):

winterior =
d

2

(

∂vg
∂x

−
∂ug
∂y

)

. (12)

Given that the vertial veloity in the interior takes a unique value beause the interior geostrophi �ow

has no divergene, it follows that the preeding expressions must be equal to eah other:

∂vg
∂x

−
∂ug
∂y

=
2

ρfd

(

∂τy
∂x

−
∂τx
∂y

)

. (13)

In other words, in water deep ompared to the Ekman layer thikness, the vortiity of the interior geostrophi

�ow is onstrained to be proportional to the url of the surfae wind stress, a loal dependeny. The primary

aim of this study is to determine how this relationship is a�eted when the water depth is omparable to

the Ekman layer thikness (d ∼ H, i.e. ν/fH2 ∼ 1) and frition a�ets the entire water olumn.

At this point, we ould proeed to solve Equations (5)-(6) for u and v, but the algebra is very tedious

(Welander, 1957). A more e�ient path toward the relationship we seek is not to solve for the veloity

omponents themselves but for their divergene ∂u/∂x+ ∂v/∂y and vortiity ∂v/∂x− ∂u/∂y. For this, we
di�erentiate Equations (5)-(6) and ombine to obtain the following oupled equations for the divergene

and vortiity:

f

(

∂u

∂x
+

∂v

∂y

)

= f

(

∂ug
∂x

+
∂vg
∂y

)

+ ν
∂2

∂z2

(

∂v

∂x
−

∂u

∂y

)

(14)

f

(

∂v

∂x
−

∂u

∂y

)

= f

(

∂vg
∂x

−
∂ug
∂y

)

− ν
∂2

∂z2

(

∂u

∂x
+

∂v

∂y

)

. (15)

In (14), the divergene of the geostrophi �ow vanishes by virtue of (4), and the general solution of the

equations an be written as:

∂u

∂x
+

∂v

∂y
= cosh ζ (D cos ζ − C sin ζ) + sinh ζ (B cos ζ −A sin ζ) (16)

∂v

∂x
−

∂u

∂y
=

∂vg
∂x

−
∂ug
∂y

+ cosh ζ (A cos ζ +B sin ζ) + sinh ζ (C cos ζ +D sin ζ) (17)
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in whih the dimensionless vertial oordinate ζ is de�ned by

ζ =
z +H

d
. (18)

It vanishes at the bottom and reahes H/d at the surfae.

The four onstants of integration A, B, C and D are determined by the appliation of top and bottom

boundary onditions. The horizontal veloity vanishes along the bottom (ζ = 0), and so must its divergene

and vortiity. This determines the oe�ients A and D:

A = −

(

∂vg
∂x

−
∂ug
∂y

)

, D = 0. (19)

Before applying boundary onditions at the surfae, it is neessary to determine the vertial veloity

aross the water olumn, whih is obtained by integrating the ontinuity equation vertially, starting from

w = 0 at the bottom:

w = −

∫ z

0

(

∂u

∂x
+

∂v

∂y

)

dz′

= −d

∫ ζ

0

[

−C cosh ζ ′ sin ζ ′ + sinh ζ ′ (B cos ζ ′ −A sin ζ ′)
]

dζ ′

=
d

2
(B + C)(1− cosh ζ cos ζ)−

d

2
(B − C) sinh ζ sin ζ

+
d

2
A (cosh ζ sin ζ − sinh ζ cos ζ).

(20)

Enforing w = 0 at the surfae (z = 0, ζ = H/d) yields:

A

(

cosh
H

d
sin

H

d
− sinh

H

d
cos

H

d

)

+ (B + C)

(

1− cosh
H

d
cos

H

d

)

− (B − C) sinh
H

d
sin

H

d
= 0 . (21)

The appliation of the remaining two boundary onditions at the surfae, whih involve the surfae wind

stress, neessitates the preliminary taking of the z-derivative of the divergene and vortiity:

∂

∂z

(

∂u

∂x
+

∂v

∂y

)

=
1

d
[(B − C) cosh ζ cos ζ − (B +C) sinh ζ sin ζ]

−
1

d
A(cosh ζ sin ζ + sinh ζ cos ζ)

(22)

∂

∂z

(

∂v

∂x
−

∂u

∂y

)

=
1

d
[(B + C) cosh ζ cos ζ + (B − C) sinh ζ sin ζ]

−
1

d
A(cosh ζ sin ζ − sinh ζ cos ζ) .

