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Abstract

With the advancement in technology, Unmanned Aerial Vehicles have been able to safely maneuver in

risky environments and also limited resources. During landing, the UAV should be able to slow down

while not affecting its physical design. Hence, it is important to develop highly accurate technique for

landing given that there may be space and time constraints. Currently, multiple sensors are being used

to increase accuracy which might weigh down some of the smaller UAVs. Furthermore, the increase

in the number of sensors will also increase the cost of procurement and the maintenance requirement.

But ensuring safe landing in situations of emergency landing and malfunctions in GPS-denied has been

a lesser priority while designing UAV platforms. The usage of a single sensor to guarantee higher

probability of safe landing is yet on its early stages of development and hence is further looked into. It

was observed that insects use Optical Flow to maneuver and this has been used as a method to design

UAV’s journey and land safely. Therefore, this was used as the sensor in discussion to provide safe

landing for UAVs.

Optical Flow is defined as a method of using image intensities to calculate the apparent motion of these

image intensities. By dividing each frame, an Optical Flow Difference is calculated which is used as a

metric to move the UAV towards the landing platform. Once the UAV has been able to position itself

on top of the elevated landing platform, image dilation is used to safely land the UAV. Image dilation

or flow divergence can be described as the ratio of the velocity to the height of the ground. One of the

methods tested used Image Dilation Method using IMU value of the position and velocity of the UAV.

Using the calculated image dilation, the control input to the UAV is generated and the UAV lands. This

failed in providing safe landing and it also did not take the vision of the UAV into consideration. Then,

Image Dilation Method using Features from Accelerated Segment Test (IDMF-AST) was implemented.

This method tracks features observed by the UAV on the landing platform. Using these features, an

estimate of the image dilation is calculated. To control the UAV, the estimate of image landing is used.

This showed dependency on the landing design platform and the hyperparameters that are used for

implementing IDMF.

Different landing designs were tested for different elevated landing platforms. It was observed that

concentric circles on a textured landing marker were able to provide the highest probability of safe

landing. To tackle the dependency of the hyperparameters, a Classification Model was proposed to find

an optimal set of hyperparameters for individual assumed height of the landing platform. The trained

model is implemented in the system which provides a set of hyperparameters for an assumed height of

the platform, hence making the algorithm an Adaptive IDMF.

The Adaptive IDMF was tested against the original IDMF on the metrics of safe landing probability, time

taken to safely land and simulation time. Adaptive IDMF is able to perform better compared to IDMF

providing an 190% increase in probability of safe landing, faster safe landing and lesser simulation and

compilation time.
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1
Introduction

1.1. Unmanned Aerial Vehicles
Unmanned aerial vehicles (UAVs) are increasingly being used in various operations such as mapping [1],

border patrol [2], emergency situations [3], delivery of goods [4], surveillance [5] and agriculture [6].

With the advancement in technology, UAVs have been able to safely maneuver in risky environments and

also limited resources. Due to this, UAVs have been able to reduce the requirement of human pilots in

risky environments. This increases the motivation to look more into how UAVs can be optimized and

utilized to their best potential.

Figure 1.1: Types of UAVs [7]

There are two types of UAVs that have come to exist, fixed-

wing and rotary-wing. Fixed wing requires a more complex

methodology for landing like a net based recovery as these

UAVs require a runway for take off and landing. The advan-

tage of using fixed-wing UAVs is that they are much faster

hence used for long distance flights. Furthermore, it is com-

paratively more stable and can withstand higher winds [8].

Some examples of these designs are aeroplanes/airplanes

and gliders. On the other hand, rotary-wing UAVs are more

maneuverable and are employed for scanning designated ar-

eas. Hence, vertical landing is possible for rotory-wing UAVs

[9]. Under rotor-wing type of UAVs, there are helicopters,

monocopters and multi-rotors as seen in Figure 1.1. Due to

the multiple rotors, the mechanical complexity increases thus

reducing the speed and flight range. Nevertheless, Rotor-

wing UAVs are able to perform much better in terms of safe

landing. Due to the ease of maneuverability, the focus has

now switched to rotor-wing UAVs, since fixed-wing UAVs

have safety issues due to their belly landing [10].

1.1.1. Autonomous Flight of an UAV
The journey of an UAV’s flight can be split into take-off,

navigation and landing. Navigation algorithms can either

prioritize obstacle avoidance or finding the optimal path in a given environment. Based on this, the metric

used for comparison between techniques also varies. But a major factor that affects these algorithms is

the environment that the UAV is tested in. Implementing algorithms that are not tuned for the testing

environment can lead to crashes and physical impact to the UAV. Thus, it is important to choose the

appropriate navigation algorithm. Due to the development of faster processors, pose estimation and

path planning, which are used for accurate navigation, have also benefited. This has also improved

the communication between the UAV and ground station when there are sensors such as GPS or laser

involved [11].
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Most researchers are utilizing the fast processors to implement machine learning algorithms for path

planning such as deep learning [12], reinforcement learning [13] and model predictive control methods

[14]. The main challenge for navigation is accurate localization of the UAV. The main methods of

navigation are divided into inertial navigation, satellite navigation, and vision-based navigation[15].

Inertial navigation focus on Inertial Measurement Units (IMU) which sum over time the measurements

to provide the position and velocity of the UAV. One of the shortcomings of using IMUs, if the sensor has

inherent noisy measurements, the error keeps increasing. Therefore, reduces the accuracy of the values

used. To overcome the shortcomings, some researchers use Simultaneous Localization and Mapping

(SLAM). SLAM works by using a map to localize the UAV and while generating the map with the help of

local information available. With the implementation of faster processors, cheaper and flexible sensors,

research on vision-based navigation has become more popular.

Vision-based UAV navigation can be implemented in various stages of the UAV’s journey. These being

visual localization, obstacle detection and avoidance and path planning. But there are multiple sensors

that can be utilized such as monocular cameras, stereo cameras, RGB-D cameras and fisheye cameras.

Deciding which sensor is better suited depends on the environment and cost constraint. There is research

being done on how these sensors function in constrained environments which are GPS-denied or dimly-lit.

Thus, finding an appropriate sensor to maneuver towards the target while avoiding obstacles is key.

1.1.2. Autonomous Landing of an UAV
Landing is a riskier process compared to the other processes due to the requirement of high precision

while slowing down the UAV. If the landing method can not guarantee safety with high accuracy, the UAV

can crash, impacting its hardware design. Therefore, it is important to develop highly accurate techniques

for landing given that there may be space and time constraints along with the mechanical constraints

[16]. There are multiple factors that can affect the safety of UAV landing, namely, the environment, the

type of landing zone and the sensors used for detecting and landing on the landing marker/zone. It is

important for these factors to be taken into consideration before implementing an landing algorithm in a

real-life situation. Based on these constraints, it is crucial to simulate the behaviour of the UAV virtually

to envision what possible shortcomings exist.

The current research with respect to autonomous landing of UAVs is geared towards on optimizing the

vision-based landing with the help of cameras and comparing these with conventional control-based

control algorithms. This has increased with the development of accurate and fast image processing

algorithms and also the reduced cost of cameras. Furthermore with the increase in Artificial Intelligence,

these robust algorithms have been implemented also in the arena of UAV manuevering and landing.

There is also an interest in improving precision for moving target or unknown location of target [17]

given some constraints in the environment such as windy oceans [18] or GPS-denied environments.

Some real-world driven research has been testing UAV landing with the help of camera vision to landing

on battery recharging docks or for detecting a safe zone in mountainous or flooded areas. [19]

Few of the current challenges for autonomous landing include the reduced precision due to navigation

error, which is fairly significant [20]. Currently, multiple sensors are being used to increase accuracy

which might weigh down some of the much smaller UAVs. Furthermore, the increase in the number of

sensors will increase the cost of procurement and the maintenance requirement. It might also generally

lead to an increase of processing time which can particularly affect the accuracy of safety provided

while landing. Hence, finding a balance between the number of sensors and guaranteed safe landing is

important with the increased usage of UAVs.

1.2. Problem Statement
With the advancement of technology, the development of autonomous Unmanned Aerial Vehicles (UAVs)

has been geared to make UAVs operate in various environments as seen in Figure 1.2. There have

been trends towards using multiple sensors for guaranteed safe landing on different types of landing

platforms. But ensuring safe landing in situations of emergency landing and malfunctions in GPS-denied

environments has been a lower priority while designing UAV platforms. The usage of a single sensor to

guarantee higher probability of safe landing is yet on its early stages of development and can be further

looked into.
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The goal of this research is to design an algorithm for the safe landing of the UAV. To implement this,

there are a certain constraints, given that the location of the platform is unknown. Furthermore to detect

the landing platform, a single sensor is implemented.

Figure 1.2: Applications of small drones. (a) volcanic research; (b) landfill emission monitoring; (c) poisonous gas emission

monitoring in industrial sites; (d) fire detection; (e) residential emissions monitoring; (f) ship emission monitoring(g) precision

agriculture; (h) urban air quality [21]

1.3. Thesis Layout
It is important to understand more about each process in the UAV’s journey and how it affects the overall

safety of the UAV. Thus, Chapter 2 will give an insight about the base algorithms existing and their

extensions. It also addresses the source of inspiration that was used as the sensor and methodology for

implementing autonomous landing for the UAV.

Chapter 3 will describe the system model and protocol that were used for observing and designing the

algorithms to guarantee higher probability of safe landing for an UAV. It talks about how Moving towards

the Landing Pad is implemented in simulation. It will explain what is Optical Flow (OF) and then go

in-depth about how Optical Flow Difference (OFD) can be used to maneuver the UAV accordingly. It

also addresses how image dilation was used to land on unknown height coordinates of the platform.

There are two different methods that implement image dilation. The first method uses image dilation

with initial values of the UAV’s position (IDMI) and then second one implements image dilation using

Features from Accelerated Segment Test (FAST) (IDMF-AST). These methods are simulated and tested for

different unknown elevated platforms. The possible reasons for the failure of these methods are noted

and the problem statement is stated.

In Chapter 4, the shortcomings of the previous methods implemented for safe landing are tackled. First,

the design of the landing pad is discussed and how it affects the probability of safe landing. Using

this information, an ideal landing design was finalised. It was also observed how the hyperparameters

used in FAST with image dilation affected the probability of safe landing. The first attempt was to find

an optimal set of parameters for all possible heights of the platform, which failed. Next, there was an

attempt to find a set of hyperparameters that that could guarantee safe landing for a smaller range of

heights using curve fitting. This method did not give the required results. The last method that was used

to find optimal hyperparameters for each possible height of the platform using a Classification Model.

