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Abstract

Accurate measurements of global solar radiation are essential for applications ranging from pho-
tovoltaic (PV) yield assessment to grid operation and agricultural management. However, direct
measurements with pyranometers are sparse and costly, motivating alternative approaches based
on widely available PV power production data. This thesis investigates how accurately global
radiation can be estimated using machine learning models trained on PV power output data,
supplemented with weather reanalysis data.

Two tree-based models, Random Forest and Gradient Boosting, were applied to PV data from two
sites in the Netherlands combined with globally available weather reanalysis data, using on-site
pyranometer measurements as the ground truth for training and validation. Both single-location
models, trained and validated on the same site, and cross-location models, trained on one site and
applied to another, were evaluated. For comparison, a linear regression baseline model was also
tested.

The single-location models achieved strong performance, with R? ~ 0.97, mean absolute errors
(MAE) of 10-15 [W/m?], and near-zero bias at a 15-minute resolution, substantially outperforming
established reanalysis products such as ERA5. Cross-location models retained reasonable accuracy
(R? =~ 0.94, MAE 15-30 [W/m?]), though with increased bias. Feature importance analysis
highlighted the dominant influence of PV power output and the clear-sky index for photovoltaics
(Kpy), while reanalysis variables contributed little. The top-of-atmosphere radiation proved to
be a consistently useful predictor.

These results demonstrate that PV power data can be transformed into accurate, high-frequency
radiation estimates, offering a cost-effective complement to pyranometer measurements. While
site-specific calibration currently limits full generalisation, the findings point toward the feasibility
of scalable models based on transferable features such as Kpy. Expanding datasets across more
climates and system configurations, and exploring advanced model architectures, are promising
next steps towards generalised PV-based radiation models that could be applied without requiring
on-site pyranometer measurements for training.
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1 Introduction

Global solar radiation, also referred to as global horizontal irradiance (GHI), is the total short-
wave radiation received from the sun on a horizontal surface at ground level (Sandia National
Laboratories, 2025a). Many fields of research and application require access to high-temporal-
resolution global solar radiation data. These include solar energy forecasting for grid integration,
climate modelling of radiative fluxes, crop yield prediction in precision agriculture, and dynamic
control in building energy simulations. In each case, accurate and frequent radiation data enable
better model calibration, more informed operational decision-making, and more detailed analyses
of short-term environmental dynamics such as cloud variability or shading effects.

Despite its importance, the availability of high-resolution global radiation data is extremely lim-
ited. Ground-based pyranometers, the primary instruments used for such measurements, are
sparsely distributed and often only available at dedicated weather stations. This creates large
spatial gaps in the data, especially in regions where environmental or energy monitoring infras-
tructure is lacking. Even in a well-instrumented country like the Netherlands, there is only one
station measuring global radiation for approximately every 1000 km? of land area (KNMI, 2024).

Improving access to high-resolution radiation data can significantly enhance the accuracy of solar
generation forecasting, enable real-time control of energy systems, and support remote agricul-
tural or environmental monitoring. For example, better irradiance estimates can reduce grid
imbalances in areas with high photovoltaic (PV) penetration by improving reserve planning and
dispatch accuracy (Kaur, 2015; Goodarzi et al., 2019). In agriculture, solar-powered smart irri-
gation systems can leverage accurate solar irradiance data to optimise both water use and energy
management, improving system efficiency under variable environmental conditions (Mohammed
et al., 2023). Similarly, real-time irradiance data supports dynamic control strategies in building
energy systems, contributing to energy savings and indoor comfort (Kim et al., 2014).

To address this data gap, this thesis investigates a data-driven method for estimating global solar
radiation from PV power output data. While most research has focused on predicting PV output
from solar radiation, the reverse—estimating radiation from PV data—has received comparatively
little attention. Yet this inverse relationship holds substantial practical value. PV systems are
now widely deployed and often collect high-frequency power output data, offering an abundant,
underutilised data source for estimating solar radiation.

Recent studies have begun to explore this idea. A proof-of-concept study by Beran (2013) demon-
strated the feasibility of estimating solar radiation from monthly PV power data from a residential
system, achieving an R? of 0.99 against nearby weather station data, though its coarse temporal
resolution limits practical use. Later, Engerer et al. (2015) used data from commercial PV systems
but focused solely on modelling the diffuse fraction of solar radiation. Nespoli and Medici (2017)
later proposed an unsupervised method based on physical PV system models to derive global hor-
izontal irradiance from aggregated PV power signals, showing that their approach outperforms
satellite-based products at high temporal resolution. Finally, Carvalho and Corréa (2019) pro-
posed a model linking PV voltage to radiation using laboratory measurements, although real-world
complexities were excluded.

In contrast to the unsupervised, physics-based approach of Nespoli and Medici, this thesis em-
ploys supervised machine learning models trained on paired pyranometer and PV power data,
supplemented with data from the Open-Meteo Historical Weather API, an open-source reanal-
ysis product that combines modern weather models with observational data to provide global
historical weather records.

By transforming widely available PV output data into usable radiation estimates, this approach
reduces the need for dense sensor networks, offering a scalable and cost-effective means of improv-
ing data coverage and supporting energy and environmental applications in under-instrumented
regions. A further contribution is the focus on a 15-minute temporal resolution, whereas most



existing solar radiation models operate at an hourly timescale. Previous studies have shown that
modelling solar radiation becomes increasingly challenging at finer timescales, as errors tend to
grow due to higher variability in atmospheric conditions (Omoyele et al., 2024; Rajagukguk and
Lee, 2023; Li et al., 2023).

The main research question of this thesis is: ”How accurately can global solar radiation be
estimated using a machine learning model based on photovoltaic power output data?”

To answer this question, this study develops machine learning models that use PV power output
and auxiliary weather reanalysis data to estimate global solar radiation. Multiple modelling
scenarios are evaluated, including both single-site training and cross-site generalisation. Model
performance is assessed using standard error metrics, and feature-importance analysis is conducted
to understand model behaviour and input relevance.

To guide the investigation, this study formulates one central research question along with a set
of sub-questions. These sub-questions explore the relative performance of different modelling
approaches, the extent to which spatial generalisation can be achieved, and the influence and
practicality of various input features.

Main research question

How accurately can global solar radiation be estimated using a machine learning model
based on photovoltaic power output data?

Sub research questions
1. How accurately can a Random Forest regression model estimate global solar radiation?
2. How accurately can a Gradient Boosting regression model estimate global solar radiation?

3. How accurately can a machine learning regression model trained with normalised photo-
voltaic power output at one site predict global radiation at a different site?

4. What features are useful for model performance and can be feasibly acquired?



2 Data

This section provides an overview of the data sources and input variables used in the models
developed in this study. PV power data and global solar radiation data—measured with a pyra-
nometer—were collected from two locations in the Netherlands: Delft and Wageningen (Figure 1).
In addition to these local measurements, reanalysis weather data were retrieved from external
sources to supplement local measurements and improve model performance.

The complete input dataset includes a combination of directly measured values, weather reanalysis
data, variables derived from solar geometry and time, and features computed from existing inputs,
as described in Section 3. A summary of all variables is presented in Table 1. After processing,
all data were used at a 15-minute time resolution, and time-normalised to UTC.

A full description of the data preprocessing procedures is provided in Appendix I, along with plots
of the PV and global radiation data sets.

Figure 1: The 2 locations in the Netherlands where data were collected.

2.1 Delft

In Delft, both PV power and global solar radiation data were collected at the urban research
facility of Delft University of Technology, known as The Green Village. These data can be
accessed through their data platform (The Green Village, 2025) 1. The PV power output was
measured at the transformer level, capturing the total alternating current (AC) power generated
by a system of 18 south-facing solar panels (model: Bisol BMU-260). The panels have a tilt of
30° and an azimuth of 157°. Global radiation was recorded using a pyranometer installed on-
site. All measurements were collected at a temporal resolution of 15 minutes. Combined PV and
pyranometer data were available from November 2021 to April 2024, with notable gaps in the PV
data occurring around May and December 2022, as well as in March and April 2023. Only time
steps for which both PV and pyranometer readings were available were retained, leaving a total
of 63,016 timestamps with valid measurements.

For the Delft data, two important preprocessing steps were taken. The PV data from The Green
Village returned no data during night time. These data were manually set to 0 [W/m?] in order
to have continuous data. For the combined PV and pyranometer data, three continuous days of
data were also removed as the pyranometer dataset had values of 0 [W/m?] for the entire three

'Data can only be observed through this platform. Acquiring the data requires a request to The Green Village.



days, while the PV data showed notable power production. It is assumed that during this time
maintenance was being performed on the pyranometer.

Global solar radiation was measured in Delft using an EKO MS-40 pyranometer, a Class C in-
strument certified under ISO 9060:2018 (EKO Instruments, 2025). Class C pyranometers are
intended for general meteorological use and offer moderate accuracy relative to higher-grade in-
struments. For this study, the measurement uncertainty is conservatively estimated at approx-
imately +£23 [W/m?], based on the root-sum-square combination of known error sources such
as zero offset, temperature response, and directional sensitivity. A detailed justification for this
estimate is provided in Appendix II.

