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Abstract

As new technologies continue to find their way into everyday life, the world becomes more
and more connected. Airplanes and other means of transportation provide global connections
in the physical world, while the omnipresence of the Internet means that information is
shared around the globe, easier than ever before. But not only these man-made systems are
distinctly connected, other complex systems like the human brain [1], or metabolic networks
[2] are successfully being studied from the perspective of their constituting connections.
The combining concept in all these examples is the structure of the problem at hand: each
system consists of interacting elementary components at the lowest level, from which a network
structure emerges at the global level. The study of such networked systems, their observed
features and the wide range of related analysis tools is commonly referred to as Network
Science.

In this thesis, the specific problem of how diseases spread over networks is addressed. Better
understanding this spreading behavior has significant practical importance, i.e. for the predic-
tion and control of disease prevalence [3], and poses many interesting theoretical challenges.
In the context of modeling epidemics on networks, we formulate the Universal Mean-Field
Framework. This new and theoretically well-founded framework unifies and generalizes a
number of existing approximate models, and brings forth new approaches to bound the ap-
proximations. Apart from the work on epidemics, some new insights are explored in the con-
text of the connections between electrical circuits, networks and simplices (higher-dimensional
triangles). These deep theoretical equivalences allow the tools and intuitions from electrical
circuits and geometry to be used in the study of networks. A comprehensive introduction and
discussion of the equivalent representations and their connections is given. Additionally, we
derive a new formula for the volume of a hyperacute simplex and propose to use this volume
as a network-robustness measure.
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Chapter 1

Introduction

1-1 Network Science

Broadly speaking, the field of network science studies systems whose elementary structure
can be described by some basic components and pairwise relationships between those com-
ponents. These components and relationships, commonly called the nodes and links, are the
building blocks of any network (Figure 1-1). Secondly, a dynamical process can be modeled

=�+�

�

Nodes� Links� Network�

Figure 1-1: Nodes and links, the building blocks of any network

to take place on these networks. Such processes can often be stated in simple, local rules and
can lead to complex, emergent behavior when taking place on networks. This combination of
network topology and dynamical processes, enables Network Scientists to effectively study a
large number of complex systems: cars driving on a road network [4], the spread of Internet
worms [5] and even the communication between brain regions [1]. For every specific system
and problem, the level of detail of the network and process needs to be chosen, such that only
the necessary information is modeled.
A good example to illustrate the abstracting power of network models, is the first problem
solved ever by graph theory. Graph theory is the mathematical field that studies graphs,
which are the mathematical objects that correspond to networks. Graphs were invented by
the famous mathematician Euler, who in the 18th century used them to solve the so-called
Königsberg seven-bridges problem [6]. The Prussian city of Königsberg was divided in four
parts by a river flowing through it. As Figure 1-2 illustrates, these parts were connected
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2 Introduction

by seven bridges. The open question at that time was: Is there any route through the city
that crosses all seven bridges without crossing any bridge twice? Euler solved the problem

�

The Königsberg graph �

Figure 1-2: The Königsberg seven-bridges problem: is there any route through the city such
that each of the seven bridges (green) is crossed exactly once? The city of Königsberg with the
bridges highlighted in green is shown on the left1. On the right, the graph is shown which Euler
used to solve this problem. Each separated part of the city corresponds to a node and each bridge
corresponds to a link.

by considering the graph abstraction shown on the right in Figure 1-2. Based on this graph
representation, Euler then ingeniously argued that for any connected graph a “non-returning
route” only exists is there are exactly zero or two nodes with an odd number of nodes linked
to them. Since the Königsberg bridge graph does not satisfy this condition Euler proved the
non-existence of a route crossing all bridges only once.
This example shows how the correct level of abstraction leads to a better description of the
problem. The shape of the city does not matter, the length of the bridges does not matter
and neither does the relative position of the bridges. The only thing that matters is the
number of bridges (links) between the different parts of the city (nodes), and the restrictions
on the walk over the network. In the same spirit of Eulers approach, it is the attempt of
network science to study complex systems by reducing a systems’ description to a network.
Once at the level of a network, the system can be studied using the rich mathematical tools
of graph theory or the developments in the study of other networked systems. The power
of this reductionist approach is seen clearly in the wide variety of fields that use it: social
sciences, biology, mathematics, physics and many other.

The modern flavor of network science was largely developed at the transition between the
20th and 21st century. In a series of ground-breaking papers, it was shown that a wide range
of real-world networks contained similar structures. In 1998, Watts and Strogatz [7] showed
that networks constructed from actor collaborations, the US powergrid and the neural net-
work of the C. Elegans worm, all had the so-called small-world property. Roughly speaking,
a small-world network combines a good local efficiency with a good global efficiency. Soon
after, in 1999, Barabasi and Albert [8] showed that networks constructed from websites in
the world-wide-web, collaborations between actors and the US powergrid, all have a degree
distribution that satisfy a power-law. The degree of a node is the number of nodes it is linked
to, and the degree distribution of a network is then the distribution of all the node degrees in
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1-2 Dynamical processes on graphs 3

a network. In a network with a power-law degree distribution, there is no "typical" degree and
nodes with very high degree exist, which are also called hubs. The significance of these two
results is that, probably unexpected at the time, a wide variety of real-world networks pos-
sess similar global structures, which seemed to imply some governing rules behind the growth
and functioning of networks. Later, other ubiquitous structures were observed. Girvan and
Newman [9], for instance, describe how community structure is another important feature in
many network, illustrated by results in networks based on friendships, food webs and games
between football teams.
The surprising generality of some network structures is an important motivation to further
investigate complex systems from the network perspective. In the same spirit, the theoretical
work in this thesis is motivated by the fact that any development in the network science tools
or graph theory can potentially be used in a wide variety of contexts.

The main result in this thesis is related to dynamical processes on graphs, and an additional
result connected to network structure is given. In Section 1-2, we give a brief discussion
of dynamical processes and diseases spreading on graphs, as an introduction to the actual
thesis contributions in Chapter 2. Then, in Section 1-3, we discuss the relationship between
electrical circuits and weighted graphs as an introduction to Chapter 3.

1-2 Dynamical processes on graphs

1-2-1 Difference between classic and networked dynamical processes

The study of dynamical processes on networks is an important part of network science, but
what makes it such an interesting problem to consider? If we only take the relevant properties
of dynamical processes into account, then the spreading of a virus or a rumor is not much
different from classic physical problems like wave propagation or diffusion. In both settings,
the propagation of the energy, rumor or disease is governed by a local ‘contact rule’, i.e. the
spreading takes place between neighbors. Then why is it not possible to simply translate the
intuition and theoretical understanding of these classical physical problems (wave propagation
or diffusion) to the setting of networked dynamical processes (diseases or rumors spreading)?
By describing two experiments with a rough quantitative analysis, we will illustrate that,
the network topology on which the processes take place makes a significant difference to the
behavior of the process.

Waves in a pool: We throw a rock in the middle of a circular pool of radius R and
measure the time T1 it takes for the first wave to reach the side of the pool. Then, we
throw the same rock in a pool of radius 2R and measure again the time T2.
Since waves travel at a constant speed, say v, we can roughly calculate that T1 = R1/v
and T2 = R2/v, and thus T2 = 2T1. In other words, by quadrupling the size of the pool
(i.e. doubling the radius), the waves take twice as long to travel through the pool.

Gossip in a school: In a school with N students, Alice starts spreading a gossip to all
of her friends. As is common, each of these friends will in turn share the gossip with all
their friends during recess. We count the number of recesses L1 it takes for the gossip
to reach all the students. The following year, the number of students has quadrupled
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4 Introduction

to 4N . Again, Alice starts spreading a gossip, and we measure the number of recesses
L2 it takes for the gossip to reach all students.
Since typical networks are small-world, all nodes are connected by short paths. Specifi-
cally, the shortest-path distance L between any two nodes in the network, grows about
logarithmically with the network size N [7]. Hence if we call N the number of stu-
dents in the first year, we can estimate the number of recesses as L1 = log(N) and
L2 = log(4N), and thus L2 = L1 + log(4) or the second year. In other words, by
quadrupling the number of students, the gossip takes only log(4) recesses longer.

These quick, first-order analyses illustrate the inherently different behavior of dynamical pro-
cesses on networks, as compared to other, classic dynamical processes. The ‘global spreading
time’ of waves is polynomially dependent on the system size, while for gossip spreading on
small-world networks this dependence is logarithmic. This difference in behavior that stems
from the process-topology dependence, motivates the further investigation dynamic processes
on networks2.

1-2-2 Epidemics on networks

A particular dynamical process that is widely studied, is the spreading of diseases on networks.
While the mathematical study of epidemics dates back to the work of Bernoulli in the 18th
century, the focus on the role of network topology only started at the transition between
the 20th and 21st century with the work of Kephart and White [5], and Pastor-Satorras and
Vespignani [10]. In their work, the importance of the interaction between network topology
and spreading behavior was highlighted. A better understanding of this interaction could
be crucial in managing epidemic outbreaks in the future, which motivates the continuous
research in this field.
To investigate disease on a network, many disease models can be used. One of these models
is the Susceptible-Infected-Susceptible model, further also called the SIS model. In SIS, each
node in the network can be in one of two states: infected (I), which means that the node
is infected by the disease, or susceptible (S), which means that the node is healthy but can
be infected. The disease then spreads through the network because infected nodes can infect
their susceptible neighbors according to a stochastic infection process. Similarly, infected
nodes can become healthy by a stochastic curing process. The details of these infection and
curing processes are further described in Chapter 2. At this point, it is enough to mention
that by particular choices of stochastic processes, the SIS process becomes memoryless, and
as a result, can be described analytically with tools from Markov theory. This tractability is a
great advantage, since it means that the Markovian SIS model is simple enough to allow for a
deep theoretical study while still exhibiting complex behavior linked to the network topology.

1-2-3 Context of the thesis contribution

While the Markovian SIS process can be described exactly, the complexity of the descrip-
tion grows exponentially with the network size [11]. As a result, a variety of approximation

2Roughly speaking, the classic physical problems can be considered to take place on a lattice topology,
which is the ’neighborhood structure’ of Euclidean space. Hence, the difference between dynamical processes
on general complex networks and classic dynamical processes originates from the different properties of complex
networks and lattices.
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1-2 Dynamical processes on graphs 5

methods have been developed in the epidemics research community [12],[13]. One class of
approximation methods are the mean-field approximations, which are inspired by approxi-
mation methods from statistical physics. Mean-field methods are widely used to study SIS
epidemics, and have lead to important insights in the behavior of epidemics on networks,
however, no real consensus exists about which mean-field method should be used for which
problem. Related to this problem is the fact that no general framework exists that contains
all mean-field methods.
In this thesis, such a framework is introduced: the Universal Mean-Field Framework (UMFF).
This framework consists of a general and rigorous description of approximation steps that
lead from the exact SIS equations to a general set of mean-field equations. In particular, we
show that the UMFF equations contain a number of important mean-field methods: the N-
Intertwined Mean-Field Approximation (NIMFA) [11], the Heterogeneous Mean-Field method
(HMF) [10] and pairwise Quenched Mean-Field theory (pQMF) [14]. Apart from unifying the
existing mean-field techniques, UMFF also generalizes them by providing a general descrip-
tion of the possible approximation steps. A second contribution in the description of UMFF
is that we provide an interpretation of the mean-field approximations from the perspective
of the isoperimetric problem. This perspective enables the formulation of new bounds on
the mean-field approximations, and results in a theoretically interesting connection to other
mathematical results, in particular Szemerédi’s Regularity lemma (see Section 2-8). Roughly
speaking, the isoperimetric problem for a certain geometry is related to the question: "Given
a certain perimeter, or surface of size P , what are the bounds on the volume A that can be
enclosed by this perimeter or surface?". The analogy with the epidemic process is explained
in Section 2-7. To conclude, the thesis contributions related to network epidemics can be
summarized as:
Thesis contribution (i)
The formulation of the Universal Mean-Field Framework contributes to the network epidemics
research by unifying and generalizing the subclass of mean-field approximation methods of the
SIS epidemic model. Additional intuition in the mean-field approximation methodology and
accuracy bounds are provided by the analogy between the SIS process and the isoperimetric
problem.

Network �

Epidemics�

�

�

SIS model�

Vaccina�on?�

Pandemic?�

Predic�on?�

Other dynamics?�

NIMFA�

HMF�

pQMF�

...�

Mean�Field�

Approxima�ons�

UMFF: Unifica�on and generaliza�on�

Figure 1-3: The role of the Universal Mean-Field Framework: unification and generalization of
SIS mean-field approximations.
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6 Introduction

1-3 Electrical circuits and graphs

1-3-1 Equivalence between electrical circuits and weighted graphs

Electrical circuits consist of resistors connected by ideal wires, and are used to model the
voltages in an interconnection of electrical components. Interestingly, such circuits can be
translated directly to networks. There exists a one-to-one mapping between electrical circuits
and weighted graphs, where nodes correspond to the connecting wires and links to the resis-
tors. This equivalence has historically been proven to be a fruitful connection, since it allows
the circuit laws to be handily rewritten using the characteristic matrices of the graph, and
conversely enables the physical intuition of electrical circuits and equivalent systems to be
used in network problems, as illustrated by Figure 1-4. A particular circuit concept that has

Layout ≡  Topology�

Resistance ≡  Link weight �

�

Weighted �

Graphs�

Equivalent systems�

Physical intui�on�

Electrical �

Circuits�

Graph theory�

Network Science�

Figure 1-4: Each passive electrical is equivalent to a weighted graph, where ideal wires and
resistors in the circuit correspond to nodes and links in the graph. This equivalence enables graph
theory and tools from network science to be used in circuit-related problems. Conversely, the
physical intuition of electrical circuits and equivalent systems have many useful applications in
network-related problems.

had an important impact in graph theory is the effective resistance. In electrical circuits, the
effective resistance has a clear physical meaning and is related to the circuit laws, but also in
the context of graphs it has numerous applications and interpretations. The effective resis-
tance has for instance been used to define graph invariants in molecular graphs [15], distance
functions between nodes [16] or robustness measures [17].

