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Chapter 1

Principal Component Hierarchy for

Sparse Quadratic Programs

Abstract

We propose a novel approximation hierarchy for cardinality-constrained, convex quadratic

programs that exploits the rank-dominating eigenvectors of the quadratic matrix. Each level

of approximation admits a min-max characterization whose objective function can be op-

timized over the binary variables analytically, while preserving convexity in the continuous

variables. Exploiting this property, we propose two scalable optimization algorithms, coined

as the “best response” and the “dual program”, that can efficiently screen the potential indices

of the nonzero elements of the original program. We show that the proposed methods are

competitive with the existing screening methods in the current sparse regression literature,

and it is particularly fast on instances with high number of measurements in experiments with

both synthetic and real datasets.

1 Introduction

Sparsity is a powerful inductive bias that improves the interpretability and performance of many

regression models [Ribeiro et al., 2016, Hastie et al., 2009, Bertsimas et al., 2017]. Recent years

have witnessed a growing interest in sparsity-based methods and algorithms for sparse recovery,

mostly in the setting of sparse linear regression [Atamturk and Gomez, 2020, Bertsimas and van

Parys, 2017, Hazimeh et al., 2020, Hastie et al., 2017].

In this paper we study the more general problem of sparse linearly-constrained quadratic program-

ming with a regularization term. Sparsity is imposed in this context by controlling the `0 norm of
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the estimator [Miller, 2002]. More specifically, we consider the problem

J? , min 〈c, x〉+ 〈x,Qx〉+ η−1‖x‖2
2

s.t. x ∈ Rn

Ax ≤ b, ‖x‖0 ≤ s,

(P)

where Q ∈ Sn+, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, and the integer s ≤ n specifies the target sparsity level.

The ridge regularization term η−1‖x‖2
2 [Hoerl and Kennard, 1970] in the objective function reduces

the mean squared error when the data is affected by noise and/or uncertainty [Ghaoui and Lebret,

1997, Mazumder et al., 2020].

Problem (P) arises in a wide range of applications, including sparse linear regression, model pre-

dictive control [Aguilera et al., 2014], portfolio optimization [Bertsimas and Cory-Wright, 2020],

binary quadratic programming and principal component analysis [Bertsimas et al., 2020b].

Motivation for our approach. Throughout, suppose that Q in problem (P) admits the eigen-

decomposition Q =
∑n

i=1 λiviv
>
i , where λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of Q. Our approach

to solve (P) is centered around the following key observation:

Observation. For many real-world applications, the matrix Q is nearly low-rank.

The concept of nearly low-rank is contextual. In this paper, we say that Q is nearly low-rank if a

low-rank matrix can approximate Q to a reasonable accuracy, where the accuracy is measured by

a matrix norm.

It is instructive to demonstrate the nearly low-rank property of Q in the context of linear regression.

Given N training samples {(ξi, ωi)}Ni=1 ⊂ Rn × R, the sparse ridge regression problem

min
x:‖x‖0≤s

1

N

N∑
i=1

‖ξi − x>ωi‖2
2 + η−1‖x‖2

2 (1.1)

coincides with (P) for the choice of

Q =
1

N

N∑
i=1

ωiω
>
i , c =

1

N

N∑
i=1

ξiωi. (1.2)

In high-dimensional regression (N < n), the matrix Q is automatically rank-deficient. Moreover,

Q can also be nearly low-rank even when N > n. As a numerical example, for the UCI Supercon-

ductivity dataset1, we randomly select 70% of the dataset as training samples, and then compute

the matrix Q, as specified in (1.2). Figure 1.1 plots the empirical distribution of the largest eigen-

values of Q, taken over 100 independent replications. On average, the ratio λ1/λ10 between the 1st

1Available at https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data

2
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largest and the 10th largest eigenvalues of Q is 97.2. We can also observe that the magnitude of

the eigenvalues decays relatively fast for this dataset.

Figure 1.1: Empirical distribution of the eigenvalues of the matrix Q for the Superconductivity

dataset (plotted in log-log scale).

Next, let us recall the low-rank truncation of the matrix Q. For k ≤ n, the approximation of Q

using its k leading eigenvectors, denoted by Qk, is given by

Qk ,
k∑
i=1

λiviv
>
i .

Following the same sampling procedure described above, Figure 1.2 depicts how the average trun-

cation error, measured by the Frobenius norm ‖Qk − Q‖F , rapidly decreases as k increases. In

this figure, we also report the minimum dimension k̂ so that the reconstruction error of Qk̂ falls

below 10% that of the rank-1 approximation Q1. We observe that k̂ � n for many UCI regression

datasets. This nearly low-rank behavior is typical in data sciences [Udell and Townsend, 2019].
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Figure 1.2: Empirical Frobenius reconstruction error ‖Qk − Q‖F averaged over 100 independent

replications.
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Contributions. We summarize the contributions as follows.

(i) Hierarchy of approximations and min-max characterization: We exploit the nearly

low-rank nature of the matrix Q and propose a hierarchy of approximations for cardinality-

constrained convex quadratic programs. This hierarchy enables us to strike a balance between

the scalability of the solver and the quality of the solution. We further show that each k-leading

spectral truncation can be characterized as a min-max problem (Proposition 3.1).

(ii) Scalable and certifiable algorithms: We propose two scalable algorithms that enjoy opti-

mality certificates if the min-max characterization admits a saddle point (Propositions 3.3 and

3.5). The proposed algorithms build on a desirable feature of the objective function of the min-

max characterization, in which the minimizer over the binary variables admits a closed-form

solution (Lemma 3.2).

(iii) Safe screening: If the min-max characterizations do not admit a saddle point, the proposed

iterative algorithms can serve as a screening method to reduce the variables in the original

problem. We investigate the effectiveness of our algorithms through an in-depth numerical

comparison with the recent sparse regression literature including the safe screening procedures

of Atamturk and Gomez [2020] and the warm start of Bertsimas and van Parys [2017]. Moreover,

we also benchmark against direct optimization methods Beck and Eldar [2012] and Yuan et al.

[2020]. Experiments on both synthetic and real datasets reveal that our algorithms deliver

promising results (Section 4).

We note that using leading principal components in regression has a long-standing history [Næs and

Martens, 1988, Hastie et al., 2009, Baye and Parker, 1984]. However, to the best of our knowledge,

it has never been applied in the context of cardinality-constrained convex quadratic problems.

Compared to the existing solution procedures in the literature, the performance of our methods,

measured by both the objective value and the screening capacity, is consistent across a wider range

of input parameters. Moreover, in sparse regression, our methods can scale to problems of large

sample size N because the complexity of our methods does not depend on N poorly.

This paper unfolds as follows. Section 2 provides a brief overview over the landscape of the

cardinality-constrained quadratic problems. Section 3 devises two distinctive algorithms that lever-

age the principal component approximation of the matrix Q. Section 4 reports an in-depth numer-

ical comparison between our algorithms and the current sparse regression literature.

Notations. For any matrix u, we use
√
u and |u| to denote the component-wise square root and

absolute value of u, respectively. For a vector u, we use diag(u) to denote the diagonal matrix

formed by u. For an integer n, we also denote with [n] the set of integers {1, . . . , n}. Given an

4



Figure 1.3: Schematic overview of the principal component approximation to sparsity-constrained

quadratic programs.

index set A ⊂ [n], the binary vector u = 1n(A) ∈ {0, 1}n is defined as uj = 1 if and only if j ∈ A.

In words, 1n(A) is the indicator vector of the index set A.

2 Literature Review

Sparse regression. In general, the sparse regression problem is NP-hard [Natarajan, 1995]. Until

recently the sparse optimization literature largely focused on convex heuristics for sparse regression,

e.g., Lasso (`1) [Tibshirani, 1996] and Elastic Net (`1 − `2) [Zou and Hastie, 2005]. Despite their

scalability, convex heuristic approaches are inherently biased since the `1-norm penalizes large and

small coefficients uniformly. In contrast, solvers that directly tackle sparse regression do not suffer

from unwanted shrinkage and have enjoyed a resurgence of interest [Bertsimas and van Parys,

2017, Hazimeh et al., 2020, Dedieu et al., 2020, Gomez and Prokopyev, 2018], thanks to the recent

breakthroughs in mixed-integer programming [Bertsimas et al., 2016]. These direct approaches are

also the focus of this paper.

