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Abstract A self-learning adaptive flight control design for non-linear systems al-
lows reliable and effective operation of flight vehicles in adynamic environment.
Approximate dynamic programming (ADP) provides a model-free and computa-
tionally effective process for designing adaptive linear optimal controllers. This pa-
per presents an incremental ADP (iADP) method which combines ADP method
and incremental control techniques to design an adaptive near-optimal nonlinear
controller. This nonlinear control method does not need anyinformation of the dy-
namic model, but requires only the considered state (full state) and measured in-
put and output. The iADP method was implemented on an F-16 aircraft simulation
model. The results prove the success of the proposed method and show a potential
approach of iADP nonlinear flight controllers without knowing full state.

1 Introduction

Reinforcement learning is learning what actions to take to affect the state and to
maximize the numerical reward signal by interacting with the environment to some
extent, and to achieve a goal ultimately. It is not defined by characterizing learning
methods, but by learning problems which can be described as an optimal control
problem of Markov Decision Processes (MDPs)[1,2]. This method links bio-inspired
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artificial intelligence techniques to the field of control, and overcomes some of the
limitations and problems, like the problem in most of the control methods of de-
manding precise models. The merits of model-free processes, adaptability to the
environment, etc. make reinforcement learning controllers suitable and effective in
the field of adaptive flight control.

In the real world, the agent might not have perfect perception of states of the envi-
ronment. In most of the cases, the agent “observes” the stateof the environment but
these observations may be noisy and cannot provide sufficient information. UAVs
(Unmanned Air Vehicles), as an example, may lose the GPS (Global Position Sys-
tem) signal during indoor flights or when obstructed by buildings, trees or other
objects; and may obtain inaccurate altitude by using only GPS or pressure sensor in
outdoor flight tasks. Manned air vehicles, such as commercial aircraft and military
aircraft, may also get degraded sensor measurements or evenlose the measurements
for several seconds or minutes. Besides, the effect of wind disturbance on UAVs and
the collisions between UAVs and obstacles and among UAVs also impede obtaining
a perfect measurement of full state.

The framework dealing with Partially Observable Markov Decision Process
(POMDP) problems and deciding how to act in partially observable environments
has been developed especially for these situations and remains an active area of re-
search. Nominal Belief-state Optimization (NBO)[3,4] which combines application-
specific approximations and techniques within the POMDP framework produced a
practical design that coordinates the UAVs in the presence of occlusions. An on-
line, forward-search algorithm, called the Posterior Belief Distribution (PBD)[5] ,
was proposed for calculating the posterior distribution over beliefs after a sequence
of actions. This method allows evaluating the expected reward of a sequence of
primitive actions, called ‘macro-actions’ and controlling an UAV in a target moni-
toring task.

Output-Feedback (OPFB) approximate dynamic programming algorithms[6] were
proposed, as opposed to full state feedback, to tackle problems without direct state
observation. These algorithms are derived for affine in control input linear time-
invariant (LTI) deterministic systems, and require persistently exciting probing noise
and a discounted cost function for convergence. However, the control derivatives
in some cases, like F-16 model, are naturally non-linear where this algorithm can
not work well. On the other hand, incremental methods can be used in non-linear
systems. Because it only computes the changes of the controlsurface deflection
rather than the complete deflection, such as incremental Nonlinear Dynamic Inver-
sion (INDI)[7,8]. However, in the current incremental approach, information about
system model, aerodynamic force and states are still needed. To combine the ad-
vantages of OPFB algorithms and incremental methods, two steps should be done.
First, an algorithm combining ADP and incremental approachwith direct full state
observation should be developed. Second, the OPFB method can be used based on
the incremental ADP algorithm to reconstruct the full statefrom only output and
input measurement.

In this paper, we are focusing on the first step of the proposedmethod. A new
approach combining approximate dynamic programming algorithm and incremental
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methods is developed for nonlinear systems. And this approach will be applied on a
non-linear F-16 fighter airplane simulation model.

2 Background

2.1 Reinforcement learning methods

Reinforcement learning is learning from experience denoting by a reward or punish-
ment, which is inspired by animal behaviors. In control engineering, control costs /
cost functions are used, thus, a reward item diminishes the cost while a punishment
increases the cost.

