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ABSTRACT

The analyti
al solution is derived for rotational fri
tional �ow in a shallow layer of �uid in whi
h the top

and bottom Ekman layers join without leaving a fri
tionless interior. This verti
al stru
ture has signi�
ant

impli
ations for the horizontal �ow. In parti
ular, for a layer of water subje
ted to both a surfa
e wind

stress and bottom fri
tion, the vorti
ity of the horizontal �ow is a fun
tion not only of the 
url of the

wind stress (the 
lassi
al result for deep water known as Ekman pumping) but also of its divergen
e. The

importan
e of this divergen
e term peaks for a water depth around 3 times the Ekman layer thi
kness. This

means that a 
url-free but non-uniform wind stress on a shallow sea or lake 
an, through the dual a
tion

of rotation and fri
tion, generate vorti
ity in the wind-driven 
urrents.

We also �nd that the redu
tion of three-dimensional dynami
s to a two-dimensional model is more subtle

than one 
ould have anti
ipated and needs to be approa
hed with utmost 
are. Taking the bottom stress

as dependent solely on the depth-averaged �ow, even with some veering, is not appropriate. The bottom

stress ought to in
lude a 
omponent proportional to the surfa
e stress, whi
h is negligible for large depths

but in
reases with de
reasing water depth.
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1 Introdu
tion

The e�e
t of fri
tion in rotating �ows is governed by the Ekman number, and it is well known (Pri
e et

al., 1987; Cushman-Roisin & Be
kers, 2011) that, for an Ekman number mu
h smaller than unity, the role

of fri
tion is signi�
ant only in thin layers near the top and bottom boundaries, 
alled Ekman layers, and

o

asionally near lateral boundaries, in so-
alled Stewartson layers (Bennetts & Ho
king, 1973). Away from

these boundary layers, in the body of the domain 
alled the interior, the e�e
t of fri
tion is felt indire
tly.

The primary signature is the Ekman pumping, a verti
al velo
ity that starts at the base of the top Ekman

layer as proportional to the 
url of the surfa
e stress and ends at the top of the bottom Ekman layer as

proportional to the 
url of the bottom stress. On the β−plane, the surfa
e and bottom stresses may di�er,

and the Ekman velo
ity may vary over the verti
al, but on an f−plane, the Ekman pumping velo
ity must

be uniform over the verti
al, and the surfa
e and bottom stresses be equal (Cushman-Roisin & Be
kers,

2011).

The situation be
omes mu
h more 
omplex when the rotating domain is shallow enough for the top and

bottom Ekman layers to merge, leaving no fri
tionless interior. The behavior of the verti
al velo
ity is mu
h

ri
her, and the 
on
ept of Ekman pumping is no longer helpful. The bibliography of this work is limited

be
ause, although the governing equations are straightforward, the analyti
al solution of the linearized

problem is tedious and tends to obs
ure the properties of the �ow.

Extending Ekman's se
ond paper on fri
tional rotating �ows (Ekman, 1923) and with the fo
us on

storm surges in shallow seas, Welander (1957) 
onsidered the 
ase when �the depth of fri
tional in�uen
e�

is 
omparable to the water depth and arrived at the 
on
lusion that the wind-stress divergen
e may be of

the same importan
e as the wind-stress 
url in governing the streamfun
tion of the depth-averaged �ow,

but he did not 
onsider the verti
al velo
ity and qui
kly pro
eeded to the time-dependent 
ase of a storm

surge. In the 1970s, when ele
troni
 
omputers �rst be
ame available and used for storm surge fore
asting,

they were not yet 
apable of handling three-dimensional grids, and a �urry of work ensued to redu
e the

3D equations to 2D equations by pre-solving for the verti
al pro�le of the horizontal velo
ity. This work

(Jelesnianski, 1970; Forristall, 1974; Cheng et al., 1976; Nihoul, 1977) largely fo
used on the e�e
ts of

a verti
ally varying eddy vis
osity to obtain the bottom stress in terms of the depth-averaged horizontal

velo
ity. No attention was paid to the verti
al velo
ity. A de
ade later, as 3D numeri
al models 
ame into

being, Lyn
h and O�
er (1985) paid renewed attention to the verti
al stru
ture of vis
ous rotating �ow

in order to provide analyti
 solutions as test 
ases for 3D hydrodynami
 models. Like their prede
essors,

they 
hose depth-varying eddy vis
osities and took the bottom stress as aligned with and proportional to

the depth-averaged velo
ity. Their solutions are 
ast as solutions to an eigenvalue problem in the verti
al,

whi
h requires the numeri
al solution of a 1D equation.