2.2 Wageningen

In Wageningen, PV power data were collected from a rooftop residential installation comprising
six west-facing solar panels (model: LG MonoX 2 Black). The panels have a tilt of 45° and an
azimuth of 245°. As in Delft, the power output was measured at the transformer, capturing the
total AC power generated by the system. Global radiation data were sourced from a pyranometer
located at the nearby meteorological observation site "Veenkampen’, situated approximately 3.5
kilometres west-northwest of the city. These data were acquired from the MAQ-observations
website (Wageningen University & Research, 2025) and are licensed under the Creative Commons
Attribution 4.0 International License (CC BY 4.0). All measurements were recorded at a 15-
minute temporal resolution. Combined PV and pyranometer data were available from August
2017 to February 2025.

The PV dataset for Wageningen contains several gaps, most notably in September, October,
and December 2017; July, August, September, and November 2018; October 2019; and from
August through November 2023. As with the Delft data, only time steps for which both PV and
pyranometer readings were available were retained, leaving a total of 208,000 timestamps with
valid measurements.

Global solar radiation was measured at Veenkampen using a Kipp & Zonen CM 11 pyranometer,
which is classified as a secondary standard instrument under ISO 9060:1990 (Kipp & Zonen B.V.,
2008). This designation represents the highest category of radiometric performance for pyra-
nometers, ensuring high accuracy and stability. For this study, the measurement uncertainty is
conservatively estimated at approximately £13 [W/m?], based on the root-sum-square combina-
tion of key error sources. A full justification of this estimate is provided in Appendix II.

2.3 Reanalysis Weather Data

To supplement the locally collected data, this study incorporates reanalysis weather data from
the Open-Meteo Historical Weather API (Open-Meteo, 2024). Open-Meteo is an open-source
platform that provides access to reanalysis datasets, which combine numerical weather prediction
models with observational data from weather stations and national meteorological services (e.g.,
the Dutch KNMI).

From Open-Meteo, hourly data were obtained for 14 meteorological variables and linearly in-
terpolated to a 15-minute resolution to match the temporal scale of the PV and pyranometer
measurements. Although Open-Meteo provides native 15-minute resolution data for regions such
as North America and Europe, this study used the hourly global product to maintain consistency
and generalisability across geographic contexts. This approach ensures that the methodology
remains applicable to locations where only coarser reanalysis data are available.

2.4 Calculated Variables

Several variables used in this study are not directly observed but are derived from the available PV
power and weather reanalysis data. These include the clear-sky PV power estimate (PVorrar),



the relative production factor (Rpy ), and the Clear Sky Index for Photovoltaics (Kpy ). These
variables are briefly described in Table 1 and are discussed in full detail in Sections 3.2 and 3.3.

To capture temporal dependencies in PV performance, the Clear Sky Index was also included

in both lagged and lead form. These temporally shifted features are denoted as Kl(an&, where
n indicates the number of 15-minute intervals by which the original Kpy value is shifted. For
instance, K](;VI) corresponds to a 15-minute lag, while K](;l‘), represents a one-hour lead. Shifted
values were computed for n ranging from —10 to 10, providing a temporal window of +2.5 hours.
This range was selected based on preliminary experiments, which showed that shifts beyond this

interval contributed little additional predictive value.

2.5 Variables from Solar Geometry and Time

Theoretical top-of-atmosphere (TOA) irradiance was calculated using solar geometry equations
from Duffie and Beckman (2013), which require only geographic location, date, and time as inputs.
This variable represents the solar radiation incident at the top of Earth’s atmosphere under clear-
sky conditions, and serves as a physically meaningful baseline for incoming solar energy.

Additionally, the binary variable daylight indicates whether the sun is above the horizon at a
given time step (1 for daylight, O for nighttime). It was derived using solar position calculations
based on time and location, implemented via the pvlib Python library (Anderson et al., 2023).

2.6 Data splitting

To enable model training and evaluation, the collected data were divided into three subsets:
training, testing, and validation. The training set was used to fit the models, the testing set to
evaluate performance during development and optimise hyperparameters, and the validation set
to assess final model performance. A split ratio of 70-20-10 was applied.



Table 1: Overview of all model input variables, grouped by data source.

Variable  Unit Description

LOCAL MEASUREMENTS (DELFT/WAGENINGEN)

Ig

W/m?  Measured global radiation from local pyranometer

PViygas W/m?  Measured PV power output per unit module area

OPEN-METEO REANALYSIS API

Tom °C Air temperature at 2 metres height

RHo5,, % Relative humidity at 2 metres height

N % Total cloud cover (fraction of sky area)

NLow % Low-level cloud cover (< 3 km altitude)

Niria % Mid-level cloud cover (3-8 km altitude)

Nrigh % High-level cloud cover (> 8 km altitude)

P mm Total precipitation

Prain mm Rainfall component of precipitation

Psyow mm Snowfall component of precipitation

WMO - Categorical weather condition code (WMO standard)
DPrnsl hPa Air pressure at mean sea level

Ds hPa Air pressure at surface level

WS km/h  Wind speed at 100 m altitude

WD ° Wind direction at 100 m altitude

DERIVED FROM SOLAR GEOMETRY OR TIME

Iroa W/m?  Theoretical top-of-atmosphere irradiance
daylight - Binary indicator for sun above horizon (0 or 1)
d - Ordinal day of the year (1-365)

m

- Minutes since midnight (0-1439)

CALCULATED FROM DATA
PVorpar W/m?  Estimated PV power output per unit module area

(clear-sky conditions)

Rpy — Relative production factor
Kpy - Clear Sky Index for photovoltaics
Kl(pn& - Kpy shifted by n time steps of 15 minutes




3 Methodology

This section outlines the methodology used to develop, train, and evaluate machine learning
models for estimating global solar radiation from photovoltaic (PV) power data. The focus is on
assessing both the accuracy and generalisability of the models using data from two test sites in
the Netherlands.

To this end, four modelling scenarios are considered—two single-location scenarios and two cross-
location scenarios—designed to evaluate performance both within and across sites. A key aspect of
the methodology is the use of the Clear Sky Index for Photovoltaics (K py ), which helps normalise
PV output data and enables better comparison across systems with different configurations.

Two approaches are implemented to simulate the clear-sky condition PV power needed to compute
Kpy: a relative production method and the PVWatts model.

The chosen regression models—Random Forest and Gradient Boosting—are described in detail,
along with the performance metrics used for evaluation. The models are trained under different
generalisation scenarios, and hyperparameter optimisation is carried out separately for single-
and cross-location scenarios to best suit their respective objectives. Finally, feature importance
is analysed to gain insight into which input variables most strongly influence model predictions.

3.1 Modelling Scenarios and Spatial Generalisation

This study considers four modelling scenarios designed to evaluate both the performance and
spatial generalisation capability of machine learning models for estimating global solar radiation
from PV power output. Spatial generalisation refers to the ability of a model trained at one
location to accurately estimate global radiation at a different site—using only PV power data
from that site—without access to location-specific ground truth radiation measurements.

Two categories of modelling scenarios are defined:

e Single-location models: The model is both trained and evaluated on data from the same
site. These scenarios assess how well a model can learn site-specific patterns and generalise
over time. They represent a use case in which a pyranometer is installed temporarily along-
side PV modules to collect ground truth radiation data for model calibration. After this
initial period, the pyranometer may be removed, and the trained model used for continued
radiation estimation based solely on PV output.

e Cross-location models: The model is trained on data from one site and evaluated on
another. These scenarios are designed to test spatial generalisation. A successful model in
this context would allow radiation estimation at new locations using only PV data, without
requiring pyranometer measurements at those sites. This approach is particularly useful for
scaling solar monitoring to regions where the installation of radiation sensors is impractical.

The four specific scenarios considered in this study are summarised in Table 2. Each scenarios is
named according to the training and testing location.



Table 2: Overview of modelling scenarios evaluated in this study.

Scenario Name Train — Test Description

Delft_Single Delft — Delft Trained and tested on data from the
Delft site (single-location model)

Wageningen Single Wageningen — Wageningen Trained and tested on data from the
Wageningen site (single-location model)

Delft_Wageningen  Delft - Wageningen Trained on Delft data, tested on Wa-
geningen data (cross-location model)
Wageningen Delft  Wageningen — Delft Trained on Wageningen data, tested on

Delft data (cross-location model)

These modelling scenarios form the foundation of the methodology, enabling evaluation of model
accuracy, robustness, and portability across different geographical locations. In particular, the
cross-location results provide insight into the practical viability of using data-driven models to
replace physical radiation sensors in new deployments.