The implementation of the model into the system is described in this Chapter.The comparison of the

Adaptive IDMF versus the IDMF is then looked into. This uses three metrics, probability of safe landing,

time taken for safe landing and time taken for compilation and simulation. Then in Chapter 5, the work

is summarized and future work is addressed.
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2
Literature Review

To tackle the problem of autonomous landing, it was divided into four parts to understand better the

state of technologies used. These are depicted in Figures 2.1 with the primary types of methods available.

These divisions were made keeping in mind how each of these categories affect the overall aim of safe

journey of an UAV. Individually dividing into these categories were important to understand better how

each of these categories could also be combined to improve the behaviour of the UAV.

Figure 2.1: Aspects That Affect the UAV’s Performance

As stated in Section 1.1.1, accurate localization of the UAV is an important factor for a safe journey of an

UAV. An Inertial Measurement Unit (IMU) is an electronic device that uses accelerometers and gyroscopes

to measure acceleration and rotation, which can be used to provide position data. If this device is not

calibrated properly, there is a possibility of crash. Due to the movement of the UAV and noise that might

creep in [22], the error in the measurement keeps increasing over time. Thus, reduces the accuracy which

makes IMU unreliable in short runs. Hence, calibration is an important factor for safe landing. After

having the necessary calibration done to the sensors, it is important to model and test how the UAV

would work in real life. Directly testing on a physical UAV would lead to an expensive and slower process

of development. In the research presented by J. Arrigo et al.,[23] the issues of inaccurate hardware

implementation was stated. During testing, there were some hardware failures that lead to delays as

the replacement had to be imported. Thus, showing how important it is for an accurate modelling and

fail-proof algorithms implemented while virtual simulation. This is tackled in the Mathematical Design
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for UAV which will also talk about different control algorithms that are implemented for the UAV’s

motion. Knowing that the simulation is able to mimic the UAV and the control algorithm is robust, then

the different methods that are used for detection for an UAV are addressed. For the UAV to be able to

detect precisely, there are sensors that need to be attached to the UAV. This is addressed under Detection

of the Landing Zone. Once the zone is detected, the path taken by the UAV can be designed by different

algorithms. Some methods combine the same sensors used for detection to design the landing path as

well. This shows how all these parts are dependent for the safe journey of an UAV.

2.1. Calibration of IMU
Most of the existing research splits into either the usage of a mechanical platform or a hand-held

procedure for calibration. For example, G. Panahandeh et al [20], presents an approach for calibrating

the accelerometer triad without any mechanical intervention. Instead, the IMU is rotated by hand. Their

method uses maximum likelihood estimator to estimate the unknown parameters for calibration and

also the orientation of the IMU. The Cramer-Rao bound is derived which is used to compare the values

estimated by maximum likelihood estimator. The results show that the Cramer-Rao bound is attained by

the mean square error in a few iterations of the simulation. Thus, showing that this method is able to

deliver without the need of a mechanical turntable.

Since this paper only focused on the accelerometer triad and would require another set of experimentation

for calibrating the gyroscopes, research by Z. Ding et al. [24] was looked into. This paper used Kalman

Filter for calibrating both accelerometer and the gyroscope triads. For accelerometer, static positions

were defined at which the IMU was placed by hand and for gyroscope, the IMU was rotated along 𝑥, 𝑦, 𝑧
directions in both clockwise and anti-clockwise. This was done while maintaining that the rotation angle

is large enough to observe the errors in the parameters and the rotation speed was within the permissible

range for the gyroscopes. Another paper by D. Tedaldi et al. [25] used static positions (attitudes) for

the accelerometers triad for calibration. The measurement samples were then utilized to calibrate the

gyroscope. These two methods show how calibration for both accelerometer and the gyroscope can be

achieved using static positions.

Based on the infrastructure and budget available, decision can be made if mechanical or hand-held

calibration can be done. Since the performance of the calibration is also highly dependent on the type of

sensor being used, the error may also vary. There is a further possibility of a difference in its behaviour,

given there might be a variation in the testing environment of these sensors. Therefore, it is important to

find a method that fits perfectly given the sensor.

2.2. Mathematical Design for UAV
In the article by B. Erginer and E. Altug in [26], a classical controller (PD) plus vision based controller was

implemented for the controller design of the UAV. In this research, PD helped in attaining the feature

coordinates and the vision controller helped in noticing the landing pad to get the required values (pose

estimation of the drone) that is fed as desired to the controller. Further more, a decoupled dynamical

model was implemented to mimic the behavior of the UAV. This made the modelling not realistic as it

was assumed that change in motion along roll, pitch and yaw angles do not affect each other. Noting that

this was an older research, an extension was developed. This used Tilt Integral Derivative instead of PD

controller. The two controllers were then compared for trajectory tracking. It was observed how TID

with a prefilter was able to perform better compared to PD controller.

Some more complex algorithms like neural networks and adaptive neural networks were implemented

for better control of the UAV. In the article published by S. Suresh et al. in [27], a direct adaptive

neural control was implemented which helped in modelling the uncertainties into the system. But a

linearized model of the UAV was designed, thereby limiting the accuracy when compared to a real

world implementation. An extension of this research, 6 DOF non-linear model is designed and the

stability is analyzed. The backstepping controller is used instead of the two-timescale controller design

implemented earlier [27]. This controller when simulated, showed that the tracking error converges to a

compact set. To make the controller robust to aerodynamical errors, an adaptive controller based on

neural networks is implemented[28]. These algorithms were able to provide high precision results but

needed the neural networks to be tuned accurately for these results.
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L. Besnard et al. [10], designed a sliding mode controller which is driven by a sliding mode disturbance

observer. External disturbances and model uncertainties were implemented to check the robustness of

the controller. Moreover, rotor failure was simulated to check if the stability of the UAV is affected. The

controller was able to stabilize the vehicle given the uncertainties and failures while remaining within

the physical limits. Hence showing that it is possible to have crash-proof algorithms in the case of rotor

failures. But these were not tested in the real world and the UAV model was based specifically on the X-4

flyer hence reducing its generality.

The key take-away is that the UAV model that it is used to check the controller design might be too

simplified. This reduces the accuracy of how the UAV behave in reality. Therefore, it is important to

design a controller keeping in mind that the UAV model is simplified. Furthermore, choosing a good

controller will be dependent on the information known about the aerodynamical and modelling errors

and how robust the system is preferred to be while not being too energy-extensive.

2.3. Detection of the landing zone
For detection, there are mainly three types of sensors that are used. It is either vision based (using

cameras), laser beams (LiDar and RADAR) and a combination or vision and laser beams.

Instances where onboard cameras were installed, April Tag [29] or ArUco Tags [30] were commonly used for

detection of the landing area. In the research published by J. Wubben et al. [31], a drone is simulated to be

in the range of markers using GPS. It has real world tests for two situations: the first one being a single main

ArUco marker and the second being a bigger ArUco marker that leads to the final target of a smaller ArUco

marker. This research showed a lesser offset in landing compared to a GPS based systems. However it was

observed to have issues in the second type of simulation if there was wind added in the simulation environ-

ment.

Figure 2.2: Usage of April Tag for UAV Landing [32]

A. Borowczyk et al. [17], also used an onboard camera along

with a mobile phone at the ground vehicle for their imple-

mentation. This research used Kalman Filter for relative

position and velocity estimation. For detecting the land-

ing target, the AprilTag was used. This methodology was

simulated and had real world implementations as well but

this was in a controlled environment. This implies that the

behaviour of the system is not accounted for if there was

any turbulence in the ground vehicle. Furthermore, it also

had multiple sensors that needed to work for a successful

run. In the research conducted by A. Paris et al. [18], it also

implements April Tag for detecting the landing marker. It

is noted that the deep-learning (Model Predictive Control)

approach had more advantages compared to model-based

control to estimate the wind’s effects. Thus, it is observed that vision based markers have been able to

guarantee safe landing not only in a static marker environment but also in a moving platform along with

wind turbulence.

D. Maturana et al. [33], developed a detection algorithm which worked by checking for free and occupied

space with the help of volumetric occupancy map. The map was combined with a 3D CNN and tested

for an environment with a vegetated terrain. Thus, the drone had to detect safe landing zones with the

help of the LiDAR point clouds. The results were comparable with usage of computer vision and showed

that the vision is a replaceable feature for safe landing. Y. Shinet al. [34], stated how having the low cost

radars on the UAV was able to perform irrespective of the lighting of the environment. Furthermore, this

research was able to detect multiple targets along with slope estimation and roughness estimation with

lower error compared to the least square method. A downfall of this method is that multiple sensors are

required and these might not be easy to attach on smaller UAVs.

Some research combined camera vision along with laser to give better results. J. Kimet et al. [35], had

LiDar and an omni-directional camera mounted on the unmanned ground vehicle instead of the UAV.

First the UAV reaches within detection range of LiDAR with the help of GPS way point. This method then

predicts the location that the ground vehicle will be at and checks if the drone will be within the reachable
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boundary. A velocity command is given to the UAV so that it can land safely on the ground vehicle.

Compared to conventional landing methods, this proposed method enhanced the overall performance of

the UAV.

In the research published by J. Y. Lee et al. [36], the main aim was to reduce the dependency on GPS

navigation for drones in urban areas. To ensure this, the problem was divided into two subsystems. The

first subsystem, which required to maneuver the UAV close to the landing area, using a laser-guided

mechanism. The second subsystem used optical flow generated by the camera vision to guarantee safe

landing while avoiding obstacles. By doing so, the dependency of GPS was reduced and showed there

are alternative methods that are not very complex.

M. Alĳani and A. Osman implemented autonomous landing taking into consideration a mathematical

approach [37]. Two stages were used to resolve the landing problem, with the help of both control and

computer vision algorithms. YOLOv3 (You Only Look Once, Version 3) was used for target detection in

the first stage and by estimating the motion of objects, tracing is done in the second stage. This paper also

used the estimation of the relative position of the object as an input for PID controller in the quadcopter.

The results were not sufficient to decrease the position measurement and estimation errors hence not

competent enough in cases of sensor errors.

Furthermore, M. S. Alam and J. Oluoch provided a description about the types of landing zones that are

used and compared how they vary if static or a dynamic landing demarcation is implemented [38]. This

paper also listed a detailed comparison of the methodology existing for landing zone detection for a UAV.

Hence it is observed from the different research done on detection of landing zones, the type of method

used depends heavily on the type of environment the UAV is designed to be tested in.