In particular, Bertsimas and van Parys [2017] devise a convex reformulation of the sparse regression

problem using duality theory, the solution of which provides a warm start for a branch-and-cut

algorithm. This method can solve sparse regression problems at the scale of n ≈ 105 while the

earlier work [Bertsimas et al., 2016] only goes to sizes of n ≈ 103. However, as pointed out by

Xie and Deng [2020], the performance of these algorithms depends critically on the speed of the

commercial solvers and varies significantly from one dataset to another. Therefore we focus on

the warm start method in the approach of Bertsimas and van Parys [2017], which makes use of

the kernel matrix [ω>i ωj]i,j. Notice that the size of this kernel matrix scales with the number of

samples. On the contrary, our proposed solution procedures use only the resulting matrix Q, whose

size does not depend on the number of samples.
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Convex approximations of the sparse regression can however be used as a safe screening procedure

as demonstrated by Atamturk and Gomez [2020]. Safe screening methods aim to identify the

support of the solution set of (P) and reduce the problem dimension n before invoking an MIQP

solver. Indeed, if we correctly rule out any single suboptimal dimension, the solution space would

be cut by half. In this sense, the expected speedup for the MIQP solver is exponential [Atamturk

and Gomez, 2020].

Sparse quadratic programs. We are only aware of a few papers that solve sparse quadratic

programs exactly. Beck and Eldar [2012] and Beck and Hallak [2015] devise coordinate descent

type algorithms based on the concept of coordinate-wise optimality, which updates the support

at each iteration and, in particular, can also be used to solve sparse quadratic programs. Yuan

et al. [2020] considers a block decomposition algorithm that combines combinatorial search and

coordinate descent. Specifically, this method uses a random or greedy strategy to find the working

set and then performs a global combinatorial search over the working set based on the original

objective function. Recently, Bertsimas and Cory-Wright [2020] and Bertsimas et al. [2020b] apply

the advances in exact sparse regression to sparse quadratic programs to solve problems of higher

dimension. Both essentially rewrite (P) as a sparse regression problem and then solve it with a

modified version of the branch-and-cut algorithm of Bertsimas and van Parys [2017]. This procedure

can also accommodate linear constraints.

Given the existing literature mentioned above, to our best of knowledge, our approach is the first

to identify and exploit the low-rank structure of Q in the original problem (P) by using the leading

principal component approximation of Q, notably in the context of sparse quadratic programming.

3 Principal Component Approximation

The key idea of this study is to leverage the principal component approximation of the matrix Q in

(P) in order to deploy the duality technique from convex optimization in a more efficient manner.

To this end, we introduce additional continuous variables y along with the equality constraints√
λiyi =

√
λi 〈vi, x〉 where λi and vi are, respectively, the eigenvalues and eigenvectors of the

matrix Q. Throughout, we denote V = [v1, . . . , vk] ∈ Rd×k. Using these definitions, program (P)

6



can be approximated via

J?k , min 〈c, x〉+
k∑
i=1

λiy
2
i + η−1‖x‖2

2

s.t. x ∈ Rn, y ∈ Rk

Ax ≤ b, ‖x‖0 ≤ s
√
λiyi =

√
λi 〈vi, x〉 , i ∈ [k].

(Pk)

The last equality constraints of (Pk) are scaled using the coefficients
√
λi to improve numerical

stability. Since the matrix Q is positive semidefinite, we have the hierarchy of approximations in

which the sequence of optimal values J?k preserves the order

J?1 ≤ J?2 ≤ · · · ≤ J?n = J?,

where J? is the optimal value of program (P). In fact, one can observe that the two programs (P)

and (Pk) are equivalent when k = n. Next, we use the standard convex duality to turn program (Pk)
into a min-max optimization problem.

Proposition 3.1 (Min-max characterization). For each k ≤ n, the optimal value J?k of (Pk) is

equal to

J?k = min
z∈{0,1}n∑

zj≤s

max
α∈Rk

β∈Rm
+

L(z, α, β), (Mk)

where the objective function L is defined as

L(z, α, β) , −β>b− 1

4
‖α‖2

2 −
η

4
(c+ V

√
Λα + A>β)>diag(z)(c+ V

√
Λα + A>β), (1.3)

in which Λ = diag{λ1, · · · , λk} is a diagonal matrix whose elements on the main diagonal are

the first k largest eigenvalues of the matrix Q. Moreover, the nonzero coordinates of the optimal

variable x? in (Pk) contain the nonzero elements of the optimal solution z? in (Mk).

Thanks to Proposition 3.1, the information regarding the support of the optimal solution x? in (Pk)
can effectively be obtained from the support of the optimal solution z? in (Mk). We note that

finding the support is indeed the computational bottleneck of program (Pk). A key feature of the

objective function L of program (Mk) is that when the variables (α, β) is fixed, the minimization

over the binary variable z can be solved analytically.

Lemma 3.2 (Closed-form minimizer). Given any pair (α, β), the minimizer of the function L

defined in (1.3) can be computed as

arg min
z∈{0,1}n∑

zj≤s

L(z, α, β) = 1n
(
J (α, β)

)
, where (1.4)

7



J (α, β) ,

j ∈ [n] :

j is an index of the s-largest

elements of the vector

c+ V
√

Λα + A>β

 ,

and 1n(J ) ∈ {0, 1}n is a binary vector whose coordinates contained in the set J are ones.

We note that the set of optimal indices defined in J (α, β) may not be unique. In such scenarios,

we adopt a deterministic tiebreaker (e.g., a lexicographic rule) to introduce J as a proper single-

valued function. The observation in (1.4) is the key building block for two scalable optimization

algorithms that we will propose to tackle problem (Pk).

3.1 Alternating best response

The first proposed algorithm can be cast as an attempt to find a saddle point (a Nash equilibrium)

of program (Mk), if it exists. This is similar to the approach discussed in Bertsimas et al. [2020a,

Theorem 3.2.3], which concerns the different problem of sparse PCA. Given the inherent noncon-

vexity of the problem due to the binary variables z, such an equilibrium may not exist. In that

case, the algorithm will not converge. Nonetheless, we will also discuss how this approach can still

be viewed as a “safe screening” scheme [Atamturk and Gomez, 2020].

Given z ∈ {0, 1}n, we define the function

BR(z) , arg max
α∈Rk

β∈Rm
+

L(z, α, β). (1.5)

If the function L in (1.5) does not have a unique optimizer, in a similar fashion as as J defined in

Lemma 3.2, we deploy a deterministic tiebreaker to properly introduce a single-valued function BR.

The function BR is the maximizer of the loss function for a fixed value of z, to which we refer as

the “best response”. While the objective function L is a jointly concave quadratic function in the

variables (α, β), the description of the optimizer does not necessarily have an explicit description

due to the constraint β ≥ 0. However, in the absence of the constraint Ax ≤ b in (Pk) (e.g.,

A = 0, b = 0), the function (1.5) can be explicitly described as

BR(z) = −(Ik/η +
√

ΛV >diag(z)V
√

Λ)−1 ×
√

ΛV >diag(z)c. (1.6)

We note that we slightly abuse the notation as the explicit description (1.6) is indeed the fist

element (α-component) of the original definition (1.5).

8



Proposition 3.3 (Alternating best response). Consider the set of update rules
[
αt+1

βt+1

]
= BR(zt)

zt+1 = 1n
(
J (αt, βt)

)
,

(1.7)

where the set J and the function BR are defined as in Lemma 3.2 and (1.5), respectively. Starting

from an initialization (z0, α0, β0), algorithm (1.7) converges after finitely many iterations to a limit

cycle. If the set of this period behavior is singleton (i.e., the iterations convergence to a fixed point),

then the variable z of the convergence point is the optimal solution of program (Mk).

Proof. Recall that for any z ∈ {0, 1}n the objective function L in (1.5) is strongly concave, and that

admits a unique maximizer. On the other hand, the number of possible binary variable z is finite

and bounded by 2n. These two observations together then imply that the iterations (1.7) necessarily

yield a period behavior with the cardinality at most 2n. When the period is one, it then means

that the best response algorithm has an equilibrium, implying that the min-max program (Mk)

is indeed a minimax game with a Nash equilibrium. Namely, there exist (α?, β?) ∈ Rk × Rm
+ and

z? ∈ {0, 1}n such that for all (α, β) ∈ Rk × Rm
+ , and z ∈ {0, 1}n,

∑
zj ≤ s, we have

L(z?, α, β) ≤ L(z?, α?, β?) ≤ L(z, α?, β?)

and, by definition, z? solves the outer minimization of program (Mk).

In the iterative scheme (1.7), evaluating the best response function BR(zt) is equivalent to solving

a linearly constrained convex quadratic program, which can be done efficiently using commercial

solvers such as MOSEK [MOSEK ApS, 2019]. In case we have no linear constraints in the form

of Ax ≤ b, we can also use the explicit description (1.6). Therefore, the algorithm (1.7) is indeed

highly tractable.

Remark 3.4 (Safe screening). We expect that the periodic behavior anticipated by Proposition 3.3

typically has a periodicity larger than one. In fact, if the min-max characterization in Proposi-

tion 3.1 is not interchangeable without suffering from a duality gap, then the periodic behavior does

have more than one element. In this setting, one can consider all the indices J (αt, βt), where

(αt, βt) belongs to the period behavior, as potential candidates for the ones of the optimal vector z?

in (Mk). This selection is indeed in accordance with the safe screening terminology of Atamturk

and Gomez [2020].