1-3-2 Context of the thesis contribution

Since the effective resistance defines a distance function between nodes [16], which implies a
certain geometric context, the circuit-graph equivalence can be extended by another repre-
sentation: a simplex3. A simplex is a generalization to higher-dimensions of a triangle and a
prism, i.e. a convex polyhedron with N − 1 vertices in N dimensions (and other restrictions).
We will refer to this three-way equivalence as the Circuit-Graph-Simplex (CGS) equivalence,
and already in 1969, Sharpe [18] articulated the interesting potential that this equivalence
provides4 : “As a consequence, problems on resistive networks are equivalent to geometric
problems on acute-angled simplices (...) All the arsenal of knowledge acquired over many

3The equivalence holds only for hyperacute simplices, as defined in Section 3-5
4In [18], only the circuits and simplices are discussed.
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1-4 Notations 7

years which we possess on Euclidean spaces may therefore be utilised in the solution of the
resistive n-port problem.”
In the spirit of this quote by Sharpe, we introduce a new formula relating the geometric notion
of the simplex volume to the graph-theoretical notion of Laplacian eigenvalues. Specifically,
the thesis contribution can be summarized as:
Thesis contribution (ii)
In the context of the Circuit-Graph-Simplex equivalence, a new formula for the volume of a
hyperacute simplex in terms of Laplacian eigenvalues is derived. Moreover, the relation of this
new formula to the effective graph resistance [17] motivates the interpretation of the simplex
volume as a network robustness measure.

�

Effec�ve graph �

resistance �

R
G�

Effec�ve �

resistance�

Laplacian�

Eigenvalues�

Weighted �

Graphs�

Electrical �

Circuits�

Simplex�

 Distance �

         matrix�

                Laplacian �

   eigenvectors �

�

Simplex�

volume�

Figure 1-5: Chapter 3 describes how each equivalent circuit-graph pair also corresponds to an
equivalent simplex. A novel expression is given for the volume of this simplex in terms of the
graph description, which leads to a network robustness interpretation of the volume.

1-4 Notations

We introduce some mathematical notations that will be used throughout this article. The
basic object of study is a graph G(N ,L), where N represents the set of N nodes and L
the set of L links between pairs of nodes. Unless stated otherwise, the graph is assumed to
be connected (i.e. there is at least one path between each pair of nodes) and the links to
be unweighted and undirected. A convenient way of representing the graph structure is the
N ×N adjacency matrix A, with elements:

aij =
{

1 if (i, j) ∈ L
0 otherwise

The number of neighbors of a node in the graph, is called the degree of that node. For a node
i ∈ N the degree is given by

di =
N∑
j=1

aij

Master of Science Thesis Karel Devriendt



8 Introduction

Since we consider undirected and unweighted graphs, the adjacency matrix A is real and
symmetric, possessing the following eigendecomposition:

A = XΛXT =
N∑
i=1

λixix
T
i

where X is the orthogonal eigen-matrix with eigenvectors xi as columns, and Λ = diag(λ1, λ2,
. . . , λN ) the diagonal matrix with eigenvalues on its diagonal. Because the adjacency matrix
A is real and symmetric, all eigenvalues are real and can be ordered as λ1 ≥ λ2 ≥ · · · ≥ λN .
Another matrix capturing the graph structure is the Laplacian matrix Q, defined as:

Q = ∆−A

where ∆ = diag(d1, d2,
. . . , dN ) is the diagonal matrix containing the node degrees. Since the Laplacian Q is also
real and symmetric matrix, we can write the eigendecomposition:

Q = ZMZT =
N∑
i=1

µiziz
T
i

where Z is the orthogonal eigen-matrix with eigenvectors zi as columns, andM = diag(µ1, µ2,
. . . , µN ). Since all rows of Q sum to zero, it holds that Qu = 0, where u is the all-one vector.
The eigenvalue equation Qu = µNu with µN = 0 illustrates that Q has at least one zero
eigenvalue, according to the eigenvector u/

√
N . The Laplacian Q is positive semidefinite,

which means that all eigenvalues are non-negative, i.e. µi ≥ 0 for all i ≤ N . Additionally,
the multiplicity of the zero eigenvalue µN is known to be one for connected graphs [19].
Hence, for any connected graph, we can write the ordered sequence of Laplacian eigenvalues
0 = µN < µN−1 ≤ · · · ≤ µ1.
To use single-node information in formulas, we will often use the N × 1 node indicator vector
ei, for which the k’th entry equals:

(ei)k =
{

1 if k = i

0 otherwise

With this vector, we can conveniently denote single entries from vectors and matrices, for
instance aij = eTi Aej .
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Chapter 2

Universal mean-field framework for
SIS epidemics

2-1 Overview

This chapter discusses the thesis contributions related to the modeling of epidemic diseases
on networks. As introduced in Chapter 1, the study of epidemic diseases on networks is part
of the more general study of dynamical processes on networks. With the example of “waves
in a pool” and “gossip in a school”, we illustrated the non-trivial coupling between network
topology and the process running on a network. Hence, apart from the clear benefit in terms
of prediction and control of diseases, also the a theoretical understanding of the topology-
process interplay are motivations to further consider network epidemics.
Figure 1-3 sketched the specific context of this chapter and the contribution: the formulation
of the Universal Mean-Field Framework (UMFF) as a unifying and generalizing framework
for SIS approximations. Additionally, we further investigate the close connection between the
infection process in network epidemics and the well-studied isoperimetric problem [20],[21].
This connection provides novel insights, e.g. about the scaling behavior of the SIS process on
large graphs, and allows us to deduce new bounds on the UMFF approximations.

In Section 2-3, we start by defining the SIS epidemic model on networks and elaborate on the
feasibility of the exact SIS description. Then, in Section 2-4, we define UMFF, which consists
of two approximations and the resulting UMFF equations. In Section 2-5, we derive how the
UMFF equations follow from the exact SIS equations by subsequently introducing the two
approximations. In Section 2-6, we describe how the existing mean-field methods are con-
tained by UMFF. Section 2-7 introduces the isoperimetric problem and describes its analogy
with the infection process. This analogy leads to the topological UMFF approximation and
bounds on this approximation. In Section 2-8, we discuss the relation between UMFF and
Szemerédi’s regularity lemma and explore the implications of this relation for the SIS process
on large graphs. Section 2-9 overviews some related work. Finally, Section 2-10 concludes
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10 Universal mean-field framework for SIS epidemics

the Chapter by summarizing the main properties of UMFF and by suggesting some future
research directions.

2-2 Introduction: Epidemics on networks

The spread of epidemic diseases on complex networks is a widely studied topic in the field of
network science [12]. While the mathematical study of epidemics dates back to the work of
Bernoulli in the 18th century, the focus on the role of network topology only started at the end
of the 20th century with the work of Kephart and White [5]. With the recent observations
that network structures seem ubiquitous in both natural and man-made systems, a better
understanding of the interplay between dynamic processes and network structure has become
an important pursuit. For the case of diseases, a better knowledge of the interaction between
network features and the resulting spreading behavior could be crucial in managing epidemic
outbreaks in the future. More generally, the theoretical study of spreading diseases is related
to a much wider class of dynamic processes on networks like the spreading of information,
computer viruses or opinions.
In the study of epidemics on complex networks, the compartmental model of Kermack and
McKendrick [22] from 1927 is regarded as a basic disease model. In compartmental models,
each entity in the population is assumed to be in a certain state, for instance healthy, conta-
gious, immune or others. The state of each entity, from now on called node, can change based
on the current state of the node itself and, in the case of nodes in a network, its neighboring
nodes. By these local interactions the disease can spread, die out or show other behaviors
depending on the model. A more general overview of the basic models and current progress
in the field of epidemics on complex networks is given in [12].
Like many network-epidemic studies, we will focus on one specific compartmental model: the
SIS (Susceptible-Infected-Susceptible) model. The SIS model is often used because it is sim-
ple enough for a deep theoretical study while still being complex enough to exhibit global
behavior that is non-trivially coupled to the small-scale process and the topology of the un-
derlying network. In the SIS model, each node in the network can be in either of two states:
susceptible (S) or infected (I). These states can change over time when an infected node is
cured, or when a susceptible node is infected by a sick neighbor. These curing and infection
events are stochastic processes that determine the dynamics of the disease. For a given initial
distribution of infected nodes, the basic questions in studying the SIS model are then: what
is the evolution of the state of the nodes in the network, how many nodes are infected in
the metastable state, does the disease die out before reaching a significant fraction of the
population, etc.
To address these questions, some further assumptions need to be made about the dynamics
of the SIS process. In the Markovian SIS model, on which this article focuses, the infection
and healing events are modeled as Poisson processes. More general distributions are possible
[23], but with the Poisson assumption, the waiting times for infection or healing events are
exponentially distributed which means that they satisfy the memoryless property, and the
transitions between different configurations of the system become equivalent to state transi-
tions in a Markov Chain. For specified rates of the Poisson processes, the evolution of the
process can be exactly described based on Markov theory [11]. However, since the number
of possible states of the system grows exponentially with the number of nodes, this exact
description is not practical. Consequently, several methods have been developed that ap-
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2-3 Background: the SIS epidemic model 11

proximate the SIS model in order to make analysis possible and investigate the interesting
interaction between the process and the underlying topology. Notably, the N-Intertwined
Mean-Field Approximation (NIMFA) [11] and the Heterogeneous Mean-Field method (HMF)
[10],[24] are two widely-used approximation methods, which we will show to be contained by
the introduced framework. An overview of these two methods and other SIS approximation
methods can be found in [12] and [13].

2-3 Background: the SIS epidemic model

In the study of epidemics on complex networks, the compartmental model of Kermack and
McKendrick [22] from 1927 is regarded as a basic disease model. In compartmental models,
each entity in the population is assumed to be in a certain state, for instance healthy, conta-
gious, immune or others. The state of each entity, from now on called node, can change based
on the current state of the node itself and, in the case of nodes in a network, its neighboring
nodes. By these local interactions the disease can spread, die out or show other behaviors
depending on the model. A more general overview of the basic models and current progress
in the field of epidemics on complex networks is given in [12].
Like many network-epidemic studies, we will focus on one specific compartmental model: the
SIS (Susceptible-Infected-Susceptible) model. The SIS model is often used because it is sim-
ple enough for a deep theoretical study while still being complex enough to exhibit global
behavior that is non-trivially coupled to the small-scale process and the topology of the un-
derlying network. In the SIS model, each node in the network can be in either of two states:
susceptible or infected. For a specified graph G(N ,L), the disease state at a given time t, is
represented by the variable:

Wn(t) ∈ {0, 1}

The expression Wn(t) = 0 means that node n is healthy, but susceptible (S) to the disease,
while Wn(t) = 1 means that the node is infected (I) and contagious. Figure 2-1 shows two
examples of disease states and the corresponding state vector w. Since the SIS process is a

1�

2�

3� 4�

1�

2�

3� 4�

w = [1 1 0 0]
T�

w = [1 1 0 1]
T�

Healthy node
�

Infected node
�

�

Figure 2-1: In the Susceptible-Infected-Susceptible compartmental disease model, each node n
in the network can be in two states: susceptible (wn = 0) or infected (wn = 1). The disease
state of an N -node network can then be represented by the N × 1 disease state w. In this figure,
two examples of disease states are given with their corresponding vector representations.

stochastic process, Wn(t) is a Bernoulli random variable and the infection probability of node
n equals Pr[Wn(t) = 1]. The evolution of the state probabilities over time is governed by the
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12 Universal mean-field framework for SIS epidemics

disease dynamics
S → I → S

which means that susceptible nodes can become infected nodes, which in turn can become
susceptible. The S → I transition is called infection and can occur when a susceptible node n
has an infected neighbor j in the network. The I → S transition is called curing and captures
the process where each infected node has the possibility to be cured. Figure 2-2 illustrates
how the infection and curing process lead to transitions of the disease state. To make the

Infec�on�Curing�

Figure 2-2: The SIS dynamics are governed by two processes: infection and curing. In the
infection process, infected nodes infect their neighbors at a certain rate β. In the curing process,
infected nodes are cured at a certain rate δ.

dynamics tractable, the infection and curing events are assumed to be independent Poisson
processes. In particular, for the curing process,

Pr[Wn(t+ h) = 0|Wn(t) = 1] = δe−δh (2-1)

means that, disregarding all other processes, the waiting time for the I → S transition is
exponentially distributed with rate δ. In general, each node n can have a different, time-
dependent rate δn(t), but further in this work we consider a fixed and time-independent rate
δ. If we consider just one link between a susceptible node n and an infected node j, which
we will call an infective link, then the infection process obeys

Pr[Wn(t+ h) = 1|Wn(t) = 0] = βe−βh (2-2)

where the occurrence of other processes is ignored (which holds for h→ 0) and where we thus
assume that the infected neighbor node j stays infected and does not cure, i.e. Wj(t+ s) = 1
for s ∈ [0, h]. Again, each link (n, j) ∈ L can have a specific rate βnj(t), but for simplicity we
assume a fixed and time-independent rate β. For notational purposes, we will often omit the
time reference t in time-dependent variables by writing Wn instead of Wn(t) and similarly for
other time-dependent variables. It is also possible to model the infection and curing events
as more general renewal processes [25], which results in different distributions for the waiting
times (2-1) and (2-2). For non-Poissonian processes, the Markov property no longer holds
but approaches still exist to describe the SIS process [23].