3.2 Clear Sky Index for Photovoltaics

To ensure that a model generalises well across different geographical locations, the selected features
should be physically meaningful and not overly dependent on local conditions (Razavi and Gupta,
2015). While the correlation between PV module power output and global radiation is certainly
physically meaningful, it is also highly dependent on site-specific factors such as panel orientation
and geographical location. For these reasons, rather than relying solely on the direct PV power
output as a model feature, the Clear Sky Index for Photovoltaics (K py ) is also employed, following
the approach proposed by Engerer and Mills (2014).

The purpose of using K py is to normalise PV power output with respect to the maximum expected
output under clear-sky conditions. This facilitates more meaningful comparisons between sites
with different system sizes, orientations, and local atmospheric conditions. By expressing the
measured output as a fraction of the clear-sky potential, K py provides a dimensionless indicator
of relative system performance that is less influenced by local configuration and more reflective
of transient atmospheric conditions such as cloud cover.

Kpy is calculated as:
_ PVpas (1)

Kpy =
PVerear

where PV pas is the measured PV system power output, and PVorgar is the simulated power
output of the system under clear-sky conditions. Both quantities are expressed in watts per square
metre [W/m?], making K py a dimensionless ratio. Throughout this study, PV power production
is expressed in watts per square metre of module area to enable comparison between systems of
varying sizes. Simulation of PVorgag is explained in Section 3.3.

The manner in which Kpy is incorporated into the dataset depends on the modelling scenario:

e Single-location scenarios: K py is added as an additional feature alongside raw PV power
output. This gives the model access to both absolute and normalised signals, potentially
improving site-specific performance.

e Cross-location scenarios: The raw PV power output is replaced by Kpy, ensuring the
input feature is normalised and thus more transferable across different sites. This substitu-
tion supports spatial generalisation by reducing dependence on site-specific irradiance and
system configuration.



3.3 Clear-sky Power Output Simulation

In this study, two different methods are used to simulate the clear-sky power output (PVorpar)
required to calculate K py: a relative production approach and the PVWatts model for PV power
estimation (Dobos, 2014).

Estimating clear-sky power output through simulated relative production

The clear-sky power output is first estimated using a relative production approach, as outlined
below. The first step involves computing clear-sky irradiance values based on geographical location
and time, using the simplified Solis model proposed by Ineichen (2008), which is an analytical
approximation of the original Solis model developed by Miiller et al. (2004). This model provides
clear-sky condition estimates of the three key components of solar irradiance: Direct Normal
Irradiance (DNI), Global Horizontal Irradiance (GHI), and Diffuse Horizontal Irradiance (DHI),
as illustrated in Figure 2.

e Direct Normal Irradiance refers to the solar radiation received per unit area by a surface
that is always oriented perpendicular to the incoming solar rays.

e Global Horizontal Irradiance is the total solar radiation received per unit area by a
horizontal surface. It includes both the direct component (projected onto the horizontal
plane) and the diffuse component scattered by the atmosphere.

e Diffuse Horizontal Irradiance is the portion of solar radiation received from the sky
after scattering by air molecules, aerosols, and clouds, excluding direct sunlight.

These components are related through the following equation:

GHI = DNI -cos(0) + DHI (2)

where 6 is the solar zenith angle, defined as the angle between the sun’s rays and the vertical (see
Figure 2).

|
|
|
|
Direct , 1 2
Diff - 0
iffuse wem) 2 \
DNI=[2] !
GHI=[1] + 3] .
DHI=[E] | \
|

Figure 2: Visual representation DNI, GHI and DHI.
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Next, the plane-of-array (POA) irradiance—representing the total solar radiation incident on the
tilted surface of the PV module at the test site—is simulated using the isotropic sky diffuse model
(Liu and Jordan, 1963). This model assumes the diffuse radiation is uniformly distributed across
the sky dome (Sandia National Laboratories, 2025b) and requires the previously calculated DNI,
GHI, and DHI values, along with the module’s tilt, azimuth, and geographical location.

The POA irradiance is then normalised by the standard test-condition irradiance—typically
1000 [W/m?] (Sinovoltaics, 2011)—to obtain the relative production factor Rpy (Eq. 3). Then,
the clear-sky power output in direct current is estimated by multiplying Rpy by the PV module’s
rated DC power output under standard test conditions (Eq. 4). Finally, the DC power output
estimate is multiplied by an inverter loss factor (7;,,) to obtain the estimated clear-sky power
output for the relative production method, denoted as PVorparre (Eq. 5).

The relevant equations are as follows:

I
Rpy = IPOA (3)
STC
PVpcret = Rpv - PVeo (4)
PVoLEARret = Ninv - PVDO rei (5)

where:
e Rpy is the dimensionless relative production factor [—],
e Ipo4 is the simulated Plane of Array irradiance under clear-sky conditions [W/m?],

e [gpc is the irradiance level for standard test conditions, for both considered PV setups

1000 [W /m?],
e PVpc el is the estimated clear-sky power output before inverter losses [W/ mQ],
e PV is the rated DC power output of the system under standard test conditions [W/m?],

o PVorLEARrel is the estimated clear-sky power output for the relative production approach
[W/m?],

® 7iny is the inverter efficiency [—].

Equation 4 assumes a linear relationship between POA irradiance and PV module power output,
which is reasonably accurate for most PV module types (Meflah et al., 2024). While reasonable
under clear-sky and high-irradiance conditions, this simplification introduces limitations. It ne-
glects temperature effects, which can significantly reduce power output as module temperature
increases, and does not account for angle-of-incidence losses, where shallow sunlight angles lead to
higher reflection. Additionally, under low-irradiance conditions, non-linear effects such as inverter
inefficiencies and shunt resistance become more prominent, potentially reducing accuracy.

To address these limitations, the second approach in this study uses the PVWatts model, which
incorporates temperature effects and system-level derate factors.

Estimating clear-sky power output using the PV Watts model

In the second approach, clear-sky power production is estimated using PVWatts, incorporated
within a model chain function from the pvlib library for Python (Anderson et al., 2023). The
resulting estimate, PVorLEAR pvw, Serves as an alternative to the relative production method for
computing the clear-sky power baseline used in the derivation of the clear-sky index Kpy .
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PVWatts is a simulation tool developed by the National Renewable Energy Laboratory (NREL)
for estimating the energy production of grid-connected photovoltaic systems (Dobos, 2014).

The model chain is set up as follows: First, as with the relative production method, clear-sky
irradiance values are computed using the simplified Solis model, yielding DNI, GHI, and DHI.
Following this, these irradiance components are then transposed into POA irradiance using the
isotropic sky diffuse model, the same as for the relative production approach. Simultaneously, the
SAPM model is used to simulate the module temperature, using weather data on air temperature
and wind speed as inputs.

Within the model chain spectral losses are neglected, which would otherwise require additional
data on atmospheric conditions such as air mass and composition. This is a common simplifying
assumption for standard silicon modules under regular conditions, as spectral effects are very
small for standard silicon modules (Ishii et al., 2011).

Finally, the PVWatts model is used to estimate the clear-sky power output using the following
two equations (Dobos, 2014):

Ipoa
PVDC,pv = IP : PVch [1 + Ypdc * (Tcell - Tref)] (6)
STC
PVC’LEAR,pv = Ninv * PVpc (7)

where:
e PVpcpw is the simulated DC power output [W/m?],
e Ipoy4 is the plane-of-array irradiance in [W/m?],
e Igrc is the irradiance level for standard test conditions, typically 1000 [W/m?],
e PV is the rated DC power output of the system under standard test conditions [W/m?],
® Y4 is the power temperature coefficient [°C™1],
o T,y is the PV cell temperature in [°C],
o T,y is the reference cell temperature, set at 25 [°C],

o PVorLEARpy is the estimated clear-sky power output for the PVWatts model approach
[W/m?],

® 7iny is the inverter efficiency [—],

3.4 Linear Regression

As a baseline model, a linear least squares regression is fitted for the single-location scenarios.
Prior to fitting, all features are scaled to have zero mean and unit variance. The model estimates
a set of linear coefficients wy through w,, where n is the number of features, along with an
intercept term b. These parameters are chosen to minimise the residual sum of squares between
the observed target values and the model predictions.

To maintain physical plausibility, any negative predictions produced by the linear regression model
are set to zero, as negative global radiation values are physically impossible.

During preliminary testing, certain input features were found to be strongly linearly correlated
with others, causing instability in the estimated regression coefficients. To address this, the
features PVorpar, Pmsi, and Pgrgi, were excluded from the linear regression inputs. This ad-
justment was applied exclusively to linear regression models, which are particularly sensitive to
multicollinearity (Shrestha, 2020). Furthermore, the models were trained only on datasets with
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relative-production-derived Kpy, as the goal was not to maximise performance but to provide a
simple and interpretable baseline against which tree-based models could be compared.

Linear regression is implemented using the scikit-learn Python library (Pedregosa et al., 2011).

3.5 Random Forest Regression

After establishing a baseline using linear least squares regression, a Random Forest regression
model is fitted for each modelling scenario.