9



3.2 Dual program: a subgradient ascent approach

The second proposed algorithm aims to solve the dual of program (Mk) described via

d?k , max
α∈Rk

β∈Rm
+

min
z∈{0,1}n∑

zj≤s

L(z, α, β), (Dk)

where the function L was defined in (1.3). Thanks to the weak duality, it is obvious that d?k ≤ J?k .

The second approach is essentially the application of the subgradient ascent algorithm to the inner

minimal function

f(α, β) , min
z∈{0,1}n,

∑
zj≤s

L(z, α, β). (1.8)

We note that the continuous relaxation of the binary variable z from {0, 1}n to [0, 1]n in (1.8)

does not change anything and the program remains equivalent to the original program (Dk). Also

notice that the function f in (1.8) is concave and piecewise quadratic, jointly in (α, β). This

observation allows us to apply the classical subgradient algorithm from the convex optimization

literature [Nesterov, 2003, Section 3.2.3].

Proposition 3.5 (Dual program). Consider the set of update rules defined as
αt+1 = (1− 1

2
κt)αt − 1

2
ηκt
√

ΛV >diag(zt)× (c+ V
√

Λα + A>β)

βt+1 = max
{

0, βt − κtb− 1
2
ηκtAdiag(zt)× (c+ V

√
Λα + A>β)

}
zt+1 = 1n

(
J (αt+1, βt+1)

)
,

(1.9)

where {κt}t is the sequence of step sizes that satisfy the non-summable diminishing rule2

lim
t→∞

κt = 0,
∞∑
t=1

κt =∞.

Then, algorithm (1.9) converges to the optimal value d∗k of problem (Dk), i.e.,

d?k = lim
t→∞

f(αt, βt).

Moreover, if the variable zt also converges, then the convergent binary variable is the solution to

program (Mk) and the duality gap between (Mk) and (Dk) is zero, i.e., d?k = J?k .

Proof. Using standard results in variational analysis [Rockafellar and Wets, 2009], a subgradient of

the function f(α, β) can be computed as

∂f

∂α
= −1

2
α− η

2
diag(

√
λ)V >diag(zα,β)× (c+ V diag(

√
λ)α + A>β),

2 For instance, κt = a/
√
t for a constant a ∈ R+.

10



∂f

∂β
= −b− η

2
Adiag(zα,β)(c+ V diag(

√
λ)α + A>β),

where zα,β = 1n
(
J (α, β)

)
is the optimizer of the objective function L(., α, β); see also (1.4). The

subgradient algorithm updates the dual variables αt, βt by the following rule[
αt+1

βt+1

]
=

[
αt

βt

]
+ κt

[
∂
∂α
f(αt, βt)

∂
∂β
f(αt, βt)

]
,

where κt is the learning rate or stepsize. The computational complexity of the subgradient algorithm

is well-known for concave and Lipschitz-continuous objective functions [Boyd et al., 2003, Nesterov,

2003]. In the remainder of the proof, we first verify that the classical results are applicable here too.

To continue, let λ = (α, β) for short. Note that z ∈ {0, 1}n which bounds the number of quadratic

regions of f to 2n which, in turn, implies that any level set of f is bounded. Since f is also concave

and thus continuous, we conclude that f is in fact Lipschitz-continuous in any fixed level set of f .

At iteration t, say f(λt) = fzt(λt) := L(zt, αt, βt). This also means gt = ∇fzt(λt) is a subgradient of

f at λt. If t is large enough, then step size κt is small enough, and therefore the algorithm update

λt+1 = λt +κtgt increases the value of fzt . Hence, f(λt) = fzt(λt) < fzt(λt+1) ≤ f(λt+1). Therefore,

the subgradient algorithm remains afterwards within a level set of f , specified by {λ : f(λ) ≥ f(λt)}
when t is sufficiently large. Now recall that f is Lipschitz-continuous in any fixed level set of f .

So, we can apply the result of Boyd et al. [2003] for all sufficiently large t ∈ N.

Concerning the second part of the assertion, suppose that the variable zt also converges to a binary

variable z?. Since the feasible set of the variable z is finite, the convergence assumption effectively

implies that for all sufficiently large t ∈ N, we have constant zt = z? in (1.9). As such, the dual

algorithm (1.9) essentially reduces to[
αt+1

βt+1

]
=

[
αt

βt

]
+ κt

[
∂
∂α
L(z?, αt, βt)

∂
∂β
L(z?, αt, βt)

]
.

The above argument allows us to also interpret the algorithm (1.9) as the subgradient ascent

algorithm for the quadratic concave mapping (α, β) 7→ L(z?, α, β). This observation yields

lim
t→∞

L(z?, αt, βt) = max
α∈Rk, β∈Rm

+

L(z?, α, β).

Thanks to the above equality, one can inspect that

J?k ≥ d?k = lim
t→∞

L(z?, αt, βt) = max
α∈Rk

β∈Rm
+

L(z?, α, β) ≥ J?k ,
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where the first inequality is due to the weak duality between programs (Mk) and (Dk), and the last

inequality follows from the definition of the optimal value of (Mk). Since both sides of the above

inequalities are J?k , all the middle terms coincide. Thus, it concludes that z? solves program (Mk)

and the zero duality gap holds, i.e., J?k = d?k.

Similar to the best response algorithm in Proposition 3.3, we expect that in the long-run the duality

algorithm (1.9) exhibits a period behavior over a number of zt ∈ {0, 1}n. In this light, one can also

consider the coordinates of ones elements of zt as a safe screening suggestion (cf. Remark 3.4).

Remark 3.6 (Computational complexity). Formulating (Pk) requires a PCA decomposition with

a (crude) time complexity of O(n3), and sorting for operation (1.4) takes O(n log n). In addition,

the best response algorithm in (1.7) has a complexity of O(k3 +nk). Thus, overall the best response

method has a complexity of O(n3 + t(k3 + nk+ n log n)), where t are the number of iterations. The

dual program algorithm (1.9) requires algebraic operations with complexity O(nk), sand that the

overall complexity of the dual program is O(n3 + t(nk + n log n)).

3.3 Post-processing

Suppose, without any loss of generality, that either the best response algorithm (1.7) or the dual

program algorithm (1.9) terminates after T iterations. By collecting the incumbent solutions

zT−p, . . . , zT in the variable z over the last p iterations, we can form the unique indices

Z = zT−p | zT−p+1 | · · · | zT ∈ {0, 1}n,

where | represents the componentwise OR operator. Intuitively, the binary value of Zi indicates if

at least one of the last p incumbent solutions has the i-th element being non-zero. The vector Z

thus represents the indices of x that are likely to be non-zero in the optimal solution of problem (P).

We now utilize the binary vector Z as an input to resolve the reduced problem

min 〈c, x〉+ 〈x,Qx〉+ 1
η
‖x‖2

2

s.t. x ∈ Rn,

Ax ≤ b, ‖x‖0 ≤ s, |x| ≤MZ,

(PZ)

where M is the big-M constant. If Zi = 0, then the last constraint of (PZ) implies that xi = 0 and

a preprocessing step can remove this redundant component in x. As a consequence, the effective

dimension of the variable x in (PZ) is upper bounded by the number of non-zero elements in

Z, which is essentially ‖Z‖0. It is likely that Z has many elements that are 0, thus ‖Z‖0 � n

and problem (PZ) is easier to solve compared to (P). In general, ‖Z‖0 > s, so (PZ) remains a

12



binary quadratic optimization problem. In the optimistic case when ‖Z‖0 = s, then the cardinality

constraint ‖x‖0 ≤ s becomes redundant and (PZ) reduces to a quadratic program.

In practice, the magnitude of M may affect the run time, and a tight value of M can significantly

improve the numerical stability and reduce the solution time. We follow the suggestion from Haz-

imeh et al. [2020] to compute M as follows. Given the terminal solution zT from either the best

response algorithm (1.7) or the dual program algorithm (1.9), we solve problem (PZ) with the

input Z being replaced by zT to get xT . As zT satisfies ‖zT‖0 = s, this problem reduces to a

quadratic program. To ensure that the big-M formulation adds no binding constraints we assign

M = 4‖xT‖∞.

Lastly, we emphasize that the solution zt in the subgradient ascent algorithm (1.9) does not fluctuate

significantly from one iteration to another. Thus, for the dual program approach, we need to set a

periodic value p which is sufficiently large in order to recuperate meaningful signals on the indices.

The best response method using the update (1.7), on the contrary, requires a smaller number of

period p.

4 Numerical Experiments

We benchmark different approaches to solve problem (P) in the sparse linear regression setting.