The expressions of the curing and infection processes show that the evolution of the SIS
process at a given time, only depends on the disease state at that time. This means that the
system is memoryless and can be described as a Markov process. In other words, the process
evolution can be fully described based on the knowledge of (i) which state can transition to
which other state and (ii) at which rate these transitions happen. Based on this transition
structure, the Kolmogorov equations and the infinitesimal generator lead to an exact descrip-
tion of the SIS process, for any initial disease state distribution Pr[W (0) = w] for all w (see
Appendix A-1-1). Figure 2-3 illustrates and summarizes the Markov chain structure of the
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Equivalent	Markov	Chain�

1�

3� 4�

2�

1�

2�

4�3�

Curing� Infec�on�

Curing�

1�	Disease	state	
	Markov	state�

2�	Infection,	curing	
	state	transition�

3�	SIS	process	
	Markov	chain�

Unidirec�onal� Bidirec�onal�

Figure 2-3: Based on the assumption that infection and curing are Poisson processes, the SIS
process is equivalent to a continuous-time discrete-state Markov process, i.e. a Markov Chain.
Each state in the Markov process corresponds to a disease state of the network, and the transition
rates between the Markov states corresponds to the infection or curing rates, i.e. δ for healing
nodes, and (β×#Infected neighbors) for node infection. All transitions combined form a Markov
Chain, which by means of the Kolmogorov equations or the infinitesimal generator leads to a
exact description of the SIS process [11].
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14 Universal mean-field framework for SIS epidemics

SIS process.
While the Markov property leads to an exact and tractable description of the full SIS process,
the complexity of this description grows exponentially with the number of nodes. As Figure
2-3 already indicates, a network with N nodes has 2N possible SIS disease states. This means
that for roughly N > 20, finding a solution of the 2N linear equations becomes infeasible.
This complexity of representing all possible disease states on a network is the main problem
in describing the SIS process and especially, as we will show later, because of the dependence
of the number of infective links (and thus the transition rates) on the full state information.
An exact description of the process requires to calculate the probability Pr[W (t) = w] that
the state vector W (t) = [W1(t) W2(t) . . . WN (t)]T equals a certain state vector w, for each
possible state. Such a state w is a zero-one Bernoulli vector, or w ∈ {0, 1}N , which shows
again that there are 2N possible state vectors.
To resolve the complexity problem of the exact SIS equations, it is necessary to introduce
approximations. The basic idea of approximating the SIS process lies in the description of
the state by a different variable than the random variable W (t), and to find the govern-
ing equations such that the exact dynamics are approximately described by that variable.
UMFF relies on two different types of variables: the number of infected nodes W̃ (t) (which
is a random variable) and the (deterministic) expected number of infected nodes E[W̃ (t)].
Apart from being a lower-dimensional description for the SIS process and thus addressing the
exponential complexity problem, the number of infected nodes and the expected number of
infected nodes are also more insightful variables.

2-4 Definition of the Universal Mean-Field Framework

To describe UMFF, we need a number of preliminary definitions and notations. Firstly, we
define a graph partitioning as follows:

Definition 1 (Partitioning). A partitioning π of graph G defines a partitioning of the node-set
N of G into K non-empty, disjoints partitions Nk ⊆ N such that

⋃K
k=1Nk = N .

By Nk = |Nk|, we will denote the number of nodes in partition k, and by Lkm, the number
of links between nodes from partition k and m (and twice the number of links if k = m, see
Table 2-1).
We will use the graph partitioning to group information of nodes belonging to the same
partition, which results in a lower-dimensional description of the disease state and thus of the
SIS process. A crucial concept of UMFF is to group nodes according to a partitioning π and
to consider the K × 1 reduced-state vector w̃ instead of the N × 1 full-state vector w. The
entry w̃k captures how many nodes are infected in partition k, which means that we have the
relation:

w̃k =
∑
i∈Nk

wi for each k = 1, 2, . . . ,K (2-3)

where w̃k is bounded as 0 ≤ w̃k ≤ Nk. Figure 2-4 shows some graph partitioning examples,
and illustrates how these partitions influence the state reduction. The reduced-state vector
w̃ contains less information about the disease state; it is a coarser description of the disease
state than the full-state w. In other words, one reduced state w̃ can correspond to a number
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Figure 2-4: UMFF approaches the SIS approximation by grouping nodes according to a graph
partitioning. Instead of describing the disease state of each node, i.e. with the full-state vector w,
it is then possible to describe the collective disease state of each partition, i.e. the reduced-state
vector w̃. In the reduced state description, only the number of infected nodes in a partition is
known. In this figure, we show three examples of graph partitioning in 1, 3 and 7 partitions from
left to right. As a particular case, the exact SIS case corresponds to the (unique) partitioning
with K = N partitions, for which w̃ = w. This means that UMFF also describes the exact SIS
equations.

of different full states w (see also Appendix A-1-2). A number of additional notations follow
from the state reduction, as defined in Table 2-1.

Based on the notion of a reduced state w̃, UMFF is defined as:

Definition 2 (Universal Mean-Field Framework). Consider a graph G(N ,L), an SIS epi-
demic process with rates (β, δ) and a partitioning π of the nodes into K partitions. The
UMFF equations are approximate equations for E[W̃ ], the expected number of infected nodes
in partition k:

dE[W̃k]
dt

≈ −δE[W̃k] + β
K∑
m=1

ãkm
(
Nk −E[W̃k]

)
E[W̃m] (2-4)

The UMFF equations follow from simplifying the exact SIS process description, using two
approximations:
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16 Universal mean-field framework for SIS epidemics

Single node Partition (π)

Node/Partition indicator Node i ∈ {0, 1, . . . , N} Partition k ∈ {0, 1, . . . ,K}

Indicator vector ei ∈ RN ẽk ∈ RK
(ei)j = 1{i=j} (ẽk)m = 1{k=m}

Partition sum-vector sk ∈ RN N.A.
(sk)i = 1{i∈Nk}

All-one vector u = (1, 1, . . . , 1)T ũ = (N1, N2, . . . , NK)T

State vector w = (w1, w2, . . . , wN )T w̃ = (w̃1, w̃2, . . . , w̃k)T
wi = 1{node i is infected} w̃k = sTkw

Adjacency matrix A ∈ RN×N Ã ∈ RK×K

aij = 1{(i,j)∈L} ãkm = sT
k Asm

NkNm
= Lkm

NkNm

Submatrix A(km) Ã(km)

a
(km)
ij = aij1{i∈Nk and j∈Nm} ã

(km)
ij = ãij1{i=k and j=m}

Table 2-1: Overview of the node-level and partition-level variables corresponding to a specific
partitioning. The symbol 1 is the indicator function for which 1{S} = 1 if statement S is true
and zero otherwise.

Approximation 1 (Topological approximation). The number of infective links between sus-
ceptible nodes in partition k and infected nodes in partition m are approximated by:

(u− w)TA(km)w ≈ (ũ− w̃)T Ã(km)w̃ = ãkm(Nk − w̃k)w̃m (2-5)

Remark: The relations

(u− w)TA(km)w =
N∑
i=1

N∑
j=1

a
(km)
ij (1− wi)wj =

∑
i∼j

1{(1−wi∈Nk
)wj∈Nm}

where
∑
i∼j runs over all links (i, j) ∈ L, show that (u−w)TA(km)w indeed equals the number

of infective links between susceptible nodes in partition k and infected nodes in partition m.
Approximation 2 (Moment-closure approximation). The covariance between the random
variables W̃k and W̃m is approximated by zero:

Cov[W̃k, W̃m] ≈ 0⇒ E[W̃kW̃m] ≈ E[W̃k]E[W̃m] (2-6)

In the next section, we show how the UMFF equations are found from the exact SIS process
description subject to approximations (2-5) and (2-6). The idea behind the topological ap-
proximation is further discussed in Section 2-7, while the moment-closure approximation is
addressed in Appendix A-2.

2-5 Derivation of the Universal Mean-Field Framework

Figure 2-5 overviews the variables and approximations involved in UMFF, and how the UMFF
equations are derived from the exact SIS equations. Additionally, it shows for which particular
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2-5 Derivation of the Universal Mean-Field Framework 17

choices of partitioning, UMFF is to equivalent to existing mean-field methods (see also Section
2-6). For K = N partitions, each partition consists of exactly one node.
In the next sections, we follow the variables in Figure 2-5 from left to right to describe the

Pr[W = w] Pr[W̃ = w̃] E[W̃k]

Pr[W = w]
(Exact SIS)

E[Wi]
(NIMFA)

E[W̃dk
]

(HMF)

︸ ︷︷ ︸
Exact SIS
equations

︸ ︷︷ ︸
Death-birth

process

︸ ︷︷ ︸
UMFF

equations

Topological
approximation (2-5)

Moment-closure
approximation (2-6)

K = N K = N

π ∼
degrees

Figure 2-5: Schematic representation of the relationship between the different variables involved
in the UMFF approximation steps. Overall, the UMFF description of the SIS process involves
three variables: At the exact SIS equations-level, the probability of each state w is given by
Pr[W = w]. By graph partitioning, the state description changes to the reduced-state vector w̃.
With the UMFF topological approximation (2-5), the probability of each reduced state Pr[W̃ = w̃]
can be found, which we show to be equal to a death-birth process. Then, based on the moment-
closure approximation (2-6), the UMFF equations for the expected number of infected nodes
E[W̃k] in each partition k can be found. For specific choices of graph partitioning, the UMFF
equations lead to existing mean-field methods.

derivation of the UMFF equations.

2-5-1 Exact SIS equations

The UMFF approximation of the SIS process is based on two process variables: the reduced-
state probability Pr[W̃ (t) = w̃] for each reduced state w̃, and the expected number of infected
nodes E[W̃k(t)] for each partition k. In Appendix A-1-2, the reduced-state probabilities are
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18 Universal mean-field framework for SIS epidemics

derived as:

dPr[W̃ = w̃]
dt

=− δ
K∑
k=1

w̃k Pr[W̃ = w̃] + δ
K∑
k=1

(w̃k + 1) Pr[W̃ = w̃ + ẽk]

− β
K∑
k=1

K∑
m=1

∑
w∈Wk

w̃k
∩Wm

w̃m

(u− w)TA(km)wPr[W = w]

+ β
K∑
k=1

K∑
m=1

∑
w∈Wk

(w̃k−1)∩W
m
w̃m

(u− w)TA(km)wPr[W = w]

(2-7)

for any reduced-state vector w̃, where Wk
x =

{
w ∈ {0, 1}N |wT sk = x

}
is the set of all full

states w with x infected nodes in partition k.
In Appendix A-1-3, the equations for the expected number of infected nodes is derived as:

dE[W̃k]
dt

= −δE[W̃k] + β
K∑
m=1

Nk∑
w̃k=0

Nm∑
w̃m=0

∑
w∈Wk

w̃k
∩Wm

w̃m

(u− w)TA(km)wPr[W = w] (2-8)

for each partition k.

2-5-2 Death-birth process

By describing the SIS process with the reduced state rather than the full state, also the
transition structure changes. Figure 2-6 illustrates this for the case of K = 1 partition, i.e.
w̃ is the number of infected nodes. Since w̃ is an integer between 0 and Nk, and each state
transition corresponds to either a node healing or curing, the reduced-state transitions have
a path structure. The problem, however, is that the transition rates between the reduced
states don’t depend on the reduced state only. In Appendix A-1-2 is shown that the rate of
the infection transitions w̃ → w̃ + ẽk and w̃ − ẽk → w̃, depends on the number of infective
links. The consequence is that equation (2-7) for the reduced-state probability Pr[W̃ = w̃]
depends on the full-state probability Pr[W = w], which means that equations (2-7) are not a
closed set of equations.
This closure problem is solved by invoking the UMFF topological approximation (2-5)

(u− w)TA(km)w ≈ (ũ− w̃)T Ã(km)w̃

which enables the simplifications

∑
w∈Wk

w̃k
∩Wm

w̃m

(u− w)TA(km)wPr[W = w] ≈ (ũ− w̃)T Ã(km)w̃Pr[W̃k = w̃k, W̃m = w̃m]

∑
w∈Wk

(w̃k−1)∩W
m
w̃m

(u− w)TA(km)wPr[W = w] ≈ (ũ− (w̃ − ẽk))T Ã(km)w̃Pr[W̃k = w̃k − 1, W̃m = w̃m]

(2-9)
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Figure 2-6: A comparison between the full-state transition structure and the reduced-state
transition structure for a four-node network and a partitioning with one partition. The state
reduction combines all full states with the same number of infected nodes into a single reduced
state. Additionally, the reduced-state transition rates are combinations of the full-state transition
rates. Appendix A-1-2 describes this reduction in more detail.

to be made in equation (2-7). Filling in (2-9) in the exact equations (2-7) yields:

dPr[W̃ = w̃]
dt

≈− δ
K∑
k=1

w̃k Pr[W̃ = w̃] + δ
K∑
k=1

(w̃k + 1) Pr[W̃ = w̃ + ẽk]

− β
K∑
k=1

K∑
m=1

(ũ− w̃)Ã(km)w̃Pr[W̃k = w̃k, W̃m = w̃m]

+ β
K∑
k=1

K∑
m=1

(ũ− (w̃ − ẽk))Ã(km)w̃Pr[W̃k = w̃k − 1, W̃m = w̃m]

(2-10)

which no longer depends on the full-state probability Pr[W = w]. While equation (2-10) has
a cumbersome form, it is a closed set of equations that completely characterizes Pr[W̃ (t) = w̃]
for a given initial distribution Pr[W̃ (0) = w̃].
As Figure 2-6 already illustrates, the reduced state transitions have a particular structure. For
the K = 1 partitioning, the transition structure is a path, since for the number of infected
nodes w̃ the transitions w̃ → w̃ ± 1 and w̃ ± 1 → w̃ exist. For any other partitioning,
the possible transitions are still always of the form w̃ → w̃ ± ẽk and w̃ ± ẽk → w̃, since
only single nodes are infected or cured during one event. In other words, w̃ can be seen
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20 Universal mean-field framework for SIS epidemics

as a coordinate in an (N1 + 1) × (N2 + 1) × · · · × (NK + 1) lattice. As a result, equation
(2-10) is equivalent to the description of a K-dimensional death-birth process on this lattice.
Furthermore, equation (2-10) indicates that the birth rates are quadratic in w̃ and the death
rates are linear in w̃, which means that the SIS process is equivalent to a higher-dimensional
quadratic death-birth process. While no analytical solutions exist for the quadratic death-
birth process [26], the equivalence between the SIS and the quadratic death-birth process is
an interesting observation. It means that insights in one setting translate directly to the other
(see also Section 2-10).

