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ABSTRACT

Recently, there has been an increasing awareness of the critical role of sleep for the brain develop-
ment of young infants. During the early neonatal stages of human development, the basic activity of
the brain is to develop itself during sleep. Prolonged sleep is required in infants for further develop-
ment of the nervous system. Sleep also plays an important role in body temperature regulation and
energy saving. Neonatal sleep is divided into two main different sleep stages: Rapid Eye Movement
(REM) and Non-Rapid Eye Movement (NREM). As the infant develops, sleep stages vary in matu-
rity, length and distribution, thus underlining the importance of the quantification of these stages,
which could eventually lead to new biomarkers of neonatal brain development.

Nowadays, the golden standard in sleep monitoring is Polysomnography (PSG), in which vital signs
as well as EEG and muscle activity are recorded during a whole-night study and subsequently sleep
stages are classified by an expert. However, the high obtrusiveness of the multiple electrodes in-
volved in PSG and its high associated costs make it impossible to use PSG as a routine monitor
system. The SOMNUS project had two main targets: (i) to accurately measure respiration signals
from patients using an ultra-wideband radar module, and (ii) to detect differences in respiration
between REM and NREM phases in order to unobtrusively and automatically score sleep states of
infants without the need of any electrode attached to the patient. The system has been developed
using a training dataset of 23 patients from 3 months to 14 years old. It is for the first time UWB
radar technology is used to monitor sleep in young patients. Moreover, this work provides a new
data analysis algorithm to suppress motion artifacts from radar signals and increase the robustness
of respiration monitoring.

The results from the breathing detection algorithm developed in the present work provided an av-
erage mean absolute error of 3.25 Respirations per Minute in respiration rate. Amount of move-
ment was employed to estimate Sleep/Awake events, with an average error in percentage of Total
Sleep Time of 7.48%. Regarding sleep-state classification, several classification analyses were per-
formed in order to study the best classification variable to detect REM/NREM, along with analyses
regarding the best classification technique. Respiration variability was the main feature determin-
ing REM/NREM state, with an overall sleep classification accuracy of around 80% when using linear
classifiers such as Support Vector Machines and Fisher Linear Discrimination.
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1
INTRODUCTION

In recent years, there has been an increasing awareness on the critical role of sleep, and more im-
portantly REM sleep for brain development in young infants [16]. During the early neonatal stages
of human development, the basic activity of the brain is to sleep. Prolonged sleep is required in
infants for further development of brain systems such as hippocampus, pons, brainstem, and mid-
brain, as well as neurosensory systems [16]. Sleep also plays an important role in body temperature
regulation and as energy saving system [17].

As Dudink and van de Hoogen state in their systematic review [18], even though there are many
studies reporting procedures to promote and optimize neonatal sleep on the neonatal intensive care
unit (NICU), there are great differences among them regarding sleep assessment methods, targeted
sleep behaviors and study populations. These prevent medical community from recommending a
concrete intervention to promote neonatal sleep on the NICU. Hence, evidently requiring a great
need to improve and standardize sleep research procedures.

Neonatal sleep is divided into two main different sleep stages: Rapid Eye Movement (REM) and
Non Rapid Eye Movement (NREM). The cycling of these two states has shown to be critical for brain
maturity [16]. As the infant develops, sleep stages vary in maturity, length and distribution, thus
the importance of the quantification of these stages that could eventually lead to new biomarkers
of neonatal brain development.

Polysomnography (PSG) studies currently represent the gold standard in sleep monitoring. During
this procedure, several biosignals such as Electrocardiogram (ECG), Electroencephalogram (EEG),
Electrooculogram (EOG), Electromyogram (EMG), respiration patterns and heart rate (HR), among
others, are monitored for a long sleeping period, after which qualified experts perform the subse-
quent sleep stages classification manually. However, the high obtrusiveness of the multiple elec-
trodes involved in the PSG and its high associated cost make it impossible to be used in sleep longi-
tudinal studies1 in young infants. It is also an inconvenient method for long-term ambulatory sleep
monitoring.

Despite of being highly resource demanding and obtrusive, sleep monitoring plays a critical part of
the diagnostic process. As such, it is desirable to develop an automated method for continuously
determining sleep states, which ideally requires very few non-invasively extracted physiological sig-
nals.
1Longitudinal studies are referred to observational studies performed during a long period of time.

1



2 1. INTRODUCTION

In order to be able to unobtrusively classify sleep stages in neonates, there are two main challenges
to address: first, to non-invasively acquire physiological signs which determine sleep phases; and
second, to extract the right features that will be used for the subsequent classification of awake/
REM/ NREM states. Several contactless vital sensing approaches which may potentially be used
as neonatal sleep monitoring, have recently been investigated for neonatal breathing and heart rate
monitoring. Some of these approaches include thermal imaging [3, 19], ballistocardiography [2] and
radar [20–22] methods, which were thoroughly discussed and compared during the development of
this project. Due to the availability of a stand-alone, respiration detector radar module, the focus of
this project was on validating its applicability as a sleep monitoring system. To do so, the radar mod-
ule, first acquires patient’s vital signs to subsequently identify different patterns of each sleep state.
This radar module is market available at a relatively low cost. Its software provides information of
movement, breathing pattern and breathing rate. However, during the validation study, a need for a
more robust, less noisy readings system was noted. This work aims at employing new algorithms to
increase robustness of recordings and decrease movement noise. As a result, we could then employ
pattern recognition algorithms in order to address the sleep stages classification problem.

1.1. THESIS OBJECTIVES

In this thesis, the focus was on acquiring movement, respiration and heart rate signals by means of
an Ultra-Wideband (UWB) radar module, and subsequently extract a set of features employed for
sleep states classification. The final results off this study were compared to the gold standard (PSG)
to ultimately classify sleep stages in young infants. Figure 1.1 represents the diagram of the major
tasks to be addressed in this thesis. The objectives of the present work were divided in several tasks:

• To understand UWB radar and to study the feasibility of using a commercial UWB radar sensor
on neonatal intensive care unit.

• To extract movement quantity, breathing pattern and breathing rate from radar module data.

• To improve robustness and noise level of the radar module used for respiration detection.

• To adapt conventional respiration detection algorithms for every patient automatically.

• To automatically detect motion artifacts that prevent correct breathing readings.

• To study the system accuracy for vital signs detection in comparison with gold standard (PSG).

• To perform feature extraction and selection from the previous vital signs.

• To detect Sleep-Awake events based on patient’s movement.

• To make use of a suitable classification algorithm to successfully classify REM and NREM
states of patients.

• To evaluate final classification performance compared to PSG sleep state annotations.

1.2. THESIS SCOPE BOUNDARIES

The project described in this thesis was previously discussed with neonatologist experts who pro-
vided their opinion on the current sleep monitoring procedures on hospital conditions. Hence, the
scope of the project was adjusted accordingly to their needs. Time constraints also played a big role
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Figure 1.1: Diagram of Thesis Objectives.

in the definition of the project scope. The boundaries that will not be addressed in this thesis are
established bellow:

• Classification of sleep states does not need to be highly time-accurate as the transition be-
tween sleep states is a slow process. According to the American Academy of Sleep Monitor-
ing (AASM), sleep periods should be classified in 30 seconds-epochs [23], therefore the time-
resolution will not be higher than that.

• No electronic components of the employed radar modules will be altered or modified. Its
circuitry will remain the same as bought.

• The system will not be implemented to work as a real-time final product designed for sleep
monitoring. The present work aims to study the feasibility of such system in the future.

• The system is not intended to be used as a clinical device that would substitute a PSG study,
but rather a complementary device that would give an overall idea of sleep information of
patients at NICU that do not require a complete PSG study.

• Due to high processing complexity for HR detection, the system will not aim at acquiring HR
information.

• Age and characteristics of the patients (healthy or not) does not depend on the researchers
but on the availability of patients used as benchmark of the system.

1.3. THESIS OUTLINE

Background problem statement, project objectives and scope were stated in this first chapter of this
work.

Chapter 2 and 3 comprises the literature research assignment undergone for this Master Thesis
project.

In Chapter 2, background about neonatal sleep monitoring is given. Moreover, discussion of the
most outstanding studies in the sleep research literature regarding sleep states classification in both
adults and young infants is presented.

Chapter 3 describes the three main methods for vital signs detection, which consequentially repre-
sent potential methods for sleep monitoring. A further and more detailed explanation is given for
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radar technology which fulfills the aims of this project.

Chapter 4 explains the main characteristics of the radar modules used, such as radar parameters,
raw data and internal processing algorithms.

Chapter 5 comprises the aspects of data acquisition, including patients characteristics, study pro-
tocol and set-up, data pre-processing and PSG and radar data acquisition.

Chapter 6 explains the details behind the breathing detection algorithm as well as accuracy analyses
results compared to the reference data (PSG).

Chapter 7 describes the different aspects to take into account in the sleep classification problem.
The performance of the classification system is studied when using different features and classifiers.

Finally, Chapter 8 discusses the findings of this project while establishing different conclusions to
take into account for future improvements of the system.



2
COMPUTER-AIDED

NEONATAL SLEEP MONITORING

Age is considered by sleep experts as the most decisive factor that determines the way humans sleep.
Development and maturation define the progress of the human body, and our sleep cycle patterns
change accordingly. The low maturity of the neonate’s nervous system gives rise to very different
sleep patterns compared to the ones of adults. In order to properly monitor neonatal sleep, we re-
quire a previous knowledge about how sleep works in young infants. In this section the different
characteristics of the neonatal sleep states will be explained, in terms of prevalent vital signs at-
tributes and their distribution within the total sleep time (TST). Furthermore, information about
state-of-the-art technologies in automatic sleep classification in both adults and children will be
given.

2.1. NEONATAL SLEEP STATES

Many different staging criteria have been used in the past to classify neonatal sleep states. The cur-
rent accepted guidelines for infant sleep-staging criteria are defined by the American Association of
Sleep Medicine (AASM) [24]. These guidelines divide neonatal sleep into two basic phases called
Rapid Eye Movement (REM) and Non-Rapid Eye Movement (NREM), each of which with unique
characteristics. In addition, when the brain development has not reached its full maturity, another
phase called Transitional Sleep (TS), which is also called Intermediate Sleep (IS), may be character-
ized by the presence of several attributes of both REM and NREM sleep. The AASM states that REM
and NREM phases are roughly equivalent to Active Sleep (AS) and Quiet Sleep (QS) phases, respec-
tively, defined by Anders criteria [25] when used in infants with less than 2 months gestational age
[2]. However, as the infant gets older, sleep patterns develop and the NREM phase is divided in four
subphases: NREM1, NREM2, NREM3 and NREM4 [24], therefore differentiation between AS and QS
cannot be performed with older infants (from 4 months on).

The golden standard of sleep monitoring is Polysomnography (PSG). In this procedure, clinicians
record all vital signs that will subsequently be analyzed by technicians for sleep classification. Sig-
nals recorded during a common PSG study are: EEG, ECG, EOG, EMG, respiration (thoracic, ab-
dominal and airflow), oxygen saturation (SaO2) and carbon dioxide saturation (SaCO2). Audio and
video recordings are also common in this type of studies.

5
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Until now, sleep researchers can be divided into two main groups. The first group focuses on the
sleep state’s differences of behavioral patterns, such as facial, eyelid and full body movements, heart
rate patterns, and respiration. The second group of researchers rely on EEG patterns and changes
to identify each sleep state. Since the aim of the present work was to find a suitable sleep scoring
system that avoids electrode-patient contact, focus on monitoring behavioral patterns was the main
priority. Moreover, as the AASM states [26], "regularity (or irregularity) of respiration is the single
most useful PSG characteristic for scoring sleep states at this age", referring to sleep scoring methods
for infants of 0 to 2 months of age.

In terms of behavioral patterns, there are a few notorious differences between REM and Non-REM
(NREM) sleep states. The REM phase owes its name to the characteristic Rapid Eye Movements
(REMs), which only occur during this phase of sleep. In REM state, there is an increase in sympa-
thetic activation relative to non-REM sleep [27] in both adults and children. Hence, the irregular
patterns of heart rate, respiration and respiration rate are characteristic of the REM phase [26, 28].
Apneas1 caused due to sleep disorders normally happen during this state of sleep [29]. The eyes are
closed but might occasionally open [30]. Particularly for preterm or very young full-term infants,
a wide range of motor activity can be found sporadically occurring in bursts of 5-60 s [31–33], with
low muscle tone between these movements. Also in these young patients, specific facial expressions
can be observed during REM, including frowns, smiles and grimaces, and random bursts of sucking
movements as well as small sporadic twitches [34]. Given the wide range of movements occurring
during this phase, REM can be equally named “Active Sleep” according to Anders criteria. These
terms can only be interchanged for infants of 0 to 3 months of age [25] .

In contrast to REM, NREM is characterized by more regular sleep patterns. Both respiration and res-
piration rate are quite regular [26], [28], with very little or no apneas in between respirations. Also
the heart rate normally stays very steady in this sleep phase, adopting rather lower values. Little
or no motor activity is appreciable [31], only appearing as occasional brief agitations or sighs. No
REMs can be detected in this phase. Muscles are governed by a tonic motor level [35] and mouth
movements or sucking can be observed [25]. The steady state of most of the body vital signs during
this state gave rise to the term “Quiet Sleep” used to define this phase by Anders criteria [25]. Ta-
ble 2.1 summarizes these huge differences of behavioral patterns between REM and NREM sleep,
excluding parameters that are not interesting for this work such as facial movements or EEG pat-
terns.

Table 2.1: Most characteristic behavioral patterns of REM and NREM sleep for infants of 0 to 3 months of age.

REM NREM
Heart Rate High, Irregular Lower, Irregular

Breathing Pattern Irregular Regular
Motion Sporadic bursts of motion No movements
REMs Yes No

Apneas Relatively frequent Absent
Anders criterion Active Sleep Quiet Sleep

From the previously mentioned sleep patterns of REM and NREM sleep, it is important to mention
that motion patterns do not normally apply to patients older than 3 months post-term. This is
something important to take into account since the present work has been performed with patients
of ages ranging between 2 months and 12 years.

1Apneas are defined as transient absence of breathing.
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The distribution of sleep stages changes over the course of the infancy due to the developed matu-
rity in sleep patterns. The appearance of differentiated behavioral patterns in REM and NREM sleep
states can be seen as early as 25-30 weeks [26] gestational age (GA), when EEG is still undifferenti-
ated [36]. Recognizable EEG patterns of REM vs. NREM can be seen from 32-34 weeks GA.

The change in total sleep time (TST) associated with neonatal development occurs at the same time
as the change in sleep organization [37]. In the initial phases of sleep development, REM sleep gov-
erns most of the sleep cycle [38]. Due to the immaturity of sleep development in these early stages, it
is common to find very diffusive patterns with characteristics of both REM and NREM sleep, which
would be defined as Transitional Sleep (TS). From the period when infant approaches term until the
early weeks of life, REM and NREM sleep distribution becomes nearly equal. By the last months of
the infant’s first year, NREM sleep occupies about 80% of sleep time [16], without barely any trace of
TS. This change in sleep states’ organization is a crucial manifestation of the maturation and evolu-
tion of the brain development process. Classifying each sleep state and determining its proportion
within TST would allow assessment whether the developmental process is following the anticipated
path or not.

2.2. PREVIOUS WORK ON SLEEP-STATE CLASSIFICATION

In the past decades, a vast amount of clinical research has been focused on achieving a better un-
derstanding of the biological processes happening in the human body during sleep, giving rise to
a whole new research branch identified as Sleep Research. With the increased awareness of the
critical part of REM in humans, and more importantly in the neonatal sleep cycle, a considerable
amount of resources have been allocated to the specific task of sleep-staging using automatic meth-
ods. While some researches first focused on using the whole set of PSG vital signs to automatic
the sleep-staging process, others aimed at first identifying the best vital parameters for this task
with the end goal of decreasing invasiveness. In this section, some of the work regarding automatic
sleep-staging will be presented by dividing it into developed methods for sleep-staging in adults and
the ones only focused on young infants. Specifically, previous work regarding studies in neonates
is summarized in Table 2.2. Rigorous comparisons between the reported classification accuracies
of these studies cannot be made since they differ in recording conditions, validation procedures,
patient age and sleep states classification nomenclature. Moreover, some studies were developed
using healthy subjects, subjects with sleep disorders or both together.

In every sleep classification study, total sleep time is divided into specif time windows with fixed
duration, each of them constituting an epoch. The duration of the epochs is an important parameter
to take into account regarding the accuracy of the sleep-state classification. The smaller this epoch
size, the less time the scorer has to recognize patterns between sleep states. According to the AASM,
the optimal epoch size to classify sleep events is 30 seconds [23].

Automatic sleep-staging methods have been widely developed with adult subjects. The majority of
studies have been focused on the analysis of EEG spectral features with a favorable average accuracy
of up to 96% [39]. Koley et al [39], Shimada et al [40], Kaplan et al [41], Ebrahimi et al [42] and
Gudmumndsson et al [43] are just some of the examples of the extensive literature of EEG-based
sleep-state classification. Another great part of sleep-staging studies focused on the analysis of EEG
along with other PSG electrical signals, i.e., EMG and EOG signals [44–47]. Khalighi et al [46] reached
a classification accuracy as high as 87%. The analyses of EOG signal alone has also reported good
classification results with an agreement level of around 72% [48]. The use of pneumatic sensors
located under the bed of the patients has been quite common in sleep research for the extraction of
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cardiorespiratory and body motion signals. Watanabe et al [49], Migliorini et al [50] and Kortelainen
et al [51] are good examples of these methods, with an accuracy ranging from 38 to 82% by Watanabe
et al [49]. A very common ECG feature called Heart Rate Variability (HRV), has also been extensively
used for addressing sleep-staging. The interest behind using HRV for sleep classification relies on
the concept that HRV provides a good evaluation of the autonomous nervous system state level,
which increases during REM state. Ebrahimi et al [52] only evaluated HRV to classify sleep states
with an accuracy ranging between 80-86%. To conclude, three other sleep-classification approaches
were found in which only respiratory information was used [53–55], among which Chung et al [53]
reached an average accuracy as high as 89%.

Classification algorithms vary widely among the previously mentioned studies. Some of the most
popular ones in which EEG features are involved were neural networks [40, 42] and Support Vector
Machines (SVM) [43, 46]. For cardiorespiratory features-based classification methods, approaches
such as Linear and Quadratic Discrimination [50, 52], Hidden Markov model (HMM) [51], respira-
tion variance- thresholding [53] and dissimilarity measures [55] were used. Robert et al [56] pro-
vided a broad review of the use of neural networks in sleep-staging classification methods.

The extensive research on sleep-state classification on adults has lead to a wide range of commercial
solutions, which are described by Kelly et al [57]. However most of them lack validation studies
and have not been tested in young infants or children. As explained in Kelly et al[57], quite a big
limitation of most of these products is the overall tendency of misclassifying REM sleep as Awake
state or viceversa, due to the assumption that REM sleep is characterized by irregular breathing and
higher amount of movements.

A novel radar sensor called SleepMinder was developed to classify sleep-awake states in adults [58].
The same sensor was used to detect apnea events in adults [59] with a high accuracy level. This
radar sensor was afterwards developed as a commercial product called ResMed S+ (http://sleep.
mysplus.com/). From the research provided using this sensor, one can observe that motion is the
only parameter used to perform the sleep-classification, with an average accuracy of around 80%.
The use of this commercial sensor for the present work was not possible since it is not possible to
access the raw data of the sensor, hence only real time studies can be performed.

Regarding automatized sleep-classification research on neonates, no such extensive work has been
done in comparison with the one on adults. The work found during this literature study can be
summarized in Table 2.2. None of these infant subjects were older than 1 year old.

Several studies only employed EEG features for the sleep classification [63, 64, 69–71]. Among them,
only Piryantiska et al [63] and Čić et al [64] are mentioned in Table 2.2 since EEG is not the monitor-
ing parameter this present work is focused on. Čić et al [64] reached a classification accuracy of 80
and 90% by using an SVM classifier. EEG, EOG and EMG features have also been used for sleep state
classification by Pfurtscheller et al [61] and Estevez et al [62]. The latter combined EEG, EOG and
EMG with body movements information, but both studies provided average accuracies of around
60-80%. Scher et al [60] used all possible available PSG signals to perform linear discrimination,
reaching an accuracy of 90-97.4%. Harper et al[65] also performed linear discriminant analyses to
address sleep-classification by means of cardiorespiratory measures, with an overall mean accuracy
of 84.8%. They also studied the classification performance using only cardiac and respiratory fea-
tures with accuracies of 82% and 80%, respectively. To finalize, only respiration-based classification
methods have been developed by Haddad et al [66], Isler et al [67] and Terrill et al [68]. Algorithms
used for the classification relied on a decision-based system [66], thresholding-rules [67] based on
respiration rate variance, and linear discriminant analysis [68], with a maximum accuracy of 93%
reached by Haddad et al [66]. It is important to observe that classification approaches using only

http://sleep.mysplus.com/
http://sleep.mysplus.com/
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Table 2.2: State-of-the-art Sleep-Classification Research performed on neonate subjects.