The methods for solving RL problems can be classified into three categories: Dy-
namic Programming (DP), Monte Carlo methods (MC) and Temporal-Difference
learning (TD)[1] . Different methods have their advantages and disadvantages. DP
methods are well developed mathematically to compute optimal policies, but re-
quire a perfect model of the systems behavior and the environment as an MDP. MC
methods do not require a priori knowledge of the environment’s dynamics and are
conceptually simple, however, the value estimates and policies are changed only
upon the completion of an episode. TD methods, as a group of relatively central
and novel methods of RL, require no model and are fully incremental. Actually,
TD learning is a combination of MC ideas and DP ideas. Like MC methods, TD
methods can learn directly from only experience without a model; and like DP, they
update estimates based in part on other learned estimates without waiting for a final
outcome.

RL algorithms can also be categorized by how the optimal policy is obtained[9] .
Policy iteration (PI) algorithms evaluate the current policy to obtain the value func-
tion, and improve the policy accordingly. Value iteration (VI) algorithms find the
optimal value function and the optimal policy. Policy search (PS) algorithms search
for the optimal policy directly by using optimization algorithms.

2.1.1 Temporal difference methods

Temporal difference methods are those RL algorithms which have most impact on
RL based adaptive control methods. This group of methods provides an effective
way to decision making or control problems when optimal solutions are difficult to
obtain or even unavailable analytically[10]. TD method can be defined basically in
an iterative estimation update form as follows:

V̂(xt)new= V̂(xt)+α[rt+1+ γV̂(xt+1)−V̂(xt)] (1)

where,V̂(xt) is the estimation ofvalue functionfor statex at timet; α is astep-size
parameter, which can be a constant or change as time step increases, e.g. α = 1/t;
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γ ∈ [0,1] is a parameter called thediscounted rateor forgetting factor. The target for
update isrt+1+γV̂(xt+1), and theTD error is rt+1+γV̂(xt+1)−V̂(xt). TD methods
can be classified into three most popular categories[1] :

• SARSA is an on-policy TD control method. This method learns an action-value
function and considers transitions from a state-action pair to the next pair.

• Q-learning is an off-policy method. It is similar to SARSA, but the learned
action-value function directly approximates the optimal action-value function,
independent of the policy being followed and without takingexploration into
account.

• Actor-Critic methods are on-policy TD methods that commit to always exploring
and tries to find the best policy that still explores[11]. They use TD error to evalu-
ate a selected action to strengthen or weaken the tendency ofselecting the action
for the future. And they have a separate memory structure to explicitly represent
the policy independent of the value function.

2.1.2 Approximate Dynamic Programming and Partial Observability

Traditional DP method illustrated in[1] is an off-line method knowing the system
model and solving the optimality problem backward by using an-dimensional
lookup table for all possible states vector inRn. To tackle with the “curse of di-
mensionality” problem, numerical methods, like approximate dynamic program-
ming (ADP), are the best to solve the optimality problems forward online[12,13].

The core of ADP as an adaptive optimal controller is to solve the Bellman equa-
tion or its related recurrence equations. ADP methods use a universal approximator
V̂(xt , parameters) instead of̂V(xt) to approximate the cost function / value function
V. Besides, ADP algorithms are good for hybrid design such as problems combining
continuous and discrete variables.

• Approximate value iteration (AVI) is a VI algorithm used in the situation that the
number of states is too large for an exact representation. AVI algorithms use a
sequence of functionsVn iterative according toVn+1 = ALVn, where,L denotes
the Bellman operator;A denotes the operator projecting onto the space of defined
approximation functions.

• Approximate policy iteration (API) generalizes the PI algorithm by using func-
tion approximation method. This algorithm is built up by iteration of two steps:
approximate policy evaluation step which generates an approximated value func-
tion Vn for a policy πn, and policy improvement step, which generates a new
policy with respect to the value function approximationVn greedily[14].

