
BLOCKCHAINS BLOCKCHAINS
AND SECURITY:AND SECURITY:

Grammar-Based Evolutionary Fuzzing Grammar-Based Evolutionary Fuzzing
for JSON-RPC APIsfor JSON-RPC APIs

andand

the Division of Responsibilitiesthe Division of Responsibilities

LISETTE VELDKAMPLISETTE VELDKAMP

Blockchains and Security
Grammar-Based Evolutionary Fuzzing for JSON-RPC APIs

and
the Division of Responsibilities

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in Computer Science

and

MASTER OF SCIENCE
in Communication Design for Innovation

by

L.S. Veldkamp
born in Enschede, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of
Technology
Delft, the Netherlands

Communication Design for Innovation Group
Department of Science Education

& Communication
Faculty AS, Delft University of Technology

Delft, the Netherlands

© 2022 L.S. Veldkamp

Blockchains and Security
Grammar-Based Evolutionary Fuzzing for JSON-RPC APIs

and
the Division of Responsibilities

Abstract

The continual increase in cyber crime revolving blockchain applications calls for
secure blockchain systems and clarity on the division of security responsibilities. This
research is an integrated project between two master programmes at the Delft Uni-
versity of Technology: Computer Science and Communication Design for Innovation,
and focuses on software testing and security responsibilities.

In this study, we investigate if grammar-based fuzzing, a popular approach for
identifying bugs in software, is effective on JSON-RPC systems like blockchain ap-
plications Ripple and Ethereum. Furthermore, we evaluate whether we can improve
upon traditional grammar-based fuzzing by using evolutionary search. We introduce
GEFRA, a black-box grammar-based fuzzing tool that generates tests for JSON-RPC
APIs. Using a diversity-based fitness function that leverages system feedback, GEFRA
is able to effectively guide the search process towards new test cases that obtain addi-
tional test coverage.

Additionally, various perspectives on blockchain security responsibilities are in-
vestigated. A media content analysis was performed and interviews were conducted
with legal and blockchain experts. News media frequently frame end users as respon-
sible for the prevention of blockchain attacks. While attackers are legally responsible,
users are left to deal with the consequences if attackers cannot be found. Responsi-
bilities generally end up with users as decentralisation is the core idea of blockchain.
Legislation may be the only solution to define a clear division of responsibilities.

Computer Science Thesis Committee:
Chair: Dr.ir. S.E. Verwer, Faculty EEMCS, TU Delft
First supervisor: Dr. A. Panichella, Faculty EEMCS, TU Delft
Second supervisor: Ir. M. Olsthoorn, Faculty EEMCS, TU Delft
External supervisor: Dr. É. Kalmár, Faculty AS, TU Delft
Committee member: Prof.ir. P. Bosman, Faculty EEMCS, TU Delft

Communication Design for Innovation Committee:
First supervisor: Dr. É. Kalmár, Faculty AS, TU Delft
Second supervisor: Drs. C. Wehrmann, Faculty AS, TU Delft
External supervisor: Dr. A. Panichella, Faculty EEMCS, TU Delft

ii

Preface
With these 215 pages, I submit my final report to this university. I can now say that this
research project has been the greatest challenge of my studies. With the beginning of my
thesis during the COVID-19 lockdowns, and having no idea what research topic I wanted to
investigate, I was off to a rocky start. Focusing on two different researches simultaneously
proved to be more difficult than expected, and while I did not plan to spend two years on
my master’s thesis, I am happy with everything I have learned and proud to finally present
this work. There are several people that helped me get here that I would like to thank.

First of all, I want to thank all my supervisors. I want to thank Annibale Panichella
and Mitchell Olsthoorn, who were always enthusiastic and up for a casual talk. Thank you
for giving me the freedom to try out my own ideas, while also making sure I was headed
toward promising directions. Next, I want to thank Éva Kalmár, who was always very
understanding and eager to help me whenever I was stuck. Thank you for your patience and
regularly checking up on me. Your support and creative ideas for my research were very
welcome. My gratitude also goes out to Caroline Wehrmann. Although we did not meet
often, I knew that I could come to you if I ever needed help. Your critical yet constructive
reflections were highly appreciated. I would also like to add a special thank you for the
last-minute checking of my colloquium report so I could graduate this study year.

Finally, I want to thank the people close to me. First of all my parents, who have
supported me endlessly. Especially my dad, who never turned me away the numerous times
I asked for help throughout all of my education, and always encouraged me to take the hard
but rewarding path instead of the easy one. Next I want to thank my boyfriend Dimitri, who
silently endured my complaining whenever I had a setback. Thank you for making me feel
better in those moments and for never doubting I could finish this research project, even
when I did. Lastly, I would like to thank my sisters and friends, who provided me with
essential distractions throughout this long, yet (mostly) fun process.

L.S. Veldkamp
Delft, the Netherlands

August 16, 2022

iii

Contents

Preface iii

Contents v

I General Introduction 3

1 General Introduction 5
1.1 The blockchain technology . 5
1.2 Importance of blockchain security . 6
1.3 Research aims . 8
1.4 Thesis outline . 8

II Computer Science 11

2 Introduction 13
2.1 Problem description . 13
2.2 Research aim and questions . 15
2.3 Contributions . 16
2.4 Outline . 17

3 Background 19
3.1 APIs . 19
3.2 API testing . 22
3.3 Search algorithms . 24
3.4 Fuzzing . 25

4 Related Work 29
4.1 Black-box fuzzing for web APIs . 29
4.2 Evolutionary fuzzing . 35
4.3 Research gap . 36

5 Approach 37
5.1 Building a fuzzing tool . 37
5.2 Grammar construction . 38

v

CONTENTS

5.3 System server setup . 40
5.4 Test case generation and execution . 40
5.5 Heuristic . 41
5.6 Mutation engine . 48

6 Implementation 51
6.1 GEFRA architecture . 51
6.2 Grammar-based (mutational) fuzzing . 53
6.3 Grammar-based evolutionary fuzzing . 55
6.4 Tool usage . 64

7 Empirical evaluation 69
7.1 Performance metrics . 69
7.2 Benchmark APIs . 70
7.3 Experimental protocol . 70
7.4 Configuration . 71
7.5 Threats to validity and reproducability . 72

8 Results 73
8.1 Evolutionary fuzzing performance . 73
8.2 Suitability of fitness functions . 81

9 Discussion 85
9.1 Grammar-based Evolutionary Fuzzer for RPC-APIs 85
9.2 Limitations . 86

10 Conclusions 89
10.1 Research sub questions . 89
10.2 Research main question . 90
10.3 Recommendations for future work . 91

III Communication Design for Innovation 93

11 Introduction 95
11.1 Problem description . 95
11.2 Research aim and questions . 97
11.3 Contributions . 98
11.4 Outline . 99

12 Background 101
12.1 Cyber security . 101

vi

Contents

12.2 Blockchain attacks . 102

13 Methodology 107
13.1 Literature study . 107
13.2 Content analysis . 108
13.3 Interviews with legal professionals . 112
13.4 Interviews with blockchain researchers . 113
13.5 Methods outline . 114

14 Theoretical framework 115
14.1 Frames . 115
14.2 Theoretical framework . 116

15 Media framing of responsibilities 121
15.1 General observations . 121
15.2 Causal responsibility . 123
15.3 Treatment responsibility . 127
15.4 Discussion . 132

16 Legal responsibility 135
16.1 The legal professionals . 135
16.2 Interview findings . 136
16.3 Discussion . 139

17 Developers’ influences on user responsibilities 143
17.1 The blockchain professionals . 143
17.2 Interview findings . 144
17.3 Discussion . 147

18 Conclusion 149
18.1 Research sub questions . 149
18.2 Research main question . 151

19 Discussion 153
19.1 Contributions and relevance . 153
19.2 Research limitations . 155
19.3 Reliability, validity and ethics . 156
19.4 Recommendations for future work . 157

Bibliography 159

A Standard configuration of parameters 173

vii

CONTENTS

B Coding protocol 175

C Additional figures content analysis 183

D Legal professionals interview protocol and summaries 187
D.1 Interview protocol . 187
D.2 Legal professionals interview summaries 190

E Blockchain professionals interview protocol and summaries 201
E.1 Interview protocol . 201
E.2 Blockchain researchers interview summaries 201

viii

Acronyms
API Application Programming Interface.

AUC Area Under the Curve.

CIA Confidentiality, Integrity and Availability.

CRUD Create, Read, Update and Delete.

EA Evolutionary Algorithm.

GA Genetic Algorithm.

GB-EVO Grammar-Based Evolutionary.

GB-MUT Grammar-Based Mutational.

GEFRA Grammar-based Evolutionary Fuzzer for RPC-APIs (the developed tool).

HTTP Hypertext Transfer Protocol.

IQR Interquartile range.

JSON JavaScript Object Notation.

OAS OpenAPI Specification.

OPSEC Operational Security.

P2P Peer-to-Peer.

PoS Proof-of-State.

POW Proof of Work.

REST Representational State Transfer.

RPC Remote Procedure Call.

SUT System Under Test.

URI Uniform Resource Identifier.

1

PART I

General Introduction

1
General Introduction

Following the success of the cryptocurrency Bitcoin, which was officially introduced in
2009, blockchain technology quickly gained popularity. Bitcoin was the first electronic
payment system based on a decentralised peer-to-peer network, without the need for me-
diation by a third party (such as a bank). Since then, blockchain technology has been
applied to many fields. Blockchain applications include the exchange of cryptocurrencies
in the financial services sector [64, 80, 102, 120]; secure sharing of medical data in the
healthcare sector [64, 102, 120]; improving the efficiency of claim processing in the insur-
ance sector [64, 80, 102, 120]; royalty checking in the music business [64, 80, 102, 120];
monitoring of processes in the logistics and supply chain sector [64, 80, 102, 120], and is
believed to be able to reshape the way business is done [12]. Overall, blockchain is seen as
a promising technology for information systems and is expected to bring significant benefits
to society [5, 14].

1.1 The blockchain technology

The blockchain is a distributed (shared) ledger that can either be private or public (open to
anyone). It is a way of recording what happened and in what order. The ledger is essentially
a chain of blocks that contain information. Each block contains the hash1 of the block,
the hash of the previous block, and the data to be stored. The kind of data depends on the
blockchain application. For a cryptocurrency for example it can be a transaction: containing
the sender, receiver and number of coins. The hash is comparable to a fingerprint, being a
unique identifier of a block and all of its contents. Upon creation of a new block, the
corresponding hash is calculated. Changing something inside the block will change the
hash. This way, changes to blocks can be easily detected. Because the hash of the previous
block is stored in a new block, a chain of blocks emerges. The first block of the chain is
called the genesis block.

It is possible to tamper with a block (resulting in a new corresponding hash value) when
all hashes of other blocks are recalculated as well (to make a valid chain again). To counter

1A hash is the result of passing some data through a formula, resulting in a string of characters. Hash values
generated by a formula are always the same length, regardless of the length of the input data.

5

1. GENERAL INTRODUCTION

this, blockchain makes use of a Proof of Work (POW) mechanism. POW is a cryptographic
proof in which one party proves to others that a certain amount of computational effort
is spent. POW slows down the creation of new blocks, making it difficult to tamper with
blocks because POW needs to be recalculated for each block as well.

The security of blockchain depends on creative hashing, the POW mechanism, and the
distributed nature of blockchain. Instead of a central entity, a public blockchain uses a peer-
to-peer (P2P) network that anyone can join. Each node that joins retrieves a full copy of the
blockchain. The node uses the copy to verify that everything is still in order. When a new
block is created, it is sent to everyone on the network. Each node verifies the block to make
sure it is not tampered with. The process of validating blockchain transactions is called
mining. If everything checks out, each node adds the block to their copy of the ledger. All
the nodes in the network create consensus: they agree on what blocks are valid and which
are not based on a consensus mechanism. Invalid blocks will be rejected by other nodes in
the network. To tamper with a block requires tampering with all blocks in the chain, redoing
the POW for each block, and taking control of more than 50% of the P2P network. This is
almost impossible to do.

The process of creating a new transaction to add to the blockchain is visualised in Fig-
ure 1.1 [111]. Blockchain technology allows mutually distrusting users to complete data
exchanges or transactions without the need of any third-party trusted authority [69]. This
means it is not required to trust in a third party such as a banking company. In fact, there is
no central authority. Transactions can be requested using a private key, which is unique for
every user and unknown to others, similar to a password.

A transaction is effectively an exchange of data, which can be conducted using a smart
contract. Smart contracts are simple programs stored on the blockchain, used to automat-
ically execute actions (for example exchange coins or medical records) based on certain
conditions. A smart contract is similar to a traditional agreement between two parties but it
does not require the involvement of a third party [100].

Once a new transaction is created and is written to a block, the nodes in the network
decide through a consensus mechanism whether the newly mined block is valid, and if so,
they subsequently update their ledger copies to append the block.
The history of any digital asset on the blockchain is transparent and it cannot be modified
or deleted. In essence, blockchain technology offers a solution for increased trust, security,
transparency, and the traceability of data.

1.2 Importance of blockchain security

While there are many blockchain applications, cryptocurrencies are especially popular. The
number of people owning cryptocurrencies worldwide has been estimated to be over 300
million in 2021 [116] and 60% of blockchain uses was found to be in the financial sec-

6

1.2. Importance of blockchain security

Figure 1.1: Transaction in a blockchain system (IP Specialist, 2022)

tor [14]. The direct link of cryptocurrency applications to money makes them an attractive
target for criminals. Additionally, the fact that transactions are pseudonymous2 makes it
easy for criminals to get away with committing crimes. Numerous attacks have been suc-
cessfully performed on blockchain applications. In the first nine months of 2019, losses
resulting from digital currency crime were estimated to be 4.4 billion3 dollars (around 3.6
billion euros) [26].

Attacks are possible due to vulnerabilities in and related to blockchain applications. With
the continual increase in cyber crime revolving blockchain applications, it it crucial that
blockchain applications are securely implemented. This means blockchain applications
must be thoroughly tested to discover and patch vulnerabilities.

Furthermore, blockchain applications are often open-source and decentralised: instead
of a central authority that is responsible for safe-keeping the data, everyone is in charge
of the data. This raises the question of who is (deemed) responsible when an attack does
happen, and how this is influenced by the blockchain design.

These two aspects of blockchain security, software testing and security responsibilities,
are the main subjects of this research.

2Pseudonymity is the near-anonymous state in which someone has a consistent identifier that is not their
real name.

31 billion = 1,000,000,000

7

1. GENERAL INTRODUCTION

1.3 Research aims

The first aspect of this research revolves around the development side of blockchain ap-
plications. Users and applications interact with the blockchain using an application pro-
gramming interface (API), which makes the API a critical part of the blockchain software.
Development of automated testing techniques such as fuzzing, contribute to maintaining
secure blockchain applications. The following research aim is proposed:

RA1: The aim of this research is to gain insight into the effectiveness of grammar-based
fuzzing strategies for JSON-RPC APIs.

The topic of grammar-based JSON-RPC fuzzing and the research approach are more elab-
orately introduced in Part II of this thesis.

The second aspect is the division of responsibilities when it comes to preventing attacks
related to blockchain applications. Without a central authority, who is seen as, and who
actually is, responsible for protecting the users of blockchain applications? How does the
blockchain design influence this? The aim of this research is as follows:

RA2: The aim of this research is to gain insight into whom is held responsible for cyber
security of blockchain applications and to evaluate how developers can influence the

division of responsibilities.

The topic and research approach are more elaborately introduced in Part III of this thesis.

Developers are expected to deliver securely designed (and thoroughly tested) blockchain
applications, but the responsibility for secure (use of) blockchain applications does not end
with deployment and is not only on developers. The combination of the two aspects in
this research serves as a step towards more secure blockchain applications and it provides
insights into what responsibilities are expected to be carried by users and how developer’s
decisions regarding the blockchain design can influence this.

1.4 Thesis outline

This master thesis is an integrated project between two master tracks at the Delft University
of Technology: Computer Science and Communication Design for Innovation. The thesis
is split into three parts. Part I is a general introduction to both research projects.

Next, Part II consists of the Computer Science side of the project. This part focuses on
the development of an automated testing tool for JSON-RPC APIs, the standard inter-
face for blockchain applications like Bitcoin and Ethereum [59], to spot vulnerabilities
before releasing new features. By implementing and evaluating grammar-based fuzzing

8

1.4. Thesis outline

techniques that generate JSON-RPC test cases, the effectiveness of grammar-based fuzzing
for blockchain systems is evaluated.

Afterwards, Part III consists of the Communication Design for Innovation side of the project.
In this part blockchain user responsibilities are focused on. A content analysis was per-
formed to investigate media framing of blockchain security responsibilities. Furthermore,
experts were interviewed to gain insight into how such responsibilities are divided and what
impact developers’ decisions have on this division of responsibilities.

9

PART II

Computer Science

2
Introduction

Weaknesses in blockchain applications occur at the point where users interact with the
blockchain [3]. Users and applications can interact with a blockchain through an Appli-
cation Programming Interface (API). APIs enable software systems to make their function-
ality programmatically available to other programs or end-users [52]. An API takes requests
from a user and tells a system what the user wants it to do, after which it returns the system’s
response to the request.

An API with security vulnerabilities can have a large impact on the applications that are
making use of it [74]. Testing is thus crucial to ensure that APIs are behaving as intended.
Part II of this thesis focuses on automated testing for APIs in JSON-RPC format.

In this chapter, in Section 2.1 the problem description that was briefly introduced in
Chapter I is elaborated on. Afterwards, Section 2.2 presents the main research question
and sub-questions. Next, Section 2.3 describes the contributions of this research. Finally,
Section 2.4 describes the structure of the Computer Science research part of the thesis.

2.1 Problem description

In Chapter I it was stated that with the continuous increase in cybercrime revolving around
blockchain applications, it it crucial that blockchain applications are thoroughly tested to
discover and patch vulnerabilities. APIs are however growing in size. Bitcoin for example
has 139 unique API operations [17]. To accomplish one task, generally a sequence of
different API operations (requests) is required. API back ends usually function like state
machines and requests are thus not used in isolation. This makes it necessary to not only
test for individual requests, but also for sequences of them. This means that the number
of required test cases increases exponentially with the size and complexity of APIs [52].
With APIs growing larger and larger, it has become impossible for developers to test APIs
manually.

Fuzzing is a popular technique used to automatically find bugs and vulnerabilities in
software systems [50] and is currently the most effective approach to efficiently discover
vulnerabilities [68]. Fuzzing involves the generation of test cases that are fed into a target
program to induce a crash. The simplest form of fuzzing is random fuzzing, where ran-

13

2. INTRODUCTION

domly generated inputs are fed to the target program (the program to be tested) in search
of faults [90]. The source code of the program is not used to generate input, making it a
black-box fuzzing approach. A technique to improve upon random fuzzing is to format
input using a template (i.e. grammar-based fuzzing) [90]. In white-box fuzzing, the source
code is instrumented to gather information on for example the program paths exercised by
the inputs.

Figure 2.1 depicts an overview of the workings of a grammar-based fuzzer. Based on
a prespecified grammar, the fuzzer generates well-formed input data. This input data is
subsequently fed to the target program, which provides feedback on how the input was
handled. The usage of feedback from the target system can guide the fuzzer in its process to
generate useful test cases. The newest type of smart fuzzers are evolutionary fuzzers [96].
Evolutionary fuzzers evaluate what each input causes the program to do and change how
they proceed based on that evaluation. During the past years, evolutionary testing research
has reported encouraging results for automated black-box testing [123].

Figure 2.1: Flowchart of a grammar-based fuzzer

In 2010, almost half of web APIs were Remote Procedure Call (RPC) APIs and JSON
was one of the main output formats [71]. Today, most distributed applications built use
RPC [127]. This includes many blockchain applications like Bitcoin, Ethereum and Rip-
ple, that use RPC encoded in JSON to connect to the blockchain. RPC is a simple and
well-understood protocol for APIs that allows data to be exchanged between clients and
servers. RPC-based APIs work well for performing actions (commands). In contrast to
RESTful APIs, RPC-style APIs do not use HTTP methods (corresponding to Create, Read,
Update, and Delete operations) directly to access resources. Instead, RPC defines its own
operations that wrap the resource information and invokes these through one of the HTTP
methods [71].

RPC APIs are usually components of a micro-services architecture, according to which
each component should be small and assigned just one (or very few) responsibilities [52].
This results several small and simple distinct components, which are generally deployed
in different containers that can be dynamically allocated and deallocated across different

14

2.2. Research aim and questions

hosts. This complex architecture makes it difficult to automatically test using white-box ap-
proaches. In cases like this, a black-box approach is more suitable since it is able to access
the API through an interface, and does not need to cope with complex internal details of
how (distributed) components are deployed and run.

Furthermore, white-box approaches require access to source code. The source code
of RPC API systems is not always available, for example due to commercial third-party
libraries that are part of the implementation.

Another limitation of white-box heuristics is that they need to be re-implemented for
every programming language, whereas black-box heuristics are independent from the pro-
gramming language used to implement the API.

To the best of our knowledge, there are no open-source fuzzing frameworks available that
can be used for (black-box) system-level testing for JSON-RPC APIs. Furthermore, the
effectiveness of grammar-based fuzzing techniques on JSON-RPC APIs specifically has
not been evaluated. This research aims to evaluate grammar-based fuzzing techniques for
JSON-RPC APIs, specifically evolutionary fuzzing.

2.2 Research aim and questions

The research aim as was presented in Chapter I is repeated before stating the research ques-
tion.

RA1: The aim of this research is to gain insight into the effectiveness of grammar-based
fuzzing techniques for JSON-RPC APIs.

We define the effectiveness of tests as their ability to discover faults in the tested system.
This is statistically correlated to structural coverage [60]. Structural coverage (or code
coverage) is the extent to which the source code of a program is executed when a particular
collection of test cases is run. A higher structural coverage indicates a larger possibility of
discovery of faults [138]. The research aim is therefore reframed into the research question
as follows:

How effective is grammar-based JSON-RPC fuzzing to achieve structural coverage?

The main question is divided into two sub-questions. The first step of this research is to
develop a black-box tool that automatically generates system-level test cases for JSON-RPC
APIs using a grammar (i.e. a template for input). With this tool, a simple grammar-based
fuzzing approach and an evolutionary fuzzing approach can be evaluated.

15

2. INTRODUCTION

We aim to evaluate whether we can improve upon grammar-based fuzzing by combining
it with an evolutionary algorithm that makes use of program feedback in order to construct
promising input for test cases. This leads to the following sub-question:

1. How effective is evolutionary fuzzing with regards to structural coverage in
comparison to grammar-based fuzzing for JSON-RPC APIs?

The use of program feedback helps guide the search for good test cases. The evolutionary
algorithm evaluates how well a test case is based on the received program feedback on that
test. This is done using a fitness function. The design of the fitness function is a crucial part
of the evolutionary fuzzing approach. We want to evaluate how different fitness functions
compare to each other with respect to the performance of the evolutionary fuzzer. This
translates into the second research sub question:

2. How do different fitness functions for the evolutionary fuzzing approach compare
with regards to structural coverage?

The answers to these questions provide insight into how effective grammar-based fuzzing is
for JSON-RPC APIs and whether the addition of an evolutionary algorithm (with a suitable
fitness function) can aid grammar-based fuzzing approaches in successfully testing JSON-
RPC APIs.

2.3 Contributions

In this study, two approaches are evaluated to find faults and achieve code coverage in soft-
ware systems that implement a JSON-RPC API: a simple grammar-based fuzzing approach
and an evolutionary fuzzing approach. This research project includes the following contri-
butions in the context of automated testing of JSON-RPC APIs:

• An open-source and grammar-based framework for automated black-box test
case generation and execution for JSON-RPC APIs, which can be easily extended
to include additional heuristics and can be used on any target system supporting a
JSON-RPC API, given an OpenRPC specification.

• A comparison of grammar-based fuzzing and evolutionary fuzzing on two com-
mercial and widely used APIs, showing the potential of both techniques to achieve
structural coverage.

• A replication package of the study, which is publicly available on GitHub, enabling
others to replicate the results from this study.

16

2.4. Outline

2.4 Outline

Part II of the thesis consists of Chapters 2 to 10. In the current chapter, Chapter 2, the re-
search topic is introduced and the research questions are presented. In Chapter 3, the reader
is provided with background information on JSON-RPC APIs and (evolutionary) fuzzing.
Related work on automated API testing is reviewed in Chapter 4. Chapter 5 introduces the
approach that was used to answer the research questions.

Chapter 6 goes into detail on the final implementation of the tool. The way in which
the tool’s performance is empirically evaluated is explained in Chapter 7. The results of
the experiments and the corresponding analysis are presented in Chapter 8. Afterwards,
the research is discussed in Chapter 9. Finally, in Chapter 10, the research question and
accessory sub-questions are answered, and some suggestions for future work are given.

17

3
Background

The purpose of this research is to evaluate the effectiveness of evolutionary fuzzing for
JSON-RPC APIs. In order to perform this evaluation, we design a black-box tool that
adopts a grammar-based and evolutionary fuzzing approach to generate test cases for JSON-
RPC APIs. In this chapter an introductory background to (RPC) APIs, API testing, search
algorithms, and (evolutionary) fuzzing is provided.

3.1 APIs

In Chapter 1 it was explained how blockchain systems work and an overview of a blockchain
system was presented in Figure 1.1. This overview did however not specify where the
transaction that starts the chain of actions in the blockchain system comes from. To request
a transaction, contact should be made with the blockchain system. This is generally done
through a web Application Program Interface (API). To complete the overview, an extra
part was added to the visualisation of the blockchain system to include the API, resulting in
Figure 3.1.

The API acts as an intermediary between two systems. System A communicates with
System B through the API. It does so by sending a request to the API, and waiting for a
response from the API. In our case, System B is a blockchain system, and System A could
for example be a blockchain wallet application that is requesting to transfer cryptocurrency
to another account on behalf of a user, or it could be a user directly communicating with the
API. Requests are not limited to transactions. Several functionalities of blockchain systems
can be accessed through requests. More examples are asking for information about the
blockchain ledger, previous transactions, or the current balance of an account.

Without communicating to the blockchain system, applications cannot access informa-
tion and make transactions with the blockchain ledger. APIs allow other services to integrate
the functionalities of the blockchain system from within their applications or websites.

19

3. BACKGROUND

Figure 3.1: The role of APIs in blockchain systems.

3.1.1 HTTP messages

Communication between an API and the server of a system happens through Hyper Text
Transfer Protocol (HTTP) messages. An example of an HTTP request and response mes-
sage is shown in Figure 3.2 [44]. In this example, the request message asks to retrieve a text
file called hi-there and the server responds with a message containing the contents of the
requested file in the body. An HTTP message can either be a request or response message
and consists of a start line, zero or more header fields, and an optional body.

The start line indicates the HTTP method for the request message or what happened in
the form of a status code for the response message. HTTP defines methods to indicate the
action to be performed on a resource. These methods map loosely to the resource related
operations of Create (POST), Retrieve (GET), Update (POST/PUT) and Delete (DELETE).
The common HTTP methods and their corresponding actions are listed in Table 3.1 [76].

20

3.1. APIs

Figure 3.2: An HTTP request and response message.

Type GET (read) POST (create) POST (action) PUT (create) PUT (update) DELETE

Action
Retrieve
resource
instance

Create new
resource
instance

Trigger action
Create resource
instance at the
given path

Update resource
instance at
a given path

Delete
resource
instance

Table 3.1: Resource related HTTP methods.

The server always returns a HTTP status code, which provides information about what
happened with the request after it reached the server. The status code indicates whether
the request was received, successfully handled, redirected or whether there was a client or
server error. There are five main categories of status codes. The different classes of status
codes are listed in Table 3.2.

Class Meaning Description

1XX Informational The request was received, continuing process.
2XX Success The request was successfully received, understood, and accepted.
3XX Redirection Further action needs to be taken in order to complete the request.
4XX Client error The request contains bad syntax or cannot be fulfilled.
5XX Server error The server failed to fulfill an apparently valid request.

Table 3.2: The classes of HTTP status codes.

The header of an HTTP message allows the client or the server to pass additional in-
formation about the request or response and the body of the message. In the example in
Figure 3.2, one of the header fields given in the response message is the length (number of
characters) of the body of the message. The body of an HTTP message contains (any type
of) data. In the example given in Figure 3.2 the body contains the data from the file that was
requested.

3.1.2 REST and RPC APIs

There are differences in how various types of web APIs work with HTTP requests. The
most used architectural styles for web APIs are Representational State Transfer (REST)

21

3. BACKGROUND

and Remote Procedure Call (RPC) [110]. To illustrate the difference between the two API
types, the same request for both REST and RPC APIs is presented in Listing 3.1 and 3.2
respectively. Nowadays the most popular format used for messages from and to web APIs
is JSON [78], which is a format readable by both humans and machines.

POST /users/100/ messages HTTP/1.1

Content -Type: application/json

{"message": "Hello!"}

Listing 3.1: REST request in JSON

In a request to a REST API, the start line of the request specifies an HTTP method and
a target resource to apply the method on. REST APIs support Create, Read, Update and
Delete (CRUD) operations to manipulate data. These translate to the POST, GET, PUT and
DELETE HTTP methods. The target resource is identified by a Uniform Resource Identifier
(URI), which is essentially a path to a resource. In this example, the request aims to say
hello to a user with id 100 by adding a message to the user’s messages.

While resource oriented APIs like REST APIs expose internal data through a simple
document-processing interface that is always the same (using URIs), RPC APIs exposes
internal functionalities through a programming-language-like interface that is different for
every service [94]. RPC is the most straightforward form of an API which allows commu-
nication with a server in order to remotely execute code. It is essentially a function call, but
between two different systems.

In the request to an RPC API, instead of an URI, a function named SendUserMessage is
specified. The parameters used by this function are defined in the body of the request. RPC
APIs define their own functions to access resources and invoke these through POST and
GET operations [71], with GET being used to retrieve information and POST being used
for everything else.

POST /SendUserMessage HTTP/1.1

Content -Type: application/json

{"userId": 100, "message": "Hello!"}

Listing 3.2: JSON-RPC request

Because blockchain systems maintain immutable records, they have no need for the
CRUD operations that resource oriented APIs provide, making the generic RPC API a more
suitable option. Most blockchain systems use RPC APIs to interact with users [137].

3.2 API testing

API testing is a necessity to ensure functionality, reliability and security of the applications
that are communicating with the API. Manual API testing is time consuming and error

22

3.2. API testing

prone [108]. Especially for large organisations and time-bounded projects this may prove
to be infeasible. Automated API testing is fast, minimises errors, and does not need the
physical presence of a tester. With automated API testing, important test cases for an API
are automatically generated. Test cases for APIs are (sequences of) requests. Tests are
generally related to one of the following categories [108]:

1. Input validation
The API should be tested using different input parameters and the response should
be verified to ensure that the HTTP status code and contents of the response message
are fully correct for each set of input parameters. Invalid input parameters should for
example result in a 400 HTTP status code.

2. JSON format validation
It should be verified that the JSON response message of the API is correctly struc-
tured.

3. Business Logic
The API should perform the task that it is supposed to do correctly. Data sent by the
API as a response to a request should be correct and up-to-date.

4. Negative test cases
The API should be able to handle incorrect or invalid parameters, missing or extra
values and null values for mandatory fields. Furthermore, large amounts of payload
data, special and non-ASCII characters, long strings and integers, and incorrect data
types for parameters in requests should not result in unexpected behaviour from the
API.

5. Reliability tests
It should be tested whether the API can consistently return correct responses.

6. Call sequencing checks
When a request has resulted into the modification of data, the firing of an event or a
call to another API, requests that follow afterwards should function correctly, taking
what previously happened into account.

7. Security testing
Unauthorized users should not be able to access and use sensitive code and associated
features.

HTTP requests and responses are created by the systems that make use of an API to
communicate with each other. The testing categories above are aimed at how the receiv-
ing system handles requests. By sending requests and evaluating the response from the
receiving system, defects in the code of the receiving system can be found.

23

3. BACKGROUND

3.3 Search algorithms

To find (combinations of) HTTP requests that make good test cases, the solution space
should be searched for solutions that trigger new regions of the system’s code. For most
systems, it is infeasible to perform an exhaustive search on input domains since they are of-
ten large and multi-dimensional. In cases like this, a heuristic can be used to efficiently find
solutions. A heuristic function can determine how good a given solution is. This ”good-
ness” is typically called the fitness of an individual, and is estimated by the heuristic that is
the fitness function. Because heuristics essentially estimate what good solutions are, there
is no guarantee that optimal solutions are found.

One of the earliest search techniques and the simplest local search algorithm is Hill Climb-
ing [22]. Hill climbing starts with an arbitrary solution to a problem and then climbs the
solution space in search for a fitter solution. It does so by repeatedly selecting the local move
(one of the neighbour solutions) that leads to the largest improvement of fitness [107]. When
no local move can further improve the solution, the search is terminated and a local optimum
is reached. While hill climbing is very efficient, it only works well when the neighbourhood
is well defined and not too large [134]. Hill climbing is always vulnerable to landing on a
local maximum rather than a global maximum. Additionally, it requires fitness functions to
be continuous and injective (changing output for any change in the input) [124].

A more advanced version of hill climbing is Stochastic Hill Climbing, which allows for
global search. Where hill climbing considers only direct neighbours of solutions, stochastic
hill climbing mutates the candidate solution and compares the fitness of the mutated solu-
tion to the original solution. It then continues the search with the solution that obtained
the highest fitness. In theory, every solution in the solution space can be reached through
repeated mutation (hence the global search). Mutations can however not be too large. If a
solution is mutated in such a way that it is completely replaced, it would result in random
search. Instead, most of an individual’s features should be maintained.
Another name for stochastic hill climbing is the (1+1) Evolutionary Algorithm (EA) [20,
33]. EAs are loosely based on biological systems. They maintain a population of indi-
viduals that undergo mutation. Individuals with low fitness are gradually eliminated from
the population, while high fitness individuals persist. A population emerges of individuals
with increasingly higher fitness values. Stochastic hill climbing is a special variant of EAs
where the population consists of a single individual that produces one new mutation each
generation.

The best known form of EAs is the Genetic Algorithm (GA) [134]. A GA encodes
problem solutions as a chromosome, which is a sequence of genes. Each gene encodes a
trait of the individual. In the context of this research, a trait may be the HTTP method of the
request. Through crossover and mutation new individuals emerge in the population, which
are evaluated using the fitness function. Similar to stochastic hill climbing, every solution

24

3.4. Fuzzing

in the solution space can be reached through repeated mutation [77].

3.4 Fuzzing

Fuzzing is an automated software testing technique that generates test cases by providing
invalid, unexpected or random data as input to a computer program [15]. Fuzzing can
expose potential attacker entry points such as access violations, unhandled exceptions or
buffer/ integer overflows. Essentially, fuzzing is based on the idea of feeding (random) data
to a program to induce a crash. Fuzzers can make use of search algorithms to guide the
search for test cases. Fuzzers can be classified in various ways. Categories relevant for this
research are explained in the following sections.

3.4.1 Smart and dumb fuzzing

Traditional fuzzing relies on randomness. It blindly changes existing input values, without
an understanding of the structure of the input data, hence the name ”dumb” fuzzing. Dumb
fuzzing uses either random inputs or random mutations of valid inputs, and due to this may
miss security violations that rely on unique corner-case scenarios [15].

Smart fuzzing on the other hand uses ”smart” input generation for fuzzing based on
domain-specific knowledge of the target program. While it takes effort up front to under-
stand the program design and testing speed is slower, smart fuzzing can provide a greater
coverage of security attack entry points compared to random fuzzing as it is likely to ful-
fil the programs’ data structure requirements. State-of-the-art fuzzers generally employ a
smart fuzzing strategy [68].

3.4.2 Mutation-based, grammar-based and evolutionary fuzzing

A naive fuzzer generates completely random input and feeds it to a targeted program.
There are three types of fuzzing techniques that improve upon a naive fuzzer, namely
mutation-based fuzzing, grammar-based (also called generation-based) fuzzing and evo-
lutionary fuzzing [96]:

• Mutation-based fuzzing generates new variants of input data based on existing input
data samples. It blindly mutates existing data samples to create new input. Mutation-
based fuzzers are not aware of the expected input format, and as a result they can-
not select mutations in a smart way. A mutation-based fuzzer is an example of
a dumb fuzzer. Grammar-based fuzzing and evolutionary fuzzing are examples of
smart fuzzing.

• Grammar-based fuzzing use a model of the input data to generate input data from
scratch. For a grammar-based fuzzer, knowledge of program input is required as

25

3. BACKGROUND

test cases are generated based on the expected input format. While grammar-based
fuzzing requires a priori knowledge and is thus difficult to start compared to mutation-
based fuzzing, it is able to pass the validation of programs more easily and is more
likely to test deeper code of target programs and achieve greater coverage [68].

• Evolutionary fuzzing is the newest type of fuzzing. It builds on mutation-based
fuzzing by selecting some inputs over others to mutate, using an evolutionary (search)
algorithm. Evolutionary fuzzers generally mutate an input sample or select two or
more input samples and perform crossover, combining components of the selected
inputs to create a new test case. Evolutionary fuzzers evaluate for each input the
behaviour of the program and change how they proceed based on that evaluation.
In practice, inputs are ranked using a fitness function (often code coverage) and the
fittest inputs are selected to be mutated [96]. Evolutionary fuzzers, unlike mutation-
and grammar-based fuzzers, require feedback about how well test cases performed.

Grammar-based fuzzing can explore all possible specified inputs, which is a finite number
of inputs corresponding to the specification. In contrast, mutation-based and evolutionary
fuzzing can in theory generate an infinite number of inputs, as they can deviate from input
specifications.

3.4.3 White-, grey-, and black-box fuzzing

Fuzzers can be classified as white-, grey- or black-box with respect the dependence on
program source code and the degree of program analysis [34, 68]. Mutation- and grammar-
based fuzzers are forms of black-box fuzzing [19].

Black-box fuzzers have no knowledge about the internals of the target program (and
do not require access to source code). They apply random input generation.

White-box fuzzers use information obtained from analysis of the source code and pro-
gram instrumentation to generate inputs for test cases. They require access to the source
code of the target program. Program instrumentation enables the receiving of informative
messages about the execution of an application at run time. For example, instructions in the
program may be for logging information to appear on screen.

Grey-box fuzzers work without source code and collect feedback on the generated
inputs solely through program analysis. This information is used to guide the mutation pro-
cess. Grey-box fuzzing reduces the overhead significantly compared to white-box fuzzing [34].
Black-box and grey-box fuzzers typically have a hard time generating valid inputs due to
the lack of program knowledge [68]. Using a grammar solves this issue.

3.4.4 Directed and coverage-based fuzzing

To explore the target program, fuzzers employ the strategy of directed fuzzing or coverage-
based fuzzing. Directed fuzzing aims to generate test cases that cover specific target code

26

3.4. Fuzzing

of the program. Coverage-based fuzzing aims to generate test cases that cover as much
code of the program as possible. Code coverage indicates the number of code paths covered
during testing. Coverage-based fuzzers are expected to test more thoroughly and to detect
more bugs [68].

27

4
Related Work

In this work we focus on grammar-based evolutionary fuzzing for JSON-RPC APIs. Chap-
ter 3 established a background on web APIs, search algorithms, and fuzzing. In this chapter,
previous work on black-box fuzzing and evolutionary fuzzing is reviewed to establish what
has already been done and to define the research gap that this study should fill.

4.1 Black-box fuzzing for web APIs

As described in Section 3.1.2, and are the most used architectural web API styles. Al-
though to the best of our knowledge, (evolutionary) grammar-based fuzzing for JSON-RPC
APIs specifically has been largely unresearched, various fuzzing techniques have been em-
ployed and analysed for RESTful APIs. Currently seen as state-of-the-art RESTful API
fuzzing tools are RESTler, RestTestGen, RESTest, bBOXRT and EvoMaster [30, 136]. All
are grammar-based fuzzers. This section discusses the core elements of grammar-based
fuzzing for the various fuzzing tools: the grammar, valid test case generation, mutation for
invalid test case creation, and lastly, target system feedback.

4.1.1 Grammar

All of the above mentioned research tools require a specification of the interface to interact
with the API. This specification forms the grammar for the fuzzers. The general description
format for RESTful APIs is OpenAPI Specification (OAS). The OAS defines a standard
interface to RESTful APIs which allows both humans and computers to understand the
capabilities of a service without access to source code or documentation, or through network
traffic inspection [113]. The OAS includes a list of available operations and the format of
the corresponding data of requests and responses. The OAS itself is a JSON object.

Listing 4.1 illustrates an example of the specification of an API operation named get-
PetsById [113]. The method getPetsById requires just one parameter: an array of strings,
containing the ids of the Pet objects that the user wants to retrieve. The response from the
server to a valid HTTP request is an array of Pet objects.