Random Forest is an ensemble learning method designed for regression tasks and belongs to
the family of bagging methods (Figure 3). It constructs multiple decision trees using bootstrap
samples of the training data and averages their predictions to produce a final output. Bootstrap
aggregation (also known as bagging) involves generating new training datasets by sampling the
original data with replacement, introducing variability between the trees. This diversity increases
robustness and reduces model variance, leading to improved generalisation performance compared
with single decision trees (Breiman, 2001).

A key strength of Random Forest regression is its resistance to noise and overfitting. By aver-
aging the outputs of many decorrelated trees—each trained on a different subset of data—the
model provides stable and accurate predictions, even in the presence of non-linear and complex
feature interactions. For this reason, Random Forest regression is well suited to this study, where
the relationships between PV power output and meteorological variables—such as temperature,
irradiance, and cloud cover—are expected to be highly complex and non-linear.

The key hyperparameters of the Random Forest model explored in this study are:

1. n_estimators: The number of decision trees in the forest. Increasing this generally improves
performance and stability, but incurs greater computational cost.

2. max_depth: The maximum depth of each decision tree. Limiting the depth can reduce
overfitting and improve generalisation, but may increase bias.

3. min _samples_leaf: The minimum number of samples required to be at a leaf node. In-
creasing this parameter leads to more conservative trees with fewer splits, which can reduce
overfitting.

4. min_samples_split: The minimum number of samples required to split an internal node.
Higher values can reduce variance but may increase bias, potentially leading to underfitting.

5. max_features: The fraction of features considered when determining the best split at each
node. For example, a value of 0.7 means that 70% of the available features are randomly
selected at each split. Smaller values encourage diversity across trees and help mitigate
overfitting.

6. max_samples: The fraction of the training dataset used to build each tree. A value of
0.5 means each tree is trained on 50% of the original dataset (sampled with replacement).
Smaller values can reduce training time but may increase the risk of underfitting.

Random Forest regression is implemented in this study using the scikit-learn Python library
(Pedregosa et al., 2011).
3.6 Gradient Boosting Regression

Following the application of Random Forest regression, Gradient Boosting regression tree models
are fitted for each modelling case to evaluate whether they can achieve better performance.

Gradient Boosting refers to a family of powerful ensemble learning techniques that approximate
target functions by iteratively adding models in a sequential manner (Figure 3). Unlike bagging
methods, which train multiple models independently on different subsets of data and aggregate
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their predictions, boosting trains models sequentially, with each model focusing on correcting
the errors of its predecessor (Friedman, 2001). This approach allows the ensemble to gradually
improve prediction accuracy by reducing bias and capturing complex patterns in the data.

Gradient Boosting with regression trees begins by predicting the mean of the target variable as the
initial estimate. The residuals—i.e., the differences between the observed values and this initial
prediction—are then computed. A regression tree is then fitted to these residuals, learning how
the model should adjust its predictions. The updated prediction is the sum of the initial estimate
and the output of this first tree, scaled by a learning rate. This process is repeated iteratively:
at each stage, a new tree is trained on the residuals of the current model, and its predictions are
added to the ensemble. The procedure continues until a predefined stopping criterion is met, such
as a maximum number of trees or convergence of the model error.

Gradient Boosting regression trees can achieve higher accuracy than Random Forests; however,
they also have drawbacks. Training times are slower due to the sequential nature of tree construc-
tion, and they are more prone to overfitting than Random Forests (Natekin and Knoll, 2013).
They are considered in this study because—like Random Forests—they are well suited to capturing
the complex, non-linear relationships between PV power output and the relevant meteorological
variables. If overfitting is successfully mitigated, it is hypothesised that this method may yield
more accurate results than the Random Forest model.

The key hyperparameters of the Gradient Boosting model explored in this study are:

e n_estimators: The number of trees that are added sequentially. A larger number of trees
allows the model to capture more complex relations at the cost of a higher risk of overfitting.

e learning rate: A scaling factor applied to the contribution of each tree. It controls the
trade-off between bias and variance.

along with max_depth, min samples_leaf, min samples_split, and max_features, which are
explained in subsection 3.5.

Gradient boosting regression trees have been implemented in this study using the scikit-learn
Python library (Pedregosa et al., 2011).
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Figure 3: Visual representation of bagging and boosting (Daniel, 2025).
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3.7 Model Performance

Model performance is evaluated using four common metrics, alongside an analysis of periodic
bias. These metrics are: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean
Bias Error (MBE), and the coefficient of determination (R?). These metrics are computed as:

n

RMSE = %Z(yz — 9i)? (8)
=1
MAE = lihﬁ—.@ﬂ (9)
[t
MBE = ;i(y — i) (10)
=1
R iz —9)? (11)

> i (Wi — 9)?

Here, y; denotes the observed value for the i-th sample, g; represents the corresponding predicted
value, g is the mean of all observed values, and n is the total number of observations. In this
study, RMSE, MAE, and MBE are expressed in units of [W/m?2], while R? is dimensionless.

Each metric captures a different aspect of model performance. RMSE penalises larger errors more
heavily, making it useful when large deviations are particularly undesirable. MAE is less sensitive
to outliers and represents the average absolute prediction error. MBE indicates systematic bias,
showing whether the model tends to over- or underpredict on average. R? expresses the proportion
of variance in the observed data explained by the model, serving as a general measure of goodness

of fit.

While MBE provides an overall measure of systematic bias, it does not capture temporal varia-
tions. In many climate and weather-related applications, it is important to assess whether the
model exhibits recurring over- or underestimation patterns on shorter timescales. To address this,
MBE is also computed on a monthly basis, following the approach of previous studies (Li et al.,
2014; Budiyanto et al., 2018).

3.8 Hyperparameter Optimisation Strategy

To maximise the predictive performance of the Random Forest and Gradient Boosting models, a
structured hyperparameter optimisation procedure was implemented. The search was conducted
using the Optuna framework for Python (Akiba et al., 2019), which offers an efficient and flexible
interface for automated hyperparameter tuning. Optuna supports a range of search strategies;
in this work, the Tree-structured Parzen Estimator (TPE) algorithm (Bergstra et al., 2011) was
chosen. TPE is a Bayesian optimisation method that models the probability distributions of
promising and unpromising hyperparameter configurations based on past evaluations, thereby
focusing exploration on regions of the parameter space likely to yield improvements. This makes it
considerably more sample-efficient than conventional grid or random search, which is advantageous
for computationally demanding models.

The optimisation objective was adapted to the type of experiment:

e Single-location models: Hyperparameters were tuned to minimise the RMSE using three-
fold cross-validation on the training set. This approach encourages good generalisation
within the same site while mitigating overfitting. Final model performance was subsequently
assessed on the validation dataset.
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e Cross-location models: At each optimisation step, the model was trained on the training
data from one site and evaluated on the training data from the other. The RMSE on
the unseen location served as the optimisation criterion, promoting hyperparameters that
transfer well between sites. Because the test set was not involved in this process, final
performance could be evaluated on the complete test dataset rather than the validation
subset.

All hyperparameters listed in Sections 3.5 and 3.6 were considered for tuning, except for a few
fixed values to reduce computational overhead. For Random Forest, only min samples_split
was actively tuned among the three regularisation parameters (max_depth, min_samples_leaf,
min samples_split); preliminary experiments showed no significant benefit from optimising all
three simultaneously, so max_depth and min_samples_leaf were retained at their default values
(None and 1, respectively).

For Gradient Boosting, the parameter max_depth was fixed at 30 to limit training time while
maintaining sufficient model complexity to capture non-linear relationships, as boosting builds
trees sequentially rather than in parallel.

Due to computational constraints, hyperparameter optimisation was performed only for datasets
using K py derived from the relative production method. The resulting configurations were then
also applied to models using PVWatts-derived Kpy . Likewise, for cross-location experiments, op-
timisation was carried out only on the Delft_Wageningen scenario, and the same hyperparameters
were reused for Wageningen Delft.

3.9 Feature Importance Evaluation

In this study, feature importance is quantified using a normalised impurity-based score, automat-
ically computed by scikit-learn for both the Random Forest and Gradient Boosting regression
models. These scores are accessible via the feature_importances_ attribute.

The importance score of a feature is determined by the total reduction in impurity it causes
across all trees in the ensemble. In regression trees, impurity is typically measured using the
MSE. Whenever a node is split based on a feature, the resulting decrease in MSE is attributed to
that feature. These reductions are accumulated over the entire model and then normalised such
that the importances sum to one. A feature with an importance score of zero was not used in any
split and thus had no influence on the model’s structure.