Classical DP methods assume that the system is a fully observable system. Thus,
the optimal action can be chosen in terms of the full knowledge of system states.
It also assumes that the observed states obey a Markov process, which means next
state,xt+1, is decided by a probability distribution depending on current state,xt ,
and action to take,ut . However, the agents often try to control the systems without
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enough information to infer its real states[14]. ADP is an extension of more gen-
eral cases like POMDPs which has been active research in control and operation
field[13].

2.2 Aircraft Model

A non-linear F-16 simulation model[15] will be used in this paper . This model sim-
ulates the dynamics of the real F-16 aircraft based on the description by Stevens
and Lewis[16] and a NASA report[17]. The non-linear F-16 model which is con-
structed using Simulink allows for control over thrust, elevator, aileron and rudder.
The initial states supplied from a trimming routine for a given altitude and velocity
constitute the initial conditions of the F-16.

Aircraft models are highly nonlinear and can be generally given as follows:

ẋ(t) = f [x(t),u(t)]+W[x(t)]w(t) (2)

y(t) = h[x(t)]+v(t) (3)

where, Eq. 2 is the kinematic state equation which provides the physical evalua-
tion of the state vector over time; the term ofw(t) is the noise vector caused by
input noise; eq. 3 is the observation (output) equation which can be measured using
sensors;v(t) is the output noise vector.

As an application for this control algorithm, only elevatordeflection will be reg-
ulated as pitch control to stabilize the aircraft and to remain the fight in the wings-
level flight condition. Thus, we are interested in two longitudinal states:angle of
attackα andpitch rate q, i.e. the system variables arex = [α q] and one control
input:elevator deflection angleδe.

The nonlinear model in the pitch plane is given based on the assumption that it
remains in steady wings-level flight condition, as follows:

α̇ = q+
q̄S

mVT
Cz(α,q,M,δe) (4)

q̇=
q̄Sc̄
Iyy

Cm(α,q,M,δe) (5)

where,Cz is the aerodynamic force coefficient, andCm is the aerodynamic moment
coefficient. They are highly nonlinear functions ofangle of attackα, pitch rate q,
Mach number Mandelevator deflectionδe.

In this paper, external disturbances will not be considered, i.e. w(t) = 0; the
output / sensor measurement is accurate, i.e.v(t) = 0, but may not be sufficient; and
the sample frequency of simulations is selected to be 100 Hz.
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2.3 Output-feedback ADP algorithm

The OPFB algorithms are first introduced to deal with deterministic linear time-
invariant (LTI) systems in a discrete-time (DT) system form[6] . It is a promising
method, because the algorithms do not require any knowledgeof the system dy-
namics neither the full state, but only the measurements of input and output data.
In this section, an introduction of this ADP method and a review and discussion of
OPFB VI algorithms will be given.

2.3.1 Output-feedback algorithms for an LTI system

Assumption 1. This system is an LTI system.
The sample frequency of data measurement is 100 Hz, thus the following

discrete-time LTI system will be considered:

xt+1 = Axt +But , yt =Cxt (6)

where,xt ∈ Rn , yt ∈ Rp andut ∈ Rm denoting the inertial states, the system out-
puts / observation and the control inputs, respectively. The one-step cost functionis
defined quadratically as:

rt = r(yt ,ut ,dt) = r̃(yt ,dt)+uT
t Rut = (yt −dt)

TQ(yt −dt)+uT
t Rut (7)

where,̃r(yt ,dt) represents acost for the current outputsyt approaching the desired
outputsdt , defined by a quadratic form; Q and R are positive definite matrices.
When it works as a regulator, the desired outputs are zero; Eq.7 can be rewritten as
follows:

rk = yT
k Qyk+uT

k Ruk (8)

Assumption 2. This system(A,B) is controllable;(A,C) and(A,C
√

Q) is observ-
able.