29

4. RELATED WORK

{

"get": {

"operationId": "getPetsById",

"description": "Returns pets based on ID",

"responses": {

"200": {

"description": "pet response",

"content": {

"*/*": {

"schema": {

"type": "array",

"items": {

{

"type": "object",

"properties": {

"name": {

"type": "string"

},

"petType": {

"type": "string"

}

},

"required": [

"name",

"petType"

]

}

}

}

}

}

}

}

},

"parameters": [{

"name": "id",

"in": "path",

"description": "ID of pet to use",

"required": true ,

"schema": {

"type": "array",

"items": {

"type": "string"

}

}

}]

}

Listing 4.1: The OpenAPI Specification for the getPetsById operation

30

4.1. Black-box fuzzing for web APIs

Based on the specification that specifies how input should be structured, syntactically valid
HTTP requests can be created and sent to the server. Furthermore, it is possible to compare
the response from the server with the specified response format to see if they match.

POST /users/100/ messages HTTP/1.1

Content -Type: application/json

{"id": 2}

Listing 4.2: REST request in JSON

4.1.2 Valid request generation

The grammar provides the fuzzer with knowledge on how to construct valid requests but
there are different ways to generate requests and corresponding values. RESTler [11] aims
to achieve full-grammar coverage, using search techniques like RandomWalk or Breadth-
First Search to cover all (dependent) sequences of requests. It makes use of a predefined
dictionary to replace parameter values in the grammar (e.g. 0 and 1 for integer values,
”sampleString” and an empty string for string values, and ”true” and ”false” for boolean
values).

To create meaningful request sequences, RESTler makes use of producer-consumer de-
pendencies among requests. By doing this, the order of execution of requests can be deter-
mined. If a variable is produced by request A (as seen in the response values in the OAS),
and this variable is required as input for request B, request A should be executed before
request B.

Similarly, RESTTESTGEN [119] constructs an Operation Dependency Graph to model
data dependencies among operations. The graph is updated with values when test cases are
generated to dynamically decide when a new operation can be tested (when the required in-
put data is known). Input values are selected by reusing observed data stored in a response
dictionary or by generating a new parameter value based on the specification schema (de-
fault and example values, specified enumeration values or random input generation).

RESTest [74] can only generate test cases containing one operation. It uses custom test
data generators to generate input data. These test data generators automatically generate re-
alistic data by (1) extracting values from knowledge bases like DBpedia, (2) reusing values
observed in previous API responses; or (3) leveraging manually-defined domain-specific
generators (e.g., strings conforming to a regular expression) or data dictionaries.

RESTest assigns random values (or non-random values if a test data generator is config-
ured for each parameter) to each parameter for the API operation under test. Furthermore, it
evenly distributes test cases within the input space to cover more API functionality. Lastly,
RESTest addresses the negligence of constraints among input parameters (inter-parameter

31

4. RELATED WORK

dependencies). It does so by relying on constraint programming solvers to support inter-
parameter dependencies (i.e. parameters in a request that depend on each other). To enable
this, RESTest integrates IDLReasoner, a library for the automated management of inter-
parameter dependencies in RESTful APIs. Inter-parameter dependencies must be defined
as a part of the OAS.

bBOXRT [63] is a simple rule-based fuzzer. When generating input, it follows the OAS
to construct valid test cases, while also applying rules to inject faults in such valid requests.
Rules that were found to be effective are for example replacing values with an empty value,
replacing values with null, appending an SQL injection attack to the original input, and in-
serting random characters at random positions.

Whereas the other tools implement only a black-box approach, EvoMaster [9] has a
black-box as well as a white box approach. Both generate random valid inputs according to
the grammar defined by the OAS. Using an evolutionary approach, EvoMaster views each
test case (which consists of a sequence of one or more HTTP calls) as an individual, which
is part of a generation of individuals.

4.1.3 Invalid request creation

To create invalid test cases, valid requests are mutated. Nominal test cases test the API
under valid inputs (those conforming to the API specification). Faulty test cases investigate
how the API handles invalid inputs, i.e., they expect a client error as a response.

The state-of-the-art research tools all start by generating valid inputs. They then con-
tinue by mutating the valid inputs in such a way that faulty test cases emerge. Such error
execution scenarios use input data that violate the interface constraints in order to expose
defects and unhandled exceptions. RESTler does not generate any intentional invalid test
cases. RESTTESTGEN, bBOXRT, RESTest and EvoMaster do.

RESTTESTGEN [119] uses three simple types of mutation operators to change test
cases: removing required parameters, using wrong parameter input types and violating pa-
rameter constraints (e.g. exceeding the limit of a parameter value).

bBOXRT [63] follows various predefined rules to inject a single fault in each request. A
few rules that were found to be successful in triggering erroneous behaviour are: replacing
parameters with empty values, null or random character strings of an equal length; append-
ing an SQL injection attack or random characters to the original input and inserting random
characters at random positions.

32

4.1. Black-box fuzzing for web APIs

RESTest [74] produces invalid test cases by among other techniques violating inter-
parameter dependencies, mutating parameter values, removing parameters, adding parame-
ters, and mutating the JSON format.

Throughout the search for good test cases, the white-box approach of EvoMaster [9]
mutates previously generated test cases either by modifying their structure (i.e., adding or
removing HTTP calls) or the data (i.e. parameters) of one specific HTTP request. The
black-box approach does not do this and only generates valid requests according to the
OAS.

4.1.4 System feedback

All research tools except for bBOXRT analyse to some extent the responses observed during
prior test executions in order to select useful tests and generate additional test cases.

RESTler [11] uses the responses to learn whether certain request sequences result into
a refused by the service. If so, this combination will be avoided in the future (invalid se-
quences are eliminated). The authors found that this dynamic feedback decreases the num-
ber of 4xx response codes and increases coverage.

Likewise, RESTTESTGEN [119] analyses the status codes returned by the system to
assess if a test case was successfully created. Test cases with status codes 2xx and 5xx are
omitted since these represent nominal test cases (2xx) and test cases that reveal implemen-
tation faults (5xx). On top of that, RESTTESTGEN compares the actual response (observed
at execution time) to the intended response syntax (as documented in the OAS) to expose a
potential mismatch between the two.

RESTest [74] works in a similar way but focuses only on exposing erroneous behaviour.
It evaluates test cases by analysing the status codes. A test case is found to expose erroneous
behaviour: if the status code is 5xx (server error), if the status code is 2xx while the request
violates the specification of individual parameters, if the status code is 2xx while the re-
quest violates one or more inter-parameter dependencies, or if the status code is 4xx while
the request conforms to the OAS.

The black-box approach of EvoMaster [9] creates targets that should be covered based
on the expected input and output from the OAS. The set targets aims to maximise HTTP
status coverage so that an endpoint (API operation) is exercised in different ways: a success
call (status code 2xx), a server failure (status code 5xx), or user error (status code 4xx).
Like RESTTESTGEN and RESTest, EvoMaster also checks if the responses of the system
conform to the OAS.

33

4. RELATED WORK

The white-box technique of EvoMaster evolves test cases with an evolutionary algo-
rithm to maximise the effectiveness of the final test suite. The fitness function is based
on various objectives: status code coverage, line coverage, branch coverage, and detected
faults. The test coverage metrics can be used due to instrumentation of the system under
test.

4.1.5 Overview

Testing a RESTful API at the system level involves generating HTTP requests and asserting
their responses. A test case comprises one or more requests. In RESTest, a test case rep-
resents a single call to an API operation and a set of assertions in the response. The other
tools use multiple requests per individual.

All research tools were evaluated on a variety of RESTful services and managed to find
software defects, mostly indicated by 5xx HTTP status codes or disconformities with the
OAS. Table 4.1 presents an overview of the techniques used for valid request generation,
mutation of test cases, and the feedback of the server that is used in order to find useful test
cases.

Valid request generation Mutation for invalid request creation System feedback

RESTler
Dictionary

Request dependencies
N.A.

Status codes (prune
invalid sequences)

RESTTESTGEN

Response dictionary
Domain-specific generator

Request dependencies

Missing required parameters
Wrong parameter input types
Parameter constraint violations

Status codes
Response validation

RESTest

Knowledge bases
Response dictionary
Domain-specific generator/dictionary

Inter-parameter dependencies

Removing or adding parameters
Mutation of parameter values
Mutation of JSON format
Inter-parameter constraint violations

Status codes
Response validation

bBOXRT Domain-specific generator
Various rules to inject faults
(e.g. inserting null values
or SQL attacks)

N.A.

EvoMaster
(black-box)

Domain-specific generator N.A.
Status codes
Response validation

Table 4.1: Overview of techniques used by state-of-the-art RESTful API fuzzing tools

Other studies adopt similar techniques. Ed-Douibi et al. [35] propose an approach fo-
cused on generation of test cases for REST APIs to ensure that APIs meet the requirements
as defined in their specifications. Input for method parameters is generated in one of three
ways: (1) simple parameter value inference, where examples, default values and enumer-
ation values are used from the specification; (2) dummy parameter value inference, where
a dummy value is used that respects the expected type; (3) complex parameter value infer-
ence, where the value of the parameter is inferred from the response of an operation. Two

34

4.2. Evolutionary fuzzing

rules are used to test whether APIs match their specification: the nominal test case defini-
tion (request complies with schema, should result in 200 status code) and the faulty test case
definition (following from missing required key, wrong data types or violated constraints,
should result in a 400 status code).

A different tool to validate responses is QuickRest [56]. Like the other tools, QuickRest
automatically produces tests for RESTful APIs from the OAS. The tool can be used as a
property-based test generator and as a source of validation for results. The main idea of
property-based testing is to generate input data and to check if defined properties hold when
exercising the system with that input.

As for the best strategy to generate input data, Godefroid et al. [43] conducted a study
on how to intelligently generate input data embedded in RESTful API requests in order to
find data-processing bugs in cloud services. They observed that static type-value mapping
(i.e. mapping each parameter type to a single value) does not address the lack of client-
specific, domain-specific or run-time dependent information. Furthermore, example values
from the OAS do not help to discover client-specific and run-time dependent information
either, although they do help to discover more error types. The authors conclude that in
order to cover more error types, besides utilising example values, it is beneficial to re-use
values found in responses to previous requests.

4.2 Evolutionary fuzzing

In order to specialise an evolutionary algorithm for a specific problem, one needs to define
a problem-specific objective (fitness) function. The objective function allows for compar-
ison between solutions of the search with respect to the search goal (e.g. finding faults in
software). Using this information, the search is directed into potentially promising areas of
the search space [123].

Evolutionary fuzzers typically make use of code coverage to compute the fitness of a
solution (i.e. the quality of a test case). The white-box approach of EvoMaster [9] defines
the fitness function in terms of code coverage (statement and branch coverage) and fault
detection (5xx status codes).

Another evolutionary fuzzing approach is proposed by Sahin and Akay [97]. The au-
thors created an Artificial Bee Colony (ABC) algorithm for RESTful test suite generation.
Like EvoMaster, the ABC algorithm uses code coverage (statement and branch coverage)
and the number of server errors (5xx status codes) to calculate the fitness of a test suite. In
addition, it tries to minimise the number of test cases (i.e. a smaller test suite should be
preferred over a larger test suite that achieves the same code coverage).

Calculating the fitness of a solution using code coverage is a logical choice since high
coverage results in a larger probability of discovery of faults [138]. However, in a black-
box context code coverage cannot be computed since there is no access to source code. To
still be able to guide the search towards promising areas, a different way to compute the

35

4. RELATED WORK

fitness of a solution is required. The input and feedback retrieved from the system contain
important information that can be analysed to find a similar measure to code coverage. New
inputs and unseen responses from the target system can be a good indicator for the discovery
of new code paths (additional code coverage).

4.3 Research gap

The related work illustrates the effectiveness of grammar-based fuzzing for RESTful APIs
to generate tests. Even a simple rule-based fuzzer was able to perform well and detect
faults. To the best of our knowledge there have not been any studies that measured the
effectiveness of grammar-based fuzzing approaches for JSON-RPC APIs, which are action-
oriented rather than resource-oriented. In addition, while evolutionary algorithms have been
applied for white-box fuzzing approaches, it is not known whether and how evolutionary
algorithms can help guide the search for useful test cases in a black-box fuzzing context
(without access to code coverage).

In this thesis research, we focus on automatically generating test inputs for components
without source code (black-box). We implement and evaluate a novel language-independent
evolutionary grammar-based fuzzing tool for JSON-RPC APIs to detect defects and un-
wanted behaviour.

36

5
Approach

The aim of this research as described in Chapter 2 is to evaluate the effectiveness of evolu-
tionary fuzzing for JSON-RPC APIs compared to grammar-based fuzzing. To answer the
posed research questions, we develop an automated testing tool that generates test cases for
JSON-RPC APIs based on a grammar. The search process for test cases is guided by an
evolutionary algorithm. The heuristic functions designed in this research aim to favour test
cases that are likely to be close to discovering new paths in the target system. This chap-
ter explains the strategy of the tool (and its heuristic functions) to perform grammar-based
evolutionary fuzzing.

A high-level overview of the fuzzing strategy of the tool is presented in Section 5.1.
The remaining part of this chapter, Section 5.2 up to Section 5.6, elaborates on the various
components of the fuzzing tool.

5.1 Building a fuzzing tool

The outline of the fuzzing approach is demonstrated in Figure 5.1. The approach consists
of two stages: the preparation stage and the fuzzing stage.

Figure 5.1: Fuzzing process

In the preparation stage the grammar is constructed and the API server of the System Under
Test (SUT) is set up and prepared for testing. The fuzzing stage consists of test case gener-

37

5. APPROACH

ation and execution, as well as the selected heuristic (fitness function) for the evolutionary
fuzzer, which makes decisions on which of the generated test cases will be evolved. The
mutation engine holds all operators to mutate test cases.

In the first cycle, the fuzzing process starts with the generation of a (specified) number
of test cases based on the grammar. A test case consists out of one or more HTTP requests
to the SUT These test cases are the initial population of individuals. In Section 3.4.2,
the concepts of grammar-based fuzzing and evolutionary fuzzing were explained. In this
research we want to compare evolutionary fuzzing to traditional grammar-based fuzzing.
The tool is therefore able to use both approaches. In the grammar-based fuzzing approach,
individuals are not mutated or selected to continue to the next cycle. Instead, each cycle (or
generation), new individuals are generated based on the grammar.

For the evolutionary fuzzing approach, individuals in the population are mutated, result-
ing in a group of new individuals (the offspring) of the same size as the initial population.
All tests (from the initial and mutated population) are then executed against the JSON.
Based on the response from the SUT, the heuristic makes a selection of test cases to form
the next generation, which will be mutated again. The population size remains the same
during the cycles, meaning only half of all evaluated tests in each cycle are retained.

Until some predefined termination criteria (e.g. a maximum number of iterations/gener-
ations or a time limit) is met, the fuzzing stage is looped through multiple times. This results
into several generations of individuals. The different parts of the approach are discussed in
more detail in the next sections.

5.2 Grammar construction

Black-box fuzzers generally require a grammar for the SUT to generate test cases. This
can be constructed from a provided specification of the API operations. As described in
Chapter 4, state-of-the-art black-box fuzzers for RESTful APIs make use of a standardised
format to describe the APIs: the OpenAPI specification (OAS). This format however is
specific to RESTful APIs.

For JSON-RPC APIs, a similar format has emerged. The OpenRPC Specification de-
fines a standard, programming language-agnostic interface description [82]. OpenRPC
specifications document the operations of JSON-RPC APIs. An example of the OpenRPC
specification of an API operation is presented in Listing 5.1 [40]. The API operation named
get pet by id requires one parameter: a string representing the id of the pet to retrieve. The
response from the server contains an object containing two strings: the name and tag of the
pet, and an integer value: the id of the requested pet.

38

5.2. Grammar construction

{

"name": "get_pet_by_id",

"description": "Returns a user based on a single ID, if the user

does not have access to the pet",

"params": [

{

"name": "id",

"description": "ID of pet to fetch",

"required": true ,

"schema": {

"type": "integer"

}

}

],

"result": {

"name": "pet",

"description": "pet response",

"schema": {

"allOf": [

{

"type": "object",

"required": ["name"],

"properties": {

"name": { "type": "string" },

"tag": { "type": "string" }

}

},

{

"required": ["id"],

"properties": {

"id": { "type": "integer" }

}

}

]

}

}

}

Listing 5.1: The OpenRPC Specification for the get pets by id operation

Essentially, the OpenRPC specification contains the names of all API operations, as
well as their the names and schemas of the corresponding parameters. Additionally, it gives
information on what the response from the API should look like.

The schema of a parameter specifies the type and constraints (e.g. range or enumera-
tion values) of the parameter. Besides the type of each parameter, the minimum and max-
imum value can be specified in the schema for integer types, the length or minlength and
maxlength can be defined for array types, and a regular expression pattern, as well as a list
of predefined enum(eration) values, can be specified for string types. Furthermore, the re-

39

5. APPROACH

quired field allows for specification of which parameters are required. The allOf, oneOf and
anyOf terms allow for indication of whether multiple parameters or schemas are allowed or
even required.

We develop the tool to parse a JSON-RPC specification and construct a grammar from it.
Our fuzzing approach generates API operation calls with inputs that match the signature
of those API operations. The grammar thus serves as a template for valid HTTP requests
(at least from a syntactic point of view). Multiple valid requests per API operation can be
generated stochastically based on all the specified properties.

5.3 System server setup

Apart from the OpenRPC specification, the tool requires the url for the API server to be
able to connect to it. The url is sufficient to establish a connection to the API and through
this connection exchange HTTP requests and responses. This enables the tool to create a
test suite for the SUT.

However, since for research purposes we want to evaluate the performance of the fuzzing
approaches (on the basis of structural coverage), it is necessary to run the SUT locally so
structural coverage can be computed. Additionally, we want to ensure that the server state
(that may have been impacted by a previous test case) is consistent during all tests. To
this end, the SUT is shut down, data files are automatically reset and the server is restarted
before each test case. To enable these things, a test driver needs to be implemented for
the SUT. The test driver prepares the SUT before a test is run. It does so by making use
of a script that (re)starts the SUT and a script that computes the coverage of the SUT. It
should be noted that coverage metrics are only used for evaluation of the performance of
the approaches, and not in any of the (black-box) fuzzing approaches.

The test driver also allows for dynamic allocation of parameter values (e.g. accounts
and corresponding secret keys). Parameter values are retrieved from the server upon start if
specified in the test driver. When these parameters occur in requests, they are replaced by
the retrieved values. The use of existing parameter values in requests can help to penetrate
deeper into the code of the target system (i.e. get past validation barriers).

5.4 Test case generation and execution

It was mentioned previously that test cases are represented by individuals. Following evo-
lutionary terminology, the DNA of an individual consists of chromosomes. In our case, a
chromosome is an HTTP request. Chromosomes contain genes. The genes represent the
variables of the HTTP request, specifically the HTTP method, the API operation, and the
API operation parameters. A gene has a schema and a value. The schema is the part of the
grammar (explained in Section 5.2) that corresponds to the parameter. The value is the input

40

5.5. Heuristic

for that parameter. For the HTTP method (which is independent of the grammar), there is
no schema. A test driver converts the DNA of an individual to a sequence of HTTP requests
that can be sent to the target system.

As seen in Chapter 4, state-of-the-art fuzzing tools for RESTful APIs, mostly use a
domain-specific generator to generate test cases. This means parameter constraints (as
specified in the OpenRPC specification) besides expected type are taken into account when
generating values.

The designed tool initially generates valid test cases using a domain-specific generator.
In the following generations of test cases, the fuzzer either generates new valid test cases
or mutates previously generated test cases to create invalid ones that cover different code
paths of the SUT. Like the state-of-the-art fuzzing tools for RESTful APIs that support mu-
tation, the designed tool mutates test cases by removing, adding or mutating parameters
(e.g. changing the type or value).

After the server is started, test cases can be executed. A test case consists of one or multiple
HTTP requests that are sent to the server. For each test the server state is reset to ensure
reproducibility. The requests included in the test case are sent to the API server and a
response (to the last request in the sequence of the test case) is retrieved. Afterwards, a
heuristic function evaluates the server response.

During test case execution, additional information (e.g. parameter values for existing
accounts) can be used if it was specified before running the tool. This could help to penetrate
deeper into the code of the SUT, passing validation barriers.

5.5 Heuristic

The heuristic (or objective) function plays a large role in directing the evolutionary fuzzer
towards good test cases. As was mentioned earlier in Section 3.3, a genetic algorithm
encodes problem solutions (i.e. test cases) as a chromosome, which is a sequence of genes.
In our case, the chromosome is an API operation, containing a sequence of parameters.

The objective function assigns a numerical value (i.e., the fitness) to an individual,
which in our context represents the potential of the individual (a test case) to find (or be
close to finding) faults in the SUT.

The tool also allows for the use of no heuristic function. In this case, a random selection
of individuals will be mutated. The search is in this case not guided by a fitness function.

A grammar-based fuzzer only generates valid requests based on an API specification. A
grammar-based mutational fuzzer repeatedly mutates a random selection of the popu-
lation of test cases, resulting in potentially faulty test cases. Grammar-based (mutational)
fuzzing may be inefficient at exploring the space of API inputs, which is typically very large
for complex systems like blockchain applications. We want to evaluate whether a smart se-

41

5. APPROACH

lection of test cases to mutate improves the effectiveness and efficiency of the fuzzer. A
(grammar-based) evolutionary fuzzer evolves the population of test cases over several
iterations.

It selects test cases from the previous population to evolve based on an objective func-
tion. These test cases are then mutated and evaluated. The hypothesis is that by being
selective in which test cases to mutate, coverage can be achieved faster. Intuitively, build-
ing upon an input that is known to have progressed towards the objective of the fuzzer (i.e.
structural coverage) improves upon starting with a clean sheet every execution. This leaves
the question on how to identify test cases that have progressed towards structural coverage.

Section 4.2 described how in white-box approaches, code coverage is generally used as
(one of) the objective function(s). By building upon test cases in the population that were
able to uncover new code paths in the SUT, there is a high probability that new branches
(linked to the previously discovered paths) in the code are reached.

Because our fuzzing approach works in a black-box setting, we do not have direct ac-
cess to the code coverage obtained by each test case. Instead, we try to derive whether
(additional) coverage was obtained by a test case. This is done by analysing the information
that we do have access to: the response returned by the API for the test case.

The aim is to maintain a diverse set of test cases (i.e. individuals in the population). The
response object that the server returns after a request is sent says much about the system
code that was run. Heuristic functions should reward test cases that yield new responses
since this is an indicator of the discovery of new code paths. Test cases that result in unseen
responses will be given a high fitness value and thus survive onto the next population where
the request can be further explored (by mutations applied to the offspring). To keep track of
whether responses from the SUT are (relatively) unseen, we implement various experimen-
tal fitness functions. They are elaborated on in the following subsections. How they work
in practice is explained in Chapter 6.

5.5.1 Response object skeletons

The first designed fitness function is simple. Like an HTTP request, an HTTP response
contains parameters and values. The values are often unique. When the input values of a
request change, the output values of the response generally change as well. This does not
necessarily mean that a new code path has been exercised though (the input is handled the
same by the system, but the output is dependent on the input). We do know that when the
parameters of the response are different, a new code path has been exercised.

We call this set of parameters (or keys), without values, the skeleton of the response.
The Skeleton Fitness assigns fitness values to individuals based on how often the fuzzer
has come across response skeletons. Individuals that result into response skeletons that
have occurred less than the response skeletons of other individuals in the population, are

42

5.5. Heuristic

assigned a higher fitness value. This fitness function aims to maintain a diverse population
overall. We assume that the more different response object skeletons are come across, the
more code is likely covered by the requests. A diverse population should result into a higher
probability of uncovering new code paths.

The Skeleton Fitness favours individuals that lead to newly discovered response
skeletons. The fitness is calculated as:

FS =
1

#ResponseSkeletonOccurrences
. (5.1)

Limitations of this fitness function are that values are not taken into account, while they can
actually be meaningful and indicate new code paths used. Another issue is that there might
be response skeletons that are the same, while the exercised code is different (e.g. different
API operations that yield the same response skeleton).

5.5.2 Response object skeletons and request object complexity

The Skeleton Fitness is a basic fitness function aimed to maintain a diverse set of individuals
over the course of the fuzzing process. It does so by favouring individuals that result into
unique response skeletons. The complexity of the request and response object is however
not considered.

Instead of just looking at the response object skeleton, the SkeletonAndComplexity Fit-
ness also takes the complexity of the request object into account. The fitness value is com-
puted by the multiplication of two factors.

The first factor is the uniqueness of the response object skeleton like in ResponseSkele-
ton Fitness. The second factor is the complexity of the request object. The complexity of
a JSON object is calculated as the number of keys (on all levels of depth) in a request and
corresponding response. The idea behind this is that if a request has few keys, it is unlikely
to find a new response structure by mutating this request since there are few fields that can
be changed. For a high complexity on the other hand, there may be more variations to be
discovered.

The SkeletonAndComplexity Fitness favours individuals that lead to newly discov-
ered response skeletons and that have a high number of keys in the request object. The
fitness is defined as:

FSC =
#InputParameters

#ResponseSkeletonOccurrences
(5.2)

5.5.3 Simplified clustering of response objects using categories

The SimpleResponse Fitness takes into account both the keys of the JSON response object
and the values corresponding to these keys. For each API operation in the OpenRPC speci-
fication, this approach keeps track of how often parameters with values in certain categories

43

5. APPROACH

occur in response objects. During the running of the evolutionary algorithm, the values
are grouped in predefined categories. The (few) categories of values depend on the JSON
types (String, Number, Boolean, Array and Null) and are simple (e.g. the category of empty
strings). Each parameter value belongs to one of the categories. This fitness function is
meant to demonstrate the potential of considering parameter values in a memory-efficient
way. The effectiveness of this approach depends heavily on the chosen categories.

A response containing parameters that fall in categories that have a high occurrence
count, decreases the fitness value of the individual. An individual gets a maximal fitness
score when the entire response has never been seen before. This is the case when a response
object contains parameter values that fall within categories that have not occurred before (in
a response object to a certain API operation). When many parameter values in a response
have occurred before, the individual is assigned a lower fitness score.

The SimpleResponse Fitness favours individuals that lead to newly discovered pa-
rameters or categories of parameter values for each API operation. The fitness is cal-
culated as:

FSR =
#Params

paramCategoryOccurrences
(5.3)

where paramCategoryOccurrences is the sum of the occurrences of the parameters’ cate-
gories.

The BasicResponseFitness is simplistic and requires the predefined categories to be
tailored to the SUT. Moreover, the distance between each category is the same, while some
categories may be closer together then others (e.g. zero and positive numbers are in reality
closer together than negative and positive numbers).

5.5.4 Agglomerative clustering of response objects

As was mentioned in the previous subsection, without in-depth knowledge of the SUT
(which is unavailable for black-box settings), it is difficult to define sensible value cate-
gories for response parameter values. Unsupervised learning (clustering) is a solution for
this. Clustering is a technique commonly used in data analysis to group a set of similar
objects [115]. Objects in the same cluster are more similar to each other than to those in
a different cluster. The purpose of clustering is to minimise the intra-cluster distance and
maximise the inter-cluster distance.

Agglomerative clustering

Most clustering methods belong to either partitioning and hierarchical methods [126]. Par-
titioning methods require the number of clusters as input. Since we are working in a black-
box setting (and we do not know the optimal number of clusters), partitioning methods
cannot be applied. Instead, a hierarchical clustering algorithm needs to be implemented.

44

5.5. Heuristic

Hierarchical methods can be either divisive (top-down) or agglomerative (bottom-up).
An agglomerative method is a less complex and particularly effective and popular approach
for clustering data [115]. Agglomerative clustering is a bottom-up approach, where each
object start in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
Similar clusters are sequentially combined until only one cluster is obtained. By observing
the similarity between clusters at each step, the best number of clusters can be identified.

Figure 5.2 illustrates the process of agglomerative clustering in a dendrogram. The most
similar responses are merged together, resulting in a hierarchy of clusters. The dendrogram
is cut off (at the dashed line) to acquire a number of clusters. The number of intersections
with the vertical lines yield the numbers of clusters. In the example, three clusters remain.

Figure 5.2: Dendrogram

The two key points in hierarchical clustering are the identification of the clusters to
merge at each step, and the identification of the optimal terminating step [126]. A meaning-
ful agglomerating and termination criterion, are required.

Agglomerating criterion. The choice of agglomerating criterion defines which clusters
are merged into one. This criterion are typically based on distances between clusters, such as
the single-linkage approach (which considers the smallest distance between any two points
in two clusters) or the complete-linkage approach (which considers the maximum distance
between any two points in two clusters) [115]. We chose to use mean linkage as it is less
susceptible to noise and outliers compared to single and complete linkage. This is the
average distance between each point in one cluster to every point in the other cluster. Mean
linkage clustering is most often used in hierarchical clustering algorithms and is the best
choice for most applications [53].

Termination criterion. An important question for agglomerative clustering is at what
point to cut off the dendrogram (the termination criterion). Typically the cut-off point is
chosen that cuts the tallest vertical line [55]. This is the point where clusters are merged
that are far apart. The tallest vertical line represents the highest similarity jump for the

45

5. APPROACH

merging of two clusters.

Feature vector representation

We represent response parameter values as a feature vector that contains all parameter values
(that can be of string, boolean, number, array and JSON object types). Only primitive types
(string, boolean and number types) can be stored in the feature vector. This is why for
arrays, only the first value of the array (which is a string, boolean, number) is embedded in
the feature vector. For JSON objects, all parameter values are extracted from the object and
put in the feature vector. To account for the fact that these parameters are part of a JSON
object, we also compute a weight vector. The weight of a value is defined by 1 divided by
the depth of the parameter. For example, a parameter in a JSON object a has a weight of 1

2
since this parameter is nested in a JSON object. If this same JSON object a contains another
JSON object b, the parameters of b have a weight of 1

3 . It is assumed that parameters with
a higher depth are less important to differentiate between responses.

Computation of distance

Without a reliable distance metric between pairs of objects, a meaningful analysis of clus-
ters is not possible [88]. Commonly used distance metrics for hierarchical clustering are the
(squared) Euclidean distance, Manhattan distance, Mahalanobis distance, maximum dis-
tance, and the cosine similarity [99]. Due to the feature vectors containing different types,
it is not straightforward how to apply these distance metrics. The Mahalanobis distance and
cosine similarity cannot be applied to feature vectors containing values of different types.
The maximum distance is not considered suitable for this problem, since we want to evalu-
ate all parameter values (a vector with one parameter with a very large distance should not
be preferred over a vector with multiple parameters that have a small distance). Although
the Euclidean and Manhattan distance are also designed for numerical values (coordinates),
we can fit these metrics to our problem. The Euclidean distance is defined as:

‖a−b‖2 = ∑
i

√
(ai−bi)2.

The Manhattan distance (a version of the Euclidean distance) is defined as:

‖a−b‖1 = ∑
i
|ai−bi|

with feature vectors a and b and i the number of dimensions (the length of the feature
vector). The Euclidean distance depends strongly on data normalisation [89]. However,
since we do not know the range of numbers, or the diversity of strings, we cannot reliably
normalise the vectors. We therefore choose to use the Manhattan distance, which is less
dependent on normalisation.

46

5.5. Heuristic

To calculate distance between two vectors, we first compute the distance for each pair of
parameters in two feature vectors separately, using a suitable distance metric for that type.
For boolean values, the distance is either 0 (values are equal) or 1 (values are not equal).
For numbers, the distance is defined as the absolute difference between the numbers. For
string values, the Levenshtein distance is often used [99]. This distance metric (also called
the edit distance) is the most promising one to compare strings by various edit operations
(deletion, insertion, and substitution of characters) [133]. It is defined as the minimum cost
(always an absolute value) of transforming one string into another. We then multiply the
distance of each parameter by the corresponding weight.

Finally, we use the Manhattan distance to compute the total distance between two vec-
tors. The Manhattan distance assumes that variables are independent of each other. This is
likely not the case for response objects. Still, we assume that this distance metric is able to
sufficiently differentiate between feature vectors.

Time complexity

Agglomerative clustering has a time complexity of O(n3) [99], which makes it inefficient
and expensive for large data sets, which is why we chose to not perform agglomerative
clustering for all individuals in every generation. Instead, we keep track of the ”median” and
radius of clusters to calculate the distance of individuals in the population to be evaluated.

The median of a cluster is the response object that has the minimum sum of distance
to all other responses in the cluster (i.e. it is closest to all other individuals in the cluster).
The radius is defined as the distance between the median and the point in the cluster that is
furthest removed from the median. Clustering is only performed after a predefined number
of generations is processed. When clustering is performed, all responses that did not belong
to a cluster, as well as the existing representative (median) responses of the clusters, are
clustered. All previous data points (except for the medians) are removed from the clusters.
The next generations are evaluated with regard to these updated cluster medians and radiuses
(until clustering is performed again).

Diversity-based fitness

We propose to perform clustering so that individuals in the same cluster are similar while
individuals in different clusters are more diverse. The fitness value of an individual is de-
fined as the distance of the individual’s response object to previously encountered response
objects. We call this fitness function the Diversity-Based Fitness. Individuals that result in
a (relatively) unique response, form a new cluster and are given a high fitness value. Indi-
viduals with responses that are very similar (small distance) to those of other individuals
are given a low fitness value. The hypothesis is that responses that are unlike what was seen
before, are an indication that new code paths are reached. Building from this test case, there
is potential to discover other new code paths.

47

5. APPROACH

The Diversity-Based Fitness favours individuals that lead to diverse responses for
each API operation. The fitness is calculated as:

FDB =
1

1+maxSimilarity
(5.4)

where maxSimilarity is the similarity of the individual’s response object to the closest re-
sponse object in the clustering instance. This is computed based on the distance to the
closest object and the parameter weight.

5.6 Mutation engine

The effectiveness of the evolutionary fuzzing approach depends largely on mutation. Good
mutation operators are necessary to gather a complete and diverse set of test cases.

An individual can be mutated in various ways. Figure 5.3 illustrates the structure of
an individual. An individual (a test case) contains one or multiple HTTP requests. As
was explained earlier in Section 3.1.1, an HTTP request requires either a POST or GET
operation, an API operation, and corresponding parameters.

Figure 5.3: The structure of the individual. (* one or more)

When an individual is mutated, a newly generated request is added to the sequence, one
of the requests is removed, and/or one of the requests is mutated. The latter can happen in
one of three ways:

1. The HTTP method is changed. If it is POST, it is changed to GET. If it is GET, it is
changed to POST.

2. A new API operation with corresponding parameters is generated (based on the gram-
mar) and replaces the current API operation and parameters. Besides the HTTP

48

5.6. Mutation engine

method, this is effectively an entirely new individual. This can be beneficial for ex-
ploration of the search space, for example when the population has converged towards
specific parts of the search space (e.g. certain API operations).

3. One or more of the API operation’s parameters are mutated.

Chapter 4 described various mutation operators that were shown to be effective in previous
work. We implement the most common in our approach: addition of parameters, removal of
parameters, and mutation of parameter values (including violation of parameter constraints).

Parameters are either replaced by a newly generated value, or mutated by type-specific
mutation operators. Table 5.1 shows the ways in which each type can be changed by muta-
tion operators. For JSON objects, a child (which has its own type as well) is either added,
removed, or mutated. For array type values, an element (which has its own type) is either
added, removed, or mutated. For numbers, polynomial mutation is applied, or the value
is set to the lower or upper bound of the parameter. Polynomial mutation1 is widely used
in evolutionary algorithms as a mutation operator [47], including in related works such as
EvoMaster [9]. For string types, (one or more) characters are either added, removed, or
mutated (changed into different character(s)). For boolean types, the value is simply flipped
(i.e. false becomes true and vice-versa).

Object Array Number String Boolean

Child mutation Element mutation Polynomial mutation Character(s) mutation Flipping the value
Child addition Element addition Boundary cases Character(s) addition
Child deletion Element deletion Character(s) deletion

Table 5.1: Mutation operators of parameter types

When a parameter is replaced by a newly generated value, it either conforms to the
OpenRPC specification of that parameter or it does not. This allows for parameter values
to occur in requests that have unexpected types (e.g. an API operation expects a parameter
value of a boolean type, but this parameter value is mutated into a number).

We do not focus on including a complete set of all mutation operators as the aim of this
research is not (strictly) to achieve a maximum amount of coverage, but rather to evaluate
whether evolutionary fuzzing improves upon random mutational fuzzing for JSON-RPC
APIs.

1In polynomial mutation, to mutate a value into a value close to the original, a polynomial probability
distribution is used. Polynomials are sums of terms of the form k*xn, where k is any number and n is a positive
integer.

49

6
Implementation

In Chapter 5, the strategy was explained for the creation of the fuzzing tool that is cen-
tral in this research. In this chapter, we introduce GEFRA, a black-box Grammar-based
Evolutionary Fuzzer for RPC-APIs. GEFRA translates OpenRPC specifications to gram-
mars and fuzzes JSON-RPC systems for software defects. GEFRA contains a grammar-
based (mutational) fuzzing and evolutionary fuzzing approach.

First, the different components of the architecture of GEFRA are discussed in Sec-
tion 6.1. Afterwards, Section 6.2 discusses the grammar-based fuzzing approach. Then,
the specifics of the evolutionary fuzzing approach are presented in Section 6.3. Finally,
Section 6.4 gives an explanation how to run the tool.

6.1 GEFRA architecture

A high-level overview of the architecture of GEFRA can be seen in Figure 6.1.

GEFRA runs on any JSON-RPC API system. All it requires is an OpenRPC speci-
fication. With this, the tool is able to generate test cases for any system working with a
JSON-RPC API. The OpenRPC specification serves as a grammar for test cases. Listing 6.1
provides an example of the OpenRPC specification for the API operation account channels.

The API operation lists three parameters, out of which one is required. Moreover, the
API expects the parameters to be of a certain type and format. The limit parameter for
example is expected to be an integer value between 10 and 400. GEFRA generates test
cases based on the specification and respects parameter constraints. Three examples of
generated requests for the account channels operation by GEFRA are shown in Listing 6.2.

For the initialisation of the population of test cases, GEFRA randomly selects API oper-
ations from the OpenRPC specification, and constructs syntactically valid requests for them.
The HTTP method is set at either POST or GET with a certain probability. Array, JSON Ob-
ject, Boolean, Number, and String parameters are generated based on parameter constraints.
If these are not specified, the implemented custom generator resorts to default constraints
such as a maximum array size and a default regular expression (regex) for strings.

51

6. IMPLEMENTATION

Figure 6.1: A high-level overview of GEFRA

{

"name": "account_channels",

"params": [

{ "name": "account",

"required": true ,

"schema": {

"type": "string",

"pattern": "ˆr[1-9a-zA-Z]{25,35}$"

}

},

{ "name": "ledger_index",

"schema": {

"oneOf": [

{ "type": "integer", "minimum": 0, "maximum": 4294967296 },

{ "type": "string", "enum": ["validated", "current"] }

]

}

},

{ "name": "limit",

"schema": {

"type": "integer",

"minimum": 10,

"maximum": 400

}

52

6.2. Grammar-based (mutational) fuzzing

}

]

}

Listing 6.1: The OpenRPC Specification for the account channels operation

POST {"method":"account_channels","params":[{"limit":317,"account":"

rUEYbWfD6fqEKpmNHVKgVokEgvZJboc33n "}]}

POST {"method":"account_channels","params":[{" ledger_index ":3624039044 ,"

account":" rp3cLhgwsFZZs5AoH2VK1YHeYU3FHXVAAf "}]}

GET {"method":"account_channels","params":[{" ledger_index":"current","

account":" rVhutwmkyva8bt4W9RJVr5bD85ceRJvkN "}]}

Listing 6.2: Three generated requests based on the OpenRPC Specification for the
account channels operation

After the initial population is generated, the fuzzing process starts. The termination
criterion that is set decides when to stop processing generations. The termination criteria
that can be set for GEFRA are a limit of generations, a limit of evaluations (i.e. the number
of times the fitness was computed), or a time limit.

The different phases of the fuzzing process depend on the fuzzing approach that is
used: grammar-based mutational fuzzing or evolutionary fuzzing. Section 6.2 describes the
grammar-based mutational fuzzing approach, whereas Section 6.3 describes the evolution-
ary fuzzing approach.

Both approaches send requests (test cases) to the SUT using a test driver. The test driver
provides the connection between the fuzzer and the SUT. It resets and starts the server of
the SUT before each test to ensure a clean environment. It converts the individuals from the
search process into HTTP requests. Subsequently, the test driver sends the requests to the
(API of the) SUT and monitors the output. The results are passed back to the fuzzer and
(in the evolutionary fuzzer) are used by the objective function to calculate the fitness of the
test.

GEFRA also contains a simple archiving mechanism, allowing for the storage of gener-
ated system-level test cases for the SUT. Test cases that result in unique response skeletons
are stored in the archive. The test suite can be accessed and executed after the fuzzer has fin-
ished. The mechanism demonstrates basic performance with regards to structural coverage
but it does not reach (near) the coverage obtained by running the fuzzer.

6.2 Grammar-based (mutational) fuzzing

The different phases of the grammar-based mutational (GB-MUT) fuzzing approach are
described in the next subsections.

