
Delft University of Technology

Luuk Haarman (4931173)

Master thesis

Data-efficient resolution transfer with Continuous
Kernel Convolutional Neural Networks

MSc Computer Science, Data Science & Technology Track

Faculty Electrical Engineering, Mathematics, and Computer Science

Delft, September 11th 2023



Contents
1 Part 1: Introduction 1

2 Part 2: Scientific Article 3

3 Part 3: Supplemental Materials 14

Acknowledgements
I would like to thank my supervisor Robert-Jan Bruintjes and responsible professor Jan van Gemert for their
feedback and guidance throughout the thesis. I would also like to thank fellow student Mark Basting for our
insightful discussions.

1 Part 1: Introduction
This part aims to outline the structure of the thesis and explain the general storyline of the thesis.

Outline thesis
The outline of the thesis is as follows: the first part lays out the structure of the thesis and contains a brief
general overview of the storyline of the thesis. The second part is a scientific article that presents the work
done during the thesis. The third part contains supplemental material that explains the core concepts of deep
learning, convolutional neural networks as well as continuous kernel convolutional neural networks that help
understand part 2.

General storyline thesis
The thesis is about "data-efficient resolution transfer with continuous kernel CNNs". The term resolution
transfer is used to refer to the process of pre-training a deep learning image model on low-resolution images
before fine-tuning on high-resolution images to improve the model’s high-resolution performance. The thesis
contains the results of an investigation into the use of continuous kernel CNNs (Convolutional Neural Networks)
for resolution transfer, and to improve performance when there is not a lot of high-resolution data available.
The term "zero-shot" is used to refer to evaluating the model on high-resolution images without fine-tuning,
"few-shot" refers to evaluating the model after fine-tuning with just a few samples, and "many-shot" refers to
evaluating the model after fine-tuning with many samples.

Conventional CNNs are discrete. Discrete CNNs assign a learnable parameter to each value in the kernel
that is used for convolution. Continuous kernel CNNs (CKCNNs) operate differently from discrete kernel
CNNs. CKCNNs construct kernels by sampling a continuous function that is modelled by a small neural net-
work. The sampling rate can be arbitrarily chosen, and so the kernel size is arbitrary while the amount of model
parameters remains fixed, unlike normal discrete CNNs where the parameter amount depends on the kernel size.

I investigated the use of CKCNNs for resolution transfer. The fact that continuous kernel models can change
their kernel size means that CKCNNs can adapt the kernel size respective to the change in image resolution.
Adapting the kernel size to the change in resolution is called kernel resolution adaptation. A CKCNN can be
trained on one resolution and perform almost as well on a resolution unseen during training. Conventional
CNNs perform significantly worse on resolutions unseen during training. The hypothesis of the thesis is that
kernel resolution adaptation can be used to transfer models to the new high resolution and improve the model
with the limited amount of high-resolution images available in a way conventional CNNs can not.

Existing work has already demonstrated the ability of continuous kernel CNNs (CKCNNs) to perform well
on image resolutions unseen during training and when fine-tuned on the entire dataset. I also investigate the
data-efficiency of CKCNNs by fine-tuning on a limited amount of data. For kernel resolution adaptation to
work well, the frequencies of the continuous functions of the CKCNN kernels need to be constrained to below
the Nyquist Frequency of the kernel to avoid artefacts being introduced when the kernel size is changed. The
Nyquist Frequency of the CKCNN kernel depends on the kernel size of the model.

1



Despite the existing work’s good performance on zero-shot resolution transfer, training the models is slow
and expensive in terms of memory compared to conventional CNNs. The reason for this is because the models
use very large kernels that make convolution costly and do not lower the resolution of the images during the
network inference, while conventional CNN models use small kernels and use down-sampling layers to lower
the resolution of images during the network inference to lower memory costs. Next to this, the method for
constraining the frequencies of the continuous functions in the kernels lacks an anti-aliasing guarantee. Aliasing
occurs when the frequencies of the kernels are too high and significantly affect kernel resolution adaptation
performance. A lack of anti-aliasing guarantee means that kernel resolution adaptation does not always work
well.

In my thesis, I investigated the use of CKCNNs to use their good zero-shot resolution transfer performance
to improve the performance when there is a low amount of high-resolution data available, referred to as few-
shot resolution transfer. Next to this, I aimed to make the models faster and lower computational costs to make
training the models on higher resolutions more comparable to training conventional models. I resolved the
issue of a lack of anti-aliasing guarantee with an alternative parameterization for the continuous function that
constructs the kernels. This parameterization has a fixed frequency range with a maximum frequency that can
be set when the model is created. I also improved the fine-tuning of the models with an additional module that
complements the low-frequency kernels by focusing on high-frequency features. With these changes, I improved
the results of CKCNNs with small kernels and demonstrated that continuous kernel models can be used to
pre-train models on low-resolution images, and achieve better results than conventional CNNs when fine-tuned
with a limited amount of high-resolution data.

2



Data-efficient resolution transfer with
Continuous Kernel Convolutional Neural Networks

Luuk Haarman

TU Delft

Abstract

Convolutional Neural Networks (CNNs) benefit from fine-
grained details in high-resolution images, but these images
are not always easily available as data collection can be
expensive or time-consuming. Transfer learning pre-trains
models on data from a related domain before fine-tuning on
the main domain, and is a common strategy to deal with
limited data. However, transfer learning requires a similar
domain with enough available data to exist, and transfer-
ability varies from task to task. To deal with limited high-
resolution data we propose resolution transfer: using low-
resolution data to improve high-resolution accuracy. For
resolution transfer, we use Continuous kernel CNNs (CK-
CNNs) that can adapt their kernel size to changes in res-
olution and perform well on unseen resolutions. Train-
ing CKCNNs on high-resolution images is currently signif-
icantly slower than CNNs. We lower the inference costs of
CKCNNs to enable training on high-resolution data. We
introduce a CKCNN parameterization that constrains the
frequencies of kernels to avoid distortions when the ker-
nel size is changed, improving resolution transfer accu-
racy. We improve fine-tuning with a High-Frequency Adap-
tation module that complements our constrained kernels.
We demonstrate that CKCNNs with kernel resolution adap-
tation outperform CNNs for resolution transfer tasks with
no fine-tuning or with limited fine-tuning data. We com-
pare to transfer learning, and achieve competitive classi-
fication accuracy with an ImageNet pre-trained ResNet-18.
Our method provides an alternative to transfer learning that
uses low-resolution data to improve classification accuracy
when high-resolution data is limited.

1. Introduction

With the improving performance of deep learning models
comes a demand for high-resolution images in training
Convolutional Neural Networks (CNNs) for tasks that
require the fine-grained details absent in low-resolution

images to attain good performance [4, 6, 27]. However,
acquiring large amounts of high-resolution data for certain
domains can be costly or difficult. These domains could
require specific cameras and sensors or face logistic
challenges such as satellite imagery. Transfer learning, a
common approach to deal with limited data, pre-trains on
data from a related domain and fine-tunes the pre-trained
model on available main task data. Domain adaptation,
a sub-field of transfer learning, focuses specifically on
adapting the model to the target domain. A challenge with
these methods is when a compatible domain with sufficient
data does not exist or when the model can not adapt well
during fine-tuning due to a large domain shift. We propose
resolution transfer to use low-resolution data from the same
domain for pre-training the model before fine-tuning on the
available high-resolution data. We refer to evaluating on
the high-resolution data without fine-tuning as zero-shot
resolution transfer, fine-tuning with limited data as few-shot
resolution transfer, and with many samples as many-shot
resolution transfer.