In this work, we ask di�erent questions: What happens to the 
on
ept of Ekman pumping when the

Ekman number is not small? What is the verti
al pro�le of the verti
al velo
ity? How do lo
al wind-stress


url and divergen
e a�e
t the depth-averaged �ow? And, under whi
h 
onditions 
an the bottom stress be

taken as parallel to the depth-averaged velo
ity? The answer to the latter points to unexpe
ted di�
ulties

in the redu
tion of 3D dynami
s to a 2D model and might 
ast doubts on the a

ura
y of past 2D models.

2 Top-to-Bottom Ekman Dynami
s

We are 
onsidering a shallow �ow of water of uniform density subje
t to an imposed surfa
e stress at the

top and no slip along a �at horizontal bottom.

We solve the 
lassi
al Ekman dynami
s problem in the 
ontext of the following assumptions: f -plane
(with f > 0 for 
onvenien
e), low-Rossby number (to permit the negle
t of nonlinear adve
tion terms

and fa
ilitate the analysis), hydrostati
 balan
e (∂p/∂z = −ρg), 
onstant density ρ (no strati�
ation), �at

bottom and rigid lid (−H ≤ z ≤ 0, H = 
onstant), eddy vis
osity model with uniform eddy vis
osity ν,
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and imposed surfa
e wind stress (τx, τy fun
tions of x and y).

We re
ognize that the negle
t of the temporal derivatives and nonlinear adve
tion terms is not justi�ed

in many 
ir
umstan
es, but we nonetheless ignore those terms here to pla
e the fo
us on the 
ombined role

of Coriolis and fri
tion for
es in a mathemati
ally tra
table fashion, with the underlying hypothesis that

the main �ndings of our study will 
ontinue to hold at least qualitatively in the broader dynami
al setting

that in
ludes temporal derivatives and nonlinear adve
tion terms. It also happens that the assumption of

a low Rossby number and temporal Rossby number is justi�able whenever the s
ales of the problem obey

the following relations:

Ek =
ν

fH2
≥ 1, Ro =

U

fL
=

τ

ρf2HL
≪ 1, RoT =

1

fT
≪ 1, (1)

in whi
h L and U are horizontal length and velo
ity s
ales, T is the time s
ale, and τ is a s
ale for the

wind stress. Su
h relations are not unrealisti
 for shallow water �ows. For example, the values f ∼ 10−4
/s,

H ∼ 10 m, L ∼ 10 km, T ∼ 2× 105 s (= several days), τ/ρ ∼ 10−4
m

2
/s

2
, fri
tion velo
ity u∗ =

√

τ/ρ ∼
10−2

m/s, U ∼ τ/ρfH ∼ 0.1 m/s, and ν ∼ u∗H ∼ 10−1
m

2
/s do meet the pre
eding 
riteria (Ek ∼ 10,

Ro ∼ 0.1, and RoT ∼ 0.05).

We begin the analysis by expressing the horizontal pressure gradient for
e in terms of geostrophi
 �ow


omponents:

−fvg = −
1

ρ

∂p

∂x
(2)

+fug = −
1

ρ

∂p

∂y
, (3)

from whi
h follows that on an f -plane, the geostrophi
 �ow is without divergen
e:

∂ug
∂x

+
∂vg
∂y

= 0. (4)

It is also z-independent by virtue of the hydrostati
 balan
e with 
onstant density.

The equations governing the three velo
ity 
omponents u, v and w are:

−fv = −fvg + ν
∂2u

∂z2
(5)

+fu = +fug + ν
∂2v

∂z2
(6)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (7)

There are three boundary 
onditions at ea
h horizontal boundary.

• At the bottom, we impose no �ow on the fri
tional and impermeable bottom:

u = v = w = 0 at z = −H. (8)

• At the top, we impose a surfa
e wind stress and no verti
al �ow through the rigid lid:

ρν
∂u

∂z
= τx, ρν

∂v

∂z
= τy, w = 0 at z = 0. (9)

The rigid-lid approximation (w = 0) is made for the same reason as stated above, namely to keep the fo
us

on the 
ombined role of Coriolis and fri
tion for
es with a minimum of other dynami
s.
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We note that the set of Equations (5)-(6)-(7) 
ontains a total of �ve z-derivatives while we have spe
i�ed
six boundary 
onditions in the z-dire
tion. Thus, the system is over-spe
i�ed by one, and we ought to

expe
t a 
onstraint on some of the variables that enter the equations, parti
ularly a relationship between

the geostrophi
 velo
ity (ug, vg), whi
h is the horizontal pressure gradient in disguise, and the wind stress

(τx, τy).

