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Abstract A self-learning adaptive flight control design for non-lmesystems al-
lows reliable and effective operation of flight vehicles idynamic environment.
Approximate dynamic programming (ADP) provides a modekfand computa-
tionally effective process for designing adaptive linegtimal controllers. This pa-
per presents an incremental ADP (IADP) method which consid®P method
and incremental control techniques to design an adaptige-o@imal nonlinear
controller. This nonlinear control method does not neediafgrmation of the dy-
namic model, but requires only the considered state (fate$tand measured in-
put and output. The IADP method was implemented on an F-Téadirsimulation
model. The results prove the success of the proposed metitbshaw a potential
approach of iIADP nonlinear flight controllers without knawgifull state.

1 Introduction

Reinforcement learning is learning what actions to takeffecathe state and to
maximize the numerical reward signal by interacting with @mvironment to some
extent, and to achieve a goal ultimately. It is not defined ligracterizing learning
methods, but by learning problems which can be describech aptimal control

problem of Markov Decision Processes (MDP}. This method links bio-inspired
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artificial intelligence techniques to the field of contrahdaovercomes some of the
limitations and problems, like the problem in most of the tconmethods of de-
manding precise models. The merits of model-free processkptability to the
environment, etc. make reinforcement learning contrsltitable and effective in
the field of adaptive flight control.

In the real world, the agent might not have perfect percepifstates of the envi-
ronment. In most of the cases, the agent “observes” theaitéte environment but
these observations may be noisy and cannot provide sufficitsrmation. UAVs
(Unmanned Air Vehicles), as an example, may lose the GPS@BRosition Sys-
tem) signal during indoor flights or when obstructed by bodg, trees or other
objects; and may obtain inaccurate altitude by using onl$ @Ppressure sensor in
outdoor flight tasks. Manned air vehicles, such as commatizraft and military
aircraft, may also get degraded sensor measurements olosesihe measurements
for several seconds or minutes. Besides, the effect of wistdrdbance on UAVs and
the collisions between UAVs and obstacles and among UAsialpede obtaining
a perfect measurement of full state.

The framework dealing with Partially Observable Markov B&m Process
(POMDP) problems and deciding how to act in partially obable environments
has been developed especially for these situations andrrelaia active area of re-
search. Nominal Belief-state Optimization (NB&9 which combines application-
specific approximations and techniques within the POMDBé&a&ork produced a
practical design that coordinates the UAVs in the presefia@edusions. An on-
line, forward-search algorithm, called the Posterior &ebistribution (PBDJ®!,
was proposed for calculating the posterior distributioardweliefs after a sequence
of actions. This method allows evaluating the expected meéwé a sequence of
primitive actions, called ‘macro-actions’ and contraofiian UAV in a target moni-
toring task.

Output-Feedback (OPFB) approximate dynamic programmgayighms®! were
proposed, as opposed to full state feedback, to tackle gmubivithout direct state
observation. These algorithms are derived for affine in robmbput linear time-
invariant (LTI) deterministic systems, and require peesifly exciting probing noise
and a discounted cost function for convergence. Howevergctintrol derivatives
in some cases, like F-16 model, are naturally non-lineargtigs algorithm can
not work well. On the other hand, incremental methods candeel in non-linear
systems. Because it only computes the changes of the cauirfsice deflection
rather than the complete deflection, such as incrementdinéam Dynamic Inver-
sion (INDI)[":81. However, in the current incremental approach, infornmatibout
system model, aerodynamic force and states are still neGdecbmbine the ad-
vantages of OPFB algorithms and incremental methods, tegssthould be done.
First, an algorithm combining ADP and incremental approaith direct full state
observation should be developed. Second, the OPFB metimoloecased based on
the incremental ADP algorithm to reconstruct the full stagen only output and
input measurement.

In this paper, we are focusing on the first step of the proposetthod. A new
approach combining approximate dynamic programming dtgarand incremental
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methods is developed for nonlinear systems. And this appradl be applied on a
non-linear F-16 fighter airplane simulation model.

2 Background

2.1 Reinforcement learning methods

Reinforcement learning is learning from experience degdby a reward or punish-
ment, which is inspired by animal behaviors. In control eegiring, control costs /
cost functions are used, thus, a reward item diminishesdbevhile a punishment
increases the cost.