2-5-3 UMFF equations

The exact equations (2-8) for the expected number of infected nodes E[W̃k] are not “closed" for
two reasons: the exact SIS dynamics depend on the number of infective links (i.e. on full-state
probability Pr[W = w]) and on higher-order moments, i.e. the first-order moment equations
(2-8) depend on the second-order moments E[W̃kW̃m] (see also Appendix A-2). Similar to
the derivation of the death-birth process, invoking the UMFF topological approximation (2-5)
results in simplifications (2-9), which allows equation (2-8) to be approximated by:

dE[W̃k]
dt

= −δE[W̃k] + β
K∑
m=1

Nk∑
w̃k=0

Nm∑
w̃m=0

(ũ− w̃)T Ã(km)w̃Pr[W̃k = w̃k, W̃m = w̃m] (2-11)

While the dependence on the full-state probability Pr[W = w] is solved in equation (2-11), it
still contains higher-order moment terms:

Nk∑
w̃k=0

Nm∑
w̃m=0

w̃kw̃m Pr[W̃k = w̃k, W̃m = w̃m] = E[W̃kW̃m] (2-12)

for partition pairs (k,m). In general, these second-order moments E[W̃kW̃m] cannot be de-
termined from E[W̃k] and E[W̃m] alone. Invoking the UMFF moment-closure approximation
(2-6)

Cov[W̃k, W̃m] ≈ 0⇒ E[W̃kW̃m] ≈ E[W̃k]E[W̃m]
solves this closure problem by enabling equation (2-11) to be approximated by

dE[W̃k]
dt

≈ −δE[W̃k] + β
K∑
m=1

ãkm(Nk −E[W̃k])E[W̃m]

which are the UMFF equations (2-4).
In Appendix A-2, an extension of the UMFF equations for higher-order moments is described.
These higher-order equations are more general, but a detailed description is not the focus of
this article.

Bounds on the moment-closure approximation

For the particular case of K = N partitions (for which UMFF is equivalent to NIMFA,
see Section 2-6), the infection probabilities of nodes are non-negatively correlated [27], i.e.
Cov[W̃k, W̃m] ≥ 0. Based on the definition of the covariance

Cov[W̃k, W̃m] = E[W̃kW̃m]−E[W̃k]E[W̃m] (2-13)
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we can rewrite the exact equation (2-11) as:

dE[W̃k]
dt

= −δE[W̃k] + β
K∑
m=1

ãkm(Nk −E[W̃k])E[W̃m]− β
N∑
m=1

ãkm Cov[W̃k, W̃m] (2-14)

Omitting the negative term−ãkm Cov[W̃k, W̃m] in equation (2-14) implies that forK = N par-
titions, the moment-closure approximation is an upper-bound of the true process. However,
for any other partitioning (K 6= N) we do not know about any such results for Cov[W̃k, W̃m].
In other words, we do not know how to bound the UMFF moment-closure approximation
error.

2-6 Existing mean-field methods contained by UMFF

An important feature of UMFF is that by particular choices of graph partitioning, the UMFF
equations are equivalent to existing mean-field methods. In particular, the widely-used N-
Intertwined Mean-Field Approximation [11] and Heterogeneous Mean-Field approximation
[10] are contained by UMFF. Additionally, by the higher-order extension of UMFF described
in Appendix A-2, also second-order NIMFA [27] and pair Quenched Mean-Field theory [14]
are contained by (higher-order) UMFF.

2-6-1 N-Intertwined Mean-Field Approximation (NIMFA)

The N-Intertwined Mean-Field Approximation [11] incorporates the full topological informa-
tion of the graph in its system of equations. The only approximation consists of assuming
independence between the infection states of adjacent nodes. Denoting the infection prob-
ability of node k by ρk = Pr[Wk = 1], the NIMFA equations for 1 ≤ k ≤ N are given by
[11]:

dρk
dt

= −δρk +
N∑
m=1

βakm(1− ρk)ρm, (2-15)

The same NIMFA equations (2-15) are retrieved from UMFF with K = N partitions, which
corresponds to each node being in a separate partition. The expected number of infected
nodes in a partition E[W̃k] is then equal to the infection probability ρk of node k that makes
up that partition. For this partitioning, we have Nk = 1 and Ã = A, illustrating that the
NIMFA equations (2-15) are indeed a particular case of the UMFF equations (2-4).

2-6-2 Heterogeneous mean-field method (HMF)

Pastor-Satorras and Vespignani [10] introduced the Heterogeneous Mean-Field method, which
approximates the SIS process based on the assumption that all nodes of a certain degree are
equivalent (in their connections with other nodes). Consequently, the SIS process is described
based on the degree distribution of the underlying graph.
Different from UMFF and NIMFA, HMF [10] does not assume a known graph G, but rather
considers a class of graphs. Specifically, in HMF the epidemic is assumed to take place on
a graph with a specified degree distribution and with the link probability between pairs of
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22 Universal mean-field framework for SIS epidemics

nodes independent of their degrees. For each degree d1 ≤ dk ≤ dK , the probability distribution
Pr[D = dk] denotes the probability that a randomly chosen node has degree dk. The variable
0 ≤ ρ̃k ≤ 1 reflects the expected fraction of infected nodes with degree dk:

dρ̃k
dt

= −δρ̃k + βk(1− ρ̃k)Θ (2-16)

where Θ is the probability that a healthy node is linked to an infected node. The value of
Θ is calculated in [10], based on the connection probability of nodes of degree dk to infected
nodes in the rest of the network, as:

Θ =
K∑
m=1

ρ̃m
dm Pr[D = dm]∑K
i=1 di Pr[D = di]

(2-17)

Substituting expression (2-17) for Θ in (2-16) gives:

dρ̃k
dt

= −δρ̃k + β
K∑
m=1

dkdm Pr[D = dm]∑K
i=1 di Pr[D = di]

(1− ρ̃k)ρ̃m (2-18)

Introducing the variable ρk = Pr[D = dk]ρ̃k then yields:

dρk
dt

= −δρk + β
K∑
m=1

dkdm∑K
i=1 di Pr[D = di]

(Pr[D = dk]− ρk) ρm (2-19)

While the above equations (2-19) are derived in HMF for a probabilistic graph, the same
equations are found from UMFF for a particular graph with the same degree distribution,
namely Nk = cPr[D = dk] nodes of degree dk for some scalar c ∈ R, and degree-uncorrelated
links. For such a graph, the number of links Lkm = sTkAsm between nodes of degree dk and
degree dm obeys the consistency relation

∑K
m=1 Lkm = Nkdk as:

Lkm = dkdmNkNm∑K
i=1 diNi

,

from which the UMFF equations follow as:

dE[W̃k]
dt

= −δE[W̃k] + β
K∑
m=1

dkdm∑K
i=1 diNi

(
Nk −E[W̃k]

)
E[W̃m] (2-20)

Equations (2-20) are equivalent to (2-19) for the scaling E[W̃k] = cρ, where c is the same
scalar relating Nk to Pr[D = dk]. Hence, the HMF equations are found from the UMFF
framework by considering a specific graph realization consistent with the random graph prop-
erties assumed by HMF.
Since HMF is a particular case of UMFF, HMF implicitly uses the UMFF moment-closure
approximation (2-6) with respect to the partitioning according to node degree. As discussed
in Section 2-5-3, this means that we do not know whether the HMF equations give an upper-
bound or a lower-bound on the infection probabilities, or how they relate to the exact SIS
process in general.

Boguñá and Pastor-Satorras [24] extend the HMF model to random graphs with correlated
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degrees. Instead of only assuming Pr[D = dk], also the probability Pr[i ∼ j|i ∈ Nk, j ∈ Nm]
that a node i of degree dk links with a node j of degree dm is assumed to be known for
any pair of degrees (dk, dm). With these extra assumptions in the HMF methodology, the
SIS process is then approximately described based on the degree distribution and the linking
probabilities. If we now consider a specific graph realization with Nk = c1 Pr[D = dK ] nodes
of degree dk and with Lkm = c2 Pr[i ∼ j|i ∈ Nk, j ∈ Nm] links between nodes with degree dk
and dm (for some scalars c1, c2 ∈ R), then again the UMFF equations (2-4) are equivalent to
the correlated HMF equations.
In the same way that the HMF equations are fully determined by the degree distribution and
the linking probabilities, also the UMFF equations are fully determined by Nk and Lkm. A
consequence of the equivalence between UMFF (2-4) and (correlated) HMF (2-19), is that we
can bound the topological approximation errors of HMF (with respect to a specific realization
of the probabilistic graph model).

Since the partitions Nk do not need to correspond to node degrees specifically, UMFF enables
the SIS dynamics to be described for a wider range of graph classes. For any graph model,
where a probability distribution Pr[K = k] of a graph belonging to partition Nk is given,
together with a linking probability Pr[i ∼ j|i ∈ Nk, j ∈ Nm], the UMFF equations can be
directly found. Such graph models are more general than graphs with degree-based partitions
only and, in some settings, specific structure in the graph might suggest a natural way to
partition the nodes such that grouped nodes have a similar connectivity to the rest of the
network (see also further directions in Section 2-10).

2-6-3 Second-order NIMFA and Pair Quenched Mean-Field theory

Apart from containing NIMFA and HMF, the extension to higher-order UMFF (Appendix
A-2) allows to unify the higher-order mean-field approximations. Both in [28] and [14], second-
order mean-field equations are derived as an extended version of NIMFA and Quenched Mean-
Field theory (QMF) [29]. These sNIMFA and pQMF equations approximate the SIS process
by second-order and first-order moments, instead of first-order moments only for NIMFA and
QMF.
With K = N partitions, order n = 2 and the corresponding moment-closure function f in
Equation (A-16), the higher-order UMFF equations contain second-order NIMFA [28] and
pair QMF [14].

2-7 The Isoperimetric Problem in SIS epidemics

In this section, we focus on the UMFF topological approximation:

(u− w)TA(km)w ≈ (ũ− w̃)T Ã(km)w̃

We first describe how the closure problem of equations (2-7) and (2-8) can be related to the
isoperimetric problem. Then, we show how this analogy leads to approximation (2-5) and
bounds on the approximation error.
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Figure 2-7: Higher-order UMFF extends the UMFF equations in the first-order moments E[W̃k]
to equations in higher order moments E[W̃k . . . W̃m]. As such, higher-order UMFF contains
second-order NIMFA [28] and pair QMF [14], for K = N partitions, order n = 2 and the
appropriate moment-closure approximation.

2-7-1 The isoperimetric problem

The isoperimetric problem is an ancient problem that has interested many mathematicians
throughout history. For the most basic form of the isoperimetric problem, we cite Blåsjö [20],
who provides a broad historical and conceptual overview of the isoperimetric problem:

Problem 1 (The isoperimetric problem). Among all figures in the plane with a given perime-
ter P , which one encloses the greatest area A?

Theorem 1 (The isoperimetric theorem). The solution to the isoperimetric problem is the
circle of perimeter P .

Theorem 2 (The isoperimetric inequality). For all figures with a given perimeter P and area
A, it holds that P 2 − 4πA ≥ 0 and equality only occurs for the circle.

While the isoperimetric problem might seem simple, and its solution intuitive, it took until
the 20’th century to rigorously prove the isoperimetric theorem. After the extensive historical
study of the isoperimetric problem in the 2D plane, similar problems were studied in different
geometric contexts. The basic interest in these problems always consisted of describing the
relationship between the volume and surface of a certain object, leading to isoperimetric
inequalities of the form:

θmin ≤ f(volume) + g(surface) ≤ θmax (2-21)

For instance, Osserman [21] describes isoperimetric inequalities in higher dimensions, on
curved surfaces and on general Riemannian manifolds. The geometric context of interest
for UMFF, is the study of the isoperimetric problem on graphs (see for instance [30]).