Scoring Classification Classification Quality Author(s),
Parameters Classes Process Evaluation year

All PSG Awake/AS/QS Linear Accuracy Range: Scher et al,
channels Discrimination 90-97.4% 1996 [60]

EMG Movements/AS/ Neural Accuracy Range: Pfurtscheller
EEG QS/IS/Awake Networks 65-80% et al, 1992 [61]
EOG
EMG Awake/REM/ Own algorithm Accuracy Range: Estevez
EEG NREM1/NREM2/ based on 60-80% et al, 2002 [62]
EOG NREM3/NREM4 thresholding

Body Movements
EEG AS/QS Cluster Accuracy Range: Piryatinska

Analysis 70-90% et al, 2009 [63]

REM/NREM Support Vector Mean Accuracy: Čić et al
Machines 80%- 90% 2013 [64]

(two examinees)
ECG Awake/REM/ Linear Mean Harper et al

Respiration QS Discrimination Accuracy: 84.8 % 1987 [65]
Respiration REM/QS Decision-rule Mean Accuracy : Haddad et al,

based on 93% 1987 [66]
coefficients of

variation

AS/QS Thresholding based Concordance Isler et al,
on instantaneous Range: 80-87% 2016 [67]

breathing rate variance

Awake/REM/ Linear Mean Agreement Terril et al,
NREM Discrimination Range: 79.2 - 84.9% 2012 [68]

respiratory features used relatively simple algorithms.

Static Charge Sensitive Bed (SCSB) methods have been used in the 90s in a couple of studies [72, 73]
to extract ballitocardiogram, respiration and movement signals in neonates subjects from sensors
placed under the bed. They showed an accuracy for sleep-classification as high as 85% [73]. How-
ever, these two studies were not performed using a computer-based classification. Instead, exami-
nees did a manual classification based on visual hints from SCSB signals. SCSB technology will be
further explained in the next chapter.

Most of the previously mentioned studies used as reference the sleep classification performed by
a technician during the PSG studies, which is indeed the golden standard of sleep classification.
However, it is important to take a closer look into differences in the performance of sleep-staging
algorithms when different technicians are scoring the sleep states. Čić et al [64] showed that changes
in average accuracy of sleep classification using two different technicians to score sleep were as high
as 10%.
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2.3. CONCLUSIONS ON SLEEP-CLASSIFICATION LITERATURE REVIEW

Sleep patterns for young infants have been discussed in this section. Both EEG and behavioral pat-
terns can be used to differentiate sleep states in adults and infants. Adults have particularly been
the most common population of sleep research when developing automatic, computer-based ap-
proaches for sleep classification.

Literature on previous work on computer based sleep-state classification has been thoroughly ana-
lyzed for this literature review, getting into a more detailed analysis of literature using young infant
populations. However, a strict comparison between studies presents some difficulties due to the
fact that they present a great heterogeneity in terms of sleep states under analysis, amount of sleep
recordings, classification algorithm and study population, among other differences.

Sleep-classification studies discussed in this section used a wide range of vital sign parameters, such
as EEG, EMG, EOG, body movements, HR and breathing patterns. As observed in Table 2.2, accuracy
seems to not be affected by the chosen physiological parameter under analysis, since most of those
studies had a relatively good accuracy in the classification.

As established by the AASM [26], behavioral patterns, specially regularity of respiration, can bet-
ter determine sleep state in neonates within the first three months of life. This and the fact that
that respiration is a physiological parameter that can be acquired through contactless methods rel-
atively more easily compared to EEG signals, lead the researchers of the present work to focus on
respiration as the main physiological parameter to monitor sleep states.

In conclusion, this literature analysis has presented the past usage of behavioural patterns such as
respiratory, cardiac and motion features, to achieve an automatic classification method for sleep
monitoring. Their low invasiveness and the possibility to be extracted without high disturbance of
the sleep make them attractive parameters for classifying sleep phases. However, finding an un-
obtrusive method to extract these sleep behavioral patterns has been another important and big
dilemma of sleep monitoring. In the next chapter, several contactless techniques for vital sign mon-
itoring will be presented due to their potential in sleep monitoring application in preterm babies.



3
CONTACTLESS METHODS FOR

VITAL SIGNS DETECTION

Just as many other organs of premature neonates, the skin needs a long time to fully develop. One
of the main concerns hospital personnel have to deal with in the NICU, is the distinctive thin skin of
preterm neonates which is extremely sensitive to the continuous use of electrodes and plays a huge
role in their undeveloped thermoregulatory systems. Even the smallest electrodes used to monitor
these young patients can cause deep damage to their fragile skin (Figure 3.1). Thus, finding a con-
tactless system to monitor the vital signs of this young population of infants is the highest priority
when trying to create a sleep monitoring system for them. Just as with sleep research, contactless
monitoring approaches have been studied much more in detailed in adult applications. The main
contactless vital signs monitoring methods can be divided into three major classes: ballistocardiog-
raphy, optical and radar approaches. Their working principles along with some previous work using
these techniques, are defined in this chapter. Specific details will be given for radar methods, as the
present work is based on this specific approach.

Figure 3.1: Photo illustrating the irritation effect on the skin of a preterm neonate due to ECG electrodes. Picture taken
from [1].

11
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3.1. BALLISTOCARDIOGRAPHY

Ballistocardiography (BCG) techniques measure the slight movements of the body caused by the
ejection of the blood at each cardiac cycle [74], i.e., the ballistic forces of the heart. This mechan-
ical signal of heart movements is often retrieved from small sensors placed in the mattress or seat
in which the patient is lying. To extract a BCG signal, chest movements during respiration must
be often removed from the total mechanical signal retrieved. For this reason, BCG techniques are
generally used to extract breathing information as well, as shown in several studies [75, 76]. Zao
et al [76] successfully applied BCG in sleep apnea syndrome detection. Also Austin et al [77] made
use of it as a sleep-awake classification method. Some commercial products for adult sleep mon-
itoring using BCG technology have arisen in the past few years, such as the Beddit Sleep Monitor
(www.beddit.com) from Apple.

Atallah et al [2] used this BCG principle to unobtrusively monitor cardiac activity signals from capac-
itive electrodes placed in the small mattress of the preterm baby incubator (Figure 3.2). In another
study [78], capacitive electrodes are placed bellow the wheels of the baby’s incubator to monitor
both HR and breathing rate. This study shows very good results in the NICU environment, reach-
ing correlations of 0.74 and 0.91 between breathing and HR signals with their respective reference
signals.

Figure 3.2: Neonatal mattress with integrated capacitive electrodes used to extract BCG signals at NICU, covered by
Polyurethane (PU). Described in [2].

As mentioned in the previous section, approaches using Static Charge Sensitive Bed (SCSB) have
shown successful results in studies developed in the 90s [72, 73] as a sleep monitoring method.
SCSB can be used to acquire BCG signals. This technology was developed in the late 70s [79]. It
consisted of two sheets of material with different dielectric constants, enclosed within the mattress
[80]. The scrubbing movement between these sheets against each other caused by respiration and
heart rate movements generates an electric charge that is picked up and analyzed to extract the
corresponding vital signs of the patient lying on top of the mattress. The device requires neither an
external power source nor the need to be recharged, as it only relies of these electrostatic charges
generated by the sensor embedded in the mattress.

There are two main limitations of applying BCG technology while monitoring preterm babies: firstly,
the particularly small signals acquired in these small patients due to the weak forces exerted by their

www.beddit.com
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heart and chest at these early stages of life make it difficult for these signals to be detected; and sec-
ondly, the high sensitivity of this technology to other natural body movements of the patient.

3.2. IMAGING APPROACHES

Another big cluster of contactless vital signs monitoring is comprised of imaging approaches, mainly
differentiated into conventional video-based and infrared (IR) thermal approaches.

In the first place, video-based approaches capture normal ambient light images using videocam-
eras in order to detect the slight motions produced by the respiration and cardiac activity. Eulerian
Video Magnification [81] is one of the most outstanding and relatively recent techniques. It uses
input video frames to magnify both motion caused by respiration and changes in skin color due
to blood perfusion. This information is hidden to the human eye at first instance, but can be ex-
tracted from video frames by means of spatial decomposition. The system first decomposes the
input video into different spatial frequency bands and applies the same temporal bandpass filter
to each of them (cutoff frequencies adapted according to application, 0.5-2 Hz for respiration and
heart rate), which are then amplified by a given factor and added back to the original signal. This
process gives rise to a final output video where the magnified motions can be now visually detected.
Wu et al. have a very interesting website (http://people.csail.mit.edu/mrub/evm/) which provides
some videos and examples of this technique. Furthermore, some open code is available for any user
to employ a normal webcam to detect breathing and HR. Some of their example videos include very
young babies.

Besides Eulerian Video Magnification, other video techniques have reported good results in detect-
ing heart and breathing rate information using adult patients [1, 82–84]. Some other studies have
further applied their video-based vital sign monitoring to populations of premature babies [85, 86]
with very high correlations (0.87- 0.99) with the reference breathing rate reached by Koolen et al
[86].

Despite of the great accuracy of video-based methods for both respiration and heart rate detection,
it is important to notice that the efficiency of these methods is highly dependent on ambient illumi-
nation of the patient. However, when monitoring preterm babies inside the incubator, the light is
dimmed in order not to damage the eyes of the baby and to try simulating the womb of the mother.
Furthermore, they are often treated with Ultraviolet-phototherapy in order to lower their bilirubin
levels and prevent jaundice [87]. Both these two situations highly affect the image quality of video
recordings, making cameras unable to extract the vital signs of the patient.

Infrared (IR) thermal imaging looks like a good alternative to the previous standard video-based
technique in the sense of preterm babies monitoring. It relies on the change of temperature phe-
nomena that occur in the areas of the face proximal to the nose or mouth orifices during periods
of inhalation and exhalation. Several studies provided good results when measuring breathing rate
on adults using standard IR imaging [88–90]. The work of Abbas et al [3], is specially outstanding,
since it applied this technology in NICU conditions. They show the capability of the system to track
these slight temperature differences around the mouth of the baby as shown in Figure 3.3, even
though there is some background noise due to the temperature fluctuations inside the incubator of
the patient. Some further studies must be performed in order to improve this technique.

Besides of the need to further investigate IR thermal imaging within premature populations in order
to improve breathing detection and provide heart rate data, there are some other limitations of this

http://people.csail.mit.edu/mrub/evm/
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Figure 3.3: Respiration detection of a patient inside the incubator by means of IR thermal imaging. From [3]. ROI:
Region Of Interest.

novel technique. The high cost of the thermal cameras used in these studies makes it more difficult
for the technique to be adopted as a patient monitoring system. Furthermore, both IR and nor-
mal video-based approaches normally involve a quite high computational cost due to the advanced
algorithms performed to detect vital signs, especially in IR imaging where the algorithm needs to
detect the face as a region of interest first. Finally, a big limitation of both techniques is the privacy
issue that may arise because of the patients’ recordings.

3.3. RADAR APPROACHES

Radar, an acronym for RAdio Detection And Ranging, is a system that emits electromagnetic (EM)
waves, more specifically radiofrequency (RF) signals, from a transmitter (TX) and studies their cor-
responding reflections, or echos, in a receiver (RX). This is done in order to measure certain char-
acteristics of specific targets, such as range1, height, velocity or angular direction. Nowadays, radar
systems exist for a variety of applications from weather observation to military and patient mon-
itoring applications. The recent application of radar systems in patient monitoring translates the
position of patient within a time interval into body motion, respiration rate and even heart rate.

The concept behind using RF signals for medical applications is to make use of the echo reflections
at the tissue boundaries of the person under study. When RF signals are transmitted towards a
patient, the majority of reflections (around 70% for 5 GHz UWB radar signals [91]) are produced
due to the different dielectric constants between air and skin. Another contribution to the reflected
echo energy comes from the part of the signal penetrating the skin that has been reflected at a next
tissue boundary. These echo signals reflected by the human body are used to detect the overall
movement of the chest. In this way, one can extract breathing patterns and even HR due to the small
contribution of cardiac activity to the whole chest motion (about 10 times smaller than breathing
respiration). Figure 3.4 shows the schematic of a radar module used for baby monitoring.

The time-domain characteristics of the transmitted EM wave defining its waveform are of great im-

1In radar terms, range is referred to the distance between radar antenna and reflecting object (or target).
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signal

Figure 3.4: Schematics of a radar system applied to baby monitoring. Dimensions are not in scale.

portance. A common way of classifying radar systems is according to this waveform, as shown in
Figure 3.5. Radar systems can make use of either a continuous wave or a pulse waveform depending
on whether the RF signal is continuously transmitted or not. These most common modalities are
further discussed in the following subsections in order to provide the reader with a greater back-
ground of radar technologies used in short-range applications.

Regarding the characteristics of radars within frequency domain, most traditional radar systems
are characterized by working in a narrow frequency band. However there has been an increasing
interest in radar technologies operating in wider frequency bands. The radar module used for this
project is an Ultra-Wideband module implemented using a pulse Doppler architecture. The basics
of this radar modality will be further explained in this section, however the specifications of the
radar sensor along with some safety concerns will be analyzed in Chapter 4.

3.3.1. CLASSIFICATION BY WAVEFORM

As previously mentioned, there are two big radar modalities according to the time-domain charac-
teristics of the waveform of a radar system as shown in Figure 3.5.

Figure 3.5: Radar classification according to time-domain waveform.

CONTINUOUS WAVE RADAR (DOPPLER RADAR)

As its name suggests, Continuous Wave (CW) radar broadcasts a continuous RF sinusoid that is
both transmitted and received at the same time, thus transmitter and receiver are always switched
on simultaneously. This radar modality makes use of the Doppler effect, by which a non-stationary
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target moving towards the radar system causes a frequency shift between transmitted and received
signal, which is employed to infer the velocity of the target. For this reason, this kind of radar is often
referred to as Doppler radar. The relation between this frequency shift, referred to as the Doppler
frequency fD , and the radial velocity v of a target is given by Equation 3.1:

fD = fr − ft = 2v ft

c
, (3.1)

where c is the speed of light in free space. It is important to notice that the radial velocity v is
pointing towards the reference point, or in this case the radar receiver. v will be positive when the
target is moving towards the reference point, giving rise to a positive fD in the received signal, and
viceversa when the target moves away from the reference [92].

In its basic form, unmodulated CW radar is only capable of detecting moving objects, as stationary
targets will not cause any frequency shift. This modality may involve a very cheap hardware design,
however it does not provide information about the range and it cannot differentiate between more
than one target. Unmodulated CW radar has been widely applied for motion detection systems,
presence alarms and speed gauges for traffic control.

In order to be able to determine range, a CW radar system should undergo either a frequency or
phase modulation. In particular, the so-called Frequency Modulated Continuous Wave (FMCW)
radar has gained popularity in the recent years, as its latest hardware advances have allowed this
radar modality to determine both velocity and range of targets with an extremely high accuracy.

In FMCW radar, a continuous signal is transmitted with a specific reference frequency f1 that is
linearly increased up to a frequency f2 periodically [93]. Meanwhile, the echo signal is received with
a time delay ∆t that directly translates to range R by Equation 3.2:

R = c|∆t |
2

= 2c|∆ f |
2(∂ f /∂t )

(3.2)

Just as with unmodulated CW, if the target object has a radial speed towards the radar antenna,
a Doppler frequency fD can be observed between the transmitted and received signal. Figure 3.6
describes the operation principle of a FMCW radar.

Even if CW radar was not originally designed to determine range but only velocities, FMCW is able
to resolve both range and velocity of targets with a very high range accuracy [93].

PULSE RADAR

In pulse radar, the transmitter emits high powerful and short pulses received with a time delay ∆t
that can be translated to range as previously shown in Equation 3.2. A pulse radar waveform is
characterized by parameters such as pulse repetition frequency PRF , inter-pulse interval I PI , car-
rier frequency fc and pulse-width τ. Figure 3.7a represents the basic parameters of a pulse radar
waveform.

Contrary to CW radar, the system transmitter and receiver are never on simultaneously. When a
pulse is transmitted during a time τ, the receiver is off. As soon as this pulse ends, the transmitter
goes off and the receiver automatically switches on, and so on and so forth. Figure 3.7brepresents
this working principle. Having a receiver switched on and off periodically involves some limitations
regarding the minimum and maximum ranges the radar can detect.
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Figure 3.6: FMCW radar working principle of frequency modulation.

(a) Pulse radar waveform parameters.
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(b) Working principle pulse radar transmitter and
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triangles. Tt is the tranmission time.

Figure 3.7: Pulse radar schematics.

On the one hand, during the time Tt , called transmission time (Figure 3.7b), in which the transmitter
is emitting the pulse the radar cannot receive; a "blind range" in the radar is given rise to. The target
must be located further than this minimum detectable range in order to be detected. This minimum
range Rmi n is given by Equation 3.3:

Rmi n = c ·Tt

2
(3.3)

Moreover, there is another concern to take into account in pulse radar systems: the so-called range
ambiguity. Since this radar assumes an echo pulse will be received within a specific time window
before the next pulse is emitted, the target must be located within a specific range in order to be
detected by the receiver. This is the so-called maximum unambiguous range, and is given by Equa-
tion 3.4:
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Rmax = c · I PI

2
= c

2 ·PRF
(3.4)

Range resolution in short-range2 radar systems is a very important parameter. It represents how far
apart two targets should be in range with the radar, so they can be resolved as two different targets.
In pulse radars, range resolution highly depends on the pulse width. If two targets are too close to
each other, their two corresponding echos will superimpose and both targets will be detected as one
object (Figure 3.8). Pulse radars range resolution is expressed by Equation 3.5:

∆R = cτ

2
(3.5)

Figure 3.8: Schematics of range resolution resolvability in two scenarios. In (a), two pulses are superimposed when two
targets are too close to each other, being non-resolvable. In (b), two peaks can be detected from two separated targets [4].

Pulse radars can be subdivided into coherent and non-coherent systems. In non-coherent systems,
each pulse is transmitted with a random phase, whereas pulses in coherent pulse radars share a
common phase. This allows for coherent receivers with information about the phase variation in the
received signal, that is phase modulated caused by motion of the target. This phenomena provides
extremely high precision to coherent systems. Phase variation can be used to detect some really
small target movements, according to Equation 3.6:

∆θ = 4π∆x

λ
= 4π∆x fc

c
, (3.6)

∆θ being the phase shift between emitted and transmitted pulses,∆x the displacement of the target
and λ the radar wavelength that can be calculated from the pulse carrier frequency fc and speed of
light (λ= c

fc
). This phase modulation concept is also exploited by some short-range CW systems for

vital signs detection.

Pulse radar is not only useful to acquire an accurate range of the target but also to determine its
velocity. The simplest versions of pulse radars calculate this velocity by simply detecting a change in
range within a specific time window. However, when dealing with high velocities of several targets
this method offers some limitations that can be resolved with a modality of pulse radars, the so-
called pulse Doppler radar.

Pulse Doppler radar systems make use of both (i) the pulse radar principle to resolve the target range
by means of the time between emitted and transmitted pulse and (ii) the Doppler radar principle to
resolve the velocity of the target by relying on the Doppler effect.

In pulse Doppler radars, the Doppler frequency cannot be as easily obtained from the frequency
spectrum of the echo signal as with Doppler radar. If we start form the Fourier transform of a rect-

2In this work we will refer to short-range radar as radar systems with a maximum range of less than 10 m.
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(a) Fourier transform of a single pulse.

frequency

IPI = 1/PRF

(b) Fourier transform of a train of
pulses.

(c) Zoom area A from (b).

Figure 3.9: Frequency spectrum schematics of pulse Doppler radar adapted from [5].

angular pulse, we would obtain a sinc function (si nc(t ) = si n(t )
t ) centered at the carrier frequency of

the pulse fc with a frequency bandwidth inversely proportional to the pulse width τ (Figure 3.9a).
However, when we have a train of pulses as with pulse Doppler radar, the resulting Fourier transform
consists of several sinc functions under the envelope of the previous sinc function (Figure 3.9b). If
we zoom in onto the central lobe (Figure 3.9c), it can be observed that the resulting spectrum of the
train of pulses are sinc functions whose peaks are a distance equal to 1/PRF between each other.
Furthermore, small peaks coming from the echo signals appear at the Doppler frequency fD . By
filtering this central lobe these Doppler frequencies can be extracted and subsequently used to cal-
culate the velocity of the target. It is important to take into account that the maximum Doppler
frequency fD,max that can be detected is equal to half of the PRF. This frequency is known as the
maximum unambiguous Doppler frequency [5].

In pulse Doppler radars, both maximum unambiguous range Rmax and maximum unambiguous
Doppler frequency fD,max depend on PRF. By increasing PRF, Rmax would decrease and fD,max in-
crease, and the other way round for a decreased PRF. Depending on the application, PRF is designed
to correct for both range and frequency ambiguities. Furthermore, there has been an increasing
number of new techniques to resolve these limitations.

FMCW and pulse Doppler radars are the two most common architectures when designing short-
range radars.

In short-range radar applications, the minimum detectable range is highly important. As previ-
ously mentioned, FMCW radar does not have this limitation since the receiver is always on. Hence,
only pulse (Doppler) radar systems need to deal with this limitation that depends on the trans-
mission time. Most recent pulse Doppler radar systems make use of impulse waveforms with ex-
tremely short transmission times that make it possible to drastically decrease the minimum de-
tectable range by increasing range resolution simultaneously.