(23)

The stress boundary onditions (9) an now be applied at the top (ζ = H/d):

∂τx
∂x

+
∂τy
∂y

=
ρfd

2

[

(B − C) cosh
H

d
cos

H

d
− (B + C) sinh

H

d
sin

H

d

]

−
ρfd

2
A

(

cosh
H

d
sin

H

d
+ sinh

H

d
cos

H

d

)
(24)

∂τy
∂x

−
∂τx
∂y

=
ρfd

2

[

(B + C) cosh
H

d
cos

H

d
+ (B − C) sinh

H

d
sin

H

d

]

−
ρfd

2
A

(

cosh
H

d
sin

H

d
− sinh

H

d
cos

H

d

)

.

(25)
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Sine the oe�ient A is already known in terms of the vortiity of the geostrophi �ow [see (19)℄, the

preeding two equations form a 2×2 system of equations for B − C and B + C. The solution is:

B − C =
2

ρfd∆

(

∂τy
∂x

−
∂τx
∂y

)

sinh
H

d
sin

H

d

+
2

ρfd∆

(

∂τx
∂x

+
∂τy
∂y

)

cosh
H

d
cos

H

d

−
1

∆

(

∂vg
∂x

−
∂ug
∂y

)(

cosh
H

d
sinh

H

d
+ cos

H

d
sin

H

d

)

(26)

B + C =
2

ρfd∆

(

∂τy
∂x

−
∂τx
∂y

)

cosh
H

d
cos

H

d

−
2

ρfd∆

(

∂τx
∂x

+
∂τy
∂y

)

sinh
H

d
sin

H

d

+
1

∆

(

∂vg
∂x

−
∂ug
∂y

)(

cosh
H

d
sinh

H

d
− cos

H

d
sin

H

d

)

,

(27)

after A was replaed by its value given in (19) and with ∆, the determinant of the system, de�ned as

∆ = cosh2
H

d
cos2

H

d
+ sinh2

H

d
sin2

H

d

= sinh2
H

d
+ cos2

H

d
.

(28)

Substitution in (21) yields the sought-after relationship between the geostrophi �ow and the wind stress:

(

∂vg
∂x

−
∂ug
∂y

)(

cosh
H

d
sinh

H

d
− cos

H

d
sin

H

d

)

=
2

ρfd

(

∂τy
∂x

−
∂τx
∂y

)(

cosh2
H

d
+ cos2

H

d
− cosh

H

d
cos

H

d
− 1

)

+
2

ρfd

(

∂τx
∂x

+
∂τy
∂y

)

sinh
H

d
sin

H

d
.

(29)

This last equation is the relation between the geostrophi �ow (ug, vg), and the wind stress (τx, τy) that
extends Equation (13) to the ase of shallow water (d ∼ H, i.e. ν/fH2 ∼ 1). It was derived by Welander

(1957, Equation (17)) albeit as a more ompliated mathematial expression. We note that the vortiity

of the geostrophi �ow is no longer simply proportional to the url of the wind stress but is now a linear

ombination of both url and divergene of the wind stress. In the limit H ≫ d, Equation (29) reverts to

(13) as it should.