We propose the use of Continuous Kernel CNNs (CK-
CNNs) for data-efficient resolution transfer. CKCNNs
construct arbitrary-size kernels by discretely sampling an
underlying kernel generator network. Existing CKCNN
works [23, 24] have demonstrated that CKCNNs can adapt
to unseen resolutions with minimal accuracy loss using
kernel resolution adaptation: changing their kernel size
respective to the change in resolution. Training CKCNNs
on high-resolution data is currently significantly slower
than CNNs due to the use of kernels that span the entire
image and the lack of down-sampling layers. We signifi-
cantly speed up the training of CKCNNs on high-resolution
images by using smaller kernels and pooling layers.

Aliasing occurs when a signal’s sampling rate is too
low to properly capture all of its frequency components,
and causes distortions that negatively affect kernel res-
olution adaptation performance. To deal with aliasing,
CKCNNs constrain the frequency content of their ker-

3



Figure 1. Resolution transfer pipeline for CNN (top row) and CKCNN (bottom row). Both models first train on low-resolution images,
resulting in pre-trained kernels. Unlike CNNs, CKCNNs can adapt their kernel size respective to the change in resolution with minimal
accuracy loss and no additional parameters. The adaptation in kernel size improves high-resolution accuracy with no fine-tuning or fine-
tuned with limited data.

nels. Existing methods use regularisation or masking of
high-frequency filters. We observe that the regularisation
of kernels does not guarantee anti-aliasing and propose a
parameterization with guaranteed anti-aliasing. Next to
aliasing, spectral leakage creates unintended frequency
components in kernels. We reduce spectral leakage with
a Hamming window before convolution. We add a High-
Frequency Adaptation module to improve fine-tuning on
high-frequency features found in high-resolution images.
We demonstrate that the addition of our module improves
few-shot and many-shot classification accuracies.

In this paper, we investigate the use of CKCNNs with
kernel resolution adaptation for data-efficient resolution
transfer. We evaluate the resolution transfer performance of
conventional discrete CNNs and CKCNNs, increasing the
amount of fine-tuning data in each stage. We demonstrate
that CKCNNs achieve higher classification accuracies
than CNNs when high-resolution data is limited during
fine-tuning, or not used at all.

In summary, our contributions are:
• We demonstrate that current CKCNNs are signifi-

cantly slower than CNNs. We speed up the training
of CKCNNs on high-resolution images with smaller
kernels and pooling layers.

• We improve kernel resolution adaptation with a kernel
parameterization that provides anti-aliasing guarantees
and the use of a Hamming window to reduce spectral
leakage. We also improve fine-tuning with the use of
an additional High-Frequency Adaptation module.

• We demonstrate that CKCNNs with kernel resolution
adaptation outperform conventional CNNs for zero-
shot, few-shot resolution transfer tasks.

2. Related work
2.1. Transfer Learning

Transfer learning methods use a model pre-trained on data
from a similar or related task to improve performance on the
main task [16, 32]. Transfer learning methods have demon-
strated improved model performance when the main task
has limited data available [30, 35]. A common approach is
to use a model pre-trained on ImageNet [7] and only fine-
tune the last fully connected layer. Transfer learning re-
quires that data from a domain similar to the main task is
available, and if the main task is not similar to a commonly
used dataset such as ImageNet transfer, learning might not
work as well [20, 35]. In contrast to transfer learning, we
propose resolution transfer that uses low-resolution from
the same domain to improve high-resolution performance.

2.2. Domain Adaptation

Domain adaptation [3, 33] is a sub-field of transfer learning
that focuses on adapting a pre-trained model to the main
domain by mapping from the source domain to the target
domain [9, 18, 28] or by finding a shared domain that both
domains can be mapped to [1, 2]. Similar to transfer learn-
ing, domain adaptation methods have been used to address
limited labelled data in the target domain [22, 33]. The ker-
nel resolution adaptation method that we propose could be
seen as a form of domain adaptation, with the domain being
the shift in image resolution.

2.3. Conventional Resolution Transfer

Conventional CNNs lose a sizeable portion of their accu-
racy when evaluated on a different resolution than the res-
olution seen during training (zero-shot resolution transfer)
[23, 24]. Some approaches have been proposed to enable
CNNs to generalise to unseen resolutions, particularly for

4



facial recognition. Some use super-resolution to upsam-
ple low-resolution images to high-resolution [21,34], or fo-
cus on robustness to unseen resolution representations [11].
These methods focus on improving low-resolution accuracy
to achieve good accuracies across resolutions, while our ap-
proach focusses on improving high-resolution accuracy by
integrating low-resolution information when the amount of
high-resolution images is limited.

2.4. Continuous Kernel CNNs

Continuous kernel CNNs (CKCNNs) construct arbitrary-
size kernels by discretely sampling an underlying
continuous function modelled by a kernel generator
network [10, 12, 23–26, 29], while CNNs [19] assign a
weight to each kernel coordinate. CKConv [26] uses
an MLP to generate large convolutional kernels with a
parameter count much lower than conventional CNNs.
FlexConv [24] extends on CKConv and replaces the MLP
with a Multiplicative Filter Network [8] and learns optimal
kernel sizes during training with a learnable Gaussian
Mask. Later work [25] adds depth-wise separable con-
volutions and a different initialization strategy. S4 [12]
and its multi-dimensional follow-up S4ND [23] construct
kernels by State Space Models. CKCNNs commonly use
global kernels that span the entire input signal to improve
classification accuracy while maintaining a low parameter
count. Using global kernels has associated high inference
costs, especially for high-resolution data. Due to high
inference costs on high-resolution data, we move away
from global kernels and use smaller kernels instead.

Previous work has shown that continuous kernels can
be inferred at new resolutions due to their variable kernel
size [26]. This makes CKCNNs naturally suited to deal
with changes in image resolution. FlexConv [24] shows
that aliasing artefacts negatively affect the accuracies of
kernels inferred at new resolutions. Aliasing occurs when
the kernel’s frequency components are too high respective
to the kernel generator’s sampling rate. For anti-aliasing,
FlexConv uses regularisation of kernel generators and
S4ND [23] uses masking. We observe that the regu-
larisation in FlexConv lacks an anti-aliasing guarantee
which becomes a problem for small kernels. Therefore,
we propose an alternative parameterization that removes
the need for the regularisation of CKConv kernels and
guarantees anti-aliasing.

3. Method

In this section, we cover the changes made to CKConv [26]
to lower the inference costs of training CKCNNs on larger
inputs, and improvements made to kernel resolution adap-
tation with small kernels.

3.1. Lowering costs of CKCNNs

We observe that training CKCNNs on high-resolution im-
ages is significantly slower than training CNNs. CKCNNs
have higher inference costs than CNNs by nature due to the
need to generate kernels before convolution. However, we
identify the cause of the currently high inference costs of
CKCNNs as the use of large kernels in combination with the
lack of down-sampling of feature maps. In contrast, conven-
tional CNN models mainly use small kernels and can use
multiple down-sampling layers. Due to the lack of down-
sampling in CKCNNs, feature maps remain at full resolu-
tion during inference. The exclusive use of high-resolution
feature maps results in costly convolutions and high mem-
ory costs. Our approach to lower these costs is simple: we
use smaller kernels and add pooling layers to down-sample
feature maps, making our network architecture more similar
to conventional models. We use 7x7 kernels, which in com-
bination with pooling layers result in a significant speedup
in training time, as we demonstrate in Section 4.3.