2.4. Landing Algorithm of the UAV
Once the landing zone is detected, the last part of the UAV’s journey is to safely land. The landing

algorithm should be robust, keeping in mind the physical constraints of the drone and any turbulent

conditions.

A comparison of different landing algorithms were included by the survey done by A. Gautum et al. [16].

The primary classification included the division into control based landing techniques, vision-based

techniques and guidance based techniques. Control based landing consists of the conventional control

algorithms such as linear, non-linear, intelligent and robust control techniques.

Some key takeways with respect to control based methods were:

• PID may not be the best method when dynamics are available as it does not consider the non-linear

nature of the model architecture. For better results, vision based control can be combined with PID

control.

• Non-linear control has three types, feedback linearization control, sliding mode control and

backstepping control. A shortcoming of feedback linearization is that it might not guarantee

stability due to the use of second and third order derivatives. Sliding mode controller has general

trend of chattering and high control demand which needs to be considered while finding the

optimal parameters. Backstepping controller is a recursive method aimed mostly in making the

UAV along a desired trajectory but it requires information about all system states.

• With respect to Intelligent control, the best method was to combine fuzzy logic with PID for better

results. For implementing a neural network, prior information is needed for proper tuning thereby

increasing the complexity.

• Robust control is not the best suited method for real life implementation as it gives priority to

robustness for disturbances but does not take into consideration in the energy expended.

One needs to keep in mind that the working of control based techniques is dependent on good GPS

accuracy. But if this can not be guaranteed, the other methods such as vision and guidance based

techniques come into play. In computer vision based algorithms, there have been various research done

for reducing the error margins such as using neural networks or even using color based markers to

recognize the landing zone. But both these came with their own disadvantages such as implementation of
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a neural network for training makes the computations complex and color based markings pose high risk

of collision with other objects [37]. Thus, vision based techniques are combined with the earlier stated

control based techniques to improve safe landing accuracy. Some examples of vision based techniques

have been discussed in the Section 2.3 [36].

With respect to guidance based techniques, most methods come under pursuit guidance, time to go

polynomial guidance or proportional navigation guidance. Pursuit guidance is based on having the

velocity vector of the UAV always directed towards the target. In M. Kim et al. [39], two different guidance

laws are proposed. The pursuit guidance law helps in maintaining the waypoint constraint. Once the

UAV moves beyond the waypoint, the second guidance law kicks in. Distance error dynamics-based

guidance law is then used to hover around the target. Unfortunately. this was not implemented in the

real life and is an important test given that this has multiple UAVs that need to maintain distance from

the leader.

B. M. Min et al. [9], simulated vision based landing with the help of guidance law for both fixed wing

and rotary wing drones. For both type of UAV models, constraints were put for the acceleration and

change of acceleration to have robustness in the time-to-go polynomial function used for landing. This

research implemented vision-based landing and was successful in providing safe landing in both cases.

In the research by A. Borowczyk et al. [17], Proportional Navigation is used for navigating towards the

landing area and PID controller is used for landing. In both these papers, it is noted how a combination

of different techniques are used to maneuver and land accurately.

2.5. Source of Inspiration
In the previous section, possible methods that can be used individually and combined to guarantee safe

journey of an UAV were addressed. Choosing the route to take would determine the constraints and the

metric of comparison. A complex algorithm could be implemented that will provide better results but a

better comparison would be to look into how the comparatively less complex methods work in the same

situation.

To decide on the possible flow of the UAV’s journey, a look on how this problem is resolved in the nature

seemed insightful. It was observed how flying insects are capable of safely reaching their target without

complex image processing algorithms in their brain. These insects are able to maneuver in different

types of environments and detect a suitable landing area with the help of neurons inside their brains that

are sensitive to light. The last eight decades have produced evidence that flying insects use optic flow

(OF), which is produced in their eyes as a result of propulsion, to navigate around their habitats. The

translational OF is the angular speed at which contrasting items in the environment pass past the animal

in its frame of reference [40].

Figure 2.3: Fruit Fly/ Drosophila

In the research published by N. Franceschini et al. [41], it is

observed how insect-based maneuvering can be extended on

micro UAVs to maneuver indoors or in complex environments

such as urban areas or rocky hills. Furthermore, how control

algorithms can be implemented without being dependent on

GPS or on sensors such as RADAR and LiDAR. T. S. Collett in

their paper found how Drosophila (Figure 2.3) picked a close

target with the help of OF [42]. It is examined how insects

around us are able to safely navigate and land while using

less complex techniques hence paving a way for humans

to try mimicking these methods for implementation on any

moving vehicle, specifically UAVs.

There are multiple articles that implement insect-inspired algorithms for easy implementation for

maneuvering of UAVs [43] [44] [45]. The common factor between these research articles is how bio-

inspired algorithms have been quite successful in guaranteeing safe landing. Thus, the usage of OF for

maneuvering and detection of landing peaked my interest as it was shown multiple times how it was

able to generate similar results to an image processing or multi-sensor implementation.

10





3
Maneuvering Towards the Landing

Platform and Landing on the Platform

3.1. System Model
Figure 3.1 illustrates the considered scenario for maneuvering and landing of the UAV. The details about

the system model for maneuvering of the UAV towards the landing platform and its landing on a platform

of unknown height is provided in Table 3.1.

Figure 3.1: Top View of the Simulation Environment [46]

Table 3.1: System Model

1.

Environment details: The environment is textured and divided into three areas: take-off, maneuver

and landing area. The landing platform has textured surfaces that help in identification.

2.

Coordinates: 𝑥, 𝑦, 𝑧 axes are along red, blue and green respectively. The meeting point of the three

axes is the origin as seen in Figure 3.1.

3

Location of the UAV and the Landing Pad: The landing pad is located at (𝑥𝐿 , 𝑦𝐿) and the radius of

the landing pad is 𝑟 meters. The landing area starts beyond 𝐿 meters. The starting point of the

drone is at (𝑥𝑂 , 𝑦𝑂).

4.

UAV model: A point based model of a quadcopter is used. It has two camera visions, one facing

forward and one facing downward. These sensors are used to mimic Optical Flow sensors.

5. IMU on the UAV: The UAV is aware of its position at all times, using the IMU.
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While there are several protocols for landing on a platform with known height [33] [35], there are a few

protocols for landing on an unknown height platform using OF sensor. In this thesis, we propose the

following landing protocol stated in Algorithm 1.

Algorithm 1 : Protocol for Landing on a Platform with Unknown Height using OF

1. The UAV moves from the take-off area to the landing area by detecting the landing platform using OF.

2. When the UAV is close to the landing platform, the UAV ascends to a predefined height. To reduce

the possibility of physical impact while ascension, the UAV should not cross the safety radius.

The distance to the landing platform at which the UAV descends has to be more than the safety radius.

3. Using the OF values generated, the UAV is able to position itself closer to the landing platform. The

UAV should maneuver such that it is positioned on top of the landing platform. This step is done

while keeping its height (𝑧) constant.

4. While keeping its 𝑥 and 𝑦 coordinate constant, the UAV will descend from its predefined height on

top of the unknown elevated landing platform.

The step 2 of the proposed landing protocol (Algorithm 1) has the UAV ascending to a predefined height

once it is close to the landing platform. This method is chosen over having the UAV elevated before it is

close to the landing platform. The reason for this step is that the UAV can detect the landing platform

better if it is at a lesser height than the landing platform. This is because the elevated platform is captured

better while using OF. In Figure 3.2, this is observed as the OF values are smaller in the elevated UAV

compared to that of a low-lying UAV.
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Figure 3.2: Comparison of the OF Values When the UAV starts From the Ground vs Elevated UAV

The known and unknown parameters during maneuvering and landing are given in Table 3.2. The values

of parameters used for simulation in this thesis is also given in Table 3.2.
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Variable Simulation Value Type of Data

Landing Platform Coordinates (𝑥𝐿 , 𝑦𝐿) (14,5) Unknown

Radius of the Landing Platform 𝑟 0.5m Unknown

Height of Landing Platform [0.2,2] Unknown

Starting Point Coordinates (𝑥𝑂 , 𝑦𝑂) (-1.5,4) Known

Landing Area starts 𝐿 12m Unknown

UAV’s Linear Velocity (5,2,0.05) Known

UAV’s Precision Velocity (0.65, 0.3,0) Known

Safety Radius 1m Known

Table 3.2: Parameter Values

3.2. Software Used
The first step of implementing a safe journey for an UAV would be to finalize on the platform of testing.

Some popular platforms/software that are used for vehicle simulations are namely ROS + Gazebo [47]

[48] and MATLAB + Simulink [49] [50]. Initial testing showed that ROS was not able to provide with

stable results. For this reason, the platform of simulation was switched to MATLAB + Simulink.

3.3. Maneuvering Towards the Landing Platform
Before the specifics of take-off and maneuvering are addressed, it is important to understand what optical

flow (OF) is and how it can be used for decision making for the UAV.

3.3.1. Optical Flow
Optical flow or motion estimation is a method of using image intensities to calculate the apparent motion

of these image intensities. An assumption commonly used while calculating optical flow is that the

intensity of the pixel in consideration does not vary between the consecutive frames. Compared to the

other vision-based methods, optical flow utilizes not just the trends observed in frames but also takes

into account the time information while estimating [51] [52].

The image intensity 𝐼 is denoted as a function of space (𝑥, 𝑦) and time 𝑡. With the change of time 𝛿𝑡, the

space coordinates would have also changed of 𝐼 to (𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) [53]. Since, the intensity is assumed to

be constant between consecutive frames,

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡) (3.1)

Using Taylor Series Approximation, the right side of the Equation 3.1 can be written as

𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡) = 𝐼(𝑥, 𝑦, 𝑡) + 𝜕𝐼

𝜕𝑥
𝛿𝑥 + 𝜕𝐼

𝜕𝑦
𝛿𝑦 + 𝜕𝐼

𝜕𝑡
𝛿𝑡 + . . . (3.2)

Combining the two equations and ignoring the higher order terms, the simplified equation can be written

as,

𝜕𝐼

𝜕𝑥
𝛿𝑥 + 𝜕𝐼

𝜕𝑦
𝛿𝑦 + 𝜕𝐼

𝜕𝑡
𝛿𝑡 = 0

−→ 𝜕𝐼

𝜕𝑥

𝛿𝑥
𝛿𝑡
+ 𝜕𝐼

𝜕𝑦

𝛿𝑦

𝛿𝑡
+ 𝜕𝐼

𝜕𝑡
= 0

(3.3)

Let
𝛿𝑥
𝛿𝑡 = 𝑢 and

𝛿𝑦
𝛿𝑡 = 𝑣. Thus, Equation 3.3 can be rewritten as,

𝜕𝐼

𝜕𝑥
𝑢 + 𝜕𝐼

𝜕𝑦
𝑣 + 𝜕𝐼

𝜕𝑡
= 0

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0

(3.4)
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Where 𝐼𝑥 , 𝐼𝑦 , and 𝐼𝑡 are the spatiotemporal image brightness derivatives, 𝑢 is the horizontal optical flow

and 𝑣 is the vertical optical flow. To compute the optical flow (u,v), the constraint Equation 3.4 should be

solved.

