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Argumentation of choice of
the studio

I was inspired by the previous Glass Giants theses, which
created a cast glass-specific algorithm for topology
optimization based on methods that have worked well for
other materials, and added checks for manufacturability and
time efficiency of glass. During my masters, I learnt about
using glass as a structural material, and basic computational
methods that can be used for structural design. I want to
challenge myself to learn and implement novel computational
methods (machine learning) to further specify the topological
optimization for structural glass as an extension of the
exploration done in the previous Glass Giants theses.

Those students had pointed out that the method they used
(SIMP) required extensive post processing due to the
grey-scale nature of the results. Additionally, they mentioned
that machine learning might be applicable here and generate
alternative results. They also mentioned other possibilities for
the objective function. They did a volume minimization with a
stress constraint. In literature there are also examples where
the stress is taken as part of the objective function. Given
that glass is very sensitive to peak stresses (in tension), it
might be interesting to explore the results of an optimization
procedure that minimises stress as well as volume, and to
gain insight into how the stress minimization affects the
results compared to only minimising the volume.

I am curious to find out if indeed a different workflow can
significantly decrease the post-processing time and to
implement machine learning for this task. Since stress is a
local quantity, including it in the optimization means that more
computational time is needed to find results. Thus a method
where machine learning takes over the FEA might provide an
advantage when compared to more traditional methods like
SIMP.

Stress-based optimization (i.e. an optimization where the
minimization of stress is present in the objective function) is
notoriously difficult and computationally intensive. This is due
to the local nature of stress (i.e. small local changes have a
large effect on the values of stress in that area), the
singularity problem that affects optimizations that use
pseudo-densities for the FEs (e.g. SIMP) where elements
with low density appear to be greatly overstressed and this is
usually solved by applying a relaxation technique on the
stress (where one re-defines the stress based on the density
of the element), and computational costs of performing the



FEA enough times to achieve a result due to the non-linearity
of stress.

An additional difficulty particular to optimizations with cast
glass are the manufacturing constraints which require the
cross section to be between specific values to ensure that
residual stress stays within the allowable limit after cooling,
that the cooling time is not too long, and that the minimum
gap size (i.e. area of non-material surrounded by area of
material) be large enough to allow for the production of the
mould. The brittle nature of glass means that it performs
better in topologies with rounded corners and transitions
(which are less susceptible to peak stress concentrations
during use).

This project is an attempt at redefining the optimization
process with those challenges in mind. A new definition of
topology is proposed. Using this definition, one can generate
many topologies which fulfil the material manufacturing
constraints: cross section within a defined range, minimum
gap size, continuity, rounded edges and transitions.

Machine learning in the form of a Variational Autoencoder is
trained to become a generative model not only for topologies
(which will actually be defined implicitly from the following),
but for their stress and displacement distributions, alleviating
the computational cost of repeated FEA calculations during
optimization and making use of its ability to encode
information to generate unseen topologies and their stress
fields.

Graduation project

Title of the graduation
project

Glass Giants: Stress-Based Topology Optimization using a
Variational Autoencoder

Glass Giants: using Generative Design for a Stress-Based
Optimization of Structural Cast Glass Topologies.

Generative Glass Giants undergo Stress-Based
Optimization

Less Stress for Glass Giants



Generative Model for Glass Giants’ Stress Field

Goal

Location: Pedestrian bridge in the Great Court of
the British Museum

The posed problem, Create a 2D topology definition that can
be used by a machine learning method to
find an optimal design of a cast glass
massive indoor structure that is
manufacturable and time efficient while
minimising stress.

research questions and Research question:

How can a (two-dimensional finite element
model) stress-based optimization
algorithm be set up for designing massive
cast glass structural elements which are
time and cost efficient?

Sub questions:
1) Case Study

What have the previous explorations of
this Case Study found?
What are the boundary conditions of the
structural element?

2) Glass
Which material properties of glass are
relevant for this project?
What are the manufacturing constraints
of structural glass components?

3) Structural Calculations
How can structural calculations (stress,
displacement) happen efficiently within
an algorithm?
What are the possible dimensions of
each finite element?

4) Optimization
What are the types of structural
optimization?

What is the most suitable combination of
“objective” and “constraints” for this
project? And how do they relate to each
other?



What is stress? How can it be quantified
in the context of structural topology
optimization?
What are the challenges specific to
stress-based optimizations?