3.2. Kernel resolution adaptation

CKCNNs are naturally suited for resolution transfer tasks
due to their ability to adapt to unseen resolutions. Existing
work has shown that continuous kernels can be inferred at
new resolutions [26]:

Knew ≈ rnew(Kold − 1)

rold
+ 1, (1)

where K depicts the kernel size, assuming square kernels
for two-dimensional and higher, and r depicts the image
resolution in pixels. Eq. (1) only holds approximately due
that the kernel size must be an integer in practice, while
inferred kernel size is not always integer if the ratio between
rold and rnew is not integer.

3.3. Guaranteed Anti-Aliasing with Constrained
CKConv (cCKConv)

We propose a new method for constraining the frequen-
cies of CKConv [26] layers to prevent aliasing. Aliasing
occurs for CKCNNs when the sampling rate of the kernel
generator is insufficient to accurately capture all of the ker-
nel’s frequency components. With an insufficient sampling
rate, distortions will occur when the kernel is sampled dur-
ing kernel construction. These distortions cause substantial
accuracy loss for CKCNNs with kernel resolution adapta-
tion. The kernel’s sampling rate is the number of samples
(the kernel size) over the sampling period. For CKConv the
sampling period is fixed to [-1, 1]. The Nyquist Frequency
is the maximum frequency that the kernel can contain with-
out aliasing occurring. FlexConv [24] derives the Nyquist
Frequency fNyq for CKConv [26] kernels as:

fNyq =
k − 1

4
, (2)

5



where k is the kernel size. When the frequency constraint is
met, kernel resolution adaptation can be done with minimal
accuracy loss.

In FlexConv, MAGNet (Multiplicative Anisotropic
Gabor Net) layers are used to construct the kernels for
CKConv and are shown to achieve higher classification
accuracies than MLPs. A MAGNet layer’s output is:

f(x) = exp(−1

2
(γ(x− µ)2)) · sin(Wx+ b). (3)

µ and γ construct a Gaussian window, which is applied to
the output of a sine function and a linear layer with weights
W and bias b to construct the 2D Gabor filter. The max-
imum frequency of a MAGNet layer is composed of the
frequency terms of the Gaussian window fγ and the sine
function fsin:

fMAGNet
max = maxi(f

γ
i + fsin

i ) = (4)

maxi(
min(γX,i, γY,i)

π
+maxj

Wi,j

2π
). (5)

fγ increases linearly with the magnitude of γ, and fsin

increases linearly with the magnitude of W. FlexConv [24]
uses regularisation of the parameters γ and W to steer
the model towards kernels with frequencies below a set
maximum frequency fmax (Eq. (2)) to avoid aliasing.

We observe that regularisation of γ and W introduces
a trade-off between learning kernels with a maximum
frequency and learning optimal kernels. There is no guar-
antee that learned kernels will have a maximum frequency
below the Nyquist Frequency. The lack of an anti-aliasing
guarantee becomes a relevant issue for smaller kernels,
as the Nyquist Frequency decreases and aliasing becomes
more likely. We propose a MAGNet parameterization that
provides an anti-aliasing guarantee and removes the need
for regularisation of kernel weights:

f(x) = exp(−1

2
(πfγ

maxsin(γ)(x− µ)2)) · (6)

sin(2πfsin
maxsin(W)x+ b).

We apply a sine function to γ and W, which is enough to
constrain the frequency content of the MAGNet kernels. fγ

and fsin no longer increase linearly but move periodically
between a set minimum and maximum. We use our parame-
terization to constrain fγ and fsin by setting the amplitude
of the sine functions to πfγ

max and 2πfsin
max. The differences

between MAGNet parameterizations in frequency as the pa-
rameters γ and W increase in magnitude are visualized in
Figure 2. fγ

max and fsin
max can be set manually, and make up

the maximum frequency of the MAGNet layer:

fMAGNet
max = fγ

max + fsin
max (7)

(a) Frequency components of a MAGNet layer

(b) Frequency components of our constrained MAGNet layer

Figure 2. Frequency components of a MAGNet layer and our alter-
native parameterization. The frequency components of a MAGNet
layer grow linearly with the magnitude of the parameters whereas
the frequency components of our alternative parameterization stay
below a set maximum.

The maximum frequency of the MAGNet layer needs to be
divided between the frequency effect of the Gaussian win-
dow and the frequency of the sine function. In our cur-
rent implementation, this divide is initialized to 25% to the
Gaussian window and 75% to the sine function. We base
this initialization on results from preliminary experiments
and the divide is set to be a learnable parameter such that
each MAGNet layer can optimize its split during training.

3.4. Spectral Leakage

Spectral leakage occurs when the frequency content of
a signal spreads to unintended frequencies, which causes
drops in resolution transfer accuracy in a similar way to
aliasing (Sec. 3.3). Previous work [31] has demonstrated
that small kernels in CNNs are susceptible to spectral leak-
age. We find that in zero-shot resolution transfer settings,
smaller CKConv kernels lose more accuracy than larger ker-
nels and link this to spectral leakage. Both S4ND [23] and
FlexConv [24] use large kernels, reducing the risk of spec-
tral leakage. Furthermore, we observe that in FlexConv the
Gaussian mask used to learn the kernel size also inadver-
tently acts as a windowing function that reduces spectral
leakage. Consequently, we apply a Hamming window func-
tion [31] to the kernel before convolution to reduce spectral
leakage and improve resolution transfer for small kernels.

6



Model Accuracy36x36 Zero-Shot Accuracy72x72 Many-Shot Accuracy72x72
CNN 76.67± 0.10 52.24± 0.10 100.0 ± 0.0
CNN + Bilinear Upsampling 76.67± 0.10 53.12± 0.91 100.0 ± 0.0
CKConv 79.64 ± 1.49 62.83± 7.69 100.0 ± 0.0
cCKConv 77.07± 1.18 76.27 ± 0.67 76.30± 0.92
cCKConv + HFA 77.07± 1.18 76.27 ± 0.67 100.0 ± 0.0

Table 1. Accuracies on 2D sine wave classification on low-resolution, zero-shot high-resolution and many-shot fine-tuned high-resolution.
Our constrained CKConv variant (cCKConv) performs best zero-shot but does not learn to classify the high-frequency signals without the
High-Frequency Adaptation module.

3.5. High-Frequency Adaptation

The anti-aliasing constraint causes the kernels to only cap-
ture low-frequency features. Ideally, the model should be
able to capture high-frequency features as well during fine-
tuning to benefit from the introduced high-frequency fea-
tures found in high-resolution images. In a similar fashion
to Low-Rank-Adaptation [15], we add a second kernel gen-
erator module during the fine-tuning stage of our resolution
transfer experiments to learn additional filters so that the
model can adapt to the introduced high-frequency features.
The two generated kernels are summed before convolution.
The second kernel is initialized such that its contribution
is minimal at first to maintain pre-trained accuracy, but the
model can learn to increase the second kernel’s contribution
during fine-tuning.