Considering the infinite horizon, thestate-value function under certain policyπ
of statext is cumulative subsequent one-step cost:

Vπ(xt) =
∞

∑
i=t

γ i−tr i =
∞

∑
i=t

γ i−t(yT
i Qyi +uT

i Rui)

= (yT
t Qyt +uT

t Rut)+ γVπ(xt+1)

(9)

The Bellman optimality equation for theoptimal state-value function V∗ is shown
as follows:
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V∗(xt) = min
π

∞

∑
i=t

γ i−t(yT
i Qyi +uT

i Rui)

= min
ut

((yT
t Qyt +uT

t Rut)+ γV∗(xt+1))

(10)

This problem is known as the linear-quadratic regulator (LQR) control problem;
and for this case, the value function is approximated to be quadratic in the state for
some symmetric matrixP:

V̂π(xt) = xT
t Pxt

= (yT
t Qyt +uT

t Rut)+ γxT
t+1Pxt+1

(11)

By using linear feedback gains as shown in Eq. 12, there is a positive definite
solution by solving Lyapunov equation[6] , because (A, C) is assumed to be observ-
able.

ut = π(xt) =−Kxt (12)

Both VI algorithm and PI algorithm require the knowledge of system dynamics
(A, B) and the full state, while Q-learning provides online algorithms for optimal
control problem without knowledge of system dynamics but still need measurement
of the full state. Thus, OPFB algorithms[6] were proposed for RL that do not require
knowledge of the system model neither the full system states. Instead, they require
only input and output data . This method proved that the system states can be given
uniquely in terms of the input and output measurement sequences on a time horizon
[t −N, t] under Assumption 2 as shown below .

xt =
[
Mu My

][ut−1,t−N

yt−1,t−N

]
(13)

where,Mu, My is obtained by theoretical derivation from system dynamics(A, B, C),
controllability matrix and observability matrix[6] ; N is the time horizon of history
informationwhich needs to be long-enough to reconstruct the full state;ut−1,t−N ∈
RpN andyt−1,t−N ∈ RmN are theinput and output historic information vectors:

ut−1,t−N =




ut−1

ut−2

...
ut−N


 , yt−1,t−N =




yt−1
yt−2
...

yt−N


 (14)

Thus, a new-defined vector of the observed historic information at time t is
zt−1,t−N ∈ R(m+p)N as shown below:

zt−1,t−N =

[
ut−1,t−N

yt−1,t−N

]
(15)
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The quadratic cost function now can be expressed in terms of the observed his-
toric information:

V̂π(xt) = xT
t Pxt

= zT
t−1,t−N

[
MT

u PMu MT
u PMy

MT
y PMu MT

y PMy

]
zt−1,t−N

= zT
t−1,t−NPzt−1,t−N

(16)

where,P∈ R(m+p)N×(m+p)N is thenew kernel matrixin terms of observed historic
information. And the Bellman optimality equation and TD error are then written as
follows:

V∗(xt) = min
ut

((yT
t Qyt +uT

t Rut)+ γzT
t,t−N+1Pzt,t−N+1) (17)

err = yT
t Qyt +uT

t Rut + γzT
t,t−N+1Pzt,t−N+1− zT

t−1,t−NPzt−1,t−N (18)

With TD error, learningP online is possible by using PI, VI or other TD al-
gorithms. The cost function minimization can be achieved bydifferentiating with
respect tout , and we can get the optimal policy under the estimation ofP[6] :

π : ut =−(R+ γP11)
−1γ(P12ut−1,t−N+1+P13yt,t−N+1)

= Kuut−1,t−N+1+Kyyt,t−N+1

(19)

where,P11 ∈ Rm×m, P12 ∈ Rm×m(N−1) andP13 ∈ Rm×pN are block matrices parti-
tioned from the firstm row(s) ofP∈ R(m+p)N×(m+p)N.

2.3.2 An application on a linearized F-16 model

In this part, a short period reduced LTI model of F-16 fighter aircraft without ac-
tuator dynamics will be used. This model is made by trimming and linearizing the
non-linear model for only one flight condition. This stable LTI system is discretized,
and the discrete-time LTI system is given below:

[
αt+1

qt+1

]
=

[
0.9935 0.0093
−0.0156 0.9912

][
αt

qt

]
+

[
−1.8861e−5
−0.0011

]
δe

yt = 57.3
[
c1 c2

][αt

qt

] (20)

The open-loop poles are 0.992±0.012i; Q andR is 10 and 1, respectively, denot-
ing the weights on outputs and inputs; the discount factorγ is chosen to be 0.2; the
historic horizonN is 2. The output matrixC = 57.3[c1 c2] indicates that the output
is a combination of two states. This observation equation may not be truly practical,
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but the purpose of this experiment set-up is to investigate the applicability of the
algorithms. In this paper, we chooseC= 57.3[1 1] to regulate bothα andq.