The situation 
an be anti
ipated by 
onsidering the 
ase of a deep water 
olumn 
ompared to the Ekman

layer thi
kness, de�ned as

d =

√

2ν

f
. (10)

If d ≪ H, fri
tion is signi�
ant only in top and bottom boundary layers that o

upy mu
h less than the

water depth, leaving a fri
tionless and geostrophi
 interior. In this 
ase, surfa
e Ekman dynami
s generates

a so-
alled Ekman pumping verti
al velo
ity through the interior (Cushman-Roisin and Be
kers, page 254)

proportional to the wind stress 
url:

winterior =
1

ρf

(

∂τy
∂x

−
∂τx
∂y

)

, (11)

while bottom Ekman dynami
s generate an interior verti
al velo
ity proportional to the vorti
ity of the

geostrophi
 �ow (Cushman-Roisin and Be
kers, page 249):

winterior =
d

2

(

∂vg
∂x

−
∂ug
∂y

)

. (12)

Given that the verti
al velo
ity in the interior takes a unique value be
ause the interior geostrophi
 �ow

has no divergen
e, it follows that the pre
eding expressions must be equal to ea
h other:

∂vg
∂x

−
∂ug
∂y

=
2

ρfd

(

∂τy
∂x

−
∂τx
∂y

)

. (13)

In other words, in water deep 
ompared to the Ekman layer thi
kness, the vorti
ity of the interior geostrophi


�ow is 
onstrained to be proportional to the 
url of the surfa
e wind stress, a lo
al dependen
y. The primary

aim of this study is to determine how this relationship is a�e
ted when the water depth is 
omparable to

the Ekman layer thi
kness (d ∼ H, i.e. ν/fH2 ∼ 1) and fri
tion a�e
ts the entire water 
olumn.

At this point, we 
ould pro
eed to solve Equations (5)-(6) for u and v, but the algebra is very tedious

(Welander, 1957). A more e�
ient path toward the relationship we seek is not to solve for the velo
ity


omponents themselves but for their divergen
e ∂u/∂x+ ∂v/∂y and vorti
ity ∂v/∂x− ∂u/∂y. For this, we
di�erentiate Equations (5)-(6) and 
ombine to obtain the following 
oupled equations for the divergen
e

and vorti
ity:

f

(

∂u

∂x
+

∂v

∂y

)

= f

(

∂ug
∂x

+
∂vg
∂y

)

+ ν
∂2

∂z2

(

∂v

∂x
−

∂u

∂y

)

(14)

f

(

∂v

∂x
−

∂u

∂y

)

= f

(

∂vg
∂x

−
∂ug
∂y

)

− ν
∂2

∂z2

(

∂u

∂x
+

∂v

∂y

)

. (15)

In (14), the divergen
e of the geostrophi
 �ow vanishes by virtue of (4), and the general solution of the

equations 
an be written as:

∂u

∂x
+

∂v

∂y
= cosh ζ (D cos ζ − C sin ζ) + sinh ζ (B cos ζ −A sin ζ) (16)

∂v

∂x
−

∂u

∂y
=

∂vg
∂x

−
∂ug
∂y

+ cosh ζ (A cos ζ +B sin ζ) + sinh ζ (C cos ζ +D sin ζ) (17)
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in whi
h the dimensionless verti
al 
oordinate ζ is de�ned by

ζ =
z +H

d
. (18)

It vanishes at the bottom and rea
hes H/d at the surfa
e.

The four 
onstants of integration A, B, C and D are determined by the appli
ation of top and bottom

boundary 
onditions. The horizontal velo
ity vanishes along the bottom (ζ = 0), and so must its divergen
e

and vorti
ity. This determines the 
oe�
ients A and D:

A = −

(

∂vg
∂x

−
∂ug
∂y

)

, D = 0. (19)

Before applying boundary 
onditions at the surfa
e, it is ne
essary to determine the verti
al velo
ity

a
ross the water 
olumn, whi
h is obtained by integrating the 
ontinuity equation verti
ally, starting from

w = 0 at the bottom:

w = −

∫ z

0

(

∂u

∂x
+

∂v

∂y

)

dz′

= −d

∫ ζ

0

[

−C cosh ζ ′ sin ζ ′ + sinh ζ ′ (B cos ζ ′ −A sin ζ ′)
]

dζ ′

=
d

2
(B + C)(1− cosh ζ cos ζ)−

d

2
(B − C) sinh ζ sin ζ

+
d

2
A (cosh ζ sin ζ − sinh ζ cos ζ).

(20)