The methods for solving RL problems can be classified integleategories: Dy-
namic Programming (DP), Monte Carlo methods (MC) and Temigbifference
learning (TDJY. Different methods have their advantages and disadvasit@fe
methods are well developed mathematically to compute @btpolicies, but re-
quire a perfect model of the systems behavior and the envieahas an MDP. MC
methods do not require a priori knowledge of the environrsattnamics and are
conceptually simple, however, the value estimates andipsliare changed only
upon the completion of an episode. TD methods, as a grouplatfvedy central
and novel methods of RL, require no model and are fully inenetal. Actually,
TD learning is a combination of MC ideas and DP ideas. Like M&hmnds, TD
methods can learn directly from only experience without aehocand like DP, they
update estimates based in part on other learned estimatemnwvaiting for a final
outcome.

RL algorithms can also be categorized by how the optimaktypa$i obtained!.
Policy iteration (PI) algorithms evaluate the current pplio obtain the value func-
tion, and improve the policy accordingly. Value iterationl)(algorithms find the
optimal value function and the optimal policy. Policy sdafS) algorithms search
for the optimal policy directly by using optimization alginms.

2.1.1 Temporal difference methods

Temporal difference methods are those RL algorithms whalehmost impact on
RL based adaptive control methods. This group of methodgiges an effective
way to decision making or control problems when optimal 8ohs are difficult to
obtain or even unavailable analyticdfi$. TD method can be defined basically in
an iterative estimation update form as follows:

o~

V (X)new=V (%) + a[rer1 + W (Xer1) =V (%)] 1)

whereV (x;) is the estimation ofalue functiorfor statex at timet; a is astep-size
parametey which can be a constant or change as time step increases, €.{j/t;
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y € [0,1] is a parameter called thiiscounted rater forgetting factor The target for
update it 1+ W (%41), and theTD errorisri, 1 + W (%11) —V(%). TD methods
can be classified into three most popular categfies

e SARSA is an on-policy TD control method. This method leamsetion-value
function and considers transitions from a state-actiontpahe next pair.

e Q-learning is an off-policy method. It is similar to SARSAutbthe learned
action-value function directly approximates the optimeti@-value function,
independent of the policy being followed and without takigloration into
account.

e Actor-Critic methods are on-policy TD methods that commidkwvays exploring
and tries to find the best policy that still explofes$. They use TD error to evalu-
ate a selected action to strengthen or weaken the tendeseyeating the action
for the future. And they have a separate memory structurggficgély represent
the policy independent of the value function.

2.1.2 Approximate Dynamic Programming and Partial Observability

Traditional DP method illustrated iH is an off-line method knowing the system
model and solving the optimality problem backward by using-dimensional
lookup table for all possible states vectord'. To tackle with the “curse of di-
mensionality” problem, numerical methods, like approxiendynamic program-
ming (ADP), are the best to solve the optimality problemsvind onlind12.13],

The core of ADP as an adaptive optimal controller is to sdheeBellman equa-
tion or its related recurrence equations. ADP methods usévangal approximator
V (x;, parameterginstead o/ (x;) to approximate the cost function / value function
V. Besides, ADP algorithms are good for hybrid design such@d@ms combining
continuous and discrete variables.

e Approximate value iteration (AVI) is a VI algorithm used imetsituation that the
number of states is too large for an exact representatioh.akyorithms use a
sequence of functiong, iterative according t&,,1 = ALV, where,L denotes
the Bellman operatoA denotes the operator projecting onto the space of defined
approximation functions.

e Approximate policy iteration (API) generalizes the PI aitfon by using func-
tion approximation method. This algorithm is built up byréton of two steps:
approximate policy evaluation step which generates arappated value func-
tion Vj, for a policy 1, and policy improvement step, which generates a new
policy with respect to the value function approximatigngreedily4.