In terms of maximum range, pulse radars are also limited to a specific maximum range that may
vary by changing the PRF value depending on the application. Similarly, FMCW radar also has a
maximum range that depends on the periodic increment of frequency. Nevertheless, having a low
maximum range when working in short-range applications, such as vital signs monitoring, is not an
important factor to take into account.

Generally, hardware of CW radars is easier to implement than with pulse radars since CW are always
uninterruptedly emitting. However, CW radars face a significant challenge when isolating transmit-
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ter (TX) and receiver (RX), as the power ratio can reach values on the order of PT X : PR X = 109,
decreasing the probability of detection [4]. Since pulse radar always have either TX or RX on at a
time, it is much simpler to detect an echo signal at the expense of increased hardware and signal
complexity. Circuit complexity of FMCW is much higher than simple CW radar due to the imple-
mentation of frequency modulation.

In terms of power consumption, on-off mode of transmitter and receiver make pulse radars in gen-
eral much less power demanding than CW radar systems, since they are uninterruptedly emitting
RF signals [94].

Finally, even though FMCW radar systems are capable of resolving both the velocity and location of
a target, pulse Doppler radars are considered to resolve the location of two different targets much
easier than FMCW radars [94].

3.3.2. FREQUENCY-DOMAIN RADAR CHARACTERISTICS

Frequency-domain characteristics of a radar system are also important to consider. Fractional band-
width BW f is a measure of the relative width of a radar and is given by Equation 3.7:

BW f (%) = fh − fl

fc
·100, (3.7)

fh and fl being the highest and lowest points of the frequency spectrum and fc the center frequency,
which is the carrier frequency for pulse radars. In radar systems, fh and fl are normally expressed
at -10 dB gain, whereas other applications commonly use -3 dB.

Conventional radar systems, such as CW radars are considered to be narrow band, as their fractional
bandwidth BW f normally does not go further than 1%. In contrast, another radar type has gained
more popularity over the recent decades, the so-called Ultra-Wideband radar.

ULTRA-WIDEBAND RADAR

Ultra-Wideband (UWB) radars are characterized by having a fractional bandwidth greater than 20%,
or a minimum absolute BW of 500 MHz [4]. Figure 3.10 illustrates the frequency spectra of UWB
radar in comparison with narrowband radar and thermal noise unintentionally emitted from home
appliances. These radars are commonly referred to as Impulse Radio-UWB (IR-UWB) radar since
they transmit extremely short pulses on the order of hundreds of picoseconds, giving rise to a fre-
quency spectrum in the gigahertz scale [6], since pulse width is the inverse of bandwidth as follows:

τ= 1

BW
(3.8)

The impulse waveform of UWB radars provides them with really high range resolutions, as it in-
creases with decreased pulse width as shown by Equation 3.5. Furthermore, UWB systems have
distinctive penetrating capabilities due to their wide frequency spectrum. The emitted signals can
go through clothing, plastic casings and even walls, which has allowed them to gain increasing pop-
ularity in military and biomedical applications [95–97].

In 2002, the U.S. Federal Communications Commission (FCC) regulation allocated a frequency
band from 3.1 to 10.6 GHz as an unlicensed band for the general public, therefore most UWB sys-
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tems operate within this frequency band. The FCC allows the coexistence of UWB radiation with
present radio services with the condition that UWB systems operate at a maximum mean effective
isotropic radiated power (EIRP) density level of 41.3 dBm/MHz, EIRP being the total radiation power
emitted from the antenna [98].

Figure 3.10 also shows how low power density UWB frequencies do not interfere with other nar-
rowband devices. In the same way, one may think environmental thermal noise prevents the echo
pulses from UWB radar to be detected. However, in the output of the receiver a coherent pulse
integration is performed over a certain time period, by which the UWB system increases the Signal-
to-Noise Ratio (SNR) of the system, reaching high accuracy in the measurements. During this pulse
integration, i.e. summation, random noise tends to be canceled out, thus reducing the noise power
variance. In contrast, the interest signal will integrate constructively, improving the probability of
detection and increasing SNR [99].

Thermal noise level

Figure 3.10: Photo illustrating the frequency spectrum of UWB compared to conventional narrow band radar and
environmental thermal noise. Adapted from[6].

3.3.3. PREVIOUS WORK ON RADAR-BASED VITAL SIGNS MONITORING

Radar approaches have gained great popularity as contactless methods for patient monitoring and
have been broadly used over the recent few decades. The research work is divided into two main
radar architectures: CW and UWB radar [20–22, 91, 100–116]. As UWB are normally implemented by
a pulse-doppler radar arquitecture, both radar systems CW and UWB rely on Doppler frequencies
to resolve target velocities.

CW radar has been broadly used in the literature due to its simple hardware implementation and
low development cost. However, UWB is well known to have better spatial resolution. Despite their
differences, both radar systems can be used to detect the movement of the chest due to respiration
and heart beats by measuring the Doppler shift from the echo signal (either pulse or continuous
wave) [117].

CW radar was first used in 1972 by Johnson & Guy in order to sense physiologic movement [118].
This first original work was done with bulky and expensive components, with a limited research
environment application. Recent advances in microfabrication and in wireless technology have
enabled the fabrication of compact and low cost CW radar systems [119].
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A high variety of studies have shown that CW radar has reached surprisingly high accuracy in res-
piration detection systems with adult subjects [100, 104, 106, 107]. Dei et al [104] compared the
respiration waveform from their Doppler radar system and reference data from a spirometer, ob-
taining values of the coefficient of determination R2 ranging between 0.95 and 0.98 .

Besides respiration, other researchers have employed CW radar to both respiration and HR detec-
tion [101–103, 105, 108–110], most of them using adult subjects as well. A noticeable piece of work
was performed by Hafner et al [100], where they extracted both respiration and HR information
with neonates reaching very low errors in both HR (maximum error of 1.6 beats per minute) and
respiration (maximum error of 0.29 breaths per minute) measurements.

A similar technology based on the Doppler effect has been occasionally used to measure respiration
[111] as well as HR [120], the so-called Laser Doppler Vibrometer (LDV). In this technique, a laser
beam is directed to the chest of the patient, the echo signal is received by a detector that measures
changes in phase shift to determine the instantaneous displacement. Marchionni et al [120] applied
their approach to a preterm population showing very low error rates (maximum of 3% and 6% error
for respiration and HR, respectively). The limitation of this method is that it is highly dependent on
the position of the patient being measured so it would need a continuous location update system in
order to be applicable at hospital conditions.

Using UWB radars as a measurement method for vital signs detection has quite some advantages
compared to CW radars [96, 117] such as:

• Decreased EM radiation level due to low power spectral density of transmitted impulses.

• Increased spatial resolution due to higher time-domain resolution.

• Higher penetration capabilities.

• Ability to perform through-wall measurements.

• Better capability to differentiate between multiple targets.

UWB has been broadly used for respiration detection with adult subjects in multiple studies [112–
114], and as respiration and heart rate detector [91, 115, 116] with subjects of similar characteristics.
It is important to notice the existence of three studies in which UWB radar is applied to a neonate
population [20–22]. Huan et al [22] uses the radar system as apnea detector and two other studies
[20, 21] as respiration and HR detector. Ziganshin et al [20] and Huang et al [22] do not show accu-
racy or error analyses in their studies. On the other hand, Immoreev et al [21] show an agreement
level of around 95-98% compared to the reference data. The UWB system used in this study was
relatively bulky compared to nowadays compact, lightweight UWB radar systems on the market.

3.4. CONCLUSIONS

Premature babies are particularly sensitive to electrodes or any other measurement technique in
contact with their thin, weak skin. For this reason, finding a contactless approach to monitor their
vital signs is a priority in sleep research with preterm populations. In the previous chapter, the
importance of breathing characteristics for sleep scoring has been shown, therefore monitoring this
vital sign is the aim of the present work.

Imaging, BCG and radar approaches have been discussed in this chapter as potential contactless
methods for neonatal sleep monitoring. Even though studies have reported good results with each
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of these approaches, there are some limitations in imaging and BCG methods when applied in the
NICU conditions, which may be overcome with radar approaches.

Imaging approaches based on normal video cameras may present some difficulties regarding im-
age quality due to the dark conditions of the incubator and the UV treatments commonly used in
neonates. Camera approaches are also highly sensitive to position of the patient and may involve a
significant level of computer cost. Lastly, IR thermal imaging may also involve an overall higher cost
due to its expensive equipment.

BCG approaches have been extensively used in adults subjects providing a relatively good sleep clas-
sification accuracy (up to 85% in Kirjavainen’s et al work [73] using SCSB). However, this technique
may give rise to large difficulties when being applied to such small patients in the NICU conditions.
This technique is also extremely sensitive to motion noises of both patient and environment.

Radar approaches represented an excellent alternative as contactless vital signs monitoring method
and potential technique for sleep monitoring. The principles and classification of different radar
systems have been explained in this chapter. UWB and CW radar systems are the most common
systems used in the literature regarding vital signs extraction. In contrast to CW, UWB radars have
numerous advantages, such as high penetration, increased spatial resolution, low power consump-
tion and radiation, among others.

UWB systems are commonly built following a pulse Doppler radar architecture. The radar mod-
ule employed for the development of this project is an IR-UWB pulse Doppler radar. However, the
Doppler effect was not part of the processing part of this system. In this work we use the high spatial
resolution of UWB radar to measure changes in the position of the chest in time due to respiration,
and not its actual Doppler velocity.

Previous research work has been done in the past using UWB radar on neonates [112–114]. However,
lack of information regarding accuracy in respiration detection is encountered in various studies
[20, 22]. In contrast Immoreev and Tao [21], show very good results (95-98% accuracy) with respect
the golden standard, with no details about processing procedures for the respiration detection.
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RADAR SENSORS

The radar modules used in the present work are part of the so-called XeThru ("See-through") tech-
nology developed by Novelda AS. These sensors are CMOS Impulse Radio Ultra Wideband (IR-UWB)
sensors that make use of Pulse-Doppler processing. The use of these radar modules was a matter of
convenience since the choice of the radar was not optimized. The main deciding factor to use this
technology was the easiness of data acquition without a need of deep knowledge about radar cir-
cuitry and data processing. The sensors are commercially advertised as respiration detectors since
they are ready-to-use sensors that are capable of tracking the presence of a person and provide
breathing information. Furthermore, Novelda AS provides a great amount of documentation about
the XeThru technology and its application in several case studies.

In this section, a general overview of data processing occurring in these radar modules will be given.
Moreover, the key features of the two XeThru sensors employed in the present work will be provided.

Output signals of each sensor as well as specific software used to record these signals are further
explained in more detail in Section 5.4 Radar Data Acquisition.

4.1. RADAR SIGNAL PROCESSING

In pulse-doppler systems, a local oscillator (LO) generates coherent pulses at the pulse repetition
frequency (PRF). These are propagated through the environment until they face an object that will
make them reflect in multiple directions, some of which being reflected back into the radar’s re-
ceiver. Received pulses are phase modulated caused by motion according to Equation 3.6.

Each reflected pulse is then sampled. This sampling step occurs in between the transition of two
pulses. In case of X2M200, the number of samples between two transmitted pulses is 256 for 1
meter of detection space [8], with an equivalent sampling rate of around 40 GHz. The set of samples
for a specific time window is called the radar’s frame. In this way, a matrix samples-frames can be
built, having as columns the samples of one frame and as rows the set of frames acquired along a
certain reading period (Figure 4.1).

The received RF signals, which have certain amplitude and phase, are normally represented in radar
terms by means of two sinusoids that are offset by 90 degrees with respect to each other. These are
the so-called In-Phase (I) and Quadrature (Q) signals, which are mixed with the received RF signal

24
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Figure 4.1: Schematics of radar sampling of N samples during a time window of M frames.

in a process commonly denominated I/Q demodulation [121]. In this process, the LO that generates
I/Q brings down the frequencies of the received signal to baseband signals, after that, I and Q are
filtered in order to suppress the remaining high frequencies (Figure 4.2a) [122]. This process in
known as baseband downconversion. Baseband data is much easier to be processed in further blocks
of the radar system. Another great advantage of I/Q demodulation is avoiding null points of the
original A/P signal, since I and Q are never zero at the same time due to their 90 degrees offset. I/Q
signals can be easily converted to amplitude (A) and phase (P) terms by taking into account the IQ
plane graph represented in Figure 4.2b, following the equations below:

I = Acosθ, (4.1)

Q = Asi nθ, (4.2)

θ being the phase of the signal and A its amplitude.
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-sin(Ωt)
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(a) I/Q mixer analog implementation. IF and QF represent the final
baseband I/Q signals. ADC: Analog-to-Digital converter. DSP: Digital

Signal Processor [122].
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(b) IQ plane diagram for conversion
between I/Q and A/P signals.

Figure 4.2: Schematics IQ demodulation.

The I/Q demodulation performed in the XeThru modules used in the present work converts the
RF signals into final baseband frequencies of 20 and 17 Hz in the X2M200 and X4M200 modules
respectively.

As explained in previous chapters, UWB makes use of coherent pulse integration. This techniques
consists of a summation of coherent pulses over a specific time-window in order to increase the
probability of detection of low power pulses. The Signal-to-Noise Ratio of final signal increases by
10log N , where N is the number of integrated pulses [4]. Figure 4.3 (adapted from [7]) shows the
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signal detection capabilities differences between an integration done with 16 pulses (up) and 512
pulses (down). The higher the integration interval, thus the number of pulses, the larger the SNR.

Figure 4.3: SNR increase by pulse integration of 16 pulses (up) and 512 pulses (down) [7].

After data processing and baseband down-conversion, the output signal for a specific radar frame
looks similar to Figure 4.4, where both representations I/Q and Amplitude/Phase of radar baseband
data can be seen along a specific distance range divided in distance bins. Signal amplitude in Fig-
ure 4.4b shows some reflectors along a radar detection area of 0.7 - 1.7 m. The strongest reflection
is located at about 1.3 m and it is caused by a sleeping person. Units in y axes for amplitude, I and Q
signals have arbitrary units from the radar outputs and phase is represented in radians. Both radar
modules can be set to provide either I/Q or A/P data. As both representations can be interchange-
able, in this work A/P representation was chosen, as these magnitudes are the most comprehensible.
This baseband data was what it is referred to as the radar raw data in the present work. Further pro-
cessing of this raw data is what was employed to determine movement and breathing information
of the patient, to eventually classify sleep states.

(a) Output I/Q baseband radar data. (b) Output Amplitude/Phase baseband radar data.

Figure 4.4: Example of baseband radar output data of one frame.

4.2. XETHRU RESPIRATION DETECTOR ALGORITHM

XeThru modules extract breathing information through the use of a sliding Fast Fourier Transform
(sFFT), what they call Pulse-Doppler processing. The overall block diagram of the processing tasks
developed in order to achieve respiration detection in XeThru sensors is shown in Figure 4.5.
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Figure 4.5: Block diagram of data processing tasks from raw baseband data to respiration detection [8].

A set of baseband frames during a specific time window (normally 15 sec) is analyzed with a sFFT.
The resulting matrix, which is called the range-Doppler matrix, is comprised by each of the fre-
quency spectrums at every distance bin. The representation of the range-Doppler matrix can be
seen in Figure 4.6, illustrating the power peaks of the spectrum in the frequency corresponding to
respiration [9]. Symmetrical peaks are found in the spectrum due to expansion and compression
of the chest. Also the harmonics to this chest movement can be observed at multiple values of the
respiration frequency. This pulse-Doppler processing step is performed every 1 second (1 Hz).

Figure 4.6: Range-Doppler matrix of a breathing person located 6 m away [9].

After this frequency analysis step, by removing low frequency signals around 0 Hz caused by static
body reflections, a clear peak can be located at a specific frequency value and at a specific distance
bin. In the previous example, the peak is located around 20 Respirations per minute (RPM) and at
1.2 m from the radar antennas.

Each XeThru module has different operating modes that allow the peak finding process to focus on
specific frequency windows. For instance, for adult monitoring, respiration rates are found in the 8-
15 RPM range, hence the peak finding algorithm focuses on this specific range. The exact frequency
ranges for each module are further explained Section 4.3 X2M200 Module and 4.4 X4M200 Module.

Furthermore, while pulse-Doppler processing takes place, reflections coming from static objects
are eliminated through the use of a noisemap computed in the beginning of the processing. This
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noisemap allows to keep the radar frames during the fist instants of recording and create a map of
static reflections within these frames that will be removed during pulse-Doppler processing.

Once frequency and range values are located within the range-frequency matrix, the algorithm fo-
cuses on the distance bin within the baseband phase data in order to study the relative movements
within this bin with a sub-mm accuracy. Figure 4.7 shows the breathing pattern output for the res-
piration movements of the chest. This output is only available in module X2M200.

Figure 4.7: Breathing Pattern output of the XeThru X2M200 module.

It is important to notice that respiration detection via radar is not possible when subjects under
study are constantly moving. Therefore, radar sensors do not output any information when too
much movement is present.

XeThru sensor has three possible states depending on whether respiration detection has been suc-
cessful or not. These states can be:

• Breathing: Respiration detection has been successful. Breathing outputs are enabled.

• Breathing Tracking: Respiration peaks have not been detected yet (because of 15 sec window
in the FFT). No breathing output is given.

• Movement: Movement is present and respiration detection is not possible.

4.3. X2M200 MODULE

X2M200 module was the first sensor used for the present work. A photo of the front and rear sides of
this module are shown in Figure 4.8. The module comprises an IR-UWB radar X2 system on a chip
(SoC), with built-in transmitter (TX) and receiver (RX) antennas. For signal processing, the module
also counts with an on-board ARM Cortex M4 MCU [10].

Two possible interfaces can be used to communicate with the module: UART serial interface or
USB. In the present work, only USB communication was used. The module was connected to a
small laptop with a specific software installed on it. Further details of the software will be given in
Section 5.4 Radar Data Acquisition.

In order to achieve the most robust and accurate recordings, the front side must be facing the chest
of the patient. The key characteristics of this module are summarized in Table 4.1.
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Figure 4.8: Front and rear sides of X2M200 module.

Before recordings take place, several settings need to be predefined by the user. Firstly, the mode
can be set to Respiration or Sleep. Sleep is intended to measure respiration (rate and pattern) and
movement of an adult sleeping through the night. Frequency ranges for this mode are limited to
adult ones (8-30 RPM). Also detection area and sensitivity can be set. Total detection area has a total
of 1 m for Respiration mode and 2 m for Sleep mode, both modes measuring up to a range of 2.5
m. Even though the user may set as detection area a small range, the actual radar frame will cover
from 10 cm before the minimum range established by the user until 1 or 2 m more (depending on
the mode). For instance, for an input of detection area equal to 0.6 - 0.8 m, the real radar detection
area would be 0.5 - 1.5 in Sleep mode and 0.5 - 2.5 in Respiration mode.

In the X2M200 module, the pulse-Doppler processing described in Section 4.2 analyzes the radar
frames comprised within a window of 15 seconds.

Sensitivity values, which range from 0 to 9, can also be set by the user before the reading. High
sensitivity values allow for detection of smaller objects, while low values give rise to more robust
recordings. Sensitivity was set to 5 for most of the patient recordings.

The most important features and electrical parameters can be found in Table 4.1 [10].

Even though Sleep mode provides information about movement of the subject, its frequency range
is very limited and does not include the normally high respiration rate values of children (up to 50
RPM in babies). Thus, Respiration was always set for the sleep studies in the present work.

Regarding antenna characteristics, Figure 4.9 shows the antenna lobe plots of RX at a center fre-
quency of 7.5 GHz. Lobe plots represent the antenna gain as a function of its elevation (Figure 4.9a)
and azimuth (Figure 4.9b) angles. The reference position of 0 ° azimuth and 0 ° elevation is rep-
resented in Figure 4.10. The manufacturer claims the X2M200 module has a field of view of 60 °,
however RF signals can also be detected with less intensity outside this field of view, as shown in
Figure 4.9.

4.4. X4M200 MODULE

X4M200 is the new generation XeThru sensor with similar characteristics as the X2M200 and small
differences involving data processing and data outputs [14]. In contrast to X2M200, this module has
an IR-UWB radar X4 SoC. The photo of the X4M200 module is shown in Figure 4.11, with its main
characteristics summarized in Table 4.2. Also operational mode, sensitivity and detection area are
required from the user in order for the sensor to start recording.

This module has different operational modes compared to previous module, these are Adult and
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Table 4.1: Key characteristics X2M200 module [10].

Feature Value Units
Module Size 7 x 4.7 x 0.4 cm x cm x cm

Frames per Second (baseband) 20 fps
PRF É 30 MHz

Pulse Width 0.6 ns
Range resolution 7.5 cm

Operational Modes Sleep / Respiration
Detection Area 1 (Respiration), 2 (Sleep) m

min: 0.4, max: 2.5 m
Output distance bin length 3.8 cm

Frequency Range 8 – 65 (Respiration) RPM
8 – 30 (Sleep) RPM

Supply Voltage VCC 3.3 - 5.5 V
Supply Voltage USB 4.5 - 5.5 V

Radar SoC Novelda UWB X2
TX bandwidth (-10 dB) 6.1 - 8.4 GHz

RX sampling rate 39 GHz
Power consuption (X2 / X2M200) 120 / 435 mW

Operating Temp. Range -40 to +85 ° C

fps: frames per second

Baby Monitoring. The only difference between the two modes is the breathing frequency ranges.
Both modes provide respiration and movement data from the reading, however breathing pattern
is not provided, in contrast with X2M200 module. X4M200 module has the possibility to output the
moving information of other targets within its field of view. Also radar cross section1 of the detected
objects and pulse-Doppler processing outputs are provided.