Enfor
ing w = 0 at the surfa
e (z = 0, ζ = H/d) yields:

A

(

cosh
H

d
sin

H

d
− sinh

H

d
cos

H

d

)

+ (B + C)

(

1− cosh
H

d
cos

H

d

)

− (B − C) sinh
H

d
sin

H

d
= 0 . (21)

The appli
ation of the remaining two boundary 
onditions at the surfa
e, whi
h involve the surfa
e wind

stress, ne
essitates the preliminary taking of the z-derivative of the divergen
e and vorti
ity:

∂

∂z

(

∂u

∂x
+

∂v

∂y

)

=
1

d
[(B − C) cosh ζ cos ζ − (B +C) sinh ζ sin ζ]

−
1

d
A(cosh ζ sin ζ + sinh ζ cos ζ)

(22)

∂

∂z

(

∂v

∂x
−

∂u

∂y

)

=
1

d
[(B + C) cosh ζ cos ζ + (B − C) sinh ζ sin ζ]

−
1

d
A(cosh ζ sin ζ − sinh ζ cos ζ) .

(23)

The stress boundary 
onditions (9) 
an now be applied at the top (ζ = H/d):

∂τx
∂x

+
∂τy
∂y

=
ρfd

2

[

(B − C) cosh
H

d
cos

H

d
− (B + C) sinh

H

d
sin

H

d

]

−
ρfd

2
A

(

cosh
H

d
sin

H

d
+ sinh

H

d
cos

H

d

)
(24)

∂τy
∂x

−
∂τx
∂y

=
ρfd

2

[

(B + C) cosh
H

d
cos

H

d
+ (B − C) sinh

H

d
sin

H

d

]

−
ρfd

2
A

(

cosh
H

d
sin

H

d
− sinh

H

d
cos

H

d

)

.

(25)
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Sin
e the 
oe�
ient A is already known in terms of the vorti
ity of the geostrophi
 �ow [see (19)℄, the

pre
eding two equations form a 2×2 system of equations for B − C and B + C. The solution is:

B − C =
2

ρfd∆

(

∂τy
∂x

−
∂τx
∂y

)

sinh
H

d
sin

H

d

+
2

ρfd∆

(

∂τx
∂x

+
∂τy
∂y

)

cosh
H

d
cos

H

d

−
1

∆

(

∂vg
∂x

−
∂ug
∂y

)(

cosh
H

d
sinh

H

d
+ cos

H

d
sin

H

d

)

(26)

B + C =
2

ρfd∆

(

∂τy
∂x

−
∂τx
∂y

)

cosh
H

d
cos

H

d

−
2

ρfd∆

(

∂τx
∂x

+
∂τy
∂y

)

sinh
H

d
sin

H

d

+
1

∆

(

∂vg
∂x

−
∂ug
∂y

)(

cosh
H

d
sinh

H

d
− cos

H

d
sin

H

d

)

,

(27)

after A was repla
ed by its value given in (19) and with ∆, the determinant of the system, de�ned as

∆ = cosh2
H

d
cos2

H

d
+ sinh2

H

d
sin2

H

d

= sinh2
H

d
+ cos2

H

d
.

(28)

Substitution in (21) yields the sought-after relationship between the geostrophi
 �ow and the wind stress:

(

∂vg
∂x

−
∂ug
∂y

)(

cosh
H

d
sinh

H

d
− cos

H

d
sin

H

d

)

=
2

ρfd

(

∂τy
∂x

−
∂τx
∂y

)(

cosh2
H

d
+ cos2

H

d
− cosh

H

d
cos

H

d
− 1

)

+
2

ρfd

(

∂τx
∂x

+
∂τy
∂y

)

sinh
H

d
sin

H

d
.

(29)

This last equation is the relation between the geostrophi
 �ow (ug, vg), and the wind stress (τx, τy) that
extends Equation (13) to the 
ase of shallow water (d ∼ H, i.e. ν/fH2 ∼ 1). It was derived by Welander

(1957, Equation (17)) albeit as a more 
ompli
ated mathemati
al expression. We note that the vorti
ity

of the geostrophi
 �ow is no longer simply proportional to the 
url of the wind stress but is now a linear


ombination of both 
url and divergen
e of the wind stress. In the limit H ≫ d, Equation (29) reverts to

(13) as it should.