53

6. IMPLEMENTATION

6.2.1 Evaluation

The grammar-based mutational approach does not guide the search with an objective func-
tion. The executed tests are not evaluated.

6.2.2 Selection

Since there is no evaluation, a random selection of the current generation of individuals and
their offspring is selected to survive onto the next generation.

6.2.3 Generation and mutation

For a search algorithm to be successful, it needs to establish a good balance between explo-
ration and exploitation [117]. Exploration is the process of visiting entirely new areas of a
search space, whereas exploitation is the process of visiting those areas of a search space
that are nearby previously visited points.

If new generations are created solely by mutating the current population, the search
would be mostly exploitative. To promote exploration, not all individuals in the generation
emerge from mutation of existing ones. The offspring is partly created by mutating individ-
uals from the population, and partly by generating new individuals based on the grammar.
This is done to ensure a healthy balance between exploration and exploitation. The ratio
between generation and mutation is configurable. With a 0% mutation rate, we have a tra-
ditional grammar-based fuzzer, to which we want to compare the evolutionary fuzzer. We
refer to the grammar-based fuzzer as the baseline.

The HTTP method, API operation(s), and corresponding parameters are embedded in the
individual and any part of the individual can be mutated. Figure 6.2 shows all the ways in
which an individual can be mutated. These correspond mostly to the related work discussed
in Chapter 4. The default probabilities are added to the different paths. Every individual is
configured to be mutated twice in order to deviate further from the parent (i.e. the individual
that is mutated).

For each mutation, either a request is removed, added, or mutated. When one of the op-
tions in the chart is not available (e.g. an individual only has one request), the fuzzer defaults
to mutation. If a new request is added, a new request is generated based on the grammar
and added to the sequence of the requests of that individual. If a request is mutated, ei-
ther the HTTP method, the API operation, or one of the (randomly selected) corresponding
parameters is mutated. It depends on the parameter type what mutation operators are ap-
plicable, but all parameters have a probability to be changed into a newly generated value
according to any schema that is documented in the OpenRPC specification. This allows for
the occurrence of unexpected types and values (e.g. a value that is expected for a different
parameter), which may lead to the discovery of faults in the SUT.

54

6.3. Grammar-based evolutionary fuzzing

When an array value or JSON object is selected to be mutated, one of the elements or
keys is randomly chosen. The element or key in question is then mutated based on its type.
For example, if a key-value pair (a parameter name and its value) from a JSON object is
mutated, and the value is a number, the value is mutated using the Long mutation operators.
The original value is then replaced by the resulting mutated value.

If string-type parameters specify enumeration values in their OpenRPC specification,
there is a probability that the value is changed into one of these. Otherwise, a fraction of
characters is mutated. These characters are randomly selected (and thus do not have to be a
sequence in the string).

6.3 Grammar-based evolutionary fuzzing

Search algorithms were explained in Section 3.3. The (µ + λ) evolutionary strategy) is a
straightforward evolutionary algorithm (EA). Campos et al. [24] found that in most (unit
test suite generation) cases, a simple µ + λ algorithm performs better than other, more
complex algorithms.

During the evolutionary fuzzing process, for each individual the server is re-started, the
request is sent to the API, and a response is retrieved before the fitness of that individual
can be computed. This makes the fitness evaluation of an individual quite computationally
expensive. (µ + λ) algorithms have been used in literature for computationally expensive
fitness functions [1, 29]. Each individual is only evaluated once. With small values for µ
and λ, the cost of each iteration is kept to a minimum.

Algorithm 1 presents the (µ + λ) algorithm that is implemented in the tool. The initial
population of size µ, after being mutated, produces λ offspring. The algorithm then adds the
offspring to the initial population (hence µ + λ). The offspring competes with the parents.
The solutions are evaluated and the best individuals (a selection of size µ) form the next
generation.

During the search, the implemented evolutionary algorithm can make use of crossover
operations. A crossover operator is defined to combine an HTTP request of one individual
with that of another. For the experiments it was decided to only allow individuals to contain
one request so we can draw better conclusions from the comparison (which otherwise could
be influenced by the different size of individuals; several requests in an individual would
achieve more coverage than one request). Therefore crossover is not enabled. Modification
of test cases happens only via the mutation operators.

The different phases of the grammar-based evolutionary (GB-EVO) fuzzing approach
are described in the next subsections.

55

6. IMPLEMENTATION

Algorithm 1 (µ + λ) GA
Input: µ = the population size

1 begin
2 t← 0
3 P(t)← initialisePopulation(µ)
4 do
5 t← t +1
6 P(t)← P(t−1)∪ mutate(P(t−1))
7 evaluate(P(t))
8 P(t)← select(P(t),µ)
9 while termination criterion is not satisfied;

10 end

6.3.1 Evaluation

The evaluation in the (µ + λ) EA is performed by the fitness function. In Section 5.5, the
ideas behind the designed fitness functions were explained. This part describes how they
are implemented and function in practice.

1 - SkeletonFitness

Algorithm 2 shows the SkeletonFitness function. It takes the API operation, the request
object, and the response object as input.

Algorithm 2 EVALUATE INDIVIDUAL - SkeletonFitness
Input: met = API operation used in the last request

req = last HTTP request object in sequence of individual’s requests
res = last HTTP response object from the server
f reqMap = a dictionary containing skeletons as keys and counts as values

Output: Computed fitness value f v
1 begin
2 stripped← stripValues(req,res)
3 f reqMap.put(stripped, f reqMap.get(stripped)+1)
4 f v← 1/ f reqMap.get(stripped)
5 return f v
6 end

The stripValues function replaces the parameter values in the response object by prede-
fined standard values. Specifically, strings are replaced by an empty string (””), numbers
are replaced by 0, boolean values are replaced by true, and arrays are replaced by either

56

6.3. Grammar-based evolutionary fuzzing

””, 0 or true, depending on the type of the contents of the array. Listing 6.3 contains an
example of an individual (with one request) that is evaluated.

Parameters from the request are sometimes included in the response by default. Because
such values are simply copied from the request, they are deemed irrelevant for the fitness of
an individual. The stripValues function removes key-value pairs in the response if the pairs
occur in the request as well. As can be seen in the stripped response in the example, the
parameter values are replaced by the standard values and the account parameter is removed
completely. We call this stripped version of the response the skeleton.

The skeleton is added to a dictionary that stores the stripped response (in String format)
as the key, and the number of total occurrences as the value. The count is updated. Af-
terwards, the fitness value is computed by the division of 1 by the total occurrences of the
response skeleton. In the example, the fitness value will be 1

2 = 0.5. When a response skele-
ton has never been seen before, the fitness is 1. The fitness value is always between 0 and
1. Individuals that yield relatively unique response skeletons are retained in the population,
whereas individuals that retrieve response skeletons that have occurred many times before,
do not survive.

REQUEST: POST {

"method":"gateway_balances",

"params":[{" account":" rPcv9Wm3MhAgyZNnjTaWUKwhHXaTnSEbx9 "}]

}

RESPONSE: {

"result": {

"ledger_current_index ":30051713,

"validated":false ,

"account":" rPcv9Wm3MhAgyZNnjTaWUKwhHXaTnSEbx9",

"status":"success" }

}

STRIPPED response: {

"result": {

"ledger_current_index":0,

"validated":true ,

"status":"" }

}

FREQUENCY map (after update):

{"result":{" ledger_current_index":0,"validated":true ,"status":""}}=2,

{"result":{"validated":true ,"ledger_hash":"","status":""}}=14,

{"result":{"random":"","status ":""}}=5

Listing 6.3: Demonstration of the SkeletonFitness evaluation steps

57

6. IMPLEMENTATION

2 - SkeletonAndComplexityFitness

Algorithm 3 shows the SkeletonAndComplexityFitness function. This objective function is
very similar to SkeletonFitness, except it takes an additional property of the request into
account: the complexity of the request. If we stick to the same example as in Listing 6.3,
the complexity is calculated by counting the parameters in the request. In this case, there
is one parameter, namely account. The complexity is thus equal to 1. The frequency is
calculated in the same way as for SkeletonFitness, and is 0.5. The fitness is computed by
multiplication of the complexity of the request by the frequency of the response skeleton:
1 * 0.5 = 0.5. The fitness has a minimum value of 0 (since complexity and frequency are
always positive). The maximum fitness value is equal to the maximum number of keys in
requests.

Algorithm 3 EVALUATE INDIVIDUAL - SkeletonAndComplexityFitness
Input: met = API operation used in the last request

req = last HTTP request object in sequence of individual’s requests
res = last HTTP response object from the server
f reqMap = a dictionary containing skeletons as keys and counts as values

Output: Computed fitness value f v
1 begin
2 stripped← stripValues(req,res)
3 f requencyMap.put(stripped,skeletonFrequencyMap.get(stripped)+1)
4 complexity← countParameters(req)
5 f requency← 1/ f requencyMap.get(stripped)
6 f v← complexity∗ f requency
7 return f v
8 end

The higher the complexity of inputs, the higher the probability of finding faults [118].
Essentially, this representation of the complexity of the request, functions as a weight for the
skeleton frequency. If a skeleton has occurred often, but there are many parameters in the
request (i.e. many parameters that can be mutated that may result into different responses),
the fitness is boosted by the complexity. If a skeleton frequency is the minimum value pos-
sible (1), but the request contains 0 parameters, the fitness value assigned to the individual
will be 0, as there is seemingly nothing in the request to mutate. The complexity of the
request is an indicator for the potential of the individual, but it is not foolproof. It is very
well possible for a request to contain only a few parameters, while the used API operation
could define many. By mutating the individual, new (previously unused) parameters may
be added, which could lead to new responses.

58

6.3. Grammar-based evolutionary fuzzing

3 - SimpleResponseFitness

The above fitness functions disregard the fact that besides the used parameters in the re-
sponse, the parameter values differentiate between responses as well. SimpleResponseFit-
ness is a basic attempt to consider not only the parameter names in the response, but also
the parameter values. It is a slightly more refined version of SkeletonFitness. Instead of
just storing the number of occurrences of the complete skeletons, this fitness function stores
the number of occurrences for each parameter value category. Algorithm 4 shows the pseu-
docode of the SimpleResponseFitness function.

Algorithm 4 EVALUATE INDIVIDUAL function - SimpleResponseFitness
Input: met = API operation used in the last request

req = last HTTP request object in sequence of individual’s requests
res = last HTTP response object from the server
f reqMap = a dictionary keeping counts of all value categories per parameter per
API operation

Output: Computed fitness value f v
1 begin
2 score← 0
3 numberO f Keys← 0
4 foreach key ki ∈ res do
5 cat← identi f yCategory(res.get(ki))

6 occurrences = getOccurrences(met,ki,cat)
7 f reqMap(met,ki,cat)← (occurrences+1)
8 numberO f Keys← numberO f Keys+1
9 end

10 cost← occurrences/numberO f Keys
11 f v← 1/cost
12 return f v
13 end

The response JSON object contains keys (i.e. the parameters) and values. For each
key in the response, it is evaluated by identifyCategory to which predefined category the
value belongs. The value categories depend on the value type: String, Number, Boolean,
Array and Null (corresponding to the JSON types). The categories are can be found Ta-
ble 6.1. They are a simple representation of what kind of values exist. String categories
only differentiate between zero, short and long (> 10 characters) lengths. The use of Regex
expressions could help to create more specific categories. However, for all value categories
it is a problem that it is unknown what categories are suitable for the SUT. The defined
categories may be meaningless for the systems we test, which is a significant weakness of
this approach.

59

6. IMPLEMENTATION

Number String Boolean Array Other

INTEGER POSITIVE EMPTY STRING TRUE EMPTY ARRAY NULL
INTEGER NEGATIVE SHORT STRING FALSE STRING ARRAY
INTEGER ZERO LONG STRING NUMBER ARRAY
LONG POSITIVE BOOLEAN ARRAY
LONG NEGATIVE
LONG ZERO

Table 6.1: Categories for parameter values in SimpleResponseFitness

After the value is categorised, we want to compare it to the value categories of that
parameter that have occurred previously. The total count of categories for all parameters
of all API operations is stored in a dictionary (f reqMap). The dictionary is never reset.
Upon evaluation, the count of the parameter value’s category path is increased by 1. The
cost is defined as the sum of the counts of the present value categories per parameter in the
response, normalised by the total number of parameters. The fitness is defined by 1 divided
by the cost. The workings of SimpleResponseFitness are demonstrated in Listing 6.4. The
sum of counts of the categories present in the response is 12 and the response contains 6
parameters. The fitness value in this example thererfore is: 1 / (12/6) = 0.5.

REQUEST: POST {

"method":"account_channels",

"params":[{" account":" rQK8G7FT5BHhG9RBVWNmJeKfQCb3NvFaQn"}

}

RESPONSE object: {

"result": {

"error_message":"Account not found.",

"request":{

"account":" rQK8G7FT5BHhG9RBVWNmJeKfQCb3NvFaQn",

"command":"account_channels"},

"error_code":19,

"error":"actNotFound",

"status":"error"

}

}

VALUE CATEGORIES in this object:

/result/error_message: LONG_STRING

/result/request/account: LONG_STRING

/result/request/command: LONG_STRING

/result/error_code: INTEGER_POSITIVE

/result/error: LONG_STRING

/result/status: SHORT_STRING

60

6.3. Grammar-based evolutionary fuzzing

FREQUENCY map for the account_channels API operation (after update):

/result/error_message={LONG_STRING=4},

/result/request/account={LONG_STRING=3},

/result/request/command={LONG_STRING=6},

/result/error_code={INTEGER_POSITIVE=2},

/result/error={LONG_STRING=2},

/result/status={SHORT_STRING=3},

/result/request/ledger_index={LONG_POSITIVE=1, SHORT_STRING=1},

Listing 6.4: Demonstration of the SimpleResponseFitness evaluation steps

4 - Diversity-Based Fitness

The diversity-based fitness approach was explained in 5.5.4. It makes use of agglomerative
clustering. Clustering instances are updated after a predefined number of generations of
individuals. During the evaluation process, responses that do not fall within (the radius of)
any cluster (i.e. do not belong to a cluster), are stored to be clustered next time together
with all median responses.

Evaluation of individuals is done by comparing their response objects to the cluster-
ing instances. Pseudocode of the DiversityBasedFitness evaluation algorithm is shown in
Algorithm 5.

Algorithm 5 EVALUATE INDIVIDUAL function
Input: met = API method used in the last request

req = last HTTP request in sequence of individual’s requests
res = last HTTP response from the server

Output: Computed fitness value f v
1 begin
2 stripped← stripValues(req,res)
3 f eatures,weights← convertToVector(res,stripped)
4 clusteringInstance← getClusteringInstance(met,stripped)
5 maxSimilarity← clusteringInstance.calculateMaxSimilarity(f eatures,weights)
6 f v← 1/(1+maxSimilarity)
7 return f v
8 end

We keep track of various clustering instances, identified by the response skeleton. This
is necessary since distance can only by calculated between vectors of the same length con-
taining the same types. A clustering instance contains one or more clusters of (the parame-
ters of) response objects. If two response objects are in a different clustering instance, the
distance between them is maximal. We assume that if a response object contains different
keys, different code paths were exercised.

61

6. IMPLEMENTATION

The stripValues function is the same as explained in SkeletonFitness. Besides stripping
the response from parameter values, it removes parameter-value pairs that were present in
the request. Based on the parameters that are left, a feature vector is created by convert-
ToVector. It takes the values of these parameters from the response. The sequence of values
(which corresponds to the sequence of keys in the response skeleton) forms the feature vec-
tor. A corresponding weight vector is created as well, storing the depths of the parameters in
the response object. The depth specifies how many levels of contained objects are included
in the JSON representation.

The clustering instance for the response skeleton at hand is retrieved and the maximum
similarity of the feature vector to any of the clusters is computed (i.e. how similar is this
response to the closest other response). calculateMaxSimilarity computes the similarity of
the individual’s response to the closest cluster’s median. The similarity is calculated as:

1
1+distance∗weight . A large distance results in low similarity. If a response is completely new
(e.g. a new clustering instance is initiated), the distance is maximum, and the maxSimilarity
is 0. The fitness value is computed as: 1

1+maxSimilarity .

To illustrate the calculation of distance between two individual’s responses, two re-
quests, their responses, and the response skeleton are shown in Listing 6.5.

REQUEST 1: POST {

"method":"tx_history",

"params":[{

"start ":"957269095"

}]

}

REQUEST 2: POST {

"method":"tx_history",

"params":[{

"start ":"708045535919000813722

I9j18Z2V0t1KP630J5n4y5544769592053jvk11TmD8a3Ir1219118314143"

}]

}

RESPONSE 1: {

"result": {

"error_message":"Internal error.",

"request":{

"start ":"708045535919000813722

I9j18Z2V0t1KP630J5n4y5544769592053jvk11TmD8a3Ir1219118314143",

"command":"tx_history"

},

"error_code":73,

"error":"internal",

"status":"error"

}

62

6.3. Grammar-based evolutionary fuzzing

}

RESPONSE 2: {

"result": {

"error_message": "You don’t have permission for this command.",

"request":{

"start ":"957269095" ,

"command":"tx_history"

},

"error_code":6,

"error":"noPermission",

status ":"error"

}

}

STRIPPED RESPONSE 1 and 2: {

"result": {

"error_message": "",

"request":{

"start":"",

"command":""

},

"error_code":0,

"error":"",

status ":""

}

}

Listing 6.5: clustering

The responses have the same response skeleton, which means they are part of the same
clustering instance, and can be compared to each other. The distances between all feature
vectors parameter pairs are:

”Internalerror.”
tx history

73
”internal”

”error”

 -

”Youdon′thavepermission f orthiscommand.”

tx history
6

”noPermission”
”error”

 =

20
0
67
10
0

 *

1

0.5
1
1
1

The distance between string values is calculated by the Levenshtein distance. Because the
Levenshtein distance can quickly become very large, it is capped at 20. We believe that there
is no significant difference between strings with a 20-character edit distance and strings with
a higher edit distance than that in this context. To compute the similarity between the two
vectors, we multiply each distance by the parameter weight.

Finally, we compute the Manhattan distance as (20*1+0*0.5+67*1+10*1+0*1) = 97.
This implies a similarity of 1

1+97 ≈ 0.01, indicating that the responses are not similar. Seeing

63

6. IMPLEMENTATION

as three of the five parameter values are significantly different, this seems reasonable. We
do see that numbers greatly influence the similarity as the distance for numbers has no
maximum. Furthermore, in this case, while the error code parameter values are numbers,
it seems that these values are used as nominal categories rather than numerical values. Our
experimental distance metric has no way to differentiate between the two.

6.3.2 Selection

The selection mechanism of a genetic algorithm is the process that favours the selection of
better individuals in the population for the mating pool. The main selection mechanisms are
elitist selection and tournament selection.

The elitist selection scheme ranks all individuals (current population + offspring) based
on their fitness. Consequently, it selects the n individuals with the highest fitness values to
form the next generation of individuals, with n being the population size.

Tournament selection, the most popular selection method [38], holds a tournament
among s randomly selected competitors (from the current population + offspring), with s
being the tournament size. The winner of the tournament is the individual with the high-
est fitness among the tournament competitors. The winner is then passed on to the next
generation. The process is repeated until n individuals are selected. The next generation
has a higher average fitness than the average population fitness. This tournament selec-
tion technique allows individuals of lower quality to participate in the improvement of the
population [62]. This promotes diversity of the population.

The GB-EVO fuzzer implements both tournament and elitist selection. In all experi-
ments, we use tournament selection without replacement (individuals participate in exactly
one tournament each). Setting the tournament size to the population size would result in
elitist selection, whereas a tournament size of 1 is essentially random selection.

Specifically, we use a tournament size s = 4. Each individual participates in only one
tournament. Each tournament yields s

2 winners. This way we always end up with exactly n
individuals in the next generation (since the selection pool is of size 2n: the current popula-
tion and its offspring).

6.3.3 Generation and mutation

The generation and mutation of individuals is the same as for the grammar-based mutational
fuzzer.

6.4 Tool usage

GEFRA can be run inside a docker container using various arguments such as the termi-
nation criteria, the population size, the heuristic function used and the mutation-generation

64

6.4. Tool usage

ratio. Figure 6.4 shows how an experiment using the tool (and a docker image) is started
from the command line.

A guide to build the docker images containing the tool and the SUTs (Ripple and
Ganache) is available on GitHub. A release of GEFRA that was used during the experi-
ments can be downloaded from GitHub on the releases page.

It is possible to use GEFRA to generate tests for other JSON-RPC systems as well. This
requires the change of a few settings in the implementation of the tool. Specifically, the url
to the server and the path to the OpenRPC specification file must be set. The test drivers for
the SUTs in this research cannot be used for other SUTs. However, it is possible to set the
test driver to the implemented SimpleTestDriver, a basic test driver that works with a server
url. Afterwards, the software project can be build, and used on the desired JSON-RPC
system to generate (and store) tests.

65

6. IMPLEMENTATION

Figure 6.2: Flow of the custom mutation of an individual

66

6.4. Tool usage

Figure 6.3: Running the tool from the command line

67

7
Empirical evaluation

We have implemented a prototype tool, named GEFRA, for the proposed grammar-based
evolutionary fuzzing approach. GEFRA contains a traditional grammar-based fuzzing ap-
proach and a grammar-based evolutionary fuzzing approach with several objective func-
tions. In this chapter, the empirical study to evaluate the grammar-based fuzzing approaches
is described.

First, in Section 7.1, the performance metrics are deliberated on. Then, the benchmark
APIs that the fuzzing approaches were tested on are introduced in Section 7.2. Section 7.3
goes into the experimental protocol. The configuration of parameters for the fuzzing ap-
proaches is talked about in Section 7.4. Finally, Section 7.5 discusses the threats to validity
and reproducability of this research.

7.1 Performance metrics

Since the effectiveness of tests is statistically correlated to code coverage [60], the mea-
surable goal of evolutionary testing is to reach the highest coverage possible. Moreover, a
larger code coverage indicates a higher possibility of discovery of faults [138]. We look at
branch coverage to evaluate the effectiveness of the approach. Branch coverage is equiva-
lent to code path coverage. Branch coverage increases when the target program executes a
new branch in the code. We investigate the final branch coverage that can be achieved by
the implemented fuzzing approaches, as well as the coverage over time to learn about the
efficiency of the approaches.

A different metric that provides insight into the effectiveness of a fuzzing approach is
the discovery of 5xx HTTP status codes. Fuzzing tools, as described in Chapter 4, often
make use of HTTP codes as an indicator of faults. We keep track of all HTTP status codes
that occurred. Furthermore, while fuzzing, test cases that result in 5xx status codes (server
errors) are automatically stored in the archive.

69

7. EMPIRICAL EVALUATION

7.2 Benchmark APIs

To measure the performance of the evolutionary fuzzing tool, it is used on two large and
popular blockchain systems using a JSON-RPC API, namely Ganache1 (an Ethereum sim-
ulator) and Ripple 2. Both servers are run locally.

Ethereum provides a complete OpenRPC specification in their repository [41]. Ripple
does not have an OpenRPC specification. We created a basic specification based on the
information as documented on their website [67] using the OpenRPC playground [83] to
help with construction of a valid specification. All non-admin API operations and corre-
sponding parameters (and parameter constraints) are included. This resulted into 34 unique
PI operations. The Ethereum specification contains 47 API operations.

The objective of the fuzzing approach is to achieve structural coverage. The Ganache
blockchain system is written in (mostly) JavaScript. The Ripple blockchain system is writ-
ten in C++. To compute the coverage of the SUT, we rely on the nyc tool (for Ganache) and
on the gcov tool (for Ripple).

7.3 Experimental protocol

All experiments are conducted on a cluster of computers with an Intel(R) Xeon(R) CPU
E5-2650 v3 @ 2.30GHz (20 cores, 40 threads) and Ubuntu 20.04. Unless mentioned other-
wise, experiments are repeated 10 times. Repeating the experiments is important to account
for noise from the operation system (OS) and randomness in the fuzzer. To reduce the in-
fluence of OS noise even more, only 10 threads are used simultaneously to minimise any
interference.

GEFRA contains two types of fuzzers: a grammar-based mutational (GB-MUT) fuzzer
and a grammar-based evolutionary (GB-EVO) fuzzer. We assess the performance of the GB-
EVO fuzzing approach by comparing it to the GB-MUT fuzzing approach. The GB-MUT
fuzzer with a mutation rate of 0% (a traditional grammar-based fuzzer) serves as a baseline.
In addition, we compare the GB-EVO fuzzing approach to the GB-MUT fuzzing approach
with the same mutation-generation ratio. The GB-MUT fuzzer is a logical baseline since
our evolutionary approach extends it with an objective function to mutate individuals selec-
tively rather than random.

The raw coverage values are noisy. Some branches are always covered regardless of the
fuzzing approach used, while many others cannot be reached through the API. We do
not know what amount of SUT coverage can be achieved through the AI. The Ripple and
Ganache systems are too complex to analyse with respect to which code paths can be exer-
cised. Therefore, we look at the absolute number of branches covered. Before conducting

1Available at https://github.com/trufflesuite/ganache-cli-archive.git
2Available at https://github.com/XRPLF/rippled/releases/tag/1.6.0

70

7.4. Configuration

any experiments, we evaluate what branch coverage is obtained by running the benchmark
API servers for 6 hours without interference of the tool. While most experiments ran for
longer than 6 hours, no additional coverage is obtained after half an hour of running the
server by itself. Moreover, the standard deviation is negligible, indicating that the number
of branches covered does not vary much. The obtained branch coverage for the benchmark
APIs is visible in Table 7.1. The servers are run in stand-alone mode, which means they
cannot contact other (blockchain) nodes. The coverage is deducted from the final results
to obtain a realistic idea of the number of branches covered by the implemented fuzzing
approach.

In total, the Ripple system contains 130,246 branches. The Ganache system contains
3177 branches. It is unknown how many of the branches can be covered through the API,
which is why we evaluate the absolute number of covered branches.

Ripple Ganache
Mean STD Mean STD

Branch coverage 7293 3.77 120 0

Table 7.1: The mean and standard deviation of branches covered after running the bench-
mark API servers for 6 hours (3 run average).

We use the Wilcoxon rank-sum test with the threshold α=0.05 to determine the significance
of differences among a simple grammar-based fuzzer that only generates new requests (the
baseline), grammar-based mutational fuzzer (GB-MUT), and the grammar-based evolution-
ary fuzzer (GB-EVO). The statistical analysis is complemented with the Vargha-Delaney
statistic (Â12) to measure the effect size of the results. If Â12 > 0.5, the fuzzing approach
yields better coverage than the approach it is compared to. If there is no difference between
the performances of two fuzzing approaches, Â12 = 0.5.

7.4 Configuration

There are many parameter settings that can be configured for the implemented fuzzing ap-
proaches. Appendix A lists the available parameters and their default values. Most are
related to the mutation process of individuals. These parameter values are displayed in
Figure 6.2 as well. Other parameters are related to the evolutionary algorithm.

A full grid search of optimal parameters is not feasible due to time constraints, and
also not the purpose of this research. We aim to find a configuration that is merely suitable
to demonstrate the effectiveness of evolutionary fuzzing. Through experimentation and
inspiration from related work (the EvoMaster [9] implementation), we define an acceptable
baseline for the default configuration.

Important parameters are the population size, the proportion of individuals that is mu-
tated each generation (instead of replaced by a newly generated individual) and the number

71

7. EMPIRICAL EVALUATION

of requests that an individual can have at maximum. The maximum number of requests is
set at 1 so the comparisons we make are based on an equal amount of requests that are sent
to the server. The choice of a large population size puts more emphasis on the exploration
(rather than exploitation) of the search landscape [8]. Since the SUTs contain 34 and 47 dis-
tinct API operations with many different sets of parameters, exploration is very important
to not get stuck in local optima.

Furthermore, for the diversity-based fitness function, the number of generations that is
processed before re-clustering is set at 3.

7.5 Threats to validity and reproducability

Threats to validity are mostly related to the random nature of fuzzers. To address this threat,
we run each fuzzing heuristic 10 times on each benchmark API independently using docker
containers. Furthermore, we analyse the median results and draw conclusions based on
non-parametric statistical tests (Wilcoxon and Vargha-Delaney).

Another threat relates to the generalisability of our results. The fuzzing approaches
are tested on two complex and popular blockchain systems written in C++ (Ripple) and
JavaScript (Ethereum). Additional experiments on other JSON-RPC systems would be ben-
eficial to increase confidence in generalisability to other projects. There are unfortunately
few open-source software systems that use JSON-RPC API and describe how the server can
be set up and run locally. Added to this, most JSON-RPC systems do not have an OpenRPC
specification (or any other description of the API operations).

All experiments were conducted independently in docker containers. The results can
be reproduced by running docker containers (one for each experiment) and specifying the
arguments corresponding to the experiment to conduct. Upon finishing the experiment, a
CSV file is produced containing the results. The docker images (for the two SUTs Ripple
and Ganache) can be build following the guide that is available on GitHub.

72

8
Results

In Chapter 6, the workings of the grammar-based evolutionary fuzzing solution for JSON-
RPC API systems have been laid out. Chapter 7 explained how the solution was empirically
evaluated. Specifically, the effectiveness (branch coverage) and efficiency (coverage over
time) of the tool is evaluated on two blockchain systems: Ripple and Ethereum.

This chapter presents the found results per research sub question. First, it is evalu-
ated whether an evolutionary fuzzing approach can outperform traditional grammar-based
fuzzing in terms of branch coverage (over time) in Section 8.1. Then, Section 8.2 eval-
uates the efficiency of the implemented fitness functions used in the evolutionary fuzzing
approach with regards to branch coverage.

8.1 Evolutionary fuzzing performance

The first research sub question is the following:

1. How effective is evolutionary fuzzing with regards to structural coverage in
comparison to grammar-based fuzzing for JSON-RPC APIs?

To answer this question, we first need to evaluate the performance of the grammar-based
fuzzing approach and whether mutational fuzzing (the basis for the evolutionary fuzzer)
is able to outperform it. Subsection 8.1.1 presents the results of the experiments with the
grammar-based fuzzing and the grammar-based mutational fuzzing approach on the two
benchmark APIs: Ripple and Ganache. Subsection 8.1.2 continues with the evaluation of
the evolutionary fuzzing approach.

8.1.1 Grammar-based fuzzing

Before experimenting with the evolutionary fuzzing approach, we want to determine whether
GB-MUT fuzzing is actually able to achieve more coverage for both SUTs, compared to the
grammar-based fuzzing approach (i.e., generating input values without ever mutating exist-
ing input). We will refer to the latter as the baseline.

73

8. RESULTS

Initially, we use a 50% mutation ratio for the GB-MUT fuzzer. This means that for each
generation, half of the individuals are created by mutating a random selection of individuals
from the population, and half of the individuals are newly generated based on the grammar.
Performing mutations on test cases can result in invalid requests (i.e. faulty test cases). It
is thus expected that more code paths are discovered (resulting in more covered branches).
The baseline solution (0% mutation ratio) generates new individuals each generation based
on the grammar.

For the first SUT, Ganache, the obtained branch coverage quickly converges. This is il-
lustrated in Figure 8.1. After 200 evaluations (approximately 100 minutes), all runs of the
experiments have reached a limit. This holds for both the baseline and the GB-MUT fuzzer,
although the GB-MUT fuzzer is able to reach the limit quicker, after only 2 generations
(approximately 50 minutes).

0 2 4 6 8

Generation

220

230

240

250

260

B
ra

nc
he

s
C

ov
er

ed

Mode
baseline

50%-GB-MUT

Figure 8.1: Ganache branches covered over generations (10 runs per experiment). One
generation contains 50 individuals and equals 50 fitness evaluations. On average, evaluation
of one generation takes approximately 25 minutes.

The baseline covers 246 branches of the SUT. The grammar-based mutational fuzzer
covers 247 branches. The interquartile range1 (IQR) is 0 for both approaches, indicating
that each run of the experiments resulted in the same amount of branches covered. The

1The interquartile range of a dataset is the difference between the first quartile and third. It measures the
spread of the middle 50% of values.

74

8.1. Evolutionary fuzzing performance

consistent difference of one branch can be explained by the fact that there is one branch
that can only be achieved by a test case that is mutated. However, due to the fact that there
seems to be a limit to the coverage that can be obtained, and it is so quickly reached (after
only 200 evaluations), we cannot evaluate whether GB-MUT fuzzing is more effective than
the baseline. The total amount of branches that can be covered through the API is unknown,
but it is unlikely that every code path that can be reached is covered.

Upon further investigation we find that the number of different responses that are re-
trieved from the API is minimal. Common responses indicate an ”Incorrect number of
arguments” and ”Method not supported” message. This indicates that the OpenRPC spec-
ification (provided by Ethereum) may not be valid. The fuzzer is unable to reach past the
validation barriers of the SUT, and more than 247 branches cannot be covered.

The second SUT, Ripple, shows different results. We compared several configurations
for the GB-MUT fuzzer by considering different mutation-generation ratios. Figure 8.2
illustrates the branches covered after running the baseline and GB-MUT fuzzer for 100
generations, a population size of 50, and different mutation percentages.

ba
se

lin
e

10
%

-G
B

-M
U

T

15
%

-G
B

-M
U

T

20
%

-G
B

-M
U

T

25
%

-G
B

-M
U

T

30
%

-G
B

-M
U

T

50
%

-G
B

-M
U

T

60
%

-G
B

-M
U

T

80
%

-G
B

-M
U

T

90
%

-G
B

-M
U

T

10
0%

-G
B

-M
U

T

Mode

6500

7000

7500

B
ra

nc
he

s
C

ov
er

ed

mode
baseline

10%-GB-MUT

15%-GB-MUT

20%-GB-MUT

25%-GB-MUT

30%-GB-MUT

50%-GB-MUT

60%-GB-MUT

80%-GB-MUT

90%-GB-MUT

100%-GB-MUT

Figure 8.2: Branches covered on Ripple (10 runs per experiment) after 100 generations
of 50 individuals each. On average, evaluation of one generation takes approximately 12
minutes.

75

8. RESULTS

As mentioned previously, the baseline fuzzer is equal to the GB-MUT fuzzer with a
mutation rate of 0%. The baseline is able to achieve a median of 7362 newly covered
branches. The GB-MUT fuzzer performs better than the baseline for almost all mutation
percentages, obtaining up to 7494 discovered branches, indicating that test cases deviat-
ing from the grammar are effective in discovering new branches. 100% mutation performs
worst, which is expected, since mutations alter individuals in small ways, and the Ripple
blockchain system has a large search space (34 API operations). In this case, a combination
of exploration and exploitation works better than only exporation (the baseline) or only ex-
ploitation (the 100% GB-MUT fuzzer).

Table 8.1 shows the median and of the branches covered by the baseline and GB-
MUT fuzzer. While all GB-MUT fuzzers below a mutation rate of 80% perform better
than the baseline, the 20%-GB-MUT, 30%-GB-MUT and 50%-GB-MUT fuzzer perform
significantly better than the baseline (p-value < 0.05), but not significantly better than each
other. The 90%-GB-MUT and 100%-GB-MUT fuzzers perform significantly worse than
the baseline. The significance of the differences between the GB-MUT fuzzing approaches
and the baseline can be found in Table 8.2.

Branches covered

Median IQR

baseline 7361.5 89
10% mutation 7385.5 128.25
20% mutation 7494 211
30% mutation 7412 55.50
50% mutation 7481 89
60% mutation 7429.5 213.75
80% mutation 7250.5 257.75
90% mutation 7294 187.75
100% mutation 6469 504.75

Table 8.1: Median and IQR of covered
branches for Ripple (100 generations,
population size of 50).

GB-MUT fuzzer vs baseline

p-value Â12

10% mutation 0.375 0.67 (medium)
20% mutation 0.027 0.81 (large)
30% mutation 0.037 0.72 (medium)
50% mutation 0.004 0.90 (large)
60% mutation 0.193 0.65 (small)
80% mutation 0.131 0.35 (small)
90% mutation 0.049 0.27 (medium)
100% mutation 0.002 0.01 (large)

Table 8.2: Wilcoxon rank-sum test
and Vargha-Delaney statistic for Ripple
branch coverage (100 generations, popu-
lation size of 50).

Figure 8.3 depicts the obtained branch coverage over time by the baseline, the 20%-
GB-MUT fuzzer (significantly better than the baseline) and the 100%- GB-MUT fuzzer
(significantly worse than the baseline). There are no significant differences between the
Area Under the Curve (AUC) of the better performing GB-MUT fuzzers. None of the 20%-
GB-MUT, 30%- GB-MUT or 50%- GB-MUT fuzzers reaches coverage significantly faster
than each other.

76

8.1. Evolutionary fuzzing performance

0 300 600 900 1200

Time (minutes)

4000

5000

6000

7000

8000

B
ra

nc
he

s
C

ov
er

ed

Mode
baseline

20%-GB-MUT

100%-GB-MUT

Figure 8.3: Ripple branches covered over time (10 runs per experiment). 100 generations
of 50 individuals each.

In conclusion, there is no significant difference between using a lower of higher mutation
rate for the GB-MUT fuzzer, as long as the rate is not too low (0%) or high (> 80%)
so the balance between exploration and exploitation is preserved. We do observe that
the grammar-based mutational approach performs significantly better than the baseline in
achieving branch coverage. This means that there is potential for the evolutionary fuzzing
approach to improve upon the GB-MUT approach. For both of the SUTs, no server errors
(5xx HTTP status codes) were found.

8.1.2 Evolutionary fuzzing

The results showed that grammar-based mutational fuzzing is able to outperform traditional
grammar-based fuzzing. We now investigate whether the GB-EVO fuzzer is more effective
at obtaining branch coverage than the baseline and the GB-MUT fuzzer.

In the previous experiments we saw that the baseline performs quite well, likely due to
the large search space. For the next experiments we increase the population size to 100 to
take into account the large search space. Furthermore, we use a mutation-generation ratio
of 80%. This allows us to better observe the effects of the evolutionary selection, which
differentiates the GB-EVO fuzzer from the GB-MUT fuzzer. We use the diversity-based

77

8. RESULTS

fitness function, as defined in Section 6.3.1.

Figure 8.4 displays the distribution of the branches covered by the three fuzzing approaches:
the baseline, GB-MUT fuzzing with an 80% mutation-generation ratio, and GB-EVO fuzzing
with an 80% mutation-generation ratio. The medians and IQRs are presented in Table 8.3.
We observe that the GB-EVO approach achieves a greater number of branches covered
compared to the baseline and GB-MUT approach. The median number of branches covered
over the 10 experiment runs is 7742: 240 branches more than the baseline. The GB-EVO
fuzzer performs significantly better than the baseline (p-value=0.006), but is not able to
significantly outperform the GB-MUT approach with regards to the final obtained cover-
age. Furthermore, the 80%-GB-MUT fuzzer is not significantly better than the baseline.
This was also the case for the experiments with a population size of 50, described in Sec-
tion 8.1.1. The significance statistics are visible in Table 8.4.

ba
se

lin
e

80
%

-G
B

-M
U

T

80
%

-G
B

-E
V

O

Mode

7000

7250

7500

7750

B
ra

nc
he

s
C

ov
er

ed

mode
baseline

80%-GB-MUT

80%-GB-EVO

Figure 8.4: Branches covered on Ripple (10 runs per experiment) after 100 generations of
100 individuals each. One generation equals 100 fitness evaluations and on average takes
approximately 22 minutes to be evaluated.

78

8.1. Evolutionary fuzzing performance

Branches covered

Median IQR

baseline 7502 87.25
80%-GB-MUT 7573.5 164.25
80%-GB-EVO 7742.5 117.50

Table 8.3: Median and IQR of covered
branches for Ripple (after 10000 evalua-
tions).

GB-MUT fuzzers vs baseline

p-value Â12

80%-GB-EVO 0.006 0.09 (large)
80%-GB-MUT 0.557 0.33 (medium)

Table 8.4: Wilcoxon rank-sum test
and Vargha-Delaney statistic for Rip-
ple branch coverage (after 10000 evalu-
ations).

The GB-EVO fuzzer does not obtain significantly higher coverage than the GB-MUT fuzzer.
However, we consider the efficiency of the fuzzing approaches as well, by looking at the
obtained coverage over time. The branch coverage obtained over time for the GB-EVO,
GB-MUT and the baseline is plotted in Figure 8.5.

0 500 1000 1500 2000

Time (minutes)

5000

6000

7000

8000

B
ra

nc
he

s
C

ov
er

ed

Mode
baseline

80%-GB-MUT

80%-GB-EVO

Figure 8.5: Ripple branches covered over time (10 runs per experiment).

It can be seen that baseline starts off best. This makes sense as in the beginning of the
fuzzing process there are lots of easily reached branches to be discovered. A high level
of exploration at this point yields better results. After several generations, the baseline is
surpassed by the evolutionary fuzzer. In Figure 8.6 we can see that this is around the 35th
generation (i.e. after 3500 individuals have been processed). The GB-MUT is much slower,

79

8. RESULTS

overtaking the baseline only after the 80th generation.