By using the OPFB VI algorithm with 3211 input signals and batch least square
(batch LS) in solvingP, the results are shown in Fig. 1 and the policy converges
(Fig. 2).
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Fig. 1: Linear OPBF VI method applied to linearized F-16 model.

2.3.3 Discussion on OPFB method for F-16 LTI model

The control inputs of F-16 has maximum values which limit thesimulation to only
exploring part of the state space.

Input design. As with other RL methods, good value estimation depends heav-
ily on the exploration of the state space, which is persistent excitation in this case.
Different modes of the aircraft can be excited by using inputtechniques to deter-
mine identification parameters. There are many different input techniques: pseudo-
random noise, classical sine waves, doublets, 3211 doublets, etc. In this paper, 3211
maneuvers, which are one of the most commonly used maneuversfor aircraft system
identification, are used for both LTI system and non-linear F-16 model.

For a closed loop system, an input noise/design will lead to abias on value esti-
mation in most of the cases, e.g. quadratic problems, because it is an adding term in
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Policy number
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Fig. 2: Policy parameters during training with linear OPBF VI method.

quadratic form which is cumulative. That’s why a discount factor was added in our
algorithms.

Local optimal. Without considering the limitation of control deflections,the opti-
mal value function approximation is possible to obtain by using a very restrict input
design compensating effects of input noise. However, the optimal estimation require
different well-designed inputs for different LTI systems.

By looking at Fig. 1, the trained controller performed almost the same as the op-
timal controller, even slightly better, because the trained controller gains converged
to the local optimal solution which explored only the limited input space and often-
experienced state space. In this sense, this local optimal controller is good enough
for our applications.

Linear system. This OPFB algorithms above is only suitable for LTI systems.It is
not functional well (more overshoot, slower convergence and non-zero static error)
when applied directly to F-16 non-linear system, as shown inFig. 3, even though
the policy parameters converges (Fig. 4).
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Fig. 3: Linear OPBF VI method applied to non-linear F-16 model.
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Fig. 4: Policy (feedback gains) during training with linearOPBF VI method.

3 Incremental Approximate Dynamic Programming

3.1 Incremental methods

The incremental methods have the ability to deal with the nonlinearities of systems.
It computes the required control increment at a certain moment using the conditions
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of the system in the instant before[8] . The main idea of incremental methods is
shown as follows.

Considering a non-linear continuous system dynamics below:

ẋ(t) = f [x(t),u(t)], y(t) = h[x(t)] (21)

where f (x(t),u(t)) ∈ Rn provides the physical evaluation of the state vector over
time;h(x(t)) ∈ Rp is a vector denoting the measure system.

The system dynamics around the condition of the system at time t0 can be lin-
earized approximately by using the first-order Taylor series expansion:

ẋ ≃ f (x0,u0)+
∂ f [x(t),u(t)]

∂x(t)
|x0,u0(x(t)−x0)+

∂ f [x(t),u(t)]
∂u(t)

|x0,u0[u(t)−u0]

= ẋ(t)0+F(x0,u0)[x(t)−x0]+G(x0,u0)[u(t)−u0]

(22)

where,F [x(t),u(t)] = ∂ f [x(t),u(t)]
∂x(t) ∈Rn×n is thesystem matrixat timet; G[x(t),u(t)]

= ∂ f [x(t),u(t)]
∂u(t) ∈ Rn×m is thecontrol effectiveness matrixat timet.

Assumption 3. The states and state derivatives of the system are measurable,
which meansy(t) = h[x(t)] = x(t) and∆ ẋ(t),∆x(t),∆u(t) are measurable.

The model can be written in the incremental form (Eq. 23), which is a regression
model and can be identified using recursive least squares (RLS) technique.

∆ ẋ(t)≃ F(x0,u0)∆x(t))+G(x0,u0)∆u(t) (23)

3.2 Incremental ADP algorithm based on full state feedback

Assumption 4. The control system has a constant high sampling frequency which
is 100Hz.