To better dis
ern the dependen
y of the geostrophi
 vorti
ity on the 
url and divergen
e of the wind

stress, we rewrite (29) as:

(

∂vg
∂x

−
∂ug
∂y

)

=
2

ρfd
F

(

H

d

) (

∂τy
∂x

−
∂τx
∂y

)

+
2

ρfH
G

(

H

d

) (

∂τx
∂x

+
∂τy
∂y

)

, (30)

in whi
h F and G are dimensionless fun
tions of the dimensionless variable H/d. These are plotted on

Figure 1. We note that, for H > 7d, F ≃ 1 and G ≃ 0, 
orresponding to the deep-water situation with

geostrophi
 vorti
ity proportional to the wind-stress 
url only. In the limit H/d = 0, F vanishes, G = 3

4
,

and the situation has �ipped with the geostrophi
 vorti
ity now purely proportional to the wind-stress

divergen
e. Note that in the transition regime (0 < H < 7d), F rea
hes a maximum of 1.225, whi
h
ex
eeds its asymptoti
 value 1, and G rea
hes a minimum of −0.1113, whi
h falls below its asymptoti


value of 0.
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Figure 1: The dimensionless fun
tions F and G of the thi
kness ratio H/d. The fun
tion F provides the

dependen
e of the geostrophi
 vorti
ity on the wind-stress 
url, and G on the wind-stress divergen
e.

Caution is in order. When the water 
olumn is deep, the interior geostrophi
 �ow is asymptoti
ally

equal to the depth-averaged �ow, but is no longer so in the 
ase of shallow water be
ause Ekman dynami
s

a
t over the entire water 
olumn. Thus, we need to make a distin
tion between the geostrophi
 
omponent

of the �ow and the depth-averaged �ow.

We de�ne the depth-averaged velo
ity as

ū =
1

H

∫

0

−H

u dz , v̄ =
1

H

∫

0

−H

v dz . (31)

Verti
al integration of Equations (14)-(15) from top to bottom

†
followed by utilization of boundary 
ondi-

tions (9) and use of (22)-(23) provides:

∂ū

∂x
+

∂v̄

∂y
=

1

ρfH

(

∂τy
∂x

−
∂τx
∂y

)

−
d

2H
(B + C) (32)

∂v̄

∂x
−

∂ū

∂y
=

(

∂vg
∂x

−
∂ug
∂y

)

−
1

ρfH

(

∂τx
∂x

+
∂τy
∂y

)

+
d

2H
(B − C). (33)

Further repla
ement of B + C and B − C by their values given in (27)-(26) leads to:

∂ū

∂x
+

∂v̄

∂y
= −

d

2H∆

(

∂vg
∂x

−
∂ug
∂y

)(

cosh
H

d
sinh

H

d
− cos

H

d
sin

H

d

)

+
1

ρfH

(

∂τy
∂x

−
∂τx
∂y

)(

1−
1

∆
cosh

H

d
cos

H

d

)

+
1

ρfH

(

∂τx
∂x

+
∂τy
∂y

)

1

∆
sinh

H

d
sin

H

d

(34)

∂v̄

∂x
−

∂ū

∂y
=

(

∂vg
∂x

−
∂ug
∂y

)[

1−
d

2H∆

(

cosh
H

d
sinh

H

d
+ cos

H

d
sin

H

d

)]

+
1

ρfH

(

∂τy
∂x

−
∂τx
∂y

)

1

∆
sinh

H

d
sin

H

d

−
1

ρfH

(

∂τx
∂x

+
∂τy
∂y

)(

1−
1

∆
cosh

H

d
cos

H

d

)

.

(35)

†
Note that this demands a �at horizontal bottom, whi
h we had assumed from the start.
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Finally, elimination of the vorti
ity of the geostrophi
 �ow by use of (29) provides:

∂ū

∂x
+

∂v̄

∂y
= 0, (36)

and

∂v̄

∂x
−

∂ū

∂y
=

2

ρfd
F̄

(

H

d

) (

∂τy
∂x

−
∂τx
∂y

)

−
2

ρfd
Ḡ

(

H

d

) (

∂τx
∂x

+
∂τy
∂y

)

. (37)

The �rst of these equations returns the expe
ted result that the depth-averaged �ow has no divergen
e

(in
ompressible �ow between two parallel impermeable boundaries), while the se
ond equation is the 
on-

straint on the �ow [Equation (29)℄ now expressed in terms of the vorti
ity of the depth-averaged �ow. This

equation was �rst derived by Welander (1957, Equation (26)), but no dis
ussion was provided other than

pointing out that there is a dependen
y on the wind-stress divergen
e.