Another important difference between both modules relies on the pulse-Doppler processing step.
In the X4M200 module, two pulse-Doppler processing steps are running in parallel, one using a
time window of 20 sec and the other one of 6 sec. Both processes allow the module to provide
information of immediate (last 6 sec) and non-immediate (last 20 sec) movement at every distance
bin. Breathing detection is performed with the pulse-Doppler processing of 20 sec window.

Both the X2M200 and the X4M200 share the same communication protocols. USB connection with
a laptop with a specific software was used for data acquisition of X4M200, just as with the previous
module.

The change of X2M200 to X4M200 sensor was only caused by the availability of more output data in
the new generation sensor. However, all the information provided by both sensors can be externally
computed only using the baseband signals. Therefore no practical differences are found between
the data from the subjects recorded with X2M200 and the ones recorded with X4M200 module.

No lobe plots are provided in the documentation of X4M200 datasheet. However, the manufacturer
claims both modules have similar fields of view.

1Radar Cross Section (RCS) is a measure of how likely a target is to be detected by the receiver antenna of a radar system.
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(a) RX elevation lobe plot (0 Azimut). (b) RX azimuth lobe plot (0 Elevation).

Figure 4.9: RX lobe plots [10].

Table 4.2: Key characteristics X4M200 module. [14]

Feature Value Units
Module Size 6.7 x 4.2 x 0.35 cm x cm x cm

Frames per Second 17 fps
PRF 16 MHz

Pulse Width 0.5-1 ns
Range resolution <15 cm

Operational Modes Baby / Adult
Detection Area 1.4 m

min: 0.4, max: 4.6 m
Output distance bin length 5 cm

Frequency Range 8 - 30 (Adult) RPM
15 - 65 (Baby) RPM

Supply Voltage VCC 3.3 - 5.5 V
Supply Voltage USB 4.5 - 5.5 V

Radar SoC Novelda UWB X4
TX bandwidth (-10 dB) 6.5 - 7.9 GHz

RX sampling rate 23 GHz
Power consuption (X4 / X4M200) 120/600* mW

Operating Temp. Range 0 to +85 ° C

* power consumption information has not been made available yet for X4M200. It is
expected 600 mW. fps: frames per second,

4.5. TRANSMISSION POWER REGULATIONS

Two main worldwide entities regulate the use of UWB devices in order to prevent this modality of ra-
dio frequency devices from interfering with already existing communication devices. These entities
are the Federal Communications Commission (FCC) in USA and the European Telecommunications
Standards Institute (ETSI) in Europe [15]. The maximum allowed mean equivalent isotropically ra-
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Figure 4.10: Reference Azimuth and Elevation for X2M200.

Figure 4.11: X4M200 module.

diated power (EIRP) spectral density is -41.3 dBm/MHz within a frequency mask of 6.0-8.5 GHz for
ETSI [123] and 3.1 – 10.6 for FCC [98]. Therefore, the corresponding total allowed EIRP values for
each entity would be:

E I RPFCC =−41.3dBm/M H z ·7.5G H z = 74.13nW /M H z = 556µW (4.3)

E I RPET SI =−41.3dBm/M H z ·2.5G H z = 74.13nW /M H z = 185.3µW (4.4)

Experiments using X2M200 have shown its maximum PRF value in order to comply with the ETSI
compliance is 30 MHz [15]. Therefore PRF of the sensor was limited to 30 MHz. Figure 4.12 shows
the EIRP values of X2M200 within the frequency mask of EIRP, giving a total transmitted power of 84
µW withing the ETSI mask bandwidth of 6.5 - 8 GHz.

Even though these experiments are only reported for X2M200, both modules X2M200 and X4M200
declare they comply with the CE/ETSI compliance and its content of hazardous substances [10, 14].
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Figure 4.12: EIRP values for X2M200.

4.6. SAFETY CONCERNS

Since these radar modules were intended to be used in hospital conditions with patients, safety con-
cerns are very important when using radio frequency devices. The energy that they emit is regulated
by agencies around the world.

The International Commission on Non-Ionizing Radiation Protection (ICNIRP) defines Specific Ab-
sorption Rate (SAR) limits for electromagnetic fields, in order to prevent exposure to high levels of
non-ionizing radiation [124]. SAR limits, defined as the power absorbed per mass of tissue (watts
per kilogram), are set to 0.08 W/kg for whole body average, 2 W/kg for head and trunk and 4 W/kg
for limbs.

ICNIRP provides reference levels of fields generated by the RF devices in the range of 2-300 GHz
in order to comply with previously mentioned SAR limits. These reference levels are enumerated
in Table 4.3. Since electric and magnetic field are strictly related by H = E

Z0
, being Z0 the vacuum

impedance (Z0= 120 π), only one of these measures needs to be reported.

Table 4.3: ICNIRP reference levels fields for public exposure [15].

Field Limit Units
Electric Field strength 61 V/m

Magnetic Field strength 0.16 A/m
Equivalent Plane wave power density 10 W/m2

In order to calculate the electric field generated by XeThru sensors, the power density S at a distance
R is calculated by Equation 4.5.

S = E I RP

4π ·R2 (4.5)

Whereas electric field is dependent on power density as below:

E =
√

S ·Z0 (4.6)
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The power density of a XeThru sensor with a transmitted power of 84 µW at a distance of 0.4 m
would be equal to 42 µW /m2 (reference = 10 W /m2), with an electric field equal to 0.126 V/m, 486
lower than the ICNIRP levels. When comparing this value to other common RF devices , X2M200
module produces an electric field 34 and 108 times lower than a 2.4 GHz and a 5 GHz WiFi devices,
respectively [15].

ICNIRP has as an additional requirement for pulsed systems, such as XeThru sensors; the field
strength average over the pulse width power should not be higher than 32 times the reference field
levels. Peak power can be calculated as:

Ppeak = Paver ag e

τ ·PRF
, (4.7)

being τ the pulse width of the system. A power emission of 84 µW at a PRF of 30 MHz and a τ equal
to 0.64 ns, give rise to a Ppeak equal to 4.4 mW with an electric field strength of 0.91 V/m, much
lower than 61V /m ·32 = 1952V /m reference level.

In conclusion, XeThru radar emission levels are very much lower than ICNIRP reference levels for
public exposure. Both sensors X4M200 and X2M200 modules are in compliance with CE/ETSI and
its content of hazardous substances.

4.7. CONCLUSIONS

The radar modules employed for the present work have been explained in detail within this chapter
in terms of their signal processing, their respiration detection algorithm, the key features of each
module and the safety and power transmission issues. Once we have a clear idea of how the tech-
nology used in the present research work, now we can continue with how the data was acquired and
preprocessed, which is explained in the next chapter.
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DATA ACQUISITION

In this section, a detailed description of the data acquired during the study will be provided, along
with information about patient selection, study protocol, study set-up, and the needed preprocess-
ing processes that were required before the subsequent vital signs extraction and sleep classification
tasks.

5.1. PATIENTS

23 patients were recorded during the months of May and September of 2017 with a total of around
200 study hours. Interruptions during which parents or nurses were in contact with the patient
comprise about 15% of the each recording.

Even though the final goal of the system is to develop a sleep monitoring approach for babies born
premature, due to the lack of PSG studies prescribed on these young patients, older babies and
children were employed as the study population for the feasibility study of the system.

All the data acquired during the lifespan of the SOMNUS study came from pediatric patients who
were already scheduled by their doctor to perform a PSG study. This type of studies is normally
prescribed to patients with conditions that affect respiratory patterns or who have suffered from any
kind of respiratory complications in the past. Table 5.1 comprises the different patients included in
the study with their respective patient information, including their diagnosis.

Patient selection was not necessary when testing the accuracy of the breathing detector, so all the
patients were included in this analyses. In contrast, the sleep classification task is highly dependent
on the data employed for a classifier to be trained, thus it is very important to use a good training
dataset, which is as representative as possible for the normal sleep patterns of children with similar
age to these study population. Therefore, a patient selection was performed in order to remove
those patients with sleep abnormalities. This task was undergone with the help of a neonatologist
sleep researcher. The following patients were removed from the sleep classification study:

• Subject 4: Phsycomotor retardation and severe neurological disorder that cause a very frag-
mented hypnogram (constant change of sleep phase) with many central apneas present along
the study.

35
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• Subject 11 : Severe brain damage because of which not a single REM event is present in the
hypnogram 1.

• Subject 18: The radar sensor data recording was stopped 3 hours after the beginning of the
study due to a failure in the software.

Table 5.1: Demographic characteristics of SOMNUS Study Patients.

Subject Gender Group Age Diagnose
Somnus1 M B 9 mo Bronchopulmonary Dysplasia
Somnus2 F E2 5 y, 1 mo , 1 wk Spinal muscular atrophy (type 2)
Somnus3 M D 11 mo Robin sequence
Somnus4 F C 9 mo, 3 wk Chromosomal disorder
Somnus5 M E1 2 y, 1 mo, 1 wk Neuroendocrine cell hyperplasia of infancy
Somnus6 M D 10 mo Bronchopulmonary Dysplasia
Somnus7 M E1 1 y, 2 mo Cleft lip, Robin sequence
Somnus8 F D 9 mo Tracheomalacia
Somnus9 F E 13 y, 2 mo, 3 wk Seizures, cerebral sinus thrombosis,

acute lymphatic leukemia
Somnus10 F A 2 mo, 1 wk Crouzon syndrome
Somnus11 M E2 6 y, 8 mo, 2 wk Hypoxic brain damage
Somnus12 M B 4 mo, 1 wk Robin sequence
Somnus13 M E2 4 y, 9 mo Spinal muscular atrophy (type 2)
Somnus14 M E2 7 y, 9 mo, 2 wk Unknown
Somnus15 M E1 1 y, 7mo, 3 wk Down syndrome
Somnus16 F E2 5 y, 3 mo Robin sequence
Somnus17 F E3 12 y Spinal muscular atrophy (type 2)
Somnus18 M E2 4 y, 5 mo Isolated cleft palate
Somnus19 F E2 11 y, 11 mo Spinal muscular atrophy (type 2)
Somnus20 F E3 14 y Crouzon syndrome
Somnus21 M D 11 mo, 3 wk Prader-Willi syndrome
Somnus22 M B 5 mo Unknown syndrome
Somnus23 M C 8 mo, 3 wk Bronchopulmonary Dysplasia

mo: months, y: years, wk: weeks.

Table 5.2: Summary of patients groups’ characteristics.

Group Group Age Criteria No. Patients
A Age < 3 mo. 1
B 3 mo. < Age < 6 mo. 2
C 6 mo. < Age < 9 mo. 3
D 6 mo. < Age < 1 y 4
E1 1 y < Age < 4 y 4
E2 4 y < Age < 12 y 6
E3 Age > 12 y 3

mo: months, y: years, wk: weeks.

Patients were subsequently organized by 7 groups according to their age. There were four groups,
A-D, for each trimester of the first year of life, and 3 other groups, E1-E3, for patients with an age

1An hypnogram is the resulting final graph comprising the sleep classification along the duration of the PSG study.



5.2. STUDY PROTOCOL 37

ranging from 1 to 15 years old. This patient classification was suggested by the doctors in Erasmus
MC, who took into account similarities in developmental features within each group. Table 5.2 sum-
marizes this group age criteria. Unfortunately, there was a slightly unbalanced number of patients
in each group. Ideally, we would require a high number of patients in group A since their develop-
mental features are the closest to preterm babies. However availability of patients scheduled for a
PSG study was not dependent on the researchers involved in the present work.

5.2. STUDY PROTOCOL

The study protocol (Figure 5.1) was comprised by several tasks included within a time span of 3-5
days. This study had the approval of the hospital’s Ethical Committe (EC) of Erasmus MC. According
to the EC, since the radar sensor used in the study was not an obstacle for the PSG procedures of
the patient, no signed consent was needed from the patient’s parents in order to be included in our
study. However, the researchers always asked them for permission before setting up the sensor in
the PSG room.

Data Collection and Analysis Protocol

End of PSG study

Parents consent

PSG Electrodes set-up

3 pm

4 pm

7 am

Start of PSG study7 pm

Sleep State 
Scoring 

PSG Study Protocol

XeThru set-up5 pm

Video Annotations

Data Analysis

Figure 5.1: SOMNUS Study Protocol Schematics.

In the first place, patients along with their parents were scheduled during the afternoon in order to
start preparing for the study. Patients were called around 3 pm in order for the doctor to place the
EEG electrodes on the patient. After that, the researchers asked parents for consent, and if positive,
XeThru sensor was placed inside the room at the head of the patient’s crib (further details on the
experimental set-up in Section 5.3). At around 7-8 pm, nurses prepared the patients and started
the recording of every sensor. Meanwhile, the researcher, with remote access to the computer con-
nected to the radar sensor, used to start the recordings around that time as well. Each patient’s sleep
study was performed for a whole-night recording, so the study normally ended at 7-8 am of the next
day. Parents could stay with their children inside the same room during the study, and that was what
mostly all parents did with the exception of two patients.
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In the subsequent two to three days, a subsequent sleep state scoring was performed by a qualified
technician in the hospital. There are three technicians in total, so not every hypnogram was scored
by the same technician.

Afterwards, video recordings from the PSG study were inspected in order to identify irregularities in
the study, i.e. nurse and/or parents interruptions.

Finally, after all results were ready, data was properly anonymized in order to be subsequently ana-
lyzed by the researcher.

5.3. EXPERIMENTAL SETTINGS

A summary of the experimental settings for each study can be seen in Table 5.3.

Table 5.3: Experimental Settings per study

Subject Module Room Recording Time
Somnus1 X2M200 Er-A 11 h 7 min
Somnus2 X2M200 Er-A 10 h 57 min
Somnus3 X2M200 Er-B 10 h 59 min
Somnus4 X2M200 Er-A 10 h 0 min
Somnus5 X2M200 Er-A 10 h 14 min
Somnus6 X2M200 Er-B 11 h 18 min
Somnus7 X2M200 Er-A 12 h 1 min
Somnus8 X2M200 Pb-B 12 h 44 min
Somnus9 X2M200 Pb-B 11 h 18 min
Somnus10 X4M200 Pb-A 10 h 43 min
Somnus11 X4M200 Pb-B 9 h 42 min
Somnus12 X4M200 Pb-A 9 h 53 min
Somnus13 X4M200 Pb-A 10 h 55 min
Somnus14 X4M200 Pb-B 9 h 41 min
Somnus15 X4M200 Pb-B 10 h 19 min
Somnus16 X4M200 Pb-B 11 h 39 min
Somnus17 X4M200 Pb-B 8 h 26 min
Somnus18 X4M200 Pb-B 5 h 1 min
Somnus19 X4M200 Pb-B 7 h 20 min
Somnus20 X4M200 Pb-B 10 h 51 min
Somnus21 X4M200 Pb-B 11 h 11 min
Somnus22 X4M200 Pb-B 8 h 23 min
Somnus23 X4M200 Er-A 9 h 10 min

POSITION OF THE SENSOR WITH RESPECT TO THE PATIENT

As explained in the previous chapter, the XeThru sensor achieves its highest accuracy when being
placed pointing towards the chest of the patient to be monitored. For our study, the sensor was
located at the head of the patient’s crib, in an elevated position. Distance between patient and
sensor was kept as constant as possible along the measurements. During the set-up of each study,
the radar sensor was located at a height of 90 cm with respect to the mattress of the patient, however,
during the study normally nurses used to change the elevation of the crib so it was not possible to
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know the real height at each study. Also, horizontal distance use to change since patients move
during the night. A photo of the radar sensor next to the patient’s crib is shown in Figure 5.2.

Figure 5.2: SOMNUS location at the head of the patient’s crib.

The radar sensor was connected via USB to a computer used to record the raw radar data of the
study. As shown in Figure 5.2, the sensor is attached to a stiff stick mounted on a portable, small
table on which the computer was placed at the head of the crib. In this way, the sensor acquires a
high elevation that allows it to have a clear detection area without no objects in its line of sight with
the patient.

When the patient was older than around 8 years old, the crib was replaced by a real bed but the
sensor settings were kept the same. This only happened with four subjects.

LOCATION INSIDE THE ROOM

The studies were done in two centers: Erasmus MC, specifically i the Sophia Kinderziekenhuis, and
Pallieteburght, where the PSG procedures took place during the summer period of 2017. Subjects 1
to 9 were measured in Erasmus MC and the rest in Pallieteburght. Equipment and PSG procedures
were exactly the same at each center.

Regarding Eramus MC, there were two different rooms in which PSG studies normally took place,
referred to in the present work as Er-A and Er-B. Both rooms have the same distribution of medical
equipment and very similar dimensions. In this center, the radar sensor was always positioned at
the head of the patient’s crib/bed, with only a window at the back side of the radar sensor. In the
room there was only the crib for the patient and some chairs for the parents. The area reserved
for the parents was far away from the radar detection area. The exact location where the parents
stayed during the complete night was not known to the researchers. This information can not be
acquired from the video data since the camera is always pointing at a small part of the patient’s crib,
having a very limited sight of the patient’s environment. Sometimes, information about patient’s
environment (nurses or parents present) can only be inferred from audio data. A photo of the study
setup at Erasmus MC can be seen in Figure 5.3a .

In the case of Pallieteburght, PSG could be also performed in two different rooms with similar di-
mensions. In contrast to the previous center, this one had an extra bed next to the patient available
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radar
sensor

(a) Sensor setup at Erasmus MC (room A).

radar 
sensor

(b) Sensor setup at Pallieteburght (room Pb-B).

Figure 5.3: Somnus set-up within the PSG room.

for one of the parents. In one of the two rooms of this center, which was referred to as room Pb-
A, the parent bed was too far away from the radar to be detected and interfere with the recording.
However, in the other room, which was be referred to as room Pb-B, the radar sensor could only be
placed in between the bed and the crib of the patient. As seen in the previous chapter, even though
the sensor is always placed pointing towards the patient, its antenna can still emit and detect signals
from objects located at its back side, with lower magnitude signals. Since patient and parent were
at a very similar range to the radar when located in room B, this caused a concern to be arisen by
the researchers, thinking both signals could get mixed by the sensor. However, a posteriori analysis
comparing radar and PSG data showed the radar could accurately detect breathing of patients with
very few artifacts, even if most of the recordings in Pallieteburght were done in room Pb-A. A photo
from the study setup at Pallieteburght can be seen in Figure 5.3b .

The variation of rooms used for the study (4 in total) was initially a concern raised by the researchers.
However, the high accuracy shown by the radar sensor for breathing detection (Chapter 6) with al-
most every patient was the deciding factor to assume the differences in study rooms were negligible.

SENSOR CASE

Two cases were 3D printed for each radar module. Both were built with the same material using
PLA polymer. Figure 5.4a and 5.4b show the schematics of the first case and its lid printed for the
X2M200 module using Solid Edge ST9 software. Figure 5.4c shows the real pictures of the sensor
inside the case.

X4M200 case was printed with the help of Novelda AS. The design schematics and a real photo of
the final case can be seen in Figure 5.5.

The possibility of using a thin radio-absorbent material to be placed at the back and lateral sides
inside the case was studied in order to focus the radar’s field of view. A possible adhesive material
was found, however the supplier stopped its distribution in the past. To the knowledge of the author,
no other suitable radio-absorbent material could be found that could served as a coating of the
inside of the case.
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(a) 3D print design of the X2M200 lid (b) 3D print design of the X2M200
case

(c) Photo of the X2M200 module
inside its case (down) and the lid (up)

Figure 5.4: X2M200 module case.

(a) 3D print design of the X4M200 lid (b) 3D print design of the X4M200
case

(c) Photo of the X4M200 module
inside its case (down) and the lid (up)

Figure 5.5: X4M200 module case.

5.4. RADAR DATA ACQUISITION

Radar sensor data was acquired with the use of specific software used for the Xethru sensors called
XeThru Explorer. This software was installed in the small laptop connected to the radar module and
remotely controlled by the researcher via TeamViewer software. This made the data acquisition very
easy, as the researcher could start the recordings at night and stop them in the morning without the
need to be present in the PSG study room. Data transfer was also made possible via TeamViewer.

The XeThru Explorer software allows the user to input the radar detection area that the sensor will
focus on. For the X2M200 module this area had a total coverage of 1 m, so it was always set to 0.8
- 1.8 m, allowing for full coverage of the patient’s bed. For the X4M200 module, this detection area
was a bit wider and was set to 0.7 - 1.9 m. This software was also used to visualize radar recordings in
real-time. Figure 5.6 shows an example of the XeThru Explorer interface for radar data visualization
with the X2M200 module. Amplitude and phase of the radar signals can be visualized if predefined
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by the user.

Figure 5.6: XeThru Explorer user interface. Breathing rate in RPM, breathing pattern in mm and distance in meters to
breathing target (left), red areas representing non-reading times (artifacts); baseband amplitude and phase data (right).

Baseband single bin can be used to visualize values of baseband amplitude (white) and phase (yellow) of the bin selected
by the user.