It is important to note that impurity-based feature importance has several limitations. First,
it does not directly indicate which features contribute to the model’s ability to generalise to
unseen data. A feature with a low importance score may still play a critical role in refining
predictions—particularly in later stages of the decision process. For instance, the model might
initially rely on top-of-atmosphere irradiance for a coarse prediction and then use cloud cover
or weather-related features to make finer corrections. Furthermore, when features are strongly
correlated, their importance can be diluted as they compete to explain the same variance in the
target variable. In such cases, the model may distribute importance across correlated features in
a way that under represents their individual contributions.
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4 Results

This section presents the performance of the global radiation models. It begins with baseline
results from the linear regression approach, followed by evaluation of the Random Forest and
Gradient Boosting regressions. Differences in predictive accuracy between Delft and Wageningen
are examined to assess the impact of site-specific conditions, and the monthly MBE is analysed
to identify shorter-term biases. Finally, the optimised hyperparameters from automated tuning
are summarised, offering insight into the configurations that achieved the best performance.

Table 3 provides an overview of the standard performance metrics for all modelling scenarios.

Table 3: Overview of performance metrics for all modelling scenarios and regression methods.

Scenario and Model Type RMSE MAE MBE R?

W/m? W/m? W/m? —
SCENARIO: Delft_Single

Linear Regression 4298  19.32 1.30 0.95
Random Forest — Relative production 31.80  10.62 -0.52 0.97
Random Forest — PVWatts 31.78 10.60 -0.50 0.97
Gradient Boosting — Relative production 30.73  10.06 -0.50 0.97
Gradient Boosting — PVWatts 30.43 9.96 -0.34 0.97
SCENARIO: Wageningen Single

Linear Regression 63.82  36.36 5.67 0.91
Random Forest — Relative production 39.63  15.68 0.30 0.97
Random Forest — PVWatts 39.64  15.69 0.22 0.97
Gradient Boosting — Relative production 38.65  14.97 0.11 0.97
Gradient Boosting — PVWatts 38.54  14.96 0.02 0.97
SCENARIO: Delft_Wageningen

Linear Regression 109.87  62.58 40.44 0.73
Random Forest — Relative production 60.48  29.18 7.34 0.92
Random Forest — PVWatts 60.88  28.97 9.06 0.92
Gradient Boosting — Relative production 59.94  30.16 4.81 0.92
Gradient Boosting — PVWatts 59.90  30.29 6.59 0.92
SCENARIO: Wageningen Delft

Linear Regression 68.44  36.68 2.44 0.87
Random Forest — Relative production 44.25  18.16 -4.15 0.95
Random Forest — PVWatts 4712  19.16 -7.01 0.94
Gradient Boosting — Relative production 44.50 19.44 -2.07 0.95
Gradient Boosting — PVWatts 46.03  20.54 -4.17 0.94

4.1 Linear Regression Results

This section presents results for the baseline linear regression model across the four modelling
scenarios. Predicted global radiation values are plotted against measured pyranometer data from
the test sets. The results for the single-location scenarios are shown in Figure 4, while the cross-
location scenarios are shown in Figure 5.
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Figure 4: Linear regression model results for both single-location scenarios.
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Figure 5: Linear regression model results for both cross-location scenarios.

The linear model performs reasonably well for the Delft_Single scenario, although it exhibits
a clear tendency to underestimate global radiation at higher values. This can be attributed to
the model’s assumption of a linear relationship between input features derived from PV power
output, and global radiation, whereas the actual relationship becomes increasingly non-linear at
higher irradiance levels, mostly due to temperature effects (Buni et al., 2018).

In contrast, the model performs significantly worse for the Wageningen Single scenario, with the
RMSE going up from 43 to 64 [W/m?]. This trend is also observed across other models and is
discussed in more detail in Section 4.4. Additionally, the model shows a systematic overestimation
of global radiation in this case, with a MBE of 5.66 [W/m?]. Similar to the Delft scenario, it also
underestimates values at the higher end of the irradiance spectrum.

The cross-location scenarios show a clear decline in model performance, which is consistent with
expectations. This reduction can be attributed to site-specific factors such as shading and panel
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orientation, both of which strongly influence the relationship between the input features and global
radiation. As a result, a model trained on one site is inherently limited when applied to another
with distinct characteristics. Even so, both cross-location linear regression models retain some
predictive skill, with R? values above 0.7, indicating that they are able to reproduce the overall
trend. However, the very high RMSE of 110 [W/m?] observed in the Delft Wageningen scenario
highlights the inability of linear regression to capture the more complex, non-linear relationships
required for robust generalisation across sites. This suggests that while linear models can provide
a baseline, they are not well-suited for developing generalisable models of global radiation.

4.2 Random Forest Regression Results

The performance of the Random Forest regression models across all modelling scenarios is pre-
sented here. Results obtained using the Clear Sky Index for Photovoltaics (Kpy ), calculated via
the relative production approach, are shown in Figure 6 for the single-location scenarios and in
Figure 7 for the cross-location scenarios. Similarly, results based on Kpy values computed using
the PVWatts model are shown in Figures 8 and 9.
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Figure 6: Random Forest regression model using Kpy derived from relative production. Results
for both single-location scenarios.
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Figure 7: Random Forest regression model using Kpy derived from relative production. Results
for both cross-location scenarios.

From Figure 6, it is evident that the Random Forest models using Kpy derived from relative
production achieve substantially higher performance than the baseline linear regression models for
the single-location scenarios. Unlike linear regression, which assumes a strictly linear relationship
between PV power and radiation, Random Forests can capture complex, non-linear dependencies
and interactions among input features. This flexibility allows the model to reproduce both the
general trend and the more subtle variations in the data. For both locations, the models are
capable of reproducing global radiation values with high accuracy.

When considering the estimated pyranometer measurement uncertainties of 23 [W/m?] for Delft
and 13 [W/m?] for Wageningen, the Delft Single model demonstrates excellent agreement
with measured data, yielding an RMSE of 31.80 [W/m?] and a MAE of 10.62 [W/m?]. How-
ever, consistent with the trend observed in the linear regression results, performance for the
Wageningen Single scenario is notably lower. This performance gap is likely due to a stronger
correlation between PV power output and global radiation at the Delft site compared to the
Wageningen site. Further discussion of this difference is provided in Section 4.4.

For the cross-location scenarios, performance has also improved substantially compared to the
linear baseline model. This improvement highlights the advantage of Random Forests in dealing
with shifts in feature-target relationships between sites. While linear models are constrained by
a single global coefficient for each feature, Random Forests can partition the feature space in a
more complex manner, allowing in this case for better adaptation to site-specific conditions.

It can again be noted that the model trained on Wageningen data and evaluated on Delft data
outperforms the reverse case by a considerable margin. This asymmetry is once more attributed
to the stronger correlation between PV power output and global radiation in the Delft dataset.
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Figure 8: Random Forest regression model using Kpy derived from PV Waitts. Results for both
single-location scenarios.
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Figure 9: Random Forest regression model using Kpy derived from PV Watts. Results for both
cross-location scenarios.

When comparing the relative production approach with the PVWatts-based Kpy (Figures 8 and
9), no significant differences are observed. As shown in Table 3, the performance metrics for both
approaches are nearly identical, indicating that the choice of Kpy calculation method has little
impact on Random Forest performance in this study.

4.3 Gradient Boosting Regression Results

This section presents the results for the Gradient Boosting regression models across all modelling
scenarios. Figures 10 and 11 display the results for the single- and cross-location scenarios,
respectively, when using Kpy values computed via the relative production approach. Similarly,
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Figures 12 and 13 present the results obtained with Kpy values calculated using the PVWatts
model.
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Figure 10: Gradient Boosting regression model using Kpy derived from relative production. Re-
sults for both single-location scenarios.
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Figure 11: Gradient Boosting regression model using Kpy derived from relative production. Re-
sults for both cross-location scenarios.

When Kpy is derived from the relative production approach, the Gradient Boosting models
perform very similarly to the Random Forest models based on the same Kpy. As shown in
Table 3, differences across most performance metrics are minimal. The most notable distinction
observed here is a lower MBE in the cross-location scenarios, indicating reduced systematic bias
compared to the Random Forest models. This suggests that Gradient Boosting is better able to
fine-tune predictions under differing site conditions, even if overall error metrics remain similar.
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Figure 12: Gradient Boosting regression model using Kpy derived from PV Watts. Results for
both single-location scenarios.
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Figure 13: Gradient Boosting regression model using Kpy derived from PVWatts. Results for
both cross-location scenarios.

For the single-location scenario, Gradient Boosting models using Kpy from PVWatts show
marginally better performance than those using Kpy from the relative production approach.
In contrast, for cross-location scenarios, their performance is slightly lower. As with the Random
Forest models, the choice of K py calculation method has only a minor effect on Gradient Boosting
model performance in this study.

4.4 Difference in Results Between Delft and Wageningen

An analysis of the single-location results reveals that the Wageningen Single scenario consistently
underperforms compared to Delft_Single across all model types. A similar trend is observed in
the cross-location experiments: models trained on Wageningen data and evaluated on Delft data
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outperform the reverse configuration. The most plausible explanation lies in the difference in PV
panel orientation between the two sites, which alters the relationship between global radiation
and PV power output.