Since a vision sensor is used in the simulation, it is necessary to implement a optical flow estimation

method to generate the required horizontal and vertical optical flow, 𝑢 and 𝑣. There are different methods

available for OF estimation such as the Lucas-Kanade method [54] and the Horn–Schunck method [55]

and also the adapted versions such as Kanade-Lucas-Tomasi (KLT) feature matching algorithm [56].

Furthermore, MATLAB + Simulink has a Computer Vision Toolbox, which includes an Optical Flow

block. This block takes an input of an image and gives the output of 𝑢 and 𝑣 based on the estimation

method chosen (Lucas-Kanade method or the Horn–Schunck method). Both these methods do come

with their advantages and disadvantages. Lucas-Kanade is better suited for smaller changes in motion,

whereas Horn-Schunk method is a global method thus being less robust to noise. For this implementation,

Lucas-Kanade method was chosen as the optical flow estimation technique as the object in consideration

(the landing platform) is not a moving platform.

3.3.2. Using Optical Flow Difference for Maneuvering
It is observed that when the landing platform is detected, there is a change in the magnitude of the

Optical Flow by a factor of around 1.5 times. This was also observed in the research published by C. S.

Royden et al. [57]. This information is used to steer the UAV in the required direction. The image is

divided into half, and the optical flow values are summed for each half. The side which has a higher

value of optical flow, the UAV is steered in that direction.

For example, in Figure 3.3, one can notice the red lines on the elevated platform. The yellow line was

added externally for the ease of demarcating the two sides. For generating the red lines of motion, the

velocity values generated at each iteration is compared and then used to generate the coordinate points

for the lines of motion. On calculating the sum of the velocity estimates for the left and right halves of the

image, the value for the left side was 79278 whereas for the right side the value was 115542. Therefore,

the difference can be calculated between the two halves, which is then used to maneuver the drone. This

process is referred to as Optical Flow Difference. For this simulation, the difference has been calculated

by subtracted the sum of the optical values of the right side from that of the left side.

Figure 3.3: View from the Forward Camera of the Landing Pad

As stated in Algorithm 3.1, the UAV is assumed to be a point-based system. Thus, based on the optical

flow difference, if the output from the sign block is positive, UAV moves towards the left side, i.e. 𝑉𝑦 is

negative. Also, if the output from the Sign block is negative, drone will move towards the right side, i.e,

𝑉𝑦 is positive. These linear velocities were then integrated to generate the position of the UAV. Using a

similar mechanism, the angular velocity is used to calculate the orientation of the drone. This mechanism

is depicted in Figure 3.4.
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Figure 3.4: Block Diagram of Maneuver System

Once the landing platform is detected, the UAV needs switch to the next step of maneuvering on top of

the landing platform. But this switch should occur once the UAV has come close to the landing platform

and not when it first detects it. To ensure this, the optical flow values were observed to see how the

output changes as the UAV comes closer to the landing platform. There was a constant increase in the OF

values as the UAV inched closer to the platform.

To compare how much of a jump occurs, the difference between the previous value and the current OF

value was compared. On multiple runs for different heights of the landing platform, it was noted that

1 meter before the landing platform the difference was constant with the magnitude around 2.6 × 10
6
.

Thus, it was decided to take this value as a threshold, such that when the UAV generates this difference,

it will stop maneuvering forward and go to the next steps required. This threshold is dependent on a few

parameters such as the starting location of the UAV, the location of the landing platform and also the

texture used on it.
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Figure 3.5: Behaviour of the UAV while Moving Towards the Landing Platform

As the UAV inches closer to the platform, there is a spike in the OF values, as seen in Figure 3.5. The OF

values were divided by 1000 for the ease of observing the variation. When the UAV is around 5 meters

away from the landing platform the spikes in OF value is observed. The initial spike within 0.5 seconds

is due to the UAV crossing the white border that defined the take-off area. The UAV, till 2 seconds, tends

to move away from the landing platform, showing that the landing platform was too far for the vision to

detect it. Since the maneuver area is textured and not the surrounding area, the UAV is able to stay on

the area and not move away from the environment. Thus, showing that the textured maneuver area is

important for the UAV to be able to successfully maneuver across towards the landing area.
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3.3.3. Ascension of UAV
Once the platform is detected, the next step is to increase the height of the UAV. This is done so that once

the UAV has detected the landing platform, the UAV can observe the landing platform from the bottom

facing camera as well. To do so, an integrator was used along with a difference calculator, as a reference

tracker for the height of the UAV. The reference height (𝑧𝑜) provided was kept as 2.5 meters. Since the

landing platform is assumed to be at a maximum height of 2 meters (ℎ𝑢), 2.5 (𝑧𝑜) was kept as the height

the UAV can be at to view the landing platform clearly. This is possible since it is assumed that the UAV

is a VTOL and the IMU on the UAV is accurate as stated in Table 3.1.

3.3.4. Detection using Downward Facing Vision
There is a possibility that the UAV’s downward vision does not have the landing platform in its vision.

This is because the processes till now were dependent on a forward facing vision but after ascension the

system needs to switch to a downward facing one. Thus as a fail-proof, using the downward vision, the

UAV tries to maneuver towards the landing platform to ensure that the platform is insight. TO guarantee

that the landing platform is in sight, the jump in OF value is observed as the UAV inches closer to the

platform. Knowing that the difference in value once the landing platform is observed is around 1.4-1.5

times, the block was conditioned to implement till the optical flow value differed by this range. In Figure

3.6, it is observed as the UAV inches closer to the landing platform, there is a spike in the OF values.

Thus, as soon as the OF value reaches more than 18800, it is assumed that the landing platform is now

insight. To implement this, the linear velocity was reduced compared to the previous implementation as

it is known that the landing platform is close by. The velocity used was UAV’s Precision Velocity from

Table 3.2.
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Figure 3.6: Using Downward Vision to Maneuver the UAV towards the Landing Platform

For precise maneuvering of the UAV, the possible movements that the UAV can implement included up

and down along with the existing left and right. Thus, given the downward frame, there are two OF

values generated, one along 𝑦-axis i.e, left or right and one along 𝑥-axis i.e, up or down. Using these

values, the UAV can accordingly decide to move. In this implementation, it is assumed that the UAV can

either move left, right, up or down but no diagonal movement occurs.

Figure 3.7 shows how the OF values are used to maneuver the UAV on top of the landing platform. The

Steering Linear Velocity areas depict the usage of the OF value to generate the actual velocity of the UAV.

If the OF value for left or right is greater than zero, that means the landing platform area is more on the

left. Thus, the UAV should move more on the left. If the OF value for 𝑥-axis is greater than zero, that

means there is more landing platform in front. Hence, the UAV should move forward. But to choose if

the UAV should move in 𝑥-axis or 𝑦-axis, a comparison is done of the magnitude of the OF values. The

value which is higher in magnitude translates to the UAV being further away along that axis. Using this,

the UAV decides to either move along 𝑥 or 𝑦 axes.
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Figure 3.7: Block Diagram Depicting the Positioning Method

Figure 3.8: Using downward vision to maneuver the UAV towards landing platform

Figure 3.8 depicts how at around 15 seconds, the OFD values drop much lower (488 and 293 for 𝑥 and 𝑦
respectively) compared to the expected range of around 1000s. This shows that the UAV has positioned

itself on top of the platform in such a manner, that the difference between the the two halves along 𝑥 and

𝑦 axes is much less. This is interpreted as the UAV must have been able to position itself at the center of

18



the landing platform. Using this, the system then proceeds to the next block in the UAV’s journey.

To observe how this works along with the maneuvering towards the landing platform, it was assumed

that the height of the landing platform is 0.6. Thus, an integrator control was implemented for landing

the UAV once it was detected to be on top of the landing platform.

Figure 3.9: Maneuvering of the UAV on top of the landing platform

Figure 3.9 illustrates the maneuvering of the UAV on top of the landing platform. There are multiple

data points once the UAV is elevated depicted by the darker red traces. This shows that the UAV is

maneuvering slower on top of the landing platform versus when it was maneuvering towards the

platform. It is also observed how the UAV is not positioned exactly in-line with the center of the landing

platform, but since the landing platform is bigger, this does not affect the landing process.

3.4. Landing of the UAV
After the UAV has positioned itself on top of the landing platform, the method of image dilation is used

to safely land the UAV. The focus of this section will be on landing that is reducing the 𝑧-coordinate of

the UAV to match the unknown height of the platform. Thus, 𝑥 and 𝑦 coordinate of the UAV is set to a

constant and does not vary in this process.

3.4.1. Image Dilation Method using IMU (IDMI)
M. Alkowatly et al. [44] used the calculation of image dilation to update the decreasing 𝑧-coordinate

hence mimicking the movement of landing. This implementation requires knowledge about the starting

position of the UAV and the initial velocity as well. Image dilation or flow divergence can be described as

the ratio of the velocity to the height of the ground.

𝐷 =
velocity or rate of change of height

height

(3.5)

The system was first redefined to have 𝑧 and velocity along 𝑧 (𝑉𝑧) as the states and a control input as 𝜇.

¤x(𝑡) =
[

0 1

0 0

]
x(𝑡) +

[
0

1

]
𝜇(𝑡)

𝑦(𝑡) = [𝑥2(𝑡)/𝑥1(𝑡)] = 𝐷

x = [𝑥1 , 𝑥2]𝑇 = [𝑧, 𝑉𝑧]𝑇

(3.6)

⇒ 𝐷 =
𝑧

𝑉𝑧
(3.7)

For calculating the control input, a PI controller was used with D* as the desired dilation.