To better disern the dependeny of the geostrophi vortiity on the url and divergene of the wind

stress, we rewrite (29) as:

(

∂vg
∂x

−
∂ug
∂y

)

=
2

ρfd
F

(

H

d

) (

∂τy
∂x

−
∂τx
∂y

)

+
2

ρfH
G

(

H

d

) (

∂τx
∂x

+
∂τy
∂y

)

, (30)

in whih F and G are dimensionless funtions of the dimensionless variable H/d. These are plotted on

Figure 1. We note that, for H > 7d, F ≃ 1 and G ≃ 0, orresponding to the deep-water situation with

geostrophi vortiity proportional to the wind-stress url only. In the limit H/d = 0, F vanishes, G = 3

4
,

and the situation has �ipped with the geostrophi vortiity now purely proportional to the wind-stress

divergene. Note that in the transition regime (0 < H < 7d), F reahes a maximum of 1.225, whih
exeeds its asymptoti value 1, and G reahes a minimum of −0.1113, whih falls below its asymptoti

value of 0.
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Figure 1: The dimensionless funtions F and G of the thikness ratio H/d. The funtion F provides the

dependene of the geostrophi vortiity on the wind-stress url, and G on the wind-stress divergene.

Caution is in order. When the water olumn is deep, the interior geostrophi �ow is asymptotially

equal to the depth-averaged �ow, but is no longer so in the ase of shallow water beause Ekman dynamis

at over the entire water olumn. Thus, we need to make a distintion between the geostrophi omponent

of the �ow and the depth-averaged �ow.

We de�ne the depth-averaged veloity as

ū =
1

H

∫

0

−H

u dz , v̄ =
1

H

∫

0

−H

v dz . (31)

Vertial integration of Equations (14)-(15) from top to bottom

†
followed by utilization of boundary ondi-

tions (9) and use of (22)-(23) provides:

∂ū

∂x
+

∂v̄

∂y
=

1

ρfH

(

∂τy
∂x

−
∂τx
∂y

)

−
d

2H
(B + C) (32)

∂v̄

∂x
−

∂ū

∂y
=

(

∂vg
∂x

−
∂ug
∂y

)

−
1

ρfH

(

∂τx
∂x

+
∂τy
∂y

)

+
d

2H
(B − C). (33)

Further replaement of B + C and B − C by their values given in (27)-(26) leads to:

∂ū

∂x
+

∂v̄

∂y
= −

d

2H∆

(

∂vg
∂x

−
∂ug
∂y

)(

cosh
H

d
sinh

H

d
− cos

H

d
sin

H

d

)

+
1

ρfH

(

∂τy
∂x

−
∂τx
∂y

)(

1−
1

∆
cosh

H

d
cos

H

d

)

+
1

ρfH

(

∂τx
∂x

+
∂τy
∂y

)

1

∆
sinh

H

d
sin

H

d

(34)

∂v̄

∂x
−

∂ū

∂y
=

(

∂vg
∂x

−
∂ug
∂y

)[

1−
d

2H∆

(

cosh
H

d
sinh

H

d
+ cos

H

d
sin

H

d

)]

+
1

ρfH

(

∂τy
∂x

−
∂τx
∂y

)

1

∆
sinh

H

d
sin

H

d

−
1

ρfH

(

∂τx
∂x

+
∂τy
∂y

)(

1−
1

∆
cosh

H

d
cos

H

d

)

.

(35)

†
Note that this demands a �at horizontal bottom, whih we had assumed from the start.
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Finally, elimination of the vortiity of the geostrophi �ow by use of (29) provides:

∂ū

∂x
+

∂v̄

∂y
= 0, (36)

and

∂v̄

∂x
−

∂ū

∂y
=

2

ρfd
F̄

(

H

d

) (

∂τy
∂x

−
∂τx
∂y

)

−
2

ρfd
Ḡ

(

H

d

) (

∂τx
∂x

+
∂τy
∂y

)

. (37)

The �rst of these equations returns the expeted result that the depth-averaged �ow has no divergene

(inompressible �ow between two parallel impermeable boundaries), while the seond equation is the on-

straint on the �ow [Equation (29)℄ now expressed in terms of the vortiity of the depth-averaged �ow. This

equation was �rst derived by Welander (1957, Equation (26)), but no disussion was provided other than

pointing out that there is a dependeny on the wind-stress divergene.