Classical DP methods assume that the system is a fully adislersystem. Thus,
the optimal action can be chosen in terms of the full knowéedfjsystem states.
It also assumes that the observed states obey a Markov pradeish means next
state x¢+1, is decided by a probability distribution depending on euatrstatex;,
and action to takey;. However, the agents often try to control the systems withou
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enough information to infer its real stal8. ADP is an extension of more gen-
eral cases like POMDPs which has been active research inot@md operation
field(*3],

2.2 Aircraft Model

A non-linear F-16 simulation modép! will be used in this paper . This model sim-
ulates the dynamics of the real F-16 aircraft based on therigéien by Stevens
and Lewid!® and a NASA repoft”). The non-linear F-16 model which is con-
structed using Simulink allows for control over thrustval®r, aileron and rudder.
The initial states supplied from a trimming routine for aegialtitude and velocity
constitute the initial conditions of the F-16.

Aircraft models are highly nonlinear and can be generallggias follows:

X(t) = fx(1), u®)] +Wix(t)]w(t) (2)

y(t) = hix(t)] +v(t) 3)

where, Eg. 2 is the kinematic state equation which provitlesphysical evalua-
tion of the state vector over time; the termwft) is the noise vector caused by
input noise; eq. 3 is the observation (output) equation ivhan be measured using
sensorsy(t) is the output noise vector.

As an application for this control algorithm, only elevattaflection will be reg-
ulated as pitch control to stabilize the aircraft and to rientiae fight in the wings-
level flight condition. Thus, we are interested in two londinhal statesangle of
attack a andpitch rate q i.e. the system variables axe= [a g] and one control
input: elevator deflection anglé..

The nonlinear model in the pitch plane is given based on theragtion that it
remains in steady wings-level flight condition, as follows:

) qS

aZQ"—r:ivrCZ(aquMaée) (4)

e

4= Cn(a.q.M. ) )
yy

where,C; is the aerodynamic force coefficient, a@g is the aerodynamic moment
coefficient. They are highly nonlinear functionsarigle of attacka, pitch rate q
Mach number Mandelevator deflectiomde.

In this paper, external disturbances will not be consideredw(t) = 0; the
output / sensor measurement is accuratey(te.= 0, but may not be sufficient; and
the sample frequency of simulations is selected to be 100 Hz.



6 Y. Zhou, E. van Kampen and Q.P. Chu

2.3 Output-feedback ADP algorithm

The OPFB algorithms are first introduced to deal with detaistic linear time-

invariant (LTI) systems in a discrete-time (DT) system fémlt is a promising

method, because the algorithms do not require any knowletifee system dy-
namics neither the full state, but only the measurementamftiand output data.
In this section, an introduction of this ADP method and aeevand discussion of
OPFB VI algorithms will be given.

2.3.1 Output-feedback algorithmsfor an LTI system

Assumption 1. This system is an LTI system.
The sample frequency of data measurement is 100 Hz, thusottmvihg
discrete-time LTI system will be considered:

Xt+1 = AX + Buy, Yy = Cx; (6)

where x; € Z" ,y; € ZP andu; € Z™ denoting the inertial states, the system out-
puts / observation and the control inputs, respectivelg drfe-step cost functios
defined quadratically as:

re = r (Y, U, ) = Ty, di) +uf Rug = (v, —di) T Q(y; —di) +u{ Ruy ~ (7)

where,F(y;,d;) represents aost for the current outputg approaching the desired
outputsd;, defined by a quadratic form; Q and R are positive definite ioesr
When it works as a regulator, the desired outputs are zerd Ean be rewritten as
follows:

rk =Yg Qyx + up Ruk (8)

Assumption 2. This system(A, B) is controllable;(A,C) and(A,C/Q) is observ-
able.

Considering the infinite horizon, thetate-value function under certain policy
of statex; is cumulative subsequent one-step cost:

8

Vix) =5y ' = f V(v Qi+ uf Ruy)
i=t

(9)

o

= (Y{ Qy; + U Ru) + W (X¢41)

The Bellman optimality equation for theptimal state-value function’Ms shown
as follows:
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V(%) = mi”i)’ift(YiTQyi +ul Ruy)
e (10)

= min((y{ Qy; +uj Rup) + W* (xt11))
Ut

This problem is known as the linear-quadratic regulatorR)@ontrol problem;
and for this case, the value function is approximated to la&ratic in the state for
some symmetric matrif:

V(%) = X{ Px

(11)
= (y{ Qy; +u{ Rup) + yx{, 1 P11

By using linear feedback gains as shown in Eq. 12, there isséiym definite
solution by solving Lyapunov equatiéh, because (A, C) is assumed to be observ-
able.