Figure 2: The dimensionless fun
tions F̄ and Ḡ of the thi
kness ratio H/d. The fun
tion F̄ provides the

dependen
e of the depth-averaged vorti
ity on the wind-stress 
url, and Ḡ on the wind-stress divergen
e.

Figure 2 shows the dependen
y of the F̄ and Ḡ fun
tions on the thi
kness ratio H/d. The dependen
y of

the depth-averaged vorti
ity on the wind-stress 
url (F̄ fun
tion) is fairly similar to that of the geostrophi


vorti
ity (F fun
tion), starting from 0 and asymptoting to 1; the intermediate maximum now is 0.9259, and
there is an intermediate minimum of 0.8903. In 
ontrast, the dependen
y on the wind-stress divergen
e is

quite di�erent. First, there is a reversal in sign (not shown in Figure 2 but made expli
it in Equation (37)).

In deep water (H/d → ∞), it slowly vanishes; in the shallow limit (H/d → 0), the fun
tion Ḡ rea
hes zero

more rapidly than the fun
tion F̄ , implying that, when H << d, the wind-stress 
url remains the dominant


ontribution to the depth-averaged vorti
ity (as shown in the next se
tion). The fun
tion Ḡ rea
hes a

maximum of 0.1730 for H/d = 3.17. In other words, the 
ontribution of the wind-stress divergen
e to

the depth-averaged vorti
ity is only signi�
ant at intermediate depths. Figure 3 displays the ratio of the


oe�
ients of the divergen
e and 
url terms in (37) (without the minus sign). We note that it rea
hes a

maximum of 0.1891 (19%) at H/d = 3.265.

3 Case of Very Shallow Flow

Be
ause the 
oe�
ients that arise in the pre
eding expressions are 
ompli
ated fun
tions of the ratio H/d,
it is worthwhile to 
onsider the limit of a very shallow layer (or weakly rotating �ow). To do this, we take
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Figure 3: The ratio of the 
oe�
ients of the divergen
e and 
url terms in Equation (37).

the limit H/d → 0 in both (29) and (35). At the leading order, these equations be
ome, respe
tively:

∂vg
∂x

−
∂ug
∂y

≃
3

2ρfH

(

∂τx
∂x

+
∂τy
∂y

)

(38)

∂v̄

∂x
−

∂ū

∂y
≃

H

ρfd2

(

∂τy
∂x

−
∂τx
∂y

)

. (39)

We note from Equation (38) that the vorti
ity of the geostrophi
 �ow is now proportional to the diver-

gen
e of the wind stress, a 
omplete �ip from (13) where it was proportional to the 
url of the wind stress.

Equation (39) for the depth-averaged �ow is similar to (13) but with a 
oe�
ient that has an extra power

of the ratio H/d.

4 Impli
ations for 2D Modeling

Let us suppose that we had not bothered about 3D Ekman dynami
s and instead had used the following

two-dimensional model with linear fri
tion:

−f v̄ = −fvg +
τx
ρH

− rū (40)

+fū = +fug +
τy
ρH

− rv̄ (41)

∂ū

∂x
+

∂v̄

∂y
= 0, (42)

in whi
h the wind stress is applied as a body for
e and r is a fri
tion 
oe�
ient, whi
h should be related to

the vis
osity ν somehow. We use overbars on the velo
ity 
omponents to indi
ate that these are verti
ally

uniform, i.e. they are depth averages. Thus, this model assumes a bottom stress 
ounter-aligned with the

depth-averaged velo
ity. Su
h a 2D model, often extended to in
lude time derivatives, nonlinear adve
tion

terms, and a quadratri
 expression for the bottom stress has long been a staple of wind-driven 
ir
ulation

modeling for lakes and 
oastal areas (Heaps, 1969 - Equation (5); Li
k, 1976 - Page 58; S
hwab, 1983 -

Equation (4); Lentz et al., 1999 - Equation (5); Weisberg & Zhang, 2008 - Equation (8); Józsa, 2014 -

Equation (13); to 
ite only one study per de
ade).