Figure 14 plots global radiation against PV power (both normalised to unit scale) for each site.
It is evident that Delft exhibits a stronger and more linear correlation between the two variables
compared to Wageningen.
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Figure 14: Global radiation plotted against photovoltaic power data (unit scale) for both locations.

To illustrate that the weaker correlation at Wageningen is primarily driven by panel orientation,
Figure 15 shows data for clear summer days at the Wageningen site. The dataset was filtered to
include only summer dates with total cloud cover (V) below 0.3 (fractional area), ensuring that
the relationship between global radiation and PV power could be observed with minimal cloud
interference. The colour bar indicates the time of day for each measurement. The plot reveals that
PV power increases only marginally during the morning, despite steadily rising global radiation,
until shortly before noon—when the sun passes over a rooftop notch that shades the panels. As
a result, peak power production occurs later in the afternoon, when the sun—panel angle becomes
more favourable, rather than at solar noon when global radiation is highest.

The data points that lie closer to the y = x reference line in Figure 14b correspond mainly
to cloudier days. On such days, PV power generation is driven more by diffuse than by direct
radiation. Because diffuse radiation is less dependent on the angle between the sun and the PV
panels, the relationship between global radiation and PV output becomes more linear.

Together, these two Figures show how panel orientation can noticeably change the relation between
global radiation and PV power production.
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Figure 15: Global radiation versus photovoltaic power (unit scale) for clear summer days in
Wageningen. Colours indicate the time of day of measurement.

4.5 Monthly Mean Bias Error

As outlined in the Methodology, the MBE was also evaluated on a monthly basis to assess potential
seasonal trends in model performance. To ensure statistical reliability, only months with at least
200 data points in the validation set were considered.

The results for the single-location scenarios are presented in Figure 16, while the cross-location
results are shown in Figure 17. Both figures use box plots to summarise the distribution of
monthly MBEs, with whiskers extending to 1.5 times the interquartile range.

The distributions indicate that the two machine learning models yield highly similar results,
and that the choice of Kpy calculation method—whether based on relative production or
PVWatts—has only a minor influence on the observed monthly biases of the single-location sce-
narios. For the cross-location scenario Wageningen Delft however it can be seen that using the
relative production based K py gives a notably tighter distribution, closer to the zero line.

These figures highlight another important point: the mean bias error computed over the entire
dataset can mask substantial month-to-month variability. For instance, the Wageningen Single
scenario with the Random Forest relative production model has a very low MBE of 0.30 [W /m?]
over the whole data range, but some individual months can have biases as high as 13 [W/m?].
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Figure 16: Distribution of monthly MBFEs for the single-location scenarios. Whiskers extend to
1.5 times the interquartile range.
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Figure 17: Distribution of monthly MBEs for the cross-location scenarios. Whiskers extend to 1.5
times the interquartile range.

4.6 Optimised Hyperparameters

Table 4 summarises the hyperparameter configurations obtained through optimisation with the
Optuna framework for Python. As outlined in the Methodology (Section 3.8), optimisation
was performed exclusively on the dataset where Kpy was derived using the relative produc-
tion approach. For the cross-location experiments, optimisation was carried out only for the
Delft_Wageningen scenario.

Consequently, the optimised hyperparameters identified in these settings were reused for the cor-

26



responding models based on Kpy derived from PVWatts, as well as for the Wageningen Delft

scenario. This approach ensured methodological consistency while limiting computational over-
head.

Table 4: Overview of model configurations for each modelling scenario.

£

) % B Q

8

£q & 2 3

& &5 5 5
Scenario and Model Type = & g 2 =
SCENARIO: Delft_Single
Random Forest — Relative production 1500 2 0.65 None
Random Forest — PVWatts 1500 2 0.65 None
Gradient Boosting — Relative production 400 83 0.30 0.0265 30
Gradient Boosting — PV Watts 400 83 0.30 0.0265 30
SCENARIO: Wageningen Single
Random Forest — Relative production 900 3 0.65 - None
Random Forest — PVWatts 900 3 0.65 - None
Gradient Boosting — Relative production 400 95 0.30 0.0201 30
Gradient Boosting — PVWatts 400 95 0.30 0.0201 30
SCENARIO: Delft_Wageningen
Random Forest — Relative production 700 236 0.50 None
Random Forest — PVWatts 700 236 0.50 None
Gradient Boosting — Relative production 400 2 040 0.0096 30
Gradient Boosting — PV Watts 400 2 0.40 0.0096 30
SCENARIO: Wageningen Delft
Random Forest — Relative production 700 236 0.50 — None
Random Forest — PVWatts 700 236 0.50 — None
Gradient Boosting — Relative production 400 2 0.40 0.0096 30
Gradient Boosting — PVWatts 400 2 040 0.0096 30

4.7 Feature Importance Results

Feature importance scores for the Random Forest and Gradient Boosting models using Kpy
derived from the relative production approach are shown in Figure 18 for the single-location
scenarios and in Figure 19 for the cross-location scenarios. Feature importance scores for the
models using PVWatts were not significantly different and as such are not shown here. They can
be found in Appendix III.

For the single-location models, feature importance is dominated by PV power output, Top of
Atmosphere radiation (TOA), and Kpy. As shown in Figure 18, the Delft_Single models rely
more heavily on PV power output and less on TOA, whereas the Wageningen Single models
show the opposite trend. This is consistent with the stronger correlation between global radiation
and PV power output observed in Delft, as discussed in Section 4.4. The reanalysis weather data
features exhibit low or negligible importance scores, indicating that they contribute minimally to
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the model’s predictions.

In the cross-location models, a similar pattern emerges. For the Delft_Wageningen scenario, the
models rely more on Kpy than on TOA, while the opposite is observed for Wageningen Delft.
Additionally, the importance of the time-shifted Kpy increases compared to the single-location
models, indicating that this feature provides useful information for improving spatial generalisa-
tion.

It is important to note that PV power output itself is excluded from the cross-location models
due to its strong dependence on site-specific conditions (see Section 3.2). Similarly, the relative
output Rpy was removed after early testing showed poor generalisation across locations.
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4.8 Summary of Results

Overall, the results demonstrate that global solar radiation can be estimated with high accuracy
from PV power output data. Linear regression provides a reasonable baseline for single-location
scenarios, but its performance drops sharply when applied across locations, highlighting its limited
ability to generalise. In contrast, tree-based machine learning models (Random Forest and Gra-
dient Boosting) achieve substantially higher accuracy, with R? ~ 0.97, MAEs of 10-15 [W/m?],
and very low bias ([MBE| < 0.6 [W/m?]) at a 15-minute timescale. Even in the more challeng-
ing cross-location scenarios, these models maintain reasonable performance (R? ~ 0.92, MAE
15-30 [W/m?]). Performance is consistently stronger for Delft than Wageningen, reflecting site-
specific differences in the correlation between PV output and radiation. Between the two machine
learning methods, Gradient Boosting tends to reduce systematic bias compared to Random Forest,
particularly in cross-location settings. Feature importance analysis further highlights PV power
output and Kpy (including its time-shifted form) as the most influential predictors. Finally,
differences between the two approaches for calculating Kpy (relative production vs. PVWatts)
were found to have only a minor impact on model performance.
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5 Discussion

This study demonstrates that global solar radiation can be estimated with high accuracy and low
bias using machine learning models trained on photovoltaic power output data. Both Random
Forest and Gradient Boosting achieved strong performance, with R? values of 0.97 and MAEs
of 10-15 [W/m?], while still retaining reasonable accuracy when applied across locations. Model
performance varied by site, with consistently better results for Delft than for Wageningen, likely
reflecting a stronger correlation between PV power output and radiation in the Delft dataset.

Feature importance analysis highlighted the central role of PV power output and Kpy -, with time-
shifted Kpy values further improving spatial generalisation between sites. By contrast, weather
reanalysis variables contributed little, suggesting that under the conditions examined here, PV-
based features alone are sufficient to capture most of the radiation variability. Nonetheless,
reanalysis data may still provide added value if other variables are considered or if the models are
applied in climates with stronger atmospheric variability.

These results confirm that tree-based machine learning models are well suited to capturing the
complex, non-linear relationship between PV power output and solar radiation, which explains
their strong predictive skill. The weak performance of linear regression supports this point: while
it reproduced the overall trend, its errors were much larger, its bias higher, and its R? markedly
lower. This performance gap highlights the need for flexible non-linear models capable of reflecting
the complex PV response to changing atmospheric conditions. The strong role of Kpy in cross-
location models reinforces the findings of Engerer and Mills (2014), namely that normalising PV
output relative to clear-sky performance improves data comparability across sites.