4. Experiments
We first construct a toy setting in which we evaluate and
compare the zero-shot resolution transfer of a CNN, CK-
Conv with regularisation, and our cCKConv parameteriza-
tion, as well as the effect of the High-Frequency Adapta-
tion (HFA) module during fine-tuning. Next, we evaluate
our changes outlined in Section 3 in a resolution transfer
CIFAR10 [17] setting. Although the low-resolution setting
of CIFAR10 does not fit all our contributions as these fo-
cus on high-resolution data, we use CIFAR10 to compare
to existing work [23, 24]. Lastly, we evaluate in a hybrid
dataset setting that reflects the realistic scenario of limited
high-resolution data and pre-train on low-resolution data to
demonstrate the data-efficiency of kernel resolution adapta-
tion for resolution transfer as well as our changes to lower
inference costs of CKCNNs. Whenever comparing CNN
and CKConv, we use the same architecture and only differ
in kernel type.

4.1. Experiment 1: Resolution transfer and High-
Frequency Adaptation

We create an artificial image classification setting of
several 2D sine waves, grouped by their frequency. A
full description of how we construct our toy experiment

Figure 3. Confusion Matrix of the CNN model trained and eval-
uated on the lower resolution images of the toy experiment. The
model fails to accurately classify the high-frequency classes.

setting can be found in Appendix A. When the image
resolution is lowered, so is the sampling rate, which results
in the loss of high-frequency components. The absence
of high-frequency components in low-resolution images
will make accurately classifying the high-frequency classes
difficult. We compare conventional convolutional kernels
with CKConv kernels in a two-layer convolutional model
and evaluate their accuracy on low-resolution images, the
high-resolution images before fine-tuning (zero-shot), and
after fine-tuning (many-shot). We also include a variant
of CNN where the kernels are up-sampled with bilinear
interpolation before evaluation on the higher resolution
to demonstrate that conventional kernels cannot easily
change in size respective to resolution change and maintain
accuracy, unlike CKCNNs.

Our results in Table 1 demonstrate that no model can
classify the images without error on the low-resolution
images and that all models can achieve zero error on the
high-resolution images except for cCKConv without the

7



Model #Params Accuracy16x16
Accuracy32x32 Epoch time (s)Type Architecture Zero-shot (0) Few-shot (50) Few-shot (250) Many-shot (5000) No pre-training (5000)

Baselines
CNN FlexNet-16 [24] 904K 82.36 ± 0.2 62.43 ± 2.41 72.53± 0.87 78.99± 0.4 89.94 ± 0.13 89.51 ± 0.12 14
FlexConv FlexNet-16 672K 86.66 ± 0.08 84.51 ± 0.96 86.13 ± 0.26 86.59 ± 0.30 88.94± 0.06 91.61 ± 0.14 111
S4ND S4ND-ISO [23] 676K 81.36 ± 0.13 77.97 ± 0.15 80.35 ± 0.80 80.57± 0.39 85.93 ± 0.44 84.56 ± 0.84 110
CKConv FlexNet-16 672K 83.77 ± 0.37 75.89 ± 1.22 82.27± 0.37 83.35± 0.42 85.28 ± 0.28 89.83 ± 0.18 95
CKConv FlexNet-16Pool 672K 82.53 ± 0.26 74.57 ± 2.21 81.54± 0.23 82.48± 0.62 84.74± 0.92 89.14± 0.28 94

Ours
CKConv + Hamming FlexNet-16 672K 85.04 ± 0.34 79.54± 0.62 84.28 ±0.29 84.39± 0.24 86.49± 0.35 90.01 ± 0.17 96
CKConv + Hamming FlexNet-16Pool 672K 83.8± 0.23 80.40± 1.43 83.10± 0.20 83.94± 0.80 86.27± 0.58 89.20± 0.39 94
cCKConv FlexNet-16 672K 82.46 ± 0.59 77.32 ± 2.10 82.2± 0.38 82.75± 0.37 83.61 ± 0.67 88.81 ± 0.05 100
cCKConv FlexNet-16Pool 672K 80.31 ± 0.51 76.47 ± 1.68 80.60± 0.20 79.78± 0.87 82.66 ± 0.4 87.49 ± 0.28 99
cCKConv + Hamming FlexNet-16Pool 672K 82.15 ± 0.08 79.22 ± 1.32 82.08± 0.32 82.10± 0.42 84.3 ± 0.28 87.96 ± 0.21 99
cCKConv + Hamming + HFA FlexNet-16Pool 672K 82.15 ± 0.08 79.22 ± 1.32 82.17± 0.16 82.48± 0.36 87.94± 0.24 87.96 ± 0.21 99

Table 2. Test accuracies on CIFAR10 on 16x16 images, zero-shot, few-shot, many-shot on 32x32 images as well as test accuracies when
trained and evaluated on 32x32 images without pre-training. Epoch time is measured on a NVIDIA A40 during pre-training. All CKCNN
models outperform CNNs on zero-shot and few-shot due to their kernel resolution adaptation.

High-Frequency Adaptation module. The fact that no
model can achieve zero error on the low-resolution images
is expected as the low-resolution images do not contain the
high-frequency components necessary to accurately clas-
sify the high-frequency classes, while the high-resolution
images do. We show the class-specific accuracies of the
CNN model in Figure 3 to demonstrate that the model can
separate the low-frequency classes but fails to distinguish
the high-frequency classes well. In the zero-shot setting,
we demonstrate the following: CNN models lose a sizeable
portion of their accuracy, whereas CKConv can retain
some of their accuracy and cCKConv retains nearly all
of their accuracy. We demonstrate that, unlike CKCNNs,
CNNs cannot simply up-sample their kernels and improve
their zero-shot accuracy. CKConv with regularisation
lacks an anti-aliasing guarantee which explains the worse
zero-shot accuracy compared to cCKConv which does
provide an anti-aliasing guarantee. However, cCKConv
does not improve its accuracy during fine-tuning in the
many-shot setting due to its constrained kernels that can not
capture high-frequency features. With the addition of the
High-Frequency Adaptation module, cCKConv can learn
the high-frequency features and achieve zero error.

4.2. Experiment 2: CIFAR10

We evaluate several CKCNN variants and the conventional
convolutional layer on CIFAR10 [17], as CIFAR10 has
been used as a baseline for resolution transfer in previous
works [23, 24]. We use the FlexNet-16 architecture as
is used in FlexConv [24]. CIFAR10 uses low-resolution
images exclusively and our changes to lower inference
costs and improvements to fine-tuning are not necessarily
as relevant as these are intended for high-resolution images
that contain high-frequency features. Nevertheless, we use
CIFAR10 to compare to existing baselines and demonstrate
that CKCNNs with kernel resolution adaptation, including
existing works, can achieve better zero-shot and few-shot
resolution transfer performance than conventional CNNs.

We include several variants of CKConv [26] with MAGNet
kernels [24] as well as a down-sized variant of S4ND for a
fair comparison. Our configuration of the S4ND model is
given in Appendix C. We evaluate the models on their test
accuracies on the low resolution, as well as the zero-shot,
few-shot, and many-shot accuracies on the high resolution.
For the few-shot setting, we evaluate fine-tuning on a subset
of CIFAR10, in this case 1% (50 samples per class), and
5% (250 samples per class). In the many-shot setting, we
fine-tune on the full high-resolution dataset (5000 samples
per class).