Given a constant data sampling rate (assumption 4), the non-linear F-16 model
can be written in a discrete form:

xt+1 = f (xt ,ut), yt = h(xt) (24)

wheref (xt ,ut)∈Rn provides the system dynamics;h(xt)∈Rp is a vector denoting
the measure system.

Linearize the system dynamics aroundx∗ by taking the Taylor expansion:

xt+1 ≃ f (x∗,u∗)+
∂ f (xt ,ut)

∂xt
|x∗,u∗(xt −x∗)+

∂ f (xt ,ut)

∂ut
|x∗,u∗(ut −u∗) (25)

When∆ t is very small (assumption 4),xt−1 approximatesxt , thus,x∗,u∗ in Eq.
25 are replaced byx∗ = xt−1 andu∗ = ut−1, and we obtain the discrete incremental
form of this non-linear system:
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xt+1−xt ≃ F(xt−1,ut−1)(xt −xt−1)+G(xt−1,ut−1)(ut −ut−1) (26)

∆xt+1 ≃ F(xt−1,ut−1)∆xt +G(xt−1,ut−1)∆ut (27)

where,F(xt−1,ut−1)=
∂ f (x,u)

∂x |xt−1,ut−1 ∈Rn×n is thesystem matrix; G(xt−1,ut−1)=
∂ f (xt ,ut )

∂ut
|xt−1,ut−1 ∈ Rn×m is thecontrol effectiveness matrixat time stept −1. Be-

cause of the high frequency sample data and slow-variant system, the current lin-
earized model can be identified by using the measured data in previousM steps.

The one-step cost function at timet is in a quadratic form as shown below:

rt = r(yt ,ut) = yT
t Qyt +uT

t Rut (28)

For infinite horizon, the state-value function is the cumulative future rewards
(Eq. 29) from any initial statext .

Vµ(xt) =
∞

∑
i=t

γ i−t(yT
i Qyi +uT

i Rui)

= (yT
t Qyt +uT

t Rut)+ γVµ(xt+1)

= yT
t Qyt +(ut−1+∆ut)

TR(ut−1+∆ut)+ γVµ(xt+1)

(29)

where,µ is thecurrent policyfor this iADP algorithm, so as to distinguish from
policy π in OPFB algorithms. The optimal value function for theoptimal policyµ∗

is defined as follows:

V∗(xt) = min
∆ut

[
yT

t Qyt +(ut−1+∆ut)
TR(ut−1+∆ut)+ γV∗(xt+1)

]
(30)

And the control law (policyµ) can be define as feedback control in an incremen-
tal form:

∆ut = µ(ut−1,xt ,∆xt) (31)

The optimal control at timet can be given:

µ∗(∆xt) = argmin
∆ut

[
yT

t Qyt +(ut−1+∆ut)
TR(ut−1+∆ut)+ γV∗(xt+1)

]
(32)

For this case, the state value is the sum of quadratic value inthe output and input.
Thus, the value function approximation is also chosen in a quadratic form:

V̂µ(xt) = xT
t Pxt (33)

where,P is a positive definite matrix.
Therefore, the LQR Bellman equation can be written in the incremental form:
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xT
t Pxt = yT

t Qyt +(ut−1+∆ut)
TR(ut−1+∆ut)+ γxT

t+1Pxt+1

= yT
t Qyt +(ut−1+∆ut)

TR(ut−1+∆ut)

+ γ(xt +Ft−1∆xt +Gt−1∆ut)
TP(xt +Ft−1∆xt +Gt−1∆ut)

(34)

By setting the derivative with respect to∆ut as zero, the optimal control can be
obtained:

∆ut =−(R+ γGT
t−1PGt−1)

−1[Rut−1+ γGT
t−1P(xt +Ft−1∆xt)]

=−(R+ γGT
t−1PGt−1)

−1[Rut−1+ γGT
t−1Pxt + γGT

t−1PFt−1∆xt ]
(35)

from which, the policy is in the form of system variables (ut−1,xt ,∆xt ) feed-
back, and the gain is a function of the dynamics of the currentlinearized system
(Ft−1,Gt−1).