𝜇 = 𝐾𝑝 (𝐷∗ − 𝐷) + 𝐾𝑖
∫
(𝐷∗ − 𝐷) 𝑑𝑡 (3.8)
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By keeping the image dilation constant at 𝐷 = −𝑘, the dynamics of the UAV can be controlled. With

different positive values of 𝑘, the dynamics of the UAV can be varied. For example, the larger the 𝑘 is, the

faster the states converge to zero. But this can lead to physical consequences. 𝐷 is a negative value as 𝑉𝑧
will be a negative value. If 𝐷 becomes a positive value during the simulation, the UAV tends to ascend

instead of landing. For implementing this method, 𝑘 was chosen as 0.5. The proportional and integral

gains were kept at 𝐾𝑝 = 16 and 𝐾𝑖 = 10 respectively.
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Figure 3.10: Image Dilation with reference of -0.5

In Figure 3.10, the calculated image dilation was able to safely reach the reference value in 3 seconds

after landing started. Though the simulation was run in 3D World linked with Simulink, for the ease of

understanding, a plot was generated with a cylinder with the top as a filled circle mimicking. But on

observing the behaviour of the UAV in Figure 3.11, the drone tends to go through the platform and does

not stop at the landing pad. The drone stopped once the height was almost at zero. Thus, showing that

this algorithm failed to recognize the elevated platform. Furthermore, this algorithm is independent of

the view that the camera sees. Hence an alternate method would be to utilize the optical flow algorithm

discussed before to detect the height better.

Figure 3.11: Landing using Image Dilation and Initial Height and Velocity
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3.4.2. Image Dilation Method using Features from Accelerated Segment Test (IDMF-
AST)

Instead of using the UAV’s location for calculating image dilation, an estimate can be calculated by using

the camera vision. In the research published by H. W. Ho et al., [58] textured points of the platform were

used to estimate the image dilation. This paper used the estimation method for safe landing while the

landing area is on the ground hence this will be tested for elevated landing platforms.

To detect these points on the landing pad and to track these, Features from Accelerated Segment

Test(FAST) is implemented along with the Lucas Kanade tracker [59]. This helps in detecting points at a

certain time instant. The change in the position of the points is tracked using Lucas Kanade tracker. It is

assumed that the maximum bi-directional error that these feature points face at the next time instant will

be 10 and the total number of points being tracked are a maximum of 50.

(a) A pinhole camera model showing the actual size and image size

connecting the two features indicated by 𝐿 and 𝑙
(b) Change in the distance between features with time

Figure 3.12: The feature correlation from the view of the camera

In Figure 3.12a, due to the camera vision, the distance between the features will be different from the

actual distance. Thus, using similar triangle congruence, a relation can be made between the actual

height difference from the UAV to the ground and the distance between the features.

𝐿

𝑍𝑡
=
𝑙𝑡

𝑓
(3.9)

Similarly, for the previous time instant 𝑡 − Δ𝑡, another correlation can be made.

𝐿

𝑍𝑡−Δ𝑡
=
𝑙𝑡−Δ𝑡
𝑓
, (3.10)

Figure 3.12b illustrates the change of the size of the projected lines in the image plane, from 𝑙𝑡−Δ𝑡 to 𝑙𝑡
when the UAV is moving toward the ground, from 𝑍𝑡−Δ𝑡 to 𝑍𝑡 . Using similar triangles, the following

relation can be written.

𝑍𝑡

𝑍𝑡−Δ𝑡
=
𝑙𝑡−Δ𝑡
𝑙𝑡

(3.11)
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Equation 3.7 can be rewritten for each time step 𝑡 as

𝐷𝑡 =
[𝑍𝑡 − 𝑍𝑡−Δ𝑡]

Δ𝑡

1

𝑍𝑡

where

[𝑍𝑡 − 𝑍𝑡−Δ𝑡]
Δ𝑡

is the rate of change of height or 𝑉𝑧

⇒ 𝐷𝑡 =
1

Δ𝑡

[
1 − 𝑍𝑡−Δ𝑡

𝑍𝑡

] (3.12)

Using Equation 3.11, image dilation 𝐷 can be instead calculated by the distance between the features.

𝐷𝑒𝑠𝑡𝑡 =
1

Δ𝑡

[
1 − 𝑙𝑡

𝑙𝑡−Δ𝑡

]
𝐷𝑒𝑠𝑡𝑡 =

1

Δ𝑡

[
𝑙𝑡−Δ𝑡 − 𝑙𝑡
𝑙𝑡−Δ𝑡

] (3.13)

Assuming there are 𝑁 lines generated at each time step, the estimated image dilation 𝐷 can be described

as

𝐷 =
1

𝑁

𝑁∑
𝑖=1

𝐷𝑒𝑠𝑡𝑡𝑖
(3.14)

The calculated 𝐷 is taken to be an average to reduce the possibility of any outliers affecting the system

drastically. For implementing this method, the control algorithm used in the previous section was

implemented but the control input was based on the estimated 𝐷𝑒𝑠𝑡 instead. Thus, the control input is

calculated using 𝐷𝑒𝑠𝑡 .

𝜇 = 𝐾𝑝 (𝐷∗ − 𝐷𝑒𝑠𝑡) + 𝐾𝑖
∫
(𝐷∗ − 𝐷𝑒𝑠𝑡) 𝑑𝑡 (3.15)

The more detailed implementation of image dilation is enumerated in Algorithm 2.

Algorithm 2 : IDMF-AST implementation

1. Since the view of the landing pad will change once the drone gets closer, a reset of the points that

are being tracked needs to happen. For this implementation, when the number of points that were

able to successfully be tracked reduces to below a value of 𝜃𝑝 , then the points are then based on the

current view of the landing pad.

2. For calculating 𝑙 (Equation 3.9), if points are either horizontally or vertically aligned with a deviation

of 3, the points were considered to be in a line.

3. The Δ𝑡 (Equation 3.13) was set to match the step size of the camera view update.

4. The paper in reference did state that once the camera is really close to the ground, this algorithm

fails to be accurate [58]. The paper implemented a PID controller once they observed that the UAV

was about 0.2-0.3 meters away from the ground. In this particular simulation, to recognize that the

camera was too close to the ground, the number of times the algorithm was reset is considered

instead. A threshold value of 𝜃𝑟 was set.

5. Once the algorithm resets more than 𝜃𝑟 times consecutively, the system would no longer use the

𝐷𝑒𝑠𝑡 but use its current height and slowly drop down by ℎ𝑠𝑙 meters.

6. If the drone was able to land on the platform before ℎ𝑠𝑙 meters, then it is considered as a successful

run with safe landing. It is considered safe as the descent of ℎ𝑠𝑙 meters is very slow thereby not

inducing any physical impact on the UAV.

Specific values that were used for the simulation are tabulated in Table 3.3.
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Variable Name Variable Value

Number of Points Tracked 𝜃𝑝 25

Consecutive Reset Threshold 𝜃𝑟 30

Time Step Δ𝑡 0.1

Proportional Gain 𝐾𝑝 16

Integral Gain 𝐾𝑖 10

Desired D 𝐷∗ -0.5

Safe Landing Descent ℎ𝑠𝑙 0.4 meters

Table 3.3: The Hyperparamters value

Figure 3.13: Simulink Diagram of 𝐷̂

Figure 3.13 shows how the estimation of the image dilation is implemented in Simulink. On implementing

image dilation, the UAV was not able to reach the platform by ℎ𝑠𝑙 = 0.4 meters. This is also observed

in Figure 3.15. For this simulation a textured platform was implemented but without any design or

demarcations on it as seen in Figure 3.14. There is a possibility that a different type of landing pad design

might work better for point tracking. This was based of how most of the features selected for tracking

had a tendency to be on the edge of the platform till the edge was not visible. The next chapter will work

on expanding this method for working on unknown elevated landing platforms.

(a) Features detected that are being tracked (b) The lines generated using the points observed

Figure 3.14: The feature tracking and distance calculation

Figure 3.15: UAV hovering on implementation of Landing using Image Dilation and FAST
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There have been more complex control algorithms implemented for better stability of the UAV while

landing. H. W. Ho et al. [60], worked on height-based gains for the PID controller. This was done to

reduce the oscillations due to the control gains and then tested in windy conditions. H. W. Ho et al.

[58], then extended this research to calculate adaptive gains which were then implemented to reduce

the oscillations observed close to the ground. Y. Zhou et al. [61], implemented Extended Incremental

Nonlinear Dynamic Inversion (EINDI) to reduce the oscillations and it is able to show better results than

the previous runs and was also tested for different starting heights. Unfortunately this implementation is

a starting base for the above stated algorithms and was not able to provide a better probability of safe

landing for varying heights of the platform. Thus, future research would be towards finding an improved

algorithm based on IDMF-AST.

3.5. Problem Formulation
Given the vast number of methods available and the sub-processes that affect the accuracy of safe

autonomous landing of UAVs, it is important to define the problem in detail. The aim of this research is

to propose a new method that will perform autonomous landing of an UAV on a platform whose height

is unknown, using a low complexity algorithm.

The aim of this thesis is encapsulated as follows:

1. Design a safe autonomous landing algorithm that considers Optical Flow vision.

2. The designed algorithm should be able to land safely on an unknown elevated landing platform.

3. Criteria that the proposed algorithm should meet comparable to existing methods, such as IDMF:

• Higher probability of safe landing while decreasing the probability of crash.

• Comparable time taken for safe landing if not faster.

• Computational load while simulating should not affect simulation time.
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4
Improved IDMF

The earlier investigation hinted that the IDMF algorithm might work better on a landing pad which have

some design or demarcations. Therefore, in this chapter, we first study the performance of the IDMF

algorithm with optimized marker design. Moreover, there is a discussion into how the hyperparameters

implemented in IDMF affect the probability of safe landing. The improved IDMF algorithm with ideal

hyperparameter selection is then proposed. Finally, the Adaptive IDMF algorithm for landing of a UAV

on a landing platform with unknown height is proposed.

4.1. IDMF with Optimized Marker Design
To tackle the problem of choosing a better landing pad design, the state of the art landing designs are

tested for varying heights of the platform. These being ArUco [30], Bullseye, Fourier Circles Markers

and a landing pad with no design as seen in Figure 4.1. These specific markers have been designed

for easy detection using camera vision. Furthermore, these designs have been used for decoding the

height between the landing platform and the UAV using image processing methods. These designs are

compared with the textured landing design to see how the performance varies with the given algorithm.

Figure 4.1: Different Marker Designs Tested for Different Heights

(a) ArUco Marker Design (b) Bullseye Marker Design

(c) 3 concentric circles on textured area (d) Clear textured landing pad

Three possible types of landing are possible. Safe landing is defined to start when the number of

consecutive resets are more than a defined threshold. Based on this, the types of landing are:

1. Safe Landing: when the UAV is able to reach the landing pad within the ℎ𝑠𝑙 .1

1the value of ℎ𝑠𝑙 is taken from Table 3.3
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2. Hover: when the UAV is not able to reach the landing pad within the ℎ𝑠𝑙 .