U = 11(%t) = =KXt (12)

Both VI algorithm and PI algorithm require the knowledge w$tem dynamics
(A, B) and the full state, while Q-learning provides onlingaithms for optimal
control problem without knowledge of system dynamics hilltreted measurement
of the full state. Thus, OPFB algorithiiswere proposed for RL that do not require
knowledge of the system model neither the full system stétegead, they require
only input and output data . This method proved that the gystates can be given
uniquely in terms of the input and output measurement semseon a time horizon
[t — N,t] under Assumption 2 as shown below .

Ut—1t-—N
Xe = My My| |7 13
! [ u y] |:yt—1,t—N} (13)
where My, My is obtained by theoretical derivation from system dynarfdcs8, C),
controllability matrix and observability matd®; N is thetime horizon of history
informationwhich needs to be long-enough to reconstruct the full stata;;_n €
#"N andy;_1¢_n € 2™ are theinput and output historic information vectors

Ug-1 Yi-1

. U2 | Yi-2

Ut—1t-N = y Yi—1t-N = (14)
Ut—N Yt-N

Thus, a new-defined vector of the observed historic infoionaat timet is
Z_11-n € Z™PN as shown below:

_ Ut_1t—
Zi_1t-N = [y: i: E] (15)
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The quadratic cost function now can be expressed in termseodibserved his-
toric information:
V(%) = X Pxt
_ MJ PM MTPMy] _
T u u Wiy
=Z 14 Zt 1N (16)
t-1t-N {MJPMU My PM, | “+
=7 1 P21 N
where P € (M PIN<(MPN js thenew kernel matridn terms of observed historic

information. And the Bellman optimality equation and TDagrare then written as
follows:

V(%) = min((y{ Qy; + uf Rur) + szt—NJrlfrztI—NH) 17)
Ut
T T T 5 T S
err =Yy Qyy + Uy Ruc+ vz Ny 1PZet-Nv1 —Z 1y nPZ-1t-nN (18)

With TD error, learningP online is possible by using PI, VI or other TD al-
gorithms. The cost function minimization can be achievedliffgrentiating with
respect tai;, and we can get the optimal policy under the estimatioR &k

iU = —(R+yPr1) 'y(Piali—10-N+1+ Pis¥es nia)

_ _ (19)
= Kult-1t-N+1+ KyYerong1

where Py € Z2™M Py e 2™ MN-1) andPy3 € 2™ PN are block matrices parti-

tioned from the firsm row(s) of P € 2(M+PINx(m+pN

2.3.2 An application on alinearized F-16 model

In this part, a short period reduced LTI model of F-16 fightecraft without ac-

tuator dynamics will be used. This model is made by trimmind Bnearizing the
non-linear model for only one flight condition. This stabld kystem is discretized,
and the discrete-time LTI system is given below:

o] _ [0.9935 00093 fay] | [-1886%—5) o
G| |—0.0156 09912 |q ~0.0011

(20)
ai
=573|c1 ¢
W [ 1 2] [QJ
The open-loop poles ared®2+0.012; Q andRis 10 and 1, respectively, denot-
ing the weights on outputs and inputs; the discount fagisrchosen to be.Q; the
historic horizonN is 2. The output matriC = 57.3|c; ¢;] indicates that the output
is a combination of two states. This observation equationmeabe truly practical,
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but the purpose of this experiment set-up is to investigageajpplicability of the
algorithms. In this paper, we choo8e= 57.3[1 1] to regulate botl andg.

By using the OPFB VI algorithm with 3211 input signals andchdeast square
(batch LS) in solvingP, the results are shown in Fig. 1 and the policy converges
(Fig. 2).

state 1: angle of attack state 2: pitch rate
0.2
----- initial 0.15 - = — initial
optimal 0.11 optimal
— — — trained Zoosll — — - trained
g \ iy
s O .
0050 \\ /7
N 0.1\~
-0.15
0 200 _ 400 600 800 0 200 _ 400 600 800
Time [ms] Time [ms]
1 Input: deflection of elevator Output
----- initial - =+ — initial
10 optimal optimal
§ — — — trained — — - trained
S 5 >
° N
0 - —
Nt
5 - =
0 200 _ 400 600 800 0 200 _ 400 600 800
Time [ms] Time [ms]

Fig. 1: Linear OPBF VI method applied to linearized F-16 mode

2.3.3 Discussion on OPFB method for F-16 LTI model

The control inputs of F-16 has maximum values which limit $iraulation to only
exploring part of the state space.