Shallow Ekman dynami
s 10

We ask what value should be given to the fri
tion 
oe�
ient r in terms of the kinemati
 vis
osity ν
and the other parameters in the formalism, f and H, in su
h a way as to render this 2D model an exa
t

representation of the 3D model after elimination of the verti
al stru
ture of the �ow. For this, we begin by

solving the momentum equations (40)-(41) for ū and v̄, whi
h is straightforward:

ū =
f2

f2 + r2
ug −

rf

f2 + r2
vg +

1

ρH(f2 + r2)
(rτx + fτy) (43)

v̄ =
f2

f2 + r2
vg +

rf

f2 + r2
ug +

1

ρH(f2 + r2)
(rτy − fτx) , (44)

and then pro
eed by taking the divergen
e ∂ū/∂x+∂v̄/∂y, whi
h we set to zero as 
ontinuity (42) demands.

The result is:

∂vg
∂x

−
∂ug
∂y

=
1

ρrH

(

∂τy
∂x

−
∂τx
∂y

)

+
1

ρfH

(

∂τx
∂x

+
∂τy
∂y

)

, (45)

whi
h is isomorphi
 to (30) in that the vorti
ity of the geostrophi
 �ow is a linear 
ombination of the

divergen
e and 
url of the wind stress. Mapping (45) onto (29) demands the following two equivalen
ies:

r

f
=

d

2H

cosh H
d
sinh H

d
− cos H

d
sin H

d

cosh2 H
d
+ cos2 H

d
− cosh H

d
cos H

d
− 1

(46)

2H

d
sinh

H

d
sin

H

d
= cosh

H

d
sinh

H

d
− cos

H

d
sin

H

d
. (47)

While the �rst of these equations serves to set the value for the fri
tion 
oe�
ient r in terms of the vis
osity

ν (subsumed in d), the se
ond equation ought to be satis�ed, too. A glan
e at this equation reveals that it

is impossible to satisfy it for an arbitrary value

†
of the ratio H/d. Thus, we are brought to 
on
lude that

the redu
ed two-dimensional model (40)-(41)-(42) is not a legitimate redu
tion of the three-dimensional

model (5)-(6)-(7).

One may think at this point that the veering involved in Ekman dynami
s should 
ause the bottom

stress to be at a non-zero angle to the mean velo
ity and that the presen
e of this angle would resolve the

matter. Surprisingly, however, it does not: Equation (47) arises on
e again. A non-intuitive remedy is to

turn the surfa
e wind stress by a 
ertain angle. This does not seem to have a physi
al basis until one thinks

of it as a parameterization of the bottom stress as a linear 
ombination of the mean velo
ity and surfa
e

stress rather than being dependent on the mean velo
ity alone.

For an angle α of rotation, positive in the trigonometri
 sense, we try 2D equations of the form:

−f v̄ = −fvg +
cosα τx − sinα τy

ρH
− rū (48)

+fū = +fug +
sinα τx + cosα τy

ρH
− rv̄ (49)

∂ū

∂x
+

∂v̄

∂y
= 0. (50)

of whi
h the solution for ū and v̄ is:

ū =
f2ug − rfvg

f2 + r2
+

(f sinα+ r cosα)τx + (f cosα− r sinα)τy
ρH(f2 + r2)

(51)

v̄ =
f2vg + rfug

f2 + r2
+

(f sinα+ r cosα)τy − (f cosα− r sinα)τx
ρH(f2 + r2)

, (52)

†
Not even in the asymptoti
 
ases of very small or very large values.
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with the following zero-divergen
e 
ondition:

∂vg
∂x

−
∂ug
∂y

=
f cosα− r sinα

ρrfH

(

∂τy
∂x

−
∂τx
∂y

)

+
f sinα+ r cosα

ρrfH

(

∂τx
∂x

+
∂τy
∂y

)

. (53)

Mapping (53) onto (29) demands the following two equivalen
ies:

f

r
cosα− sinα =

2H

d

cosh2 H
d
+ cos2 H

d
− cosh H

d
cos H

d
− 1

cosh H
d
sinh H

d
− cos H

d
sin H

d

(54)

f

r
sinα+ cosα =

2H

d

sinh H
d
sin H

d

cosh H
d
sinh H

d
− cos H

d
sin H

d

. (55)

Both 
onditions 
an now be met as the two 
onditions now form a 2 × 2 system of equations for the two

unknowns r/f and α. Figure 4 displays the variations of the ratio r/f (magni�ed by a fa
tor 100) and
angle α as fun
tions of the thi
kness ratio H/d. As 
an be expe
ted, both vanish for great depths (with

r/f ≃ d/2H). As the water depth de
reases, fri
tion be
omes more important, as expe
ted, and the angle

α swings between a minimum of −8.910◦ and a maximum of +48.17◦. The angle α be
omes appre
iable

(|α| > 5◦) when H/d falls below 6.