0 25 50 75 100

Generation

5000

6000

7000

8000

B
ra

nc
he

s
C

ov
er

ed

Mode
baseline

80%-GB-MUT

80%-GB-EVO

Figure 8.6: Ripple branches covered over generations (10 runs per experiment). One gen-
eration contains 100 individuals and equals 100 fitness evaluations. On average, evaluation
of one generation takes approximately 22 minutes.

To see whether the GB-EVO fuzzer is significantly faster in obtaining coverage than the
GB-MUT fuzzer, we compute the AUC. Table 8.5 contains the median values and IQR for
the AUC of coverage over time. The corresponding significance statistics can be found in
Table 8.6. Furthermore, the distribution of the AUC is depicted in Figure 8.7. The GB-
EVO fuzzer has a significantly greater AUC, which means it achieves structural coverage
significantly faster than the GB-MUT fuzzer.

AUC of covered branches

Median IQR

baseline 9,493,502.5 245,052.25
80%-GB-MUT 9,336,025 167,497
80%-GB-EVO 9,523,086 130,390.50

Table 8.5: AUC for covered branches
over time for Ripple (10000 evaluations).

GB-MUT fuzzers vs GB-EVO

p-value Â12

baseline 1.00 0.52 (negligible)
80%-GB-MUT 0.01 0.78 (large)

Table 8.6: Wilcoxon rank-sum test and
Vargha-Delaney statistic for Ripple AUC
for covered branches over time (10000
evaluations).

80

8.2. Suitability of fitness functions

80
%

-G
B

-M
U

T

80
%

-G
B

-E
V

O

Mode

9000000

9250000

9500000

A
re

a
U

nd
er

th
e

C
ur

ve

mode
80%-GB-MUT

80%-GB-EVO

Figure 8.7: AUC for branches covered over time (10 runs per experiment).

In summary, evolutionary fuzzing was able to achieve near 7750 of branches in the Rip-
ple blockchain system. This is a significant improvement from traditional grammar-based
fuzzing (which covered 7500 branches). Furthermore, evolutionary fuzzing achieves struc-
tural coverage significantly faster than grammar-based mutational fuzzing.

8.2 Suitability of fitness functions

From the previous sub question we found that evolutionary fuzzing (with a suitable fitness
function) obtains a significantly higher amount of covered branches than grammar-based
fuzzing. Furthermore, we saw that evolutionary fuzzing is more efficient than grammar-
based mutational fuzzing, achieving coverage quicker.

The second research sub question focuses on the suitability of various fitness functions
for evolutionary fuzzing. The sub question is:

2. How do different fitness functions for the evolutionary fuzzing approach compare
to each other with regards to structural coverage?

In Chapter 5, four fitness functions aimed at promoting diversity were defined. The above

81

8. RESULTS

experiments were conducted using the DiversityBasedFitness fitness function. We want
to investigate whether the same results in performance can be achieved by using simpler
fitness functions, specifically the SkeletonFitness, the SkeletonAndComplexityFitness, and
the SimpleResponseFitness functions.

The DiversityBasedFitness clusters responses based on the keys (i.e. parameter names)
in the response object and the values of these keys. SkeletonFitness only considers the keys
of a response object and disregards the values. SkeletonAndComplexityFitness is essentially
a weighted version of SkeletonFitness, with the weight being the number of parameters in
the request object. Lastly, SimpleResponseFitness considers the keys of a response object,
and groups the values into a limited number of predefined categories.

The GB-EVO approach with the above fitness functions was evaluated on the Ripple sys-
tem. Again, a mutation-generation ratio of 80% and a population size of 100 was chosen.
The experiments were run for 100 generations. The median and IQR values are shown in
Table 8.7. Figure 8.8 illustrates the distribution of obtained branch coverage by using the
four fitness functions in the GB-EVO fuzzer.

The significance of the differences can be found in Table 8.8. All fitness functions
perform significantly worse than the DiversityBased fitness. Moreover, they cannot (sig-
nificantly) outperform the baseline. This means that the SkeletonFitness, SkeletonAndCom-
plexityFitness and SimpleResponseFitness are inadequate objective functions to promote
diversity in the population.

Branches covered

Median IQR

baseline 7502 87.25
skeleton 7571.5 169.75
skeletonAndComplexity 7563.5 62.50
simpleResponse 7505 128.75
diversityBased 7742.5 117.50

Table 8.7: Median and IQR of covered
branches for Ripple (after 10000 evalua-
tions).

Fitness functions vs diversityBased

p-value Â12

simpleResponse 0.002 0.09 (large)
skeletonAndComplexity 0.049 0.19 (large)
skeleton 0.010 0.16 (large)

Table 8.8: Wilcoxon rank-sum test
and Vargha-Delaney statistic for Rip-
ple branch coverage (after 10000 evalu-
ations).

Since all fitness functions, including the DiversityBasedFitness, make use of the response
skeleton to differentiate between individuals, the significant difference in performance must
be related to the consideration of values in the fitness functions.

Both response skeleton fitness functions completely disregard the parameter values in
object responses. These results show that parameter names alone are insufficient to (cor-
rectly) differentiate between response objects. During experimentation, we found that the

82

8.2. Suitability of fitness functions

ba
se

lin
e

sk
el

et
on

sk
el

et
on

A
nd

C
om

pl
ex

ity

si
m

pl
eR

es
po

ns
e

di
ve

rs
ity

B
as

ed

Mode

7000

7250

7500

7750

B
ra

nc
he

s
C

ov
er

ed

mode
baseline

skeleton

skeletonAndComplexity

simpleResponse

diversityBased

Figure 8.8: Ripple branches covered over generations (10 runs per experiment). One gen-
eration contains 100 individuals and equals 100 fitness evaluations, and on average takes
approximately 22 minutes to be evaluated.

Ripple system can return various error responses with exactly the same parameter fields
(e.g. error message and error code), while the values of parameters are different, indicat-
ing that different code paths were exercised. The skeleton fitness functions are unable to
differentiate between such responses. In case of the SimpleResponseFitness, the predefined
categories used are simply too basic to differentiate between different parameter values. For
example, many distinct error message values would fall under the category of a short string.
With more refined categories tailored to the SUT, this approach might perform better (but
would no longer be black-box).

83

8. RESULTS

Ultimately, the DiversityBasedFitness is the only fitness function of the four that, used in
the GB-EVO fuzzer, outperforms not only the traditional grammar-based fuzzer (with re-
gards to effectiveness), but also the GB-MUT fuzzer (with regards to efficiency). This illus-
trates that the parameter values of a response object play a crucial role in the identification
of unique response objects.

84

9
Discussion

In Chapter 8 the results of this study were presented. The discussion with regard to the
conducted research is outlined in this chapter. Section 9.1 discusses the implemented tool
that was developed in this study and its findings. Section 9.2 elaborates on the limitations
of this research.

9.1 Grammar-based Evolutionary Fuzzer for RPC-APIs

This study introduces a black-box grammar-based evolutionary fuzzing approach, specif-
ically tailored to JSON-RPC systems. To the best of our knowledge, GEFRA is the first
open-source fuzzing tool to find faults in JSON-RPC APIs. Since no access to the source
code is required, GEFRA can generate tests for JSON-RPC systems written in any program-
ming language, running on local or remote servers.

The main finding of this research is that evolutionary fuzzing, using an objective fitness
that favours diversity in individuals, can improve upon traditionally grammar-based fuzzing
for JSON-RPC APIs. The designed objective fitness makes use of agglomerative clustering
in a way that it is scalable for large populations of individuals.

Fuzzers optimize code coverage, and there is a strong relation between increasing code
coverage and finding code defects. Evolutionary fuzzing obtains a greater structural cov-
erage in comparison to grammar-based fuzzing, provided it is given enough time. More-
over, this research has shown that offspring selection with a suitable objective function im-
proves efficiency of fuzzing in comparison to random selection. When the fuzzer runs for a
short period of time, exploration is preferred over exploitation, in which case a traditional
grammar-based fuzzer is more effective. The minimum run time required for evolutionary
fuzzing to be effective depends on the complexity of the SUT. For a complex system (with
many API operations and corresponding parameters), evolutionary fuzzing requires more
time to be able to obtain greater structural coverage than grammar-based fuzzing.

Ideally, we would like to evaluate what percentage of all code branches can be covered with
evolutionary fuzzing. Unfortunately, we do not know how many branches can be reached
through the API. The complexity of the benchmark systems make it impossible (for a non-

85

9. DISCUSSION

expert) to determine the number of reachable branches (out of the total 3,177 branches
in Ganache and 130,246 branches in Ripple). Nevertheless, the total obtained coverage
by the evolutionary fuzzer (including the branches run by starting the server) is however
thought to be relatively low: 11.6% for Ganache (after four generations ≈ 1.5 hours) and
11.5% for Ripple (after 100 generations ≈ 36 hours). It should be noted that there was
large computational overhead in the experiments due to the computation of coverage in
between generations and re-starting the server for each test. Compared to this, the internal
operations of the fuzzer (e.g. mutations, clustering) are negligible with regards to time. This
is supported by the observation that different fuzzing approaches do not differ with regards
to the time it costs (on average) to evaluate one population.

Furthermore, GEFRA was not able to find faults (i.e. system server errors) in the bench-
mark APIs. This was not surprising considering the fact that both systems are widely used
and well-tested.

9.2 Limitations

While producing reasonably good test cases (that discover new code paths), GEFRA has
a number of limitations. Successful fuzzing depends on the quality of random mutations.
By repeating experiments multiple times we tried to limit the influence of this randomness,
but it is possible that a result is either much better or worse than it would be on average.
From the experiments we found that that after 10 iterations (each experiment was run 10
times) the standard deviation of obtained branch coverage can reach a value up to 5.6% of
the mean for Ripple; 0 for Ganache.

Besides the stochastic nature of fuzzing, there are other aspects of the fuzzing approach
that influence the findings of this research. Firstly the quality of the OpenRPC specifica-
tion determines the coverage that can be achieved. Without a correct specification of API
operations and parameters, it is impossible to pass validation barriers in the code, resulting
in many branches remaining unvisited. For the Ripple system, we constructed an Open-
RPC specification ourselves based on the available information. While handled diligently,
parameter constraints could have been misinterpreted, or incorrectly converted to regular
expressions1 (in the case of string values), leading to the generation of syntactically in-
valid requests. Added to this, the tested JSON-RPC APIs are both related to blockchain
applications, and for Ganache we were unable to evaluate the effectiveness of evolutionary
fuzzing due to the limited number of branches that could be covered. The results may not
be generalisable to other JSON-RPC systems.

Secondly, the performance of GEFRA depends on hyper-parameters, which can be cum-
bersome to tune for each SUT. Specifically, the population size and mutation-generation
ratio have a great effect on the obtained code coverage. Due to the time it takes to run ex-

1A regular expression (or regex) is a sequence of characters that specifies a search pattern in text.

86

9.2. Limitations

periments, it is difficult to find an optimal combination of parameters. One experiment (10
iterations) can take up to 36 hours. We define an acceptable baseline for the parameters that
is able to illustrate the effectiveness of evolutionary fuzzing but performance may be better
with hyper-parameters that are tweaked to the SUT.

87

10
Conclusions

In this chapter, the research questions as first presented Chapter 2 are answered. First, the
research sub-questions are answered in Section 10.1. The answers form the basis for the
conclusions of the main research question in Section 10.2. Finally, several suggestions for
future work are discussed in Section 10.3.

10.1 Research sub questions

1. How effective is evolutionary fuzzing with regards to structural coverage in comparison
to grammar-based fuzzing for JSON-RPC APIs?

In order to evaluate the effectiveness of the two grammar-based fuzzing approaches, a tool
(named GEFRA) was developed that implements both strategies. Using the tool, experi-
ments were run on two JSON-RPC systems: Ganache and Ripple. The implemented fuzzing
approaches sent several generations of individuals (JSON-RPC requests) to the System Un-
der Test (SUT). The initial population is generated based on a grammar, which is con-
structed from the OpenRPC specification of the SUT, While grammar-based fuzzing only
generates new individuals based on a grammar, evolutionary fuzzing selects a group of in-
dividuals each generation and mutates them to build the next generation.

We found that traditional grammar-based fuzzing is able to obtain a maximum coverage of
246 branches on Ganache, and 7502 on Ripple, depending on how long the fuzzer runs. In
the conducted experiments (of 10,000 evaluations), no hard limit was reached (yet).

Evolutionary fuzzing with random selection (GB-MUT fuzzing) can improve upon tra-
ditional grammar-based fuzzing for Ganache by only 1 branch (an increase of < 1%), which
leaves no room for a fitness function to optimise the selection fuzzing process. For Ripple,
GB-MUT fuzzing consistently increased the number of covered branches by approximately
2% for 5,000 evaluations (a difference of 133 branches).

Evolutionary fuzzing with the use of an objective function was able to improve upon
the performance of GB-MUT fuzzing. Over time, evolutionary fuzzing was quicker to
obtain coverage. In comparison to traditional grammar-based fuzzing, evolutionary fuzzing

89

10. CONCLUSIONS

was able to significantly (p-value =0.006) obtain a larger branch coverage (an increase of
approximately 3.2% for 10,000 evaluations, a difference of 241 branches).

In conclusion, there is a significant difference in performance between evolutionary
fuzzing and traditional grammar-based fuzzing. Evolutionary fuzzing consistently achieves
greater structural coverage. Furthermore, a suitable fitness function can significantly in-
crease the efficiency of the fuzzer compared to random selection.

2. How do different fitness functions for the evolutionary fuzzing approach compare with
regards to structural coverage?

To evaluate which aspects are important in a fitness function, four fitness functions were
implemented:

1. SkeletonFitness

2. SkeletonAndComplexityFitness

3. SimpleResponseFitness

4. DiversityBasedFitness

Each has the same purpose: to favour individuals that yield response objects from the
SUT that are relatively unseen. We found that the fitness function that considers both the
keys and the corresponding values in the response object performs best. This DiversityBasedFitness
represents response objects as feature vectors and makes use of agglomerative clustering to
cluster the responses. The other fitness functions, which base the computation of the fitness
value on the response object keys only, or on basic value categories, do not perform better
than the grammar-based fuzzer.

Parameter values of a response object play a crucial role in the identification of unique
response objects. They should be taken into account when designing a fitness function for
a diversity-based evolutionary algorithm.

10.2 Research main question

The main research question Was:

How effective is grammar-based JSON-RPC fuzzing to achieve structural coverage?

We find that traditional grammar-based fuzzing is able to cover between a few hundred
(on Ganache) and thousands of branches (on Ripple). Grammar-based mutational fuzzing,
which enables the generation of faulty test cases, is able to increase the structural coverage
for both SUTs. Evolutionary fuzzing, provided with a suitable fitness function, is able

90

10.3. Recommendations for future work

to converge towards maximal structural coverage significantly faster than grammar-based
mutational fuzzing.

Overall, grammar-based JSON-RPC fuzzing approaches work well to obtain struc-
tural coverage. However, not surprisingly, the effectiveness of grammar-based JSON-RPC
fuzzing on a system depends strongly on the quality of the grammar. Furthermore, for
evolutionary fuzzing, a meaningful fitness function is required. Finally, from this research
follows that with regards to effectiveness and efficiency, an evolutionary fuzzing strategy is
a good choice for a JSON-RPC API fuzzer.

10.3 Recommendations for future work

While the evolutionary fuzzing approach is shown to be effective in obtaining structural
coverage, there is no critical selection for the tests that should be kept. Because the tool
operates in a black-box setting (and code coverage can thus not be used as a metric), is not
straightforward which of the generated test cases contribute to additional structural cover-
age. One could use a fitness threshold, but deciding upon this value is not simple either
(when is a test diverse enough?). Future work could focus on the design of a suitable se-
lection procedure to retain a minimal number of test cases while maximising the structural
coverage that they achieve.

Additionally, there are several techniques that can be applied to further optimise the
fuzzing approach. First of all, while the baseline is always eventually overtaken by the
evolutionary fuzzer, it is generally able to achieve branch coverage faster in the beginning.
A dynamic mutation rate might improve the performance of the evolutionary fuzzer. In the
beginning one might want to generate many test cases to cover all parts of the grammar, and
after some time the focus can shift towards mutation instead of generation (exploration vs
exploitation).

Furthermore, the current implementation was evaluated with one request to the API
per individual. Key-value pairs of response objects are therefore not stored and re-used in
follow-up requests. Related work showed that this is however an effective way to cover
deeper code paths. The fuzzing approach could be extended with this feature.

Finally, instead of single-objective function optimisation, future work could look into
multi-objective function optimisation. The current (best) fitness function only takes into
account the response object that was retrieved for a response. A multi-objective function
can consider other relevant information as well, such as the HTTP status code or the time it
takes for the server to respond to a request.

91

PART III

Communication Design for
Innovation

11
Introduction

In Part II of this report, we evaluated a grammar-based fuzzing approach that automatically
generates test cases, which can expose faults in the code base of blockchain applications.
The results of Part II show that this approach is effective in obtaining test coverage. Once
defects are known, the code may be patched to make the system more robust and to prevent
attacks that exploit these defects.

It is difficult, if not impossible, to find and patch all code defects, and even with fool-
proof code attacks may happen due to other vulnerabilities like human or physical vulner-
abilities (e.g. a flood or power outage). Part III of this report addresses media framing of
responsibilities concerning common blockchain attacks and discusses what developers can
do to influence how responsibilities are currently assigned.

First, in Section 11.1 the problem description that was introduced in Chapter 1 is dis-
cussed in more detail. Next, in Section 11.2 the main research question and sub-questions
are formulated. Section 11.3 describes the contributions of this research. Finally, in Sec-
tion 11.4 the structure of the Science Communication research part of the thesis is presented.

11.1 Problem description

Today computer and smartphone users, especially employees, are expected to be aware of
the risks associated with using the internet. To increase risk awareness, training, education
programs and information campaigns are organized. Unfortunately these turn out to be
largely ineffective [4]. It is often stated that the weakest link in the cyber security chain
is human. This may be true, but with numerous elements in the cyber security chain, it is
not clear this means that users should be responsible for their cyber security. Cybersecurity
is in its infancy when we compare it to more established fields such as traditional crime
prevention. If a bike owner forgets to lock his bike and it gets stolen, insurance will not
reimburse the stolen bike, as this precaution is widely regarded as a reasonable expectation,
and it is clear that the bike owner is responsible for taking this precaution.

When it comes to blockchain technology, it is not evident who is expected to take re-
sponsibility for the prevention of cyber attacks on blockchain applications and for handling
the consequences. Victims of cyber attacks are often held (partly) responsible for the crime,

95

11. INTRODUCTION

owing to not having taken deliberate action to make themselves less vulnerable [93]. This is
an example of victim blaming. The phenomenon of victim-blaming occurs when the victim
of a crime or abuse is held partly or entirely responsible for the actions committed against
them [105]. In other words, the victims are held accountable for the maltreatment they have
been subjected to. If they fail to take all the right precautions and end up a victim, a certain
degree of responsibility for the consequences rests with them [93].

The media play a role in this phenomenon. The way in which news media cover an is-
sue influences how people, including victims and perpetrators, think [51, 86]. Attitudes can
be changed through media consumption [51]. The nature of media coverage of blockchain
attacks is still unknown in the Netherlands. The fact that victims of cyber attacks are often
victim-blamed [81] highlights the practical relevance of a study that investigates the fram-
ing of responsibilities in the media.

Blockchain technology eliminates the need for trusted third parties and with this disrupts
how things are normally done by centralised institutions. In centralised institutions gen-
erally a group, or sometimes an individual, can control the other involved parties and in
essence force them to collaborate [106]. Because it is clear who is in charge of the decision-
making, centralised institutions can be held responsible for their actions. In blockchain
networks on the other hand, decisions are made by a large group of distributed participants
that are not individually significant for the result. This means that participants automati-
cally take on responsibilities that are otherwise absorbed by a trusted third party [84, 135].
In fact, Østbye [84] found that despite the decentralized nature of blockchain technology,
participants cannot legally use a lack of causal links as a justification to evade responsibility.

Many of the harms caused by cyber attacks are addressed by general and specialized
laws and regulations [84]. However, in blockchain attacks legal liability can only reach so
far to hold attackers liable due to problems with enforcement and the fact that attacks are not
always covered by legal norms. In some cases, there is a basis for liability for developers or
trading platforms, while there is none for attackers [84].

Although the legal responsibility of participants in blockchain applications has been
studied in the literature [84, 85, 135], it is unknown what happens when blockchain attacks
happen in reality. Attackers cannot always be held responsible, either because of limits in
regulation, or because attackers cannot be identified. This leaves the question on what this
means for who is responsible to deal with the consequences of blockchain attacks in prac-
tice.

Cybersecurity threats to blockchain applications are accelerating and becoming more im-
pactful over time [45]. Strawser and Joy Jr [112] evaluated whether the average person is
able to implement adequate cyber security measures, and whether there exists a prevailing
belief that failing to meet a security norm is a matter of negligence. The authors arrive at
the conclusion that vigilance is a duty of all parties involved but there should be reasonable

96

11.2. Research aim and questions

security solutions provided that users can effectively use without any special expertise.
However which security solutions are reasonable and practical is undefined. Moreover,

it is unclear to what extent developers of applications can (and perhaps should) influence
how security responsibilities are divided and communicated. Applications could be de-
signed in a more user-friendly and restricted way, taking away some of the responsibilities
from users, and thus creating a more secure environment. Such design rules could even be
imposed by legislation. There are some studies about design of frameworks that take away
part of the freedom of users to ensure better security [61, 98], as well as studies that try to
find ways to encourage users to assume more responsibility for cyber security, such as the
study by LaRose et al. [65]. They found that the average user can be induced to take a more
active role in online safety.

Lack of clarity when it comes to user responsibilities is not helpful to improve secu-
rity. Guidelines and rules for developers and users to arrange cyber security responsibilities
for blockchain applications in a way that is suitable for users and effective at preventing
blockchain attacks are necessary.

11.2 Research aim and questions

Before moving on to the research question, the research aim as proposed in Chapter 1 is
repeated.

RA2: The aim of this research is to gain insights into whom is held responsible for cyber se-
curity of blockchain applications and to evaluate how blockchain developers can influence
the division of responsibilities.

This research aim is reframed into the research question as follows:

How are cyber security responsibilities assigned for blockchain attacks in the
Netherlands and what can blockchain developers do to influence this?

The main question is divided into three sub-questions, of which the first is the main part of
the research, while the second and third sub-question serve to offer a different perspective
on blockchain responsibilities. The first step of this research is to investigate who is depicted
by news media as responsible for the prevention and consequences of blockchain attacks,
and leads to the following sub-question:

1. How is cyber security responsibility for blockchain applications framed in news
media channels in the Netherlands?

97

11. INTRODUCTION

The media framing of responsibilities may differ from who is effectively responsible. Since
culprits are generally difficult to find after the attack, they are usually not the ones paying
for the damage. We obtain a general idea of who is responsible legally and in practice
for dealing with the consequences of common blockchain attacks through the second sub-
question:

2. How do legal experts view responsibilities for the consequences of blockchain
attacks in the Netherlands?

It is not reasonable to assign responsibility for cyber security to the average user if they can-
not be expected to take the precautions they are supposed to take. In addition to the framing
of responsibilities and legal responsibilities, we aim to gather some insights into what role
developers can play to assign responsibilities in a more effective way that improves cyber
security when designing a blockchain application. The third sub-question therefore is:

3. What can developers do to establish an effective division of responsibilies?

Each sub-question aims to view blockchain responsibilities from a different yet relevant
perspective. Sub-question 1, which forms the main part of the research, reflects on how
news media portray responsibilities concerning blockchain security. Sub-question 2 and 3
consider blockchain responsibilities from different perspectives to present the reader with
a broader outlook on blockchain security responsibilities. Sub-question 2 touches upon
the legal implications of the use of blockchain applications, while sub-question 3 seeks
to highlight various aspects of how the current implementation of blockchain technology
impacts user responsibilities.

11.3 Contributions

In this work, we try to create a deeper understanding of the way responsibilities are as-
signed for cyber security in blockchain applications, and use this to formulate suggestions
for developers to assign responsibilities in a way that improves cyber security. The main
contributions are:

• A theoretical framework and coding schedule: We develop a theoretical framework
to form the basis for a textual content analysis to gather insights into causal and
treatment responsibilities. Based on this theoretical framework a coding schedule
is constructed that can be used to perform a content analysis focused on framing of
responsibilities.

• Insights into responsibilities: This research provides new insights into how news
media depicture responsibilities concerning blockchain attacks and how this differs
from practice.

98

11.4. Outline

• Various considerations regarding blockchain technology: This research touches
upon several aspects of the current implementation of blockchain and the (potentially
unwanted) effects of this on user responsibilities.

11.4 Outline

Part III of the thesis consists of Chapters 11 to 19. In the current chapter, Chapter 11, the
research topic is introduced and the research questions are presented. In Chapter 12, the
reader is provided with a background information on cyber security and blockchain attacks
to get acquainted with blockchain and its security challenges. Subsequently, Chapter 13
introduces the methods that are used to answer the research questions.

In Chapter 14, we construct a theoretical framework for blockchain security responsi-
bilities based on framing theories. The created theoretical framework is linked to content in
the media to form a coding schedule. Next, in Chapter 15 the results of the corresponding
content analysis are presented. Afterwards, in Chapter 16, a discussion on who is respon-
sible in practice for the consequences of blockchain attacks according to legal experts can
be found. Then, in Chapter 17 we evaluate how the implementation of blockchain technol-
ogy affects user responsibilities. Chapter 15, Chapter 16 and Chapter 17 present the results
corresponding to sub-questions 1, 2 and 3 respectively.

The research question and its sub-questions are answered in Chapter 18. Finally, this
thesis will be finished with a discussion in Chapter 19.

Figure 11.1 illustrates the relation of the upcoming chapters to the research sub ques-
tions and used methods.

Figure 11.1: Overview of the upcoming chapters.

99

12
Background

This research aims to investigate who is held responsible for cyber security against attacks
performed on blockchain applications and to evaluate how blockchain developers can influ-
ence the division of responsibilities. In this chapter, the context of the research is established
by providing the reader with a background on cyber security in Section 12.1. Additionally,
different types of blockchain attacks and corresponding vulnerabilities are discussed in Sec-
tion 12.2.

12.1 Cyber security

Cyber security is a broad concept and there exist many definitions for it, some of which
have been investigated by Craigen et al. and Schatz et al. [31, 101]. The authors state that
the definitions of cyber security are highly variable (inconsistent), context-bound, and often
subjective. In order to reason about the responsibility for cyber security, there should not
be any confusion regarding the term. Craigen et al. argue that a concise, broadly acceptable
definition is needed to facilitate technological and scientific advances [31].

Such a definition is provided in the ISO/IEC 27000-series: a series of best practice rec-
ommendations, published by the ISO (International Organization for Standardization) and
the IEC (International Electrotechnical Commission). The ISO/IEC 27032:2012 document
defines cyber security as the “preservation of the confidentiality, integrity and availability
of information in cyberspace” [121]. This definition will be used throughout this study. The
aspects of cyber security in the definition are based on the CIA (Confidentiality, Integrity
and Availability) triad [27], visualised in Figure 12.1 [125]. The triad contains three cate-
gories of threats to information: unauthorised information release (threat to confidentiality),
unauthorised information modification (threat to integrity) and unauthorised denial of use
(threat to availability).

In line with the definition for cyber security presented above, a cyber security attack
can be described as any attack performed to compromise the confidentiality, integrity or
availability of information in cyberspace.

101

12. BACKGROUND

Figure 12.1: The CIA triad

12.2 Blockchain attacks

The blockchain technology implements all three elements of the CIA triad by default [37,
72]. Blockchain is public, but it’s tamper-proof and node failure tolerant. It provides se-
curity without the need or help of a trusted third party. Still, although blockchain provides
improved security compared to traditional database systems, like all technology, it is not
flawless. Its preventative mechanisms may impair its resistance to other types of frauds and
maliciousness [130].

Blockchain applications have proven to be a popular target for criminals. In the first
nine months of 2019, losses resulting from digital currency crime added up to 4.4 billion
dollars (around 3.6 billion euros) [26]. Based on a dataset containing 86 incidents during
the period of 2011-2018, Chia et al. [28] propose three main classes of blockchain attacks:

1. Operational Security (OPSEC): Incidents compromising an organisation or individ-
ual’s control of information and access to (business-critical) assets.

2. Smart Contracts: Incidents resulting from improperly written smart contracts de-
ployed and executed on a blockchain.

3. Consensus Protocol Incentives: Incidents arising from malicious exploitation of con-
sensus protocols that create opportunities and benefits for blockchain participants.

Traditional OPSEC-related issues remain the largest source of incidents in the dataset (66%),
while blockchain-specific incidents related to Smart Contracts and Consensus Protocol In-
centives make up for respectively 22% and 12% of the incidents [28]. All three classes are
described in more detail below.

102

12.2. Blockchain attacks

OPSEC

OPSEC is a container class of blockchain incidents based on traditional cyber attacks. At-
tacks in this class are not specific to the blockchain technology itself. Attacks are generally
possible due to a lack of sufficient (available and standard) cyber security solutions [28].
Blockchain applications are an attractive target for criminals because of the significant
amounts of cryptocurrencies that go around.

Most blockchain OPSEC incidents are related to private key theft [66]. Blockchain uses
public-key cryptography to give users ownership over their blockchain data (e.g. cryptocur-
rency units). The person controlling the private key is the owner of the blockchain assets.
Blockchain applications use the private key to confirm a user’s identity and complete a trans-
action on the blockchain. The processs of a transaction does not require the disclosure of
the identities of participants. Blockchain addresses are not tied to a person and the security
of assets solely depends on the safekeeping of the private key. The security of the private
key is a precondition for information being unfalsifiable [87]. Each blockchain address has
a corresponding private key. While the address can be shared, the private key should be kept
secret as it provides access to the user’s funds. Unlike traditional public key cryptography,
blockchain users are responsible for their own private keys. A private key is generated and
taken care of by the user instead of a third-party. Users therefore act as their own bank. If
a user loses their private key, it will be impossible to get access to his digital assets on the
blockchain, and there is nothing anyone can do about it [128].

The private key of a user is generally stored in a user wallet. User wallet credentials are
therefore a target for criminals. To obtain wallet credentials, attackers use both traditional
methods like social engineering techniques and dictionary attacks (brute force attacks based
on a list of likely passwords) and new sophisticated methods like finding weaknesses in
cryptographic algorithms. Such weaknesses are for example vulnerable signatures, flawed
key generation, or hot/cold wallets (wallets that are (or are not) connected to the internet
have certain vulnerabilities).

For the most part the security issues with the blockchain technology are not connected
to the algorithms used in the blockchain itself, but to the human factor. Humans are often
called the weakest link in information security systems [21, 92, 122]. This is no exception
for blockchain technology, where generally the consumers of the technology are the easiest
targets [75]. People tend to overestimate the security of the blockchain and overlook its
weaknesses.

Social engineering is increasingly being applied to cryptocurrency users [128]. Crimi-
nals try to obtain a user’s name, password, or private keys [10]. One of the most common
serious threats is phishing, in which criminals attempt to steal user credentials using fake
emails or websites or both [7]. The goal of phishing can be anything from trying to get
people to send money, hand over sensitive information, or even just download malware (for

103

12. BACKGROUND

example a keylogger) unwittingly. Blockchain-related social engineering schemes include
for example clone phishing (creating fake copies of trustworthy websites, applications or
emails), social networking (creating fake accounts to spread phishing links posing as a well
known person) and fake cryptocurrency wallets (placing fake wallets in popular app stores
to retrieve a user’s private key) [7]. Andryukhin [7] distinguishes two types of phishing
attacks: social engineering schemes and technical schemes. Social engineering schemes are
based on deception and subsequent independent wrong actions of the victim, while technical
schemes use vulnerabilities and imperfections of software and infrastructure.

Chainalysis reported that more than 50% of all cybercrime revenue in 2017 was gen-
erated from phishing scams without hacking the blockchain infrastructure itself (i.e. so-
cial engineering schemes) [114, 129]. So far, social engineers targeted mainly individual
users and profited financially from their attacks. However, with the increasing adoption of
blockchain technology in the business environment, criminals will draw their attention to
companies and their employees [128]. They will use similar tactics to gain access to com-
panies’ information and information systems.

While fraudulent investing scams (tricking users into investing by promising a high return)
are a blockchain-related social engineering scheme [7], it is not part of the OPSEC class
since such incidents do not compromise the control of information and access to blockchain-
related assets. The blockchain technology is essentially used as a masquerade to lure victims
in, but blockchain applications are not a target.

Smart Contracts

Smart contracts are applications running on top of the blockchain. They are intelligent,
self-checking contract applications that provide a foundation for digital asset ownership
and a range of decentralized applications in the blockchain domain [49]. The health, in-
surance and business management sectors are examples where smart contract applications
are used [100]. Smart contracts eliminate the need for an intermediary when two parties
want to exchange valuable digital or physical assets. They are used as follows. First, two
parties create a smart contract between them. Both parties remain anonymous. The contract
is stored on the public blockchain ledger. Once the contract is placed within the blockchain,
it is nearly impossible to have it removed [100]. The contract terms and conditions are
written as code and include triggering events (like deadlines). When the conditions are ful-
filled by the desired time, the contract gets triggered to execute the digital transaction. A
visualization of the lifecycle of a smart contract is presented in Figure 12.2 [46].

Smart contracts incidents occur when a smart contract does not work the way it was
intended, introducing faults that adversaries may exploit [28]. Smart contracts are an ap-
plication built on top of a blockchain network and therefore have security vulnerabilities
due to program faults (deficiencies in programming language, execution environment, and

104

12.2. Blockchain attacks

Figure 12.2: The lifecycle of a smart contract

coding style) [69, 95]. These coding vulnerabilities can lead to a large variety of attacks that
circumvent the rules intended by a smart contract. Smart contract attacks typically exploit
code bugs to drain funds from the contract wallet [100].

Consensus Protocol Incentives

In contrast to OPSEC-related and Smart Contract incidents, Consensus Protocol Incentives
incidents relate to the core technology of blockchain. In Chapter 1 it is described that to
update the public blockchain ledger, nodes (i.e. servers) in the blockchain network create
consensus. Consensus is created based on a consensus protocol. A consensus protocol
ensures a common, unambiguous ordering of blocks, and guarantees the integrity and con-
sistency of the blockchain across all nodes [39]. Commonly used consensus protocols are
Proof-of-Work (POW) and Proof-of-State (PoS) [13].

To reach consensus with POW, all nodes in the network are constantly performing com-
putations (mining) to solve complex mathematical problems. This is required to validate
new blocks of transactions and costs computational power. To give incentive to miners to
perform these computations, rewards (blockchain assets, i.e. cryptocurrency) are handed
out to the miner that first solves the mathematical problem. Mining pools (a collection of
miners) use shares to track activities of each miner. Other consensus protocols such as PoS
employ different tactics to assign the work and corresponding rewards.

Consensus mechanism vulnerabilities can allow a criminal to break the rules intended by

105

12. BACKGROUND

the blockchain. Attacks on the consensus protocol include the 51% attack (where some-
one that holds the majority of the hashrate in the network can perform double spending or
halt payments between some or all users), the alternative history attack, the Finney attack
and similar attacks that can result in double spending for the attacker [6]. Furthermore,
eclipse attacks, which occlude a merchant’s view of the blockchain ledger by alienating
him from the rest of the network, can be used as a tool to increase the effectiveness of a
double spending attack [16].

Moreover, mining pool vulnerabilities allow attackers to apply different tactics to gain
more shares so they will receive a greater portion of the reward. Examples of attacks are
the block withholding attack (intentionally not submitting any found blocks to the pool,
making the mining pool lose all rewards contained within the block) and the bribery attack
(rational miners accept bribes from attackers to maximize their profit, enabling the attacker
to get a high percentage of the hash power). Such attacks sabotage the effort of other min-
ers, resulting in the attacker finding the cryptographic solution following from the mining
first and claiming more shares of the reward.

The majority of incidents arising from incentives are due to second-order, unintended ef-
fects of blockchain use [28]. The improper mining of a block or the censorship of nodes are
examples of such unintended effects.

106

13
Methodology

In Chapter 11 the research question and sub-questions that are central in this research were
presented. In this chapter, the methods used to answer these questions are discussed.

The first sub-question was addressed with a literature study and a content analysis. The
literature study helped shape a theoretical framework. How this literature study was per-
formed is elaborated on in Section 13.1. The theoretical framework formed the basis for
the content analysis, which is further explained in Section 13.2. To answer the second
sub-question we conducted four exploratory interviews with legal (research) experts. This
is talked about in Section 13.3. The third sub-question was answered by talking to two
blockchain development experts. This is explained in in Section 13.4. A summary of the
methods used for the different sub-questions and where their results can be found in the
thesis is given in Section 13.5.

13.1 Literature study

The starting point of the first research sub-question (How is cyber security responsibility
for blockchain applications framed in news media channels in the Netherlands?) was to
discover commonly used theories and frames regarding victim blaming and responsibility
framing. A systematic literature review was conducted to find studies that provide insights
into how responsibilities are assigned in news media. The primary goal of this literature
study was to shape a framework of theories that could form the basis of a coding schedule
for a content analysis. Literature was searched using Scopus and the following query:

(framing OR frames OR framework)

AND (victim)

AND (blame OR blaming OR culpability

OR responsibility OR responsible)

AND (blamed OR assigned OR assigning

OR attribution OR attributed)

AND (media OR news OR text)

107

13. METHODOLOGY

The aim of the literature search is to find frames that can be applied to cyber crimes where
there is at least one party that fell victim. The focus of the search query therefore is on
media, news or textual framing in scenarios where there is a victim and culpability is at-
tributed in some way. From the search resulted 47 scientific articles. After reviewing all
titles and abstracts, 15 relevant studies were selected for full text reading. Articles that did
not perform or discuss a study about media framing in the context of crimes were excluded
from the literature review.

The theoretical framework that was created based on the frames as encountered in the
literature study is presented in Chapter 14. The constructed theoretical framework is used
to perform a media content analysis focused on blockchain security responsibilities.

13.2 Content analysis

The aim of the first research question is to investigate how news media attribute responsi-
bilities for blockchain security. For this purpose a quantitative content analysis was con-
ducted. The content analysis was performed following the strategy as described by Hansen
and Machin [48]. The authors define the following eight key steps in the process of media
content analysis.

1. Define the research problem

2. Review relevant literature and research

3. Select media and sample

4. Define analytical categories

5. Construct a coding schedule and protocol

6. Pilot the coding schedule and check reliability

7. Data preparation and analysis

8. Report findings and conclusions

The research problem was described in Section 11.1. By analysing a body of communi-
cation, we want to gather insights into how media sources frame responsibilities for the
prevention and consequences of blockchain attacks. In other words, when blockchain secu-
rity is compromised, who is deemed responsible according to news media?

Relevant literature was explored in the systematic literature review as described in Sec-
tion 13.1. Based on the studies that were found and the theories that were deemed relevant,
the theoretical framework that is presented in Chapter 14 was constructed.

108

13.2. Content analysis

The body of media content that is analysed consists of online news sites in the Nether-
lands. By performing the content analysis on digital media, a large body of text can be
analysed due to the high accessibility of online news. Furthermore, offline news media has
been gradually displaced by online news media [54]. There is a decay of print newspapers
in many countries around the world [18]. Online news media provides us with a reasonable
reflection of the news that society interacts with.

Initially it was opted to retrieve media articles using LexisNexis. LexisNexis provides
access to known and most read news papers. However, access to LexisNexis is only possible
through universities and Delft University of Technology did not have the required access.
Therefore news articles were selected using the media content tool Coosto. This tool offers
the functionality to search news websites and forums using a search query. It yields a varied
selection of media that is online accessible. Because the Coosto search is thorough, the re-
sults also include several duplicate articles, social media posts, and comments placed under
articles. Furthermore, many articles found in the search are not from renown newspapers
but rather from blockchain enthusiast magazines or general news sites that report articles
written by other news sources.

To sample relevant content an elaborate query is constructed. The unit of analysis is a
written news article that (1) discusses a blockchain application, usually related to decentral-
ized finance or cryptocurrencies, (2) discusses an attack related to a blockchain application
and (3) mentions the presence of a victim or perpetrator. Briefly put, the query indicates the
context (that should concern blockchain), that an attack took place, and that there is some-
one mentioned in the text that is either a victim or an attacker (some sort of responsibility
needs to be discussed).