All experiments are run on a laptop with Intel(R) Core(TM) i7-8750 CPU and 16GB RAM using

MATLAB 2020b. The optimization problems are modeled using YALMIP [Löfberg, 2004], as

the interface for the mixed-integer solver [MOSEK ApS, 2019]. Codes are available at: https:

//github.com/RVreugdenhil/sparseQP

We compare our algorithms against four state-of-the-art approaches. They include two screening

methods: the safe screening method of Atamturk and Gomez [2020] and the warm start method

in Bertsimas and van Parys [2017], and two direct optimization approaches: the Algorithm 7 in

Beck and Hallak [2015] (denoted BH Alg 7) and the method of Yuan et al. [2020] (denoted KDD).3

The best response alternation in Section 3.1 is referred to as BR, and the dual program approach

in Section 3.2 is referred to as DP.

4.1 Empirical results for synthetic data

We generate the covariate ω ∈ Rn and the univariate response ξ ∈ R using the linear model

ξ = x>trueω + ε

3Available at https://yuangzh.github.io/
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following the similar setup in Bertsimas and van Parys [2017]. The unobserved true vector xtrue ∈
Rn has s-nonzero components at indices selected uniformly at random, without replacement. The

nonzero components in xtrue are selected uniformly at random from {±1}. Moreover, the covariate

ω is independently generated from a Gaussian distribution N (0,Σ), where Σ is parametrized by the

correlation coefficient ρ as Σi,j , ρ|i−j| for all i, j ∈ [n] and 0 ≤ ρ ≤ 1. The noise ε is independently

generated from a normal distribution N (0, σ2) with

σ2 =
var(x>trueω)

SNR
=
x>trueΣxtrue

SNR
,

where SNR is a chosen signal-to-noise ratio [Xie and Deng, 2020].

To avoid a complicated terminating criterion, we run the BR method for TBR = 20 iterations, and

we run the DP method for TDP = 500 iterations. We empirically observe that BR converges by

TBR = 20 on the synthetic data. The stepsize constant for DP (see Footnote 2) is set to a = 4×10−3.

Regarding the post-processing step in Section 3.3, we fix pBR = 6 and pDP = 50 as the number of

terminating solutions that are used to estimate the support Z. For the experiment on the synthetic

data, the big-M constant is set to 4, because ‖xtrue‖∞ = 1.

Our first experiment studies the impact of the regularization parameter η on the performance of

BR and DP in terms of safe screening. To this end, we fix N = 1000, n = 1000, s = 10, ρ = 0.5 and

SNR = 6 to generate the data.

The screening capacity of BR and DP is measured by the sparsity of the input parameter Z in

problem (PZ), this reduced size is measured by ‖Z‖0. A similar quantity can be computed for

screening. We choose the dimension of subspace k = 400 to ensure that our the principal com-

ponent approximation generates a good quality solution to the original problem. Table 1.1 reports

the screening capacity and we can observe that screening effectively reduces the dimension for

small values of η, which is in agreement with the empirical results reported in Atamturk and Gomez

[2020]. However, screening performs less convincingly for η ≥ 1. Our methods BR and DP perform

more consistently over the whole range of η: they can reduce (PZ) to a quadratic program for 59%

and 81% of all instances respectively.

We also study the performance of our methods in a setting with ρ ≥ 0.7. We measure the quality

of the estimator x by the mean squared error on the data

MSE =
1

N

N∑
i=1

‖ξi − x>ωi‖2
2.

We fix the regularisation term η = 10. Setting η to a lower value would cause unwanted shrinkage of

the estimator x, which increases the MSE: instances where η = 0.1 reported a MSE for all methods

of at least 5 times larger than that of the MSE using η = 10. As seen in Table 1.1 for this specific

14



Table 1.1: Effective problem size measured by ‖Z‖0 for varying η, averaged over 25 replications.

Lower is better. Values are rounded to nearest integer, asterisks denote that ‖Z‖0 = s on all

instances.

DP k = 400 BR k = 400 screening

η = 102 69 20 1000

η = 10 10? 20 1000

η = 1 10 10 809

η = 10−1 10? 10 463

η = 10−2 10? 10? 45

η = 10−3 10? 10? 10

η the screening method does not reduce the problem size, so we compare to the MSE generated

by warm start.

We observe in Table 1.2 that DP outperforms the other methods in terms of MSE with highly

correlative data (ρ ≥ 0.8). A possible explanation for why DP outperforms the warm start is

that the eigenvalue decomposition can convert highly correlative features to independent principal

components [Liu et al., 2003].

Table 1.2: MSE over different ρ averaged over 25 independent replications. Lower is better.

DP k = 400 BR k = 400 warm start BH Alg 7 KDD

ρ = 0.7 1.829 1.829 1.829 1.897 1.829

ρ = 0.8 1.863 1.969 1.988 2.114 1.866

ρ = 0.9 1.895 3.666 3.714 2.570 1.984

4.2 Empirical results for real data

We benchmark different methods using real data sets [Dua and Graff, 2017]; the details are listed in

Table 1.3. We preprocess the data by normalizing each covariate and target response independently

to values in the range [0, 1]. For each independent replication, we randomly sample 70% of the

data as training data and 30% as test data. The training set and the test set have Ntrain and Ntest

samples, respectively.

The number of iterations for the BR and DP are chosen to be TBR = 40 and TDP = 5000, respectively.

The number of terminating solutions that are used to estimate the support Z in the postprocessing

15



Table 1.3: List of UCI datasets used for experiments alongside their feature size n, total sample

size N̄ and the dimension of subspace k̂, specified earlier in Figure 1.2.

Name n N̄ k̂

Facebook (FB) 52 199,030 14

OnlineNews (CR) 58 39,644 20

SuperConductivity (SC) 81 21,263 9

Crime (CR) 100 1,994 53

UJIndoor (UJ) 465 19,937 49

step is fixed to pBR = 10 and pDP = 100 for the two methods. The stepsize constant (see Footnote 2) is

set a = 2×10−3. Moreover, we fix the big-M constant using the procedure described in Section 3.3.

For the real datasets, the number of samples N̄ is sufficiently bigger than the dimension n, thus we

set the ridge regularization parameter to η =
√
Ntrain so that the effect of regularization diminishes

as N̄ increases. We choose the sparsity level s = 10, similar to Section 4.1, and set the time limit

for MOSEK to 300 seconds.

Figure 1.4 illustrates that the MSE of DP monotonically decreases with the dimension of subspace

for k < 8 and plateaus for k ≥ 8. The MSE of BR is non monotonic and converges when k ≥ 15 even

though the minimum is achieved at k = 13. We define k? as the (minimal) dimension of subspace

k corresponding to the lowest MSE. For the (SC) dataset, k?BR = 13 and k?DP = 15. Coincidentally,

we observe that k? is close to the value k̂ reported in Table 1.3. This observation also persists

empirically for the other datasets.

Table 1.4 shows that DP delivers a lower in-sample MSE than BR in 4 out of 5 datasets, and DP also

has a lower in-sample MSE than the warm start, BH Alg 7 and KDD for all datasets. The warm
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Figure 1.4: Effects of the dimension of subspaces k on performance of BR and DP on the Supercon-

ductivity dataset. Results are averaged over 50 independent train-test splits.
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Table 1.4: In-sample MSE on real datasets, averaged over 50 independent train-test splits. Lowest

error for each case is highlighted in grey.

DP k = 40 DP k = k̂ BR k = 40 BR k = k̂ warm start screening BH Alg 7 KDD

(FB) 3.039×10−4 3.040×10−4 3.036×10−4 3.034×10−4 out of memory 3.036×10−4 3.220×10−4 3.436×10−4

(ON) 1.912×10−4 1.913×10−4 1.914×10−4 1.914×10−4 1.914×10−4 1.914×10−4 1.921×10−4 1.922×10−4

(SC) 1.262×10−2 1.263×10−2 1.396×10−2 1.368×10−2 1.326×10−2 1.256×10−2 1.455×10−2 1.470×10−2

(CR) 2.775×10−2 2.775×10−2 2.807×10−2 2.801×10−2 2.800×10−2 2.760×10−2 3.072×10−2 3.063×10−2

(UJ) 2.118×10−2 2.294×10−2 2.673×10−2 2.678×10−2 2.440×10−2 2.267×10−2 3.804×10−2 3.066×10−2

start method runs out of memory for the (FB) dataset because it requires storing and computing

based on a kernel matrix K = [ω>i ωj]i,j of dimension N × N . This is in stark contrast to our

proposed approach that computes only a matrix Q of dimension n × n, and then further reduce

the computational burden by truncating the SVD of Q. The memory usage of our method is hence

not sensitive to the number of samples N .

The screening method outperforms on the (SC) and (CR) dataset, however a careful examination

of Table 1.5 shows that screening does minimal reduction effects for these two datasets. The

result of screening in Table 1.4 on the (SC) and (CR) datasets is essentially the results obtained

by applying the MOSEK solver to the original problem (reaching a time limit of 300 seconds).

Table 1.5 also shows that our DP and BR methods can effectively reduce the number of effective

variables. Our methods deliver a solution x? in around 1 second for all datasets, including the

time spent on computing the eigendecomposition of Q and the solution time for solving (PZ) using

MOSEK.