Input design. As with other RL methods, good value estimation depends-heav
ily on the exploration of the state space, which is persist&nitation in this case.
Different modes of the aircraft can be excited by using inpehniques to deter-
mine identification parameters. There are many differgmiitechniques: pseudo-
random noise, classical sine waves, doublets, 3211 daybklket In this paper, 3211
maneuvers, which are one of the most commonly used mandovaiscraft system
identification, are used for both LTI system and non-linedi6imodel.

For a closed loop system, an input noise/design will leadli@ms on value esti-
mation in most of the cases, e.g. quadratic problems, bedtissan adding term in
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Feedback gaink, Ky

06F e = mmemememeEmeEmeEmEEEEEEEEE===

04F ., Ky2

0.2 1

-0.2

-0.4f S

Policy number

Fig. 2: Policy parameters during training with linear OPBFivethod.

quadratic form which is cumulative. That's why a discourttéa was added in our
algorithms.

Local optimal. Without considering the limitation of control deflectionise opti-
mal value function approximation is possible to obtain bings very restrict input
design compensating effects of input noise. However, thiengpestimation require
different well-designed inputs for different LTI systems.

By looking at Fig. 1, the trained controller performed alintbe same as the op-
timal controller, even slightly better, because the trdicentroller gains converged
to the local optimal solution which explored only the lintdteput space and often-
experienced state space. In this sense, this local optiomatatler is good enough
for our applications.

Linear system. This OPFB algorithms above is only suitable for LTI systetnis
not functional well (more overshoot, slower convergencg r@on-zero static error)
when applied directly to F-16 non-linear system, as showfign 3, even though
the policy parameters converges (Fig. 4).
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State 1: angle of attack State 2: pitch angular rate
10
g o] Z 10 ’
o, _lo v (3] \
S \, S 20 \
-15 ’ — - o : — -
- — . — initial policy 30 - — .« —initial policy
-20 trained policy| trained policy
25 -40
0 200 400 600 800 1000 0 200 400 600 800 1000
Time [ms] Time [ms]
Output Input: deflection of elevator
10 10 — -
0 ﬁ 8 - — + —initial policy
10 ’ 6 trained policy
220 \ i input disturbancg
> \ S 4
-30 - o
]
-40 . — . — initial policy 2
-50 trained policy 0
-60 -2
0 200 600 800 1000 0 200 800 1000

400 0 400 600
Time [ms] Time [ms]

Fig. 3: Linear OPBF VI method applied to non-linear F-16 mode

Feedback gainky, Ky

0.3F
0.25
0.2
0.15F
0.1F
0.05F

-0.05
S0.1F

-0.15F L S Sl e g

-0.2 L L I L L L
0 5 10 15 20 25 30

Policy number

Ku
---Kyl
.—\—.Kyz

Fig. 4: Policy (feedback gains) during training with lin€aPBF VI method.

3 Incremental Approximate Dynamic Programming
3.1 Incremental methods

The incremental methods have the ability to deal with thdinearities of systems.
It computes the required control increment at a certain nmmging the conditions
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of the system in the instant befd¥e The main idea of incremental methods is
shown as follows.
Considering a non-linear continuous system dynamics helow

X(t) = f[x(t),u®)], y(t) = hix(t)] (21)

where f (x(t),u(t)) € £" provides the physical evaluation of the state vector over
time; h(x(t)) € #P is a vector denoting the measure system.

The system dynamics around the condition of the system &tttroan be lin-
earized approximately by using the first-order Taylor seelpansion:

af[x(t),u(t)] af[x(t),u(t)]
ox(t) ou(t)
= X(t)o+ F(Xo,Up)[X(t) — Xo] + G(Xo, Up)[u(t) — Uo]

X = f(Xo,Uo) + [xo,u0 (X(t) —X0) + Ix,up[U(t) — Uo]

(22)

where F[x(t),u(t)] = XU ¢ gpnxn jg thesystem matriat timet; G[x(t),u(t)]

ax(t)
= %W e #" ™M is thecontrol effectiveness matrat timet.
Assumption 3. The states and state derivatives of the system are measurabl
which meany(t) = h[x(t)] = x(t) andAx(t),Ax(t),Au(t) are measurable.
The model can be written in the incremental form (Eq. 23),ohli$ a regression

model and can be identified using recursive least squareS)(Richnique.