How are material distributions usually
defined for optimization?
Is there a material distribution definition
that could be particularly suited to cast
glass elements?

What are the traditional topology
optimization methods found in
literature?
What machine learning algorithms can
be used for topology optimization and
how?
Could machine learning be an alternative
to traditional methods for topology
optimization of structural cast glass?

5) Workflow
How can the ingredients mentioned above
come together in a workflow that outputs
optimised cast glass structures?

6) Reflection
How does the optimised topology perform
structurally and visually?
How well did the algorithm perform?
What are the possible areas for future
research?

design assignment in which these result. The design assignment consists of:
(1) Designing a workflow that

combines material constraints,
topology definition, and
optimization algorithm.

(2) Designing the material
distribution definition and
optimization algorithms.

(3) Using the above to inform the
design of an indoor cast glass
pedestrian bridge.



Process

Method description

The project starts by conducting research in four areas, as well as their intersection. These
areas are:

1) Case Study: Pedestrian Bridge at the British Museum

2) Material: Structural Cast Glass

a) Material properties
b) Manufacturing constraints

3) Structural Calculations: Finite Element Method

4) Optimization: algorithms

a) Types
b) Material distribution method
c) Objectives and constraints
d) Optimization method

i) Traditional methods (e.g. SIMP)
ii) Machine learning

This literature research includes the previous Glass Giants theses, structural glass
applications, FEA methodology, a multitude of papers on structural topology optimization
with different methodologies and/or objectives, as well as information on various kinds of
machine learning algorithms.

From the literature research conducted up to now, the following methods and techniques
are proposed for implementation in this project (these are also representative of the
chapters of the report):

1) Case Study: learn from the experience of the previous thesis by Koniari (2022)
and Schoenmaker (2023) for the Case Study of the pedestrian bridge at the
British Museum. How did they perform the optimization? Which challenges did
they encounter? Define the boundary conditions: support conditions, and loads
applied, as well as the dimensions of the design space.

2) Material: gather information on the material properties of structural glass,
manufacturing possibilities, and the manufacturing constraints associated with
large glass structures. Quantify them as stress and displacement optimization
constraints, plus constraint on element dimensions derived from the
manufacturing process.



3) Structural Calculations: learn how the Finite Element Method (FEM) works, and
how to code it. Use Finite Element Analysis (FEA) to calculate the stress and
deflection throughout the structure for each given topology. It uses a 2D square
mesh, with sides of 1cm, to approximate the continuous structure. This can be
used either to check topologies at each optimization iteration, or to create a set

of topology-stress pairs (given previously generated topologies) for training a
machine learning model.

3) Optimization:

a) Type: topology
b) Material distribution method: data-set of discrete topologies
c) Objectives and constraints: stress + volume, displacement
d) Method: exploration of the latent space of a Variational Autoencoder (VAE)

One of the key aspects in the methodology is creating a suitable workflow where the
different method components come together.

The workflow starts with topology data generation. Followed by the calculation of their
accompanying stress and displacement using the FEM. This data is used to train a VAE
model. This model is used by an optimizer to search for the best results in the latent
space.

Topology data generation will be done in the form of a reliable algorithm that can output
many (i.e. at least 10,000) different topologies that fulfil the manufacturing and time
efficiency requirement for cast glass: the cross section everywhere should fall within a
certain admissible range, structural continuity (no islands or checkerboard patterns),
minimum gap size large enough for mould production, rounded edges and transitions. One
possibility for this algorithm which has been used for some preliminary exploration is
inspired by the level-set method and uses a parametric Gaussian Landscape as the
function to be cut by the plane(s).

The topology data is then assessed by a 2d square grid Finite Element Analysis (FEA) to
output the stresses (tension and compression) and displacement distributions. The FEA
code should be validated by comparing the results with those obtained by commercial
software (ANSYS) for a baseline example before creating the dataset from the topology
generator. The FEA is coded in MATLAB.

The data generated contains three channels (these contain one value per FE of the
topology) : tensile stress, compressive stress, displacement. The data also contains a
single value per topology for the volume ratio. These three channels are used in an
analogy with RGB channels to train a VAE model to encode the information contained in
the data in the latent space through dimensionality reduction, which can later be explored
to predict those three channels for previously unseen topologies. The layers, architecture,
and training of the Machine Learning model will take place in TensorFlow.