Specific cryptocurrencies not included in query since this would lead to articles about
attacks unrelated to blockchain applications, that have some sort of a payment in an cryp-
tocurrencies. Additionally, because many articles discussed an attack that made use of
cryptocurrency payments to blackmail victims, while the attack itself had nothing to do
with blockchain applications, the term ransomware was excluded in the query. The used
query is the following:

(blockchain OR blockchainapplicatie OR blockchainapplicaties

OR defi OR "decentralized finance"

OR "digital currency" OR "digital currencies"

OR crypto OR cryptocurrency OR cryptocurrencies OR cryptovaluta

OR cryptocoin OR cryptocoins OR cryptomunt OR cryptomunten

OR "digitale munt" OR "digitale munten")

AND (hack OR hacks OR attacks OR attack OR aanval OR aanvallen

OR oplichting OR opgelicht OR fraude OR scam OR scams

OR gestolen OR verlies OR diefstal OR gejat

109

13. METHODOLOGY

OR misleidende OR misleidend OR misleiding

OR kwijtraken OR kwijtgeraakt)

AND (slachtoffer OR slachtoffers OR gedupeerde OR gedupeerd OR gedupeerden

OR schuldig OR schuldige OR schuldigen OR aanvaller OR aanvallers

OR dader OR daders OR crimineel OR criminelen OR hacker OR hackers

OR verantwoordelijk OR verantwoordelijke OR verantwoordelijken)

- ransomware

Articles were selected over the timespan of a full year. This way a variety attacks that
happened throughout the year are covered in the media. The selected time period is from
September 2020 up to and including August 2021. In total, 1103 articles over the course of
1 year were retrieved from the Coosto search.

All articles were considered for the analysis but only relevant ones were further ana-
lyzed. For articles to be included in the analysis, the following selection criteria needed
to be met. First, the article must without a doubt discuss an attack related to a blockchain
application (e.g. not an attack that uses cryptocurrencies as payment). Second, the article
must be a news article. Finally, the article must be accessible. Articles behind a paywall
or with an invalid link are not further investigated. One exception are articles from NRC
Handelsblad, since a subscription was used to access these articles.

The coding scheme began with an initial set of categories based on existing research on
frames in responsibility attribution and was expanded during the coding of the sampled ma-
terial. We use a top-down approach: the dimensions that are analysed to classify content
are directly related to the theoretical framework that was constructed. The focus of the con-
tent analysis is to investigate what parties are assigned causal and treatment responsibility
in news media. By considering both types of responsibilities, we acknowledge that there
is a difference between being responsible for causing an attack, and being responsible for
preventing or resolving the situation.

The type of blockchain attack that is discussed in an article may influence other cate-
gories in articles that are analysed. The analytical categories should thus include the type of
blockchain attack, the party that is assigned causal responsibility, the reason why, the party
that is assigned treatment responsibility, and the treatment that is mentioned. The party
mentioned as the victim and perpetrator are relevant dimensions as well since they indicate
who news media portray to be harmed by a blockchain attack and who inflicted this harm.
This may differ from who is assigned causal or treatment responsibility.

Another analytical category that is analysed is the type of framing that is adopted by
the articles. The type of framing that is used tells us whether blockchain attacks are seen
as a societal issue or simply as individual issues dissociated from larger social contexts.
Episodic framing tends to cause audiences to attribute guilt to individuals, while thematic
framing puts blame on societal factors beyond an individual’s control [131]. Other relevant

110

13.2. Content analysis

dimensions are the name of the newspaper and the date of the article.

Based on the analytical categories a formal coding schedule was constructed. The cod-
ing schedule is presented in Table 13.1. Each column in the coding schedule corresponds to
the individual variables analysed (such as the date an article was written, the newspaper, or
type of blockchain attack discussed) and each row corresponds to each news article.

Article
Number

Date Newspaper Type of Attack Framing
Involved Parties Causal Responsibility Treatment Responsibility

Victim Perpetrator Party Category Party Category

Table 13.1: The coding schedule

To guide the coding process, a coding protocol was written. The coding protocol serves as
a manual for coders, giving clear instructions about how the coding is to be done. It helps
ensure that the content analysis is replicable and that the results are reliable. The complete
coding protocol is included in Appendix B.

The coding protocol was piloted on a small sample of the selected media content to gain
insight into the content which was to be analysed and to fine-tune the coding schedule and
protocol. This was done to avoid loss of ability to relate different values and variables to
each other. Additional (missing) categories of classification were added to the causal and
treatment responsibility variables based on the articles encountered in the pilot.

Moreover, a partially inductive approach was taken during the content analysis by
adding new values to variables in the coding protocol (e.g actors that were depicted as
having causal or treatment responsibility) as the coding progresses and as new values (e.g.
new actors having causal or treatment responsibility) appeared.

The reliability of the coding process was tested by having three independent coders
(fellow students) perform coding on a subset of the samples based on the coding protocol.
The subset consisted of 5% (i.e. 15) of the relevant articles. There should be insignificant
divergence in how the same material is being categorised by different coders. The Krippen-
dorff’s alpha statistic was applied to measure intercoder reliability. Krippendorff’s alpha
can be used with more than two coders and minimises the effect of chance in agreements
on the codes [79]. In this case it was chosen to compare the external coders separately to
the main coder. Coefficients of 0.80 or greater are generally considered fairly reliable [79],
although 0.667 is the lowest conceivable limit. Table 13.2 shows the computed Krippen-
dorff’s alpha for three external coders. Coder 1 and Coder 2 coded the articles without
additional information; Coder 3 was given an explanation of the coding protocol. Krippen-
dorff’s alpha was computed for the different categories in the coding schedule. The average
Krippendorff’s alpha was 0.55, which is low and indicates unreliability. This likely is re-
lated to a lack of understanding of blockchain attacks and framing concepts. Coder 3, to

111

13. METHODOLOGY

whom an explanation about the coding protocol (and the concepts in it) was provided, was
able to achieve an average Krippendorff’s alpha above the conceivable limit (0.74).

Krippendorff’s alpha Coder 1 Coder 2 Coder 3 Average

Framing 0.46 0.67 0.34 0.49
Type of attack 0.64 0.41 0.94 0.66
Victim 0.41 0.53 0.65 0.53
Perpetrator 0.004 0.33 0.64 0.32
Causal responsibility 0.82 0.26 0.91 0.66
Causal category 0.83 0.16 0.82 0.60
Treatment responsibility 0.58 0.45 0.91 0.65
Treatment category 0.67 0.009 0.72 0.47

Average 0.55 0.35 0.74 0.55

Table 13.2: Krippendorff’s alpha calculated for three other coders.

For managing and analysing the content analysis data Microsoft Excel was used. The
relevant codes, as described in the content analysis protocol, are entered into the coding
schedule. Based on the complete content analysis data, comparisons across the different
news articles are made.

The key findings of the content analysis that provide insights into how blockchain secu-
rity responsibilities are assigned by news media are reported in Chapter 15.

13.3 Interviews with legal professionals

In order to answer the second sub-question (How do legal experts view responsibilities
for the consequences of blockchain attacks in the Netherlands?), online semi-structured
interviews were conducted with professionals specialised in the legal field. The interviews
were conducted in order to explore legal considerations and relevant legislation when it
comes to blockchain-related crimes. Specifically, the legal experts were asked to give their
thoughts and opinions in regard to who is legally responsible for the prevention of the attack,
who is likely to be found responsible for the consequences and what aspects are important
to consider when determining who is responsible. Insights from these interviews enable us
to see how responsibility for blockchain security in theory (liability) and practice (whether
enforcement is possible) are related.

Since it makes sense for responsibilities of blockchain participants to be dependent
on the root cause of the considered attack, it was decided to discuss a variety of cases
with the legal professionals to cover different aspects of blockchain security. The selected
cases are real life examples of the different types of blockchain attacks as presented in
Section 12.2. Although attacks that do not include a blockchain application do not fall
under any of the three blockchain attack types, fraudulent schemes that use blockchain as a
cover are very prevalent in today’s society (as seen in the performed content analysis) and

112

13.4. Interviews with blockchain researchers

therefore it may be worth to investigate as well. An additional category was therefore added
to include blockchain investment schemes. This leaves us with four blockchain attack types:
OPSEC incidents, Smart Contract incidents, Consensus Protocol Incentives, and Fraudulent
Schemes.

The legal experts were selected from different universities in the Netherlands (Univer-
sity of Leiden, University of Groningen, VU Amsterdam) that research legal implications of
technology, or organisations affiliated with such universities (the Dutch Blockchain Coali-
tion). It was important that the experts had experience with (research in) the legal field, and
that they were knowledgeable about blockchain technology. Several (eight) experts were
contacted to set up an interview.

In total, four interviews were conducted. Each interview lasted about 60 minutes and
was conducted through an an online video connection using Microsoft Teams. The inter-
view protocol containing a description of the selected cases and questions is enclosed in
Appendix D.1. The summaries of the interviews can be found in Appendix D.2. The ques-
tioned experts were asked to validate our interpretation of the answers given during the
interviews. The findings resulting from the interviews are discussed in Chapter 16.

13.4 Interviews with blockchain researchers

The third sub research question (What can developers do to establish an effective division of
responsibilies?) focuses on the influences that blockchain developers have on user responsi-
bilities. Exploratory non-structured interviews were conducted with blockchain researchers
to identify relevant aspects of blockchain designs that have an impact on the responsibilities
that users are (automatically) assigned. The question that was focused on is how developers
play a role in defining (perhaps unwittingly) responsibilities for users or other parties. It was
decided to have an open discussion with the experts due to the large scope of this question.
This way, there was enough time during the interview to further explore any relevant points
that came up.

The blockchain experts were selected from universities in the Netherlands (University
of Amsterdam, Delft University of Technology) that conduct research on blockchain tech-
nology and/or its societal implications. The contacted experts perform research in the field
of blockchain security, either from a technical or societal point of view. Four experts were
contacted to set up an interview.

In total, two interviews were conducted. Each interview lasted about 60 minutes and
was conducted through an an online video connection using Microsoft Teams. The inter-
view protocol containing an introduction to the topic is enclosed in Appendix E.1. Our
interpretation of some interesting concerns that were raised per interview can be found
in Appendix E.2. The blockchain experts were asked to validate our interpretation of the
insights gathered from the interviews. The results of the interviews are discussed in Chap-
ter 17.

113

13. METHODOLOGY

13.5 Methods outline

The upcoming chapters answer the three research sub-questions. The corresponding meth-
ods for each reseach sub-question can be found in Table 13.3.

RSQ Method Chapter

1
Literature study (theoretical framework) 14
Media content analysis 15

2 Interviews legal experts 16
3 Interviews blockchain experts 17

Table 13.3: Methods used per research sub-question and the chapter in which they are
answered.

114

14
Theoretical framework

This chapter presents the literature study of this research project, as well as the theoretical
framework that was constructed based on it. First, relevant frames that were encountered
in the literature study are described in Section 14.1. Then, in Section 14.2, these theories
are linked to the context of this research, namely blockchain security, to shape a theoretical
framework that is the basis for the content analysis.

14.1 Frames

In crisis communication the most common frame is attribution of responsibility, which of-
fers causes of or potential solutions to a crisis [132]. Other frames that are currently used
in news media are the human interest frame, the conflict frame, the economic consequences
frame, and morality frames [58, 131]. For the context of this research, the attribution of re-
sponsibility frame is most relevant as the aim of the content analysis is to investigate which
parties are attributed responsibilities.

The attribution of responsibility frame is found in news stories where individuals, groups,
organisations or governments are assigned blame or credit for an action [58]. Siefkes-
Andrew and Alexopoulos [109] explain that the attribution theory addresses how people
interpret the causes of their own and others’ behaviors. Following from the theory, people
attribute other’s actions to either internal or external causes. Internal attribution means that
the cause of behaviour is attributed to an internal quality, while external attribution assigns
the cause of behaviour to an external event or situation that is outside the person’s control.

Variations in framing can shift thinking, attitudes, and decisions [23]. Furthermore, how
news media frame an issue, and its causes and solutions, influences not only how the public
thinks, but how victims and perpetrators think [86]. Semantics matter as well [42, 109]. For
example, it was found that the use of active verbs influenced participants to attribute more
responsibility to the story characters compared with the use of passive verbs [109].

Several of the studies that were reviewed differentiated between episodic and thematic
framing [42, 86, 131]. Media frames issues primarily as either episodic or thematic [131].
Episodic frames dominate media coverage [86]. They discuss isolated incidents. Thematic

115

14. THEORETICAL FRAMEWORK

framing refers to the broader portrayal and presentation of issues through information about
their systemic causes, trends, and consequences.

Studies have shown that attributions of cause and responsibility are sometimes corre-
lated with episodic or thematic frames [86, 131]. The way an issue is framed influences
who the public believes is responsible for a problem and who is responsible to remedy a
situation. Episodic frames tend to cause audiences to attribute guilt to individuals, while
thematic frames puts blame on societal factors beyond an individual’s control.

In general, readers who encounter episodic framing tend to attribute blame to individ-
uals and tend to support individual-level solutions. By contrast, readers who encounter
thematic framing are more likely to call for broader, systematic changes [42, 86]. By fo-
cusing on anecdotal events and personal stories, the media emphasises deficiencies in and
modifications of the individuals’ choice of behaviours that are dissociated from larger so-
cial contexts, thereby potentially diverting public attention away from systemic flaws in the
political, social, and economic environment [131].

In many of the reviewed literature, the research involved victim blaming [2, 25, 32, 36,
42, 91]. Individuals often tend to irrationally blame victims for the maltreatment they have
been subjected to. This behaviour is supported by just-world beliefs [25]. Individuals typi-
fied by strong just-world beliefs believe the world is a fair and predictable place: bad things
only happen to people who deserve it.

Various articles that were reviewed in the literature study used the attribution of respon-
sibility frame in the media content analysis they performed [57, 86, 132]. The attribution of
responsibility frame includes both causal responsibility (blaming someone) and treatment
responsibility (demanding a solution from someone) [58]. Causal and treatment responsi-
bility can be attributed either to the individual or to institutions [132]. Newspaper stories
most often focused on a single case (episodic framing), and not on the issue as a whole
(thematic framing), which would lead to more framing of individual behavior [86].

14.2 Theoretical framework

The attribution of responsibility frame as described above is placed within the context
of blockchain security. In Section 12 three types of blockchain attacks are discussed.
These types of blockchain attacks correspond to different layers of blockchain applications.
OPSEC incidents relate to the application layer of the blockchain technology. OPSEC inci-
dents attack not the blockchain technology itself but applications or users that make use of
it. Smart Contract incidents are in the Smart Contract layer.

116

14.2. Theoretical framework

Although attacks that do not include a blockchain application do not fall under any of
the three blockchain attack types, fraudulent schemes that use blockchain as a cover are
very prevalent in today’s society. It was therefore decided to include this category in the
framework as well. These kind of attacks can be seen as an external layer, not part of the
blockchain.

The theoretical framework, connecting the types of blockchain attacks to involved parties,
is presented in Figure 14.1. The involved parties are selected based on what parties were
identified in the framing studies and missing parties that were encountered in news articles.

Figure 14.1: Causal and Treatment responsibility

For a party to be attributed causal responsibility the cause must be identified. Several cate-
gories were set up, again based on what was encountered in the framing studies and on what
was encountered in news articles about blockchain attacks. The categories are presented
in Figure 14.2. For blockchain applications, possible causes are the characteristics of the
blockchain, the attractiveness of blockchain technology to perform an attack, the newness of
the blockchain technology, the lack of security of blockchain applications, faulty behaviour
by blockchain applications, and finally a lack of communication by blockchain applica-
tions. For third parties (like crypto exchanges) possible causes for attacks are negligence
and sloppiness. For users it could be due to bad user behaviour and/or lack of awareness. In-
sufficient regulation, poor law enforcement and lack of supervision on the use of bockchain
applications are reasons for governments to be causally responsible. For attackers reasons
are ethical hacking, for purposes of fun, social status, or political reasons. These categories
are explained in detail in the coding protocol in Appendix B.

117

14. THEORETICAL FRAMEWORK

Figure 14.2: Causal responsibility categories

Similar to causal responsibility, corresponding categories for treatment responsibility
of involved parties are shown in Figure 14.3. Again, the categories are explained in detail
in the coding protocol in Appendix B. For treatment responsibility the attackers are not a
responsible party. Instead, society can play a role as seen in the reviewed literature studies,
in the form of providing education, financial support or guidance in the aftermath of the
attack, and covering blockchain attacks more in the media to give users a realistic image of
blockchain risks.

The constructed framework forms the basis for the content analysis. In the content anal-
ysis, news articles are analysed with respect to causal and treatment responsibility. The
categories (the causal responsibility parties and categories, as well as the treatment respon-
sibility parties and categories) that are present in the framework, form the categories in the
coding schedule.

118

14.2. Theoretical framework

Figure 14.3: Treatment responsibility categories

119

15
Media framing of responsibilities

In Section 13.2, it was explained how the media content analysis was performed. This was
done according to the coding protocol that is included in Appendix B. In this chapter, the
results of the content analysis are presented and analysed.

First, in Section 15.1, some general observations that came from the analysis are dis-
cussed. Afterwards, the concept of causal responsibility and the way it presented itself in
the news articles is elaborated on in Section 15.2. In Section 15.3 the same is done for the
concept of treatment responsibility. The results are evaluated in Section 15.4.

15.1 General observations

The content analysis was conducted on a total of 1103 articles. The articles were retrieved
using Coosto and a search query (described in Section 13.2) focused on finding articles
dated between September 2020 and August 2021 on blockchain attacks. 828 (75.1%) of the
articles were deemed irrelevant. Articles were classified as irrelevant if they were not a news
article or did not discuss a blockchain attack (51.2%), if they were a duplicate (29.2%), or
if they were inaccessible (either due to a paywall or a broken link) (19.6%). The analysis
was conducted on the other 275 (24.9%) relevant articles.

In far out the most of the relevant articles (88.4%) episodic framing was used. Only for
11.6% of the articles thematic framing was the chosen approach. This aligns with the fact
that episodic framing is prominent in news media [86].

Figure 15.1 and Figure 15.2 illustrate the distribution of the blockchain attacks that are
discussed in the analysed news articles. Articles can discuss one or more type of blockchain
attack. 32% of the articles did not specify what kind of attack happened, or the description
was too vague to distinguish between the different types of attacks. Most articles discussed
a fraudulent investment scheme (33.5%) or an OPSEC incident (28.4%). This is expected
since such attacks employ regular social engineering techniques, which occur frequently as
they require low effort. As described in Chapter 12, more than half of cybercrime revenue
was generated from social engineering attacks without hacking the blockchain infrastructure
itself. Smart contract incidents and Consensus Protocol Incentives (CPI) incidents have very
low media coverage (4.7% and 2.9% respectively). This could be due to the fact that these

121

15. MEDIA FRAMING OF RESPONSIBILITIES

attacks are more complex to understand and thus explain to readers. It is a possibility that
articles that did not specify the type of attack actually discussed a smart contract of CPI
incident.

Figure 15.1: The types of blockchain attacks that were reported on in the articles.

Figure 15.2: The percentage of articles that discuss a type of blockchain attack. n = 275.

The parties that were identified as the victim of blockchain attacks are illustrated in
Figure 15.3a. An article can mention multiple parties as a victim or perpetrator. Users
and investors (individuals wanting to invest in blockchain assets) are mentioned as being
a victim of blockchain attacks in farout most of the articles (61.1%). Interestingly, the
blockchain application (which comes down to the people behind the application) is also
often portrayed as a victim (36% of the cases). Celebrities whose images were used for
schemes and external organization(s) are least often mentioned as being a victim.

Almost all analysed articles (90.5%) mentioned the actual attacker as the perpetrator

122

15.2. Causal responsibility

(a) Victim (b) Perpetrator

Figure 15.3: Party mentioned as the victim and perpetrator of the attack

of the attack. This is visible in Figure 15.3. In 5.1% of the articles the perpetrator was not
mentioned at all. In 4.4% of the articles employee(s) of a third party (in this case a telephone
network company which was mentioned in various articles on the same case) were identified
as being the attacker(s). In Section 14.1 it was described that the use of active verbs can
influence participants to attribute more responsibility to those characters compared with the
use of passive verbs. The fact that attacker(s) are almost always mentioned in the articles
can be an indicator for attribution of responsibility to the attacker(s).

15.2 Causal responsibility

Attribution of causal responsibility indicates that a party was blamed for causing the inci-
dent. In 197 of the relevant articles (71.6%) causal responsibility was not attributed to any
party. In 78 articles (28.4%) it was. Figure 15.4 shows the distribution of who was assigned
causal responsibility in the remaining articles.

Figure 15.4: Assigned causal responsibility

123

15. MEDIA FRAMING OF RESPONSIBILITIES

Blockchain was mentioned most often (in 39 articles) as being causally responsible,
closely followed by the attacker(s) (in 36 articles). In several articles (11) a third party was
attributed causal responsibility. In few articles, the end user(s), and the government were
attributed causal responsibility (4 and 2 articles respectively).

In total there were 78 articles (28.4% of all significant articles) that attributed causal
responsibility to one or more parties. Table 15.1 presents the occurrences of all categories
of causal responsibility in total and per type of attack. Figure C.1 in Appendix C presents
the same data in a visual way. We will first consider all type of attacks. Afterwards each
attack type will be analysed separately.

Party Causal category
All attacks OPSEC Smart Contract CPI Scheme Unspecified

Article
count

%
Article
count

%
Article
count

%
Article
count

%
Article
count

%
Article
count

%

Blockchain
application

Lack of security
Attractiveness
Blockchain characteristics
Newness
Lack of communication
Faulty behaviour

26
6
3
3
2
1

66.7
15.4
7.7
7.7
5.1
2.6

1
2
-
-
1
-

25
50
-
-

25
-

5
-
-
1
-
-

100
-
-

20
-
-

2
1
2
-
-
-

50
25
50
-
-
-

-
2
-
-
-
-

-
100

-
-
-
-

19
2
1
2
1
1

76
8
4
8
4
4

Blockchain responsible 39 50 4 26.7 5 45.5 4 100 2 25 25 61.0

Third party
Negligence
Sloppiness

7
4

63.6
36.4

3
3

50
50

-
-

-
-

-
1

-
100

4
1

80
20

-
-

-
-

Third party responsible 11 14.1 6 40 - - 1 25 5 62.5 - -

User(s)
Lack of awareness 4 100 - - 1 100 - - 3 100 - -
User(s) responsible 4 5.1 - - 1 9.1 - - 3 37.5 - -

Government
Insufficient regulation 2 100 - - - - - - 1 100 1 100
Government responsible 2 2.6 - - - - - - 1 12.5 1 2.4

Attacker(s)

Ethical hacking
Fun
Political

26
9
7

72.2
25

19.4

-
-
6

-
-

100

8
1
-

100
12.5

-

-
-
-

-
-
-

-
-
-

-
-
-

18
8
1

81.8
36.4
4.5

Attacker(s) responsible 36 46.2 6 40 8 72.7 - - - - 22 53.7
Total causal responsibility 78 28.4 15 19.2 11 84.6 4 50 8 8.7 41 46.6

Total significant articles 275 100 78 100 13 100 8 100 92 100 88 100

Table 15.1: Causal responsibility

It is important to note that the percentages of the different causal categories do not
add up to 100% due to the fact that articles can attribute causal responsibility based on
multiple categories of reasons. The shown percentage is computed by dividing the articles
that attributed causal responsibility to the corresponding party by all articles that attributed
causal responsibility to one or more parties.

Moreover, some articles discuss multiple types of blockchain attacks, which is the rea-
son that the sum of the article counts for the different types of blockchain attacks exceeds
the total attributed causal responsibility article count of 78.

15.2.1 Overall analysis

While it was already visible in Figure 15.4 that blockchain is most often attributed causal
responsibility, it now becomes clear that in half of all articles that attribute causal responsi-
bility, it is to blockchain applications. The same holds for attacker(s), albeit 46.2% rather

124

15.2. Causal responsibility

than 50%.

For blockchain applications, the category that was most often used to assign causal respon-
sibility was Lack of security. 66.7% of all articles that attributed causal responsibility to
blockchain applications did so because of a lack of security. Examples of quotes in articles
that led to this categorisation indicate that an attack was possible due to a vulnerability in the
system code or that insufficient precautions were taken to handle an attack. Specific exam-
ples are ”Door een fout in de code van het netwerk te misbruiken, kon de hacker een nieuw
paar creëren met een lage liquiditeitspool.” and ”De beveiligingsmaatregelen [...] kwamen
onvermijdelijk onder vuur te liggen tijdens de hack en er werden zorgen geuit over de re-
den waarom het bedrijf geen gebruik had gemaakt van cold storage (waarin privé-sleutels
offline worden opgeslagen).”.

The Attractiveness of blockchain technology led in 15.4% of articles (that attributed
causal responsibility to one or more parties) to attribution the blockchain application. Ex-
amples of article quotes indicate that blockchain offers lucrative opportunities to crimi-
nals due to its immutability or the anonymity that it offers. Specifically, the quotes are:
”Volgens [...], blijven blockchainprojecten lucratieve mogelijkheden aan cybercriminelen
bieden. Anders dan in het traditionele financiële systeem kunnen frauduleuze transacties
niet worden teruggedraaid.” and ”Een gerichte aanval loont, want dankzij de bitcoinhausse
is identiteitsdiefstal lucratiever dan ooit. Via de achterliggende blockchaintechnologie kun
je bitcointransacties volgen, maar wie de transactie doet, blijft anoniem. De pakkans is
vrijwel nul.”.

The other categories occurred significantly less often in the analysed articles. Blockchain
characteristics was responsible for attribution of causal responsibility in 7.7% of the cases.
A quote corresponding to this category is ”Doordat de altcoin gebruik maakt van het Proof-
of-Work-mechanisme, is het netwerk kwetsbaar voor dergelijke aanvallen. Het is hiermee
een groot nadeel die bij het mechanisme komt kijken”, which says that the POW mechanism
makes the network vulnerable for attacks.

The same percentage of 7.7% holds for the Newness of blockchain applications (”Er
gaan grote bedragen rond in deze markt, maar veel projecten staat nog in de kinderschoenen
waardoor af en toe een nieuwe fout wordt ontdekt en gelijk wordt misbruikt door hackers” -
indicating that many blockchain projects are still in their infancy).

Furthermore, Lack of communication was in 5.1% of the cases a reason for attribution
of causal responsibility to blockchain applications. ”[...] cryptocurrency exchange Coin-
base ligt momenteel onder vuur vanwege een naar verluidt ‘vreselijke klantenservice’, nadat
het crypto-bedrijf meldingen kreeg van gebruikersaccounts die zijn gehackt en hierdoor geld
hebben verloren., Het probleem zou vervolgens verergerd zijn, doordat de crypto-exchange
niet reageerde op ondersteuningsverzoeken.”, indicating that the crypto-exchange provided
terrible customer service, is an example of a quote that led to this categorisation.

Finally, Faulty behaviour of blockchain applications (”De exchange heeft inmiddels

125

15. MEDIA FRAMING OF RESPONSIBILITIES

laten weten dat zij niet op tijd zijn geweest met het offline halen van het platform. Dit zou
mogelijk een oplossing kunnen zijn geweest gedurende de cyberaanval.” - indicating that the
exchange did not take their platform offline in time, which could been a solution to mitigate
consequences of the attack) was just in one article mentioned.

For Attacker(s) three categories of causal responsibility were come across in the analysed
articles. Most often used as a reason for causal responsibility was Ethical hacking, which
was in 72.2% of the articles where the attacker(s) were found responsible the cause. Quotes
in articles that illustrate this category are ”Het bedrijf liet vervolgens in een verklaring weten
dat het om een ethische hacker ging (Mr. White Hat), die zocht naar zwakke plekken in de
ICT-systemen, om mensen met slechte bedoelingen voor te zijn.” (indicating that an ethical
hacker was looking for weak spots in the system to find them before criminals would) and
”Etherhood legde uit dat de cryptocurrency gestolen was om het veilig te houden, voordat
insiders de kwetsbaarheid konden misbruiken.” (indicating that cryptocurrency was stolen
with the sole purpose of keeping it safe).

The other categories were Fun (”‘Voor de fun’, antwoordde de meest succesvolle cryp-
tohacker ooit op de vraag waarom hij of zij Poly Network aanviel.” - indicating that the
hacker attacked tthe network for fun), responsible for 25% and Political reasons (”Ze zijn
volgens justitie in dienst van het Noord-Koreaanse leger; het geld dat zij stalen, zou naar
het regime van de Noord-Koreaanse leider Kim Jong-un zijn gegaan.” - indicating that at-
tackers were in service of a national army), 19.4%.

The third most mentioned party as being causally responsible are third parties. Negligence
was most often the reason (63.6%) for attribution of causal responsibility. An example quote
from the analysis that led to this category is the following: ”[...] voerde aan dat YouTube
niet alleen de frauduleuze advertenties niet heeft verwijderd, maar ook aanzienlijk heeft
bijgedragen aan de zwendel door gerichte advertenties te verkopen die verkeer naar de
video’s leidden en onterecht de YouTube-kanalen te verifiëren waarop de video’s stonden.”,
which indicates that a third party (YouTube) has not deleted fraudulent advertisements that
lured victims in.

Sloppiness (”In praktijk bleek het verificatieproces eenvoudig te omzeilen. Het was namelijk
mogelijk om beide verificatiecodes op de nieuwe simkaart uit te voeren.” - indicating that
the verification process was easy to bypass) is the other category and was mentioned in
36.4% of the cases where a third party was found causally responsible.

User(s) and governments were only attributed causal responsibility in 4 and 2 articles re-
spectively due to Lack of awareness (”De hoeveelheid stommiteiten waar ze vervolgens
ingetuind zijn zou hilarisch zijn als het niet zo verdrietig was geweest.” - indicating that
victims were incredibly stupid for believing the scammers) and Insufficient regulation

126

15.3. Treatment responsibility

(”Volgens de ministers zijn er zonder wettelijke maatregelen risico’s voor consumenten en
beleggers. Ook maken ze zich zorgen over misbruik van het virtuele systeem, zoals fraude,
witwassen en financiering van terrorisme.” - indicating that without legislation, consumers
and investors are at risk).

15.2.2 Analysis per attack types

It is likely that the type of blockchain attack influences what parties are attributed causal
responsibility. As explained in Section 12.2, the origins of the attack differ per blockchain
attack type. Consensus Protocol Incentives attacks are targeted at the core technology and
principles of blockchain. Smart contract attacks aim at exploiting vulnerabilities in the
code of smart contracts, which lie on top of the blockchain. OPSEC attacks and investment
schemes do not attack the blockchain infrastructure at all, but rather use other (third party)
platforms to target victims.

Figure 15.5 illustrates the attributed causal responsibility per type of blockchain attack.
Although the number of articles that classify a type of attack as well as attribute causal
responsibility are fairly low, it can be seen that blockchain applications are assigned causal
responsibility for all type of attacks.

Attacker(s) are attributed causal responsibility quite often for OPSEC (6 articles) and
smart contract (8 articles) incidents. This can be ascribed to the fact that there were sev-
eral news articles (from different sources) that covered the same case where adversaries
performed an OPSEC attack for political reasons, as well as numerous articles that covered
the same case where an ethical hacker performed an attack by exploiting a bug in a smart
contract.

Third parties are assigned causal responsibility a high number of times as well, specif-
ically for OPSEC attacks (6 articles) and schemes (5 articles). This could be related to the
fact that third parties are often to some extent involved in OPSEC attacks and investment
schemes.

End users are attributed causal responsibility only in a few articles that discussed a
scheme or smart contract attack.

15.3 Treatment responsibility

Attribution of treatment responsibility indicates that a party was expected to offer a solu-
tion for the incident or prevent similar incidents in the future. In 206 of the relevant articles
(74.9%) treatment responsibility was not attributed to any party. In 69 articles (25.1%) treat-
ment responsibility was assigned. Figure 15.6 shows the distribution of who was assigned
treatment responsibility in the remaining articles.

It can be viewed that user(s) are attributed treatment responsibility most often (in 45
articles), even more than twice as often as blockchain applications (which are attributed

127

15. MEDIA FRAMING OF RESPONSIBILITIES

Figure 15.5: Causal responsibility per type of blockchain attack

Figure 15.6: Assigned treatment responsibility

treatment responsibility in 18 articles). Society, third parties, and governments are attributed
treatment responsibility in very few articles (in 1, 5 and 6 article(s) respectively).

Table 15.2 presents the occurrences of all categories corresponding to the attributed
treatment responsibility. Figure C.2 in Appendix C shows the same data in a visual way.
Again, we will first analyse the results for articles on all type of attacks together before
considering the attributed treatment responsibility per type of blockchain attack.

Similar to the table presenting the results of attributed causal responsibility, the per-
centages of the different treatment categories do not add up to 100% due to the fact that
articles can attribute treatment responsibility based on multiple categories of reasons. The
shown percentage is computed by dividing the articles that attributed treatment responsibil-

128

15.3. Treatment responsibility

Party Treatment category
All attacks OPSEC Smart Contract CPI Scheme Unspecified

Article
count

%
Article
count

%
Article
count

%
Article
count

%
Article
count

%
Article
count

%

Blockchain
application

Compensation
Protection enhancement
Better communication
Punishments

11
7
1
1

61.1
38.9
5.6
5.6

1
-
-
-

100
-
-
-

-
1
-
-

-
100

-
-

-
-
-
-

-
-
-
-

1
-
-
-

100
-
-
-

9
6
1
1

52.9
35.3
5.9
5.9

Blockchain responsible 18 26.1 1 4.0 1 7.7 - - 1 5.6 15 60

Third party
Voluntary compensation
Basic security

3
2

60
40

2
1

66.7
33.3

-
-

-
-

-
-

-
-

1
1

50
50

-
-

-
-

Third party responsible 5 7.2 3 12 - - - - 2 11.1 - -

Users

Better behaviour
Self-protection enhancement
Acceptance

23
23
4

51.1
51.1
8.9

15
10
-

60
40
-

-
-
-

-
-
-

2
-
-

100
-
-

2
12
-

14
86
-

5
2
4

45.5
18.2
36.4

Users responsible 45 65.2 22 88 - - 2 25 13 72.2 10 40

Government
Regulation 6 100 - - - - - - 3 100 3 100
Government responsible 6 8.7 - - - - - - 3 16.7 3 12

Society
Education 1 100 1 100 - - - - - - - -
Society responsible 1 1.4 1 4 - - - - - - - -

Total treatment responsibility 69 27.3 25 32.1 1 7.7 2 25 18 19.6 25 28.4
Total significant articles 275 100 78 100 13 100 8 100 92 100 88 100

Table 15.2: Treatment responsibility

ity to the corresponding party by all articles that attributed treatment responsibility to one
or more parties.

Furthermore, due to the fact that some articles discuss multiple types of blockchain
attacks, the sum of the article counts for the different types of blockchain attacks exceeds
the total attributed treatment responsibility article count of 69.

15.3.1 Overall analysis

In 65.5% of all articles that attribute treatment responsibility, it is attributed to the end
user(s). This is a much higher number than the attributed treatment responsibility for
blockchain applications (26.1%), and for the other parties (8.7% for governments, 7.2%
for third parties and 1.4% for society).

Often mentioned solutions for end users to prevent blockchain attacks are Better behaviour
and Self-protection enhancement. Both treatment responsibility categories were present
in 51.1% of all articles that attribute treatment responsibility to users.

Two examples of quotes from articles that led to the better behaviour category are ”[...]
het belang van het beheren én beveiligen van je cryptocurrency. De meest veilige en dus
beste oplossing is een hardware wallet: een fysiek apparaat dat je private keys opslaat in
een beveiligde chip.” (the article provides tips for secure storage of keys) and ”Gebruikers
kunnen waardevolle accounts beter beveiligen met een app op de eigen telefoon, zoals de
gratis authenticator-apps van Google of Microsoft.” (the article advises users to use an
authenticator application to keep their accounts safe).

Likewise, ”Het advies is altijd alert te blijven met linkjes, codes of andere manieren om

129

15. MEDIA FRAMING OF RESPONSIBILITIES

u ergens naar toe te leiden. Geloof niet te gemakkelijk grote winsten die beloofd worden.”
(the article tells readers to be careful with urls and to not believe things that are too good
to be true) and ”Je moet desondanks goed opletten welk platform je gebruikt en wat de
beveiliging is.” (the article indicates that people should make sure the platform they are
using is safe) are quotes indicating self-protection enhancement.

Acceptance of blockchain security risks was mentioned as a solution in much less of
these articles (8.9%). An article quote illustrating this category is the following: ”“Het
maakt niet uit [...], er zit hier altijd een risico aan verbonden wanneer het gaat om slimme
contracten en de steeds complexere implementaties hiervan”, aldus het Value DeFi Proto-
col. ”, which indicates that there is always a risk when it comes to smart contracts.

As for blockchain applications, Compensation is described most often as a treatment (61.1%
of articles that attributed treatment responsibility to blockchain applications). An example
of an article that was classified in this category contained the quote ”Om de gebruikers te
helpen, heeft Roll een fonds van $500.000 gelanceerd. Dit zal worden verdeeld onder alle
getroffen gebruikers.”, which indicates that a fund was created by the blockchain application
to reimburse affected users.

The category of compensation is followed by Protection enhancement (38.9%), indi-
cated by quotes such as ”Betere beveiligingsprocedures zullen nodig zijn om DeFi-gerelateerde
criminaliteit terug te dringen.”, which describes that better security procedures for blockchain
applications are required to reduce crime related to decentralised finance.

Better communication (”De gebruikers zijn het hiermee duidelijk eens dat hier [bij de
klantenservice] een enorme verbeterslag gemaakt moet worden.”, indicating that customer
service should be improved) and Punishments (”Het hooggerechtshof van Londen beveelt
Binance de accounts van hackers [...] te volgen en te bevriezen. Als deze zaak slaagt, be-
haalt Binance mogelijk een van de grootste prestaties bij het veiligstellen van het geld van
zijn gebruikers [...]”, indicating that a blockchain application should freeze the assets of
hackers) are only described in one article each as a solution against blockchain attacks.

Governments, third parties and society are attributed treatment responsibility in very few
articles, especially compared to users and blockchain applications. When the government
was mentioned as being responsible for a treatment, the treatment entailed Regulation. A
quote that illustrates this is: ”De problemen [...] hebben duidelijk gemaakt dat er dringend
regelgeving nodig is voor de nieuwe en snel groeiende markt voor cryptovaluta’s. ”, saying
that regulation is required urgently).

As for third parties, Voluntary compensation (”T-Mobile heeft de meeste slachtoffers deels
gecompenseerd, maar de provider acht zich niet verantwoordelijk voor online accounts die
met een sms-code beveiligd zijn.”, indicating that a third party has voluntarily compensated
part of the victims but does not feel responsible) and Basic security (”[...] is geen uit-

130

15.3. Treatment responsibility

zonderlijk geavanceerde malware en kan door organisaties vrij eenvoudig worden geweerd
door basale onderdelen van de cybersecurity zoals spamfiltering, up-to-date Windows hosts
en systeem administratie, op orde te hebben”, indicating organisations can easily defend
against specific malware by implementing basic security measures) were classified as treat-
ments. Voluntary compensation was in 60% of the cases the reason for attribution of treat-
ment responsibility to third party, basic security in 40% of the cases.

Finally, one article mentioned that society could offer Education regarding blockchain
risks, illustrated by the quote ”De hogescholen laten weten geen aparte voorlichting te
geven over de risico’s van cryptovaluta. ,,Mogelijk volgt dat nog”, [...] ,,Als dit een prob-
leem blijkt, gaan wij ons hierover buigen.””, which states that universities of practice are
open to teaching about the risks of cryptocurrencies.

15.3.2 Analysis per attack type

Figure 15.7 presents the parties that were attributed treatment responsibility per type of
blockchain attack. While for smart contract and consensus protocol incentives incidents
almost no articles assigned treatment responsibility to a party, this is different for OPSEC
incidents and fraudulent investment schemes. Specifically for these type of attacks users are
attributed treatment responsibility in a relatively large number of articles.

Figure 15.7: Treatment responsibility per type of blockchain attack

For OPSEC incidents, users were classified as being treatment responsible in 22 articles,
whilst blockchain applications, third parties, and society were assigned treatment responsi-
bility in just a few articles (1, 3 and 1 article respectively). As can be seen in Table 15.2,
88% of all articles about OPSEC attacks that attributed responsibility, attributed it to users.
Overall, 28% of all OPSEC articles attributed treatment responsibility to users.

131

15. MEDIA FRAMING OF RESPONSIBILITIES

Similarly, in articles discussing a fraudulent investment scheme, users were classified
as being treatment responsible in 13 articles, which makes up for 72.2% (Table 15.2) of all
articles about schemes that attributed responsibility to one or more parties. Overall, 14% of
all articles about fraudulent investment schemes attributed treatment responsibility to users.
Blockchain applications, third parties, and the government were only found responsible in a
minimum amount of articles (the blockchain application was mentioned as being treatment
responsible in 1 article, third parties in 2 articles, and the government in 3 articles).

15.4 Discussion

In Chapter 11 it was explained that the way in which news media cover an issue influences
how people think, and attitudes can be changed through media consumption. The news
media content analysis illustrates that causal responsibility (blaming someone) was only
attributed in 28.4% of the articles, and treatment responsibility (demanding a solution from
someone) even less: in 25.1% of the articles. This indicates that the majority of news
articles do not pay attention to why a blockchain attack happened or what solutions could
prevent attacks in the future. This may contribute to confusion about blockchain security
responsibilities.