Table 1.5: Reduced problem size over different data rounded average over 50 independent train-test

splits. Lower is better.

DP k = k̂ BR k = k̂ screening

(FB) 11 20 49

(ON) 15 20 57

(SC) 11 20 77

(CR) 12 20 100

(UJ) 16 20 465

Remark 4.1 (Choice between DP and BR). We have no theoretical or consistent numerical justifica-

tion in favor of one of the proposed algorithms DP or BR. However, Algorithm BR in Proposition 3.3

typically converges faster (Fig. A in supplementary) while Algorithm DP offers a better solution

(Fig. 1.4a and Tables 1.2, 1.5). We thus suggest DP and BR as complementary approaches to solve

the problem.
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Chapter 2

Sparse inductive matrix completion

using updated side information

Abstract

We propose a novel approach for solving the problem of matrix completion with side

information by effectively rewriting it to a sparse quadratic programming problem. Solving

this program gives us a selection of features in the side information matrix, after which the

matrix completion problem can be solved using convex operations. To overcome noisy or

weakly informative features in the side information matrix, we propose to update the side

information matrix by replacing the non selected features. Numerical experiments show that

our method is highly scalable and competitive with current state-of-the-art matrix completion

methods in real and synthetic data settings.

1 Introduction

Matrix completion has been a basis of many machine learning approaches for computer vision [Chen

and Suter, 2004], recommender systems [Rennie and Srebro, 2005, Sindhwani et al., 2010], signal

processing [Ning and Karypis, 2012, Weng and Wang, 2012], and among many others. Classically,

low-rank matrix completion methods are based on matrix decomposition techniques which require

only the partially observed data in the matrix [Candès and Recht, 2012, Keshavan et al., 2010].

Standard matrix completion tries to recover the low-rank matrix by solving the following problem
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[Candes and Plan, 2010, Keshavan et al., 2010]:

min
X

1

nm

∑
(i,j)∈Ω

(Xij − Aij)2

s.t. Rank(X) = s

(2.1)

where A ∈ Rn×m is the partially observed low-rank matrix that needs to be recovered, Ω ⊆
{1, · · · , n}×{1, · · · ,m} is the set of indices where the corresponding components in A are observed,

the mapping RΩ(A) : Rn×m → Rn×m gives another matrix whose (i, j) -th entry is Ai,j if (i, j) ∈ Ω

(or 0 otherwise). The rank constraint in 2.1 can be equivalently formulated as the existence of two

matrices U ∈ Rn×s, V ∈ Rm×s such that X = UV T . Therefore, the problem can be restated as:

min
X,U,V

1

nm

∑
(i,j)∈Ω

(Xij − Aij)2

s.t. X = UV T

(2.2)

The most straightforward way of solving 2.2 is by alternating minimization introduced by Jain

et al. [2012]. In this method either U or V is fixed and each subproblem can be written as a

standard least squares problem. Due to its simplicity, low memory requirements and flexibility

alternating minimization is widely used in the literature [Escalante and Raydan, 2011]. Often in

addition to the partially observed matrix there exists information about row- or column- objects.

For example, side-channel information in the form of user profiles and movie genres is natural in

recommender systems and was proved to be useful in real-world applications [Hannon et al., 2010].

We focus on the one-sided information case, where there only exists information about row- or

column- objects. This case is more relevant as features related to users are often fragmented and

increasingly constrained by data privacy regulations, while features about products are easy to

obtain [Bertsimas and Li, 2020b]. We denote the side information matrix as B where V ⊆ B.

The problem we consider here is that for every column j = 1, . . . ,m, we have a given p dimensional

feature vector Bj with p ≥ s that contains the information we have on column j. Given side data

matrix B ∈ Rm×p we postulate that X = UBT , where U ∈ Rn×p is the matrix of feature exposures.

To ensure the rank condition we enforce an `0 constraint on U [Miller, 2002]. We take the `0 norm

over the infinity norm ‖U‖∞ and denote this by ‖U‖∞,0, which controls the number of nonzero

columns in U . The matrix completion problem with side data B can be written as:

min
X,U

1

nm

∑
(i,j)∈Ω

(Xij − Aij)2

s.t. X = UBT , ‖U‖∞,0 ≤ s

(2.3)
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Problem (2.3) is similar to the interpretable matrix completion problem described in Bertsimas and

Li [2020b].

Contributions. We summarize the contributions as follows.

(i) Novel reformulation: We present a novel reformulation of problem (2.3). The resulting

equation only requires solving a single sparse quadratic programming problem of dimension p.

The solution gives the indices of the non zero columns in U in (2.3) and the elements in U can

be computed using convex operations.

(ii) Updating the side information: We propose an iterative method to update the features in

the side information matrix B which correspond with the zero columns in U . This can improve

the approximation of the partially observed matrix A when row(A) * col(B).

(iii) Numerical comparison We present computational results on both synthetic and real datasets

that show that our method matches or outperforms current state-of-the-art methods in terms

of both scalability and accuracy.

2 Literary review

Inductive matrix completion. The works by Xu et al. [2013], Dhillon et al. [2013] introduced

the concept of using side information under the name of inductive matrix completion. The work

of Xu et al. [2013] showed that with perfect side information (i.e. row(A) ⊆ col(B)) we only need

O(log(n)) samples to retrieve the full matrix, where non inductive methods require O(ns log2(n))

samples [Candès and Recht, 2012, Candes and Tao, 2010, Recht, 2011]. Until recently most works

on inductive matrix completion were based on an alternating optimization approach [Xu et al., 2013,

Dhillon et al., 2013]. Nevertheless, these methods often cannot recover the ground truth matrix

exactly [Zhang et al., 2018]. To overcome this Tu et al. [2016], Zhao et al. [2015], Zhang et al.

[2018] propose first-order algorithms to solve low-rank matrix estimation problems, where they use

(projected) gradient descent to refine the initial solution. In the case of non perfect side information

Chiang et al. [2015] proposes to add a low rank matrix N to X such that rank(X +N) = s, where

N is outside the features space of B. Moreover Si et al. [2016] proposes a nonlinear mapping on

B to guarantee row(A) ⊆ col(B), however this approach is only applicable in a low dimensional

regimes i.e. n ≤ 10, 000.

Sparse inductive matrix completion. Sparse inductive matrix completion allows us to ef-

ficiently filter out non-informative side-channel features [Nazarov et al., 2018]. This has several

benefits like: minimizing the risk of overfitting, lowering computational and storage complexity
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Table 2.1: How our method stands in the current literature

our method
alternating

minimization

Bertsimas and Li

[2020a]

Zhang et al.

[2018]

inductive 4 6 4 4

update B
4 update ’worst’

elements in B

4 update ’best’

elements in B
6 6

include sparsity 4 6 4 6

which is desirable in some applications [Acar et al., 2012] and guaranteeing the latent features to

be interpretable (as long as the original features are). Common convex heuristic approaches e.g.,

Lasso (`1) [Tibshirani, 1996] and Elastic Net (`1− `2) [Zou and Hastie, 2005] are applied in matrix

completion literature to include `0 constraints, [Nazarov et al., 2018, Lu et al., 2016, Soni et al.,

2016]. Despite their scalability, convex heuristic approaches are inherently biased since the `1-norm

penalizes large and small coefficients uniformly. In contrast, solvers that directly tackle sparse

regression do not suffer from unwanted shrinkage [Bertsimas and van Parys, 2017, Hazimeh et al.,

2020, Dedieu et al., 2020, Gomez and Prokopyev, 2018, Vreugdenhil et al., 2021].

Recent papers have adopted the exact formulation by Bertsimas and van Parys [2017] and applied

it to matrix completion problems. The method of Bertsimas and Li [2020b] is aimed to select

exactly s features from the known features in the side information and call this interpretable matrix

completion, while Bertsimas and Li [2020a] allows the factorization to be any linear combination

of the features in the side information.

Given the existing literature mentioned above, to our best of knowledge, our approach is the first

to rewrite M to a sparse quadratic programming problem and to update features in the B matrix

in high dimensional regimes.

3 Rewriting the matrix completion problem

We add a ridge regularization term ‖U‖2
2 [Hoerl and Kennard, 1970] to the original problem 2.3 to

reduce the effects of noise and/or uncertainty [Ghaoui and Lebret, 1997, Mazumder et al., 2020].

Throughout the paper ‖ · ‖2 is the Frobenius norm. Specifically, we address problem (M)

min
U

1

nm
(
∑

(i,j)∈Ω

(Xij − Aij)2 +
1

η
‖U‖2

2)

s.t. X = UBT , ‖U‖∞,0 ≤ s

(M)
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where η > 0 is a given parameter that controls the strength of the regularization term. We can

rewrite problem (M) to a summation of quadratic programming problems using a similar approach

to Bertsimas and Li [2020a] which rewrites (M) to a summation of sparse regression problems.