AX(t) ~ F(Xo,Up)AX(t)) + G(Xp,Ug)Au(t) (23)

3.2 Incremental ADP algorithm based on full state feedback

Assumption 4. The control system has a constant high sampling frequenaghwh
is 100Hz.

Given a constant data sampling rate (assumption 4), thdinear F-16 model
can be written in a discrete form:

Xer1 = F(Xe,Ut), Yy = h(Xt) (24)

wheref (x, Ut) € 2" provides the system dynamidgx;) € #P is a vector denoting
the measure system.
Linearize the system dynamics arouticby taking the Taylor expansion:

O (X, )
(?Xt

0 f(x,ur)

Xepp > f (X5, U%) + o

|x+ur (Xt —X*) =+ Ixsus (U —U*)  (25)
WhenAt is very small (assumption 4¥;_1 approximates;, thus,x*,u* in Eq.
25 are replaced by* = x;_1 andu* = u;_1, and we obtain the discrete incremental

form of this non-linear system:
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X1 —Xe = F (Xt—1,Ut—1) (Xt — Xt—1) +G(Xt—1,Ut 1) (Ut — Ut_1) (26)

AXiyq =~ F(xt_l,ut_l)Axt +G(xt_1,ut_l)Aut (27)
where F (X;_1,Ut—1) = %&t—lsul—l € #™"is thesystem matrixG(x;_1,Ut_1) =

%LIUIHXFLUH € 2™ ™ is thecontrol effectiveness matrt time stegt — 1. Be-

cause of the high frequency sample data and slow-variatersyshe current lin-
earized model can be identified by using the measured datawwopsM steps.
The one-step cost function at tirhés in a quadratic form as shown below:

re = r(Ye, U) = Y{ Qy; +uf Ruy (28)

For infinite horizon, the state-value function is the curtivéafuture rewards
(Eq. 29) from any initial statg;.

VA(x) = 3 YT Qu+ U7 Ru)
1=t

= (y{ Qy; -+ uf Rup) + WH(X41)
= Vi Qy; + (Ut—1+ At) TR(U— 1+ Atg) + WH (X 41)

(29)

where, u is the current policyfor this iADP algorithm, so as to distinguish from
policy Tin OPFB algorithms. The optimal value function for thigtimal policyu*
is defined as follows:

V(%) = min [y Qy; + (U-1+Au) "R(-1+Au) + W (xe1)]  (30)
Aut

And the control law (policyu) can be define as feedback control in an incremen-
tal form:
Aup = p(Ur-1,Xt,A%) (31)

The optimal control at timécan be given:
M (Ax) = argmin [y Qy; + (Ui-1+Aup) "R(U-1+ Aup) + W (xi11)] - (32)
Aug

For this case, the state value is the sum of quadratic valireioutput and input.
Thus, the value function approximation is also chosen inadoatic form:

VH(x) = X{ Px; (33)

where,P is a positive definite matrix.
Therefore, the LQR Bellman equation can be written in theaneental form:
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X¢ PXe = Y{ QY+ (Ur—1+ AUt TR(U 1+ AU) + X[, 1 PXe 41
= ¥{ Qyp + (U1 +AU) TR(U 1+ Aly) (34)
+ Y0 +R-14X% + Gt_14u) "P(x¢ + 14X +Gr14Uy)

By setting the derivative with respect fou; as zero, the optimal control can be
obtained:

Aty = —(R+ G 1PG_1) YRu_1 + y&r 1P(X¢ +R_14%;)]

35
= —(R+ VG 1PG_1) Y [Rut_1+ yG{_1Px; + G 1PR_14x] (35)

from which, the policy is in the form of system variablag (1,x;,Ax;) feed-
back, and the gain is a function of the dynamics of the curiaptirized system
(R-1,Gt-1).