Our results are given in Table 2. All CKCNN models
outperform CNNs significantly when evaluated zero-shot
on the high-resolution data. However, CNNs quickly regain
a large portion of their accuracy when fine-tuned with a
limited amount of data in the few-shot setting. We observe
that FlexConv loses less accuracy compared to CKConv.
We attribute the lower loss of accuracy to the reduction
of spectral leakage due to the use of larger kernels as
well as the Gaussian mask used to learn the kernel size.
We demonstrate that the addition of a Hamming window
function decreases the amount of accuracy lost in zero-shot
resolution transfer and consequently improves few-shot
accuracy as well. The addition of our High-Frequency
Adaptation model improves fine-tuning accuracy, espe-
cially many-shot.

FlexConv performs best on most metrics but has the
highest epoch times together with S4ND due to the use of
global kernels that span the entire image. Out of the models
with 7x7 kernels, those that apply a Hamming window
before convolution perform best on zero-shot and few-shot.
Our constrained variant outperforms the regularised variant
in zero-shot and few-shot, but with a Hamming window to
reduce spectral leakage the performance between CKConv
and cCKConv becomes more similar. The addition of
pooling layers does not provide a notable speedup for

8



Model #Params Accuracy64x64
Accuracy256x256 Epoch time (s)Type Architecture Pre-training Zero-Shot Few-Shot (∼35) Many-Shot (∼700) No Pre-training (∼35) No Pre-training (∼700)

Baselines
CNN FlexNet-16 [24]Pool SATMIX 0.90M 96.36 ± 0.22 59.00 ± 3.54 77.70 ± 2.58 96.07 ± 0.29 66.03 ± 3.02 95.77 ± 0.52 17
FlexConv FlexNet-16 SATMIX 0.67M 96.64± 0.33 76.57 ± 6.94 - - 57.8 ± 2.18 - 146
CKConv FlexNet-16Pool SATMIX 0.67M 97.26 ± 0.09 24.20± 0.59 85.05± 1.40 95.87± 0.20 54.91 ±1.39 95.18± 0.27 40

Ours
cCKConv + Hamming FlexNet-16Pool SATMIX 0.67M 96.69 ± 0.19 68.51 ± 7.02 83.42 ± 1.86 95.38 ± 0.33 59.02 ± 2.80 95.83 ± 0.88 41
cCKConv + Hamming + HFA FlexNet-16Pool SATMIX 0.67M 96.69 ± 0.19 68.51 ± 7.02 86.52 ± 0.15 96.33 ± 0.48 59.02 ± 2.80 95.83 ± 0.88 41

Larger model
CNN FlexNet-28Pool SATMIX 16.42M 97.48 ± 0.17 60.83 ± 0.93 80.96± 0.78 96.41 ± 0.33 64.44 ± 0.19 95.89 ± 0.13 18
cCKConv + Hamming + HFA FlexNet-28Pool SATMIX 11.18M 97.36 ± 0.07 68.65 ± 9.03 89.72 ± 1.04 96.41± 0.32 59.20± 3.35 93.23 ± 0.48 43

ResNet-187x7
CNN ResNet-18 [13]7x7 SATMIX 60.0M 96.11 ± 0.17 60.99 ±1.48 76.55 ± 3.25 96.8 ± 0.11 66.57 ± 2.14 94.76 ± 0.40 18
CNN ResNet-187x7 ImageNet 60.0M - 13.88± 1.99 80.13 ± 3.30 92.36± 0.54 - - -
cCKConv + Hamming + HFA ResNet-187x7 SATMIX 39.32M 96.52± 0.13 63.23± 2.45 79.71± 0.63 94.88± 0.39 57.14± 2.66 93.23± 1.03 29

Table 3. Test accuracies on SATMIX for CNN and CKCNN. Epoch time is measured on a NVIDIA A40 during pre-training. Continuous
kernels consistently outperform the conventional discrete kernels in zero-shot and few-shot due to kernel resolution adaptation. ImageNet
pre-trained ResNet-187x7 performs similarly to CKConv ResNet-187x7 in few-shot resolution transfer, but CKCNNs with other architec-
tures can outperform when pre-trained on low-resolution images.

training CKCNNs in CIFAR10. The lack of significant
speedup makes sense, as CIFAR10 exclusively uses
low-resolution images for which down-sampling does
not remove significant inference costs. The difference in
epoch times between the CNN and CKConv models is
mostly due to the overhead of generating kernels. The
kernel generation overhead depends on kernel size and
becomes less relevant for high-resolution data. However,
the difference in inference times between FlexConv, S4ND
and CNNs will only become larger due to their use of
global kernels, as inference costs of convolution increase
massively with higher-resolution data.

4.3. Experiment 3: SATMIX

4.3.1 Setting: SATMIX

To evaluate resolution transfer in a practical setting with
high-resolution images, we construct a hybrid dataset set-
ting composed of two satellite datasets, which we refer
to as SATMIX. SATMIX is composed of 6 overlapping
classes between EUROSAT [14] and NWPU-RESISC45
[5]. EUROSAT contains 64x64 images and ∼3000 images
per class. NWPU-RESISC45 contains 256x256 images and
∼700 images per class. The datasets have a similar domain
and the transfer between the two datasets should be mostly
in image resolution. We pre-train on SATMIX and fine-tune
on the 6 corresponding classes in NWPU-RESISC45. We
include a comparison between CNNs and CKCNNs with
the FlexNet-16 [24] architecture, a larger FlexNet-28 archi-
tecture, and ResNet-18 [13] with 7x7 kernels including an
ImageNet pre-trained model. For further details on the ex-
periment configuration see Appendix D.

4.3.2 Results

Our results are shown in Table 3. Nearly all models’
low-resolution accuracy is better than their high-resolution
accuracy, which is unexpected as high-resolution images

should contain more fine-grained details that improve
accuracy. We hypothesize that the reason for this is the
larger variety of meters per pixel in NWPU-RESISC45
images. We refer to the meters per pixel in satellite images
as satellite resolution. In EUROSAT, every image has a
fixed satellite resolution of 10m, but NWPU-RESISC45
has satellite resolutions ranging from 0.2m to 30m. Variety
in satellite resolution makes NWPU-RESISC45 more
difficult, which causes a larger gap between low and
high-resolution accuracy. However, as we demonstrate
in our few-shot results, models can quickly adapt to this
variety in satellite resolution and improve their accuracy.

FlexConv [24] is significantly slower than the other
models during pre-training. We were only able to complete
pre-training as fine-tuning on the high-resolution data
was too slow to consider viable. Training FlexConv on
a single batch takes 3 minutes, and extrapolated to the
entire dataset one epoch takes approximately 6 hours. We
consider this too slow to be viable as this is roughly the
time it takes to fully train the other models. In comparison
to FlexConv, other CKCNN models are significantly
faster as a result of smaller kernels and down-sampling
layers. cCKConv models outperform the CNN models in
zero-shot, and few-shot by a considerable margin. Due to
the lack of an anti-aliasing guarantee for kernel resolution
adaptation, the regularised CKConv model has the worst
zero-shot accuracy. CNNs and CKCNNs perform roughly
the same when fine-tuned with a large number of samples
(many-shot). cCKConv benefits from the addition of our
High-Frequency Adaptation module during fine-tuning,
improving both few-shot and many-shot results.