Proposition 3.1. [Quadratic programming reformulation] Problem (M) can be reformulated as a

summation of quadratic programming problems:

J ? = min
U

s.t.‖U‖∞,0≤s

1

nm

n∑
i=1

ui(Qi)u
>
i − 2(ci)

>u>i +
1

η
‖ui‖2

2 (P)

where U> = [u1, . . . , un] and ui represents the ith row in matrix U , Qi = B>WiB, ci = aiWiB and

W1, · · · ,Wn ∈ Rm×m are diagonal matrices:

(Wi)jj =

{
1, (i, j) ∈ Ω

0, (i, j) /∈ Ω

To reduce the complexity of generating B>WiB and aiWiB we follow the work by Bertsimas and

Li [2020a]. Let us denote mi as the number of non-zero entries of Wi. This is the number of

known entries per row. Then define BWi
∈ Rmi×p as the matrix of W iB after removing the all-zero

columns. Note that BWi
can be created efficiently through subsetting, and its creation does not

impact the asymptotic running time. Then similarly, we denote aWi
∈ R1×mi as aW i with all the

zero elements removed.

B>WiB = B>Wi
BWi

aiWiB = aWi
BWi

Note that (P) is equivalent to n convex quadratic programming problems when the indices of the

nonzero columns in U are given. In an attempt to find these indices we generalize (P) to a single

sparse quadratic programming problem. We denote the generalization over all vectors u1, . . . , un

as ū ∈ Rp

min
ū

ū
∑
i

Qiū
> +

∑
i

c>i ū
> +

1

η
‖ū‖2

2

s.t. ūj(1− zj) = 0, ∀i = 1 . . . p

z ∈ {0, 1}p, ‖z‖0 ≤ s

(Pz)

Using the resulting binary vector z we define BZ ∈ Rm×s as the matrix of Bdiag(z) after removing

the all-zero columns. We can determine U using V = BZ

ui = aWi
VWi

(V >Wi
VWi

+ Is/η)−1
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3.1 Solving Pz

Note that we can use any sparse quadratic programming method to solve (Pz). Quadratic mixed-

integer optimization problems have received relatively little attention in the literature [Bertsimas

and Shioda, 2009]. Recently several works have attempted to solve problems like (Pz) in high

dimensional settings [Xie and Deng, 2020, Vreugdenhil et al., 2021, Beck and Hallak, 2015]. In this

perspective we compare two state of the art methods. The first method is a modified version of the

approach by Vreugdenhil et al. [2021], where we change the diminishing stepsize to a backtracking

stepsize [Fliege and Svaiter, 2000] for the gradient ascent. Regarding convergence, we can apply

the result of Gordon and Tibshirani [2012]. Numerical examples comparing the convergence of the

algorithm using both a diminishing and backtracking stepsize displays that we can achieve faster

convergence using the backtracking stepsize.

Figure 2.1: Convergence of the diminishing stepsize and backtracking stepsize

The second approach is the method by Xie and Deng [2020], which uses a forward greedy approach.

The method by Vreugdenhil et al. [2021] and Xie and Deng [2020] have comparable MAPE and

computational time for the synthetic data setting described by (2.4). This result can be found

in the supplementary B. However in a sparse regression setting similar to Xie and Deng [2020]

we observe that for larger s the method by Vreugdenhil et al. [2021] outperforms the method by

Xie and Deng [2020]. Based on the observation in Table 2.2 we select the method by Vreugdenhil

et al. [2021] to solve (Pz). We denote rewriting (M) to (Pz) and solving it as sparse quadratic

programming for matrix completion (SQPMC).

Table 2.2: Mean squared error for different s averaged over 20 different replications. Lowest error

for each case is highlighted in grey

s = 10 s = 20 s = 30 s = 40 s = 50

Xie and Deng [2020] 1.917 3.705 5.566 7.773 10.022

Vreugdenhil et al. [2021] 1.917 3.573 5.269 7.350 9.460
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4 Imperfect features

To be less reliant on the quality of the side information in cases where row(A) * col(BZ) we

propose to update B. We denote the columns in B corresponding to the zero columns in U by

BY ∈ Rm×p−s. In an iterative scheme we can update the columns in BY , where it is important to

note that optimizing needs not to be restrictive to rank s in early stages. For example in the case

where Ω is the set of all indices choosing the initial rank as m is actually the optimal choice in the

first step so at each time step we define a rank st. The update rule replaces st randomly selected

columns in BY with the first st right-eigenvectors of the SVD of the approximation matrix X. In the

case where st > p− st we only replace p− st columns in BY with the first p− st right-eigenvectors.

We also highlight that an alternating minimization approach essentially updates the column in B

corresponding to the nonzero entries in U .

5 Numerical experiments

We benchmark different approaches to solve problem (M). We compare our method to the MPPF

method in Zhang et al. [2018], which uses an alternating gradient descent approach to inductive

matrix completion, the fastImpute method in Bertsimas and Li [2020a], which uses a sparse

inductive matrix completion approach and the classical alternating minimization (denoted Alt)

method described by Jain et al. [2012]. The MPPF and fastImpute method are downloaded from

the github pages of the authors MPPF (Matlab 2020b) fastImpute (Julia 1.5.3). All experiments

are run on a laptop with Intel(R) Core(TM) i7-8750 CPU and 16GB RAM using MATLAB 2021a.

5.1 Empirical results for synthetic data

We test on two different synthetic data settings. First we generate matrix A ∈ Rn×m according to

the following formula:

A = UB> + E

s.t. ‖U‖∞,0 ≤ s
(2.4)

U ∈ Rn×p has s-nonzero columns at indices selected uniformly at random without replacement.

The nonzero component in U and all elements in B ∈ Rm×p are drawn elementwise from a uniform

distribution of [0, 1] and the noise matrix E is drawn elementwise from N (0, 0.01). We randomly

select a fraction µ ∈ [0, 1] to be missing in A. For the synthetic dataset we denote the performance
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Table 2.3: MAPE and computational time over different parameters averaged over 20 independent

replications. Lower is better.

SQPMC fastImpute

n m p µ s MAPE time (s) MAPE time(s)

103 103 102 0.95 10 0.39 0.18 3.00 1.77

104 103 102 0.95 10 0.39 2.09 2.80 5.62
n

105 103 102 0.95 10 0.39 19.19 2.52 24.74

103 104 102 0.95 10 0.35 1.52 2.82 3.24
m

103 105 102 0.95 10 0.35 20.46 2.79 9.27

103 103 5× 102 0.95 10 0.39 1.74 3.55 2.82
p

103 103 103 0.95 10 0.39 5.87 4.09 3.80

103 103 102 0.95 5 0.82 0.19 6.11 0.60
s

103 103 102 0.95 30 0.19 0.22 5.80 89.48

103 103 102 0.8 10 0.36 0.36 2.71 1.00µ

103 103 102 0.99 10 2.91 0.12 21.28 2.06

of the different methods with the Mean Absolute Percentage Error (MAPE):

MAPE =
1

nm

n∑
i=1

m∑
j=1

|Xij − Aij|
|Aij|

To demonstrate the scalability of SQPMC we compare it to fastImpute for different n,m, p, µ and

s and we set the regularization term to η = 102. In Table 2.3 we observe that SQPMC can achieve a

lower MAPE for all instances compared to fastImpute and SQPMC is faster for all instances except

two compared to fastImpute. The running time of our method is more susceptive to the number

of columns m and features p, whereas the fastImpute is more susceptive to the sparsity level s.

The second synthetic data setting allows the matrix A to be the factorization of any linear combi-

nation of the features in the side information, similar to Bertsimas and Li [2020a]

A = UC>B> + E

where U ∈ Rn×s, C ∈ Rp×s, B ∈ Rm×p. The matrices U,C,B are drawn elementwise from a

uniform distribution of [0, 1] and the noise matrix E is drawn elementwise from N (0, 1). In this

data setting we can use SQPMC to update the side information B in an iterative algorithm as

explained in Section 4. We denote S = [s1, . . . sT ] as the vector containing the different sparsity

levels we use to update B, where sT = s. S is generated using linearly spaced values starting at s1
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Table 2.4: MAPE and computational time over different parameters averaged over 20 independent

replications. Lower is better.

SQPMC update B

n m p mu s MAPE time (s) MAPE time(s)

103 103 102 0.95 15 10.56 0.27 2.69 2.60

104 103 5× 102 0.95 50 14.14 19.39 2.66 364.47

103 104 2× 102 0.95 40 6.24 4.13 0.98 46.17

104 104 80 0.99 4 21.49 6.36 2.64 85.54

and going to s in T steps. We set s1 = 0.9p and T = 3, the remaining variables are the same as

used in the first synthetic dataset.

In Table 2.4 we observe that updating B results in a lower MAPE for all instances on this particular

synthetic data setting. However the computational time using updates in B does increase.