Furthermore, attacks related to smart contracts and consensus protocol incentives are
not reported on often. Of all analysed articles (275), 4.7% covered a smart contract attack
and 2.9% discussed an incident related to consensus protocol incentives. This is in contrast
to the coverage on OPSEC incidents and fraudulent investment schemes. OPSEC incidents
were talked about in 28.4% of the articles, while fraudulent investment schemes were the
topic of main interest in 33.5% of the analysed articles. It makes sense that fraudulent
investment schemes have high coverage in news media, as social engineering schemes are
prevalent in today’s society.

These results are similar to the analysed incidents in the study by Chia et al. [28], which
was discussed in in Section 12.2. If we dismiss articles that featured fraudulent investment
schemes (since these were not part of the constructed database of incidents by Chia et al.),
OPSEC incidents were covered in 79% of the media (against 66% in the database), smart
contract incidents 13% (22% in the database) and CPI incidents 8% (12% in the database).
This suggests that media coverage of different type of attacks conform mostly to the type of
attacks that happen in reality.

More than half (61.1%) of all analysed articles name individuals as the victim of the dis-
cussed blockchain attack, suggesting that in most cases of described blockchain attacks,
individuals suffer losses. Blockchain applications are also often portrayed as the victim of
the crime (in 36% of the articles). This is not surprising since blockchain applications are
often the direct target of perpetrators.

132

15.4. Discussion

Causal responsibility was most often attributed to blockchain applications (in 50% of
the articles that attributed causal responsibility), to criminals (46.2%) or to third parties
(14.1%). End users and governments were almost never attributed causal responsibility.
This shows that news media does not view blockchain attacks as the fault of end users, but
rather that of (besides the perpetrators) the blockchain or involved third party applications.

Common reasons for the attribution were lack of security for blockchain applications
(enabling criminals to perform the attack), ethical hacking for attackers, and negligence of
third parties. Ethical hacking has a high number of occurrences due to the fact that a very
large blockchain attack where an ethical hacker was involved was covered numerous times
in several news media. Lack of awareness from users and insufficient regulation by the gov-
ernment were mentioned just a few times. This leads to the belief that the current (lack of)
governmental regulation is not seen by news media as something that enables blockchain
attacks.

Users are attributed treatment responsibility most often out of all involved parties (in 65.2%
of the articles that attributed treatment responsibility), while society and governments (1.4%
and 8.7%) are almost never mentioned. This suggests that there is no the belief among so-
ciety that governmental regulation or better education can be a solution for the prevention
of blockchain attacks. Instead, users are expected to behave better (take more practical se-
curity measures) and to enhance their self protection (be more careful and skeptical when it
comes to blockchain applications). Blockchain applications are not off the hook either. A
little over a quarter (26.1%) of the articles that attributed treatment responsibility, attribute
it to blockchain applications. Solutions frequently mentioned are compensation to victims
or improving the security of the platform.

It was expected that the type of blockchain attack influences what parties are attributed
causal and treatment responsibility. A distinction can be made between Consensus Protocol
Incentives (CPI) incidents and smart contract incidents on the one hand, and OPSEC inci-
dents and fraudulent investment schemes on the other hand. CPI and smart contract attacks
are specifically aimed at the blockchain technology, while OPSEC incidents and fraudulent
investment schemes target individuals (often through third party platforms).

With this reasoning, one would expect that for CPI and smart contract incidents causal
responsibility would be most often assigned to blockchain applications (as they are pre-
sumed to run a secure application), whereas for OPSEC incidents and fraudulent invest-
ment schemes third parties would be found causally responsible. This was however not the
case. Blockchain applications were frequently found causally responsible in all types of
blockchain attacks, not significantly more times for smart contract or CPI incidents.

Looking at treatment responsibility, it became clear that for CPI and smart contract
incidents users were almost never attributed treatment responsibility, while they were at-
tributed treatment responsibility for OPSEC incidents and fraudulent investment schemes

133

15. MEDIA FRAMING OF RESPONSIBILITIES

many times, significantly more than any other party. This can be explained by the fact
that such attacks generally employ social engineering techniques, which means that victims
have control over the course of the attack (and could in principle prevent it).

In summary, we find that while news media frame blockchain applications as often be-
ing causally responsible for attacks, treatment responsibilities are still mostly assigned to
end users. This suggests that, according to news media, users are expected to take proper
security measures to prevent blockchain attacks, while they are not experts and it is unclear
whether they are actually equipped to do so. The next chapter, Chapter 16, discusses the le-
gal perspective on who is assigned responsibility with regards to handling the consequences
of blockchain attacks.

134

16
Legal responsibility

Chapter 15 described how responsibilities regarding blockchain security are framed in news
media. The framing of responsibilities in the media does not necessarily correspond with
who is found to be responsible in practice. To gather insights into who is liable, four pro-
fessionals in the legal field were interviewed on various types of blockchain attacks. How
the interviews were conducted is described in Section 13.3.

This chapter describes the expert opinions on the responsibilities concerning cyber se-
curity for blockchain applications. The interviewed professionals are briefly introduced
in Section 16.1. Then, in Section 16.2, the findings of the interviews are discussed. The
chapter ends with a discussion of the obtained insights from the interviews in Section 16.3.

16.1 The legal professionals

The legal experts that were interviewed are Sandra van Heukelom-Verhage, Dr. Oskar Josef
Gstrein, Dr. Thibault Schrepel and Prof. Bart Schermer. All are to some extent involved
in blockchain research and have a background in law or governance. The professionals are
briefly introduced below.

Sandra van Heukelom-Verhage (further referred to as expert 1) is a partner at the law firm
Pels Rijcken and works as as a constitutional and administrative lawyer with a focus on
innovation and technology. She is a member of the Blockchain Coalition and is the for-
mer president of the Legal Expert Group within the Blockchain Coalition (January 2018 -
February 2020).

Dr. Oskar Josef Gstrein (expert 2) is an Assistant Professor at the University of Gronin-
gen. He has a background in (European Human Rights) law and philosophy and cur-
rently conducts research for the Governance and Innovation department at the University of
Groningen. He is active in the research fields of International European Law and Multidis-
ciplinary Approaches for Law. Among other things, Gstrein studies emerging technologies
and governance (including blockchain), cybersecurity, and human rights in the digital age.

Dr. Thibault Schrepel (expert 3) is an Associate Professor of Law at VU Amsterdam.
His latest research is focused on blockchain antitrust and how law and technology could

135

16. LEGAL RESPONSIBILITY

cooperate. Recently he published a freely available book on this topic called “Blockchain +
Antitrust”. Part of the research Schrepel has conducted is about how blockchain can work
for modern societies, and how public permissionless blockchains (when anyone can write
on the blockchain ledger) make it difficult to enforce the law.

Prof. Bart Schermer (expert 4) is a Professor of Law and Digital Technology at the Uni-
versity of Leiden. He has a background in Law and Information Technology. His research
focuses on privacy and cybercrime, specifically the relation between enforcement and hu-
man rights in the online world. He is also a fellow at the E.M. Meijers Institute for Legal
Studies and active as a partner at Considerati, a legal consultancy firm specialized in legal
and policy advice for IT and new media. Furthermore, he is a member of the Cybercrime
expert group for the Court of Appeal in The Hague and a member of the Human Rights
Committee of the Advisory Council on International Affairs.

16.2 Interview findings

Based on the different types of blockchain attacks that were discussed in Section 12.2, the
legal experts were asked to give their thoughts on examples of each type of blockchain
attack. The general opinions per attack type are discussed below. Our interpretation of what
was said during the interviews was validated by all experts.

16.2.1 OPSEC incidents

The information described in this section is based on statements from expert 2, expert 3 and
expert 4, and aligns with all three expert opinions.

OPSEC incidents often happen through the use of a third party platform, for example an
application store or a social media platform. Attacker(s) use such platforms to get in (on-
line) contact with their victims to steal private information. In a general sense everyone
bares their own damage until it is proven that someone else is to blame (civil and liability
law). Whether a third party platform is responsible for harm done to users depends on the
criteria they have set for themselves on what it means for content to be safe (enough) to be
published.

This might change as there is currently a draft1 of new European legislation named
the Digital Services Act2 (DSA). Currently platforms active in the EU have the duty to do
everything they can to protect customers (and thus detect evil contents). Legally speaking

1The European Parliament approved the Digital Services Act (DSA) on the 5th of July, 2022.
2The Digital Services Act (DSA) clarifies the responsibilities of digital services like online platforms re-

garding activities and information for consumers. The DSA helps combat illegal contents online by clarifying
the role of providers of digital services and creating procedures for carefully handling this kind of contents.

136

16.2. Interview findings

this means that platforms must employ all the means they can to do this, but there is no duty
to obtain a certain result.

Legislation and liability should be aligned with the power of prevention. If a party is not
in control, they should not be liable. Technically it is possible for online platforms to check
all published contents. However, because there is too much information, it is infeasible to
do so. With more powerful algorithms in the future this might be subject to change. At the
moment, if it cannot be proven that a platform was aware of malicious contents, they are
not liable.

In any case, the attackers are liable, but if they remain unidentified, victims cannot
retrieve their lost funds. For some incidents governments have designated funds available
to help victims3. A similar fund could be set up for blockchain incidents so victims can be
compensated when perpetrators cannot be tracked down. Such a fund currently does not
exist.

16.2.2 Smart Contract incidents

The information described in this section is based on statements from expert 3 and expert 4,
and aligns with both expert opinions.

In principle, the person who exercises power, is liable. When a mistake in smart contract
code results in damages, whoever has power over the blockchain platform is liable. Looking
at a software development context however, users are usually out of luck. Companies are
not necessarily liable for offering a defective product on the market. For large organisations,
generally customers have to agree to predefined terms and conditions. With this, companies
can contractually exclude liability.

To determine liability, first one needs to verify whether a party is guilty of culpable
behaviour. Next, the point of contact and the culpable behaviour need to be identified and
clear. Usually blockchain applications are open-source. There is no clear point of contact.
Developers of the blockchain application design it together or separately from each other,
without the presence of a legal entity or foundation. It depends on the expectations a cryp-
toplatform has set, and to what extent they are involved with the code implementation or
have contractually excluded liability, whether they are liable.

A large problem concerning enforcement is the international context of blockchain.
What jurisdiction is applicable and what legal forum can be used? When using an exchange
that is based in a different country, it may not be possible to get justice in your home
country. Platforms have to conform to financial legislation in the countries where they are
active. Crypto exchanges in the Netherlands need to register at DNB and AFM (and thus
conform to certain rules), but they are not under financial supervision.

3In the Netherlands there is a fund called the Waarborgfonds Motorverkeer for victims involved in car
accidents where the perpetrator is unknown or uninsured.

137

16. LEGAL RESPONSIBILITY

It is unlikely that compensation from a crypto exchange that contained a vulnerability
causing losses for users is enforceable. Cryptoplatforms may however choose to compen-
sate losses to win back trust from users of their service.

16.2.3 Consensus Protocol Incentives (CPI) incidents

The information described in this section is based on statements from expert 3 and expert 4,
and aligns with both expert opinions.

The user should be aware of the inherent risks of blockchain (attacks on blockchain’s core
elements). When using a blockchain application you are essentially responsible (baring
your own damage until it is proven that someone else is to blame). There will always be a
risk that the blockchain system falls apart, and that when that happens there is no one (no
central authority) to recover damages from. The attacker(s) are liable, but it is challenging
to identify them.

Overall CPI incidents are complex as there is not one single party to blame. Schrepel
explains in his book the concept of a blockchain nucleus [106]. This is a group of partici-
pants that come together to achieve a form of control over the blockchain by collaborating,
by circumventing (some of) the (economic, political, logical, sociological, architectural and
legal) constraints imposed on them, and by changing them in the long run. The nucleus
can become a legal entity that can be assigned liability. There are three types of blockchain
participants: founders/core developers (who implement the original rules of the blockchain:
design the code and determine the consensus protocol to be used), users (who propose
new transactions but cannot easily exercise coordinated control), and miners (who validate
transactions assembled into blocks). Generally in decentralized permissionless blockchain
applications (like Bitcoin or Ethereum) no one can unilaterally impose changes.

Participants are to be held liable for illegal conduct committed within the nucleus or
perimeter that they can control or influence to a great degree. The width of that perimeter
depends on the case. Lack of control should result in a lack of liability. Still, concrete and
quantifiable frameworks are necessary to define the nucleus in each case to ensure legal
certainty, limit legal errors and reduce regulatory costs.

16.2.4 Investment schemes

The information described in this section is based on statements from all experts, and aligns
with all four expert opinions.

Blockchain is used as another layer of complexity to set up schemes. This extra layer makes
the scam more plausible. Since everyone knows there is a lot of money in blockchain,
cryptocurrencies are attractive to use as bait. In practice blockchain investment schemes
are no different from other investment schemes that do not involve blockchain technology.

138

16.3. Discussion

Blockchain should not be viewed as something entirely different from other technologies.
There is no separate law for blockchain but existing legislation (for financial supervision,
liability law, criminal law) can be applied to technological applications.

The people that set up the scheme are likely liable (due to intent of deceit and forgery)
but it can be difficult to find them to recover any damages. The blockchain infrastructure
makes it easier to conceal traces of the money going into the scheme, making it a complex
task to trace it back to the perpetrators. It is more a question of operability than of liability
(the creators of schemes are liable). The liability is in this case not enforceable, but it is in
fact there. In practice this means that victims cannot be compensated.

In some cases victims are in a (non-legal) sense responsible for losing their money
since they consented to invest money themselves. People always have some responsibility
themselves. If perpetrators are not found, users have to deal with the damages themselves.
Other possible liable parties are intermediaries.

Intermediaries (e.g. banks or social media platforms) have a duty of care4 for consumers
and a duty to inform5 (informatieplicht) while consumers have a duty to investigate6. There
is a balance between the duty of care and the duty to investigate. In case a breach of duty
of care can be indicated, an intermediary can be held liable, but it may be problematic to
determine such a breach. Generally social media platforms are not liable (according to
the DSA7) for rogue content on their platform unless they are informed about it and did
not intervene but platforms may be required by national courts to implement measures to
prevent future violations.

Influencers that promote investment schemes can also be found liable, that is if they
were aware of the fraudulent construction that they were promoting to others, in which case
they were doing it for the purpose of self-enrichment. If they were not aware of it, they
cannot be blamed for the damages they cost others.

16.3 Discussion

For all of the different cases, it is clear that a crime has been committed, and the question
is not that of responsibility but of enforcement. Overall, whoever is in control (generally
the perpetrators), is liable. The crime territory goes across borders and the blockchain tech-
nology allows criminals to carry out crimes with ease. While laws are in place and deemed

4A duty of care is a legal obligation which is imposed on an individual or organisation, requiring adherence
to a standard of reasonable care while performing any acts that could foreseeably harm others.

5A seller has a duty to inform (an obligation to provide information). He should tell the customer what he
knows about the product or service that he is offering.

6A consumer has a duty to investigate. He should investigate whether the product or service that is offered
meets their demands.

7The Digital Services Act (DSA) clarifies the responsibilities of digital services like online platforms re-
garding activities and information for consumers. The DSA helps combat illegal contents online by clarifying
the role of providers of digital services and creating procedures for carefully handling this kind of contents.

139

16. LEGAL RESPONSIBILITY

sufficient, it is difficult to enforce them. The enforcement mechanisms have limitations.
The way that rules are set up (nationally) is a restriction to enforce them, especially for
blockchain applications, where there are no territorial borders. The game of the crime is
being moved away from the space of the territory. It requires a large amount of public
resources to follow blockchain data traces (and money) to the end point.

Intermediary parties such as online platforms could be held responsible if a breach of
duty of care can be proven, but this is often difficult. In the future online platforms may be
held responsible more often, when technology is advanced enough to detect all fraudulent
uses but currently this is understood as infeasible. In some cases an intermediary party can
be held liable, if it can be proven that they were aware of the illegal contents on their plat-
form and they had the power to do something about it.

In general, it seems that people underestimate risk and law enforcement is complicated.
Cryptocurrencies live in a wild west territory - it is relatively new and there exist many
optimistic stories about people becoming wealthy quickly. The lack of a central authority
and point of contact, which is simultaneously promoted as one of the big advantages of
blockchain technology, also means that there is no government protection for users. A gov-
ernment fund may be constructed in Europe that compensates users if perpetrators remain
unidentified.

To identify the wrongdoer is not always possible, especially when the blockchain is
impacted from within (due to the anonymity blockchain offers). If it however is impacted
from the outside (by making use of a centralized system - where identities are known -
like a cryptoplatform or social media platform) the perpetrator can usually be identified. If
the perpetrator can be identified, the victim(s) can be reimbursed. If not, and if platforms
are not liable, victims have to suffer the losses. Many consumers trade blockchain assets
through cryptoplatforms, so it is likely these platforms will be regulated similarly to banks
in the future.

In the previous chapter, we found that users are rarely attributed causal responsibility for
blockchain attacks. The findings of the interviews support this. Users are not liable - at-
tackers are. We also found that while causal responsibility lies mostly with blockchain ap-
plications according to news media, currently blockchain applications are difficult to hold
(legally) accountable.

Furthermore, users are often attributed treatment responsibility (particularly for OPSEC
attacks and fraudulent investment schemes). The interview findings highlight that when
there is no other party to hold liable (e.g. if the criminals cannot be found, which is not
uncommon), users have to suffer the consequences. It is therefore not strange that users are
attributed treatment responsibility, since there is no other party that can be relied on to help
deal with the consequences when an attack happens.

The way that blockchain technology works (i.e. being an international network, offering

140

16.3. Discussion

anonymity to a degree, allowing for use of smart contracts by anyone) is not unrelated to
this. The next chapter, Chapter 17, goes into the influences of developers and the blockchain
design on the division of security responsibilities.

141

17
Developers’ influences on user

responsibilities

In Chapter 15 it is presented how responsibilities regarding blockchain security are framed
in news media. Chapter 16 explains how responsibilities are assigned in the legal sense, and
highlights some problems with enforcement on blockchain applications. This chapter aims
to view the division of responsibilities from a blockchain developer’s perspective. Through
interviews with blockchain researchers, some interesting thoughts were gathered on this
topic. Section 13.4 discusses how the interviews were conducted.

This chapter shares some views on how the implementation of blockchain technology
influences the division of responsibilities. The interviewed professionals are first introduced
in Section 17.1. Afterwards, my interpretation of the discussions with the experts on differ-
ent aspects of blockchain is described in Section 17.2.

17.1 The blockchain professionals

The blockchain experts that were interviewed are Dr. Oğuzhan Ersoy and Dr. Balázs Bodó.
Both are researchers of blockchain based technologies. Dr. Ersoy works mainly on the
design of secure blockchain protocols, while Dr. Bodó is interested (among other things) in
how features and faults of blockchain design create significant deviations from the societal
expectations embodied in institutions, laws, and ethical frameworks. The professionals are
briefly introduced below.

Dr. Oğuzhan Ersoy is a Postdoc researcher at the Radboud University. He works in the
area of decentralised systems and blockchain technology, specifically on provable secure,
privacy-preserving, and scalable and incentive-compatible protocols. Previously during his
PhD he also studied the security and economic aspects of decentralised systems (including
blockchain).

Dr. Balázs Bodó is an Associate Professor working at the University of Amsterdam at
the Institute for Information Law. He researches various aspects of the societal effects of
blockchain technologies. In 2018 he started the Blockchain & Society Policy Research Lab

143

17. DEVELOPERS’ INFLUENCES ON USER RESPONSIBILITIES

to study the non-technical, societal, economic, policy and legal implications of blockchain
based technologies.

17.2 Interview findings

In the open discussions with Dr. Oğuzhan Ersoy (further referred to as expert 1) and Dr.
Balázs Bodó (expert 2) various aspects of blockchain responsibilities were touched upon.
In this section the relevant findings from the interviews are described.

When it comes to blockchain technology, there are various assumptions that users have,
that may not be valid. One of those assumptions is the decentralised nature of blockchain.
Whether the current implementation of blockchain really is fully decentralised is question-
able.

Is blockchain actually decentralised?

The information described in this section is inspired by statements from expert 1 and ex-
pert 2.

In the DAO hack (July 2016) on the Ethereum blockchain network, due to a fault in a smart
contract an attacker was able to spend the large sums of money stored in the contract. The
general idea of blockchain is that it is not invertible (immutable) and transactions are fi-
nal. In this case however, Ethereum developers proposed to fork the blockchain (to roll
back Ethereum network’s history to before the attack). This was very controversial since
blockchains are supposed to be immutable and censorship-resistant. While most stakehold-
ers adopted the change, allowing for the fork to be implemented, not all did, resulting in
two seperate Ethereum blockchains. The fact that this could happen highlights that there is
no full decentralisation and censorship is possible.

Another interesting aspect of the decentralisation of blockchain is that all hashing power
is concentrated in just a few large mining pools. This indicates that in reality the network
is not actually decentralised, as just a few decision-makers hold the majority of the hashing
power and can exert power over the network. For BTC for example, the four largest mining
pools together hold over 50% of the hashing rate.

Apart from the core blockchain technology, many elements of blockchain applications
are actually not decentralised. Crypto exchanges, wallet management applications, and
other blockchain-related applications are all a step away from true decentralisation as such
applications are centralised. Very few people actually run their own sever node to perform
blockchain activities.

144

17.2. Interview findings

Besides the fact that blockchain may not be as decentralised as one might think, we may
wonder if decentralisation really is something that is worth pursuing.

Is decentralisation desirable?

The information described in this section is inspired by statements from expert 2.

The blockchain system reflects a(n) (American libertarian) zero-trust society, where no one
can be trusted. It goes against the beliefs that the state is not the enemy and that interme-
diaries have an important role to play in helping citizens. Full decentralisation requires lay
people to do things that we are not equipped to do. Lay people do not have the knowledge
to for example store private keys in a secure manner. Mistakes will be made.

Centralisation solves this by leaving such tasks up to professionals (e.g. they can make
sure that people are not locked out of their bank account, they can restore forgotten pass-
words for them). Full decentralisation removes this solution and ships all responsibility to
the end user. There is no censorship, which also means there are no rules.

If a user makes a mistake, there is no one to help. Few users completely understand
what they are expected to do (or are doing), since they lack expert knowledge. If you lose
your private key, if a smart contract contains a bug that is exploited, if some other bad thing
happens, the investors lose their money, and there is no one to turn to. Unlike traditional
financial systems, any of these decentralised intermediaries offer less consumer protection
than traditional solutions.

For developers it is completely rational to push all responsibility to users, to avoid any
liability and the possibility to go bankrupt when having to pay damages in compensation. In
that sense, decentralisation perfectly achieves that. Still, although there is no legal clarity,
there likely are liable parties. There are centralised legal entities (core developers, decision-
makers, owners). For example the Ethereum foundation (that is behind the core develop-
ment and able to influence in which direction the system goes) will likely have a difficult
time denying that they have something to do with the system. It is a relative new field for
judges but there are good arguments to be made that blockchain systems, like any other
system, have liable parties that can be made legally liable for their actions.

Moxy Marlinspike (founder of the Signal app) makes the case that blockchain technolo-
gies immediately tended towards centralisation through platforms in order for them to be
realised. Most participants do not even know or care decentralisation is happening, sug-
gesting that decentralisation itself is not actually of importance to the majority of users.
Distributed systems may make things more complicated and more difficult rather than less
complicated and less difficult. Perhaps the only amount of decentralisation people want is
the minimum amount required for something to exist.

145

17. DEVELOPERS’ INFLUENCES ON USER RESPONSIBILITIES

Not anonymous

The information described in this section is inspired by statements from expert 1.

Another assumption users have is that blockchain ensures anonymity. It is however proven
that pseudonymous identities could be linked to real identities through network analysis and
investigation.

Furthermore, crypto exchanges function as gates between blockchain systems and the
real world. This means that crypto exchanges do know real identities of blockchain users.

Blockchain implementation: consensus protocol and smart contracts

The information described in this section is inspired by statements from expert 1 and ex-
pert 2.

An important element of blockchain technology is the consensus protocol. Various consen-
sus protocols exist (Proof of Work, Proof of Stake, Byzantine fault tolerance, hybrid ver-
sions). Trade-offs in usability, security, eco-friendliness, developer-friendliness are made
when selecting one protocol. No one protocol is the best.

Factors that need to be considered are whether the blockchain needs to be accessible to
everyone, and whether anyone can create transactions (private or public, permissioned or
permissionless blockchains). Energy consumption is also a factor, PoW uses a very large
amount of energy, while PoS has low energy consumption, but other (security) challenges.
Scaling is another important point. Some protocols do not scale well, making them ineffi-
cient for wide usage.

One of the most crucial security aspects of blockchain applications are smart contracts.
All other elements (e.g. consensus protocols) of the blockchain are extensively researched.
A fault in a consensus protocol can affect the entire blockchain (e.g. with a 51% attack or
selfish mining attack) but these attacks have been greatly studied. Smart contracts are not
studied that well. Every smart contract is different, has its own functionality and imple-
mentation. Errors are made at the smart contract level. Normally users are protected if they
buy a defective product but if users use a defective smart contract, it is questionable who is
liable.

Users should check contracts before using them but without being an expert this is
difficult, even if most of them are publicly available. There are some companies that do
formal verification (e.g. penetration testing of smart contracts). Most contracts are also
reviewed online.

146

17.3. Discussion

Improving security through market competition or legislation

The information described in this section is inspired by statements from expert 2.

Quality (in terms of for example security, honesty, well maintained) of blockchain applica-
tions can be impacted in two ways:

1. Legislation: through legislation certain requirements for blockchain applications can
be enforced.

2. Market competition: market competition ideally produces quality when firms com-
pete and consumers go for the provider with the best quality.

Currently there is market competition in the blockchain field. For blockchain applica-
tions it is however difficult for end users to determine the level of quality. There exist third
party auditors that can verify some aspects of blockchain projects (e.g. smart code contract
auditors) which can grow trust with end users and can help projects in getting an advantage
against competitors. However, it does not necessarily prevent mistakes.

Market competition alone will likely not work for blockchain to produce honest players.
It is better to enforce rules instead of using the market place as an incentive. The blockchain
space is a wild west. The market is not about quality but just on how to make more money
in less time. Market competition will not guarantee better security. Applications compete
on money instead of quality, and law enforcement is required, and is coming. There is
no way for blockchain networks to avoid financial regulation eventually since all financial
institutions need to comply with certain laws.

What are developers’ responsibilities?

The information described in this section is inspired by statements from expert 2.

It is a complex question what responsibilities developers have towards users. First we need
to make a distinction between good faith and bad faith developers. For good faith develop-
ers product liability rules should apply, in the same way that other services have to guar-
antee consumer protection. Relying on good faith of developers or counterparties without
regulation does not work. Regulation is required to define responsibilities for blockchain
applications and to hold them legally accountable.

17.3 Discussion

The interviews raised some valid concerns regarding blockchain technology. Blockchain is
not as decentralised as it is made out to be. Most people that are involved with blockchain
technology, use centralised access points. Moreover, the hashing power is concentrated in

147

17. DEVELOPERS’ INFLUENCES ON USER RESPONSIBILITIES

only a few large mining pools, and censorship of the blockchain is in principle possible.
Marlinspike [73], a computer security researcher and creator of the Signal1 app has stated
that with public blockchain, we may end up with the worst of both worlds: centralised
control, but still distributed enough to become mired in time. Besides this, blockchain
technology is not actually anonymous, as users can be linked to real identities in practice.
Blockchain may represent advances in encryption and security, but it is vulnerable in some
of the same ways that other technology is, and has new vulnerabilities of its own [70].

With these issues, we may wonder if use of blockchain technology is even desirable.
Schneier [104], an internationally renowned security technologist, argues that blockchain
does nothing to solve any existing problem with financial (or other) systems. Adding
blockchain causes new problems and can make systems worse. Blockchain is designed
to shift trust in people and institutions to trust in technology: the cryptography, the proto-
cols, the software, the computers and the network [103]. Full decentralisation assigns all
security responsibilities to users. The majority of blockchain users do not have the expertise
to audit the computer code used by the blockchain, yet are expected to trust it. When that
trust turns out to be misplaced, there is nothing left to do (unlike with a human legal system,
where matters can be reverted).

While some researchers believe firmly that blockchain is expected to bring significant
benefits to society [5, 14], the current market competition for blockchain applications does
not guarantee better quality and security. Only regulation can force blockchain applications
to satisfy a security standard, and to provide users with some security guarantees. The
fact that blockchain applications need to be regulated by governments in order to provide
security for users is ironic, as the purpose of blockchain is to shift trust in governments to
technology [103]. Added to this, since current applications of blockchain applications tend
towards centralisation anyways, perhaps we are using blockchain for the wrong purposes.

1Signal is a free, privacy-focused messaging app you can use on smartphones and via desktop.

148

18
Conclusion

In this chapter, the research questions as first presented Chapter 11 are answered. First, the
research sub-questions are answered in Section 18.1. The answers form the basis for the
conclusion of the main research question in Section 18.2.

18.1 Research sub questions

1. How is cyber security responsibility for blockchain applications framed in news media
channels in the Netherlands?

To answer the first research sub question, we analysed 275 relevant articles discussing
blockchain attacks, during the period of September 2020 and August 2021, with respect
to causal and treatment responsibility.

From the content analysis we found that end users are named as victims of blockchain
attacks in the majority of news articles, indicating that overall news media acknowledges
that users are harmed in blockchain attacks. Nevertheless, responsibility is not often at-
tributed in the analysed articles. A little over a quarter of the articles attributes causal
responsibility to blockchain applications (50%, mostly due to a lack of security), attackers
(36%), third parties (14%), end users (5%), and/or governments (3%). Furthermore, in a
quarter of the articles, treatment responsibility is attributed to users (65%), blockchain ap-
plications (26%), governments (9%), third parties (7%) and/or society (1%).

The results show that causal responsibility, when attributed, is focused mostly on blockchain
applications and criminals. Treatment responsibility however, is most often attributed to
users, with blockchain applications being second in line with a much lower number. So-
ciety and governments are almost never attributed treatment responsibility, leading to the
belief that attacks on blockchain applications are not viewed by news media as a societal
issue. Instead, users are attributed the responsibility to prevent attacks targeted at them.

Farout most of the articles talk about OPSEC attacks (28% of the articles) and fraudulent
investment schemes (33% of the articles). CPI incidents and smart contracts are generally
not covered or specifically mentioned in the analysed articles (discussed in only 3% and
5% of the articles respectively). The majority of news articles about OPSEC incidents and

149

18. CONCLUSION

fraudulent investment schemes make recommendations to users on better behaviour and
self-protection enhancement.

2. How do legal experts view responsibilities for the consequences of blockchain attacks?

There was a consensus among the different legal professionals that perpetrators of (all cat-
egories of) blockchain attacks are always liable. The existing laws are applicable and suf-
ficient for blockchain attacks. It is however difficult for police and law enforcement bodies
to identify the perpetrator and to press charges. The international and pseudonymous nature
of blockchain technology plays a big part in this. The legal experts agreed that to overcome
the difficulty of law enforcement, international cooperation is necessary and governments
must regulate blockchain applications better. This way, law can be effectively enforced.

In practice, users generally are unable to claim compensation for any damages from
blockchain applications if criminals remain unidentified. Involved intermediaries like social
media platforms can in some cases (specifically for fraudulent investment schemes and
OPSEC incidents) be liable for enabling attackers to perform attacks, but these attacks are
not new or specific to blockchain. Blockchain applications are relatively new (and so are
the attacks specifically targeted at them) and it is unclear what legal obligations they have
and how these can be enforced.

3. What can developers do to establish an effective division of responsibilies?

Essentially, the influence of developers on the division of responsibilities is limited. Full
decentralisation (the idea of blockchain) by definition assigns all responsibilities to end
users. There is no censorship, and no rules, in a fully decentralised system.

Interestingly, current blockchain implementations are not actually fully decentralised.
The past years it has become clear that hard forks (example of censorship) are possible, the
majority of the hashing power used in blockchain networks is concentrated in just a few
mining pools, and access points to blockchain are centralised (e.g. crypto exchanges, wallet
managers).

We cannot rely on the good faith of developers (or any other involved party for that
matter) to implement secure and foolproof blockchain applications. Currently blockchain
applications are regulated through market competition and this does not work. Users are
unable to determine good or bad quality. Core elements of blockchain technology (like
consensus protocols) are heavily researched, but smart contracts are not, while they are
very error-prone. Most blockchain attacks are possible due to bad designs. Normally users
are protected when buying a defective product (through consumer protection legislation),
but this is not necessarily the case when using defective smart contracts. Regulation (e.g. in
the form of product liability rules) is required to ensure security.

One might wonder whether distributed systems actually make things less complicated
and less difficult at all. From the start blockchain technologies tended towards centralisation

150

18.2. Research main question

through platforms in order for them to be realised. Decentralisation itself is likely not
actually of importance to the majority of users.

18.2 Research main question

The main research question is as follows:

How are cyber security responsibilities assigned for blockchain attacks and what can
blockchain developers do to influence this?

The answer to this question is a summation of the answers to the three sub-questions.
The general conclusion of the first sub-question is that while blockchain attacks are most
often described without attribution of causal or treatment responsibility, when they are,
blockchain applications are most often portrayed to be causally responsible. Treatment re-
sponsibility is however frequently assigned to end users, specifically for OPSEC incidents
and fraudulent investment schemes. This is characterised by the high presence of recom-
mendations for better behaviour and self-protection enhancement in news articles about
OPSEC incidents and fraudulent investment schemes. For smart contract incidents and CPI
incidents the number of articles that described these incidents, whilst also attributing treat-
ment responsibility to one or more parties, is too low to draw a meaningful conclusion.

From the second sub-question it followed that attackers are legally responsible accord-
ing to current legislation, but if they remain unidentified (which is easier with blockchain
technology compared to traditional crime) and cannot be prosecuted, users are unable to re-
trieve compensation. Blockchain applications are not liable either. Thus, while users are not
framed as having causal responsibility and also do not have legal responsibility, they often
have treatment responsibility. In essence, they are still expected to prevent attacks happen-
ing to them. This makes sense since in practice users are not entitled to any compensation
from blockchain applications and attackers are typically never identified.

The results from the third sub-question highlight that the influence of developers on the
division of responsibilities is limited as there is not much they can do: full decentralisa-
tion (the core idea of blockchain) by definition hands over all responsibilities to end users.
This leaves legislation as the only solution to define a clear division of responsibilities, and
to provide a legal basis for end users to claim compensation from blockchain applications
when a blockchain attack happens.

All in all, this research provides valuable insights into three different perspectives on blockchain
security responsibilities. First, we found that news media mostly attribute responsibility
for the prevention of blockchain attacks to end users1. Second, we learned that generally

1It should be noted that attacks specifically aimed at the blockchain infrastructure are not covered in news
media as often as traditional cyber security attacks involving blockchain applications.

151

18. CONCLUSION

end users have to deal with the consequences of blockchain attacks. It is unknown what
specific legal obligations blockchain applications have. Due to this, it is difficult to hold
blockchain applications accountable when an attack happens. Last but not least, this study
highlights that the blockchain design, full decentralisation, essentially shifts all responsibil-
ities to users.

152

19
Discussion

This chapter outlines the discussion with regard to the conducted research. First, the rel-
evance of the findings of the study is discussed in a societal and scientific context in Sec-
tion 19.1. Next, Section 19.2 elaborates on the limitations of this research. Afterwards, in
Section 19.3 the reliability and validity of the research are discussed, as well as the ethics
concerned with the research. Finally, recommendations for future research are given in
Section 19.4.

19.1 Contributions and relevance

The first part of this thesis focused on the software testing of blockchain applications.
Developers are to some extent responsible for the security of the application they create;
they are expected to thoroughly test it. However, applications are rarely foolproof, and at-
tacks happen. The present study examined whom is responsible for the cyber security of
blockchain applications according to news media and in a legal sense. In addition, the study
identified aspects of blockchain implementations that influence responsibilities of users.

To this day there have not been studies that investigate news media framing in the con-
text of blockchain application attacks. In Chapter 11 it is stated that the phenomenon of
victim-blaming occurs often for cyber attacks. Victims of cyber attacks are held responsi-
ble, owing to not having taken deliberate action to make themselves less vulnerable [93].
The content analysis of news media showed that interestingly enough this is not the case
for blockchain attacks. Causal responsibility is generally not assigned to users, but to the
attackers or the blockchain application itself. On the other hand, treatment responsibility is
in most of the articles assigned to users. It seems that while users are not deemed causally
responsible, they are supposed to provide a solution for incidents that happen.

This study leads to believe that this could be related to the decentralised nature of
blockchain. Blockchain activities are delegated away from a central organisation and dis-
tributed among users (pushing all responsibilities on them). This study found that practical
problems with the enforcement of attackers are likely the cause of why users normally do
not receive any compensation. Without a clear legal entity to hold liable, it makes sense that
users themselves are deemed responsible for treatment.

153

19. DISCUSSION

In Chapter 11 the contributions of this research were described, specifically a generic the-
oretical framework and coding schedule, insights into responsibilities, and various consid-
erations regarding blockchain technology. Firstly, the constructed theoretical framework
and corresponding schedule can be used to analyse any sort of news media (e.g. news pa-
pers, social media, television) that discusses blockchain attacks. The framework and coding
schedule can be easily adapted to focus on other cyber security contexts, or they can be
expanded to focus on the design (attack) layers of other technological applications. Sec-
ondly, this research illustrated that users are not causally responsible for blockchain attacks
according to news media. This may reflect the way society thinks. Still, users are the
party that is mostly assigned treatment responsibility, especially for schemes and OPSEC
attacks. Strangely enough, for consensus protocol incentives incidents and smart contract
incidents there are rarely any treatment solutions offered. This perhaps indicates that solu-
tions for such incidents do not exist or are (relatively) unknown. From a legal perspective,
there is a lack of (international) regulation in the blockchain field, making users respon-
sible for the consequences of attacks due to attackers not being able to be identified and
blockchain applications not being liable. Thirdly, this study highlights various considera-
tions regarding blockchain technology that offer a different outlook on blockchain, such as
issues with market competition, current regulation and the untrue assumptions that users
have regarding blockchain technology, specifically the extent to which current implementa-
tions of blockchain are decentralised.

The ambiguity regarding the extent to which blockchain is truly decentralised is an in-
teresting subject to focus on for science communication professionals. It is unclear whether
users are aware of the fact that how they are using blockchain (usually through a centralised
application like a crypto exchange) is only possible because of a centralised third party.
A science communication professional could fulfill a role in helping end users understand
what exactly users are involved in and what risks they face when making use (or not) of
such a centralised third party to access the blockchain network.

While this research is focused on the Netherlands, blockchain applications are used world-
wide. Security and regulatory issues that are present here in the Netherlands, are likely also
present in other countries. It is plausible that the results of this study are relevant in other
countries in the EU as well.

Blockchain security is a small part of cyber security in general. This study focused
on blockchain security specifically, but some of the results may be generalised to hold for
cyber security as well. It is expected that cyber security responsibility framing follows
a similar trend, making end users responsible for the prevention of cyber attacks. While
the consensus protocol incentives incidents and smart contract incidents may be specific to
blockchain, OPSEC attacks and fraudulent investment schemes have always been a signif-

154

19.2. Research limitations

icant part of cyber crime. In any case, for blockchain security or cyber security in general,
security measures may be too complex for end users to adhere to, so attribution of treatment
responsibility may be unreasonable.

19.2 Research limitations

There are many ways to perform this type of research. The choice of theories in the frame-
work, the coding protocol, the interview methods, the analysis of the news media: decisions
were made for each step of the research. Below the limitations of the made decisions are
discussed per method.

For the construction of the theoretical framework, the used query to find framing theo-
ries was the starting point of the literature research. The research idea in the beginning was
however slightly different and focused on victim blaming. This is reflected by the query.
The focus on victim blaming may have limited the amount of theories that were encountered
in the literature study. Nevertheless, the framework that was eventually constructed based
on the literature was suitable to be used for the content analysis.

There were several limitations to the content analysis. First the sampled articles are dis-
cussed. The used Coosto tool only provides access to free articles. This limited the articles
that could be sampled as it was for example not possible to analyse renown or popular
news papers in the Netherlands. Furthermore, the search yielded many duplicate articles
that required manual filtering. It is possible that some mistakes were made, like acciden-
tally identifying an article as duplicate or analysing duplicate articles. Additionally, the
search yielded numerous inaccessible articles (i.e. articles behind a paywall or articles with
a broken link). Another limitation is that it was not possible to download all textual articles,
meaning it was not possible (without much manual effort) to perform a textual analysis (e.g.
counting frequent terms, or identifying exact duplicates).

Second, the great majority of articles were deemed irrelevant. This could be due to the
query not being specific enough. However, in various articles keywords from the query were
not present, suggesting that the Coosto tool might not work entirely as one would expect.

Third, some articles were (near) duplicates but did not reference another news paper as
a source. It was infeasible to remember for each article whether it was already come across
(and whether the differences were considerable enough to count it as a separate sample),
which led to such articles being included in the analysis. This may impact the results of the
analysis since (near) duplicates yield (almost) the same coding.