Figure 2: The dimensionless funtions F̄ and Ḡ of the thikness ratio H/d. The funtion F̄ provides the

dependene of the depth-averaged vortiity on the wind-stress url, and Ḡ on the wind-stress divergene.

Figure 2 shows the dependeny of the F̄ and Ḡ funtions on the thikness ratio H/d. The dependeny of

the depth-averaged vortiity on the wind-stress url (F̄ funtion) is fairly similar to that of the geostrophi

vortiity (F funtion), starting from 0 and asymptoting to 1; the intermediate maximum now is 0.9259, and
there is an intermediate minimum of 0.8903. In ontrast, the dependeny on the wind-stress divergene is

quite di�erent. First, there is a reversal in sign (not shown in Figure 2 but made expliit in Equation (37)).

In deep water (H/d → ∞), it slowly vanishes; in the shallow limit (H/d → 0), the funtion Ḡ reahes zero

more rapidly than the funtion F̄ , implying that, when H << d, the wind-stress url remains the dominant

ontribution to the depth-averaged vortiity (as shown in the next setion). The funtion Ḡ reahes a

maximum of 0.1730 for H/d = 3.17. In other words, the ontribution of the wind-stress divergene to

the depth-averaged vortiity is only signi�ant at intermediate depths. Figure 3 displays the ratio of the

oe�ients of the divergene and url terms in (37) (without the minus sign). We note that it reahes a

maximum of 0.1891 (19%) at H/d = 3.265.

3 Case of Very Shallow Flow

Beause the oe�ients that arise in the preeding expressions are ompliated funtions of the ratio H/d,
it is worthwhile to onsider the limit of a very shallow layer (or weakly rotating �ow). To do this, we take
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Figure 3: The ratio of the oe�ients of the divergene and url terms in Equation (37).

the limit H/d → 0 in both (29) and (35). At the leading order, these equations beome, respetively:

∂vg
∂x

−
∂ug
∂y

≃
3

2ρfH

(

∂τx
∂x

+
∂τy
∂y

)

(38)

∂v̄

∂x
−

∂ū

∂y
≃

H

ρfd2

(

∂τy
∂x

−
∂τx
∂y

)

. (39)

We note from Equation (38) that the vortiity of the geostrophi �ow is now proportional to the diver-

gene of the wind stress, a omplete �ip from (13) where it was proportional to the url of the wind stress.

Equation (39) for the depth-averaged �ow is similar to (13) but with a oe�ient that has an extra power

of the ratio H/d.

4 Impliations for 2D Modeling

Let us suppose that we had not bothered about 3D Ekman dynamis and instead had used the following

two-dimensional model with linear frition:

−f v̄ = −fvg +
τx
ρH

− rū (40)

+fū = +fug +
τy
ρH

− rv̄ (41)

∂ū

∂x
+

∂v̄

∂y
= 0, (42)

in whih the wind stress is applied as a body fore and r is a frition oe�ient, whih should be related to

the visosity ν somehow. We use overbars on the veloity omponents to indiate that these are vertially

uniform, i.e. they are depth averages. Thus, this model assumes a bottom stress ounter-aligned with the

depth-averaged veloity. Suh a 2D model, often extended to inlude time derivatives, nonlinear advetion

terms, and a quadratri expression for the bottom stress has long been a staple of wind-driven irulation

modeling for lakes and oastal areas (Heaps, 1969 - Equation (5); Lik, 1976 - Page 58; Shwab, 1983 -

Equation (4); Lentz et al., 1999 - Equation (5); Weisberg & Zhang, 2008 - Equation (8); Józsa, 2014 -

Equation (13); to ite only one study per deade).
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We ask what value should be given to the frition oe�ient r in terms of the kinemati visosity ν
and the other parameters in the formalism, f and H, in suh a way as to render this 2D model an exat

representation of the 3D model after elimination of the vertial struture of the �ow. For this, we begin by

solving the momentum equations (40)-(41) for ū and v̄, whih is straightforward:

ū =
f2

f2 + r2
ug −

rf

f2 + r2
vg +

1

ρH(f2 + r2)
(rτx + fτy) (43)

v̄ =
f2

f2 + r2
vg +

rf

f2 + r2
ug +

1

ρH(f2 + r2)
(rτy − fτx) , (44)

and then proeed by taking the divergene ∂ū/∂x+∂v̄/∂y, whih we set to zero as ontinuity (42) demands.