When benchmarked against established alternatives, the advantages of this approach become
clear. For instance, Urraca et al. (2018) reported an average MAE of 23.13 [W /m?] and an average
MBE of 4.54 [W/m?] for the ERA5 reanalysis product when estimating daily averages of global
radiation. In contrast, the single-location models developed here achieved substantially lower
MAEs on a much finer 15-minute timescale, while also maintaining a near-zero bias (|MBE| <
0.6 [W/m?]). This demonstrates a key strength of supervised PV-based models: they provide
accurate, high-frequency estimates while avoiding systematic errors that can easily propagate into
downstream applications such as PV yield assessments, grid operation strategies, or agricultural
planning.

To put these errors into perspective, the MAEs of 10-15 [W/m?] are smaller than typical mag-
nitudes of important urban climatology fluxes such as net all-wave radiation (100-200 [W/m?])
and sensible heat flux (50-150 [W/m?]) Oke (2002). This highlights the potential of PV-based
radiation modelling to generate data that is not only accurate for PV yield applications but also
valuable for urban climate and energy exchange studies.

As expected, performance declined in cross-location applications, but error levels remained com-
parable to those of ERAS despite operating at a much higher temporal resolution. Similarly, the
RMSE values of 30-40 [W/m?] observed in the single-location models are similar to the findings of
Nespoli and Medici (2017), who derived GHI from aggregated PV signals using an unsupervised,
physics-based approach. While their method avoids the need for ground-truth pyranometer data,
it relies more heavily on model assumptions and was validated at only two sites in Switzerland.

The comparison between K py derived via the relative production method and the PV Watts model
revealed only small performance differences. The most notable case was Wageningen Delft, where
the relative production method yielded lower biases that were also more consistent over time, as
shown in the monthly MBE analysis. This suggests that a simple approach to simulating clear-sky
power output is sufficient to obtain robust results, at least in the context of this study.

The monthly MBE analysis also revealed that the mean bias error, when computed over the entire
dataset, can obscure considerable month-to-month variability, as periods of over- and underesti-
mation may cancel each other out in the long-term average.
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An additional question concerns how well the models can be applied when no data from the target
site are available at all. Appendix IV explored this “true transferability” scenario by applying
single-location hyperparameters directly to another site without any tuning on its data. The
resulting performance was very close to that of models optimised specifically for cross-location use,
and in one case even slightly better. This suggests that much of the skill in cross-site prediction
stems from the general structure of the models rather than site-specific hyperparameter choices,
supporting their potential as accessible tools in data-sparse settings.

Another practical aspect is the availability of input variables. Because the main experiments
included reanalysis features and a time-lead version of Kpy , they cannot be deployed in real time
without modification. As shown in Appendix V, retraining the Random Forest models with only
instantaneous features (removing reanalysis data and the lead Kpy) led to only a marginal loss
in accuracy. This indicates that the proposed approach can be used not only for retrospective
analyses but also for near real-time monitoring of global radiation.

Most optimised hyperparameters were unremarkable, with one exception: in all Gradient Boosting
cross-location models, the parameter min samples_split was set to two by the optimisation
process. Higher values were expected for cross-location scenarios (as observed in Random Forest
models), since low values can encourage overfitting to site-specific training data. In this case,
however, overfitting was likely prevented by the maximum tree depth of 30 and the relatively low
learning rate.

These findings suggest that in locations lacking direct radiation measurements, but with access
to PV power data, global radiation can be modelled with high accuracy and low bias at a fine
temporal resolution using relatively simple tree-based machine learning models. Such models
could provide a cost-effective means of deriving reliable radiation estimates, particularly for ap-
plications requiring high-frequency data. Nevertheless, their practical use still requires temporary
deployment of a pyranometer for site-specific calibration.

This reliance on local calibration is a key limitation of the approach. Without pyranometer data
for training, the high accuracy achieved in the single-location models cannot be replicated. This
motivated the exploration of cross-location models, which showed some generalisation capabil-
ity but still underperformed compared to locally trained models. Other limitations include the
narrow scope of test sites and configurations: both sites were located in the Netherlands, and
only two panel orientations were considered. Even so, the sites exhibited substantially different
PV-radiation relationships, and the models performed well in both cases, supporting their broader
applicability. A further limitation concerns measurement uncertainty: the pyranometer used in
Delft had a combined mean error of approximately £23 [W/m?] (Appendix II), which constrains
the maximum achievable model accuracy. This could be addressed by using pyranometers with
higher precision.

Although this study demonstrates the strong potential of PV-based machine learning models,
further research is needed to enhance their robustness, generalisability, and practical applicability.
Several directions are apparent. First, the findings should be validated on a broader range of sites
and PV configurations to confirm their broader applicability. With access to more diverse datasets,
a logical next step would be to develop multi-site models that incorporate system metadata such
as azimuth and tilt as features. Such models could eliminate the need for site-specific calibration,
enabling radiation estimation wherever PV power data are available. A pragmatic intermediate
step might be to develop a model applicable across the Netherlands before expanding to larger
regions. Further promising directions include exploring more advanced architectures, such as
deep neural networks or hybrid models, and extending the framework towards short-term solar
radiation forecasting.
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6 Conclusions

This thesis set out to answer the research question: “How accurately can global solar radiation
be estimated using a machine learning model based on photovoltaic power output data?” The
overarching objective was to assess whether photovoltaic (PV) power data can serve as a reliable
proxy for global radiation where direct measurements are unavailable.

The study explored two machine learning model types—Random Forest and Gradient Boost-
ing—across two types of modelling scenarios: single-location scenarios, where models were trained
and tested on the same site, and cross-location scenarios, where a model was trained on one site
and validated on another. The former illustrate the potential when local ground-truth measure-
ments are available for calibration, while the latter evaluate the feasibility of developing more
generalised models that operate without site-specific pyranometer data.

The results show that tree-based machine learning models, trained on PV power output and
supplementary reanalysis data, can estimate global radiation with high accuracy and very low
bias. Both Random Forest and Gradient Boosting achieved strong predictive performance, with
R? values of about 0.97, MAEs of 10-15 [W/m?], and mean bias errors below 0.6 [W/m?] on a
15-minute timescale, for the single-location scenarios. Compared to the widely used reanalysis
product ERAS5, these models achieved lower errors at a much finer temporal resolution. Moreover,
the models retained reasonable accuracy when applied across sites, with the cross-location models
having R? values of around 0.94, MAEs of 15-30 [W/m?], and absolute mean bias errors ranging
2-9 [W/m?].

Feature importance analysis highlighted the dominant influence of PV power output and the
clear-sky index for photovoltaics (K py )—a normalised ratio of actual to expected clear-sky gen-
eration—with time-shifted Kpy values further improving spatial generalisation. In contrast,
weather reanalysis features contributed little to the models’ predictive skill. By comparison, the
theoretical top-of-atmosphere radiation emerged as a consistently valuable predictor.

This study contributes to the fields of solar radiation modelling and machine learning for envi-
ronmental data in several ways. First, it provides empirical evidence that PV power data can
be leveraged to estimate global solar radiation at high temporal resolution with minimal bias,
offering a scalable and cost-effective alternative to direct pyranometer measurements. Second, it
demonstrates that machine learning models can generalise across sites if normalised, transferable
features such as Kpy are used. Together, these findings highlight the potential of PV-based
radiation modelling for applications in solar resource assessment, grid operation planning, and
agricultural management.

Despite these promising results, several limitations must be acknowledged. Single-location mod-
els, while highly accurate, still require local pyranometer data for training, meaning they cannot
entirely replace direct measurements. Cross-location models showed promise for wider applicabil-
ity without on-site calibration, although their accuracy was lower. Furthermore, the study was
restricted to two sites in the Netherlands, which limits generalisability to other climates and sys-
tem configurations. Finally, the pyranometer used in Delft introduced a measurement uncertainty
of approximately 423 [W/m?2], which constrained the maximum achievable model accuracy.

Future research should focus on extending the dataset to include a wider range of PV systems with
diverse orientations and configurations across more locations and climates. Such data would likely
enable the development of generalised models capable of accurately estimating radiation without
local pyranometer calibration. This would allow solar radiation to be estimated at any site
where PV panels are installed and their power output recorded. Incorporating system metadata
(e.g., azimuth, tilt) as model features could further enhance robustness. In addition, exploring
more advanced model architectures such as deep neural networks or hybrid approaches may yield
further performance improvements. Finally, this modelling framework could be expanded towards
short-term solar radiation forecasting, broadening its practical utility.
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https://pvpmc.sandia.gov/modeling-guide/1-weather-design-inputs/plane-of-array-poa-irradiance/calculating-poa-irradiance/poa-sky-diffuse/isotropic-sky-diffuse-model
https://sinovoltaics.com/learning-center/quality/standard-test-conditions-stc-definition-and-problems/
https://sinovoltaics.com/learning-center/quality/standard-test-conditions-stc-definition-and-problems/
https://www.thegreenvillage.org/dataplatform
https://www.thegreenvillage.org/dataplatform
https://maq-observations.nl/data-downloads
https://maq-observations.nl/data-downloads

I Data Pre Processing

Here the preprocessing of the data for both sites is provided. The PV production and global
radiation data can be seen plotted over time in Figures 20, 21, 22 and 23.