Regarding the interviews with legal professionals, not all experts had working experience
in the legal field. Nevertheless, all have worked in either the legal field or as a researcher in
the legal field, which is why this does not necessarily have a negative effect on the research.

155

19. DISCUSSION

Still, experts working as lawyers in the specific field of cyber security might have been able
to offer more detailed views on liability or would know more about specific legal cases that
happened.

On top of that, due to the limited time that was planned for the interviews it was not
possible to question the experts on all cases. Based on the second interview additional cases
were added to question experts on, which is why not all interviewees commented on the
same cases. The first two professionals were later asked to comment on the three additional
cases as well, but they did not have the time to do so. Despite this, enough information was
gathered from the other two legal experts to properly analyse the additional cases.

The third research question on what developers can do to establish an effective division
of responsibilities is not a very straightforward question. It proved difficult to find profes-
sionals that felt this was within their area of expertise. Four professionals in the blockchain
research field were approached, and two agreed to an interview.

It is possible that other experts would have different opinions. This is however not
necessarily a bad thing as the research sub-question aimed not to gather a complete and
correct overview of everything developers’ can do to influence users’ responsibilities, but
to highlight various relevant considerations regarding blockchain implementations.

Due to the openness of this question, the exploratory interviews had a very large scope
and it was difficult to identify a clear answer to the question. The professionals that were
interviewed had many insights but not necessarily related to the research question. The
open conversations allowed for many insights to be gained, but some time was spent going
too much into detail on one topic, for example on some technical aspects of blockchain
technology. This was in hindsight not that relevant and the time could possibly been better
spent.

19.3 Reliability, validity and ethics

This study is conducted in a systematic way to safeguard reliability. Each step was docu-
mented throughout the research process and used protocols for the methods are included in
the appendices of this report. Mostly the content analysis provided a risk for the reliability
of the research as the coding process can be subjective. For this reason, the coding protocol
was constructed in such a way that benefits consistency among multiple codes to a high
degree. Furthermore, the coding schedule was piloted and a check for intercoder reliability
was performed.

To guarantee validity of the research, the content analysis of the news media was based
on verified framing theories that have been often used in prior studies. For the conducted
interviews, professionals were contacted that had spent much time in the legal or blockchain
research field. The interviewed experts often highlighted different aspects in their answers
but overall the different answers were consistent.

156

19.4. Recommendations for future work

Conducting interviews with professionals required some ethical considerations. Be-
cause much was said in a short period of time (one hour), the interviewees were asked
whether the interview could be recorded. All interviewees agreed to this. After the research
was finished, all recordings were deleted. Furthermore, after the interviews were processed,
the interviewees were asked to approve what was written about what they had said during
the interview. Not all interviewees felt comfortable with the public publishing of the inter-
view summaries. It was therefore opted to write about the general interpretations following
from the interview findings, rather than the use of specific quotes or statements.

19.4 Recommendations for future work

While this study provides insights into whom is held responsible for cybersecurity of blockchain
applications, the body of (relevant) content that was analysed was rather small (275 articles)
and consisted of mostly fairly unknown news sources. A follow-up study on blockchain se-
curity responsibilities should be done on a larger sample, preferably consisting of renown
news sources to provide a better reflection of the news society reads. Furthermore, online
news sites may perhaps attract different readers than social media platforms. It could be
interesting to investigate how responsibilities are assigned in a less official context, as texts
are likely more opinionated.

Moreover, this study was focused on news media in the Netherlands. A second rec-
ommendation is to compare assigned causal and treatment responsibilities among different
countries. Each country (especially outside of Europe) has their own legislation that may
impact how blockchain security is looked upon. In China for example trading in cryptocur-
rencies is illegal. It begs the question whether news media also discuss blockchain attacks
differently due to this. Besides causal and treatment responsibility, the tone (positive/nega-
tive towards blockchain technology) of articles may also be an interesting additional element
to analyse, as it could be helpful to decide upon whether blockchain technology is actually
perceived as something good or bad (dangerous) according to news media.

Finally, it might be interesting to move away from blockchain applications, but focus
on third party (centralised) applications that embed blockchain systems in their application.
From the results of the third research sub-question it was found that most individuals make
use of these centralised applications (e.g. crypto exchanges) rather than perform activities
on the blockchain directly. Such applications are currently monitored by De Nederlandsche
Bank (DNB) to regulate only two laws related to money laundering and financing terrorism.
They are however not under supervision by DNB or AFM. This means that there is no
supervision on financial business risks and there is no financial consumer protection of any
kind. Such applications are centralised so there is a legal entity that can be held liable, but
in practice it is not obvious whether end users are entitled to compensation when something
goes wrong. A study looking into consumer protection in the context of such applications
could provide insights into this.

157

Bibliography
[1] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C Briand, and

Thomas Stifter. Automated repair of feature interaction failures in automated driving
systems. In Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 88–100, 2020.

[2] Victoria Aboungo, Elizabeth Kaselitz, Raymond Aborigo, John Williams, Kat James,
and Cheryl Moyer. Why do community members believe mothers and babies are
dying? behavioral versus situational attribution in rural northern ghana. Midwifery,
83:102657, 2020.

[3] Shaik V Akram, Praveen K Malik, Rajesh Singh, Gehlot Anita, and Sudeep Tanwar.
Adoption of blockchain technology in various realms: Opportunities and challenges.
Security and Privacy, 3(5):e109, 2020.

[4] Hussain Aldawood and Geoffrey Skinner. Educating and raising awareness on cyber
security social engineering: A literature review. In 2018 IEEE International Confer-
ence on Teaching, Assessment, and Learning for Engineering (TALE), pages 62–68.
IEEE, 2018.

[5] Omar Ali, Ashraf Jaradat, Atik Kulakli, and Ahmed Abuhalimeh. A comparative
study: blockchain technology utilization benefits, challenges and functionalities.
IEEE Access, 9:12730–12749, 2021.

[6] Ayman Alkhalifah, Alex Ng, ASM Kayes, Jabed Chowdhury, Mamoun Alazab, and
Paul Watters. A taxonomy of blockchain threats and vulnerabilities. Preprints, 2019.

[7] AA Andryukhin. Phishing attacks and preventions in blockchain based projects. In
2019 International Conference on Engineering Technologies and Computer Science
(EnT), pages 15–19. IEEE, 2019.

[8] Andrea Arcuri and Gordon Fraser. Parameter tuning or default values? an empirical
investigation in search-based software engineering. Empirical Software Engineering,
18(3):594–623, 2013.

[9] Andrea Arcuri, Juan Pablo Galeotti, Bogdan Marculescu, and Man Zhang. Evomas-
ter: A search-based system test generation tool. Journal of Open Source Software,
6(57):2153, 2021. doi: 10.21105/joss.02153. URL https://doi.org/10.21105/

joss.02153.

159

https://doi.org/10.21105/joss.02153
https://doi.org/10.21105/joss.02153

BIBLIOGRAPHY

[10] Irina Astrakhantseva, Roman Astrakhantsev, and Alexey Los. Cryptocurrency fraud
schemes analysis. In SHS Web of Conferences, volume 106. EDP Sciences, 2021.

[11] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. Restler: Stateful rest
api fuzzing. In 2019 IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE), pages 748–758. IEEE, 2019.

[12] Marcella Atzori. Blockchain technology and decentralized governance: Is the state
still necessary? Available at SSRN 2709713, 2015.

[13] Parma Bains. Blockchain consensus mechanisms: A primer for supervisors. FinTech
Notes, 2022(003), 2022.

[14] David Berdik, Safa Otoum, Nikolas Schmidt, Dylan Porter, and Yaser Jararweh. A
survey on blockchain for information systems management and security. Information
Processing & Management, 58(1):102397, 2021.

[15] Swarup Bhunia and Mark Tehranipoor. Chapter 13 - security and trust assessment,
and design for security. In Swarup Bhunia and Mark Tehranipoor, editors, Hardware
Security, pages 347–372. Morgan Kaufmann, 2019. ISBN 978-0-12-812477-2. doi:
https://doi.org/10.1016/B978-0-12-812477-2.00018-6. URL https://www.scienc

edirect.com/science/article/pii/B9780128124772000186.

[16] George Bissas, Brian Levine, A. Ozisik, Gavin Andresen, and Amir Houmansadr.
An analysis of attacks on blockchain consensus. 10 2016.

[17] Bitcoindeveloper. Rpc api reference. URL https://developer.bitcoin.org/re

ference/rpc/. Accessed: 2022-04-07.

[18] Pablo J Boczkowski, Eugenia Mitchelstein, and Facundo Suenzo. The smells, sights,
and pleasures of ink on paper: the consumption of print newspapers during a period
marked by their crisis. Journalism Studies, 21(5):565–581, 2020.

[19] Marcel Boehme, Cristian Cadar, and Abhik Roychoudhury. Fuzzing: Challenges and
reflections. IEEE Softw., 38(3):79–86, 2021.

[20] Pavel A Borisovsky and Anton V Eremeev. Comparing evolutionary algorithms to
the (1+ 1)-ea. Theoretical Computer Science, 403(1):33–41, 2008.

[21] Jan-Willem Hendrik Bullée, Lorena Montoya, Wolter Pieters, Marianne Junger, and
Pieter Hartel. On the anatomy of social engineering attacks—a literature-based dis-
section of successful attacks. Journal of investigative psychology and offender pro-
filing, 15(1):20–45, 2018.

160

https://www.sciencedirect.com/science/article/pii/B9780128124772000186
https://www.sciencedirect.com/science/article/pii/B9780128124772000186
https://developer.bitcoin.org/reference/rpc/
https://developer.bitcoin.org/reference/rpc/

Bibliography

[22] Edmund K Burke and Yuri Bykov. The late acceptance hill-climbing heuristic. Eu-
ropean Journal of Operational Research, 258(1):70–78, 2017.

[23] Suzette Caleo. Research framing, victim blaming: Toward an empirical examination
of victim precipitation and perpetrator predation paradigms. Industrial and Organi-
zational Psychology, 11(1):134–137, 2018.

[24] José Campos, Yan Ge, Gordon Fraser, Marcelo Eler, and Andrea Arcuri. An empir-
ical evaluation of evolutionary algorithms for test suite generation. In Tim Menzies
and Justyna Petke, editors, Search Based Software Engineering, pages 33–48, Cham,
2017. Springer International Publishing. ISBN 978-3-319-66299-2.

[25] Mary Catlin, Kyle C Scherr, Christopher P Barlett, Erin Jacobs, and Christopher J
Normile. Bounded blame: The effects of victim–perpetrator relationship and victim-
ization history on judgments of sexual violence. Journal of interpersonal violence,
36(15-16):NP8800–NP8823, 2021.

[26] Gertrude Chavez-Dreyfuss. Cryptocurrency crime surges, losses hit
$4.4 billion by end-september: Ciphertrace report. Reuters. URL
https://www.reuters.com/article/us-crypto-currencies-crime/cry

ptocurrency-crime-surges-losses-hit-4-4-billion-by-end-september

-ciphertrace-report-idUSKBN1Y11WH.

[27] Yulia Cherdantseva and Jeremy Hilton. A reference model of information assurance
& security. In 2013 International Conference on Availability, Reliability and Secu-
rity, pages 546–555. IEEE, 2013.

[28] Vincent Chia, Pieter Hartel, Qingze Hum, Sebastian Ma, Georgios Piliouras, Daniël
Reijsbergen, Mark Van Staalduinen, and Pawel Szalachowski. Rethinking blockchain
security: Position paper. In 2018 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pages 1273–1280. IEEE, 2018.

[29] Tinkle Chugh, Karthik Sindhya, Jussi Hakanen, and Kaisa Miettinen. A survey on
handling computationally expensive multiobjective optimization problems with evo-
lutionary algorithms. Soft Computing, 23(9):3137–3166, 2019.

[30] Davide Corradini, Amedeo Zampieri, Michele Pasqua, and Mariano Ceccato. Empir-
ical comparison of black-box test case generation tools for restful apis. In 2021 IEEE
21st International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 226–236, 2021. doi: 10.1109/SCAM52516.2021.00035.

161

https://www.reuters.com/article/us-crypto-currencies-crime/cryptocurrency-crime-surges-losses-hit-4-4-billion-by-end-september-ciphertrace-report-idUSKBN1Y11WH
https://www.reuters.com/article/us-crypto-currencies-crime/cryptocurrency-crime-surges-losses-hit-4-4-billion-by-end-september-ciphertrace-report-idUSKBN1Y11WH
https://www.reuters.com/article/us-crypto-currencies-crime/cryptocurrency-crime-surges-losses-hit-4-4-billion-by-end-september-ciphertrace-report-idUSKBN1Y11WH

BIBLIOGRAPHY

[31] Dan Craigen, Nadia Diakun-Thibault, and Randy Purse. Defining cybersecurity.
Technology Innovation Management Review, 4(10), 2014.

[32] Alexa Dodge. “try not to be embarrassed”: A sex positive analysis of nonconsensual
pornography case law. Feminist Legal Studies, 29(1):23–41, 2021.

[33] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+ 1)
evolutionary algorithm. Theoretical Computer Science, 276(1-2):51–81, 2002.

[34] Martin Eberlein, Yannic Noller, Thomas Vogel, and Lars Grunske. Evolutionary
grammar-based fuzzing. In Aldeida Aleti and Annibale Panichella, editors, Search-
Based Software Engineering, pages 105–120, Cham, 2020. Springer International
Publishing. ISBN 978-3-030-59762-7.

[35] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot. Automatic gen-
eration of test cases for rest apis: A specification-based approach. In 2018 IEEE 22nd
international enterprise distributed object computing conference (EDOC), pages
181–190. IEEE, 2018.

[36] Osamuyimen Egbon and Chijoke Oscar Mgbame. Examining the accounts of oil
spills crises in nigeria through sensegiving and defensive behaviours. Accounting,
Auditing & Accountability Journal, 2020.

[37] Sidi Boubacar ElMamy, Hichem Mrabet, Hassen Gharbi, Abderrazak Jemai, and
Damien Trentesaux. A survey on the usage of blockchain technology for cyber-
threats in the context of industry 4.0. Sustainability, 12(21):9179, 2020.

[38] Yongsheng Fang and Jun Li. A review of tournament selection in genetic program-
ming. In Zhihua Cai, Chengyu Hu, Zhuo Kang, and Yong Liu, editors, Advances
in Computation and Intelligence, pages 181–192, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg. ISBN 978-3-642-16493-4.

[39] Emmanuelle Ganne. Can Blockchain revolutionize international trade? World Trade
Organization Geneva, 2018.

[40] GitHub. open-rpc/examples, . URL https://github.com/open-rpc/example

s/blob/master/service-descriptions/petstore-expanded-openrpc.json.
Accessed: 2022-06-19.

[41] GitHub. ethereum-json-rpc-specification, . URL https://github.com/etclabs

core/ethereum-json-rpc-specification/blob/master/openrpc.json. Ac-
cessed: 2022-08-01.

162

https://github.com/open-rpc/examples/blob/master/service-descriptions/petstore-expanded-openrpc.json
https://github.com/open-rpc/examples/blob/master/service-descriptions/petstore-expanded-openrpc.json
https://github.com/etclabscore/ethereum-json-rpc-specification/blob/master/openrpc.json
https://github.com/etclabscore/ethereum-json-rpc-specification/blob/master/openrpc.json

Bibliography

[42] Tara Goddard, Kelcie Ralph, Calvin G Thigpen, and Evan Iacobucci. Does news cov-
erage of traffic crashes affect perceived blame and preferred solutions? evidence from
an experiment. Transportation research interdisciplinary perspectives, 3:100073,
2019.

[43] Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk. Intelligent rest api data
fuzzing. In Proceedings of the 28th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2020, page 725–736, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450370431. doi: 10.1145/3368089.3409719. URL
https://doi-org.tudelft.idm.oclc.org/10.1145/3368089.3409719.

[44] David Gourley, Brian Totty, Marjorie Sayer, Anshu Aggarwal, and Sailu
Reddy. HTTP: the definitive guide. ” O’Reilly Media, Inc.”, 2002. URL
https://books.google.nl/books?hl=nl&lr=&id=3EybAgAAQBAJ&oi=fnd&pg

=PT4&dq=http+status+codes&ots=X61T_afW_o&sig=ca19b3ENLi50-tBka6-I

CgYVktA&redir_esc=y#v=onepage&q=httpstatuscodes&f=false.

[45] Constantin Gurdgiev and Adam Fleming. Informational efficiency and cybersecurity:
Systemic threats to blockchain applications. In Innovations in Social Finance, pages
347–372. Springer, 2021.

[46] Hack. Smart contract development. URL https://hack.bg/dlt-blockchain-d

evelopment-services/smart-contracts-development/. Accessed: 2022-03-
29.

[47] Mohammad Hamdan. A dynamic polynomial mutation for evolutionary multi-
objective optimization algorithms. International Journal on Artificial Intelligence
Tools, 20(01):209–219, 2011.

[48] Anders Hansen and David Machin. Media and communication research methods.
Macmillan International Higher Education, 2018.

[49] Huru Hasanova, Ui-jun Baek, Mu-gon Shin, Kyunghee Cho, and Myung-Sup Kim.
A survey on blockchain cybersecurity vulnerabilities and possible countermeasures.
International Journal of Network Management, 29(2):e2060, 2019.

[50] Adrian Herrera, Hendra Gunadi, Liam Hayes, Shane Magrath, Felix Friedlander,
Maggi Sebastian, Michael Norrish, and Antony L. Hosking. Corpus distillation for
effective fuzzing: A comparative evaluation, 2019. URL https://arxiv.org/ab

s/1905.13055.

[51] Jennifer Hoewe and Cynthia Peacock. The power of media in shaping political atti-
tudes. Current Opinion in Behavioral Sciences, 34:19–24, 2020.

163

https://doi-org.tudelft.idm.oclc.org/10.1145/3368089.3409719
https://books.google.nl/books?hl=nl&lr=&id=3EybAgAAQBAJ&oi=fnd&pg=PT4&dq=http+status+codes&ots=X61T_afW_o&sig=ca19b3ENLi50-tBka6-ICgYVktA&redir_esc=y#v=onepage&q=http status codes&f=false
https://books.google.nl/books?hl=nl&lr=&id=3EybAgAAQBAJ&oi=fnd&pg=PT4&dq=http+status+codes&ots=X61T_afW_o&sig=ca19b3ENLi50-tBka6-ICgYVktA&redir_esc=y#v=onepage&q=http status codes&f=false
https://books.google.nl/books?hl=nl&lr=&id=3EybAgAAQBAJ&oi=fnd&pg=PT4&dq=http+status+codes&ots=X61T_afW_o&sig=ca19b3ENLi50-tBka6-ICgYVktA&redir_esc=y#v=onepage&q=http status codes&f=false
https://hack.bg/dlt-blockchain-development-services/smart-contracts-development/
https://hack.bg/dlt-blockchain-development-services/smart-contracts-development/
https://arxiv.org/abs/1905.13055
https://arxiv.org/abs/1905.13055

BIBLIOGRAPHY

[52] Steyn Huurman, Xiaoying Bai, and Thomas Hirtz. Generating api test data using
deep reinforcement learning. In Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, pages 541–544, 2020.

[53] Angur Mahmud Jarman. Hierarchical cluster analysis: Comparison of single linkage,
complete linkage, average linkage and centroid linkage method. Georgia Southern
University, 2020.

[54] Sung Wook Ji and Junwon Lee. Cultural dimensions of online vs. offline media
competition: an application of niche theory. Journal of Media Economics, pages
1–18, 2021.

[55] Tushar Kansal, Suraj Bahuguna, Vishal Singh, and Tanupriya Choudhury. Customer
segmentation using k-means clustering. In 2018 international conference on compu-
tational techniques, electronics and mechanical systems (CTEMS), pages 135–139.
IEEE, 2018.

[56] Stefan Karlsson, Adnan Čaušević, and Daniel Sundmark. Quickrest: Property-based
test generation of openapi-described restful apis. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST), pages 131–141.
IEEE, 2020.

[57] Sei-Hill Kim and Matthew W Telleen. Talking about school bullying: News fram-
ing of who is responsible for causing and fixing the problem. Journalism & Mass
Communication Quarterly, 94(3):725–746, 2017.

[58] Jelena Kleut and Norbert Šinković. “is it possible that people are so irresponsible?”:
Tabloid news framing of the covid-19 pandemic in serbia. Sociologija, 62(4):503–
523, 2020.

[59] Kyungchan Ko, Chaehyeon Lee, Taeyeol Jeong, and James Won-Ki Hong. Design
of rpc-based blockchain monitoring agent. In 2018 International Conference on In-
formation and Communication Technology Convergence (ICTC), pages 1090–1095.
IEEE, 2018.

[60] Pavneet Singh Kochhar, Ferdian Thung, and David Lo. Code coverage and test suite
effectiveness: Empirical study with real bugs in large systems. 03 2015. doi: 10.
1109/SANER.2015.7081877.

[61] Elmarie Kritzinger and Sebastiaan H von Solms. Cyber security for home users: A
new way of protection through awareness enforcement. Computers & Security, 29
(8):840–847, 2010.

164

Bibliography

[62] Douiri Lamiae, Abdelouahhab Jabri, Abdellah El Barkany, and A.-Moumen
Darcherif. Optimization of Fresh Food Distribution Route Using Genetic Algo-
rithm with the Best Selection Technique, pages 175–199. Springer Singapore, Sin-
gapore, 2021. ISBN 978-981-33-6710-4. doi: 10.1007/978-981-33-6710-4 8. URL
https://doi.org/10.1007/978-981-33-6710-4_8.

[63] Nuno Laranjeiro, João Agnelo, and Jorge Bernardino. A black box tool for robustness
testing of rest services. IEEE Access, 9:24738–24754, 2021. doi: 10.1109/ACCESS
.2021.3056505.

[64] Chetna Laroiya, Deepika Saxena, and C Komalavalli. Applications of blockchain
technology. In Handbook of Research on Blockchain Technology, pages 213–243.
Elsevier, 2020.

[65] Robert LaRose, Nora J Rifon, and Richard Enbody. Promoting personal responsibil-
ity for internet safety. Communications of the ACM, 51(3):71–76, 2008.

[66] Aleksandr Lazarenko and Sergey Avdoshin. Financial risks of the blockchain indus-
try: A survey of cyberattacks. In Proceedings of the Future Technologies Conference,
pages 368–384. Springer, 2018.

[67] XRP Ledger. Documentation. URL https://xrpl.org/public-api-methods.h

tml. Accessed: 2022-06-19.

[68] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecurity, 1(1):6,
2018.

[69] Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. A survey on the
security of blockchain systems. Future Generation Computer Systems, 107:841–853,
2020.

[70] Stuart Madnick. Blockchain isn’t as unbreakable as you think. Available at SSRN
3542542, 2019.

[71] Maria Maleshkova, Carlos Pedrinaci, and John Domingue. Investigating web apis on
the world wide web. In 2010 eighth ieee european conference on web services, pages
107–114. IEEE, 2010.

[72] Jims Marchang, Gregg Ibbotson, and Paul Wheway. Will blockchain technology
become a reality in sensor networks? In 2019 Wireless Days (WD), pages 1–4. IEEE,
2019.

[73] Moxie Marlinspike. My first impressions of web3, Jan 2022. URL https://moxi

e.org/2022/01/07/web3-first-impressions.html.

165

https://doi.org/10.1007/978-981-33-6710-4_8
https://xrpl.org/public-api-methods.html
https://xrpl.org/public-api-methods.html
https://moxie.org/2022/01/07/web3-first-impressions.html
https://moxie.org/2022/01/07/web3-first-impressions.html

BIBLIOGRAPHY

[74] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. Restest: Black-box
constraint-based testing of restful web apis. In International Conference on Service-
Oriented Computing, pages 459–475. Springer, 2020.

[75] Charles McFarland, Tim Hux, Eric Wuehler, and Sean Campbel. Blockchain threat
report. McAfee, june 2018. URL https://www.mcafee.com/enterprise/en-us/

assets/reports/rp-blockchain-security-risks.pdf.

[76] Thijs Metsch, Andy Edmonds, et al. Open cloud computing interface-restful http
rendering. In Open Grid Forum-OCCI Working group technical report, 2011.

[77] Seyedali Mirjalili. Genetic algorithm. In Evolutionary algorithms and neural net-
works, pages 43–55. Springer, 2019.

[78] Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. An analysis of public rest
web service apis. IEEE Transactions on Services Computing, 2018.

[79] Alireza Nili, Mary Tate, and Alistair Barros. A critical analysis of inter-coder relia-
bility methods in information systems research. 2017.

[80] Michael Nofer, Peter Gomber, Oliver Hinz, and Dirk Schiereck. Blockchain. Busi-
ness & Information Systems Engineering, 59(3):183–187, 2017.

[81] Raoul Notté, ER Leukfeldt, and Marijke Malsch. Double, triple or quadruple hits?
exploring the impact of cybercrime on victims in the netherlands. International Re-
view of Victimology, page 02697580211010692, 2021.

[82] OpenRPC. What is openrpc?, . URL https://open-rpc.org/. Accessed: 2022-
06-19.

[83] OpenRPC. Playground., . URL https://playground.open-rpc.org/. Accessed:
2022-06-19.

[84] Peder Østbye. Who is causally responsible for a cryptocurrency? Available at SSRN
3339537, 2019.

[85] Peder Østbye. Who is liable if a cryptocurrency protocol fails? Available at SSRN
3423681, 2019.

[86] Jane O’Boyle and Queenie Jo-Yun Li. # metoo is different for college students: Me-
dia framing of campus sexual assault, its causes, and proposed solutions. Newspaper
Research Journal, 40(4):431–450, 2019.

[87] Om Pal, Bashir Alam, Vinay Thakur, and Surendra Singh. Key management for
blockchain technology. ICT Express, 2019.

166

https://www.mcafee.com/enterprise/en-us/assets/reports/rp-blockchain-security-risks.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-blockchain-security-risks.pdf
https://open-rpc.org/
https://playground.open-rpc.org/

Bibliography

[88] Sakshi Patel, Shivani Sihmar, and Aman Jatain. A study of hierarchical clustering
algorithms. In 2015 2nd International Conference on Computing for Sustainable
Global Development (INDIACom), pages 537–541, 2015.

[89] Barbara Piasecka, Marc Robinson-Rechavi, and Sven Bergmann. Correcting for the
bias due to expression specificity improves the estimation of constrained evolution
of expression between mouse and human. Bioinformatics, 28(14):1865–1872, 2012.

[90] Corina S. PÄƒsÄƒreanu, Rody Kersten, Kasper Luckow, and Quoc-Sang Phan.
Chapter six - symbolic execution and recent applications to worst-case execu-
tion, load testing, and security analysis. volume 113 of Advances in Com-
puters, pages 289–314. Elsevier, 2019. doi: https://doi.org/10.1016/bs.adcom
.2018.10.004. URL https://www.sciencedirect.com/science/article/pii/

S0065245818300640.

[91] Amanda My Linh Quan, Lindsay A Wilson, Salima S Mithani, David T Zhu, A Bota,
and Kumanan Wilson. Reporting on the opioid crisis (2000–2018): role of the
globe and mail, a canadian english-language newspaper in influencing public opin-
ion. Harm Reduction Journal, 17(1):1–11, 2020.

[92] Rayne Reid and Johan Van Niekerk. From information security to cyber security
cultures. In 2014 Information Security for South Africa, pages 1–7. IEEE, 2014.

[93] Karen Renaud, Stephen Flowerday, Merrill Warkentin, Paul Cockshott, and Craig
Orgeron. Is the responsibilization of the cyber security risk reasonable and judicious?
computers & security, 78:198–211, 2018.

[94] Leonard Richardson and Sam Ruby. RESTful web services. ” O’Reilly Media, Inc.”,
2008.

[95] Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles Kamhoua, Sachin
Shetty, Dae Hun Nyang, and David Mohaisen. Exploring the attack surface of
blockchain: A comprehensive survey. IEEE Communications Surveys & Tutorials,
2020.

[96] Gary J. Saavedra, Kathryn N. Rodhouse, Daniel M. Dunlavy, and W. Philip
Kegelmeyer. A review of machine learning applications in fuzzing. CoRR,
abs/1906.11133, 2019. URL http://arxiv.org/abs/1906.11133.

[97] Omur Sahin and Bahriye Akay. A discrete dynamic artificial bee colony with
hyper-scout for restful web service api test suite generation. Applied Soft Com-
puting, 104:107246, 2021. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc
.2021.107246. URL https://www.sciencedirect.com/science/article/pii/

S1568494621001691.

167

https://www.sciencedirect.com/science/article/pii/S0065245818300640
https://www.sciencedirect.com/science/article/pii/S0065245818300640
http://arxiv.org/abs/1906.11133
https://www.sciencedirect.com/science/article/pii/S1568494621001691
https://www.sciencedirect.com/science/article/pii/S1568494621001691

BIBLIOGRAPHY

[98] Abubakar Sadiq Sani, Dong Yuan, Jiong Jin, Longxiang Gao, Shui Yu, and
Zhao Yang Dong. Cyber security framework for internet of things-based energy
internet. Future Generation Computer Systems, 93:849–859, 2019.

[99] K Sasirekha and P Baby. Agglomerative hierarchical clustering algorithm-a. Inter-
national Journal of Scientific and Research Publications, 83(3):83, 2013.

[100] Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. Smart contract: Attacks and
protections. IEEE Access, 8:24416–24427, 2020.

[101] Daniel Schatz, Rabih Bashroush, and Julie Wall. Towards a more representative
definition of cyber security. Journal of Digital Forensics, Security and Law, 12(2):
53–74, 2017.

[102] Manuel Schlegel, Liudmila Zavolokina, and Gerhard Schwabe. Blockchain technolo-
gies from the consumers’ perspective: what is there and why should who care? In
Proceedings of the 51st Hawaii international conference on system sciences, 2018.

[103] Bruce Schneier. Blockchain and trust, Feb 2019. URL https://www.schneier.c

om/blog/archives/2019/02/blockchain_and_.html.

[104] Bruce Schneier. On the dangers of cryptocurrencies and the uselessness of
blockchain, Jun 2022. URL https://www.schneier.com/blog/archives/2019/

02/blockchain_and_.html.

[105] Julia Churchill Schoellkopf. Victim-blaming: A new term for an old trend. 2012.

[106] Thibault Schrepel. Blockchain+ Antitrust: The Decentralization Formula. Edward
Elgar Publishing, 2021.

[107] Bart Selman and Carla P Gomes. Hill-climbing search. Encyclopedia of cognitive
science, 81:82, 2006.

[108] Abhinav Sharma, M Revathi, et al. Automated api testing. In 2018 3rd International
Conference on Inventive Computation Technologies (ICICT), pages 788–791. IEEE,
2018.

[109] Ashlie J Siefkes-Andrew and Cassandra Alexopoulos. Framing blame in sexual as-
sault: An analysis of attribution in news stories about sexual assault on college cam-
puses. Violence against women, 25(6):743–762, 2019.

[110] Hari Krishna SM and Rinki Sharma. Survey on application programming interfaces
in software defined networks and network function virtualization. Global Transitions
Proceedings, 2021.

168

https://www.schneier.com/blog/archives/2019/02/blockchain_and_.html
https://www.schneier.com/blog/archives/2019/02/blockchain_and_.html
https://www.schneier.com/blog/archives/2019/02/blockchain_and_.html
https://www.schneier.com/blog/archives/2019/02/blockchain_and_.html

Bibliography

[111] IP Specialist. How blockchain technology works. URL https://medium.com/@ip

specialist/how-blockchain-technology-works-e6109c033034. Accessed:
2022-03-29.

[112] Bradley J Strawser and Donald J Joy Jr. Cyber security and user responsibility:
surprising normative differences. Procedia Manufacturing, 3:1101–1108, 2015.

[113] Swagger. Openapi specification. URL https://swagger.io/specification/v

2/. Accessed: 2022-06-05.

[114] Chainalysis Team. The rise of cybercrime on ethereum. URL https://blog.cha

inalysis.com/reports/the-rise-of-cybercrime-on-ethereum. Accessed:
2021-01-23.

[115] Eric K. Tokuda, Cesar H. Comin, and Luciano da F. Costa. Revisiting agglomerative
clustering. Physica A: Statistical Mechanics and its Applications, 585:126433, 2022.
ISSN 0378-4371. doi: https://doi.org/10.1016/j.physa.2021.126433. URL https:

//www.sciencedirect.com/science/article/pii/S0378437121007068.

[116] TripleA. Cryptocurrency across the world. URL https://triple-a.io/crypto

-ownership/. Accessed: 2022-02-26.

[117] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and exploitation
in evolutionary algorithms: A survey. ACM Comput. Surv., 45(3), jul 2013. ISSN
0360-0300. doi: 10.1145/2480741.2480752. URL https://doi-org.tudelft.i

dm.oclc.org/10.1145/2480741.2480752.

[118] Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos. Ifuzzer: An evo-
lutionary interpreter fuzzer using genetic programming. In European Symposium on
Research in Computer Security, pages 581–601. Springer, 2016.

[119] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. Resttestgen: auto-
mated black-box testing of restful apis. In 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST), pages 142–152. IEEE, 2020.

[120] Rahul Rao Vokerla, Bharanidharan Shanmugam, Sami Azam, Asif Karim, Friso
De Boer, Mirjam Jonkman, and Fahad Faisal. An overview of blockchain appli-
cations and attacks. In 2019 International Conference on Vision Towards Emerging
Trends in Communication and Networking (ViTECoN), pages 1–6. IEEE, 2019.

[121] Basie von Solms and Rossouw von Solms. Cybersecurity and information security–
what goes where? Information & Computer Security, 2018.

[122] Rossouw Von Solms and Basie Von Solms. From policies to culture. Computers &
security, 23(4):275–279, 2004.

169

https://medium.com/@ipspecialist/how-blockchain-technology-works-e6109c033034
https://medium.com/@ipspecialist/how-blockchain-technology-works-e6109c033034
https://swagger.io/specification/v2/
https://swagger.io/specification/v2/
https://blog.chainalysis.com/reports/the-rise-of-cybercrime-on-ethereum
https://blog.chainalysis.com/reports/the-rise-of-cybercrime-on-ethereum
https://www.sciencedirect.com/science/article/pii/S0378437121007068
https://www.sciencedirect.com/science/article/pii/S0378437121007068
https://triple-a.io/crypto-ownership/
https://triple-a.io/crypto-ownership/
https://doi-org.tudelft.idm.oclc.org/10.1145/2480741.2480752
https://doi-org.tudelft.idm.oclc.org/10.1145/2480741.2480752

BIBLIOGRAPHY

[123] Tanja EJ Vos, Felix F Lindlar, Benjamin Wilmes, Andreas Windisch, Arthur I Baars,
Peter M Kruse, Hamilton Gross, and Joachim Wegener. Evolutionary functional
black-box testing in an industrial setting. Software Quality Journal, 21(2):259–288,
2013.

[124] Michael D Vose. The simple genetic algorithm: foundations and theory. MIT press,
1999.

[125] Debbie Walkowski. What is the cia triad? URL https://www.f5.com/labs/art

icles/education/what-is-the-cia-triad. Accessed: 2022-03-29.

[126] M. Wallace, G. Akrivas, and G. Stamou. Automatic thematic categorization of
documents using a fuzzy taxonomy and fuzzy hierarchical clustering. In The 12th
IEEE International Conference on Fuzzy Systems, 2003. FUZZ ’03., volume 2, pages
1446–1451 vol.2, 2003. doi: 10.1109/FUZZ.2003.1206644.

[127] Stephanie Wang, Benjamin Hindman, and Ion Stoica. In reference to rpc: It’s time
to add distributed memory. Workshop on Hot Topics in Operating Systems (HotOS
’21), 2021.

[128] Kristin Weber, Andreas E Schütz, Tobias Fertig, and Nicholas H Müller. Exploiting
the human factor: Social engineering attacks on cryptocurrency users. In Interna-
tional Conference on Human-Computer Interaction, pages 650–668. Springer, 2020.

[129] Jiajing Wu, Qi Yuan, Dan Lin, Wei You, Weili Chen, Chuan Chen, and Zibin Zheng.
Who are the phishers? phishing scam detection on ethereum via network embedding.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020.

[130] Jennifer J Xu. Are blockchains immune to all malicious attacks? Financial Innova-
tion, 2(1):1–9, 2016.

[131] Xiuyun Yang. An assessment of the media’s portrayal of murders at chinese mines.
The Extractive Industries and Society, 7(3):1066–1076, 2020.

[132] Xiuyun Yang and Bo Wang. Framing and blaming: Media coverage of coal min-
ing accident coverups in china. The Extractive Industries and Society, 8(2):100895,
2021.

[133] Li Yujian and Liu Bo. A normalized levenshtein distance metric. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(6):1091–1095, 2007. doi: 10.1109/
TPAMI.2007.1078.

[134] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. The fuzzing book, 2019.

170

https://www.f5.com/labs/articles/education/what-is-the-cia-triad
https://www.f5.com/labs/articles/education/what-is-the-cia-triad

Bibliography

[135] Dirk A Zetzsche, Ross P Buckley, and Douglas W Arner. The distributed liability of
distributed ledgers: Legal risks of blockchain. U. Ill. L. Rev., page 1361, 2018.

[136] Man Zhang and Andrea Arcuri. Open problems in fuzzing restful apis: A comparison
of tools, 2022.

[137] Peilin Zheng, Zibin Zheng, Xiapu Luo, Xiangping Chen, and Xuanzhe Liu. A de-
tailed and real-time performance monitoring framework for blockchain systems. In
2018 IEEE/ACM 40th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), pages 134–143. IEEE, 2018.

[138] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing: A survey for
roadmap. ACM Comput. Surv., jan 2022. ISSN 0360-0300. doi: 10.1145/3512345.
URL https://doi-org.tudelft.idm.oclc.org/10.1145/3512345. Just Ac-
cepted.

171

https://doi-org.tudelft.idm.oclc.org/10.1145/3512345

A
Standard configuration of

parameters

General Fuzzing
Population size 100 Clustering after X generations (div-based) 3
Requests limit 1 Proportion mutated 0.8
Request generation
Probability to generate HTTP method GET (otherwise it is POST) 0.1 Add new individual to population 0.0
Probability to include optional parameter during generation 0.25 Sample from archive 0.0
Mutation
Mutations per individual 2 ArrayGene: remove element 0.1
Probability to mutate HTTP method 0.05 ArrayGene: add element 0.1
Probability to mutate API operation 0.005 ObjectGene: remove child 0.1
Probability to add request 0.05 ObjectGene: add non-required child 0.1
Probability to delete request 0.05 LongGene: boundary case (upper or lower) 0.1
Schema-based generation instead of mutation 0.1 LongGene: no outside boundary cases False
Probability to change parameter type 0.5 StringGene: fraction string to mutate 0.2
Use other schemas for new types True StringGene: pick another enum value 0.2

Table A.1: Default configuration for GEFRA

173

B
Coding protocol

The coding schedule is filled in by answering for each article the following questions:

1. Is the article relevant for this analysis?
The article should not be a(n) (exact) duplicate. If the article refers to another article,
this other article is the source. If this already exists in the list, the article at hand is
deemed a duplicate.
An article is only relevant if it discusses (without a doubt) a blockchain attack.

If the article is irrelevant, the reason why is written down in the Notes column and is
one of the following:

• Inaccessible: The article is not or no longer available (e.g. the article is placed
behind a paywall or the link is invalid).

• Duplicate1: A direct link to the (same) article in another newspaper is men-
tioned in the article.

• Duplicate2: The same article is published in different newspapers but there
are no references. However, the newspapers do have a connection or share the
same platform/website setup (e.g. Tubantia and Stentor have the same parent
company).

• No blockchain attack: The article describes some sort of attack or crime but
this is not actually an attack that involves blockchain technology to some extent
or the target of the attack is unrelated to the blockchain technology.

• Unclear: The article does not make clear (enough) whether it discusses an at-
tack on a blockchain application or on something different in order to steal a
blockchain asset (e.g. cryptocurrencies).

• Unrelated: The article is either not a news article (e.g. a court case document or
comment on a forum), or it is not about blockchain (attacks), or it falls outside
of the scope of this analysis (e.g. the article discusses cryptocurrency payments
made as a consequence of a ransomware attack, how to invest in cryptocurren-
cies, or other topics that are not about blockchain-related attacks).

175

B. CODING PROTOCOL

Only for relevant articles the rest of the questions are answered.

2. What is (mostly) the narrative of the article?

An article is either mostly episodic or thematic. In this column, what is applicable is
written down:

a) Episodic: Does the article focus its narrative on one person’s experience?
(i.e. an isolated incident/individual, anecdotal events, personal stories, dissoci-
ated from larger social contexts)
Briefly put: the article discusses one particular incident or issue presented in a
personal case/specific event.

b) or Thematic: Does the article focus on a more general and abstract level about
the issue as a whole?
(i.e. a broad portrayal and presentation of issues through information about their
systemic causes, trends and consequences)
Briefly put: the article discusses a broader issue of which the attack was a part,
and possibly society’s role, this requires research and data collection.
A few sentences stating that hacks happen often (with very few examples illus-
trating such hacks) do not count.