2-7-2 Infective links and infected nodes: an isoperimetric analogy

The dynamics of SIS epidemics are governed by two processes: infected are cured and infec-
tion takes place on infective links, i.e. the links between healthy and infected nodes. The
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2-7 The Isoperimetric Problem in SIS epidemics 25

curing process is proportional to the number of infected nodes while the infection process is
proportional to the number of infective links. In a non-technical way we can associate the
number of infected nodes to a volume on the graph, while the infective links accord to a
surface or interface around the infected volume. The curing process is then proportional to
the infected volume while the infection process is proportional to the infective surface. This
relation is illustrated in Figure 2-8, which represents a specific disease state on a toy-network.
To use the concepts of volume and surface in a more technical way in the context of graphs,

Set of infected nodes

Set of 

infective links

(cut-set)

Set of susceptible nodes

Figure 2-8: Example of a disease state in a toy network. The infected and healthy nodes make
up two separate partitions in the network, with the cut-set between them determining the set of
infective links. These two partitions can also be seen as volumes on the graph, and the cut-set
between them as a surface.

we define a set of one node to have unit volume, and a set of one link to have unit surface.
Other choices are possible, e.g. the volume of a node being proportional to its degree, but for
the purpose of deriving and bounding the UMFF topological approximation (2-5), this would
be a less natural choice.
In the derivation of the exact reduced-state Kolmogorov equations (2-7), the transition rate
between reduced states depends on the number of infective links. As a result, the exact equa-
tions (2-7) for Pr[W̃ = w̃] and (2-8) for E[W̃ ] are not closed. In particular, these equations
contain terms of the form (u − w)TA(km)wPr[W = w]. In the language of the isoperimetric
problem, this closure problem translates to the volume equations (2-7) and (2-8) containing
terms related to the surface.
The UMFF topological approximation (2-5) replaces the surface term by a function of volume
terms and thus solves the closure problem. Now, by analogy with the isoperimetric problem,
we can bound the approximation error caused by this replacement, as shown in Figure 2-9,
where ε represents the introduced error. It remains to find the correct translation of the
isoperimetric inequality into the setting of SIS epidemics, such that the isoperimetric bounds
translate to bounds on the UMFF approximation. The UMFF topological approximation is
defined as (2-5):

(u− w)TA(km)w ≈ (ũ− w̃)T Ã(km)w̃

which we can rewrite by introducing an error term ε ∈ R as:
(u− w)TA(km)w = (ũ− w̃)T Ã(km)w̃ + ε (2-22)
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d
dt(#I Nodes) ∝ #I Links d

dt(#I Nodes) ∝#I Nodes + ε

d
dt(Volume) ∝ Surface d

dt(Volume) ∝ Volume + ε

Exact SIS equations UMFF equations

Isoperimetric inequality (2-21)

|ε| ≤ θ

Topological approximation (2-5)

analogy analogy

Figure 2-9: Conceptual diagram of how the UMFF topological approximation (2-5) fits into the
context of the isoperimetric problem and the isoperimetric inequality (2-21). As a result of the
analogy, the UMFF approximation ε can be bounded.

or, by upper-bounding the error term |ε| ≤ θ, as:∣∣∣(u− w)TA(km)w − (ũ− w̃)T Ã(km)w̃
∣∣∣ ≤ θ (2-23)

In the next subsection, we specify the error bound θ based on the isoperimetric inequalities on
graphs. Figure 2-10 is another illustration of how the isoperimetric inequality leads to bounds
on the UMFF topological approximation. In the plane, any perimeter P corresponds to a
bounded range of areas A ∈ [Amin, Amax] it can enclose. Hence, for a certain range of P , this
leads to a feasibility region of possible (A,P ) pairs. Similarly, for any graph G, a feasibility
region of possible

(
uTw, (u− w)TAw

)
or (w̃, (u− w)TAw) exists based on the isoperimetric

inequality on graphs. A similar notion of feasibility regions is developed by Agaskar and
Lu [31], but for different definitions of volume and surface and applied in the context of an
“uncertainty principle” for signals on graphs. More than just providing an error bound, the
analogy with the isoperimetric problem and the mathematical techniques used in the proofs
(see Appendix A-3) also provide a motivation for the specific form of the UMFF topological
approximation (2-5).

2-7-3 Isoperimetric inequalities for the number of infective links

The bound for the approximation error is based on the isoperimetric and discrepancy inequal-
ities of Chung [30]:

Theorem 3 (General-graph isoperimetric inequality). For a graph G(N ,L) and a partition-
ing π, the error of the UMFF topological approximation (2-5) between any two partitions k
and m is bounded as:∣∣∣(u− w)TA(km)w − (ũ− w̃)T Ã(km)w̃

∣∣∣ ≤ θ

N

√
w̃m(N − w̃)(Nk − w̃k)(N − (Nk − w̃k)) (2-24)

where |ãkm − µi| ≤ θ holds for 1 ≤ i < N , with µi the eigenvalues of the Laplacian matrix
based on A(km).

For bi-regular graphs A(km), meaning that A(km)sm = c1sm and sTkA
(km) = c2s

T
k for some

constants c1, c2 ∈ R, a tighter bound can be given based on interlacing techniques of Haemers
[32]:
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Figure 2-10: In general, isoperimetric inequalities specify restrictions on the combinations of
volume (V) and surface (S) any shape can have in a certain geometric context. As a result,
a feasibility region of possible (V, S) combinations is defined in that geometry. The UMFF
topological approximation (2-5) is related to this concept, in that a volume term is approximated
by a surface term. Hence, the (V, S) feasibility region on graphs allows to determine for a certain
volume V what the error bounds are if we approximate the real surface S with an approximation
S?(V ), i.e. |S − S?(V )|.

Theorem 4 (Bi-regular-graph isoperimetric inequality). For a graph G(N ,L) and a parti-
tioning π such that A(km) is bi-regular for some partitions k and m, the error of the UMFF
topological approximation (2-5) is bounded as:

∣∣∣(u− w)TA(km)w − (ũ− w̃)T Ã(km)w̃
∣∣∣ ≤ λ2

N

√
w̃k(Nk − w̃k)w̃m(Nm − w̃m) (2-25)

where λ2 is the second-largest eigenvalue of A(km).

The proofs of Theorem 3 and Theorem 4 are given in appendix A-3 and rely heavily on proofs
given by Chung [30] and Haemers [32].

2-8 UMFF and Szemerédi’s regularity lemma

The isoperimetric problem is a well-studied mathematical problem that appears in many
different fields, including graph theory and network science, and thus provides a conceptual
link between those fields. For instance Szemerédi’s regularity lemma (SRL) is a lemma with
interesting implications for UMFF, which follows from the relation of both UMFF and SRL
with the isoperimetric problem. We will discuss how SRL may indicate for which graphs the
UMFF topological approximation (2-5) is expected to be accurate, and for which the SIS
dynamics are thus well approximated by the UMFF equations.
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28 Universal mean-field framework for SIS epidemics

Szemerédi’s regularity lemma

The following definitions and interpretations are based on Diestel’s [33] description of SRL.
We start by defining a so-called regularity condition between pairs of partitions, which is
related to the isoperimetric inequality.

Definition 3 (ε-regular partition pair). [33] Consider a graph G(N ,L) and two disjoint node
partitions Nk,Nm ⊆ N . If for any pair of subsets Nx ⊆ Nk and Ny ⊆ Nm of size Nx and Ny

with Nx ≥ εNk and Ny ≥ εNm for some real ε > 0, the inequality∣∣∣∣∣(u− sx)TA(km)sy
NxNy

− sTkA
(km)sm

NkNm

∣∣∣∣∣ ≤ ε (2-26)

holds, then we say that the partition pair (k,m) is ε-regular.

Inequality (2-26) can be rewritten as∣∣∣∣(u− sx)TA(km)sy −
Lkm
NkNm

NxNy

∣∣∣∣ ≤ εNxNy (2-27)

which shows that the regularity condition (2-26) is related to the difference between the size of
the cut-set (u−sx)TA(km)sy (for all subsets of partitions k,m with Nx, Ny nodes, respectively)
and the approximate size of the cut-set: Lkm

NkNm
NxNy. For lower values of ε, the regularity

condition becomes stronger. Firstly, because the true size of the cut-set can deviate less from
the approximate cut-set size if ε is smaller, and secondly because the regularity condition
must hold for a larger range of subsets (Nx,Ny), since Nx ≥ εNk is a less stringent condition
if ε is lower (and similarly for Ny).
Based on the notion of ε-regular partition pairs, we define a regularity condition on a parti-
tioning π of a graph:

Definition 4 (ε-regular graph partitioning). [33] Consider a graph G(N ,L) with a partition-
ing π of the nodes into K+1 partitions {N0,N1, . . . ,NK}. Such a graph partitioning is called
ε-regular if it meets the following conditions:

(i) N0 ≤ εN

(ii) N1 = N2 = · · · = NK

(iii) All except at most εK2 of the partition pairs (k,m) for 1 ≤ k < m ≤ K are ε-regular

Roughly speaking, a graph partitioning is ε-regular if it contains K equally sized partitions
(ii) such that most partition pairs are regular (iii), where one additional “small" partition is
allowed to exist (i) on which conditions (ii) and (iii) do not apply. For a given K, a smaller
ε strengthens the regularity conditions. Firstly, because the regularity condition between
partition pairs becomes stronger, secondly, because N0 ≤ εN means that a lower number of
nodes are allowed to make up the “leftover partition" N0 and, finally, because εK2 becomes
smaller, implying that an increasing proportion of the partition pairs need to satisfy the
regularity condition (2-26). Since condition (iii) holds for partition pairs (k,m) with k 6= m,
the regularity conditions only applies to links between partitions and not within partitions.
Based on the regularity notion of a graph partitioning, Szemerédi’s regularity lemma is a
statement about the existence of finding a regular partitioning in arbitrary graphs, with a
number K of partitions effectively independent of the size N of the graph.
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Definition 5 (Szemerédi’s regularity lemma). [33] For every ε > 0 and every integer Kmin ≥
1, there exists an integer Kmax such that every graph on N ≥ Kmin nodes admits an ε-regular
graph partitioning in K partitions, with Kmin ≤ K ≤ Kmax.

The proof of SRL can be found in Diestel [33]. We exemplify the lemma: if we take a certain ε
and choose Kmin = 10, then SRL states that there is an integer Kmax, such that for any graph
with N > 10 nodes there exists an ε-regular partitioning of 10 ≤ K ≤ Kmax partitions. While
for N ≤ Kmax, the existence of an ε-regular partitioning automatically holds by choosing the
K = N partitioning, the result becomes stronger for N > Kmax. For very large graphs, i.e.
N � Kmax ≥ K, it is still always possible to have an ε-regular K-partitioning.
An interesting interpretation of SRL is given by Tao [34] who states that, roughly speaking:
“SRL can be viewed as a structure theorem for large dense graphs, approximating such
graphs to any specified accuracy by objects whose complexity is bounded independently of
the number of nodes in the original graph". Applied to UMFF, this means that, for any large
dense graph and any desired accuracy ε, there exists a partitioning in K � N partitions, such
that the topological approximation of UMFF between most (k,m) partition pairs (k 6= m)
is ε-accurate, in the sense that (k,m) are ε-regular partition pairs. While a regular graph
partitioning does not imply any regularity conditions on the within-partition links, Diestel
[33] mentions that by choosing Kmin large “we may increase the proportion of links running
between different partition sets (rather than inside one), i.e. the proportion of links that are
subject to the regularity assertion". In other words, if we take Kmin large enough for a given
ε, then most links will be between partitions (rather than within) and will thus satisfy the
regularity conditions.

Implications of SRL for UMFF

We believe that SRL can be translated to a statement about the scaling behavior of the SIS
process on large graphs. We will describe the conceptual idea here, realizing that a more
rigorous investigation would be necessary to proof any of the claims.
Since the regularity inequality (2-26) can be rewritten as (2-27), which has the same form as
the isoperimetric inequality, the ε-regularity of a partition pair also implies that the UMFF
topological approximation (2-5) has an ε-bounded approximation error (for subsets of suffi-
ciently large size). For an ε-regular graph partitioning with K + 1 pairs, this isoperimetric
interpretation then means that for most of the partition pairs (≥ εK2) the UMFF topological
approximation error is ε-bounded. Finally, SRL indicates that for any chosen accuracy ε
and sufficiently large minimum number of partitions Kmin, an integer Kmax exists such that
for any graph on N ≥ Kmin nodes, a partitioning can be found with Kmin ≤ K ≤ Kmax

partitions, such that most links are between partitions and most of the partition pairs have
ε-bounded approximation errors. Applied to UMFF, this means that for large graphs on N
nodes, a partitioning in Kmin < K � N partitions can always be found such that the UMFF
topological approximation between most partition pairs is bounded by a chosen ε, where choos-
ing a large enough Kmin results in most links being between partitions (by Diestel’s argument).
The UMFF approximation being ε-bounded on a large graph implies that the dynamics of
the SIS process on that graph can approximately be described by the dynamics on a much
smaller, weighted graph of dimension K � N .
Remark: The regularity of SRL only holds for subsets of size Nx ≥ εNk, where Nk ≈ N

K .
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Hence, the regularity weakens for growing N , because it no longer holds for cut-sets between
small subsets. The consequence for UMFF is that the regularity, and thus the boundedness
of the topological approximation error, only holds, if a sufficiently large fraction of nodes is
infected in both partitions, i.e. Nx infected nodes in Nk and Ny in Nm for any (k,m). Thus,
the dynamics are well approximated by lower-dimensional dynamics, only for disease states
where enough nodes are infected between any pair of partitions.