As explained in the previous chapter, the X2M200 module could be set in two different modes: Sleep
monitoring and Respiration Detector. Sleep monitoring provides an extra output of movement in-
formation, however the respiration detection in this mode is limited to adult users, since the sensor
focuses on very low frequency ranges. Since respiration acquisition was the main goal of this re-
search, the X2M200 module was always set in Respiration Detection mode. The radar data outputs
for the X2M200 module via XeThru Explorer are listed in Table 5.4.

Table 5.4: Output data for X2M200 radar module.

Signal Units Sampling Frequency
I & Q channels (A & P) a.u. 20 Hz
Breathing movement mm 20 Hz
Breathing rate RPM 20 Hz
Distance to breathing target m 20 Hz

A: Amplitude, P: Phase, RPM: Respirations per minute. a.u.: arbitrary
units.

In the case of the X4M200 module, Baby Respiration mode was always set when using this radar
module. The radar data outputs of X4M200 module via XeThru Explorer are listed in Table 5.5.
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Table 5.5: Output data for X4M200 radar module.

Signal Units Sampling Frequency
I & Q channels (A & P) a.u. 17 Hz
Movement in last 6 sec % 1 Hz
Movement in last 15 sec % 1 Hz
Breathing rate RPM 1 Hz
Distance to breathing target m 1 Hz

A: Amplitude, P: Phase. RPM: Respirations per minute. a.u.: arbitrary
units.

5.5. REFERENCE DATA: PSG SIGNALS

PSG equipment used multiple electrodes that monitor the vital signals of the patient over one night
of recording. These vital signs include abdominal and thoratic breathing, air flow, ECG, oxygen
saturation, HR, chin EMG, partial pressure of carbon dioxide, and EEG. These signals together with
their units and sampling frequency are described in Table 5.6.

In the present work, we only focus on breathing signals from thorax and abdomen movements.
These signals are extracted by measuring the respiratory effort via Respiratory Inductance Plethys-
mography (RIP) [125]. RIP relies on both Faraday’s Law and Lenz’s Law. Firstly, a current applied
through a wired loop generates a magnetic field normal to the orientation of the loop (Faraday’s
Law), whereas a change in the area confined inside the wired loop creates a counter current in op-
posite direction proportional to this change in area (Lenz’s Law). RIP uses two elastic belts sur-
rounding the abdomen and thorax. These elastic belts have a wire sewn inside with a zigzag shape.
An AC current is sent through these wires, creating a very small magnetic field that changes with
breathing movement and generates another current opposing the first one. Changes in current can
be easily translated into changes in area surrounded by the belt. The devices used for the present
study were Embla® XactTrace® respiratory effort belts. These can be seen on Figure 5.7, a photo of
our control patient Somnus 0.

The airflow signal was measured by a thermosistor sensor located in the nostrils of the patient. Even
though this signal has breathing information as well, the researchers of the present work decided to
focus on signals of respiratory effort in the abdomen and thorax due to the fact that both these
signals have similar working principle as radar signals, as they all measure respiration by detection
of movement.

Table 5.6: PSG signals.

Signal Units1 Sampling Frequency [Hz]
Thorax µV 25

Abdomen µV 25
Airflow µV 25

ECG µV 250
Sat. O2 % 10

HR BPM 5
EMG chin µV 250

PCO2 mV 5
EEG channels µV 250

1 BPM: Beats Per Minute
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radar 
sensor

Figure 5.7: SOMNUS 0 set-up showing respiratory effort belts (thorax and abdomen) used for the present study.

5.6. DATA PREPROCESSING

Since data acquired from the radar sensor was extracted through an external laptop that was not
connected to PSG equipment, after the separate acquisition of the PSG and radar data, a synchro-
nization of signals was necessary in order for the time vectors of all signals to coincide. This syn-
chronization was done manually via MATLAB. Since the time difference between signals was not
higher than a few seconds, the signals could be easily synchronized.

Another data preprocessing step focused on making the sampling frequencies of all signals coincide,
as the thorax/abdomen data from the PSG were sampled at 25 Hz and radar data was sampled at
either 17 Hz, for the X4M200 module, or 20 Hz, for the X2M200 module. This resampling process
was done by interpolation of time signals of thorax and abdomen data from the PSG in order to
coincide with the radar sampling frequency.

A filtering step was needed in order to remove the noise from raw abdomen and thorax data from
the PSG. This filtering process was done by studying the envelope of the signals and eliminating
the part of the signals in which the envelope overshooted a certain threshold. This threshold was
manually set for each signal of every patient since each patient presented different µV values in the
breathing signals and also patients normally had a more prominent respiration in either abdomen
or thorax. This filtering step is represented in Figure 5.8.

Once the abdomen and thorax data were properly filtered, the breathing rate was calculated by
finding the peaks of the most prominent signal (thorax or abdomen). Once peaks were detected,
the distance between every peak was calculated in order to extract the instantaneous breathing
rate, expressed in RPM. Since this signal gave very noisy measurements, a moving average filter
with a time window of 15 seconds was employed to obtain the final breathing rate signal that was
used as the reference breathing rate signal of our study.



5.6. DATA PREPROCESSING 45

(a) PSG filtering via envelope detection.

(b) Thorax raw (up) and filtered (down) breathing signal from PSG .

Figure 5.8: PSG breathing signal filtering with Subject 1 thorax data.



6
BREATHING DETECTION SYSTEM

Despite the extremely high accuracy of the XeThru radar modules to detect breathing, specially
the sub-mm accuracy reported on the X2M200 for its breathing pattern output, when the sensors
where initially tested for the present study, overall recordings of an over-night study showed a great
amount of noise in the respiration signals due to motion artifacts. This effect motivated us to create
a more robust, less noisy breathing detector capable of suppressing motion artifacts before actual
breathing readings are provided to the user.

Furthermore, another new contribution that the present work provides to the breathing detection
system, is the automatic adaptability of the algorithm to every patient’s respiration frequency range,
since this range may change from 15-20 RPM with old children, to 40-50 RPM with babies. Figure 6.1
illustrates the main differences in block diagrams between the conventional breathing detection
in-built algorithm of the XeThru modules and the proposed breathing detection algorithm in the
present work.

The outputs of the breathing detection system proposed in this present work will serve as input of
the sleep monitoring system. The tasks of the breathing detection system are:

1. To extract baseband raw data from the XeThru sensor (@17-20 Hz), showing reflections along
the range bins of the radar (distance bins).

2. To quantify the presence of motion in baseband signals.

3. To identify whether a specific threshold of motion has been reached. If positive, no breathing
outputs are provided.

4. As long as no motion is detected, to perform frequency analyses of baseband data to create a
range-frequency matrix.

5. To detect Respiration Rate (RR) and distance to respiration by localizing the most prominent
peak of the range-frequency matrix.

6. To detect stable values of RR within a time window and adapt the resulting RPM value to the
frequency analysis of following iterations.

7. To extract the breathing pattern by focusing on the baseband reading of the distance bin.

46
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An important detail from the conventional breathing detector of the XeThru modules is the fact that
the motion detector runs after frequency analyses and not before, thus when motion is present, the
sensor reads noisy data during a certain time window before motion is even detected.
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Figure 6.1: Block diagram of the Breathing Detector.

6.1. MOTION DETECTOR

The movement detector algorithm is based on the analysis of raw baseband data. Similarly to Fig-
ure 4.1, baseband data can be represented in a matrix BB of M number of frames and N number of
distance bins (Figure 6.2). This holds for both amplitude and phase baseband signals. However, for
the motion detector algorithm, the amplitude signal will be employed in order to analyze the overall
presence of movement in the radar’s field of view.

Movement quantification is performed by integrating the difference between two subsequent frames
across a specific time window as expressed in Equation 6.1:

MV Mwi n(t ) =
ti∑

t=ti−wi n+1
[BBamp (ti )−BBamp (ti −1)], (6.1)

MV Mwi n(t ) being the movement quantity for a time window wi n at a specific point in time t .

Similarly as for the XeThru sensors, two movement signals are provided by the motion detector
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frame 1
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Figure 6.2: Schematics of the baseband amplitude signal for N distance bins and M frames.

output: a signal using a window of 1 sec that represents the amount of immediate movement,
MV M1(t ), and another one using a time window of 20 sec,MV M20(t ), expressing the amount of
movement during a not so immediate past.

Afterwards, these two signals are normalized using its maximum value of the recording in order to
express a relative measure of movement, as expressed in Equation 6.2:

MV Mwi n(t )[%] =
∑ti

t=ti−wi n+1[BBamp (ti )−BBamp (ti −1)]

MV Mwi n,max
·100, (6.2)

The presence or absence of motion for the next steps of the breathing detector is computed by
establishing a movement threshold of 10% within the 20 sec window signal. If this threshold is
crossed, motion is considered to be present and no further breathing reading is performed in further
steps of the breathing detector system.

This same threshold is also applied to the 1 sec window movement signal. However, since this fast
movement might be momentaneous during sleep recordings, the breathing detector does not rely
on the presence of movement reported by this signal. If this was the case, breathing readings would
be constantly interrupted by spontaneous, fast body movements during sleep. However, both move-
ment signals MV M1(t ) and MV M20(t ) are employed in the sleep classification system described in
Chapter 7.

6.2. BREATHING DETECTION ALGORITHM

After the motion detector ensures the motion within the last 20 seconds of recording has not ex-
ceeded 10% of relative motion, the breathing detector algorithm is enabled.

Just as in the previous step of motion detection, the raw data used for this algorithm is the amplitude
baseband data. First, a Fast Fourier Transform (FFT) of the BBamp matrix of F frames within 20 sec
and N distance bins is performed every 1 sec, giving rise to a new frequency-range matrix. The
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frequency bins of this matrix are expressed in RPM instead of Hz and the number of distance bins
depends on the XeThru module. Starting with an initial frequency window of 10-55 RPM, the most
prominent peak within this frequency window is found from the FFT. After a peak is localized, the
distance bin and frequency bin of the FFT are stored. The distance bin allows for localization of the
breathing "target" (the patient). Once this distance bin is found, the system can focus on the exact
baseband signal point of future frames that provides the exact periodic movement of the chest due
to respiration, i.e. the breathing pattern.

An important contribution of the present work is the ability to adapt the frequency window of the
frequency analyses to the RR frequency of the patient in order to improve the quality of the readings
and suppress the noise at other frequencies. This frequency range is calculated when a stable read-
ing of RR is given for at least 5 minutes, hence, no big movement has been detected by the sensor in
those 5 min. This no movement condition prevents the algorithm from focusing on frequencies of
parents or nurses that are next to the patient for a specific period in time. The algorithm will adapt
to a new frequency range every time there has been a time window of 5 minutes with no movement.

The complete algorithm of the breathing detection system, including motion detector, is shown be-
low. The algorithm takes into account data points in time at a sampling frequency Fs equal to the
one of the radar sensor (20 Hz for X2M200 and 17 Hz for X4M200). However, the FFT is only per-
formed every second, i.e. every Fs frames. Therefore, values of RR for a specific frame are stored
for the following frames within a second assuming RR is kept constant for that second. The reason
behind this decision is the fact that, in order to extract an accurate breathing pattern, the sampling
frequency needs to stay in 17-20 Hz, therefore maintaining movement and RR signals at the same
sampling frequency would give homogeneity to the radar data in order to provide easier signal pro-
cessing.

Algorithm 1 Breathing Detection Algorithm

1: Input: Baseband Amplitude matrix.

2: t = t0 , Initial frequency window fwi n = [10 , 50 ] RPM

3: if MV M20(t ) < 10%, then continue , else, RRt = 0; t = t +1 , repeat (3).

4: Calculate the Fast Fourier Transform of last F s ·20 frames (20 sec frames).

5: Find the most prominent peak within fwi n window.

6: Retrieve frequency ft and range value rt values for F s frames.

7: Localize baseband amplitude data of rt and extract breathing pattern of [t : t +F s −1] frames.

8: if movement not detected in the last 5 min & fwi n not updated in the last 5 min, then fwi n =
[ ft −10, ft +10]RP M

9: t = t +Fs ; continue in (3)

10: Output: Respiration Rate (RR) vector, Breathing Pattern.

An example of the resulting FFT of 20 sec baseband data with a frequency window [29 - 49 RPM] is
shown in Figure 6.3. This frequency window was updated from a previous RR value, which was 39
RPM as well.

6.3. RESULTS

The proposed breathing detector system was tested with the raw radar signals of each of the patients
decribed in Section 5.1 Patients. The results were compared to the ones of the in-built breathing
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Figure 6.3: Example FFT performed for a window of 20 seconds. A peak at (39 RPM , 1.12 m) can be observed
representing the breathing of a sleeping baby.

detector algorithm of XeThru modules. Before comparisons are done, it is important to notice that
the signals used in this section have not been filtered to remove motion artifacts of parents/nurses
interruptions. The aim of this was to recreate the hospital environment conditions as closely as
possible and to study how both algorithms adapt to them.

The adaptive frequency window was not possible for one of the babies (Subject 10) due to the fact
that the parents were too close to the sensor during the night of the recording. When a frequency
window of 25-40 RPM was fixed, the sensor was able to properly read the RR from the baby.

In the first place, we wanted to compare the results of both the breathing pattern output of the
X2M200 module, and the one resulting from the proposed algorithm. However, the researchers
of the present work decided to compare RR signals, since the exact breathing waveform extracted
from the radar depends on the location of the patient and the exact point of the chest tracked by the
sensor. Therefore an overnight comparison of breathing patterns give very low correlation values.

RR was therefore used as the signal for testing the accuracy of both the XeThru RR output, defined
from now on as RRxet , and the RR output of the proposed breathing detector, defined as RRBD . The
reference RR signal extracted from PSG equipment is defined as RRPSG

Figure 6.4 shows an example of RRxet and RRBD compared to RRPSG . Vertical lines are caused
when the RR signal goes to zero due to the presence of motion. From the graph, a great decrease in
noise can be observed in RRBD compared to RRxet . This is mainly due to the fact that the proposed
algorithm does not provide any reading until no motion is present, hence the expected decrease in
noise.

Regarding the resolution of the signals, since the FFT is computed with a 20 sec window, this gives
a frequency resolution of 1/20 Hz = 0.05 Hz * 60 sec = 3 RPM for the proposed breathing detector.
Hence, the RRBD vector can only return values that are an integer multiple of 3 RPM. In contrast,
the XeThru module provides a 1 RPM resolution that may arise from extra processing steps that are
unknown to the researchers of the present work. This difference in resolution is shown in Figure 6.5,
showing a zoomed area of Figure 6.4.
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Figure 6.4: RR signals for an over-night sleep study with Subject 11. Up: RRxet compared to RRPSG . Down: RRBD
compared to RRPSG .

Figure 6.5: Zoomed area of Figure 6.4 showing the difference in resolution between RRxet (up) and RRBD (down).

In order to compare the similarity of both RRxet and RRBD with respect to RRPSG , several param-
eters were studied. These were: Mean Error (ME), Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), Standard Deviation (STD) of the error and Relative Error (RE) with respect the real
value. The formulas for the previously mentioned parameters are:

ME =
∑n

i=1 |RRi |−RRi

n
=

∑n
i=1 ei

n
, (6.3)

M AE =
∑n

i=1 |RRi −RRi |
n

=
∑n

i=1 |ei |
n

, (6.4)
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RMSE =
p

MSE =
√∑n

i=1(RRi −RRi )2

n
(6.5)

ST Der r =
√

1

n

n∑
i=1

(ei −µei )2 (6.6)

RE = 1

n

∑n
i=1 |RRi −RRi |

RRi
·100 = 1

n

∑n
i=1 |ei |
RRi

, (6.7)

RRi being the estimation of RR at time point i , RRi the real RR value, ei the error between estimation
and real value, ST Der r the standard deviation of the error, µei the mean of the error and n the total
number of points in the vector. All the previous parameters were computed with only the non-zero
values of the RR signals.

Since both systems have a great amount of data in time recorded as zero, total recording time1 is
an important parameter to analyze. The expected recorded time for the proposed algorithm was
expected to decrease, since the motion detector disables the RRBD output as soon as movement
is present in the radar detection area. Thus, we expected a lower recording time in RRBD than for
RRxet . However, this was not the case and the recording time was greater for most of the subjects
when using the proposed breathing detection algorithm. This can be observed in Figure 6.6. The
total recording time of this and XeThru’s approach was 172.5 and 146.3 hours respectively (about
15% increase).

Figure 6.6: Comparison of total recording time (in hours) as extracted from this work and as extracted from the XeThru
output results.

1Recording time understood as the time where RR signal was not 0, thus the time the radar actually records respiration.
Radar is however providing baseband raw data along the time is switched on by the user.
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The accuracy analysis results of RRBD for each subject are presented in Table 6.1. Especially, for
subject 20 we got bad results when analyzing RRxet . This may be due to the fact that the Baby mode
of module X4M200 was on, thus restricting the detected RPM values to the high ones of babies.
However, this patient, being the oldest (14 years old) of them all, had RPM values closer to the adult
ones (around 10 RPM). Therefore, the results of this patient are excluded when computing the total
average and STD results of Table 6.1 and this patient will be treated as an outlier from now on.

Figure 6.7-11 are provided in order to better visualize the previously mentioned accuracy parame-
ters per subject.

Table 6.1: Breathing Detector error performance compared to XeThru output.

This work XeThru Output
ME

(RPM)
MAE

(RPM)
RMSE
(RPM)

STDe
(RPM)

RE
(%)

ME
(RPM)

MAE
(RPM)

RMSE
(RPM)

STDe
(RPM)

RE
(%)

Subj. 1 -0.23 2.98 5.28 5.27 9.66% -1.32 4.01 8.25 8.14 20.55%
Subj. 2 -1.13 2.53 4.06 3.90 15.69% 0.09 2.26 4.98 4.98 12.37%
Subj. 3 -0.60 2.13 3.51 3.46 12.62% 0.53 2.61 5.76 5.73 12.56%
Subj. 4 -3.46 4.64 7.30 6.43 28.08% -1.16 5.12 8.87 8.80 28.66%
Subj. 5 -0.55 2.65 5.01 4.98 9.76% -0.59 3.53 7.08 7.06 15.18%
Subj. 6 -0.77 2.18 3.65 3.57 13.72% 0.51 3.18 7.00 6.98 15.74%
Subj. 7 -1.76 3.15 5.89 5.62 17.68% -0.99 3.89 7.74 7.67 20.50%
Subj. 8 -4.28 5.51 7.95 6.70 28.78% -1.96 6.47 10.46 10.28 32.91%
Subj. 9 -0.35 1.34 2.31 2.28 8.02% 0.08 1.26 3.34 3.34 6.49%

Subj. 10 0.66 3.87 5.72 5.68 13.36% 4.31 7.19 11.37 10.53 19.11%
Subj. 11 -2.93 4.82 7.48 6.88 28.78% 0.42 3.02 5.47 5.45 10.87%
Subj. 12 -6.41 7.46 10.64 8.49 43.46% -0.24 3.19 5.93 5.92 10.13%
Subj. 13 -4.29 4.86 6.78 5.25 34.47% 0.82 2.76 6.10 6.05 9.92%
Subj. 14 -0.16 1.96 2.90 2.90 12.71% 0.75 2.41 5.18 5.12 11.96%
Subj. 15 -1.99 3.22 5.43 5.05 18.52% -0.26 2.25 4.58 4.57 9.03%
Subj. 16 -2.80 4.36 6.11 5.43 27.88% 0.21 3.19 6.22 6.22 13.16%
Subj. 17 -0.27 1.64 2.56 2.54 10.53% 0.53 1.50 3.38 3.34 7.45%
Subj. 18 -0.79 1.96 3.50 3.41 11.71% 0.07 1.14 2.78 2.78 5.39%
Subj. 19 -0.57 1.34 2.29 2.22 8.86% 0.09 0.78 2.46 2.46 3.72%
Subj. 20 0.24 2.41 3.93 3.92 16.32% 18.10 18.33 23.57 15.10 46.82%
Subj. 21 -0.30 1.93 2.91 2.89 9.30% 0.22 1.57 3.40 3.39 6.37%
Subj. 22 0.06 3.22 5.13 5.13 13.27% 1.41 2.69 5.85 5.68 8.42%
Subj. 23 -1.17 3.77 6.35 6.25 11.55% -0.84 2.92 5.58 5.51 8.43%

Avg -1.55 3.25 5.12 4.74 17.66% 0.12 3.04 5.99 5.91 13.13%
STD 1.77 1.54 2.14 1.69 9.78% 1.23 1.60 2.34 2.23 7.39%

ME: Mean Error. MAE: Mean Absolute Error. RMSE: Root Mean Square Error. STDe: Standard Deviation of the error. RE:
Relative Error.
* Total average (Avg) and Standard Deviation (STD) are performed removing Subj. 20.

In terms of ME (Figure 6.7), also called bias, it seems there is a small tendency of our breathing
detector to underestimate RR values. However, in most of the patients error values tend to cancel
out, hence no final conclusion can be made from this bias value. RRxet shows very high accuracy
since bias is almost zero for every patient on which the sensor was tested, with the exception of
Subject 20. However this recording was considered an outlier, as mentioned before. On average,
ME values of RRxet were considerably better than RRBD , showing an average of almost zero bias in
RRxet .
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Figure 6.7: Mean Error (estimate vs. real PSG data) comparison between this work results and XeThru output results
tested on 23 patients.