The result is:

∂vg
∂x

−
∂ug
∂y

=
1

ρrH

(

∂τy
∂x

−
∂τx
∂y

)

+
1

ρfH

(

∂τx
∂x

+
∂τy
∂y

)

, (45)

whih is isomorphi to (30) in that the vortiity of the geostrophi �ow is a linear ombination of the

divergene and url of the wind stress. Mapping (45) onto (29) demands the following two equivalenies:

r

f
=

d

2H

cosh H
d
sinh H

d
− cos H

d
sin H

d

cosh2 H
d
+ cos2 H

d
− cosh H

d
cos H

d
− 1

(46)

2H

d
sinh

H

d
sin

H

d
= cosh

H

d
sinh

H

d
− cos

H

d
sin

H

d
. (47)

While the �rst of these equations serves to set the value for the frition oe�ient r in terms of the visosity

ν (subsumed in d), the seond equation ought to be satis�ed, too. A glane at this equation reveals that it

is impossible to satisfy it for an arbitrary value

†
of the ratio H/d. Thus, we are brought to onlude that

the redued two-dimensional model (40)-(41)-(42) is not a legitimate redution of the three-dimensional

model (5)-(6)-(7).

One may think at this point that the veering involved in Ekman dynamis should ause the bottom

stress to be at a non-zero angle to the mean veloity and that the presene of this angle would resolve the

matter. Surprisingly, however, it does not: Equation (47) arises one again. A non-intuitive remedy is to

turn the surfae wind stress by a ertain angle. This does not seem to have a physial basis until one thinks

of it as a parameterization of the bottom stress as a linear ombination of the mean veloity and surfae

stress rather than being dependent on the mean veloity alone.

For an angle α of rotation, positive in the trigonometri sense, we try 2D equations of the form:

−f v̄ = −fvg +
cosα τx − sinα τy

ρH
− rū (48)

+fū = +fug +
sinα τx + cosα τy

ρH
− rv̄ (49)

∂ū

∂x
+

∂v̄

∂y
= 0. (50)

of whih the solution for ū and v̄ is:

ū =
f2ug − rfvg

f2 + r2
+

(f sinα+ r cosα)τx + (f cosα− r sinα)τy
ρH(f2 + r2)

(51)

v̄ =
f2vg + rfug

f2 + r2
+

(f sinα+ r cosα)τy − (f cosα− r sinα)τx
ρH(f2 + r2)

, (52)

†
Not even in the asymptoti ases of very small or very large values.
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with the following zero-divergene ondition:

∂vg
∂x

−
∂ug
∂y

=
f cosα− r sinα

ρrfH

(

∂τy
∂x

−
∂τx
∂y

)

+
f sinα+ r cosα

ρrfH

(

∂τx
∂x

+
∂τy
∂y

)

. (53)

Mapping (53) onto (29) demands the following two equivalenies:

f

r
cosα− sinα =

2H

d

cosh2 H
d
+ cos2 H

d
− cosh H

d
cos H

d
− 1

cosh H
d
sinh H

d
− cos H

d
sin H

d

(54)

f

r
sinα+ cosα =

2H

d

sinh H
d
sin H

d

cosh H
d
sinh H

d
− cos H

d
sin H

d

. (55)

Both onditions an now be met as the two onditions now form a 2 × 2 system of equations for the two

unknowns r/f and α. Figure 4 displays the variations of the ratio r/f (magni�ed by a fator 100) and
angle α as funtions of the thikness ratio H/d. As an be expeted, both vanish for great depths (with

r/f ≃ d/2H). As the water depth dereases, frition beomes more important, as expeted, and the angle

α swings between a minimum of −8.910◦ and a maximum of +48.17◦. The angle α beomes appreiable

(|α| > 5◦) when H/d falls below 6.