3. Crash: when the number of consecutive resets does not reach the threshold before the landing pad.

The markers were tested for 5 different heights of the platform. The implementation followed IDMF-AST

as summarized in Algorithm 2. The hyperparameters used were referenced from Table 3.2. The type of

landing for each design type was noted in Table 4.1.

Table 4.1: Test Results of Different Marker Designs

Height (m) / Type of landing Bullseye ArUco Clear Concentric Circles (3)

1 safe hover crash safe

0.8 crash safe hover safe

0.6 hover hover crash crash

0.4 safe hover safe safe

0.24 safe crash hover safe

Figure 4.2: Probability of Each Type of Landing for The Different Marker Designs for The Case of Unknown Height in the Range of

[0.24,1]

The probability of the three type of landing are illustrated in Figure 4.2. It is observed how concentric

circle design is able to provide safe landing for most of the varied height’s of the landing platform

compared to the Bullseye, ArUco and clear design. A reason why Bullseye and ArUco were not able to

perform stems from the absence of texture and lesser points to track once the camera gets very close to

the landing pad. This result also is comparable to the research done by S. Lange et al. [62]. This paper

also had an implementation of a concentric circle landing pad design over other designs and were able to

estimate the position of the UAV accurately using image-processing.

To check if the existence of texture or the varying thickness of the circles in the design was the reason why

the concentric circles worked better, another round of testing was conducted for three types of design;
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black and white concentric circles, textured concentric circles, reducing width textured concentric circles.

These designs were tested from 3 concentric circles to 8 concentric circles. An example of how these

designs vary is depicted in Figure 4.3. The individual results are tabulated in A.1. The summary of these

datapoints are charted in Figure 4.4.

Figure 4.3: Example of the Designs for 7 Concentric Circles

(a) Black and white circles (7) (b) Textured concentric circles (7t) (c) Fourier Design (7f)

Figure 4.4: Test Results for Concentric Circle Designs

(a) Probability of Landing Types for Concentric Circle Marker Design (b) Trend for the Time Taken to Safely Land

It is observed in Figure 4.4a that the textured designs were able to perform much better compared to the

others as these designs could guarantee a higher probability of safe landing. This could be due to the

picking up of textures even when the vision is very close to the landing platform.

The results of the successful runs were plotted as shown in Figure 4.4b. An expected trend was that as the

height of the platform increases, time taken to land should reduce. This is plotted in figure as "Expected

Trend". Figure 4.4b shows the attempt to observe if any design was able to follow the "Expected Trend"

while being able to land safely. It was noted that 6 concentric circles had a constantly faster landing time

compared to 7 concentric circles and was more consistent compared to 5 concentric circles. Thus, the

next set of testing was limited to 6 concentric circles design only.

During these tests, it was detected how the hyperparameters: the PID gains (𝐾𝑖 , 𝐾𝑝), the number of

points that are being tracked (𝜃𝑝) and the reset threshold (𝜃𝑟) had an impact on the type of landing that

would take place without changing the height of the platform. The next section will look into this impact.
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4.2. Improved IDMF with Ideal Hyperparameter Selection
It was observed that hyperparameters were affecting the type of landing the UAV would go through.

Thus, the first attempt was to find an optimal set of parameters for all possible heights of the platform

ℎ ∈ [ℎ𝑙 ,ℎ𝑢] which would provide safe landing. This is addressed in Section 4.2.1.

The next attempt was to find optimal hyperparameters that could guarantee safe landing for a smaller

range of [ℎ𝑙 ,ℎ𝑢]. Curve fitting was used to find hyperparameter values (𝜃𝑝) that can guarantee safe

landing for ℎ ∈ [ℎ𝑎 ,ℎ𝑏] where ℎ𝑎 ,ℎ𝑏 ∈ [ℎ𝑙 ,ℎ𝑢] and ℎ𝑏=ℎ𝑎+Δℎ. The details on curve fitting is provided in

Section 4.2.2.

The last attempt was to find optimal hyperparameters for each possible height of the platform ℎ ∈
[ℎ𝑙 ,ℎ𝑢]. A classification model was designed for finding optimal hyperparameters for each possible

height between the range of [ℎ𝑙 ,ℎ𝑢]. A reason why classification model was required over curve fitting is

that the three types of landing were considered compared to just safe landing in curve fitting. More on

how the model was designed and implemented in the system is detailed in Section 4.2.3.

4.2.1. Finding Optimal Hyperparameters for the Unknown Height Range of [ℎ𝑙 ,ℎ𝑢]
To observe if there are any optimal hyperparameters for safe landing, few more rounds of simulations

were done. This data has varying PID gains (𝐾𝑖 , 𝐾𝑝), different heights of the platform and a range of

number of points (𝜃𝑝) that are tracked by FAST while keeping the reset threshold constant. The reset

threshold was kept a constant as it is calculated based on the instances when the number of points needed

to be tracked is not met. The values in consideration are summarized in Table 4.2.

Variable Name Variable Value

Number of points tracked 𝜃𝑝 [10,15,20,25,30]

Consecutive Reset Threshold 𝜃𝑟 20

Platform Height [ℎ𝑙 ,ℎ𝑢] [0.2,2]

Proportional Gain 𝐾𝑝 4 or 8

Integral Gain 𝐾𝑖 4 or 9 or 14

Table 4.2: The Range of Values Tested for Optimal Hyperparameters for Height Range [ℎ𝑙 ,ℎ𝑢 ]

Figure 4.5: Probability of the Types of Landing for the Training Data Generated

As observed in the Figure 4.5, the probability of crash is quite high given the comparatively small range

of landing platform height. Thus, the aim will be to find optimal parameters that would reduce the

probability of crash. First attempt was to look into if there are any patterns in the training data and if

there are any set of hyperparameters work for a smaller range of heights for the landing platform.
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4.2.2. Finding Optimal Hyperparameters for the Unknown Height Range [ℎ𝑎 ,ℎ𝑏]
where ℎ𝑏=ℎ𝑎+Δℎ using Curve Fitting

A polynomial curve fitting was employed to see if there were any [ℎ𝑎 ,ℎ𝑏] where ℎ𝑎 ,ℎ𝑏 ∈ [ℎ𝑙 ,ℎ𝑢] and

ℎ𝑏=ℎ𝑎+Δℎ that a certain range of values of 𝜃𝑝 would provide with safe landing. To implement curve

fitting, the coefficients that best fit the data points for varying heights were calculated. The method used

was the best fit using least-squares for the degree 𝑛. These were then plotted against the actual data

points to see how well the the curve can estimate all the safe landing hyperparameter values available.

The curve generated should be able to give the range of 𝜃𝑝 for an assumed range of elevated platform

height. The considered hyperparameter values for curve fitting are summarized in Table 4.3.

Variable Name Variable Value

Number of points tracked 𝜃𝑝 [10,15,20,25,30]

Consecutive Reset Threshold 𝜃𝑟 20

Platform Height [ℎ𝑙 ,ℎ𝑢] [0.2,2]

Difference between ℎ𝑎 ,ℎ𝑏 Δℎ 0.2

Proportional Gain 𝐾𝑝 4 or 8

Integral Gain 𝐾𝑖 4 or 9 or 14

Degree of the polynomial 𝑛 4

Table 4.3: The Range of Values Used in Curve Fitting for Finding Optimal Hyperparameters for Height Range [ℎ𝑎 ,ℎ𝑏 ]
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Figure 4.6: Curve Fitting Results for 𝜃𝑝 that provide safe landing

In Figure 4.6, 𝜃𝑝 for safe landing were illustrated versus the height of the platform. This was tested

for the hyperparameter values from Table 4.4. The range of 𝜃𝑝 to be tracked for safe landing for an

elevated platform of [ℎ𝑎 ,ℎ𝑏] meters can be inferred from Figure 4.6. Unfortunately, on testing the range of

𝜃𝑝 for the considered range of [ℎ𝑎 ,ℎ𝑏] lead to a crash. Thus, the idea of using curve fitting for optimal

hyperparameters fails. Furthermore, this model does not consider cases when the landing is not safe

which might have affected the test case.

Variable Name Variable Value Type of Data

Range of Height Considered [ℎ𝑎 ,ℎ𝑏] [0.6,0.8] Known

Number of Points Tracked 𝜃𝑝 [20,24] Known

Platform Height ℎ 0.75 m Unknown

Table 4.4: The Values Considered to Test Curve Fitting for Finding Optimal 𝜃𝑟
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Figure 4.7: Trends on Changing the PID Gains
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Using the curves generated per trial, there was an attempt to observe trends if there are changes in

one of the hyperparameters. The trials specifically looked into how changes in the gains affected 𝜃𝑝
that provide safe landing. Figure 4.7 encapsulates the trials in consideration with the first and second

quadrant looking into variation in 𝐾𝑖 and variation in 𝐾𝑖 in the third and fourth quadrant. As seen in

Figure 4.7, there is no consistent pattern between changing the PID gains and the number of points (𝜃𝑝)
to be tracked for safe landing. This shows that a generalized method for safe landing given a range of

elevated landing platforms does not help fix the problem of a high probability of crashes. Thus, a more

individualistic method should be generated that can take into consideration not only hyperparameters

that give safe landing but also crash and hover. The next attempt was to use a Classification Learner

Toolbox to see if a trained model can predict what type of landing a set of parameters can give.

4.2.3. Finding Optimal Hyperparameters for An Assumed Height of the Platform
Varying in the Range of [ℎ𝑙 ,ℎ𝑢] using Classification Model

Curve fitting takes into consideration only hyperparameters that provide safe landing. Hence, a

classification model will be able to provide better suited set of hyperparameters using all the types of

landing possible. The aim of this model is to find hyperparameters that provide safe landing for the UAV.

Before the Classification Model is incorporated with the Simulink System, 2 steps, training and testing is

implemented on the Classification Model to guarantee finding optimal hyperparameters. Training a

model entails using a pre-existing labeled dataset including the output sent to the model. The model

learns possible biases that lead to the required output or category in this case. For testing the model,

new labeled data is sent to the trained model and the model attempts to classify/categorize the data.

This output is then compared with the expected output of the labeled data to calculate how accurate the

trained model is.

The hyperparameters used and their values in the labeled dataset are encapsulated in Table 4.5. The type

of landing was numerically categorized as 1 or 2 or 3 which was then sent to the model along with the

hyperparameter values. The mapping of the numeric values to the type of landing is defined below.