Figure 4: The fri
tion fa
tor r (s
aled and magni�ed) and angle α of veering (in degrees) that are the

solutions to Equations (54)-(55).

Now that we have identi�ed an a

eptable redu
tion, we 
an extra
t the 
orresponding expression of the

bottom stress. Writing Equations (48)-(49) as

−f v̄ = −fvg +
τx
ρH

−
τbx
ρH

(56)

+fū = +fug +
τy
ρH

−
τby
ρH

(57)

to serve as the de�nitions of the bottom stress 
omponents (τbx, τby), we obtain:

τbx = (1− cosα) τx + sinα τy + ρrHū (58)

τby = (1− cosα) τy − sinα τx + ρrHv̄ . (59)

Thus, the proper way to parameterize the bottom stress is to add a surfa
e stress 
omponent to a 
lassi
al

term proportional to the depth-averaged velo
ity. The importan
e of this surfa
e stress 
omponent de
reases
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for in
reasing depth be
ause the angle α vanishes as H/d → ∞, as Figure 4 shows. The need to in
lude the

surfa
e stress in the formulation of the bottom stress was already re
ognized by Nihoul (1977 - Equation

(61)), but without re
ourse to the pre
eding developments, he did not make provision for veering and

obtained a 
oe�
ient (m in his notation) with a weak and monotoni
 dependen
e on the water depth.

5 Con
lusions

We investigated the 
ase of rotating shallow water when Ekman dynami
s extend throughout the water


olumn instead of being restri
ted to thin boundary layers under surfa
e and above bottom. Although this

had been investigated in parts some time ago, the 
omplexity of the algebra obs
ured some of the �ow

properties. Chie�y, Welander (1957) did identify that the depth-averaged �ow vorti
ity depends not only

on the surfa
e stress 
url (as it does in deep water) but also on its divergen
e; however, he did not do
ument

the importan
e of the new term. Using less 
ompli
ated algebrai
 manipulations, we show here that the

divergen
e term vanishes in both limits of very deep (H/d → ∞) and very shallow water (H/d → 0),
with largest signi�
an
e on the order of 20% for a water depth around 3 times the Ekman layer thi
kness

d =
√

2ν/f .

The physi
al interpretation of the dependen
e of the verti
al velo
ity, and hen
e of the �ow vorti
ity, on

both 
url and divergen
e of the surfa
e stress is as follows. In redu
ed depth, where the top and bottom Ek-

man layers overlap, ea
h of these layers

†
is, in a sense, in
omplete. This implies that the verti
ally averaged

transport in the top layer is at less than the full 90◦ to the surfa
e stress. The divergen
e of this transport,
whi
h indu
es the verti
al velo
ity, thus 
ontains two terms: The transport 
omponent perpendi
ular to the

surfa
e stress 
ontributes the 
lassi
al term proportional to the 
url, while the 
omponent parallel to the

surfa
e stress (
aused by the departure from 90◦) 
ontributes a se
ond term proportional to the divergen
e

of the surfa
e stress. The latter 
ontribution vanishes when the depth be
omes su�
ient large to 
reate a

de
oupling of both Ekman layers, with the transport in the top Ekamn layer then oriented at 90◦ to the

surfa
e stress.

Although the surfa
e stress divergen
e e�e
t 
annot be dominant in the presen
e of a �nite surfa
e

stress 
url, it will dominate wherever and whenever the surfa
e stress 
url is weak or nil in water with

depth 
omparable to the Ekman layer thi
kness. This means that a 
url-free but non-uniform wind stress

on a shallow sea or lake 
an, through the dual a
tion of rotation and fri
tion, generate vorti
ity in the

wind-driven 
urrents. To the knowledge of the authors, this had not been identi�ed earlier.

This analysis also has impli
ations for the redu
tion of three-dimensional hydrodynami
s to a two-

dimensional model. We show that, for su
h a redu
tion to be faithful to 3D dynami
s, it is inappropriate

to align the bottom stress with the depth-averaged velo
ity, and this 
ast doubts on numerous simulations

performed over the last �ve de
ades with two-dimensional models. We further show that invoking a veering

angle between bottom stress and depth-averaged �ow still does not 
ure the problem. Instead, the bottom

stress must be taken as 
onsisting of two 
omponents, one depending on the surfa
e stress (with veering)

and the other depending on the depth-averaged �ow (without veering).
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