The objective function is to minimise a weighted sum of volume ratio and stress. Volume
ratio is translated into area ratio, since this is a 2D optimization space, and is an easily
computable global value (number of FE with material divided by the total number of FEs in
the design space). Stress will be translated into a global variable by using the p-norm. The
maximum tensile and compressive stresses of each element will first be combined by
using the Drucker-Prager Criteria. In other words, the Drucker-Prager criterion combines
tension and compression into one value per element, and then the p-norm combines all
the values from the individual elements into one global value. The maximum displacement
is used as a constraint.

An optimizer is responsible for performing this last step of exploring the latent space of the
trained VAE model and finding the optimised topology based on the objective function.

The results will be evaluated and compared to results obtained by the previous thesis who
worked on this same Case Study: an indoor pedestrian bridge at the British Museum with
different methodologies. It will also be post processed for smooth, curved edges.

The logical organisation and chapters are as follows:

1) Introduction

A brief introduction into the topic.
Chapters 2 and 3 set the stage of the optimization, containing boundary conditions and the
material-specific objectives and constraints to be used.
Chapters 4 and 5 contain research about the algorithms that each perform a specific task
in the process of translating the boundary conditions into an optimised topology.
Chapter 6 Links those algorithms together in a workflow.
Chapter 7 Codes the algorithms.
Chapters 8 and 9 evaluate and refine the results.
Chapter 10 and 11 conclude and reflect on the project.

2) Case Study
3) Glass

The properties of glass as a structural material are outlined, such as its stress limits and
manufacturing constraints.

4) Structural calculations

This chapter contains the steps for calculating stress and displacement given different
topologies.

5) Optimization

This chapter takes a look into types of structural optimization, the relationships between
objectives and constraints, and specific challenges related to stress-based optimization.

a) Type
b) Material distribution method
c) Objectives and constraints:



i) Stress, quantify stress for the optimization process
d) Optimization method

i) Traditional methods (e.g. SIMP)
ii) Machine learning

Different machine learning algorithms are explored, as well as
where they could be useful in the structural topology optimization
process.

6) Workflow

Here the ingredients of the previous chapters come together to form the workflow used for
the design of the case study in this project.

7) Algorithm

This is where the building of the algorithm for the different sections of the project (1)
structural calculation, 2) material distribution method, 3) machine learning, 4) optimization)
takes place.

8) Results
9) Post processing
10) Conclusion
11) Reflection
12) Bibliography
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Reflection

1. What is the relation between your graduation (project) topic, the studio topic (Glass
Giants), your master track (BT), and your master programme (MSc AUBS)?

Starting with the broadest and zooming in:

The master programme (AUBS) is broadly about buildings (their architectural concept,
their relationship to each other and their urban environment, their technical details,
materiality, and structural scheme).

Building technology (BT) focuses on the technical aspect (this mostly means the materials
and structural forms in which they are composed) of buildings in respect to many subjects:
thermal comfort, structural soundness and efficiency, acoustics, and architectural
expression. It also integrates at least some level of computational tool in the process (e.g.
thermal simulation, structural optimization, data analysis).

The studio (Glass Giants) narrows it down to one material: glass, and the challenge of
applying a structural optimization method. It also offers inspiration from the students who
previously researched this area, their results, and their insights into the next steps.

My thesis topic aims to expand on two of the challenges encountered by those who
worked on this before me: (1) that the SIMP optimization method they used gives a result
that requires considerable time and effort in the post-processing phase, and (2) that there
might be interesting results that could be obtained from applying newer methodologies in
the field of machine learning (ML) to this problem.

Now quickly zooming out:

This project attempts to use novel machine learning techniques to structurally optimise an
indoor pedestrian bridge made entirely of glass. The studio (Glass Giants) provides
inspirational previous work on this project, and insightful, experienced mentors. The
knowledge sharpened during the Building Technology courses informs the choice and
evaluation of performance indicators, as well as the methods used in the workflow. The
realm of AUBS contextualises the structural piece within the Built Environment.

2. What is the relevance of your graduation work in the larger social, professional
and scientific framework.

Machine learning (ML) has been exploding in the past decade. This project explores
possibilities on how to employ novel methodologies to solve problems which lie at the
intersection of material and structure. How can material configurations be modelled? Can
machine learning be used to play within that environment to find an optimal design?