1. Crash: 1

2. Hover: 2.

3. Safe Landing: 3.
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Variable Name Variable Value

Number of Points Tracked 𝜃𝑝 [10,15,20,25,30]

Consecutive Reset Threshold 𝜃𝑟 [10,15,20,25,30]

Platform Height [ℎ𝑙 ,ℎ𝑢] [0.2,2]

Proportional Gain 𝐾𝑝 [2,20]

Integral Gain 𝐾𝑖 [2,20]

UAV’s Starting Height 𝑧𝑜 2.5 or 3

Classification Category 𝑦 1 or 2 or 3

Table 4.5: The Training Data for Classification Model with varying UAV starting height

Training the Landing Classifier using Height of Descent (HOD)
There was an attempt to train a classifier which takes HOD (height the UAV starts to descent - height of the

platform) and the other hyperparameters. The details on the inputs required for training is encapsulated

in Figure 4.8. The values of the hyperparameters are referred from Table 4.5. The training setup and

the accuracy of the training and testing of the model is summarised below. The confusion matrices are

illustrated in Figures 4.9 and 4.10.

Figure 4.8: The Hyperparameters Required for Training the Classifier using HOD

1. Data available:

(a) Training Data Size: 916

(b) Training and Testing Data Division: 85% and 15%

2. Best Model: Fine Trees

(a) Validation Accuracy: 53.9%

(b) Test Accuracy: 56.2%

32



Figure 4.9: Fine Trees Model (for HOD): Validation Results

Figure 4.10: Fine Trees Model (for HOD): Test Results

Figures 4.9 and 4.10 shows the the confusion matrix which explains how often is there a possibility of the

model classifying a set of hyperparameters accurately. On the left side, the plot has the probability of True

Class and Predicted Class as the 𝑥 and 𝑦 axes respectively. As stated earlier, the landing classification

categories of crash, hover and safe were numerically categorized as 1, 2 and 3 respectively. So if a set of

hyperparameters were classified as safe landing (3) but the true class is crash (1), then this would be

categorized under 37.4%. The right side of the figure gives the Hit Rate and the Miss Rate which is the

rate of a correct classification and wrong classification respectively for each class.

Even though the accuracy rates were more than 50% for Fine Trees model, the Hit Rate for crash (1), is

lesser than 50%. Even though the dataset is quite large, the model is not able to have better accuracy in

classifying crashes. Thus, a more detailed look into a better way of training the model with some feature

translation was necessary for better accuracy results.

Training the Landing Classifier using Height of Platform and Different UAV Starting Heights
The next attempt was to split HOD as height of the platform and the UAV’s height at the start of descent.

This was done as the accuracy was low compared to the data available for training and there might be

more dependency on the starting height of the UAV. Thus, the variables used for training are depicted in

Figure 4.11 and the values considered are from Table 4.5. The data used and the accuracy of the training
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and testing of the model are summarised below. The confusion matrices are described in Figures 4.12

and 4.13.

Figure 4.11: The Hyperparameters Required for Training the Classifier using ℎ and Different 𝑧𝑜

1. Data available:

(a) Training Data Size: 916

(b) Training and Testing Data Division: 85% and 15%

2. Best Model: Bagged Trees, an Ensemble Model

(a) Validation Accuracy: 60.0%

(b) Test Accuracy: 60.0%

It is observed in Figures 4.12 and 4.13 that the accuracy for true crash classification is at 60%. This is

quite similar in value to using a coin toss to predict if the set of hyperparameters would lead to crash or

safe landing or hover. This was not expected with a dataset of almost 1000 as the classification model

should have been able to give better accuracy results. Thus, splitting the height parameter was yet not

able to give better results.

Figure 4.12: Bagged Trees Model (for ℎ and Different 𝑧𝑜 ): Validation Results
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Figure 4.13: Bagged Trees Model (for ℎ and Different 𝑧𝑜 ): Test Results

To find possible flaws, it is important to know more about the classifier model and data traits this

mode tends to amplify. Ensemble methods work by implementing different type of machine learning

algorithms to get better accuracy. Bagged types of models specifically by choosing different subsets of

the training data and working on different classifiers for these subsets. These subsets of training data are

not balanced thus it tends to prioritize correctly classifying the majority class. On examining the training

data generated, it was observed that there was not an equal amount of data for each class. The current

data had approximately 40% of safe landing, 40% of hover and only 20% of crash landing. This might

have affected the training of the model and hence affecting the accuracy of crash classification.

Some possible ways of addressing this issue are by undersampling or oversampling it [63]. For this case,

removing the data to implement undersampling was counter-intuitive as the total data available was less

compared to other applications of classification model training. On the other hand, for oversampling,

getting only crash data was quite time-taking as the probability of crash in a single round of test is

an average of 30%. A common oversampling method is SMOTE (Synthetic Minority Over-sampling

Technique) [64]. Thus, the next run implemented SMOTE to balance the dataset.

Training the Landing Classifier using Height of Platform and Constant UAV Starting Height
Compared to the previous attempts, the starting height of the UAV (𝑧𝑜) was made a constant at 2.5 meters.

Thus, the parameters defined to the Classification Model are depicted in Figure 4.14.

Figure 4.14: The Hyperparameters Required for Training the Classifier using Height of Landing Platform

35



Details about the data used are summarised below.

1. Data available:

(a) Training Data Size: 800

(b) Training and Testing Data Division: 85% and 15%

(c) SMOTE was used to extend the data classified as crash.

2. Miscalculation cost: double the penalty when true class of crash is classified as safe landing. This

is done as a miscalculation of a crash as any other type of landing will be harmful for the UAV.

3. Features being sent to the model are:

Table 4.6: The Training Data for Classification Model with constant UAV starting height

Variable Name Variable Value

Number of points tracked 𝜃𝑝 [10,15,20,25,30]

Consecutive Reset Threshold 𝜃𝑟 [10,15,20,25,30]

Platform Height ℎ [0.2,2]

Proportional Gain 𝐾𝑝 [2,20]

Integral Gain 𝐾𝑖 [2,20]

Classification Category 𝑦 1 or 2 or 3

In Table 4.7, the accuracy of each model is summarized to show how different the accuracy is between

the ensemble models compared to SVM and KNN methods. The highlighted method is the one which

had the highest accuracy rates for both validation and testing.

Table 4.7: Accuracy Results of the 25 available models with adjusted cost matrix

Model Name Validation Accuracy Test Accuracy

Fine Tree 63.8% 70.7%

Medium Tree 53.2% 50%

Coarse Tree 46.8% 47.4%

Linear Discriminant 46.2% 46.6%

Quadratic Discriminant 52.6% 51.7%

Guassian Naive Bayes 50% 55.2%

Kernel Naive Bayes 45.7% 47.4%

Linear SVM 49.8% 50.9%

Quadratic SVM 54.3% 51.7%

Cubic SVM 59.6% 60.3%

Fine Guassian SVM 62.9% 63.8%

Medium Guassian SVM 58.4% 55.2%

Coarse Guassian SVM 48.9% 50.0%

Fine KNN 67.9% 69.8%

Medium KNN 56.5% 46.6%

Coarse KNN 48.8% 50.0%

Cosine KNN 54% 49.1%

Cubic KNN 56.4% 46.6%

Weighted KNN 69.3% 69.8%

Boosted Trees 57.4% 59.5%

Bagged Trees 76.0% 79.6%

Subspace Discriminant 49.4% 52.6%

Subspace KNN 43.0% 39.7%

RUSBoosted Trees 55% 60.3%

SVM Kernel 56.8% 56.9%
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Figures 4.15 and 4.16 shows how the accuracy with penalized cost for miscalculation of crashes as safe

gives a higher Hit Rate. As the accuracy has become much better compared to the previous trials, this

Bagged Trees model is used for the integration with the system model.

Figure 4.15: Bagged Trees Model (updated cost matrix): Validation Results

Figure 4.16: Bagged Trees Model (updated cost matrix): Test Results

4.3. Adaptive IDMF
The system model can now use the trained classifier to adaptively set the values for the hyperparameters

based on an assumed height. As stated in Table 3.1, the UAV is aware of its position with the help of

the IMU. Thus, this value should be taken into consideration by the trained model to give an updated

assumption of the height of the platform. Detailed description of how the classifier is incorporated and

implemented is addressed in the Algorithms 3 and 4.

4.3.1. Incorporation of the Landing Classifier in the System Model
Before landing commences, there is a set of ideal hyperparameters generated. It is assumed that the

maximum height that the landing platform (ℎ𝑢) can take is 2 meters as the starting height of descent of

the UAV (𝑧𝑜) is 2.5 meters. During the training, using feature ranking (Chi2), it was observed how PID

gains (𝐾𝑝 , 𝐾𝑖) had a higher importance score than number of points tracked and the reset threshold. This
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information was used to divide the hyperparameter finding process into 2 halves. The steps taken to

generate the ideal set of hyperparameters is encapsulated in Algorithm 3. The inputs and the output

of the classification model needed is defined in Figure 4.17. Using the classification output, the set of

hyperparameters which provide safe landing for the UAV is sent to the Simulink System.

Figure 4.17: Working of the Classification Model Offline

Algorithm 3 : Finding the optimal hyperparameters offline

Ensure: classificationmodel is loaded from Classification Learner

𝐾𝑝 , 𝐾𝑖 ← [2, 20] ⊲ the range of values PID gains can take

𝜃𝑝 , 𝜃𝑟 ← [10, 30] ⊲ the range of values points tracked and reset threshold can take

height← 2 ⊲ maximum value of the platform

gain matrix← 𝑛𝑑𝑔𝑟𝑖𝑑(range of values 𝐾𝑝 , 𝐾𝑖) ⊲ creates a grid with all combinations of 𝐾𝑝&𝐾𝑖
𝑋 ← [height, gain matrix, min(𝜃𝑝), min(𝜃𝑟)]
𝑦 ← classificationmodel.predictFcn (𝑋)

𝑋 = [𝑋, 𝑦]
for 𝑗 = 1: length(X) do

if 𝑦(𝑗) == safe landing then
𝑜𝑝1 = 𝑋(𝑗)

end if
end for
𝑜𝑝1(𝐾𝑝 ,𝐾𝑖 )← smallest gain values (𝑜𝑝1)

range matrix← 𝑛𝑑𝑔𝑟𝑖𝑑(range of values 𝜃𝑝 , 𝜃𝑟)
𝑋 ← [height, 𝑜𝑝1(𝐾𝑝 ,𝐾𝑖 ) , range matrix]

𝑦 ← classificationmodel.predictFcn (𝑋)

𝑋 = [𝑋, 𝑦]
for 𝑗 = 1: length(X) do

if 𝑦(𝑗) == safe landing then
𝑜𝑝2 = 𝑋(𝑗)

end if
end for
𝑜𝑝2𝑠𝑚𝑎𝑙𝑙 ← smallest values of 𝜃𝑝 , 𝜃𝑟 (𝑜𝑝2) ⊲ Optimal smallest-valued hyperparameters that provide

safe landing

Algorithm 3 also addresses how the smallest values are selected when there are multiple sets of

hyperparameters providing safe landing. The smallest values are taken because this will limit the

drastic variation when the hyperparameter updation occurs. Figure 4.18 shows the variables that are
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needed for adaptive hyperparameter generation. This depicts adaptive hyperparameters function as

a black box which needs three inputs, that is, the UAV’s current location, the current reset count and

the set of hyperparameters that are already generated. Algorithm 4 talks in detail on how the optimal

hyperparameters are generated in the adaptive hyperparameter function.