With assumption 3,∆x(t),∆u(t) are measurable;Ft−1,Gt−1 are identifiable by
using simple equation error method:

∆xi,t−k+1 = fi∆xt−k+gi∆ut−k =
[
∆xT

t−k ∆uT
t−k

][fT
i

gT
i

]
(36)

where,∆xi,t−k+1 = xi,t−k+1 − xi,t−k is the increment ofith state element;fi , gi is
the elements ofith row vector ofFt−1,Gt−1; k = 1,2...M denotes at which time
the historic information is available. Because there aren+m parameters in theith
row, M need to satisfyM ≥ (n+m). By using OLS method, the linearized system
dynamics (ith row) can be identified fromM different data points:

[
fT
i

gT
i

]
= (AT

t At)
−1AT

t yt (37)

where,

At =




∆xT
t−1 ∆uT

t−1
...

...
∆xT

t−N ∆uT
t−N


 , yt =




∆xi,t
...

∆xi,t+N−1


 (38)

If the nonlinear system is unknown, while the full state is measurable, ADP al-
gorithm, such as PI or VI, combined with incremental method can be applied to
improve the policy online:

iADP (incremental Approximate Dynamic Programming) algorithm.

Evaluation. The Value function kernel matrixP under policyµ can be evaluated
and updated according to Bellman equation until convergence for j = 0,1, ...:

xT
t P j+1xt = yT

t Qyt +uT
t Rut + γxT

t+1P jxt+1 (39)

Policy improvement.Policy improves for the new kernel matrixP j+1:

∆ut =−(R+ γGT
t−1PGt−1)

−1[Rut−1+ γGT
t−1P j+1xt + γGT

t−1P j+1Ft−1∆xt ] (40)
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Approximating∆ t to 0, the policy designed previously approaches the optimal
policy.

4 Implementation

Considering the F-16 nonlinear model again, the iADP algorithms above can be
used. Fig. 5 below shows the disturbance response when a block input disturbance
is introduced. Disturbances are undesirable inputs, the control system with iADP
algorithm have a higher dynamic stiffness and lower disturbance response compared
to initial system and LTI OPFB controller.
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Fig. 5: IADP method applied to non-linear F-16 model with a block input distur-
bance.

Fig. 6 shows the control performance when the initial state is an offset from
trimmed condition and compares its result with that of LTI OPFB controller. Without
persistent excitation, the nonlinear system cannot be identified. After training, the
information of control effectiveness matrixG(x,u) and system matrixF(x,u) can be
used to estimate the current linearized system when the system cannot be identified
using online identification method (Eq. 37). The bottom right figures in Fig. 5 and
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Fig. 6 illustrate how the computed increment changes the control input (elevator
deflection) and how the deflectionut is filtered by the actuator.
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Fig. 6: IADP method applied to non-linear F-16 model with an initial offset.

This control method does not need the model of the non-linearsystem, but still
need the full state to estimate the value function and the control effectiveness matrix.

5 Conclusion and Future Works

In this paper, an adaptive control method for non-linear system was discussed. Ap-
proximate dynamic programming algorithms provide a linearapproach solving a
near-optimal policy without knowing the system dynamics; while the incremental
nonlinear control technique linearizes the system. An incremental approximate dy-
namic programming algorithm was proposed to design an adaptive near-optimal
controller for non-linear system. The flight control using iADP algorithm was ap-
plied to an F-16 non-linear system. The simulation results validated that non-linear
flight controller designed by using iADP method performs much better than the one
using OPFB method. Furthermore, this algorithm is robust, because it doesn’t need
any information of the system model. But it still requires full state of the system
which are often not available, such as aircraft systems. Thedisturbance on sensors,
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e.g. noise, amplification, interaction, etc., will lead to unreadable output measure-
ment. Under certain policy, the full state of a linear systemcan be reconstructed
by using previous inputs and outputs information. Further improvements could be
combining iADP algorithm and OPFB method and conducting experiments with
different types of value functions. This proposed method can potentially design a
near-optimal controller for non-linear systems without a-prior knowledge of the dy-
namic model.
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