With assumption 3Ax(t),Au(t) are measurabld}_1,G;_1 are identifiable by
using simple equation error method:

T

AXitkr1 = fidX_k+ G AUk = [AX]_, Aul ] B‘T] (36)

|

where,AXit k1 = Xit—k+1 — Xit—k IS the increment ofth state element;, g; is
the elements ofth row vector ofR_1,G;_1; k = 1,2...M denotes at which time
the historic information is available. Because thererafrem parameters in thih
row, M need to satisfyM > (n+ m). By using OLS method, the linearized system
dynamics (th row) can be identified frorivl different data points:

fr i
[gﬂ = (ATA) ATy, (37)
|
where,
Ax[ , Aul AXi ¢
A= Co o= : (38)
Ax{ \ Aul AXitiN-1

If the nonlinear system is unknown, while the full state isaswrable, ADP al-
gorithm, such as PI or VI, combined with incremental methad be applied to
improve the policy online:

iADP (incremental Approximate Dynamic Programming) algorithm.

Evaluation. The Value function kernel matri under policyu can be evaluated
and updated according to Bellman equation until convergémcj = 0,1, ...:

x{ P = v Qye+ uf R+ x4 Pl (39)
Policy improvement.Policy improves for the new kernel matd¥*1:

Aup = —(R+YG{_ PG _1) HRue_ 1+ yG 1P T ix +yGl P TIR_14x]  (40)
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ApproximatingAt to 0, the policy designed previously approaches the optimal
policy.

4 Implementation

Considering the F-16 nonlinear model again, the iIADP atgors above can be
used. Fig. 5 below shows the disturbance response when kibjmat disturbance
is introduced. Disturbances are undesirable inputs, téraosystem with iADP
algorithm have a higher dynamic stiffness and lower distnde response compared
to initial system and LTI OPFB controller.

State 1: angle of attack State 2: pitch rate
0 /./\‘ 0 rwé\‘\
5 Y . :
= \ % a0t [
2 -10 vy 2 \J
= \ ) — - B -20 \ — -
5 15 : .+ — . — initial policy o . .+ — . — initial policy
LTI OPFB -30 LTI OPFB
-20 . .
iADP -40 iADP
-25
0 200 400 600 800 1000 0 200 400 600 800 1000
Time [ms] Time [ms]
10 Input: deflection of elevator 5 Incremental input
8 - — . —initial policy
6 —— LTI OPFB 3 9
= —— iADP 2
i input disturbance 31 Au
s T 5 — b1
0 - c Y
-2 b -10 Au+u_g
-4
0 200 400 600 800 1000 0 200 400 600 800 1000
Time [ms] Time [ms]

Fig. 5: IADP method applied to non-linear F-16 model with adi input distur-
bance.

Fig. 6 shows the control performance when the initial statar offset from
trimmed condition and compares its result with that of LTIFBRcontroller. Without
persistent excitation, the nonlinear system cannot betifteh After training, the
information of control effectiveness mati®&x, u) and system matrik (x, u) can be
used to estimate the current linearized system when theraysinnot be identified
using online identification method (Eq. 37). The bottom tifijures in Fig. 5 and
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Fig. 6 illustrate how the computed increment changes théralomput (elevator
deflection) and how the deflectian is filtered by the actuator.

State 1: angle of attack State 2: pitch rate

5

4 . — . — initial policy 4

3 LTI OPFB _ 2
g , iADP %, 0
- S -2 . — . — initial policy

1 o

-4 LTI OPFB
0 S -6 iADP
-1 -8
0 200 _ 400 600 800 0 200 _ 400 600 800
Time [ms] Time [ms]

8 Input: deflection of elevator 15 Incremental input

6 . — . — initial policy Au

4 LTI OPFB = 10 “
g 2 iADP s s e
i ! g Au+ U1
ee] 0 =]

c 0 —

-2 g

-4 -5

-6

0 200 _ 400 600 800 0 200 _ 400 600 800
Time [ms] Time [ms]

Fig. 6: IADP method applied to non-linear F-16 model with aitial offset.

This control method does not need the model of the non-lisgstem, but still
need the full state to estimate the value function and thealeffectiveness matrix.