5.2 Emperical results for real data

We run experiments on the MovieLens dataset 1[Harper and Konstan, 2015]. The MovieLens

dataset aims to predict ratings of users on unseen movies. The total matrix A has 162,541 rows

and 13,816 columns. The side information B consists out of 1,139 features. The features in the side

information data are made up by the tag genome. The tag genome encodes how strongly movies

exhibit particular properties represented by tags (atmospheric, thought-provoking, realistic, etc.)

as described in Vig et al. [2012]. Moreover every element in the tag genome lies in [0, 1]. Out of

all features in the side information we only select the columns Bj with mean value greater than

0.1, because we observe that the features with lower mean value are almost never part of BZ . To

display the scalability of SQPMC we create three different datasets. We take a relatively low number

of training data to show the performance of our method in regimes with a low number of observed

1MovieLens: https://grouplens.org/datasets/movielens/25m/

Table 2.5: Sizes of the different MovieLens datasets

dataset n m p s µ train/test

M1 10,000 5,000 497 30 0.9798 0.4/0.6

M2 20,000 10,000 505 40 0.9867 0.3/0.7

M3 50,000 13,816 503 50 0.9890 0.2/0.8
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Table 2.6: Performance on training and testing data of different methods on the MovieLens dataset

Dataset Method train test time

SQPMC 17.83 27.69 21.33

SQPMC + update B 17.77 27.39 151.01

MPPF 35.61 36.07 936.94M1

fastImpute 18.08 33.28 410.04

Alt 19.24 27.45 23.90

SQPMC 16.39 28.36 55.24

SQPMC + update B 16.13 28.12 524.38

MPPF 33.68 34.24 3516.95M2

fastImpute 19.68 33.09 1135.34

Alt 17.41 29.22 90.79

SQPMC 13.68 29.35 153.21

SQPMC + update B 13.79 28.93 1882.64

MPPF Exceed time limitM3

fastImpute Out of memory

Alt 15.08 31.72 712.79

components in A.

We set η = 10 for SQPMC and MPPF, because the fastImpute and Alt method are more prone to

overfitting we set η = 1 for these methods. To further reduce the effects of overfitting for the Alt

method we take sAlt = s/3. Furthermore regarding the sparsity levels for the update on B we set

S = [4s, 2.5s, s].

In table 2.6 we observe that for all sizes of the MovieLens dataset, SQPMC can achieve a lower MAPE

on the training and testing data than fastImpute, MPPF and Alt with and without updating B.

We also observe that using updated side information matrix can slightly decrease the MAPE on

the testing data and gives comparable MAPE on the training data. This does come with an

increase in computational time. Table 2.6 also shows that SQPMC without updating B has a lower

computational time for all instances compared to the other methods.
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Appendix A

Principal component hierarchy for sparse

quadratic programs

A Additional Numerical Experiments

A.1 Comparison of Computational Time to warm start

We study the impact of the sample size N on the recovery quality of the solution. We fix n = 1000,

s = 10, ρ = 0.5, SNR = 6 and η = 10. We showcase the computational time of our methods and of

the warm start in Figure A.1, the computational time is defined as the time needed to generate x?.

Note that the BR method uses MOSEK to obtain the solution to x? because it does not converge

to a single set z for η = 10, so the solver time is also included in the computational time. We run

the BR method for TBR = 20 iterations, and we run the DP method for TDP = 500 iterations.

We observe that the computational time of the DP method increases monotonically with the sample

size N . Note that TBR � TDP so calculating ZBR requires less time than ZDP. We observe that when

N = 100 the BR and the warm start have a higher computational time than for N = 500. For the

BR, this is because the number of non-zero elements in Z (i.e., ‖Z‖0) is larger for N = 100 than for

N = 500, hence MOSEK takes more time for N = 100. The MSE of all methods is similar when

N ≥ 500, when N = 100 the MSE of all methods differs significantly at every instance. This is also

observed by Bertsimas and van Parys [2017], which states that the computational time and MSE

deteriorate as N gets smaller relative to n.

We observe that BR and DP perform particularly well in terms of computational time in ranges

where N > n compared to the warm start. The running time of our method is less susceptive to

the number of samples N . This is in stark contrast to the warm start, in which the kernel matrix
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Figure A.1: Computational time over different sample sizes averaged over 25 replications

of dimension N -by-N is stored.

A.2 Comparison for Different SNR and sparsity level

We extend the comparison made in the paper for different values of SNR and s.

Table A.1: MSE over different SNR averaged over 25 independent replications. Lower is better.

DP k = 400 BR k = 400 warm start Beck Alg 7 KDD

SNR = 20 0.588 0.588 0.588 0.588 0.588

SNR = 6 1.767 1.767 1.767 1.767 1.767

SNR = 3 3.452 3.452 3.452 3.452 3.452

SNR = 1 10.190 10.190 10.190 10.198 10.205

SNR = 0.05 194.592 194.561 194.560 194.756 199.928

Table A.2: MSE over different s averaged over 25 independent replications. Lower is better.

DP k = 400 BR k = 400 warm start Beck Alg 7 KDD

s = 5 0.887 0.887 0.887 0.887 0.887

s = 10 1.767 1.767 1.767 1.767 1.767

s = 20 3.435 3.435 3.435 3.557 3.450

s = 30 5.050 5.050 5.058 5.888 5.440

s = 40 6.919 6.928 6.918 8.290 8.560
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In Table A.1 and A.2 we observe that the MSE over different SNR and s is very similar for all

methods. This is due to the fact that all methods find a similar support z?. Using this support all

problems solve the same convex quadratic programming problem. We also observe that the reduced

size ‖ZBR‖0 ≈ 2s and ‖ZDP‖0 ≈ s. So as the problem in (PZ) increases with s, MOSEK takes more

time to solve (PZ) and because ‖ZBR‖0 > ‖ZDP‖0 the DP is faster for large s.

A.3 Real Datasets

For the real datasets listed in the main paper, we present the out-sample MSE for the different

methods in Table A.3.

Similar to the in-sample MSE, Table A.3 shows that DP delivers a lower out-sample MSE than BR in

4 out of 5 datasets, and DP also has a lower out-sample MSE than the warm start, BH Alg 7 and

KDD for all datasets. The screening method outperforms the DP on the (SC) and (CR) dataset,

however as explained in the main paper for η =
√
Ntrain the result of screening in Table A.3 on

the (SC) and (CR) datasets is essentially the results obtained by applying the MOSEK solver to

the original problem (reaching a time limit of 300 seconds).

Table A.3: Out-sample MSE on real datasets, averaged over 50 independent train-test splits.

Lowest error for each dataset is highlighted in grey.

DP k = 40 DP k = k̂ BR k = 40 BR k = k̂ warm start screening BH Alg 7 KDD

(FB) 3.026×10−4 3.025×10−4 3.022×10−4 3.020×10−4 out of memory 3.022×10−4 3.203×10−4 3.409×10−4

(ON) 1.796×10−4 1.797×10−4 1.797×10−4 1.797×10−4 1.797×10−4 1.797×10−4 1.803×10−4 1.803×10−4

(SC) 1.263×10−2 1.263×10−2 1.398×10−2 1.370×10−2 1.326×10−2 1.257×10−2 1.454×10−2 1.473×10−2

(CR) 2.892×10−2 2.891×10−2 2.893×10−2 2.894×10−2 2.900×10−2 2.868×10−2 3.103×10−2 3.148×10−2

(UJ) 2.149×10−2 2.324×10−2 2.684×10−2 2.691×10−2 2.468×10−2 2.291×10−2 3.848×10−2 3.080×10−2

B Proof of Proposition 3.1

We provide the proof of Proposition 3.1, which is not included in the main paper.

Proof. Using the big-M equivalent formulation, we have

J ?

k = min
z∈{0,1}n∑

zj≤s

min
k∑
i=1

λiy
2
i + 〈c, x〉+ η−1‖x‖2

2

s.t. x ∈ Rn, y ∈ Rk

√
λiyi =

√
λi 〈vi, x〉 i ∈ [k]

|xj| ≤Mzj j ∈ [n]

Ax ≤ b.
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Fix a feasible solution for z and consider the inner minimization problem. By associating the first

two constraints with the dual variables α and β, the Lagrangian function is defined as

L(x, y, α, β) =
k∑
i=1

λiy
2
i + 〈c, x〉+ η−1‖x‖2

2 +
k∑
i=1

αi
√
λi (〈vi, x〉 − yi) + β>(Ax− b)

= −β>b+ y>Λy − α>
√

Λy +
〈
c+ V

√
Λα + A>β, x

〉
+ η−1‖x‖2

2,

in which Λ = diag{λ1, · · · , λk}. For any feasible solution z, the inner minimization problem is a

convex quadratic optimization problem and we have

J ?

k = min
z∈{0,1}n∑

zj≤s

max
α∈Rk

β∈Rm
+

L(z, α, β),

where the objective function L is defined as

L(z, α, β) := −β>b+ min
y∈Rk

y>Λy − α>
√

Λy + min
x∈Rn

|xj |≤Mzj ∀j

〈
c+ V

√
Λα + A>β, x

〉
+ η−1‖x‖2

2.