Figure 6.8: Comparison of Mean Absolute Errors (estimate vs. real PSG data) between this work results and XeThru
output results tested on 23 patients.

Most publications use either MAE or RMSE in order to study the accuracy of a signal. RMSE is known
for penalizing bigger errors. Therefore, sometimes the use of RMSE is preferred instead of MAE. In
this work, we present both. Lower MAE errors in RRxet were expected, since the resolution of RRxet

is higher, however this was not always the case. On the one hand, a comparison of the MAE errors
(Figure 6.8) suggests worse results of RRxet compared to RRBD in studies where X2M200 was used
(Subj. 1-9) than in studies using the new generation X4M200 sensor. However, very similar MAE
values are reached for most of the studies with very similar MAE averages of 3.25 and 3.04 RPM for
RRBD and RRxet , respectively.

In contrast, RMSE values (Figure 6.9) are considerably higher for RRxet than RRBD in the first half
of the patients using X2M200. For the rest of patients, with the exception of 11-13, RMSE values
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Figure 6.9: Comparison of root mean square errors (estimate vs. real PSG data) between this work results and XeThru
output results tested on 23 patients.

Figure 6.10: Comparison of standard deviation of the error (estimate vs. real PSG data) between this work results and
XeThru output results tested on 23 patients.

look quite similar, without taking into account subject 20 (outlier). Some of the patients having
higher MAE errors in RRBD have now lower errors of RMSE (subj. 16,17,19,21,22). This may be due
to the fact that even though values of RRxet were in general closer to RRPSG than with RRBD with
X4M200 module, big errors in RRxet were slightly more common, since RMSE tends to penalize big
errors within a dataset. This assumption can be supported by analyzing the STD of the error results
(Figure 6.10), which shows that the errors were more dispersed with RRxet in most of the subjects.
On average, better values of RMSE and STD of error are shown for RRBD in Table 6.1.

Finally, studies of relative errors (RE) are important due to the fact that the population has quite
some differences regarding their mean RR values, which were around 10-15 RPM in old children and
around 40 RPM with babies. Figure 6.11 shows considerably bigger RE values in subjects 11,12,13
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Figure 6.11: Comparison of relative error (estimate vs. real PSG data) comparison between this work results and XeThru
output results.

and 16, and similar RE values for the rest of the patients. Again, we can see a slightly better perfor-
mance of our breathing detector system when compared to X2M200 studies. The final average of RE
values for RRBD and RRxet was 17.6% and 13.1% respectively.

When taking a closer look to the patients with the highest relative errors, subjects 4, 8, 11, 12, 13 and
16 were studied in order to detect whether they were recorded in the same room, suggesting high
errors may come from experimental settings differences. However, these patients were recorded in
different rooms of the two previously mentioned centers, thus, suggesting there is not one specific
room presenting especially bad results. No final conclusion can be made regarding experimental
settings influencing the quality of recordings.

The previous results were divided into children of less than 1 year old age (babies) and children of
more than 1 year old (older children) in order to study whether the fact of monitoring a baby gave
worse results than with any other patient. These groups were comprised of 10 patients (younger
than 1 year old) and 13 patients (older than 1 year old). The results are shown in Table 6.2. From
this table we can observe a decrease in the error in the older population for both algorithms, with
a more significant decrease in XeThru’s algorithm. This might be related to the fact that babies are
specially smaller targets than normal patients, thus their chest movement is slightly more difficult
to detect. Nevertheless, this decrease in error is more drastic in XeThru signals, which may suggest
the proposed algorithm in this work is less sensitive to age differences. Meanwhile, recording time
remains more or less the same in both populations with our proposed algorithm, therefore robus-
ticity is mantained regardless of patient age. However, this recording time significantly decreases in
the oldest population with XeThru’s algorithm.

A more detailed study of algorithm performance with respect to age could have been done by study-
ing this error in the 7 populations of patients described in Table 5.2. However, the low number of
patients per group makes this performance analyses unreliable. Therefore, we decided to focus on
comparing the performance between babies and older patients.

In conclusion, error analyses of both RRBD and RRxet show the high accuracy of both algorithms,
the in-built one of XeThru modules and the one proposed in this work. Even though RRBD has con-
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Table 6.2: Breathing detector error performance compared to XeThru Output with two study populations.

This work XeThru Output
ME
(RPM)

MAE
(RPM)

RMSE
(RPM)

STDe
(RPM)

RE
(%)

ME
(RPM)

MAE
(RPM)

RMSE
(RPM)

STDe
(RPM)

RE
(%)

Avg
(less 1 y)

-1.65 3.77 5.84 5.39 18.38% 0.15 3.90 7.25 7.10 16.29%

STD 2.28 1.73 2.35 1.72 11.27% 1.78 1.81 2.46 2.29 9.00%
Avg

(older 1 y)
-1.47 2.82 4.53 4.21 17.05% 0.10 2.33 4.94 4.92 10.50%

STD 1.31 1.29 1.83 1.54 8.81% 0.53 1.00 1.70 1.68 4.62%

ME: Mean Error. MAE: Mean Absolute Error. RMSE: Root Mean Square Error. STDe: Standard Deviation of the error. RE: Relative
Error.
* Total average (Avg) and Standard Deviation (STD) are performed removing Subj. 20.

siderably higher relative errors, it has shown to be less sensitive to age differences. This proposed
algorithm also has the advantage of giving more robustness to the signal at the expense of RR res-
olution, however the recording time is increased drastically. Therefore, it can be concluded that
RRBD can be a very good estimate of RR that will serve as the input of the sleep monitoring system
described in the next section.

6.3.1. RESULTS BREATHING PATTERN

Figure 6.12 shows an example of a zoomed in image comparing the breathing pattern extracted
from the breathing detector algorithm and the reference breathing pattern from thorax data. An
strict analysis of this patterns throughout the night was not possible since the amplitude of the
waveform from the radar changes constantly depending on the exact location of the chest the radar
is focusing on. Therefore, correlation or error analyses are not useful to compare the similarity of
these waveforms. Instead the researchers decided to focus on the frequency of this waveforms (RR)
in order to study the accuracy of the signals.

Breathing pattern was not considered as one of the features for the sleep classification system due
to the variability of the waveform due to noise and radar characteristics.

When inspecting the breathing pattern signal provided by the breathing detector, it was very inter-
esting to see frequent apneas in one of the subjects of the study. Figure 6.13 shows an example of
one of these apneas detected by the radar sensor. This interesting finding demonstrates the capa-
bilities of XeThru modules to detect apnea events, which opens a new door in the application of
apnea diagnostics.

In the coming chapter, the complete sleep monitoring system based on signals from the radar mod-
ules will be described. This system uses the signals extracted from the breathing detection system
(motion + breathing) as input variables of the sleep-stage classification.
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Figure 6.12: Breathing pattern of Subject 1 extracted by breathing detector (blue) compared to PSG referece signal of
thorax (orange).

Apnea

Figure 6.13: Breathing pattern of Subject 1 showing an apnea event.



7
SLEEP MONITORING SYSTEM

Once the raw radar data has been processed in order to acquire movement and respiration infor-
mation from the motion detector and the breathing detector, these outputs signals are used as the
inputs for the sleep monitoring system.

The sleep monitoring system has two main tasks:

1. To classify between Sleep and Awake events.

2. To classify Sleep events into REM and NREM events.

Movement information was the key feature to classify sleep/awake for this study. A challenging as-
pect of classifying Sleep/Awake measurements based on motion is the fact that during the time it
takes to fall asleep, patients do not move much. This effect makes nowadays sleep/awake classifi-
cation systems overestimate the time of sleep [57, 58]. Another big challenge when addressing this
problem is that nurses and parents interruptions are misguiding the radar system to classify these
motions as patient motions during awake. The details and performance testing of the sleep/awake
classification algorithm presented in this work are described in this section.

Regarding REM/NREM classification, the key main difference between these two phases at which
the researchers focused their attention, was the breathing irregularity characterizing REM phases,
along with the greater amount of movements, as discussed in previous chapters. Therefore both
breathing and movements information was used for the REM/NREM classification. Due to the
complexity of this classification problem, different analyses were performed in order to find the
best approach for this classification. One of these analyses focused on studying the classification
performance when using both overall respiration and movement information in contrast to only
respiration variability, which is known to be the key characteristic difference between REM/NREM
in young patients [26].

7.1. SLEEP/AWAKE CLASSIFICATION

Classification into Sleep and Awake events was done through the motion signal that described if
the amount of relative movement within the last 20 seconds, MV M20(t ), crossed a 10 % threshold.

59
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The reason why MV M1(t ) was not used to address this task was because of the assumption that
fast movements do not really give a lot of information about whether the subject is sleep or awake.
Instead, an accumulation of these fast movements due to awakenings would give a high signal in
MV M20(t ), and therefore provide information on sleep or awake states.

The algorithm to detect sleep or awake events was performed at every point of movement signal,
therefore, at the same baseband sampling frequency (17-20 Hz). This was done by detecting clus-
ters of high MV M20(t ) signal within a time window of 30 sec. Meanwhile, when certain data points
were scored as awake less than one minute after the last awake event happened, these points were
re-scored as awake again. This condition was set in order to avoid results of apparent fast alterna-
tion between awake and sleep events. This algorithm, which we will refer to as S/A algorithm, is
described below.

Algorithm 2 Sleep/Awake (S/A) classification algorithm

1: Input: MV M20(t ): Relative amount of movement for the last 20 seconds.

2: t = t0.

3: if MV M20(t −30 : t ) < 10% , then sl eep(t ) = 0 , else, sl eep(t ) = 1.

4: if sl eep(t ) = 1 & tl ast aw ake − t > 60, then, sl eep(tl ast aw ake : t ) = 0.

5: t = t +1, go to (4).

6: Output: sl eep(t ) vector showing sleep/awake state.sl eep = 1 when sleep, sl eep = 0 when
awake.

The S/A classification was performed with all the 23 patients and sensitivity, specificity and preci-
sion of scoring sleep were studied along with the overall accuracy of the classification for each of
these subjects. Furthermore, a final estimate of Total Sleep Time (TST) was compared to the real
TST of the patients according to the PSG data. Table 7.1 shows the results of these analyses.

When analyzing these classification parameters, is important to notice that sleep covers the great
majority of time of these sleep studies. This fact has a great influence on the results of sensitivity
(the True Positive Rate (TPR) of Sleep events), precision (the Positive Predictive Value) and accuracy.
In this type of unbalanced classification problem, these three parameters tend to show a very high,
misguiding percentage value. Therefore, specificity of sleep, also called False Positive Rate (FPR), is
an important parameter to analyze, since it is what provides the information about the percentage of
awake events that are being correctly classified as awake. The formulas of the previously mentioned
parameters are:

Sensi t i vi t ysl eep = T PR = T P

P
= T P

T P +F N
(7.1)

Speci f i ci t ysl eep = F PR = T N

N
= T N

T N +F P
(7.2)

Pr eci si onsl eep = PPV = T P

T P +F P
(7.3)

Accur ac y = T P +T N

T P +T N +F P +F N
(7.4)

T P being the number of true positives, T N the number of true negatives, F P the number of false
positives and F N the number of false negatives. In this case, positives are understood as sleep
events and negatives as awake. It is important to notice that specificity of sleep is the same as sensi-
tivity of awake, and viceversa.
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Table 7.1: Sleep/Awake Classification performance

Sens.(sleep) Spec.(sleep) Prec.(sleep) Acc. TST(real) TST(est) Error(TST)
Subj. 1 94.77% 60.94% 91.76% 88.72% 82.11% 84.81% 2.69%
Subj. 2 99.84% 29.87% 87.35% 87.88% 82.91% 94.76% 11.86%
Subj. 3 89.41% 98.35% 99.87% 90.00% 93.40% 83.62% 9.78%
Subj. 4 96.00% 65.78% 87.06% 87.10% 70.57% 77.82% 7.25%
Subj. 5 91.88% 83.35% 96.95% 90.62% 85.19% 80.74% 4.45%
Subj. 6 94.28% 89.93% 97.75% 93.51% 82.27% 79.35% 2.92%
Subj. 7 97.69% 85.43% 94.73% 94.35% 72.82% 75.10% 2.28%
Subj. 8 90.71% 87.48% 95.94% 89.95% 76.56% 72.38% 4.18%
Subj. 9 98.94% 37.44% 89.09% 88.97% 83.78% 93.04% 9.26%

Subj. 10 95.82% 46.16% 78.19% 79.34% 66.82% 81.88% 15.07%
Subj. 11 97.80% 21.15% 76.19% 76.39% 72.07% 92.51% 20.44%
Subj. 12 96.07% 84.91% 96.09% 93.78% 79.44% 79.42% 0.02%
Subj. 13 98.50% 65.83% 93.16% 92.80% 82.54% 87.27% 4.73%
Subj. 14 95.32% 69.87% 96.38% 92.62% 89.38% 88.40% 0.98%
Subj. 15 98.95% 66.29% 86.02% 88.40% 67.70% 77.88% 10.18%
Subj. 16 94.92% 50.39% 89.03% 86.43% 80.93% 86.28% 5.35%
Subj. 17 98.97% 36.45% 95.10% 94.32% 92.57% 96.34% 3.76%
Subj. 18 97.76% 57.51% 90.76% 90.12% 81.02% 87.27% 6.25%
Subj. 19 99.76% 32.65% 90.30% 90.55% 86.27% 95.31% 9.04%
Subj. 20 98.58% 53.17% 72.86% 78.62% 56.05% 75.84% 19.79%
Subj. 21 98.70% 58.05% 94.21% 93.56% 87.37% 91.53% 4.16%
Subj. 22 86.95% 95.67% 99.28% 87.98% 87.24% 76.33% 10.92%
Subj. 23 90.50% 81.50% 97.83% 89.62% 90.22% 83.46% 6.76%

Avg 95.74% 63.40% 91.13% 88.94% 80.40% 84.41% 7.48%
STD 3.63% 22.54% 7.31% 4.91% 9.18% 7.15% 5.45%
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In terms of TST analysis, as expected, the S/A classification algorithm tends to overestimate the
sleep time in most of the subjects of this study. This can be explained by the fact that the lack
of movement does not really ensures the patient is sleeping, since awake-sleep transition does not
happen exactly at the moment the patient stops moving. This represents one of the main challenges
when classifying sleep against awake based on motion signals.

Another challenge to overcome is the fact that motion artifacts produced by nurses and parents
were accounted as awake by our S/A algorithm. Figure 7.1 shows the sleep/awake classification
diagram estimated by the S/A algorithm compared to the real sleep/awake diagram for subject 18.
Here, the similarities between the diagrams and the effect of interruptions in the S/A algorithm can
be observed. Appendix A shows each of these diagrams for the rest of the patients, where we can see
the similarities in waveforms of the sleep/awake diagrams.

Figure 7.1: Sleep/Awake diagram of subject 18 showing presence/absence of interruptions and relative movement (up),
real sleep/awake events (center) and estimated sleep/awake events (below).

7.2. SLEEP CLASSIFICATION

Unlike sleep/awake classification, in which our own algorithm was executed in order to score sleep
against awake measurement, REM/NREM classification, defined here as R/N, is addressed as a Sta-
tistical Classification in terms of Machine Learning. Statistical classifications are processes in which
an observation, defined by one or multiple features, is assigned to a class. In order to do so, a previ-
ous training step is required for the classifier to study a dataset, called the training set, comprised by
labeled measurements. In our particular classification problem, the observations are time windows
of 2 min, called epochs. Each of the observations’ features describe information of respiration and
movement data of the patient within those two minutes, while classes are labeled as either REM or
NREM. The features of REM and NREM epochs will serve as the training set that the classifier needs
to score new epochs as REM or NREM.

There are many different types of classifiers that are already well explored, each of them having
different classification algorithms. Some of the most popular ones will be described and studied
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for our N/R classification in this section. The main challenge of statistical classification is defining
what is considered a "good" training set of data points with different features that provides as much
information as possible about a certain class, giving rise to a high performance classification when
being tested.

Features are normally expressed in terms of pattern recognition as dimensions. This is due to the
fact that classifiers work in a feature space where the observations are defined as their number of fea-
tures. Classifiers divide the feature space according to their own classification (or discrimination)
algorithms. Figure 7.2 shows the representation of a very basic classification problem; two classes
in a two-feature space [126]. However, most of classification problems work with observations with
many different features that increase the complexity of the classification. Hence, pattern recogni-
tion researchers share a common aim of finding approaches that can decrease the dimensionality
of the data before the actual classification takes place.

Figure 7.2: Basic example of a two-dimensional feature space with two classes (apples/tomatoes) and two features
(sphericity/softness).

In contrast to S/A classification, which was performed for each of the data points of the radar out-
put signals, R/N classification was performed by dividing the studies into 2 min epochs, as pre-
viously mentioned. Conventional PSG sleep classification through EEG and other PSG features is
performed by using 30 sec epochs. However, the challenge of performing sleep classification with
breathing parameters is the low frequency of this signal, which makes it difficult to reliably detect
differences between sleep states in such a short time. For instance, a patient presenting an RR of
20 RPM would only breath 10 times in 30 sec, which is not enough to observe the characteristic
differences in breathing patterns of REM state.

This R/N classification was performed only taking into account the epochs with a maximum limit of
15 sec where high movement (MV M(t ) > 10%) is present. When too much movement was detected
the epoch was considered as an artifact.

In order to avoid the accumulation of classification errors of the previous Sleep/Awake classifica-
tion, R/N classification was firstly studied with only real REM and NREM epochs as training sets
of our classifiers. This way, we could really see their real classification performance. Classifiers
were trained using either the strongest feature (the one who varies the most between REM and
NREM epochs) or all five different features coming from movement and breathing signals (further
explained in this section).
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7.2.1. FEATURE GENERATION

As explained before, the key characteristic of R/N classification of the present work is detecting the
amount of movement and the irregularity of respiration. Five different features regarding this two
signals were investigated in order to serve as input of our classifiers. These are listed in Table 7.2.

Table 7.2: List of input features for sleep classification analyses.

Name Description
1. V arRR,Nor m Normalize variance of the RRBD signal within epoch
2. µRR,Nor m Normalize mean of RRBD signal within epoch
3. µMV M20 Average of MV M20 signal within epoch
4. µMV M1 Average of MV M1 signal within epoch
5. F Mr10 (Fast Movement ratio) Ratio of time within last 10 min governed by fast movements

Regarding respiration features, two main factors were to be studied in the classification: (i) whether
RR variance within the epoch is able to determine the R/N phase, and (ii) whether the mean RR
within the epoch increased when REM was present. Since both these features depend on the age
of the baby, as they increase when age decreases, a normalization was required. In the first place,
V arRR of epoch number i is normalized using the RR mean µRR,i registered in epoch i . In contrast,
µRR,i was normalized using the overall RR mean µRR along the over-night study. Equation 7.5 and
Equation 7.6 describe the computation of these two features.

V arRR,Nor m(i ) = V ar (RR(t : t +2mi n))

µ(RR(t : t +2mi n))
(7.5)

µRR,Nor m(i ) = µ(RR(t : t +2mi n))

µ(RR(t ))
(7.6)

Taking into account that mean and variance of a signal x are defined as:

µ(x(t )) = 1

n

n∑
t=1

x(t ) (7.7)

V ar (x(t )) = 1

n

n∑
t=1

(xt −µ)2 (7.8)

Three other features were used in our sleep classification problem in order to study whether or not
there was an increase in motion of the patient during REM phase. To do so, three features were
added to our list of classification features: the average amount of relative movement present during
the last 20 sec signal over a 2 min epoch, µMV M20 , the average amount of relative movement present
during the last 1 sec signal, µMV M1 and the relative time within the last 10 min epoch in which fast
movement defined as MV M1(t ) > 10% has been present. This latter parameter is the way to account
for movement in the previous epochs. These three movement features are defined for an epoch i as:

µMV M20 (i )) =µ(MV M20(t : t +2mi n)) (7.9)
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µMV M1 (i )) =µ(MV M1(t : t +2mi n)) (7.10)

F Mr10 = no.poi nt s(MV M1(t +10mi n) > 10%)

no.poi nt s(t : t +10mi n)
(7.11)

Even though we used these five features for our classification process, which describe information
about overall respiration and movement patterns, further analyses were performed using only res-
piration variability (feature 1) alone. The aim of those analyses was to find out if this feature alone
was strong enough to classify R/N events, as literature suggests [26].

There is one last important point to take into account regarding feature generation. As sleep is a
cyclic process, is easily seen that sleep state at a time point i has a great influence in the consecutive
sleep state of points i +1, i +2,... etc. Therefore, it was considered the possibility of adding previous
scored state as another feature of the classification. However, this can be considered a relatively
"dangerous" feature to take into account, since it has a great statistical power against the rest of
the features of our classification problem. For instance, a classifier may detect that around 80% of
epochs had the same previous epoch labeled in its training set, therefore when testing a new data
set, it is highly probable that the classifier would tend to classify all the epochs as the first one.
Consequently, we did not consider previous score sleep phase as a sleep feature for this first version
of the sleep classification system.