5 Conclusion and Future Works

In this paper, an adaptive control method for non-lineatesyiswas discussed. Ap-
proximate dynamic programming algorithms provide a linggproach solving a
near-optimal policy without knowing the system dynamicéile/the incremental
nonlinear control technique linearizes the system. Andn@ntal approximate dy-
namic programming algorithm was proposed to design an a@apear-optimal
controller for non-linear system. The flight control usidiP algorithm was ap-
plied to an F-16 non-linear system. The simulation residt&lated that non-linear
flight controller designed by using iIADP method performs imbetter than the one
using OPFB method. Furthermore, this algorithm is robustabise it doesn’t need
any information of the system model. But it still required &tate of the system
which are often not available, such as aircraft systems.di$tarbance on sensors,
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e.g. noise, amplification, interaction, etc., will lead tareadable output measure-
ment. Under certain policy, the full state of a linear sysiean be reconstructed
by using previous inputs and outputs information. Furthgprovements could be
combining IADP algorithm and OPFB method and conductingeeixpents with
different types of value functions. This proposed methad petentially design a
near-optimal controller for non-linear systems withoytrasr knowledge of the dy-
namic model.

Acknowledgements The first author is financially supported for this Ph.D. resedagtChina
Scholarship Council with the project reference number of 26230026.

References

[1] Richard S Sutton and Andrew G Bartatroduction to reinforcement learning
MIT Press, 1998.

[2] Richard Bellman.Dynamic ProgrammingPrinceton University Press, 1957.

[3] Zachary A. Harris Scott A. Miller and Edwin K.P. Chong. AORIDP frame-
work for coordinated guidance of autonomous uavs for naufjgt tracking.
EURASIP Journal on Advances in Signal Processitip9.

[4] Shankarachary Ragi and Edwin KP Chong. UAV path planiing dynamic
environment via partially observable markov decision pesclEEE Transac-
tions on Aerospace and Electronic Systed®4):2397-2412, 2013.

[5] Ruijie He, Emma Brunskill, and Nicholas Roy. Efficienfaphing under un-
certainty with macro-actionsJournal of Artificial Intelligence Research0
(1):523-570, 2011.

[6] Frank L Lewis and Kyriakos G Vamvoudakis. Reinforcemieatrning for par-
tially observable dynamic processes: Adaptive dynamigimming using
measured output datéSystems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions ord1(1):14-25, 2011.

[7] S Sieberling, QP Chu, and JA Mulder. Robust flight contreihg incremental
nonlinear dynamic inversion and angular accelerationiptied. Journal of
guidance, control, and dynamic33(6):1732—-1742, 2010.

[8] P Simpicio, MD Pavel, E Van Kampen, and QP Chu. An acceleration
measurements-based approach for helicopter nonlinelt éiantrol using in-
cremental nonlinear dynamic inversio@ontrol Engineering Practice21(8):
1065-1077, 2013.

[9] Lucian Busoniu, Robert Babuska, Bart De Schutter, anchiea Ernst.Rein-
forcement learning and dynamic programming using funcéipproximators
CRC Press, 2010.

[10] Kenji Doya. Reinforcement learning in continuous tiened space.Neural
computation12(1):219-245, 2000.



18 Y. Zhou, E. van Kampen and Q.P. Chu

[11] E van Kampen, QP Chu, and JA Mulder. Continuous adamfiitec flight
control aided with approximated plant dynamics. Rroc AIAA Guidance
Navig Control Confvolume 5, pages 2989-3016, 2006.

[12] Said G Khan, Guido Herrmann, Frank L Lewis, Tony Piped &hris Mel-
huish. Reinforcement learning and optimal adaptive cénfio overview and
implementation exampleg\nnual Reviews in Contrp86(1):42-59, 2012.

[13] Jennie Si. Handbook of learning and approximate dynamic programming
volume 2. John Wiley & Sons, 2004.

[14] Olivier Sigaud and Olivier Buffet. Markov decision processes in artificial
intelligence John Wiley & Sons, 2013.

[15] Richard S Russell. Non-linear F-16 simulation usingdink and matlab.
University of Minnesota, Tech. pap&003.

[16] Brian L Stevens and Frank L LewisAircraft control and simulation John
Wiley & Sons, 2003.

[17] Ogburn M. E. Gilbert W. P. Kibler K. S. Brown P. W. Deal P. Nguyen,
L. T. Simulator study of stall/post-stall characteristafsa fighter airplane
with relaxed longitudinal static stability. Technical oep Tech. Rep. 1538,
NASA, 1979.