We will reformulate the two optimization subproblems in the definition of L. For any feasible

pair β ∈ Rm
+ and α ∈ Rk, the subproblem over y is an unconstrained convex quadratic optimization

problem. The corresponding optimal solution for y is

y?(α, β) =
1

2
(
√

Λ)−1α.

Consequently, the optimal value of the y-subproblem is given by

min
y∈Rk

y>Λy − α>
√

Λy = −1

4
‖α‖2

2.

Next, consider the x-subproblem. Let γ := c+ V
√

Λα+A>β and let γj denote the j-th element of

γ. The big-M equivalent formulation for the x-subproblem admits the form

min
x∈Rn

|xj |≤Mzj ∀j

n∑
j=1

γjxj +
x2
j

η
=

n∑
j=1

min
x∈Rn

|xj |≤Mzj ∀j

γjxj +
x2
j

η
=

n∑
j=1

−η
4
γ2
j zj,

where the last equality exploits the fact that the optimal solution of xj is

x?j(zj) =

−η
2
γj if zj = 1,

0 if zj = 0.

We thus have

L(z, α, β) = −β>b− 1

4

k∑
i=1

α2
i −

n∑
j=1

η

4
γ2
j zj,

where γ = c+V
√

Λα+A>β and γj is the j-th element of γ. Rewriting the summations using norm

and matrix multiplications completes the proof.
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C Principal Component Hierarchy for Sparsity-Penalized

Quadratic Programs

The approach proposed in the main paper can be extended to solve the ‖ · ‖0-penalized problem of

the form
min 〈c, x〉+ 〈x,Qx〉+ η−1‖x‖2

2 + θ‖x‖0

s.t. x ∈ Rn, Ax ≤ b

for some sparsity-inducing parameter θ > 0. The corresponding approximation using k principal

components of the matrix Q is

U ?

k , min 〈c, x〉+
k∑
i=1

λiy
2
i + η−1‖x‖2

2 + θ‖x‖0

s.t. x ∈ Rn, y ∈ Rk

Ax ≤ b√
λiyi =

√
λi 〈vi, x〉 i ∈ [k].

(Wk)

Proposition C.1 (Min-max characterization). For each k ≤ n, the optimal value of problem (Wk)

is equal to

U ?

k = min
z∈{0,1}n

max
α∈Rk

β∈Rm
+

H(z, α, β),

where the objective function H is defined as

H(z, α, β) , θ
n∑
j=1

zj − β>b−
1

4
‖α‖2

2 −
η

4
(c+ V

√
Λα + A>β)>diag(z)(c+ V

√
Λα + A>β). (A.1)

Proof of Proposition C.1. The sparsity-penalized principal component approximation problem can

be rewritten using the big-M formulation as

min
z∈{0,1}n

min 〈c, x〉+
k∑
i=1

λiy
2
i + η−1‖x‖2

2 + θ
n∑
j=1

zj

s.t. x ∈ Rn, y ∈ Rk

√
λiyi =

√
λi 〈vi, x〉 i ∈ [k]

|xj| ≤Mzj j ∈ [n]

Ax ≤ b.

For any feasible solution z, the inner minimization problem is a convex quadratic optimization

problem. By strong duality, we have the equivalent problem

U ?

k = min
z∈{0,1}n

max
α∈Rk

β∈Rm
+

H(z, α, β),
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where the objective function H is

H(z, α, β) = −β>b+ min
y∈Rk

y>
√

Λy − α>diag(
√

Λ)y+

min
x∈Rn

|xj |≤Mzj ∀j

〈
c+ V diag(

√
Λ)α + A>β, x

〉
+ η−1‖x‖2

2 + θ

n∑
j=1

zj.

Following proposition 3.1 we can calculate the optimal values for y? and x?. Considering the x-

subproblem, let γ = c + V
√

Λα + A>β and γj be the j-th element of γ. The big-M equivalent

formulation for the x-subproblem admits the form

min
x∈Rn

|xj |≤Mzj ∀j

n∑
j=1

γjxj +
x2
j

η
+ θzj =

n∑
j=1

min
x∈Rn

|xj |≤Mzj ∀j

γjxj +
x2
j

η
+ θzj

=
n∑
j=1

(−η
4
γ2
j + θ)zj, (A.2)

where the last equality exploits the fact that the optimal solution of xj is

x?j(zj) =

−η
2
γj if η

4
γ2
j > θ,

0 if η
4
γ2
j ≤ θ.

As a consequence, we have

H(z, α, β) = −β>b− 1

4

k∑
i=1

α2
i +

n∑
j=1

(−η
4
γ2
j + θ)zj,

where γ = c+V
√

Λα+A>β and γj is the j-th element of γ. Rewriting the summations using norm

and matrix multiplications completes the proof.

Lemma C.2 (Closed-form minimizer). Given any pair (α, β), the minimizer of the function H

defined in (A.1) can be computed as

arg min
z∈{0,1}n

H(z, α, β) = I
{η

4
diag((c+V

√
Λα+A>β)(c+V

√
Λα+A>β)>) > θ

}
,

where I is the component-wise indicator function and the diag operator here returns the vector of

diagonal elements of the input matrix.

This lemma immediately follows from (A.1).
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Appendix B

Sparse inductive matrix completion

using updated side information

A Proof of proposition 3.1

proof to 3.1

Proof. Given the diagonal projection matrices Wi we can rewrite the sum in (2.3) over known

entries of A,
∑

(i,j)∈Ω (Xij − Aij)2 , as a sum over the rows of A :

n∑
i=1

‖(xi − ai)Wi‖2
2

where xi is the i th row of X. Using X = UBT , then xi = uiB
T where ui is the i th row of U .

Moreover,

‖U‖2
2 =

n∑
i=1

‖ui‖2
2

Then, Problem (2.3) becomes:

min
U

1

nm

(
n∑
i=1

(∥∥(uiBT − ai
)
Wi

∥∥2

2
+

1

η
‖ui‖2

2

))

We then notice that within the sum
∑n

i=1 each row of U can be optimized separately, leading to:

1

nm

(
n∑
i=1

min
ui

(∥∥(uiBT − ai
)
Wi

∥∥2

2
+

1

η
‖ui‖2

2

))
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The inner optimization problem minui
∥∥(uiBT − ai

)
Wi

∥∥2

2
+ 1

η
‖ui‖2

2 can be rewritten to a sparse

quadratic programming problem

∑
i

min
ui

uiQiu
>
i + c>i u

>
i +

1

η
‖ui‖2

2

s.t. ri(1− zi) = 0, ∀i = 1 . . . p

z ∈ {0, 1}p, ‖z‖0 ≤ s

(P)

where

Qi = B>WiB ci = −2aiWiB

B Comparing the method by Vreugdenhil et al. [2021] to

the method by Xie and Deng [2020]

We compare both methods using the MAPE In Table B.1 we observe that the methods of Vreug-

denhil et al. [2021] and Xie and Deng [2020] can achieve a similar MAPE for all instances which

is lower compared to fastImpute. The methods by Vreugdenhil et al. [2021] and Xie and Deng

[2020] have a comparable computational time. A possible explanation for this is that the process

of rewritting (2.3) to (P) takes up most of the computational time and therefore the difference

Table B.1: MAPE and computational time over different parameters averaged over 20 independent

replications. Lower is better.

Vreugdenhil et al. [2021] Xie and Deng [2020] fastImpute

n m p µ s MAPE time (s) MAPE time (s) MAPE time(s)

103 103 102 0.95 10 0.39 0.18 0.39 0.18 3.00 1.77

104 103 102 0.95 10 0.39 2.09 0.39 2.08 2.80 5.62
n

105 103 102 0.95 10 0.39 19.19 0.39 23.01 2.52 24.74

103 104 102 0.95 10 0.35 1.52 0.35 1.58 2.82 3.24
m

103 105 102 0.95 10 0.35 20.46 0.35 21.24 2.79 9.27

103 103 5× 102 0.95 10 0.39 1.74 0.39 1.47 3.55 2.82
p

103 103 103 0.95 10 0.39 5.87 0.39 5.65 4.09 3.80

103 103 102 0.95 5 0.82 0.19 0.82 0.18 6.11 0.60
s

103 103 102 0.95 30 0.19 0.22 0.19 0.23 5.80 89.48

103 103 102 0.8 10 0.36 0.36 0.36 0.36 2.71 1.00µ

103 103 102 0.99 10 2.91 0.12 2.91 0.12 21.28 2.06

35



between the two methods is minimal. We do also observe that both approaches are faster for all

instances except two compared to fastImpute.
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