The ImageNet pre-trained ResNet-187x7 performs con-
siderably worse on zero-shot compared to its SATMIX
pre-trained counterparts, but achieves better few-shot
accuracy and worse many-shot accuracy. cCKConv
ResNet-187x7 performs similarly to the ImageNet pre-

9



trained model in few-shot but performs significantly better
in zero-shot and many-shot. However, our other CKCNN
results demonstrate significantly better few-shot results
with smaller models, which suggests that the ResNet-18
models were prone to over-fitting or that other architectures
suit SATMIX better. The suggestion of ResNet-187x7 mod-
els overfitting is further motivated by that the difference
between many-shot and no pre-training is larger for these
models than other models, which suggest that pre-training
reduced overfitting. We argue that resolution transfer
allows for the use of task-specific architectures without
the need to pre-train on large general datasets such as
ImageNet. Our results demonstrate that resolution transfer
methods can significantly outperform transfer learning
methods in zero-shot resolution transfer, and compete in
few-shot and many-shot settings.

Pre-training on SATMIX did not have a significant
effect on the accuracy for most models, as the many-shot
accuracy is similar to simply training on the 6 classes of the
NWPU-RESISC45 dataset. If the model is overfitting such
as suggested for our ResNet-187x7 models, pre-training
with additional low-resolution data improves generali-
sation. With limited high-resolution data, pre-training
significantly improves accuracy, with CKCNNs with kernel
resolution adaptation performing best.

5. Discussion
We propose the use of Continuous Kernel CNNs (CKC-
NNs) with kernel resolution adaptation for data-efficient
resolution transfer. We demonstrate that CKCNNs can
adapt their kernel size respective to resolution change and
achieve better zero-shot resolution transfer accuracy than
conventional discrete CNNs. With smaller convolutional
kernels and introducing pooling layers, we lower the high
inference costs associated with current CKCNN work. We
improve the zero-shot resolution transfer performance of
CKCNNs with the use of an alternative parameterization
that guarantees frequency constraints of kernels and apply
a Hamming window function to reduce spectral leakage.
We improve fine-tuning with the addition of a module to
fine-tune specifically on high-frequency features introduced
by the high-resolution images. We demonstrate that CKC-
NNs can use kernel resolution adaptation to achieve better
few-shot results than conventional CNNs when pre-trained
with low-resolution images.

The use of CKCNNs still has some limitations. CK-
CNNs have higher inference costs than CNNs due to the
kernel generation overhead. Next to computational over-
head, to apply kernel resolution adaptation the resolutions
of all images must be known and if the ratio between low
and high-resolution images is non-integer the kernel cannot

always adapt its size optimally as the kernel size must be
integer. The use of kernels smaller than 7x7 is common
in current CNN models, but extremely small kernels are
still at risk of spectral leakage significantly affecting kernel
resolution adaptation performance. Lastly, the use of kernel
generator networks adds hyperparameters to the already
arduous task of model tuning.

We believe that continuous kernel CNNs could still
be developed further. In our current implementation,
increasing the maximum frequency of a constrained kernel
requires increasing the sample amount, the kernel size,
as the sampling period is fixed. Future work could look
into adapting the sampling period rather than the kernel
size by adjusting the sampling duration to fit the Nyquist
Frequency. Additionally, we believe that the ability to
constrain a CNN’s kernel’s frequency content could have
relevant applications besides kernel resolution adaptation.
Constrained kernels could lead to improvements in model
generalisation and robustness with kernels constrained
to be smooth, or avoid commonly occurring biases that
negatively affect behaviour by constraining the kernel’s
range outside of these biases.

References
[1] Carlos J Becker, Christos M Christoudias, and Pascal Fua.

Non-linear domain adaptation with boosting. In C.J. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Wein-
berger, editors, Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc., 2013. 4

[2] Alessandro Bergamo and Lorenzo Torresani. Exploiting
weakly-labeled web images to improve object classification:
a domain adaptation approach. In J. Lafferty, C. Williams, J.
Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances
in Neural Information Processing Systems, volume 23. Cur-
ran Associates, Inc., 2010. 4

[3] John Blitzer, Ryan McDonald, and Fernando Pereira. Do-
main adaptation with structural correspondence learning. In
Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing, pages 120–128, Sydney,
Australia, July 2006. Association for Computational Lin-
guistics. 4

[4] Dingding Cai, Ke Chen, Yanlin Qian, and Joni-Kristian
Kämäräinen. Convolutional low-resolution fine-grained
classification. CoRR, abs/1703.05393, 2017. 3

[5] Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sens-
ing image scene classification: Benchmark and state of the
art. CoRR, abs/1703.00121, 2017. 9, 13

[6] M. Chevalier, N. Thome, M. Cord, J. Fournier, G. Henaff,
and E. Dusch. Lr-cnn for fine-grained classification with
varying resolution. In 2015 IEEE International Conference
on Image Processing (ICIP), pages 3101–3105, 2015. 3

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image

10



database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 4

[8] Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico
Kolter. Multiplicative filter networks. In International Con-
ference on Learning Representations, 2021. 5

[9] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne
Tuytelaars. Subspace alignment for domain adaptation.
CoRR, abs/1409.5241, 2014. 4

[10] Marc Finzi, Samuel Stanton, Pavel Izmailov, and An-
drew Gordon Wilson. Generalizing convolutional neural net-
works for equivariance to lie groups on arbitrary continuous
data, 2020. 5

[11] Guangwei Gao, Yi Yu, Jian Yang, Guo-Jun Qi, and Meng
Yang. Hierarchical deep cnn feature set-based representation
learning for robust cross-resolution face recognition. IEEE
Transactions on Circuits and Systems for Video Technology,
32(5):2550–2560, May 2022. 5

[12] Albert Gu, Karan Goel, and Christopher Ré. Efficiently mod-
eling long sequences with structured state spaces. CoRR,
abs/2111.00396, 2021. 5

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 9, 13

[14] Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. Eurosat: A novel dataset and deep learn-
ing benchmark for land use and land cover classification. 08
2017. 9, 13

[15] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, and Weizhu Chen. Lora:
Low-rank adaptation of large language models. CoRR,
abs/2106.09685, 2021. 7

[16] Rajdeep Kaur, Rakesh Kumar, and Meenu Gupta. Review on
transfer learning for convolutional neural network. In 2021
3rd International Conference on Advances in Computing,
Communication Control and Networking (ICAC3N), pages
922–926, 2021. 4

[17] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.
7, 8

[18] B. Kulis, K. Saenko, and T. Darrell. What you saw is not
what you get: Domain adaptation using asymmetric kernel
transforms. In Proceedings of the 2011 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR ’11, page
1785–1792, USA, 2011. IEEE Computer Society. 4

[19] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural Compu-
tation, 1(4):541–551, 1989. 5

[20] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I.
Jordan. Deep transfer learning with joint adaptation net-
works. In Doina Precup and Yee Whye Teh, editors, Pro-
ceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning
Research, pages 2208–2217. PMLR, 06–11 Aug 2017. 4

[21] Priyank Makwana, Satish Kumar Singh, and Shiv
Ram Dubey. Resolution invariant face recognition. In
Massimo Tistarelli, Shiv Ram Dubey, Satish Kumar Singh,
and Xiaoyi Jiang, editors, Computer Vision and Machine