7.2.2. DIMENSIONALITY REDUCTION

When performing statistical classification with multiple features, it is common practice to perform
dimensionality reduction in order to decrease the number of dimensions, thus decreasing the com-
plexity of the classification. Feature extraction is a common technique used for dimensionality re-
duction. It relies on the principle of transforming the current feature space into a space with fewer
dimensions. Two common approaches of feature extraction were used for our sleep classification
problem.

On the one hand, Principal Component Analysis (PCA) performs a linear transformation of the fea-
ture space in the direction of the highest variance. To do so, the process starts with building the
covariance matrix of the dataset and then computing its corresponding eigenvectors, also called the
principal components. The largest eigenvectors are therefore the new orthogonal representation of
the feature space with those variables retaining the highest variance [127].

On the other hand, Linear Discriminant Analysis (LDA), also called Fisher’s discriminant analysis,
is another popular technique for dimensionality reduction. In this case, the ratio of between-class
variance against within-class variance is maximized in order to achieve the direction of the biggest
separability of data with the lowest data variation within the same class [11, 128].

The graphs shown in Figure 7.3, adapted from [11], show the representation of two classes in a
two-dimensional space. When creating a 1-D projection of two classes by joining their means (Fig-
ure 7.3a ), the classes cannot be fully separated as some data points overlap on the projection. When
LDA is performed in Figure 7.3b the projection greatly improves the separability. LDA can be used
both as dimensionality reduction technique and as a classifier.

Even though both techniques, PCA and LDA, transform the given data into a new feature space,
the great difference between both techniques is that PCA does not take into account the classes of
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Figure 7.3: Example of LDA analysis in (b) showing a higher separability of classes [11].

the datasets in order to model the difference between them, thus performing a so-called unsuper-
vised transformation, and LDA does take into account these classes, therefore being a supervised
approach. Even though it may look logical to choose LDA over PCA approaches, PCA is still one of
the most popular techniques in feature extraction. Some researchers claim that PCA can outper-
form LDA when a small training set is used since it is less senstive to different training sets [129].

In this work, both PCA and LDA were tested in order to compare the performance of the sleep clas-
sification when using each approach. Both approaches reduced the dimensions of the classification
from 5 to 2.

7.2.3. POPULATIONS

Classification performance was studied with three different populations: (i) babies younger than 1
year old, (ii) older children and (iii) all patients together. We will refer to these three populations as
population Y (young), with 9 patients in total, population O (old), with 11 patients, and population
A (all), with 20 patients.

As explained in Section 5.1, subjects 4, 11 and 18 were discarded from the study due to lack of REM
events or due to neurological disorders. However, it is important to take into account that the pop-
ulation of this classification study was not as ideal as if it would have been a population of 100%
healthy babies. In contrast, since these patients were scheduled by their doctors for PSG studies in
order to closely observe sleep behaviors, it is very possible that some of them do not present the
typical sleep patterns that healthy children of their age would have presented.

The best possible division of populations would have been made according to Table 5.2 in Section
5.1. However, the low number of patients per group makes it very difficult to perform a reliable
classification data set. Therefore, only two groups were formed out of this set of patients. Hetero-
geneity of age in population O will be taken into account in the analyses. However the main goal of
the researchers was to focus on population Y since it is the closest to the ideal study population of
preterm babies.

7.2.4. CLASSIFIERS

A set of common classifiers used in pattern recognition applications were chosen to test their per-
formance in the R/N classification problem. These were implemented using the MATLAB Toolbox
PRTools 5 (http://prtools.org/), developed by the Pattern Recognition Research Group of the TU

http://prtools.org/
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Delft (DelftPR).

In this specific problem, we chose three different classifiers: (Fisher) Linear Discriminant Analysis
(LDA), Support Vector Machines (SVM) and K-Nearest Neighbor (kNN).

The Fisher LDA classifier, which relies on the previously described principle of maximizing the sep-
arability between two classes, can be used as both dimensionality reduction approach and as clas-
sifier. Here, we want to test whether its application as classifier has good results in separating REM
and NREM events. In order to distinguish between its applications as both classification and di-
mensionality reduction, we will refer to Fisher when using LDA as classification method.

SVM is a supervised technique that looks for a hyperplane that maximizes the distance (or margin)
between two different classes. In order to understand it better, Figure 7.4 shows an example of SVM
implementation in a 2D (two features) classification. Beginning from a two sets of data points be-
longing to two different classes, many straight lines can serve to separate them (Figure 7.4a). How-
ever, some are better than others, since the further the line is from both classes, the less sensitive
it is to error classifications. Thus, a line which is the furthest to both classes is optimized in order
to maximize the margin between classes, which is defined as double the distance to the first points
of each class, defined as support vectors (Figure 7.4b). This example can be translated to higher
dimensions, where hyperplanes are computed, instead of lines [12].

(a) Two classes classification infinite number
of possible straight lines acting to classify

them.

(b) SVM finds the optimal line with highest
margin to each class. Filled colors are the

support vectors.

Figure 7.4: Implementation of SVM in a 2D feature space [12]. x1 and x2 correspond to feature 1 and feature 2.

Fisher and SVM are two very common linear classifiers used in many pattern recognition applica-
tions. Fisher is considered a relatively simple classifier, in contrast to SVM, which is considered as
a more complex classifier that requires a much higher computational cost (about 600 times longer
processing times in this work when being used with five features). Another difference between them
is that Fisher assumes a normal distribution of classes with equal covariance, while SVM does not
need to assume the distributions of the data sets, what makes it more robust with classes that have
completely different distributions. They both were chosen for this classification because (i) linear
classifiers have reported good results in sleep classification problems (previously discussed in Sec-
tion 2.2), and (ii) because of their different level of complexity. The objective behind comparing
both performances is to study whether the use of a more complex classifier is actually providing any
value to the classification at the expense of a longer processing time.
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kNN was chosen as the third classifier used in sleep classification due its high simplicity and its
popularity among pattern recognition approaches. kNN classifies a test data point by finding the
closest k points in the training set, defined as neighbors, studying the predominant class within this
labeled training set group and assigning it to the test point. The main concern of this classifier is
the choice of k value, since low k values generally increase the over-fitting1 effect of the classifier.
In the kNN algorithm implemented in this work by PRTools, k values are automatically selected by
minimizing the classification error by a leave-one-out technique (take out one data point out of the
training set and test the algorithm for different values of k, and so on and so forth with every data
point of the training set) [130].

Just as SVM, kNN is a non-parametric classifier, which means it does not assume any distribution
in the classes. The main difference with respect SVM and kNN is that the latter is non-linear, which
means the classification margin can adopt any possible shape.

The reason behind adding kNN to our classifier list was to study the performance of the classi-
fication using a non-linear classifier. Even though there is a wide range of non-linear classifiers,
kNN was chosen due to its simplicity, its high processing speed, low computational cost and non-
parametric characteristics that avoids making assumptions about classes distributions.

Even though these three classifiers represent three main classes of classifiers (Fisher: linear, para-
metric; SVM: linear, non-parametric; and kNN: non-linear, parametric), it is important to take into
account that no concluding generalizations can be made out of the performance results of these
classifiers regarding the group they belong to, since there is a really long list of classifiers which
might perform better or worse than the ones studied in this work.

7.2.5. ANALYSES

Multiple analyses were conducted for the three classifiers previously mentioned using different sce-
narios defined by their populations, number of features and dimensionality reduction approaches.
The aims of these analyses were:

• To compare classification performance when using five features related to both respiration
and movement against using respiration variability (V arRR,Nor m) alone.

• To compare the influence of training and testing the classifiers using the data of all patients
together against separate populations according to age.

• To study the influence of dimensionality reduction in the classification.

• To recognize the best dimensionality reduction approach among PCA or LDA.

• To detect the best classifier(s) out of the three of our list for each scenario.

The list of analyses performed to achieve these previously mentioned aims is shown in Table 7.3,
with the numbers of features as listed in Table 7.2, and populations names as mentioned in Section
7.2.3. The three classifiers were tested in the twelve analyses listed below.

1An over-fitted classifier is one that is too adapted to its training set, leading to a higher chance of classification error.
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Table 7.3: Classification analyses in R/N classification

Features Population Dim. Red.
1. 1-5 Y -
2. 1-5 O -
3. 1-5 A -
4. 1-5 Y PCA
5. 1-5 O PCA
6. 1-5 A PCA
7. 1-5 Y LDA
8. 1-5 O LDA
9. 1-5 A LDA

10. 1 Y -
11. 1 O -
12. 1 A -

7.2.6. CLASSIFICATION PERFORMANCE

Classification performance of the previously mentioned analyses was performed by a technique
called Leave-One-Out-Cross-Validation (LOOCV). This technique is widely used when testing a clas-
sifier performance within a specific test population. Given a dataset of n points x1, x2, ...xn , the idea
behind LOOCV is to leave the first one (x1) out of the set, so the classifier can be trained with the
rest of points (x2, x3, ...xn), and afterwards being tested with this left out point. In the next iteration,
the next data point (x2) is left out, and the classifier is trained with the rest data points. This is made
in an iterative way until the classifier has been trained and tested one-by-one with each possible
combination of data points. Figure 7.5 shows an schematic of the principle behind LOOCV [13].

Figure 7.5: Principle of Leave-One-Out-Cross-Validation [13].
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In our case, each of the points being "left out" of the training set were the patients of the study.
Afterwards, several parameters of the classification, such as sensitivity, specificity, precision and ac-
curacy, whose formulas are explained in Section 7.1, were averaged for all the subjects of the dataset
and these were the results provided in the following subsections.

7.3. RESULTS

Classification performance results were provided by conducting four different analyses for each
population. These analyses were:

1. Multiple features (no dimensionality reduction).

2. Multiple features + PCA.

3. Multiple features + LDA.

4. One unique feature (V arRR,Nor m).

The results were provided in term of sensitivity, specificity and precision of REM phase, along with
overall accuracy. Being a two-class problem, sensitivity and specificity of REM directly translate to
specificity and sensitivity of NREM. Precision of REM was provided due to the special interest of the
researches in REM phase, since it is the most important phase of the sleep cycle of preterm babies,
as discussed in Section 2. Equation 7.1-4 already described these performance parameters.

7.3.1. YOUNG POPULATION

Table 7.4 comprises the performance results of the analyses performed for the young population
(babies of less than 1 year old), which can be better visualized in Figure 7.6.

Table 7.4: Classification performance results: Population Y. The best results are highlighted in bold.

Clasf. Sensitivity (REM) Specificity (REM) Precision (REM) Accuracy
Mult. Fisher 75.60% (26.29%) 60.69% (32.07%) 59.11% (18.11%) 65.94% (15.59%)
Feats. kNN 64.37% (10.25%) 72.04% (9.48%) 58.20% (9.59%) 69.21% (5.43%)

SVM 76.74% (23.19%) 74.13% (19.95%) 66.75% (16.68%) 74.87% (12.35%)
Mult. Fisher 100.00% (0%) 0.00% (0%) 36.97% (5.40%) 36.97% (5.40%)
Feats. kNN 46.42% (10.04%) 63.34 % (10.40%) 42.95% (7.72%) 57.50% (7.01%)
(PCA) SVM 100.00% (0%) 0.00% (0%) 36.97% (5.40%) 36.97% (5.40%)
Mult. Fisher 75.20% (26.31% ) 60.25% (32.46% ) 58.86% (18.16% ) 65.53% (15.60% )
Feats. kNN 50.03% (15.24% ) 72.27% (19.17% ) 55.15% (15.50% ) 63.86% (10.41% )
(LDA) SVM 69.89% (29.40%) 67.90% (26.23%) 60.47% (18.48%) 68.52% (12.36%)
One Fisher 89.41% (10.47% ) 69.08% (21.81% ) 65.82% (15.15% ) 75.86% (13.82% )
Feat. kNN 61.94% (6.20% ) 76.36% (12.86% ) 62.44% (12.81% ) 70.81% (7.86% )

SVM 77.61% (16.58% ) 78.70% (21.09% ) 72.81% (17.81%) 77.71% (12.68% )
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Firstly, when all features were used for the classification with no dimensionality reduction, all clas-
sifiers got performance parameters around or higher than 60%. In this case, SVM outperformed the
other two classifiers in all studied parameters.

When PCA was used in this population, there was a drastic decrease in performance in all classifiers,
specially with SVM and Fisher, which classified all events (R and N) as REM events. Because of this,
specificity of REM had a 0% value while sensitivity a 100% and an overall accuracy equal to the
percentage of REM events. kNN did not suffer from this effect, however its overall performance was
decreased as well.

In contrast, the LDA approach did not decrease so drastically the performance parameters, whereas
it did not increase them either. Only kNN seemed like having a greater specificity for REM but at
expense of reduced sensitivity. It is interesting to notice that Fisher performance remains the same
after LDA since they are both performing the same discriminant principle. In general, application
of dimensionality reduction approaches in this data set did not provide an improvement in classifi-
cation performance.

In terms of number of features, the use of a unique feature, V arRR,Nor m , gave an overall increase in
classification performance in all the previous classifiers. This may be explained by the fact that
V arRR,Nor m alone had enough information to provide a clear differentiation between REM and
NREM events, and it was very likely that one of the previously used features was adding more noise
to the classification, rather than helping to classify the sleep states.

Finally, regarding the best results of classification, both SVM and the Fisher classifier gave much
better results when used with V arRR,Nor m as the only feature of the classification. If we take into
account the number of better parameters, SVM outperformed Fisher in terms of average accuracy,
precision and specificity of REM, with similar standard deviations, even though it provided 10% less
sensitivity. Therefore, we determined that the best classification results were the ones achieved by
SVM, when observations were described by only one feature. However, it is still important to take
into account the big spread of the performance parameters.

The detailed results of classification performance per subject are given in Table B.1 for the best
classification analysis (SVM, unique feature) with Population Y. Also in Appendix C , the comparison
between real and estimated hypnograms from these analysis are shown.

7.3.2. OLDER POPULATION

Classification results for this population showed an overall decrease in classification performance
with respect Population Y, which an outstanding higher spread in performance parameters, sug-
gesting that patients classifications provided very inconsistent results with each patient.

When multiple features were inputted to the classifiers with no dimensionality reduction, both SVM
and Fisher classifiers showed similar results in specificity and accuracy. Moreover, Fisher tends
to outperform SVM in precision , while SVM does regarding sensitivity. Since differences are very
small and spread (STD) are specially big, no concluding results can be extracted from this particular
comparison.

In terms of dimensionality reduction, PCA has again produced a decrease in performance in every
possible parameter, in contrast to LDA, which does neither decrease nor improve the performance
that much.
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Table 7.5: Classification performance results: Population O. STD in parenthesis. The best results are highlighted in bold.

Clasf. Sensitivity (REM) Specificity (REM) Precision (REM) Accuracy
Mult. Fisher 49.84% (40.84%) 80.48% (24.14%) 62.97% (28.41%) 75.65% (11.94%)
Feats. kNN 35.75% (17.08%) 80.00% (11.97%) 36.19% (15.93%) 69.53% (9.44%)

SVM 52.18% (36.86%) 80.89% (23.01%) 56.84% (23.58%) 75.86% (11.68%)
Mult. Fisher 35.48% (44.34% ) 70.14% (39.89% ) 24.10% (15.93% ) 65.38% (20.94% )
Feats. kNN 36.36% (9.90% ) 77.72% (9.61% ) 32.78% (10.24% ) 68.05% (8.53% )
(PCA) SVM 31.13% (43.10% ) 76.09% (38.26% ) 32.55% (29.00% ) 68.21% (20.26% )
Mult. Fisher 49.84% (40.84%) 80.48% (24.14%) 62.97% (28.41%) 75.65% (11.94%)
Feats. kNN 35.07% (15.93%) 80.73% (10.39%) 35.87% (12.94%) 70.96% (7.06%)
(LDA) SVM 51.60% (37.72%) 80.68% (23.73%) 58.03% (25.58%) 75.76% (12.78%)
One Fisher 47.92% (36.14% ) 83.03% (23.34% ) 60.54% (22.67% ) 77.16% (11.57% )
Feat. kNN 33.58% (13.10% ) 82.21% (11.88% ) 38.79% (17.66% ) 72.06% (8.02% )

SVM 46.62% (33.61% ) 82.43% (22.99% ) 58.03% (26.81% ) 75.87% (10.98% )

In terms of number of features, there is a slight increase of around 2-3% regarding specificity and
accuracy, with a similar percentage value getting decreased in sensitivity. Precision slightly increases
in kNN and SVM. Therefore, we can conclude that using V arRR,Nor m alone gives slightly improved
but similar results as using multiple features. Hence, the use of only one feature is preferred as well
with this population due to the decrease of classification dimensions, which drastically decreases
processing costs and classification complexity.

It is very difficult to choose the best classifier in terms of classification parameters due to the fact
that all these parameters are quite similar in every analysis and STD is high. However, due to lower
complexity of the classifier as well as the reduced amount of dimensions, we selected the Fisher
classifier with datasets of only one feature (V arRR,Nor m) as the best classification scenario. It is
important to notice here that two specific patients (Subj. 9 and 14) gave really bad results as the
classifier failed to detect barely or none REM events. When compared to the results using SVM,
these two subjects presented very similar results.
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Table 7.6: Classification performance results: Population A. STD in parenthesis. The best results are highlighted in bold.

Classifiers Sensitivity (REM) Specificity (REM) Precision (REM) Accuracy
Mult. Fisher 53.16% (35.15%) 80.38% (22.98%) 64.86% (22.04%) 75.55% (10.95%)
Feats. kNN 49.67% (17.43%) 76.04% (11.38%) 46.36% (14.66%) 68.26% (9.10%)

SVM 59.65% (30.18%) 81.00% (20.34%) 61.14% (19.70%) 76.58% (10.93%)
Mult. Fisher 40.99% (47.14%) 63.00% (46.66%) 31.80% (27.57%) 62.89% (19.14%)
Feats. kNN 35.95% (9.77% ) 72.21% (8.20% ) 34.97% (12.27% ) 61.55% (6.16% )
(PCA) SVM 42.27% (46.20% ) 61.42% (46.48%) 37.29% (27.59%) 62.19% (19.22%)
Mult. Fisher 53.10% (35.09%) 80.48% (22.95%) 64.88% (22.06%) 75.60% (11.01%)
Feats. kNN 45.41% (17.24%) 75.29% (14.84%) 44.78% (17.07%) 67.22% (9.81%)
(LDA) SVM 60.58% (31.20%) 77.85% (21.91%) 57.45% (21.90%) 74.60% (13.03%)
One Fisher 52.04% (35.71%) 82.51% (20.31%) 70.26% (22.40%) 76.78% (9.85%)
Feat. kNN 43.67% (13.95%) 79.97% (12.95%) 48.53% (18.39%) 70.36% (7.89%)

SVM 58.71% (31.09%) 81.80% (19.94%) 65.33% (22.50%) 77.19% (10.68%)

The detailed results of classification performance per subject are given in Table B.2 for the best
classification scenario (Fisher, unique feature) with Population O.

7.3.3. ALL PATIENTS POPULATION

Finally, analyses were performed using all patients of young and older populations together in order
to study whether a good generalization can be made in such a heterogeneous population. Table 7.6
comprises these results, which are better visualized in Figure 7.8.
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Regarding dimensionality reduction, there was a considerable decrease in performance when PCA
is applied, just as with the rest of the populations. Meanwhile, LDA did not improve the overall
performance either.

The overall best classification results of the multi-feature classification were shown with no dimen-
sionality reduction applied, along with the SVM classifier. However both SVM and Fisher show very
similar results with very high spread.

In terms of using V arRR,Nor m as the only input feature for our classifier, there was an increase in
overall performance in kNN and Fisher, and similar results for SVM than when using more features.
Just as with the previous population, the best classifier in this specific scenario was quite difficult to
calculate, due to the fact that both Fisher and SVM showed relatively good results and similar STD,
however due to higher precision to detect REM and lower computation cost, Fisher was selected as
the classifier with the best results, also when compared to all the other analyses of this population.

The detailed results of classification performance per subject are given in Table B.3 for the best clas-
sification analysis (Fisher, unique feature) with Population A. In this case, subjects 9 and 14 also
provide drastically bad classification performance due to the almost non-existent ability of the clas-
sifier to detect their REM phases. An independent analysis was done in order to study the average
V arRR,Nor m values for all the subjects comparing REM and NREM phases. Patients 9 and 14 had
considerably low average values of respiration variability during REM, which explains the inability
of the classifier to detect these phases for these two patients.

7.3.4. BETWEEN POPULATION COMPARISON

The overall results for the older population of patients are shown to be worse than in the young pop-
ulation, especially regarding sensitivity. This is due to an increase of false negatives (False NREM
epochs). Having in general worst classification results for this older population was what we ex-
pected because of the age heterogeneity between the patients within this group, which varies from
2 to 14 years old. However, this was the only way we had to test the classification performance in
these patients since dividing them into more groups according to Table 5.2 would have leaded to
unreliable results due to the low number of patients per group.

When all subjects were included in the classification (Population A analyses), similar results were
shown to the ones studying only the older population. However, the young population is the only
one whose results improved when left out from the all subjects population. This might be caused
by the higher similarity among patients of this young group.

7.4. CONCLUSIONS

The present work has shown the ability to develop a complete radar-based monitoring system based
on respiration and movement data acquired from a sleeping patient.