2-9 Related work

NIMFA on graphs with an equitable partitioning

Bonaccorsi et al. [35] study the NIMFA equations on graphs with an equitable partitioning.
A partitioning π is equitable if the subgraph between any two (possibly the same) partitions,
is bi-regular (regular). If a graph has such an equitable partitioning, and the initial infection
probability is the same for all nodes within one partition, then the NIMFA equations for the
SIS process on that graph can be exactly described by K rather than N equations [35]. This
result follows from the observation that equality in the UMFF topological approximation
(2-5) holds, i.e.

(u− w)TA(km)w = (ũ− w̃)T Ã(km)w̃ = ãkm(Nk − w̃k)w̃m

when A(km) is bi-regular, and that

Pr[W (0) = w] =
∣∣∣Wk

w̃k
∩Wm

w̃m

∣∣∣−1
Pr
[
W̃k(0) = w̃k, W̃m(0) = w̃m

]
∀w ∈ Wk

w̃k
∩Wm

w̃m

holds, when nodes from the same partition have equal initial infection probabilities. Hence,
the main point of [35] is that for this specific type of graph and initial condition, the number
of infective links between any two partitions only depends on the number of infected nodes
in those partitions, which enables a lower-dimensional description of the SIS process (within
the NIMFA approximation). This result is based on similar ideas as the UMFF framework,
but from a very different perspective: UMFF describes how the topological approximation
(2-5) applied to any graph, followed by a moment-closure approximation (2-6), results in a
lower-dimensional approximate description of the SIS process.

Approximating the number of infective links in SIS

A central concept of UMFF is the description of the topological approximation (2-5) from the
perspective of the isoperimetric problem. This approach of approximating the SIS process by
approximating the number of infective links has appeared before.
Ganesh et al. [36] find an upper-bound for the epidemic threshold, by relating the infection
terms in the SIS process to the isoperimetric problem. The isoperimetric, or Cheeger constant
[19] of a graph with adjacency matrix A is defined as:

ηc(A) = min
w∈{0,1}N

(u− w)TAw
wTw
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which leads to a lower-bound for the number of infective links as:

(u− w)TAw ≥ ηc(A)w̃ (2-28)

for any w ∈ {0, 1}N and where w̃ = wTw is the number of infected nodes. By assuming equal-
ity in (2-28), the SIS process is approximated by a linear death-birth process, from which an
approximate epidemic threshold is derived in [36].

Van Mieghem [37], [38] also approximated the SIS process by approximating the size of the
cut-set. Rather than relying on the isoperimetric problem, the most dominant terms in the
spectral decomposition of the quadratic form wTQw, which equals the number of infective
links, approximate the cut-set. Specifically, the approximation

(u− w)TAw ≈ µN−1
N

w̃(N − w̃)

is made. If this approximation error can be bounded by a constant θ ∈ R, i.e.∣∣∣∣(u− w)TAw − µN−1
N

w̃(N − w̃)
∣∣∣∣ ≤ θ (2-29)

then the exact equation for the expected number of infected nodes can be bounded as

E[W̃−θ(t)] ≤ E[W̃exact(t)] ≤ E[W̃+θ(t)] (2-30)

where the bounds follow from the differential equations:
dE[W̃+θ(t)]

dt
= −δE[W̃+θ] + β

µN−1
N

E[W̃+θ](N −E[W̃+θ]) + θ

dE[W̃−θ(t)]
dt

= −δE[W̃−θ] + β
µN−1
N

E[W̃−θ](N −E[W̃−θ])− θ
(2-31)

which are Riccati differential equations, whose analytic solution are known and have a hyperbolic-
tangent form [37]. In other words, the method of [37] and [38] gives bounds on the exact
expected number of infected nodes E[w̃exact(t)], if a constant bound θ on the approximation
error (2-29) is known.
By filling in c = µN−1 in Lemma 1 from Appendix A-3, we can show that θ ≤ N(µ1−µN−1)

4 = θ?.
Although not a tight bound, filling in θ = θ? in equations (2-31) gives:

E[W̃ (t)−θ? ] ≤ E[W̃exact(t)] ≤ E[W̃ (t)+θ? ]

which is a new result based on the spectral decomposition methodology of [37] and [38].

2-10 Summary of Chapter 2

2-10-1 Features of UMFF

We have introduced a novel approximation framework for the description of the Markovian
SIS process on complex networks. The main features of this Universal Mean-Field Framework
(UMFF) are:
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32 Universal mean-field framework for SIS epidemics

• UMFF unifies and generalizes a number of existing mean-field methods for approxi-
mating SIS epidemics on complex networks. In particular, two widely-used techniques,
the N-Intertwined Mean-Field Approximation [11] and the Heterogeneous Mean-Field
method [10] are shown to be contained by UMFF.

• The accuracy of UMFF and of all its the contained methods can be assessed based on
the isoperimetric analogy:

infected nodes↔ graph volume
infective links↔ graph surface

which provides bounds on the error of the UMFF topological approximation.

• UMFF leads to a conceptual description of the scaling behavior of SIS epidemics on
large graphs. Since the UMFF accuracy is related to the notion of regularity on which
Szemerédi’s regularity lemma (SRL) is based, we can translate the statements of SRL
about the structural regularity of large graphs to statements about the possibility to
accurately approximate SIS dynamics on large graphs by a lower-dimensional descrip-
tion.

2-10-2 Future directions

By providing a universal description of mean-field approximation techniques for the SIS pro-
cess, UMFF offers a framework, in which the existing techniques can be compared and which
enables their respective accuracy to be assessed. In principle, UMFF could prescribe which
existing (or new) mean-field method is more suitable, for a certain graph specification and
for a specific SIS process parameter of interest.
While derived specifically for SIS epidemics, the UMFF approach is applicable to more general
epidemic models. Sahneh et al. [39] for instance, describe the Generalized Epidemic Mean-
Field model (GEMF), which is a generalization of the NIMFA approach to epidemic models
with any number of compartments, and with a general transition structure between different
compartments. The global dynamics of this general epidemic model follow from node-based
compartmental transitions and edge-based compartmental transitions, which translates to
volume-based transitions and surface-based transitions in context of the isoperimetric prob-
lem. Hence, by exploiting the same problem structure and the isoperimetric analogy, UMFF
could generalize GEMF in a similar vein as UMFF generalizes NIMFA for the SIS compart-
mental process.
The general partitioning feature of UMFF also creates the possibility to develop new approx-
imation techniques for the SIS process. Specifically, if nodes can be grouped in partitions
based on some parameter such that similarity in that parameter corresponds to similarity
in connectivity, then UMFF is expected to yield a good approximation of the SIS process.
For instance, the embedding of graphs in metric spaces is studied in [40] and [41]. Nodes
are considered to be embedded in a metric space with linking probabilities between node
pairs dependent on the distance between them. Similarity in spatial coordinates (i.e. a small
distance) between a pair of nodes means that their distance to other nodes is also similar.
Hence, for such graph models, spatial closeness of nodes seems to provide a good partitioning
criterion for UMFF, and the coarse-graining of the infection state would then correspond to
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the intuitively attractive notion of spatial coarse-graining.
Furthermore, the observation that both the exact and approximate Markovian SIS processes
are equivalent to a higher-dimensional quadratic death-birth process opens up new perspec-
tives on modeling the SIS process. Some questions about the epidemic process have tractable
solutions if properly formulated in terms of death-birth processes. Ganesh et al. [36] for
instance, characterized the disease die-out probability [42] of the SIS process, based on the
gambler’s ruin problem [25] of a death-birth process. Conversely, the knowledge about the
epidemic process might provide valuable insights in the quadratic death-birth process, whose
exact solution is still an open problem [26].
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Chapter 3

The Circuit-Graph-Simplex equivalence
and Robustness of networks

3-1 Overview

This chapter discusses the thesis contributions related to the equivalence between passive
electrical circuits and weighted graphs. As discussed in the introduction, Chapter 1, this
circuit-graph equivalence is an interesting connection with both practical applications and
theoretical consequences. Figure 1-4 illustrated how this equivalence links the physical intu-
ition and knowledge from electrical circuits to the wide range of tools in graph theory and
network science. We will exploit the extended circuit-graph-simplex equivalence, and further
relations, to propose a graph robustness measure which is complementary to the existing
‘effective graph resistance’ robustness measure [17].

In Section 3-2 passive electrical circuits are introduced and the equivalence with weighted
graphs is defined. Next, Section 3-3 describes the electrical circuit laws and the compact
description of these laws with characteristic graph matrices. Section 3-4 introduces the ef-
fective resistance from the perspective of electrical circuits and describes the translation of
this concept to the context of graphs. Additionally, two interpretations and an application
of the effective resistance are given. In Section 3-5, the circuit-graph equivalence is extended
to equivalence with another mathematical object: a hyperacute simplex. We describe the
properties and representations of simplices and derive a new formula for the volume of a
hyperacute simplex in terms of Laplacian eigenvalues of its equivalent graph. Based on this
new formula, we propose to consider the simplex volume as a new graph robustness metric.
Section 3-6 concludes the Chapter with a summary of the results.
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3-2 Introduction: the Circuit-Graph equivalence 35

3-2 Introduction: the Circuit-Graph equivalence

An electrical circuit is a simplified model of an interconnected system of electrical compo-
nents. A wide variety of real-world electrical components can be characterized by circuit
model components. Any real interconnection of components can then be modeled by a circuit
of circuit models, which enables the electromagnetic field to be characterized throughout the
system.
The most basic electrical circuit consists only of passive, linear components: resistors. These
resistors are characterized by a resistance value1. To form a circuit, these resistors are con-
nected by ideal wires of zero Ohm resistance. Figure 3-1 shows how any passive electrical
circuit is composed of these two elements. Graphs, on the other hand, are composed of nodes
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Figure 3-1: Passive electrical circuits are composed of resistors, resistance values, and ideal wires.
Each resistor corresponds to one resistance value and is connected to two wires.

and links. Additionally, a positive, real value can be assigned to each link, which we call the
link weights. A weighted graph can thus be characterized as G(N ,L,W), where N is the set
of N nodes, L the set of L links between pairs of nodes andW the set of L weights, defined for
each link. Figure 3-2 illustrates how any weighted graph is composed by the node, link and
weight sets. As introduced in Chapter 1, the relation between electrical circuits and weighted
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Figure 3-2: Weighted graphs are composed of nodes, links between nodes and link weights.

graphs is widely studied. In particular, electrical circuits and weighted graphs are known to
be equivalent [43] in the sense that the description of each circuit corresponds to exactly one
weighted graph. Additionally, both representations contain the same information necessary
to constitute the relationship between the electrical signals in the circuit (see Section 3-3.

1The unit of resistance is Ohm [Ω] =
[

volt
ampere

]
. To avoid confusion with the effective resistance matrix (see

Section 3-4), which we will also denote by the symbol Ω, we will use “Ohm” to refer to a resistance value.
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36 The Circuit-Graph-Simplex equivalence and Robustness of networks

Definition 6 (Circuit-graph equivalence). Any passive electrical circuit corresponds to an
equivalent weighted graph. Conversely, every weighted graph has a corresponding electrical
circuit. This circuit-graph equivalence is defined by the following rules:

(i) Each uninterrupted stretch of ideal wire in the circuit corresponds to a node in the graph.

(ii) A resistor between two wires corresponds to a link between the two nodes which corre-
spond to those wires.

(iii) The weight of a link equals the reciprocal of the resistance value of the resistor corre-
sponding to that link.

The circuit-graph equivalence is further illustrated by Figure 3-3.
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connec�on�
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Figure 3-3: The circuit-graph equivalence means that every passive electrical circuit can be
translated in a weighted graph and conversely. Each node corresponds to a wire, each link
corresponds to a resistor and the link-weight equals the inverse of the corresponding resistors’
resistance.

Additional characteristic graph matrices

We define an additional characteristic matrix for an unweighted, directed graph G(N ,L): the
incidence matrix B. The incidence matrix is an N × L matrix, defined by

Bel = ei − ej for all links l = (i, j) ∈ L

where we allow the link element l ∈ L to index the columns of B. In other words, each column
of the incidence matrix B corresponds to one link, and this column has a value +1 on the
position of the node to which the link points, and a value −1 for the node where the arrow
comes from. Since by definition each link leaves exactly one node and points to exactly one
node, we can see that BTu = 0.
For undirected graphs, the incidence matrix can still be defined by assigning an arbitrary
direction to each link, i.e. Bel = ±(ei − ej). Additionally, the incidence matrix is related to
the Laplacian matrix by the identity Q = BBT .

For weighted graphs, the previous graph definition G(N ,L) can be modified to incorporate
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3-3 Electrical circuit characterization 37

the link weights. The link-weight information, i.e. a weight wij ∈ R for each link (i, j) ∈ L,
can be represented by an L × L diagonal matrix W = diag(w1, w2 . . . , wL). Combined with
the incidence matrix, the weighted Laplacian matrix Q̃ can then be written as Q̃ = BWBT

which gives:

Q̃ij =



−wij if (i, j) ∈ L
N∑
k=1

wki if i = j

0 otherwise

In the rest of this Chapter, the matrix Q = Q̃ will denote the weighted Laplacian. The
unweighted Laplacian can be considered as a specific case of a weighted graph, with wij = 1
for all links (i, j) ∈ L.

3-3 Electrical circuit characterization

3-3-1 Circuit laws

Broadly speaking, electrical circuits are used to study the electromagnetic field in an inter-
connection of electrical components. In a passive electrical circuit model, the electromagnetic
field throughout the whole circuit is characterized by defining one voltage value for each ideal
wire. To include external influences in the circuit model, an additional external current in
each wire is added to the description.