I.1 Delft Data

For the Delft data the following preprocessing steps were taken. The PV power data was set to
zero during nighttime, to replace missing values during the night. The data was received in Dutch
local time and was then transformed to UTC.

The pyranometer data from the Green Village is measured on a 1-minute resolution. This data
was then averaged over 15 minutes in order to match the time resolution of the other data. Then
all measurements above a theoretical limit of 1362 [W/m?] were discarded. Furthermore, three
continuous days of data were also removed as the pyranometer dataset had values of 0 [W/m?]
for the entire three days, whilst the PV data showed notable power production. It is assumed
that during this time maintenance was being performed on the pyranometer.

PV and pyranometer data were then combined to one DataFrame and all time stamps where either
measurement had no data were dropped. After this there were a total of 63,016 timestamps with
valid measurements for the Delft location.

I.2 Wageningen Data

For the Wageningen data the following preprocessing steps were taken. The PV power data had
no missing data at night as opposed to the Delft data so the data only had to be transformed to
UTC.

The pyranometer data from the Veenkampen measurement site was directly acquired at the desired
15-minute resolution and had no noticeable outliers.

Again PV and pyranometer data were combined to one DataFrame and all time stamps where
either measurement had no data were dropped. After this there were a total of 208, 000 timestamps
with valid measurements for the Wageningen location.
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Figure 20: PV production data for the Delft location.
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Figure 21: Global radiation data for the Delft location.
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Figure 22: PV production data for the Wageningen location.
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Figure 23: Global radiation data for the Wageningen location.

II Pyranometer details

II.1 Pyranometer Delft

Global solar radiation was measured using an EKO MS-40 pyranometer, classified as a Class C
instrument under ISO 9060:2018. This classification denotes suitability for general meteorological
applications, offering moderate accuracy relative to higher-grade instruments. The MS-40 features
a response time of less than 18 seconds and a non-linearity error of 1% across the range of 100
to 1000 [W/m?]. Directional response errors (cosine errors) can reach up to £20 [W/m?] at high
solar zenith angles near 80°, potentially leading to slight underestimation of irradiance during
early morning and late afternoon hours. The sensor exhibits a temperature response of 3%, and
its combined zero offset can be as high as £17 [W/m?], which may cause small non-zero readings
under low-light or nighttime conditions. The sensor has a non-stability of +1.5% per year (EKO
Instruments, 2025).

Representative Error Calculation

Based on manufacturer specifications and typical field conditions, the expected measurement
uncertainty of the MS-40 pyranometer can be estimated by aggregating several individual sources
of error. The most relevant specifications are:

e Zero offset (total): up to £17[W/m?|

e Non-linearity: +1% over the range 100-1000 [W /m?]

e Temperature response: +3%

e Directional (cosine) response: up to £20[W/m?] at high zenith angles
e Non-stability (drift): +£1.5% per year

Assuming moderate environmental conditions and regular maintenance (e.g., recalibration every
two years), a conservative estimate of the typical mean error can be calculated. Since these error
sources are largely independent, they are combined using the root-sum-square (RSS) method
(Joint Committee for Guides in Metrology, 2008):

Mean error ~ /172 + (0.01 - 500)2 + (0.015 - 500)2 + 102 + (0.015 - 500)2
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Here, 500 W /m? is chosen as a representative mid-range irradiance level. Half of the temperature
and directional response errors are included, reflecting typical diurnal conditions. The long-term
drift is averaged over a two-year recalibration interval. Substituting the values yields:

Mean error &~ /172 + 52 + 7.52 + 102 + 7.52 = v/526.5 ~ 22.9 W /m>

Accordingly, under standard operational conditions, the expected mean measurement error of
the MS-40 pyranometer is estimated at approximately +23 [W/m?]. This value is considered
conservative, as it includes the full non-linearity error and significant portions of the temperature
and cosine response uncertainties.

I1.2 Pyranometer Wageningen

Global solar radiation was measured at a meteorological data collection site called "Veenkampen’,
approximately 3.5 kilometres west-northwest of Wageningen, using a Kipp & Zonen CM11 pyra-
nometer, classified as a Secondary Standard instrument under ISO 9060:2018. This is the highest
classification defined by the standard, indicating that the sensor meets strict requirements on
accuracy and stability, necessary for for high-precision scientific and meteorological applications.
The CM11 features a response time of less than 15 seconds and a non-linearity of less than +0.6%
over the range up to 1000 [W/m?]. Directional (cosine) response errors are below 410 [W/m?]
for direct beam irradiance at high zenith angles, contributing to improved accuracy during early
morning and late afternoon measurements. The sensor’s temperature dependence remains under
+1% between —10°C and 40°C, and the zero offset due to thermal radiation is specified to be be-
low 7 [W/m?]. With a stated non-stability of less than 0.5% per year, the CM11 is well-suited
for long-term monitoring applications with minimal calibration drift (Kipp & Zonen B.V., 2008).

Representative Error Calculation

To estimate the expected measurement uncertainty of the Kipp & Zonen CMI11 pyranometer,
key error sources from the manufacturer specifications are aggregated under typical operational
conditions. The most relevant parameters include:

e Zero offset (thermal response): up to £7 [W/m?]
e Non-linearity: < +0.6% for irradiance < 1000 [W /m?]

Temperature dependence: < +1% in the range —10°C to 40°C
Directional (cosine) error: up to £10 [W/m?] at high zenith angles

e Non-stability (drift): < £0.5% per year

Assuming moderate ambient temperatures, a zenith angle distribution skewed toward mid-day
(i.e., smaller cosine errors), and a two-year calibration interval, a representative mean error can
be estimated using the root-sum-square (RSS) method (Joint Committee for Guides in Metrology,
2008). The following expression is used, again for a typical irradiance of 500 W /m?:

Mean error ~ /72 + (0.006 - 500)2 + (0.005 - 500) + 102 + (0.005 - 500)2

This includes the full zero offset, full non-linearity, and average drift error over two years, while
including half of the temperature and directional response contributions. Substituting values
yields:

Mean error &~ \/72 4+ 32 + 2.52 + 102 4+ 2.52 = V/170.5 ~ 13.1 W /m?
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Under standard operating conditions, the expected mean measurement error of the CM11 pyra-
nometer is therefore estimated at approximately +13[W/m?]. This reflects a higher accuracy
compared to Class C sensors, aligning with the CM11’s first-class classification.

IIT Additional Results and Figures

Figures 24 and 25 show the feature importance scores for the models using Kpy derived from the
PVWatts model.
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Figure 24: Feature importance scores for the single-location models, using PV Waitts.
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Figure 25: Feature importance scores for the cross-location models, using PV Waltts.
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IV  Transferability

In the main results, the cross-location models were optimised using data from the target site.
While this approach helps achieve good performance, it does not fully reflect a situation in
which no global radiation data are available from the target location. The use of target-site
data during optimisation could therefore overestimate how well the models generalise in a true
“zero-calibration” scenario.

To provide a more rigorous assessment of transferability, the Random Forest models based on the
relative-production K py were retrained using only the hyperparameters obtained from the single-
location optimisation procedure. These models were then applied directly to the test data of the
opposite site, without involving any measurements from that site in either training or hyperpa-
rameter selection. This setup simulates a deployment case in which no radiation measurements
are available for calibration at the target location.

The resulting performance is shown in Figure 26.
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Figure 26: Random Forest regression models using Kpy derived from relative production, with
hyperparameters taken from the single-location optimisation. Results are shown for both cross-
location scenarios.

The results indicate that model accuracy changes very little compared with models whose
hyperparameters were tuned specifically for cross-location performance. Remarkably, the
Wageningen Delft scenario even achieves a slightly lower RMSE when using hyperparameters
from the single-location optimisation. This suggests that the Random Forest approach is rela-
tively robust to hyperparameter selection and that good transferability can be achieved without
access to radiation data from the target site.

V Real-Time Modelling

The models presented in the main results make use of input features from reanalysis products, as
well as the lead (time-shifted) form of Kpy. While effective for retrospective analysis, this setup
prevents direct application in real-time scenarios, since reanalysis data are typically released with
delays ranging from several weeks to months.

To assess the feasibility of real-time radiation estimation, the Random Forest models based on
Kpy derived from the relative production method were re-evaluated using only features that are
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available instantaneously. Specifically, reanalysis variables and the time-lead version of K py were
excluded, while all hyperparameters were kept identical to those used in the main experiments.

This procedure was applied to the Delft_Single and Delft_Wageningen scenarios.

The resulting performance is shown in Figure 27.
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Figure 27: Random Forest regression models using Kpy derived from relative production, with
only input features available in real time.

The results show that removing reanalysis variables and the lead form of Kpy has only a minor
effect on model accuracy. This suggests that the proposed approach can be applied effectively for
real-time estimation of global solar radiation, without substantial loss of performance.
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