Figure 4: The frition fator r (saled and magni�ed) and angle α of veering (in degrees) that are the

solutions to Equations (54)-(55).

Now that we have identi�ed an aeptable redution, we an extrat the orresponding expression of the

bottom stress. Writing Equations (48)-(49) as

−f v̄ = −fvg +
τx
ρH

−
τbx
ρH

(56)

+fū = +fug +
τy
ρH

−
τby
ρH

(57)

to serve as the de�nitions of the bottom stress omponents (τbx, τby), we obtain:

τbx = (1− cosα) τx + sinα τy + ρrHū (58)

τby = (1− cosα) τy − sinα τx + ρrHv̄ . (59)

Thus, the proper way to parameterize the bottom stress is to add a surfae stress omponent to a lassial

term proportional to the depth-averaged veloity. The importane of this surfae stress omponent dereases
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for inreasing depth beause the angle α vanishes as H/d → ∞, as Figure 4 shows. The need to inlude the

surfae stress in the formulation of the bottom stress was already reognized by Nihoul (1977 - Equation

(61)), but without reourse to the preeding developments, he did not make provision for veering and

obtained a oe�ient (m in his notation) with a weak and monotoni dependene on the water depth.

5 Conlusions

We investigated the ase of rotating shallow water when Ekman dynamis extend throughout the water

olumn instead of being restrited to thin boundary layers under surfae and above bottom. Although this

had been investigated in parts some time ago, the omplexity of the algebra obsured some of the �ow

properties. Chie�y, Welander (1957) did identify that the depth-averaged �ow vortiity depends not only

on the surfae stress url (as it does in deep water) but also on its divergene; however, he did not doument

the importane of the new term. Using less ompliated algebrai manipulations, we show here that the

divergene term vanishes in both limits of very deep (H/d → ∞) and very shallow water (H/d → 0),
with largest signi�ane on the order of 20% for a water depth around 3 times the Ekman layer thikness

d =
√

2ν/f .

The physial interpretation of the dependene of the vertial veloity, and hene of the �ow vortiity, on

both url and divergene of the surfae stress is as follows. In redued depth, where the top and bottom Ek-

man layers overlap, eah of these layers

†
is, in a sense, inomplete. This implies that the vertially averaged

transport in the top layer is at less than the full 90◦ to the surfae stress. The divergene of this transport,
whih indues the vertial veloity, thus ontains two terms: The transport omponent perpendiular to the

surfae stress ontributes the lassial term proportional to the url, while the omponent parallel to the

surfae stress (aused by the departure from 90◦) ontributes a seond term proportional to the divergene

of the surfae stress. The latter ontribution vanishes when the depth beomes su�ient large to reate a

deoupling of both Ekman layers, with the transport in the top Ekamn layer then oriented at 90◦ to the

surfae stress.

Although the surfae stress divergene e�et annot be dominant in the presene of a �nite surfae

stress url, it will dominate wherever and whenever the surfae stress url is weak or nil in water with

depth omparable to the Ekman layer thikness. This means that a url-free but non-uniform wind stress

on a shallow sea or lake an, through the dual ation of rotation and frition, generate vortiity in the

wind-driven urrents. To the knowledge of the authors, this had not been identi�ed earlier.

This analysis also has impliations for the redution of three-dimensional hydrodynamis to a two-

dimensional model. We show that, for suh a redution to be faithful to 3D dynamis, it is inappropriate

to align the bottom stress with the depth-averaged veloity, and this ast doubts on numerous simulations

performed over the last �ve deades with two-dimensional models. We further show that invoking a veering

angle between bottom stress and depth-averaged �ow still does not ure the problem. Instead, the bottom

stress must be taken as onsisting of two omponents, one depending on the surfae stress (with veering)

and the other depending on the depth-averaged �ow (without veering).
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