For N uninterrupted ideal wires, this means that the voltage is described by an N × 1 volt-
age vector, denoted by v = [v1 v2 . . . vN ]T . Since all voltages in a circuit are necessarily
defined with respect to a common, but arbitrary, reference level, only voltage differences are
important. In other words, the voltage vector v is equivalent to the voltage vector ṽ = v+ cu
for some scalar c because the voltage difference vij between any pair of wires i and j is the
same: vij = (ei− ej)T v = (ei− ej)T (v+ cu). As a result, we may choose the specific reference
voltage such that uT v = 0 holds, which is a useful choice for further notations and derivations.
With the knowledge of the voltage in each of the wires, it is also possible to calculate the
currents flowing through the resistors. Ohm’s law, which is based on the electrical properties
of resistive materials, provides a relation between the voltage over a resistor and the current
that flows through it:

Definition 7 (Ohm’s Law). In an electrical circuit, the current yij that flows from wire i
with voltage vj to wire j with voltage vj, through a resistor with rij Ohm resistance, equals

yij = vij
rij

If we combine the current through all links in an L×1 link-current vector y = [y1 y2 . . . yL]T ,
where eTl y = yl is the current through any link l ∈ L, then Ohm’s law can be compactly writ-
ten as

y = R−1BT v
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38 The Circuit-Graph-Simplex equivalence and Robustness of networks

where R and B are the characteristic graph matrices from the equivalent graph. The direction
of a link, as specified in B, determines the sign of the current through that link. In particular,
if Bel = (ei − ej) for some link l = (i, j) ∈ L, then yl > 0 corresponds to a current flowing
from wire i to j and opposite for yl < 0.

Without any external influence, a passive electrical circuit is in a trivial balance situation:
the voltage is constant throughout the network, i.e. v = 0, and as a result all the link cur-
rents are zero, i.e. y = 0. Hence, to extend the modeling possibilities of electrical circuits,
additional external currents are considered. In each wire i, such an external current xi is
added, where xi > 0 means that the current flows into the wire and opposite for xi < 0.
All external currents together can be represented by the N × 1 external-current vector
x = [x1 x2 . . . xN ]T . External currents “excite” the circuit from its passive all-zero state
because of the physical principle of conservation of charge. Roughly speaking, this principle
means that there can be no build-up of charge, anywhere in the circuit. If an external current
is flowing into a wire, this means that there is a net-influx of charge. In order for no charge
to build up, there must be a resulting current flowing out of that wire, and thus into the
network. This principle is formalized by Kirchhoff’s current law:

Definition 8 (Kirchhoff’s current law). The total net current arriving at, or leaving from any
wire equals zero. For any wire i, with currents yij flowing from i to its neighbors j ∈ N (i),
this means that

xi =
∑

j∈N (i)
yij

must hold.

Again, it is possible to compactly describe Kirchhoff’s current law based on the characteristic
matrices of the equivalent graph:

x = By

Now, because BTu = 0 it automatically follows that the external current vector has to satisfy
uTx = 0. In other words, the total sum of all the external currents introduced in the circuit
has to be zero. This observation also follows directly from the conservation of charge principle,
since the passive electrical circuit has no means of “adding” or “removing” charge, it can only
displace charge by link-currents.

3-3-2 (x, v, y)-Characterization

Based on the two circuit laws, i.e. Ohm’s law and Kirchhoff’s current law, any passive elec-
trical circuit defines a particular relation between voltage vectors v, external-current vectors
x and link-current vectors y. In other words, an electrical circuit determines a set of possible
(x, v, y) couples. In that sense, as shown in Figure 3-4, the electrical circuit can be seen as a
black box that simply defines these possible couples. From this perspective, the circuit-graph
equivalence can then understood as an equivalent graph and circuit defining the same possible
couples, which we will call (x, v, y)-equivalence.
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Figure 3-4: As a model, the electrical circuit describes the relation between three signals in the
circuit: the external-currents x, the wire voltages v and the link currents y. In other words, it
describes the possible (x, v, y)-combinations that can occur on the circuit. The electrical circuit
can thus be modeled as a black-box, specifying certain (x, v, y)-relations.

3-3-3 Graph Laplacian and pseudo-inverse Laplacian

From the three signals (x, v, y), it is possible to directly eliminate the link-current vector
y from this description by combining Ohm’s law and Kirchhoff’s current law. Because the
weighted Laplacian equals Q = BR−1BT , we find the relation

x = Qv (3-1)

Apart from being a compact description of the (x, v) relation, equation (3-1) is particularly
interesting because the Laplacian matrix Q is a well-studied matrix in graph theory and
network theory [19]. For instance, because we know the eigendecomposition of the Laplacian
matrix Q, we can rewrite equation (3-1) as

x =
(
N−1∑
i=1

µiziz
T
i

)
v ⇐⇒ v =

(
N−1∑
i=1

1
µi
ziz

T
i

)
x

This pseudo-inversion, which is an inversion in the subspace orthogonal to the u-vector, holds
because both the external-current vector x and the voltage vector v are orthogonal to the
zero-eigenvector u/

√
N , i.e. uTx = 0 and uT v = 0. If by Q† =

∑N−1
i=1 µ−1

i ziz
T
i we denote the

pseudo-inverse of the Laplacian matrix, then we can write the alternative (x, v) relation:

v = Q†x (3-2)

In the rest of this chapter, the practical applicability of the inverse relation (3-2) will become
apparent. Additionally, in other work, this pseudo-inverse relation is studied in other contexts
and deep theoretical implications are discussed. For instance Chung et al. [44] and Bendito
et al. [45] investigate the equation x = Q̃v, where Q̃ is a more general form of the Laplacain.
Chung relates Q̃ to the continuous Laplacian operator, and the pseudo-inverse Q̃† in that
setting is shown to be related to the Green’s operator of the Laplacian. Bendito et al.
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40 The Circuit-Graph-Simplex equivalence and Robustness of networks

generalize the Laplacian operator to the Schrödinger operator, and concepts from the circuit-
graph equivalence setting are related to similar concepts in this generalized setting. Both
examples illustrate the deep theoretic nature and the wide applicability of the concepts that
we are describing in the (limited) context of passive electrical circuits.

3-4 Effective Resistance

3-4-1 Effective resistance in electrical circuits

When studying electrical circuits, one is often not interested in the signals throughout the
whole circuit. For this reason, the effective resistance can be introduced, which effectively
“lumps” the whole-system response by one equivalent resistor. In particular, consider intro-
ducing an external current of Ic ampere in a wire i, and extracting the same current from
j. As a result, there will be a distribution of voltages over the wires in the circuit, and a
certain voltage difference between wires i and j, i.e. vij = vi − vj , will be established. In
other words, the equivalent effect of the whole network distributing the currents, is that an
“input” current of Ic ampere between wires i and j is related to an “output” voltage difference
vij between them. Moreover, the relationship between the introduced current and measured
voltage is linear: if this setup is repeated for multiple current values, i.e. I(1)

c , I
(2)
c , . . . , then

the proportionality with the measured voltage differences v(1)
ij , v

(2)
ij , . . . is constant and equal

to ωij :

ωij = I
(1)
c

v
(1)
ij

= I
(2)
c

v
(2)
ij

= . . . (3-3)

where we define ωij as the effective resistance between wires i and j. The name effective resis-
tance stems from the the fact that the whole-network effect leads to a linear current-voltage
relationship, which can be characterized by a single resistor with the effective resistance as
resistance value. Figure 3-5 further illustrates this concept.
While definition (3-3) is a measurement-based definition, the effective resistance it is a prop-
erty that follows directly from the circuit structure. Figure 3-6 shows the two combination
rules with which any network can be transformed into an equivalent resistor between two
specified wires. It is interesting to remark the conceptual meaning of the combination rules:
a series of resistors can be replaced by one resistor with the sum of the individual resistances.
Hence, adding resistors in series always increases the effective resistance between the end-
points of the series. Resistors in parallel, on the other hand, result in an effective resistance
which is lower than any of the individual resistances. Even stronger, adding resistors in par-
allel always decreases the effective resistance. As we will discuss later, these properties of
series and parallel connections are related to the concept of distance functions. The effective
resistance ωij can be calculated for any pair of wries i and j, which can be represented all to-
gether in the N ×N effective resistance matrix Ω, where ωij = eTi Ωej . The diagonal elements
of Ω are zero, i.e. ωii = 0 for all i, because introducing and subtracting the same current in
one wire is equivalent to introducing no current, and because vii = 0 by definition.
Because the effective resistances ωij only model the current-voltage relationship between dis-
tinct wire pairs, it is not immediately clear how Ω could capture the whole (x, v)-characteristic
of a circuit. However, with equation (3-5), we will show that this Ω contains enough infor-
mation for this characterization. Secondly, since the effective resistance lumps the network
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topology to a single resistor, it could be expected that this topological information can not
be reconstructed from Ω and that it wouldn’t be possible to also provide the full (x, v, y)
characterization, i.e. including also the link currents y. Again, we will show with equation
(3-7) that this full characterization is contained in the effective resistance matrix Ω. This idea
is further developed in Section 3-5 by considering an additional representation to complement
the circuit-graph equivalence.

3-4-2 Effective resistance in graphs

Based on the circuit laws and the resulting relations x = Qv and v = Q†v, it is possible
to derive an alternative expression for the effective resistance. We translate the effective
resistances measurement setup to the setting of circuit equations, based on vij = (ei − ej)T v.

Master of Science Thesis Karel Devriendt
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For the definition of the effective resistance, this yields:

ωij = vij
Ic

= 1
Ic

(ei − ej)T v

Now, because introducing an external current of Ic ampere in wire i and subtracting the same
current from j corresponds to an external-current vector x = (ei − ej)Ic, and because of the
(x, v)-relation v = Q†x (equation (3-2)), this can be rewritten as:

ωij = (ei − ej)TQ†(ei − ej) = Q†ii +Q†jj − 2Q†ij (3-4)

Apart from showing how the effective resistance can be calculated from the pseudo-inverse
of the Laplacian of the equivalent graph, equation (3-4) also enables the effective resistance
to be further studied in terms of linear equations. In Appendix B-1, we derive the following
equation:

v = −1
2

(
I − uuT

N

)
Ωx (3-5)

which shows that the effective resistance matrix Ω indeed contains enough information to
fully characterize the (x, v)-relation of the circuit.

3-4-3 Applications of the effective resistance in graphs

While the effective resistance is originally defined based on electrical circuit concepts, expres-
sion (3-4) means that the effective resistance can be derived directly from the (pseudo-inverse)
graph Laplacian, without an explicit connection to electrical circuits. As a result, we can talk
about the effective resistance ωij between pairs of nodes for any graph.
An interesting property of the effective resistance on graphs is that it defines a distance
function between the nodes. This property can be understood conceptually by considering
the effective resistance combination rules depicted in Figure 3-6. Roughly speaking, introduc-
ing resistors (and thus links) in a series connection increases the effective resistance, in other
words the distance, between a pair of nodes. Adding resistors (or links) in parallel however,
adds alternative paths between the nodes which reduces the effective distance. The resistance
distance is thus reflecting the (path-)length of the paths between two nodes, as well as the
number of alternative paths between then. The distance property was introduced in 1993 by
Randic and Klein [16]. In a paper with the telling title “Resistance distance”, they showed
the following fact:

Theorem 5 (Resistance is distance). [16] For any weighted graph, the effective resistance
defines a distance function between nodes. In other words, for all nodes i, j, k ∈ N , the
following conditions hold:

(i) ωij ≥ 0

(ii) ωij = 0 ⇐⇒ i = j

(iii) ωij = ωji

(iv) ωij ≤ ωik + ωkj
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Compared to other distance functions on graphs, like the shortest-path distance, the resis-
tance distance is a “nice” distance function in the sense that it has a tractable description in
terms of the characteristic graph matrices.

A second interpretation of effective resistances on graphs, this time in terms of random
walks, is given by Doyle and Snell [46] and Chandra et al. [47]. A random walk is a process
on a graph that describes the probability pi[t] of a “random walker” to be on a certain node
i in the network at a given time-step t. This random walker moves through the network
according to the following process:
(a) At time-step t=0, the walker is at node i with probability pi[0] for each i.
(b) From any time t to the next time-step t+ 1, the random walker moves from a node i to
one of its neighboring nodes j ∈ N (i) with a probability Pij proportional to the link-weight
wij . All transition probabilities can be represented by the transition matrix P = ∆−1A.
(c) All together, the random walk can be characterized as:

p[t] = P tp[0] for t = 0, 1, . . .

where the N × 1 vector p[t] = [p1[t] p2[t] . . . pN [t]]T contains the random walker position
probabilities at time-step t.
For the random walk process, the commute time Cij is defined as the expected time it takes
for a random walker that starts at node i to reach node j and return to node i. Chandra et
al. show the following result:

Theorem 6 (Resistance is commute time). [47] In a weighted graph G(N ,L,W) with W =∑
∀l∈Lwl the sum of all link weights, the commute time Cij between a pair of nodes is related

to the effective resistance ωij as

Wωij = Cij ∀i, j ∈ N

From Theorem 6, we can conclude that the effective resistance on a network reflects how well
pairs of nodes are connected, with respect to random walks taking place on that network.