Intelligence, pages 733–745, Singapore, 2023. Springer
Nature Singapore. 5

[22] Saeid Motiian, Quinn Jones, Seyed Mehdi Iranmanesh, and
Gianfranco Doretto. Few-shot adversarial domain adapta-
tion. CoRR, abs/1711.02536, 2017. 4

[23] Eric Nguyen, Karan Goel, Albert Gu, Gordon W. Downs,
Preey Shah, Tri Dao, Stephen A. Baccus, and Christopher
Ré. S4nd: Modeling images and videos as multidimensional
signals using state spaces, 2022. 3, 4, 5, 6, 7, 8, 12

[24] David W. Romero, Robert-Jan Bruintjes, Jakub M. Tom-
czak, Erik J. Bekkers, Mark Hoogendoorn, and Jan C. van
Gemert. Flexconv: Continuous kernel convolutions with dif-
ferentiable kernel sizes. CoRR, abs/2110.08059, 2021. 3, 4,
5, 6, 7, 8, 9, 13

[25] David W Romero, David M Knigge, Albert Gu, Erik J
Bekkers, Efstratios Gavves, Jakub M Tomczak, and Mark
Hoogendoorn. Towards a general purpose cnn for long range
dependencies in nd. arXiv preprint arXiv:2206.03398, 2022.
5

[26] David W. Romero, Anna Kuzina, Erik J. Bekkers, Jakub M.
Tomczak, and Mark Hoogendoorn. Ckconv: Continuous ker-
nel convolution for sequential data. CoRR, abs/2102.02611,
2021. 5, 8

[27] Carl F. Sabottke and Bradley M. Spieler. The effect of image
resolution on deep learning in radiography. Radiology: Ar-
tificial Intelligence, 2(1):e190015, 2020. PMID: 33937810.
3

[28] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Dar-
rell. Adapting visual category models to new domains. In
Kostas Daniilidis, Petros Maragos, and Nikos Paragios, edi-
tors, Computer Vision – ECCV 2010, pages 213–226, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg. 4

[29] Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda,
Stefan Chmiela, Alexandre Tkatchenko, and Klaus-Robert
Müller. Schnet: A continuous-filter convolutional neural net-
work for modeling quantum interactions, 2017. 5

[30] Srikanth Tammina. Transfer learning using vgg-16 with deep
convolutional neural network for classifying images. vol-
ume 9, page p9420, 10 2019. 4

[31] Nergis Tomen and Jan van Gemert. Spectral leakage and
rethinking the kernel size in cnns, 2021. 6

[32] L. Torrey and J. Shavlik. Transfer learning. Handbook of
Research on Machine Learning Applications, 01 2009. 4

[33] Mei Wang and Weihong Deng. Deep visual domain adapta-
tion: A survey. Neurocomputing, 312:135–153, 2018. 4

[34] Ling-Yi Xu and Zoran Gajic. Improved network for face
recognition based on feature super resolution method, 2021.
5

[35] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lip-
son. How transferable are features in deep neural networks?
CoRR, abs/1411.1792, 2014. 4

11



Appendices
A. Toy Setting
We create a toy setting of 2D sinewaves to classify by their
frequency. We use Python and matplotlib to create the plots.
The equation of the 2D sine wave is as follows:

f(x, y) = sin(2π·frequency·x+2π·frequency·y). (8)

We have 4 frequency classes (1, 2, 11, 12 Hertz) with am-
plitude 1.0. We increase the number of samples by having
5 different phase shifts, 0%, 20%, 40%, 60%, and 80% of
a full phase. We also increase the number of samples by
changing the colormap used to plot the sine function. The
23 colormaps used are:

viridis, plasma, inferno, magma,
cividis,Greys, Purples, Blues,
Greens, Oranges, Reds,YlOrBr,
YlOrRd, OrRd, PuRd, RdPu,
BuPu,GnBu, PuBu, YlGnBu,
PuBuGn, BuGn, YlGn

The use of 23 colormaps and 5 different phase shifts results
in 115 samples per frequency class.

We use a sampling density of 36 and measure the
sine wave between X and Y values [-1, 1]. This results in
72x72 images. When the resolution is halved the images
will be 36x36 pixels with a sampling density of 18. This
sampling density is enough to accurately represent signals
with a frequency up to 9 Hertz. This means high-frequency
components of the classes belonging to 11 and 12 Hertz are
lost on low-resolution. This explains why the models can-
not perfectly classify the signals on the lower-resolution.
The necessity of the high-frequency components for perfect
classification also explain why the constrained CKConv
model cannot reach zero error without the High-Frequency
Adaptation (HFA) module during fine-tuning.

For the experiment we used a two layer CNN model
which was sufficient to achieve zero error on the high-
resolution images. Only kernel type (CNN, CKCNN) and
fine-tuning (no up-sampling of CNN, bilinear up-sampling,
no HFA, HFA) differ between experiments. Our training
configuration:

learning rate: 0.01
batch size: 64
scheduler: cosine
scheduler warm-up epochs: 3
normalization: Batch Norm
optimizer: Adam
kernel size: 7

epochs: 25
fine-tune epochs: 25

B. CIFAR10
We train for 100 epochs and fine-tune for 50 epochs. When
only trained on the high-resolution images, models were
trained for 100 epochs. Our training configuration:

learning rate: 0.01
batch size: 64
scheduler: cosine
scheduler warm-up epochs: 5
normalization: Batch Norm
optimizer: Adam
kernel size: 7
epochs: 100
fine-tune epochs: 50

Each model except for S4ND used the same network ar-
chitecture, only varying in their kernel type (Conv2d, CK-
Conv), whether pooling layers used, and fine-tuning strat-
egy. FlexConv and S4ND used global kernels rather than
kernel size 7, corresponding to 17 during pre-training and
33 during fine-tuning.

C. S4ND configuration
We compared several configurations with a similar pa-
rameter count to our own models, and selected the
best performing configuration. We ran our S4ND ex-
periments with code from the authors: https://
github.com/HazyResearch/state- spaces/
tree/main/configs/experiment Our configura-
tion lowers the model dimension width, and the number of
channels in the hidden state of the kernel generator com-
pared to the model in the paper [23].

defaults:
- /pipeline: cifar-2d
- /model: s4
- override /model/layer: s4nd
- override /scheduler: cosine_warmup

dataset:
augment: false

loader:
batch_size: 50
img_size: 32
train_resolution: 2
eval_resolutions: [1, 2]

model:
dropout: 0.1
tie_dropout: true
n_layers: 6
d_model: 192

12



Model #Params Accuracy16x16
Accuracy32x32 Epoch time (s)Zero-shot (0) Few-shot (50) Few-shot (250) Many-shot (5000)

cCKConvPool + Hamming + HFAFrozen,F ixedSum 672K 82.15 ± 0.08 79.22 ± 1.32 82.15± 0.18 81.94± 0.29 86.95± 0.33 148
cCKConvPool + Hamming + HFAFrozen,WeighedSum 672K 82.15 ± 0.08 79.22 ± 1.32 81.94 ± 0.44 81.90± 0.20 86.27± 0.16 148
cCKConvPool + Hamming + HFAUnfrozen,F ixedSum 672K 82.15 ± 0.08 79.22 ± 1.32 82.07 ± 0.37 82.30± 0.66 88.44± 0.54 148
cCKConvPool + Hamming + HFAUnfrozen,WeighedSum 672K 82.15 ± 0.08 79.22 ± 1.32 82.17± 0.16 82.48± 0.36 87.94± 0.24 148

Table 4. High-Frequency Adaptation ablations on CIFAR10.