Figure 4.18: Basic Working for Adaptive Hyperparameter Generation

Algorithm 4 : Generating adaptive hyperparameters while landing

Ensure: classificationmodel is loaded, ideal hyperparameters (𝑜𝑝2𝑠𝑚𝑎𝑙𝑙) is sent to system

𝐾𝑝 , 𝐾𝑖 ← [2, 20] ⊲ the range of values PID gains can take

𝜃𝑝 , 𝜃𝑟 ← [10, 30] ⊲ the range of values points tracked and reset threshold can take

gain matrix← 𝑛𝑑𝑔𝑟𝑖𝑑(range of values 𝐾𝑝 , 𝐾𝑖)
currenth← height of the UAV

estimatedh← height used for optimal hyperparameters

currentreset← current value of reset

safereset← 𝜃𝑟 from 𝑜𝑝2𝑠𝑚𝑎𝑙𝑙

delh← 0.1 ⊲ the Δℎ considered for the hyperparameters to get updated

if currenth - estimatedh == delh && currentreset ≤ safereset then
𝑋 ← [currenth - delh, gain matrix, min(𝜃𝑝), min(𝜃𝑟)]
𝑦 ← classificationmodel.predictFcn (𝑋)

for 𝑗 = 1: length(X) do
if 𝑦(𝑗) == safe landing then

𝑜𝑝1← 𝑋(𝑗)
end if

end for
𝑜𝑝1(𝐾𝑝 ,𝐾𝑖 )← smallest gain values (𝑜𝑝1)

range matrix← 𝑛𝑑𝑔𝑟𝑖𝑑(range of values 𝜃𝑝 , 𝜃𝑟)
𝑋 ← [currenth - delh, 𝑜𝑝1(𝐾𝑝 ,𝐾𝑖 ) , range matrix]

𝑦 ← classificationmodel.predictFcn (𝑋)

𝑋 ← [𝑋, 𝑦]
for 𝑗 = 1: length(X) do

if 𝑦(𝑗) == safe landing then
𝑜𝑝2← 𝑋(𝑗)

end if
end for
𝑜𝑝2𝑠𝑚𝑎𝑙𝑙 ← smallest values of 𝜃𝑝 and 𝜃𝑟 (𝑜𝑝2)

end if
𝑜𝑝2𝑠𝑚𝑎𝑙𝑙 is sent to the system. ⊲ smallest-valued hyperparameters for safe landing
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4.3.2. Implementing Adaptive IDMF

Figure 4.19: Results on Implementing Adaptive Hyperparameters

Figure 4.19 shows an example on how the landing algorithm works on a platform of 0.6 meter height. The

system parameter values were taken from Table 3.2. When the UAV is close to the landing platform, it is

observed how there are multiple iterations showing that the UAV starts to safe land. Due to the adaptive

hyperparameter selection, there is an estimate of the height of the landing platform that is also generated.

The next section will compare the Adaptive IDMF with the previously tested methods such as IDMF.

4.4. Adaptive IDMF vs IDMF
In this section, the performance of the proposed Adaptive IDMF is compared versus the IDMF algorithm

in terms of the following metrics:

1. Safe landing probability

2. Time taken to safely land

3. Simulation Time

4.4.1. Safe Landing Probability
The Adaptive IDMF was tested for the range of [ℎ𝑙 ,ℎ𝑢] = [0.2,2] meters of the landing platform with the

landing design as the 6 concentric circles on textured background. It is observed how there is only one

instance that the UAV crashes. This is might be due to a obstructed vision of the landing platform when

the platform is of the height 1.6 meters to 2 meters. The results are tabulated in Table 4.8. Adaptive

IDMF is able to outperform the IDMF algorithm as the probability of safe landing is higher compared to

a constant hyperparameter IDMF as seen in Figure 4.20.
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Figure 4.20: Probability of Landing Comparing Adaptive IDMF

and IDMF Algorithm

Height Landing

2.0 safe

1.9 safe

1.8 safe

1.7 safe

1.6 crash

1.5 safe

1.4 safe

1.3 hover

1.2 safe

1.1 safe

1 safe

0.9 safe

0.8 safe

0.7 safe

0.6 safe

0.5 safe

0.4 safe

0.3 safe

0.2 safe

Table 4.8: Landing Results for Improved IDMF

Therefore, it can be inferred that the Adaptive IDMF is able to attain the goal of improving the probability

of safe landing. The permanence of the proposed Adaptive IDMF is compared versus the IDMF algorithm

for the two landing designs in Figure 4.21.

(a) 3 concentric circles (b) 8 concentric circles

Figure 4.21: Landing Platform Designs Used to Test Adaptive IDMF

Figure 4.22: Probability Plot of the Adaptive Algorithm with Different Landing Designs
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Figure 4.22 shows how Adaptive IDMF is able to provide higher probability of safe landing even though

the classification model is tested on a different landing design. Hence, using Adaptive IDMF is beneficial

compared to a constant hyperparameter implementation of IDMF.

4.4.2. Time Taken to Safely Land
To observe if Adaptive IDMF impacts the time taken to land, the average time taken for the safe landing

of IDMF algorithm was compared with the time taken to land using Adaptive IDMF. The individual data

points are tabulated in A.2. This comparison is summarized in Figure 4.23. As seen in figure, Adaptive

IDMF has a lower time measurement. Therefore, Adaptive IDMF is able to provide not only higher

probability of safe landing but also faster safe landing. At ℎ = 2 meters, it is observed that the average

landing time is higher compared to that of Adaptive IDMF. This is due to the hyperparameter selection

that is done offline. As observed in Algorithm 3, the minimum values of the hyperparameters specifically

PID gains are selecting. Thus, making it slower for the initial height assumption of the landing platform.
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Figure 4.23: Performance of the Adaptive IDMF vs IDMF in terms of Time Taken

4.4.3. Simulation Time
Due to the adaptive nature of the proposed algorithm, there might be a possibility of a slower run time

of the Simulink system. To observe this, the two methods were compared in terms of the time taken for

initialization, compilation and total run time. The results are tabulated as follows:

Phase Adaptive IDMF (seconds) IDMF (seconds)

Total time 390.549 396.987

Simulation Phase 373.241 377.722

Compile Phase 16.079 17.090

Initialization Phase 1.207 2.083

Termination Phase 0.0203 0.091

Table 4.9: Simulation Time Comparison

In Table 4.9, it is noted how Adaptive IDMF is able to perform much faster compared to IDMF in all

phases of the simulation. One thing to be noted, when the Adaptive IDMF is compiled for the first time,

to combine the trained model in the system takes on average 10 times the time in compile phase (149
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seconds). But this is due to the limitation of the software. Therefore, once the trained model is loaded,

this will not affect the behaviour of the system.

Thus, it can be inferred from three metrics used, Adaptive IDMF is able to perform better compared

to IDMF in terms of higher safe landing probability, faster safe landing and lesser simulation and

compilation time.
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5
Conclusion and Future Work

5.1. Conclusion
The research of implementing OF for Autonomous Landing of an UAV provided the following insights:

• There is research geared towards incorporating the mechanisms that insects around us implement

for safe landing of UAVs. By doing so, the complexity of the algorithm implemented reduces.

• OF can be used for detection and maneuvering towards the landing platform using the jump in its

value once the platform is in view.

• Usage of IDMF-AST is better suited for safe landing compared to IDMI when there is a possibility

of an elevated landing platform.

• The improved IDMF looked into different landing designs which affected the probability of safe

landing. The trends observed on changing the hyperparameters given a landing design affected

the outcome at a higher randomness. Thus, finding the right hyperparameters was crucial.

• Using a Classification Model along with iterative hyperparameter selection proved to be the best

way to identify the ideal hyperparameters that can guarantee safe landing given an assumption of

the landing platform height.

• The Adaptive IDMF was able to double the probability of safe landing compared to IDMF and also

reduce the probability of crash occurring.

5.2. Future Work
Some areas of this project that will be looked into are:

• Expand the algorithm such that it can guarantee safe landing with a varying location of the landing

platform while using OFD.

• Observe how the system reacts in the case of turbulent wind conditions.

• Implement other control algorithms such as Sliding Mode Control and Linear Quadratic Regulator

in place of PID and investigate the difference in the safe landing probability.
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A
Appendix

A.1. Concentric Circles Data
Table A.1: Test Results for Different Types of Concentric Circles

Height 3t 3 3f 4t 4 4f 5t 5 5f

1 crash safe safe safe safe safe safe safe safe

0.8 crash crash safe safe crash safe safe safe crash

0.6 safe hover crash safe safe safe safe crash safe

0.4 safe crash safe safe crash safe safe crash crash

0.24 safe hover safe safe safe crash safe safe safe

Height 6t 6 6f 7t 7 7f 8t 8 8f

1 safe safe crash safe crash crash crash crash safe

0.8 safe crash safe safe safe hover safe hover safe

0.6 safe safe crash safe crash crash hover safe crash

0.4 safe safe safe safe safe safe safe safe crash

0.24 safe safe safe safe crash safe crash crash safe

A.2. Time Taken to Land using Adaptive IDMF vs IDMF
Table A.2: Time Taken for Different Elevated Platforms

Height Adaptive IDMF (s) Average for Training Data (s)

2.0 1.3 1.01

1.75 1.31 1.5

1.5 1.82 2

1.25 2.02 2.07

1 1.82 1.9

0.8 2.22 2.8

0.6 2.21 3.33

0.4 2.66 4

0.2 2.33 4.2
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