3. What blockchain attack(s) is/are discussed in the article? A relevant article can
discuss one or more of the following attacks, which are written down in the Type of
attack column:

a) OPSEC-related incidents: The article discusses an incident that compromises
an organisation or individual’s control of information and access to (business-
critical) assets (i.e. trust, key, and information management issues that are no
different for a cryptocurrency exchange than for a bank) (e.g. identity theft,
sim-swapping).

b) Smart contract incidents: The article discusses an incident resulting from im-
properly written smart contracts deployed and executed on a blockchain (e.g.
exploits in smart contracts).

c) Consensus Protocol Incentives incidents: The article discusses an incident
arising from malicious exploitation of consensus protocols (e.g. 51% attacks, or
block withholding attacks against the entire network or the incentive structure
within pools).

d) Scams: The article discusses an incident where the blockchain hype is used
as a means to fool people and lure them in (e.g. pyramid/Ponzi schemes or
investment fraud).

176

e) Unspecified: The article is not specific enough to categorise the attack (e.g. the
article discusses a ’hack’ or server break-in and does not go into detail).

4. Who is described as the victim(s) of the attack A relevant article might describe
a party or parties that fell victim to the attack or has lost something. If an item is
described as a victim (e.g. a cryptocurrency that plummeted), this does not count
since it is not a person or an entity represented by people.
This party can be one of the following and is written in the Victim column of the
coding schedule:

a) Blockchain application
This includes a cryptoplatforms, cryptoexchanges, DeFi (Decentralised Finance)
applications, or any application that integrates the blockchain technology (and
their developers).

b) (End)users of blockchain applications (e.g. wallet hacks)

c) Investor(s): The article discusses people that were looking to invest as the vic-
tims (that are not necessarily using an application).
This category will likely be merged with Users since it comes down to the same
thing.

d) Celebrities (including politicians)

e) External organizations (e.g. banks, companies, startups, municipalities)

f) Unspecified: The article does not speak of a victim.

5. Who is described as the perpetrator(s) of the attack? A relevant article might
describe the party or parties that performed or planned the attack. This party can be
one of the following and is written in the Perpetrator column of the coding schedule:

a) Attacker(s)/Hacker(s)/Criminal(s): The article talks about attackers, hackers or
criminals that performed the attack.

b) Employee(s): The article talks about employee(s) (possibly) being involved in
the attack.

c) Country: The article mentions that a country is behind the attack (e.g. military
hackers from North-Korea).

d) Unspecified: The article does not speak of an adversary.

6. Who has causal responsibility (blaming someone)?

A relevant article might describe a party or parties that have causal responsibility.
This can be one or more of the following parties and corresponding categories of
causal responsibility. If the answer to one or more of the next questions is yes, than

177

B. CODING PROTOCOL

that party has causal responsibility.
The party is written down in the Causal responsibility column of the coding schedule,
the corresponding category in the Category column and the quote from the article that
lead to this decision in the Quote column.

a) Blockchain application
This includes cryptoplatforms, cryptoexchanges, DeFi (Decentralised Finance)
applications, or any application that integrates the blockchain technology (and
their developers).

• Lack of security: Does the article indicate in some way that the attacked
application is failing to offer secure storage of blockchain assets (e.g. in-
formation or cryptocurrencies)?
Or does the article indicate in some way that the attack was possible due to
a bug/vulnerability/problem/something wrong in the application?
Or is it mentioned that security depends on the application used/that there
is a lack of security overall?

• Faulty behavior: Does the article indicate in some way that the attack
happened or escalated due to decisions (not) made by the application (that
could have stopped or mitigated the consequences of the attack)?

• Blockchain characteristics: Does the article indicate in some way that the
attack was possible because of vulnerabilities inherent to the way blockchain
works (e.g. certain consensus algorithms making the network vulnerable
for certain attacks)?

• Lack of communication: Does the article indicate in some way that the
attacked application is providing insufficient communication to users to
help them (e.g. poor customer service, not responding to users).

• Newness: Does the article indicate in some way that due to the newness of
blockchain applications, at times faults happen that are exploited by adver-
saries?

• Attractiveness: Does the article indicate in some way (quotes from sources
used in the article are allowed) that it (could be or) is lucrative for criminals
to attack blockchain projects (for example due to the fact that transactions
cannot be rollbacked or the anonymity that blockchain offers)?

b) Third party / other platform than the blockchain application that was involved
(in some way)

• Negligence: Does the article mention in some way that a third party was
or might be negligilent in trying to prevent the attack or was expected to
prevent it, or that it even helped enable the attackers? For example by not
removing fraudulent adds or even making a profit off of them.

178

Or does the article mention that a third party did something (for any reason)
(e.g. releasing a security measure enabling the attack) that enabled the
attack?

• Sloppiness: Does the article indicate in some way that attacks are possible
due to weaknesses in (the security of) other (third party) platforms that are
to some extent related to or integrated in the blockchain project?

c) (End)users

• Bad behavior: Does the article indicate in some way that the user(s) did
not sufficiently keep their private information safe/that they should have
taken more security precautions?

• Lack of awareness: Does the article indicate in some way that the user(s)
did not do (enough) background research/blindly trusted the perpetrator(s)/put
their trust in something? Or does the article indicate in some way that the
user(s) were stupid to trust the scheme or consider the application/environ-
ment to be safe?

d) Government (institutional)

• Insufficient regulation: Does the article indicate in some way that there is
a lack of regulation/legislation, education or security regarding the attack?

• Poor regulatory enforcement/lack of police support: Does the article indi-
cate in some way that the government is unable to enforce rules on blockchain
attacks?

• Lack of supervision on use of technology: Does the article indicate in
some way that there is a lack of supervision on the use of technology (e.g.
the attack was possible because users (when using the application) are not
sufficiently supervised)?

e) Society as a whole (insitutional)

• Good reputation: Does the article indicate in some way that blockchain
applications are considered to always be secure?

• Lack of awareness: Does the article indicate that society does not con-
sider blockchain attacks a priority issue or serious crime (or indicate that
blockchain attacks are not a problem)?

• Society ignorance: Does the article indicate that society does not demand
accountability from anyone?

• Media responsibility: Does the article indicate that there is a victim blam-
ing and inaccurate (media) coverage concerning blockchain attacks?

f) Perpetrator

179

B. CODING PROTOCOL

• Ethical hacking: Does the article indicate in some way that the perpetra-
tor(s) possibly wanted to help the application by exposing vulnerabilities
or teach them a lesson?

• Fun: Does the article indicate in some way that the perpetrator(s) attacked
the application for fun or as a challenge?

• Political: Does the article indicate in some way that the attacker(s) per-
formed the attack for political reasons?

• Social status/show-off: Does the article indicate in some way that the per-
petrator(s) attacked the application to show off their skills?

g) Undefined (when there is no causal responsibility assigned)

7. Who has treatment responsibility (demanding a solution)?

a) Blockchain application
This includes a cryptoplatforms, cryptoexchanges, DeFi (Decentralised Finance)
applications, or any application that integrates the blockchain technology (and
their developers).

• Protection enhancement: Does the article indicate in some way that the
application should/must or has to implement measures to prevent vulnera-
bilities in the application/improve the security (for example in order to be
able to continue business as usual) (e.g. introduce a bug bountry program)?
Or is it mentioned that in-place security measures were able to (at least
partly) effectively block the attack?

• Policy change: Does the article indicate in some way that the application
needs to change their user policies in order to be more secure/prevent future
incidents?

• Punishments: Does the article indicate in some way that applications need
to punish offenders (e.g find them and freeze their assets) in order to con-
tinue to exist/continue business as usual?

• Better communication to users: Does the article indicate in some way that
communication/customer support should be improved (in order to continue
business as usual)?

• Compensation: Does the article indicate that the application or service has
compensated or will compensate victims to some extent?

b) Third party

• Basic security: Does the article indicate that an external party can prevent
the attacks by having security measures in place? For example, is it stated
that companies should be able to counter malware by having spam filters
and up to date systems, or by training customer service?

180

• Voluntary compensation: Does the article indicate that an external party
(e.g. a bank or other company) has compensated or will (or should) com-
pensate victims to some extent?

c) (End)users (if answer is yes to one of the following questions)

• Better behavior: Does the article indicate in some way that the user(s)
should better take care of/keep safe their private information when using
the application? Or that user(s) could do something to be more safe (e.g.
store money in a cold wallet, use safer alternatives, make back up of wallet
and keys).

• Self-protection enhancement: Does the article indicate in some way that
user(s) should watch out/be cautious of scams when using the applica-
tion/do some investigation before using an app (e.g. only use applications
that have official permits, investigate applications)?
Or that user(s) should not share personal information (e.g. on social media
platforms)?
Quotes from another source count as well (if there are no counterargu-
ments).

• Awareness enhancement: Does the article indicate in some way that vic-
tims (and witnesses) should report (similar) crimes?

• Acceptance: Does the article indicate in some way that users have to be
aware of and accept the risk that their account could be hacked and their
funds could be lost? Or less explicit: that there will always be risk in the
blockchain community (e.g. for cryptocurrencies)?
Or is it somehow indicated that attacks are normal and part of the DeFi
(Decentralized Finance) business?
Or that it is inherent to the blockchain technoloy that there is no authority
that can fix things?

d) Government (institutional)

• Regulation: Does the article indicate in some way that the government or
EU should create (or improve) legislation/regulation for blockchain appli-
cations or related activities (like cryptocurrencies trading)?

• Increase police support: Does the article indicate in some way that more
police force should be dedicated towards blockchain attacks and tracking
down attackers?

• Oversight of technology use: Does the article indicate in some way that
users should be monitored and have restrictions (to some extent) when it
comes to the usage of blockchain applications?

e) Society (institutional)

181

B. CODING PROTOCOL

• Education: Does the article indicate in some way that education from
schools/(college)universities on blockchain risks is an option to prevent at-
tacks?

• Adequate education and support: Does the article indicate in some way
that society needs to provide (financial) support for victims?

• Media responsibility: Does the article state that there is a need for better
reporting, accurate coverage and neutral coverage on blockchain applica-
tions or attacks?

f) Undefined (when there is no treatment responsibility assigned)

182

C
Additional figures content analysis

183

C. ADDITIONAL FIGURES CONTENT ANALYSIS

Figure
C

.1:C
ategories

ofcausalresponsibility
perblockchain

attack
type

184

Fi
gu

re
C

.2
:C

at
eg

or
ie

s
of

tr
ea

tm
en

tr
es

po
ns

ib
ili

ty
pe

rb
lo

ck
ch

ai
n

at
ta

ck
ty

pe

185

D
Legal professionals interview

protocol and summaries

D.1 Interview protocol

The interviews were structured as an open discussion. Various cases were described to the
legal professionals and they were asked to give their opinion regarding who was legally
responsible for the prevention of the attack and who was likely to suffer the consequences
for each case. Not all legal professionals were questioned on all five cases.

Case 1: Poly Network (August 2021) (Smart contract incident)

What happened? A hacker stole more than $600 million through the cryptocurrency
exchange Poly Network. Poly Network operates on various blockchain networks. Cryp-
tocurrency tokens are swapped between the blockchains using smart contracts that contain
instructions on when to release the assets to the counterparties. The hacker exploited a
vulnerability in one of these smart contracts and overrode the contract instructions to steal
cryptocurrency funds from Poly Network users.

In this case, the hacker returned all of the assets soon after, stating to be an ethical
hacker wanting to expose vulnerabilities so the developers could fix them.

What would however happened if the hacker had instead kept the assets? Who was legally
responsible for the prevention of the attack, and who is likely to have to suffer the
consequences and why?

Case 2: Bitcoin SV (August 2021) (Consensus protocol incentives incident)

What happened? Bitcoin SV became the victim of a 51% attack. In a 51% attack, one
party holds the majority of the hashrate in the blockchain network, and the network is no
longer truly independent. During the attack, the attackers were able to double spend (repeat
transactions) and in this way steal money from users.

This attack exploits an inherent vulnerability of blockchain but is mostly a risk for small

187

D. LEGAL PROFESSIONALS INTERVIEW PROTOCOL AND SUMMARIES

blockchain networks. For large blockchain networks, it becomes infeasible to obtain the
majority of mining nodes. In the case of Bitcoin SV, who was legally responsible for the
prevention of the attack, and who is likely to have to suffer the consequences and why?

Case 3: Fake chrome extensions for cryptowallets (2020) (OPSEC-related incident)

What happened? Fake chrome extensions that masqueraded as legit crypto-wallet exten-
sions were available in the Google Play Store. The extensions worked the same as the legit
wallet applications. However, while the extensions enabled users to access their wallet,
login details where siphoned off to the attackers, allowing them to steal the users’ cryp-
tocurrencies.

Google allowed the fake extensions to be in the Google Play Store. People that downloaded
the extensions from the Google Play Store were robbed of their credentials and money. Who
was legally responsible for the prevention of the attack, and who is likely to suffer the
consequences and why?

Case 4: The BitConnect Ponzi scheme (January 2018) (Scheme)

What happened? BitConnect was a cryptocurrency that was connected with an investment
program of the same name. BitConnect collected money from people by selling itself as
a way for people to easily invest in cryptocurrency and to make a lot of money doing so.
BitConnect then used money from new investors to pay old ones (otherwise known as a
Ponzi scheme), and its advocates built pyramid schemes where they would get a cut for
convincing others to invest by promising them the same deal. Some advocates used their
YouTube platform to promote BitConnect. Eventually BitConnect insiders closed the ex-
change platform and soon after the BitConnect tokens lost their value, leaving the investors
with nothing. Who was legally responsible, and who is likely to suffer the consequences
and why?

Case 5: Fake investment advertisements featuring celebrities (June 2019) (Scheme)

What happened? Advertisements were placed on Facebook featuring famous Dutch peo-
ple’s names and pictures calling on users to invest in cryptocurrencies. The advertisements
stated for example that the celebrities became rich due to online investment programs. The
celebrities were however not at all involved and unaware of their image being used in this
way.

The investment programs promoted by the advertisements turned out to be fraudulent.
With the money the victims supposedly invested in cryptocurrencies, cryptocurrencies were
bought but sent to addresses that the victims did not have access to. Because the compa-

188

D.1. Interview protocol

nies behind the advertisements and investment programs are located abroad, and victims
voluntarily transferred money, the police are unable to act.

Facebook (and other social media companies) try to remove fraudulent advertisements
as they are a breach of their regulations but adversaries seem to be able to keep bypassing
the control mechanisms. Who was legally responsible for the prevention of this attack,
and who is likely to suffer the consequences and why?

189

D. LEGAL PROFESSIONALS INTERVIEW PROTOCOL AND SUMMARIES

D.2 Legal professionals interview summaries

This section contains the summaries of interviews of the experts that gave (explicit) permis-
sion for publication.

D.2.1 Summary interview Dr. Oskar Josef Gstrein

Dr. Oskar Josef Gstrein

Dr. Oskar Josef Gstrein is an Assistant Professor at the University of Groningen. He has
a background in (European Human Rights) law and philosophy and currently conducts re-
search for the Governance and Innovation department at the University of Groningen. He
is active in the research fields of International European Law and Multidisciplinary Ap-
proaches for Law. Among other things, Gstrein studies emerging technologies and gover-
nance (including blockchain), cybersecurity, and human rights in the digital age.

Case 1: Fake chrome extensions for cryptowallets (2020) (OPSEC)

Gstrein stated that Google has the obligation to check whether extensions that are available
in their store are safe. However, safety and security have a context-heavy dimension. It
depends on the criteria Google sets for themselves what it means for an application to be
safe enough to be placed in the Google Play Store. Google would need to look at how
applications or extensions share information and verify that it does not share information
that it should not. Some responsibility may reside with Google in that sense.

If users look specifically for the application or extension in order to download it, they
may have some share in responsibility. In any case, it is not the legal responsibility of users
to report fraudulent extensions to Google or any other services.

Case 2: The BitConnect Ponzi scheme (January 2018) (Scheme)

Gstrein pointed out that this case is no different from other Ponzi schemes that did not
involve blockchain technology. He mentioned the significance of a contract that may have
been in place. If there was a contract, then the construction is a fraud when the promise (of
high returns of investment) is not kept. The difficulty then lies in who is responsible for the
creation of these contracts.

The blockchain structure of cryptocurrencies makes it easier to conceal traces of the
money going into the scheme, making it a complex task to trace creators of the Ponzi
scheme. It is more a question of operability than of responsibility. The responsibility (or li-
ability) is in this case not enforceable, but it is in fact there. In practice this means that while
the creators of the Ponzi scheme are liable, due to the responsibility not being enforceable
(the fraudsters are long gone when the crime is noticed), victims cannot be compensated.

190

D.2. Legal professionals interview summaries

Case 3: Fake investment advertisements featuring celebrities (June 2019) (Scheme)

Gstrein said that the cryptocurrencies here are used as another layer of complexity to set
up the scam. The extra layer makes the scam more plausible. Since everyone knows there
is a lot of money in blockchain, cryptocurrencies are attractive to use as bait. The use of
cryptocurrencies in addition to the image of celebrities in the scam here tricks people to
give money to something they would normally never give money to.

In this case, the question is how well Facebook actually has to check the contents (of
advertisements) with which they make money, and how trustworthy Facebook information
needs to be.

The celebrities have the strongest legal position due to infringement of personality rights
and economic and reputational damage to their image, but this is unrelated to blockchain.
While blockchain is used as another layer of complexity, the scam itself is not different from
other investment scams.

As for banks, when they are aware that there is a fraudulent transaction (money transfer
to a scamming party), they should act. It is however difficult for them to detect whether a
transaction is fraudulent. This falls within in the area of consumer protection or insurance
against fraud.

Case 4: Phone call investment scam (2020) (Scheme)

Gstrein commented that this scheme is not new: only the blockchain context is, since the
blockchain hype make attacks like these more successful. Furthermore, cryptocurrencies
make it easier for attackers to access the money without being caught.

In this case, banks were not too much involved but they are a protective intermediary.
It depends however on how much the bank knows, whether they should have intervened.
This falls within the consumer protection territory. It is not desirable for a bank to intervene
at the slightest possibility of fraud. This would mean that clients would often be asked to
explain why they make a transaction when they attempt to do so. There is a balance between
the impact of such scams on society overall and the possibility to transfer money quickly.
Moreover, there are already some protective measures in place: it is generally not possible
to transfer too much money at once. What ’too much’ money is depends on the client but
needs to be generalised to some extent to avoid discrimination.

It is difficult to retract general responsibility for banks unless there is a very clear indica-
tion that something fishy is going on. Because the scam hinges on cryptocurrency, it is even
more difficult to detect fraud. A transaction could also be an investment in cryptocurrencies
rather than a scam.

191

D. LEGAL PROFESSIONALS INTERVIEW PROTOCOL AND SUMMARIES

Final conclusions from the interview (my interpretation)

Gstrein states that social engineering schemes are not new when looked at in an abstract
manner. They are simply updated versions with the addition of a layer of complexity:
blockchain. Usually it is clear that a crime has been committed, and the question is not
that of responsibility but of enforcement. The crime territory goes across borders and the
blockchain technology allows criminals to carry out crimes with ease. While laws are in
place and deemed sufficient, it is difficult to enforce them. The enforcement mechanisms
have limitations. The way that rules are set up (nationally) is a restriction to enforce them,
especially for blockchain applications, where there are no territorial borders. The game of
the crime is being moved away from the space of the territory. It requires a large amount of
public resources to follow blockchain data traces (and money) to the end point.

In essence, it is clear by law who is responsible (the attackers) but it is difficult to
enforce this responsibility. Cryptocurrencies live in a wild west territory - it is relatively
new and there exist many optimistic stories about people getting rich. People are quick to
underestimate risk and law enforcement is complicated.

192

D.2. Legal professionals interview summaries

D.2.2 Summary interview Dr. Thibault Schrepel

Dr. Thibault Schrepel is an Associate Professor of Law at VU Amsterdam. His latest re-
search is focused on blockchain antitrust and how law and technology could cooperate.
Recently he published a freely available book on this topic called “Blockchain + Antitrust”.
Part of the research Schrepel has conducted is about how blockchain can work for mod-
ern societies, and how public permissionless blockchains (when anyone can write on the
blockchain ledger) make it difficult to enforce the law.

Case 1: Fake chrome extensions for cryptowallets (2020) (OPSEC)

There is currently a draft of new European legislation named the Digital Services Act1

(DSA). Currently platforms active in the EU have the duty to do everything they can to
protect customers (and thus detect evil contents). Legally speaking this means that platforms
must employ all the means they can to do this, but there is no duty to obtain a certain result.
This is comparable to the duty of doctors for the care and safety of patients. Doctors have
the duty to do everything they can to care for patients but there is no duty to cure them. In
the US there is absolutely no obligation for online platforms to check contents.

Legislation and liability should be aligned with the power of prevention. If a party is not
in control, they should not be liable. Technically it is possible for online platforms to check
all published contents. However, because there is too much information, it is infeasible to
do so. With more powerful algorithms in the future this might be subject to change. At the
moment, if it cannot be proven that a platform was aware of malicious contents, they are
not liable.

In this case, Google is not liable if they did not know about the fraudulent application ex-
tensions; the creators are. If the creators are not found, the victims cannot retrieve their lost
funds. For some incidents governments have designated funds available to help victims2. A
similar fund could be set up for blockchain incidents so victims can be compensated when
perpetrators cannot be tracked down. Such a fund currently does not exist.

Case 2: Poly Network (August 2021) (Smart Contract)

Here the rule of power of command and control applies. If you exercise power, then you are
liable. In this case PolyNetwork would likely be legally responsible. They have the power
to design the platform and make decisions regarding the implementation. When a mistake
in the code results in cryptocurrency being stolen, whoever has power over the platform is
liable.

1The Digital Services Act (DSA) clarifies the responsibilities of digital services like online platforms re-
garding activities and information for consumers. The DSA helps combat illegal contents online by clarifying
the role of providers of digital services and creating procedures for carefully handling this kind of contents.

2In the Netherlands there is a fund called the Waarborgfonds Motorverkeer for victims involved in car
accidents where the perpetrator is unknown or uninsured.

193

D. LEGAL PROFESSIONALS INTERVIEW PROTOCOL AND SUMMARIES

Case 3: Bitcoin SV (August 2021) (Consensus Protocol Incentives)

This is a complex case because there is not one single person to blame. Schrepel explains
in his book the concept of a blockchain nucleus. This is a group of participants that come
together to achieve a form of control over the blockchain by collaborating, by circumvent-
ing (some of) the (economic, political, logical, sociological, architectural and legal) con-
straints imposed on them, and by changing them in the long run. Schrepel argues that the
nucleus should become a legal entity that can be assigned liability. There are three types
of blockchain participants: founders/core developers (who implement the original rules of
the blockchain: design the code and determine the consensus protocol to be used), users
(who propose new transactions but cannot easily exercise coordinated control), and min-
ers (who validate transactions assembled into blocks). Generally in decentralized permis-
sionless blockchain applications (like Bitcoin or Ethereum) no one can unilaterally impose
changes.

In his book (chapter 1) Schrepel illustrates that when a problem comes to the surface,
one can see where the power lies. In just a few minutes, code changes were implemented
to fix a vulnerability in Bitcoin ABC after core developers made a phone call to the main
mining farm to get the patch approved. Schrepel argues in his book that a key weakness (but
also a key strength) of decentralized systems is that tasks are not always clearly defined. It
pushes members of the blockchain community to verify each other’s work (e.g. a participant
finding the vulnerability, core developers implementing a patch and getting it approved by
the (largest) mining pool of workers, and participants pushing other miners to implement
the patch).

The design of the blockchain application influences the possibility to double spend. In
this case it is likely that a group of blockchain core developers would be liable since they
implemented the code and are able to propose code changes. Big miner parties are able to
force updates to be implemented (since they maintain a large portion of miners’ comput-
ing power, they influence the voting process), and social influencers can push followers for
updates to be adopted; thus more parties were able to influence the implementation. Par-
ticipants are to be held liable for illegal conduct committed within the nucleus or perimeter
that they can control or influence to a great degree. The width of that perimeter depends
on the case. Lack of control should result in a lack of liability. Concrete and quantifiable
frameworks are necessary to define the nucleus in each case to ensure legal certainty, limit
legal errors and reduce regulatory costs.

Case 4: The BitConnect Ponzi scheme (January 2018) (Scheme)

This is criminal law. What matters most is the intention. If the people behind the Ponzi
scheme intended to scheme the victims, they are liable. The same goes for the influencers.
If they were aware of the scheme and still convinced people to join in, they are liable.
Proof is however required (for example email contact that makes it clear that they were

194

D.2. Legal professionals interview summaries

in fact aware of the scheme). It depends on the country what the legal standard to prove
this is. The victims are in a (non-legal) sense responsible for losing their money since they
consented to invest money themselves.

Case 5: Fake investment advertisements featuring celebrities (June 2019) (Scheme)

There is a difference between hacking accounts or creating new accounts. If accounts are
hacked, the social platform would be liable since they are responsible for network security.
Technically it should be possible to prevent hacks if necessary. For new accounts however,
the platform cannot be liable. At this time platforms might not be able to detect new ac-
counts that imitate real people. This is however transforming and in the future it might be
possible. According to the DSA social media platforms are not liable in such cases. Schre-
pel thinks that this might change since it should be possible to reliably detect the fraudulent
use of personal images.

The party behind the account(s) is liable. If perpetrators are not found, users have to
deal with possible damages. This issue (fraudulent investment schemes) is however not
specific for blockchain applications.

Final conclusions from the interview (my interpretation)

Overall, whoever is in control, is liable. Third parties such as online platforms can be held
liable. In the future this might happen more often, when technology is advanced enough to
detect all fraudulent uses but currently this is understood as infeasible.

In the future a government fund may be constructed in Europe that compensates users
if the perpetrator remains unidentified. To identify the wrongdoer is not always possible,
especially when the blockchain is impacted from within (due to the anonymity blockchain
offers). If it however is impacted from the outside (by making use of a centralized system
- where identities are known - like a social media platform) the perpetrator can usually be
identified. If the perpetrator can be identified, the victim(s) can be reimbursed. If not, and
if platforms are not liable, victims have to suffer the losses.

195

D. LEGAL PROFESSIONALS INTERVIEW PROTOCOL AND SUMMARIES

D.2.3 Summary interview Prof. Bart Schermer

Prof. Bart Schermer is a Professor of Law and Digital Technology at the University of
Leiden. He has a background in Law and Information Technology. His research focuses on
privacy and cybercrime, specifically the relation between enforcement and human rights in
the online world.

He is also a fellow at the E.M. Meijers Institute for Legal Studies and active as a partner
at Considerati, a legal consultancy firm specialized in legal and policy advice for IT and
new media. Furthermore, he is a member of the Cybercrime expert group for the Court
of Appeal in The Hague and a member of the Human Rights Committee of the Advisory
Council on International Affairs.

Case 1: Fake chrome extensions for cryptowallets (2020) (OPSEC)

In a general sense everyone bares their own damage until it is proven that someone else is
to blame (civil and liability law). Whether Google is (partly) liable depends on the expec-
tations Google has set for users. It would matter for example whether Google is presenting
the Google Play Store as a secure (or even the only) environment where applications can be
downloaded from. Schermer states that one would assume that Google excluded liability
in their terms and conditions. This is however not watertight. It comes down to whether
Google can be blamed for allowing an application in their store that was not well (enough)
checked, resulting into harm done to users.

Liability might be a stretch as Google does not know what people do with an application
extension or what exactly the extension is meant to do. It is difficult to determine whether
Google would have a responsibility there. For Apple it might be different, since they have
(and are known for) a clear vetting process for the App Store, which is the only place where
applications can be downloaded. Eventually it comes down to the question to what extent
Google can be blamed for not checking the application thoroughly.

Case 2: Poly Network (August 2021) (Smart Contract)

Looking at different contexts, such as software development, users are usually out of luck.
For example, in the past there was a zero day vulnerability present in Microsoft software
that caused many companies damage. None of those companies however held Microsoft
accountable for the damage. Perhaps Microsoft handled the implementation of code care-
lessly, but this does not necessarily mean that Microsoft is liable for offering the product on
the market. Up until now consequential damage is not recovered from the developing party.
For a large organisation like Microsoft, generally customers have to agree to predefined
terms and conditions. With this, companies can contractually exclude liability.

Usually blockchain applications are open-source. There is no clear point of contact.
Developers of the blockchain application design it together or separately from each other,

196

D.2. Legal professionals interview summaries

without the presence of a legal entity or foundation. The individual developers (that together
create and build the standards of the application) have nothing to do with any legal entity. If
users makes use of the application, they themselves are responsible for the consequences.

In the Poly Network case there is the question of causality. Is PolyNetwork responsible
for the damages that users suffer when using their product? It may be difficult to reach Poly
Network because it is not clear who the point of contact is. If there is not a legal entity
behind the platform, who can you talk to? In the world of cryptocurrency often there are
open platforms, add-ons and smart contracts. In many settings these are build by volunteers
or start-ups. Even if they are liable, there is not much to gather from them as they do not
have the funds.

So are users out of luck in the blockchain context? We have to look at liability. First, one
needs to verify whether a party is guilty of culpable behaviour. Next, the point of contact
and the culpable behaviour need to be identified and clear. It depends on the expectations a
cryptoplatform has set, and to what extent they are involved with the code implementation
or have contractually excluded liability, whether they are liable.

One problem concerning enforcement is the international context of blockchain. What
jurisdiction is applicable and what legal forum can be used? If you use an exchange that is
based in a different country, it may not be possible to get your justice in your home country.
Platforms have to conform to financial legislation in the countries where they are active.
Crypto exchanges need to register at DNB and AFM (and thus conform to certain rules),
but they are not under financial supervision.

It is likely that compensation from a crypto exchange that contained a vulnerability
causing losses for users is not enforceable (as the platform is not liable). Cryptoplatforms
may however compensate losses to win back trust from users of their service.

Case 3: Bitcoin SV (August 2021) (Consensus Protocol Incentives)

Majority attacks are an inherent risk of blockchain applications. As a user you should be
aware that such things can happen. When using a blockchain application you are essentially
responsible (baring your own damage until it is proven that someone else is to blame).
However, considering the case from a criminal law perspective, when someone performs an
attack like this with the intent to scam or deceive others, then it may qualify as deceit or
forgery, and they are liable. It is difficult to hold a blockchain network or platform liable
due to the decentralization of blockchain applications. There will always be a risk that the
blockchain system falls apart, and when that happens there is no one (no central authority)
to recover damages from. The attacker(s) are liable, but it is challenging to identify them.

Dutch institutes AFM and DNB can impose legal obligations to financial institutions
like crypto exchanges. They also inform the public in a general sense. Investing in cryp-
tocurrencies is outside of the common sector of regulation. There is no regulated supervi-
sion for blockchain applications. Cryptoplatforms active in the Netherlands have to register

197

D. LEGAL PROFESSIONALS INTERVIEW PROTOCOL AND SUMMARIES

at DNB, for which they need to comply with certain rules regarding money laundering and
financing of terrorism but other than that there is little legislation (there is no supervision
on consumer protection).

Schermer expects that there will be more legislation at some point. Blockchain is dif-
ficult to regulate due to the decentralisation (no central point of contact). Many consumers
trade blockchain assets through cryptoplatforms however (which do have a central author-
ity), so likely these platforms will be regulated similarly to banks. In some countries it is
even illegal to trade cryptocurrencies (for example in China). While a total ban may not
happen here, stricter regulations for cryptoplatforms are not unlikely to be implemented.
This does not prevent individuals from setting up their own blockchain node, mining cryp-
tocurrencies or setting up a wallet themselves, but most people trade cryptocurrencies using
a cryptoplatform (which is easier and more secure for the average user).

Case 4: The BitConnect Ponzi scheme (January 2018) (Scheme)

Blockchain should not be viewed as something entirely different from other technologies.
There is no separate law for blockchain but existing legislation (for financial supervision,
liability law, criminal law) can be applied to technological applications. The people that set
up the scheme are likely liable (due to intent of deceit and forgery) but it is likely impossible
to find them to recover any damages.

For the influencers that promoted the scheme, it depends on the extent to which (it can
be proven that) they were (or should have been) aware of the scam. Another thing is that it is
against the law (in the Netherlands specifically the Wft: Wet financieel toezicht) to provide
financial or investment advise without a permit for this. If the influencers were guilty of
this, it could provide a basis for a stronger case against them.

Case 5: Fake investment advertisements featuring celebrities (June 2019) (Scheme)

In this case the reputation of Dutch celebrities are violated because of associations with the
fake advertisements. Their portrait right and right to privacy are violated. In the article that
Schermer wrote on horizontal privacy (titled Het recht op privacy in horizontale verhoudin-
gen) he discusses the (European) Digital Services Act3, which entails a sort of duty of care4

for internet platforms. The details of the implementation are not clear yet and it may be
problematic to determine a breach of this duty of care.

Specifically in the case of the Dutch celebrity John de Mol, who sued Facebook, Face-
book was informed by de Mol and they did not delete the advertisements fast enough in

3The Digital Services Act (DSA) clarifies the responsibilities of digital services like online platforms re-
garding activities and information for consumers. The DSA helps combat illegal contents online by clarifying
the role of providers of digital services and creating procedures for carefully handling this kind of contents.

4A duty of care is a legal obligation which is imposed on an individual or organisation, requiring adherence
to a standard of reasonable care while performing any acts that could foreseeably harm others.

198

D.2. Legal professionals interview summaries

this opinion. According to the Electronic Commerce Directive5 Facebook is liable because
they were made aware of the issue and had to ability to interfere. Generally social media
platforms are not liable for content on their platform unless they are informed about it but
platforms may be required by national courts to implement measures to prevent future vio-
lations. In this case, the judge has ruled that Facebook must proactively ensure that no new
advertisements featuring de Mol will be placed.

This case is more about the Dutch celebrities and social media platforms than blockchain
and the victims of the scam. Facebook can be held (partly) liable for the content (if they did
or do not remove fraudulent adds), but one might wonder to which extent it is Facebooks
fault when a user falls for the scam. People always have some responsibility themselves.
The probability that a user can recover the damages from Facebook is likely very low.

Final conclusions from the interview (my interpretation)

In some cases a third party (like a social media platform) can be held liable, if it can be
proven that they were aware of the issue and they had the power to do something about it.

Usually however when the attacker is gone, the user is out of luck since there is no one
to sue and recover damages from. This is due to the lack of a central authority and point
of contact, which is simultaneously promoted as one of the big advantages of blockchain
technology. The government cannot interfere (e.g. no wiretapping, no inflation). This also
means however that there is no government protection for users, which people sometimes
tend to forget. The average user assumes that they are protected in a similar way as they
would be when depositing money in a bank (where the government guarantees the bank),
but those rules do not apply to blockchain assets.

5The e-Commerce Directive aims to remove obstacles to cross-border online services in the EU internal
market and provide legal certainty for businesses and consumers. It establishes harmonized rules on issues such
as the transparency and information requirements for online service providers; commercial communications;
and electronic contracts and limitations of liability of intermediary service providers.

199

E
Blockchain professionals interview

protocol and summaries

E.1 Interview protocol

The interviews were structured as an open conversation. Both experts were told about the
purpose of the interview, which was to identify various aspects where developers play a role
in defining (perhaps unwittingly) responsibilities for users or other parties. What followed
was a divergent discussion on various blockchain security aspects.

E.2 Blockchain researchers interview summaries

This section contains the summaries of interviews of the experts that gave (explicit) permis-
sion for publication.

E.2.1 Summary interview Dr. Oğuzhan Ersoy

Dr. Oğuzhan Ersoy is a Postdoc researcher at the Radboud University. He works in the
area of decentralised systems and blockchain technology, specifically on provable secure,
privacy-preserving, and scalable and incentive-compatible protocols. Previously during his
PhD he also studied the security and economic aspects of decentralised systems (including
blockchain).

Blockchain security

When it comes to blockchain technology, there are various assumptions that users have,
that may not be valid. One of those assumptions is the decentralised nature of blockchain.
Whether the current implementation of blockchain really is fully decentralised is question-
able.

201

E. BLOCKCHAIN PROFESSIONALS INTERVIEW PROTOCOL AND SUMMARIES

Is blockchain actually decentralised?

In the DAO hack (July 2016) on the Ethereum blockchain network, due to a fault in a smart
contract an attacker was able to spend the large sums of money stored in the contract. TThe
general idea of blockchain is that it is not invertible (immutable) and transactions are fi-
nal. In this case however, Ethereum developers proposed to fork the blockchain (to roll
back Ethereum network’s history to before the attack). This was very controversial since
blockchains are supposed to be immutable and censorship-resistant. While most stakehold-
ers adopted the change, allowing for the fork to be implemented, not all did, resulting in
two seperate Ethereum blockchains. The fact that this could happen highlights that there is
no full decentralisation and censorship is possible.

Another interesting aspect of the decentralisation of blockchain is that all hashing power
is concentrated in just a few large mining pools. This indicates that in reality the network
is not actually decentralised, as just a few decision-makers hold the majority of the hashing
power and can exert power over the network. For BTC for example, the four largest mining
pools together hold over 50% of the hashing rate.

Is blockchain actually anonymous?

Another assumption users have is that blockchain ensures anonymity. It is however proven
that pseudonymous identities could be linked to real identities through network analysis and
investigation.

Furthermore, crypto exchanges function as gates between blockchain systems and the
real world. This means that crypto exchanges do know real identities of blockchain users.

Implementation of consensus protocols and smart contracts

An important element of blockchain technology is the consensus protocol. Various consen-
sus protocols exist (Proof of Work, Proof of Stake, Byzantine fault tolerance, hybrid ver-
sions). Trade-offs in usability, security, eco-friendliness, developer-friendliness are made
when selecting one protocol. No one protocol is the best.

Factors that need to be considered are whether the blockchain needs to be accessible to
everyone, and whether anyone can create transactions (private or public, permissioned or
permissionless blockchains). Energy consumption is also a factor, PoW uses a very large
amount of energy, while PoS has low energy consumption, but other (security) challenges.
Scaling is another important point. Some protocols do not scale well, making them ineffi-
cient for wide usage.

One of the most crucial security aspects of blockchain applications are smart contracts.
All other elements (e.g. consensus protocols) of the blockchain are extensively researched.
A fault in a consensus protocol can affect the entire blockchain (e.g. with a 51% attack

202

E.2. Blockchain researchers interview summaries

or selfish mining attack) but these attacks have been greatly studied. Smart contracts are
not studied that well. Every smart contract is different, has its own functionality and im-
plementation. Errors are made at the smart contract level. Normally users are protected if
they buy a defective product but if users use a defective smart contract, it is questionable
who is liable. Users should check contracts before using them but without being an expert
this is difficult, even if most of them are publicly available. There are some companies that
do formal verification (e.g. penetration testing of smart contracts). Most contracts are also
reviewed online.

203

	Preface
	Contents
	General Introduction
	General Introduction
	The blockchain technology
	Importance of blockchain security
	Research aims
	Thesis outline

	Computer Science
	Introduction
	Problem description
	Research aim and questions
	Contributions
	Outline

	Background
	APIs
	API testing
	Search algorithms
	Fuzzing

	Related Work
	Black-box fuzzing for web APIs
	Evolutionary fuzzing
	Research gap

	Approach
	Building a fuzzing tool
	Grammar construction
	System server setup
	Test case generation and execution
	Heuristic
	Mutation engine

	Implementation
	GEFRA architecture
	Grammar-based (mutational) fuzzing
	Grammar-based evolutionary fuzzing
	Tool usage

	Empirical evaluation
	Performance metrics
	Benchmark APIs
	Experimental protocol
	Configuration
	Threats to validity and reproducability

	Results
	Evolutionary fuzzing performance
	Suitability of fitness functions

	Discussion
	Grammar-based Evolutionary Fuzzer for RPC-APIs
	Limitations

	Conclusions
	Research sub questions
	Research main question
	Recommendations for future work

	Communication Design for Innovation
	Introduction
	Problem description
	Research aim and questions
	Contributions
	Outline

	Background
	Cyber security
	Blockchain attacks

	Methodology
	Literature study
	Content analysis
	Interviews with legal professionals
	Interviews with blockchain researchers
	Methods outline

	Theoretical framework
	Frames
	Theoretical framework

	Media framing of responsibilities
	General observations
	Causal responsibility
	Treatment responsibility
	Discussion

	Legal responsibility
	The legal professionals
	Interview findings
	Discussion

	Developers' influences on user responsibilities
	The blockchain professionals
	Interview findings
	Discussion

	Conclusion
	Research sub questions
	Research main question

	Discussion
	Contributions and relevance
	Research limitations
	Reliability, validity and ethics
	Recommendations for future work

	Bibliography
	Standard configuration of parameters
	Coding protocol
	Additional figures content analysis
	Legal professionals interview protocol and summaries
	Interview protocol
	Legal professionals interview summaries

	Blockchain professionals interview protocol and summaries
	Interview protocol
	Blockchain researchers interview summaries