Model #Params Accuracy64x64
Accuracy256x256 Epoch time (s)Zero-Shot Few-Shot (∼35) Many-Shot (∼700)

cCKConvPool + Hamming + HFAFrozen,F ixedSum 0.67M 96.69 ± 0.19 68.51 ± 7.02 85.15 ±1.03 96.09± 0.06 75
cCKConvPool + Hamming + HFAFrozen,WeightedSum 0.67M 96.69 ± 0.19 68.51 ± 7.02 84.02 ± 2.15 95.53 ± 0.64 75
cCKConvPool + Hamming + HFAUnfrozen,F ixedSum 0.67M 96.69 ± 0.19 68.51 ± 7.02 85.29 ± 0.26 96.33 ± 0.27 75
cCKConvPool + Hamming + HFAUnfrozen,WeightedSum 0.67M 96.69 ± 0.19 68.51 ± 7.02 86.52 ± 0.15 96.33 ± 0.48 75

Table 5. High-Frequency Adaptation ablations on SATMIX.

prenorm: true
layer:
init: diag-lin
d_state: 48
bidirectional: true
final_act: glu
n_ssm: 1
dt_min: 0.1
dt_max: 1.0
l_max: [32, 32]
bandlimit: 0.2

optimizer:
lr: 0.01
weight_decay: 0.03

trainer:
max_epochs: 100

scheduler:
num_warmup_steps: 900
num_training_steps: 90000

train:
seed: 2222

D. SATMIX

We construct SATMIX by combining the following classes
from EUROSAT [14] and NWPU-RESISC45 [5]:

SATMIX Class EUROSAT Class(es) NWPU-RESIC45 Class(es)
Agricultural Annual Crop, Permanent Crop Rectangular farmland
Forest Forest Forest
Highway Highway Freeway
Industrial Industrial Industrial Area
Residentual Residentual Dense residentual, sparse residentual
River River River

Table 6. Classes in SATMIX and their corresponding class(es) in
EUROSat and NWPU-RESIS45.

We use a 70/30 split for training/validation. During pre-
training, models were trained for 100 epochs and fine-tuned

for 100 epochs. Our training configuration:

learning rate: 0.01
batch size: 64
fine-tune batch size: 32
scheduler: cosine
scheduler warm-up epochs: 5
normalization: Batch Norm
optimizer: Adam
kernel size: 7
epochs: 100
fine-tune epochs: 100

When comparing models, we use the same architecture and
only differ in kernel type and fine-tuning strategy. We use
the FlexNet-16 architecture from FlexConv [24], and our
larger models use our architecture FlexNet-28 which have
13 blocks rather than 7, 64 hidden channels rather than 24,
and a different block width distribution: [64, 3, 96, 3, 128,
5, 160, 2] rather than: [24, 2, 36, 3, 48, 2]. We also use a
ResNet-18 [13] with 7x7 kernels rather than 3x3 kernels.

E. High-Frequency Adaptation ablations
We perform ablations on our High-Frequency Adaptation
(HFA) module. Our results are in Tab. 4 and Tab. 5. We
compare several variants that differ in whether or not we
freeze the weights of the pre-trained kernels, and to use a
fixed sum or learnable weighted sum. Our results show that
fine-tuning the pre-trained weights as well improves perfor-
mance, and generally weighted sum performs better than
fixed sum.

13



3 Part 3: Supplemental Materials

Deep learning & Convolutional Neural Networks (CNNs)
Deep learning

Deep learning is a branch of machine learning. In general, machine learning tries to teach machines how to
accomplish tasks by providing training them with data. Deep learning uses artificial neural networks (ANNs)
to learn representations of data to perform a specific task such as classification of images. Artificial neural
networks are composed of many small "neuron" units that take an input and apply a function to it before
outputting it to the next layer of the network. Neural networks typically learn, or train, by propagating the
input through their network, and then comparing the output of the network to the input’s paired desired output
label. Using this comparison a loss value is formulated as a result of each of the network’s weights (learnable
parameters) and by a process called back-propagation each weight is updated with as objective to reach a
minimum total loss. Some deep learning task have more or less data available than other tasks as input data
can be hard to require, and labeling can be expensive or require expert knowledge. Deep neural networks
have many layers of neurons and possibly millions of learnable parameters. However, the larger the amount of
parameters in the network, the more data is typically required to train the model and achieve good performance.

Figure 1: A (Fully Connected) Neural Network architecture. The input layer consists of neurons that take in
the input, their output is processed by several hidden layers before the output layer outputs the model output.
Source: https://www.ibm.com/topics/neural-networks

The hypothesis of the thesis is that a specific parameterization of a neural network could be used to use
the weights trained on low-resolution image data and perform better on high-resolution data than the current
conventional method. The reason this parameterization works better is because it can efficiently adapt to the
high-resolution data without fine-tuning, and use this as a better kick-off for fine-tuning.

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a specific type of artificial neural network. CNNs are usually used
for image processing with deep learning. Fully connected networks would require too many parameters as images
contain too many input values. CNNs learn convolutional kernels that act as filters to extract features that it
can pass to fully-connected layers at the last layer of the network. A convolutional kernel is a matrix of weights
(learnable parameters) that acts as sliding window. This way the model can reuse parameters rather than
assign a parameter for each pixel in the image. The sliding window is moved across the two-dimensional image,

14

https://www.ibm.com/topics/neural-networks


Figure 2: An example of convolution given the two-dimensional input and the kernel. The kernel covers a
section of the image (local receptive field) and performs convolution over this area, the result corresponding to
one value in the input. Source: https://anhreynolds.com/blogs/cnn.html

resulting in a two-dimensional feature map. Each value in the kernel is multiplied by the respective value in the
input and the sum of these values corresponds to one value in the feature map. A single convolutional layer can
have many kernels, to account for input-dimensions and the desired output dimensionality. This means each
kernel acts as a filter for a specific feature.

Continuous Kernel Convolutional Neural Networks (CKConv)
Continuous Kernel Convolutional Neural Networks (CKConv, or CKCNNs) are a variant of the conventional
Convolutional Neural Network (CNN). Conventional CNNs assign a learnable parameter (weight) to each value
in the convolutional kernel. Due to this, small kernels are preferred as larger kernels would require too many
learnable parameters, which could affect model learning negatively. Continuous kernel models construct their
kernels differently. The model has a smaller kernel generator neural network, that learns a continuous function
which is discretely sampled. Thus the network learns an underlying function rather than a kernel directly.
The kernel can be constructed by sampling the underlying function, and thus the kernel size does not affect
the amount of weights needed. This can be used to construct CNN models with very large kernels and still
maintain a low amount of learnable parameters. An alternative application of this is that the kernel size is
arbitrary, and can be changed at any time during training the network. In the thesis, this is used to be able
to adapt to changes in image resolution better than conventional CNNs can, and train on low-resolution data
before adapting to high-resolution data.

15

https://anhreynolds.com/blogs/cnn.html

	Part 1: Introduction
	Part 2: Scientific Article
	Part 3: Supplemental Materials