First, an awake/sleep classification was performed based on movement information with an aver-
age error in TST estimation of around 7% (STD = 5%), with a general overestimation of TST due to
the assumption that time windows with no movement are considered as sleep states.

Regarding REM/NREM classification, previous analyses have reached relatively good results, espe-
cially in the analyses performed with the young population alone, which is the one the researchers
had more interest in, due to their bigger similarities to a preterm population.
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Two specific subjects in the older population showed really bad classification results due to the
inability to detect REM sleep. The reason behind this is the low respiration variability of these two
subjects during REM phase. This opens a new door for the application of this radar sensor to detect
respiration abnormalities. However, this was not thoroughly studied in the present work as it is out
of the scope of the project.

The best results within each population were all acquired when using only one feature for the clas-
sification: V arRR,Nor m . This is an important finding since it leads us to the conclusion that respi-
ration variability provides the system with enough information to classify REM/NREM events, and
more importantly, that XeThru radar modules were able to correctly detect this respiration variabil-
ity among sleep phases.

Dimensionality reduction did not provide any improvement to the classification when five features
were employed, with PCA showing worse results than LDA. This might be explained by the fact that
this technique is an unsupervised approach, as it does not take into account observation labels
when the direction of maximum variance is recognized. This may lead to the strong conclusion that
V arRR,Nor m was indeed the best feature for the classification and any other feature only provided
more noise to the feature space.

Even though specific analyses were selected as the best scenario for the classification problem with
each population, it is very difficult to conclude which classifier gave the best results since the stan-
dard deviations were all really high, showing really spread distributions of classification parameters.
This is due to the fact that some patients had really high classification performance parameters and
some others did not.

Fisher and SVM normally gave very similar results. That might be explained due to the fact they
both are linear classifiers. If a selection must be made between the two of them in case they both
show relatively good results, our final choice would lean towards the Fisher classifier due to its low
computational cost compared to SVM. However, when only one feature is used for the classifica-
tion, SVM computational cost drastically decreases. In general kNN never gave very good results,
however STDs of its performance parameters were less spread across all populations. This suggests
that kNN might not be the best classifier for this specific problem, however it gives more consistent
results along all patients.

Another important factor to take into account in our classification results is the variability of tech-
nicians scoring sleep states, which were three in total. In an ideal study, only one technician would
have scored all patients in order to provide more reliable reference data. Studies such as [64] show a
classification accuracy change of around 10% between studies scored by two different technicians,
which leads us to the conclusion that having three different technicians might have influenced our
classification performance.

No chain classification was performed due to time constraints. An ideal classification performance
study needs to be done concatenating results from sleep/awake classification and REM/NREM clas-
sification in order to compare the capability of the radar sensor to detect Awake/REM/NREM at the
same time.

In conclusion, overall accuracy of classification reached 76-77% in all populations, while sensitivity,
specificity and precision of detecting REM sleep reached values of 52-77%, 78-83% and 60-72%. It
is difficult to compare these results to previous literature work due to the heterogeneity of perfor-
mance analyses, populations under study and study protocols as well as the important fact that no
much sleep classification studies have been done with only respiration data in such a young pop-
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ulation. However, as the first system capable of classifying sleep states via radar-based respiration
signals, these results show its potential capability as a sleep-state monitoring system.



8
DISCUSSION, CONCLUSIONS AND

RECOMMENDATIONS FOR FUTURE WORK

The main goal of the project was to be able to monitor sleep in populations of patients as young as
premature babies. In order to do so, a previous literature study was performed with the following
two main goals:

• To investigate whether it is possible to detect physiological signals that vary the most during
the patient’s sleep phases (REM/NREM) in young infants.

• To investigate whether it is possible to unobtrusively measure these signals in a population of
preterm babies.

After a broad literature study, respiration was selected as the main parameter to take into account
in order to differentiate between REM and NREM phases. The main reason was that the AASM
reported this parameter as the best physiological signal to score sleep phases in young neonates
[26]. In fact, some research has been done in the past for detecting sleep phases through respiration
signals in young populations of patients [66–68], with accuracies of classification as high as 93%
[66].

Several contactless techniques such as imaging, ballistocardiography and radar are described in
this report regarding their potential for sleep monitoring classification. All of them have reported
high accuracies when measuring respiration signals. Due to availability of the sensor, XeThru radar
modules were employed in the development of the project.

It is important to notice that to conduct a thorough comparative study between radar technologies
was not part of the scope of this project, since it was established from the beginning to develop
the whole sleep-classification system with a specific UWB module available in the market. As men-
tioned in Section 1.2, the implementation of the actual radar sensor was not part of the project’s
scope either, but only the data analysis involved after the signal acquisition.

After the previous literature study, the research question arisen was to study the feasibility of a radar-
based approach for sleep monitoring on the Neonatal Intensive Care Unit that could be eventually
applied on premature patients.

80
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In this chapter, a final discussion will be provided about the two main contributions created in this
work: (i) the new approach to perform breathing detection from raw radar signals, and (ii) the sleep
monitoring capabilities of the system based on these acquired radar signals.

8.1. BREATHING DETECTION SYSTEM

A detailed algorithm to compute breathing signals has been described in this work. This algorithm is
based on the idea of adding a motion detector block before actual breathing processing takes place
in order to decrease the noise level induced by environmental movements detected by the radar.

Another contribution of our breathing detector was the ability to adapt to mean patient’s Respira-
tion Rate (RR) values by finding time windows with stable RR readings where no motion was de-
tected for a minimum time of 5 minutes.

The radar sensors were tested in a population of 23 patients in order to perform accuracy analy-
ses. Our proposed breathing detection algorithm was compared to the in-built system of XeThru
sensors, having as reference RR signals the ones from respiratory effort belts of the PSG equipment.
Errors provided very similar average results for both algorithms.

Mean Error (ME) values showed a slight tendency of our algorithm to underestimate RR values, in
comparison with a zero average bias in XeThru’s in-built algorithm. Mean Absolute Error (MAE) val-
ues suggested their algorithm is more accurate due to higher RR resolutions, however their slightly
higher values of Root Mean Square Error (RMSE) and Standard Deviation (STD) of the error showed
a small increase in their error spread. Higher Relative Errors (RE) values in our algorithm were pre-
dictable since this parameter is highly impacted by the frequency resolution of the system. For
instance, when we deal with RR values of 11 Respirations per Minute (RPM), our algorithm provides
a value of either 9 or 12 RPM (integer multiples of 3 RPM). In the case of providing 9 RPM, the RE
would be of around 20%. However, what we were actually interested in was the capability of the
system to detect the ups and downs of the patient’s respiration, without paying so much attention
to the exact values. From the comparison between the errors of the two algorithms (our approach
and XeThru), no significant conclusion can be made about which error performance is better, since
averages of all parameters looked really similar.

The error analyses performed by dividing the previously described results into two groups of young
and older patients showed similar error values in our breathing detector algorithm for both popu-
lations. However, the XeThru output signal showed more sensitivity to patients’ age, since a higher
value of errors was observed in younger patients.

Regarding time of breathing recording, our approach clearly outperformed XeThru’s in-built algo-
rithm, showing a significant increase in recording hours in most of our subjects (about 15% in-
crease).

When observing the error analyses of our system, it is important to take into account that no filtering
was done in order to remove the moments of the recordings with interruptions of parents or nurses.
The aim of this was to really mimic the normal hectic conditions of the NICU environment, which
is related to the final goal of the system regarding its applicability to sleep monitoring of premature
patients in hospital conditions.

Three papers were found using UWB radar on a neonate population [20–22]. However, a strict com-
parison of performance of our algorithm with respect to theirs cannot be made due to the the het-
erogeneity of the accuracy analyses, populations under study and time of recording. Huang et al
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[22] also applied frequency windows adapted to patient’s age in the frequency analysis of respira-
tion signals. However, the contribution of the present work is that this is done in an automatic way
when a stable respiration is detected for at least 5 minutes.

8.2. SLEEP MONITORING SYSTEM

After motion and respiration signals were computed from raw radar signals through our breathing
detection system, these were used as input of our sleep monitoring system. This system had two
main tasks: (i) to detect Sleep/Awake events based on movements of patient and (ii) to differentiate
between REM/NREM phases within sleep based on both movements and respiration.

As expected, Sleep/Awake classification tended to overestimate sleep due to the lack of movement
of the patient when falling asleep but not yet sleeping. The system was able to reach an average error
in TST of around 7%, however we must take into account the greater amount of sleep time during
the over-night PSG, giving rise to already low values of error when only "sleep" events are scored
during the whole night. In this case, it is better to take into account the specificity of the classifica-
tion, which on average was about 63% with quite spread values (STD = 22%). Due to this relatively
low specificity, we can conclude that more in depth refinements need to be made in the sleep/awake
classification. However diagrams of real against estimated sleep/awake transitions in Appendix A
provide a good qualitative study of their similarity in most of the patients. These diagrams also show
the fact that the system tends to score as awake states the periods of time with interruptions of par-
ents/nurses, but not always. Thus, some improvements can be made here regarding the sensitivity
of the radar system to motion artifacts.

With respect to sleep-state classification, several analyses were performed in order to study the in-
fluence of number of features, dimensionality reduction, the classifier used and the training set
population in this specific classification problem.

Most analyses showed and improvement in classification performance when only the feature con-
taining information of respiration variability, V arRR,Nor m , was used as input variable for the classifi-
cation. This provided better results than the analyses where dimensionality reduction was applied,
in which the number of features was reduced from five to two. Regarding which dimensionality
reduction technique to choose between Linear Discriminant Analysis (LDA) and Principal Compo-
nent Analysis (PCA), the latter gave worse results compared to LDA. This might be explained by the
fact that LDA is an unsupervised technique that finds the direction with the highest variance with-
out taking into account the labels of the classes. Despite of getting better results with LDA, these
did not improve compared to not using any dimensionality reduction technique at all. This, and the
fact that V arRR,Nor m alone was enough to have good results in the classification, lead us to the con-
clusion that respiration variability was indeed the best classification feature providing the highest
differentiation between REM and NREM sleep states, and that the inclusion of any other variable
only adds more noise to the classification.

Regarding classification population, there was an increase in performance when classification was
performed on the young population. As expected, this suggests that sleeping patterns within the
young population are more similar to each other. This gets us closer to the idea that performing the
same analyses with a preterm population would have quite similar results, since they share some
major developmental features. On the other hand, the older population had slightly worse classifi-
cation results, which are very likely due to the heterogeneity of the population age, as expected.

When studying the average classification performance, we must take into account that the STD of
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the classification parameters reported in all analyses was quite high, specially in the older popu-
lation. This is due to the fact that classification in two specific patients within the old population
was not possible due to the low respiration variability during REM phase, creating outliers in the
analyses. Nevertheless, these results also provide us with the idea that our radar sensor might be
able to detect these alterations in respiration patterns that may be affected by a specific syndrome.
However we lack more medical information of these two patients in order to truly understand the
reason behind their different sleeping patterns in contrast to the rest of patients.

In general, results of the sleep classification when using the population with all the patients were
quite similar to the ones of the old population. However, patients within the young population had
worse results with classifiers trained on all subjects than on only the young population. This con-
firms the idea that classifiers provide better results when being trained and tested on populations of
patients that are more similar to each other, providing more homogeneity to the sleeping patterns.

This high spread of classification performance parameters, created some difficulty when selecting
the classifier with the best results. However, linear classifiers (SVM and Fisher) outperformed kNN.
Between SVM and Fisher, when a really similar performance was reported, Fisher was prioritized
due to its simplicity and low computational cost. However, when observations had a unique feature
V arRR,Nor m , the computational cost of SVM was not that high. Therefore we concluded that both
classifiers reported really similar performances.

Lastly, it is important to take into account that the sleep classification system is highly influenced
by the fact that three different technicians were classifying the sleep studies. It has previously been
shown in other studies [64] that the alternation between two examinees scoring sleep states changes
the classification accuracy up to 10%, showing that sleep scoring is, to a certain extent, a subjective
process. Therefore the ideal scenario would have been to have one unique technician scoring all
PSG studies. However, the researchers in this present project had no influence on choosing the
technicians working in the hospital performing the sleep scoring.

Another big limitation affecting the results of the sleep classification was the fact that the study
populations were quite heterogeneous with respect to age and diagnosis. Firstly, a higher number
of patients undergoing a PSG would have been ideal in order to be able to perform a proper age
aggregation of patients and detailed sleep classification studies. Unfortunately that was impossible
due to the small amount of total PSG studies scheduled in the hospitals we were collaborating with
along the small duration of this project. On the other hand, the unavailability of healthy patients
performing a PSG is a big issue influencing our sleep classification, since now the system was being
training with a population that does not present 100% "normal" sleeping patterns.

In conclusion, our sleep monitoring system based on UWB radar has provided both sleep/awake
and REM/NREM classifications. Relatively good classification results have been provided so far,
however we faced several limitations regarding patients population age heterogeneity, lack of healthy
patients and lack of a unique scorer. These limitations had a great influence on the overall perfor-
mance results, however the final accuracy of the system reached values as high as 90%, with an av-
erage accuracy around 77%, sensitivity, specificity and precision of REM of around 47-77%, 78-83%
and 60-72%, respectively.

8.3. RECOMMENDATIONS FOR FUTURE WORK

Future work to increase the performance of both respiration detection and sleep classification could
potentially enhance the results presented in the present work as well as its reliability. Here, some of
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these improvements will be listed:

• To investigate the use of techniques to increase the resolution of the frequency analyses from
the radar modules in order to potentially detect HR signal, which could also potentially in-
crease sleep-state classification performance.

• To implement breathing waveform analyses that allow to accurately study the variability of
respiration from raw breathing waveforms instead of only RR signal variability. Breathing
waveform analyses could potentially be used to detect apnea events as well, a frequent con-
dition present in young patients with extremely high medical significance.

• To improve the sleep/awake classification in order to be less sensitive to nurses/parents in-
terruptions and not score these as awake events by default.

• To add healthy patients to the study population and analyze differences in sleep classification
among healthy and non-healthy patients.

• To increase the number of patients’ studies per age in order to achieve a more reliable training
of the classifiers.

• To study the agreement level among technicians scoring PSG studies in order to have a better
idea of the degree of impact they had on the results of the present work.

• To study the effect of adding the previous scored state as a new feature of the sleep-state clas-
sification.

• To analyze the results of joining both classifications together, Sleep/Awake and REM/NREM,
to study the overall performance of the system.



Appendices

85





A
IMAGES SLEEP/AWAKE CLASSIFICATION

87



88 A. IMAGES SLEEP/AWAKE CLASSIFICATION

(a) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 1.

(b) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 2.

(c) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 3.

(d) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 4.

(e) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 5.

(f ) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 6.

(g) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 7.

(h) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 8.
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(a) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 9.

(b) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 10.

(c) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 11.

(d) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 12.

(e) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 13.

(f ) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 14.

(g) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 15.

(h) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 16.
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(a) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 17.

(b) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 18.

(c) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 19.

(d) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 20.

(e) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 21.

(f ) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 22.

(g) % Movement (up), Real Score A/W (center), Est. Score A/W
(down), Subject 23.



B
CLASSIFICATION RESULTS OF BEST

ANALYSES PER POPULATION

Table B.1: Classification Results: Population Y, SVM Classifier, one feature. Total sums of TP/FN/TN/FP are provided.
Positive = REM, Negative = NREM.

Sens. (REM) Spec. (REM) Prec. (REM) Accuracy TP FN TN FP
Subject 1 90.20% 90.35% 80.70% 90.30% 46 5 103 11
Subject 3 55.38% 89.77% 80.00% 75.16% 36 29 79 9
Subject 6 80.33% 95.58% 90.74% 90.23% 49 12 108 5
Subject 8 81.82% 46.81% 41.86% 57.97% 36 8 44 50

Subject 10 69.81% 84.44% 72.55% 79.02% 37 16 76 14
Subject 12 100.00% 38.95% 44.23% 58.87% 46 0 37 58
Subject 21 52.50% 94.67% 84.00% 80.00% 42 38 142 8
Subject 22 95.24% 90.00% 86.96% 92.16% 40 2 54 6
Subject 23 73.24% 77.78% 74.29% 75.66% 52 19 63 18
Avg / sum 77.61% 78.70% 72.81% 77.71% 384 129 706 179

STD 16.58% 21.09% 17.81% 12.68%
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Table B.2: Classification Results: Population O, Fisher Classifier, one feature. Total sums of TP/FN/TN/FP are provided.
Positive = REM, Negative = NREM.

Sens. (REM) Spec. (REM) Prec. (REM) Accuracy TP FN TN FP
Subject 2 0.8125 0.76630435 0.47560976 0.77586207 39 9 141 43
Subject 5 0.71428571 0.89423077 0.73170732 0.84246575 30 12 93 11
Subject 7 0.52777778 0.94736842 0.76 0.84666667 19 17 108 6
Subject 9 0 1 0.75586854 0 52 161 0

Subject 13 0.91044776 0.23333333 0.39869281 0.47593583 61 6 28 92
Subject 14 0.06666667 1 1 0.82716049 2 28 132 0
Subject 15 0.95744681 0.74226804 0.64285714 0.8125 45 2 72 25
Subject 16 0.71428571 0.632 0.17857143 0.64028777 10 4 79 46
Subject 17 0.24137931 0.97972973 0.7 0.85875706 7 22 145 3
Subject 19 0.24 0.94782609 0.5 0.82142857 6 19 109 6
Subject 20 0.08695652 0.99065421 0.66666667 0.83076923 2 21 106 1
Avg / sum 47.92% 83.03% 60.54% 77.16% 221 192 1174 233
STD 33.61% 22.99% 26.81% 10.98%

Table B.3: Classification Results: Population A, Fisher Classifier, one feature. Total sums of TP/FN/TN/FP are provided.
Positive = REM, Negative = NREM.

Sens. (REM) Spec. (REM) Prec. (REM) Accuracy TP FN TN FP
Subject 1 35.29% 95.61% 78.26% 76.97% 18 33 109 5
Subject 2 68.75% 83.70% 52.38% 80.60% 33 15 154 30
Subject 3 76.92% 81.82% 75.76% 79.74% 50 15 72 16
Subject 5 11.90% 100.00% 100.00% 74.66% 5 37 104 0
Subject 6 96.72% 84.96% 77.63% 89.08% 59 2 96 17
Subject 7 33.33% 97.37% 80.00% 82.00% 12 24 111 3
Subject 8 56.82% 67.02% 44.64% 63.77% 25 19 63 31
Subject 9 0.00% 100.00% 75.59% 0 52 161 0

Subject 10 90.57% 67.78% 62.34% 76.22% 48 5 61 29
Subject 12 76.09% 58.95% 47.30% 64.54% 35 11 56 39
Subject 13 94.03% 20.00% 39.62% 46.52% 63 4 24 96
Subject 14 3.33% 100.00% 100.00% 82.10% 1 29 132 0
Subject 15 27.66% 95.88% 76.47% 73.61% 13 34 93 4
Subject 16 64.29% 71.20% 20.00% 70.50% 9 5 89 36
Subject 17 10.34% 98.65% 60.00% 84.18% 3 26 146 2
Subject 19 16.00% 100.00% 100.00% 85.00% 4 21 115 0
Subject 20 8.70% 100.00% 100.00% 83.85% 2 21 107 0
Subject 21 81.25% 88.00% 78.31% 85.65% 65 15 132 18
Subject 22 100.00% 75.00% 73.68% 85.29% 42 0 45 15
Subject 23 88.73% 64.20% 68.48% 75.66% 63 8 52 29
Avg / sum 52.04% 82.51% 70.26% 76.78% 550 376 1922 370

STD 35.71% 20.31% 22.40% 9.85%
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(a) Subject 1. (b) Subject 3.

(c) Subject 6. (d) Subject 8.

(e) Subject 10. (f ) Subject 12.

Figure C.1: Classification Results from SVM classifier, one feature, Population Y (part A)
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(a) Subject 21. (b) Subject 22.

(c) Subject 23.

Figure C.2: Classification Results from SVM classifier, one feature, Population Y (part B)
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(a) Subject 2. (b) Subject 5.

(c) Subject 7. (d) Subject 9.

(e) Subject 13. (f ) Subject 14.

Figure D.1: Classification Results from Fisher classifier, one feature, Population O (part A)
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(a) Subject 15. (b) Subject 16.

(c) Subject 17. (d) Subject 19.

(e) Subject 20.

Figure D.2: Classification Results from Fisher classifier, one feature, Population O (part B)
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100 E. R/N HYPNOGRAMS: POPULATION A, FISHER CLASSIFIER

(a) Subject 1. (b) Subject 2.

(c) Subject 3. (d) Subject 5.

(e) Subject 6. (f ) Subject 7.

Figure E.1: Classification Results from Fisher classifier, one feature, Population A (part A)
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(a) Subject 8. (b) Subject 9.

(c) Subject 10. (d) Subject 12.

(e) Subject 13. (f ) Subject 14.

Figure E.2: Classification Results from Fisher classifier, one feature, Population Ama (part B)
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(a) Subject 15. (b) Subject 16.

(c) Subject 17. (d) Subject 19.

(e) Subject 20. (f ) Subject 21.

(g) Subject 22. (h) Subject 23.

Figure E.3: Classification Results from Fisher classifier, one feature, Population A (part C)
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