A third interpretation of the effective resistance is given in the context of network ro-
bustness. Ellens et al. [17] define the effective graph resistance RG as the sum of all effective
resistances:

RG = 1
N

N∑
i=1

N∑
j=i+1

ωij = 1
2N uTΩu (3-6)

Interestingly, the effective graph resistance equals the arithmetic mean of the inverse Laplacian
eigenvalues [16]:

RG = 1
N

N−1∑
i=1

1
µi

Several arguments are given in [17] as to why the effective graph resistance RG is related
to the robustness of a graph. In Section [ref], these arguments are discussed in more detail.
Conceptually, a low RG value corresponds to a low average resistance distance between nodes,
which means a good connectivity between all node pairs.
The same value RG is also used as a graph invariant in the context of molecular graphs, i.e.
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44 The Circuit-Graph-Simplex equivalence and Robustness of networks

graphs representing the structural formula of a molecule, where RG is called the Kirchhoff
index [15]. Additionally, Ghosh et al. [48] provide an excellent overview of optimization
problems related to the effective resistance, including optimization problems for the effective
graph resistance.

3-4-4 The inverse Q− Ω relation

From the circuit perspective, the effective resistance is a characterization of the current-voltage
relation between pairs of wires (equation (3-3) and Figure 3-5):

ωij = vij
Ic

Based on the circuit laws, we then found that the effective resistance matrix Ω captures the
full (x, v)-relationship of the circuit (equation (3-5)):

v = −1
2

(
I − uuT

N

)
Ωx

Furthermore, we can show that the effective resistance matrix Ω also contains enough infor-
mation for a full (x, v, y)-characterization of the network. This result follows from the inverse
relation between the Laplacian Q and the effective resistance matrix Ω:

Definition 9 (Inverse Q-Ω relation). For any weighted graph with Laplacian matrix Q and
effective resistance matrix Ω, the following inverse relation holds:

− 1
2

[
0 uT

u Ω

]
=
[
ζTQζ + 4RG

N2 −(Qζ + 2
N u)T

−(Qζ + 2
N u) Q

]−1

(3-7)

where the N × 1 vector ζ =
[
Q†11 Q

†
22 . . . Q†NN

]T
contains the diagonal elements of the

pseudo-inverse Laplacian.

This equation can be checked with the inversion formulas for block-matrices [19]. While we
do not have an immediate intuitive explanation2 for the precise form of the block-matrix
extension of Q with the value ζTQζ+ 4RG

N2 and the vector (Qζ+ 2
N u), we can understand that

the inverse Q-Ω relation (3-7) represents the same conceptual inverse relationship between Ω
and Q as suggested by equation (3-5):

−1
2(ei − ej)TΩ(ek − em) = (ei − ej)TQ†(ek − em)

The interesting implication of equation (3-7) is that Q can be calculated directly from Ω. In
other words, we can retrieve the topology of the graph based on Ω alone. This means that
the (x, v)-equivalence between circuits, graphs and the effective resistance representation is
effectively an (x, v, y)-equivalence.

2Based on the circuit-graph-simplex equivalence (Theorem 7) it is possible to find an interpretation of the
term ζQζ+ 4RG

N2 : if by R we denote the radius of the circumsphere of the equivalent simplex, then the relation
R2 = ζQζ + 4RG

N2 holds. This was first described by Coxeter [49] in 1930.
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3-5 Circuit-graph-simplex equivalence

In the previous section, we showed that based on the inverse relation (3-7), the distance
matrix Ω is an equivalent representation to weighted graphs and circuits. However, it is
not immediately clear which restrictions exist on the properties of the matrix Ω such that it
corresponds to a weighted graph and an electrical circuit. Can we just pick any distance matrix
(i.e. with ωij values satisfying the distance-function conditions) and find the corresponding
circuit-graph representations? In other word, is the full class of distance matrices equivalent
to the class of weighted graphs and electrical circuits, or only a sub-class of distance matrices
due to additional restrictive conditions on the form of Ω?
These questions are answered by Fiedler [43] in the context of another object: a simplex.

Definition 10 (Simplex). An N -simplex S is the convex hull of N + 1 points in RN . More
specifically, for the set P = {p0, p1, . . . , pN} containing N points pi ∈ RN , and with the set of
vectors {pi − pj}∀i<j linearly independent, the simplex S(P) defined by this set of point equals
the following N -dimensional polyhedron:

S(P) =
{

N∑
i=0

θipi

∣∣∣∣∣
N∑
i=0

θi = 1 and θi ≥ 0 for all i
}

A simplex can be seen as a higher-dimensional generalization of a triangle (2-simplex) or a
prism (3-simplex). An N -simplex is called hyperacute, if all interior angles between (N − 1)-
dimensional faces are acute or right, i.e. less than or equal to π

2 radians.
Since a simplex is a geometric object, it is natural to talk about distances. For an N -simplex
with vertex set P, we can write an N × N matrix which contains the pairwise distances
between points in P. For the squared Euclidean distance specifically, we define:

Definition 11 (Squared Euclidean distance (SED) matrix). For an N -simplex with corre-
sponding point set P = {p1, p2, . . . , pN}, the squared Euclidean distance matrix H is defined
by the pairwise distances:

hij = eTi Hej = (pi − pj)T (pi − pj)

We will further also use H̃ to denote the function that maps a simplex S to its corresponding
SED matrix H, i.e. H̃(S) = H. Since the SED matrix only contains information about the
pairwise distances between points, it is possible for different simplices S1 and S2 to correspond
to the same SED matrix, i.e. H̃ (S1) = H̃ (S2). In this case, we call S1 and S2 congruent
simplices. In 2D, congruent triangles are rotated, translated and mirrored versions of each
other. Shrinking or changing the angles of the triangles is not allowed since, indeed, this
would change the distances between the vertices.
A class of congruent simplices S̃(H) can be defined as3:

S̃(H) =
{
S?|H̃(S?) = H

}
(3-8)

Since also the simplex volume is invariant with respect to congruence, we can define the
simplex volume based on the class of congruent simplices:

V (S̃(H)) = f(H)
3Alternatively, classes of congruent simplices can be defined by other invariants, for instance by all interior

angles between N − 1-dimensional faces combined with the simplex volume
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where the function f(H) illustrates that the volume depends only on H, i.e. the volume is
an invariant for the S̃(H).
The observation that an SED matrix corresponds to a class of congruent hyperacute simplices
leads to the following extension of the circuit-graph equivalence [43]:

Theorem 7 (Circuit-graph-simplex (CGS) equivalence). The following objects are equivalent:
weighted graphs, passive electrical circuits and classes of congruent hyperacute simplices.

In other words, each of these objects can be translated one-to-one to all the others. The proof
is given by Fiedler in [43], and can be sketched based on the provided context as follows:
(i) Each graph-circuit pair is equivalent to an Ω matrix (Equation (3-7))
(ii) Ω is an SED matrix (Appendix B-3)
(iii) Each SED matrix corresponds to a class of congruent simplices (Equation (3-8))
(iv) Specifically the subclass of hyperacute simplices is equivalent (see [50],[18])

3-5-1 The volume of a hyperacute simplex

Based on the numerous connections between electrical circuits, weighted graphs and hyper-
acute simplices that follow from the CGS equivalence, we introduce a new formula for the
volume of a hyperacute simplex:

Theorem 8. The volume VG of a hyperacute (N − 1)-simplex S equals

VG = |S| = 1
(N − 1)!

√
ξ

(3-9)

where ξ = 1
N

∏N−1
i=1 µi is the product of the non-zero Laplacian eigenvalues of the equivalent

weighted graph.

In order to proof Theorem 8, we start by introducing a formula for the volume of a general
simplex.
Motivated by the particular block-matrix form of the inverse Q-Ω relationship, specifically the
matrix

[
0 uT

u Ω

]
, we consider the simplex-volume problem in the context of distance geometry.

A particular result by Menger [51] relates the volume of a simplex to the corresponding SED
matrix:

Theorem 9 (General simplex volume). The volume of an N -simplex with corresponding SED
matrix H is given by:

V
(
S̃(H)

)2
= (−1)N+1

2N (N !)2 det
[

0 uT

u H

]

The determinant det
[

0 uT

u H

]
for some SED matrixH, is called the Cayley-Menger determinant.

This general expression for the volume of a simplex provides the starting point for the proof
of Theorem 8:
Proof of Theorem 8:
For the specific case of hyperacute simplices, we know that the SED matrix H can be seen
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as an effective resistance matrix Ω. For a hyperacute (N − 1)-simplex with corresponding
N ×N effective resistance matrix Ω, Theorem 9 allows us to write:

V 2
G = V

(
S̃(Ω)

)2
= (−1)N

2N−1((N − 1)!)2 det
[

0 uT

u Ω

]
(3-10)

Moreover, from the inverse Q-Ω relation, we know that

det
[

0 uT

u Ω

]
= det

−2
[
ζTQζ + 4RG

N2 −(Qζ + 2
N u)T

−(Qζ + 2
N u) Q

]−1


In Appendix B-2, we show how the expression det
(
Q\{i,j}

)
= (−1)i+jξ, which is related to

Kirchhoff’s matrix-tree theorem [19], enables the Cayley-Menger determinant to be calculated
as:

det
[

0 uT

u Ω

]
= (−1)N2N−1

ξ
(3-11)

Filling in equation (3-11) in the simplex volume expression (3-10) then leads to Theorem 8.
�

3-5-2 Simplex volume as a complementary robustness measure

In [17], Ellens et al. propose the effective graph resistance RG as a robustness measure. They
provide four arguments why a lower RG reflects a higher robustness:
(a) The effective resistance ωij between a pair of nodes represents the distance between these
nodes, including parallel ‘back-up paths’, which is thus a measure of how well connected a
pair is. Since the effective graph resistance is the average effective resistance between all node
pairs, it reflects how well nodes are connected on average.
(b) The effective resistance can be approximated by the inverse second smallest Laplacian
eigenvalue, i.e. RG ∼ µ−1

N−1, which is known to reflect network robustness.
(c) RG decreases strictly when links are added to a network, which corresponds to the intu-
itive notion that the robustness of a network would increase by adding links4.
(d) Because the effective resistance is proportional to the commute time 6, it reflects how well
nodes are linked together.

We adopt the idea from [17] that RG reflects the robustness of a network, and propose the
simplex volume VG as a complementary robustness measure. The main motivation is that for
graphs with the same effective graph resistance RG, the simplex volume VG can discriminate
between the different graphs, where a higher simplex volume corresponds to a higher robust-
ness. Figure 3-7 illustrates this for the example of three graphs, and their corresponding
triangles (2-simplices). The triangles have the same sum of squared edge lengths RG, but
they enclose a different area VG. Additionally, it can be seen that a larger VG corresponds to
a more narrow distribution of the edge lengths ωij in the triangles, and thus a more balanced
network topology. Extrapolating this observation to N -simplices, leads to the suggestion that

4In theory, adding nodes to a network can also deteriorate the “performance” of that network. This
counterintuitive effect is commonly called Braess’s paradox [52].
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Figure 3-7: Three triangles (2-simplices) with the same effective graph resistance value RG,
but with different enclosed areas VG. Amongst triangles with the same RG value, a higher
volume corresponds to more similar edge-lengths, i.e. a more narrow distribution of the effective
resistances ωij .

graphs with the same RG value can be distinguished based on VG. Furthermore, we argue
that a more narrow distribution of the effective resistance, i.e. a higher VG, corresponds to
a higher robustness, because it implies a smaller difference between the “worst connected”
node pairs and the “best connected” node pairs.
Remark: Maximizing VG without regarding RG is not a good strategy because this maxi-
mization can work in the “opposite direction” of minimizing RG. A large simplex volume can
be achieved by evenly distributed effective resistances (the desired property), but it can also
be achieved by large values for the effective resistances (an undesired property). Hence, it is
necessary to compare VG for fixed, or similar RG values, such that VG differences correspond
to differences in the effective resistance distribution.

An additional argument to consider simplex volume as a complementary measure to the
effective resistances, follows from comparing the equations for both measures. The effective
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graph resistance RG equals (3-6):

RG = 1
N

N−1∑
i=1

1
µi
∝

N−1∑
i=1

1
µi

(3-12)

while the simplex volume is given by Theorem 8:

VG = 1
(N − 1)!

√
ξ
∝

√√√√N−1∏
i=1

1
µi

(3-13)

where the proportionality sign “∝” denotes that additive and multiplicative constants related
to N are omitted. Equation (3-12) shows that RG is related to the arithmetic mean, while
VG is related to the geometric mean5 Hence, complementing RG with VG is closely related to
complementing the arithmetic mean with the geometric mean. This illustrates that, indeed,
the simplex volume provides additional information compared to RG only.

3-6 Summary of Chapter 3

The main subject of this chapter is the circuit-graph-simplex (CGS) equivalence. An overview
of this equivalence is given, starting from the description of passive electrical circuits and the
circuit laws. Then, based on the circuit-graph equivalence, the circuit concept of effective
resistance is translated to graphs, where it has many applications. Finally, a description of
the relation between simplices, squared Euclidean matrices and the effective resistance matrix
Ω leads to the CGS equivalence.
In the context of the CGS equivalence, a new formula is introduced for the volume VG of
a hyperacute simplex. The formula expresses VG in terms of the Laplacian eigenvalues of
the corresponding graph, which leads to a network robustness interpretation of the simplex
volume. The main argument for this interpretation is the observation that for fixed RG values,
a difference in VG corresponds to a difference in the connectivity homogeneity.

5For a set of numbers x1, x2, . . . , xN , the arithmetic mean Ma is defined as Ma = 1
N

∑N

i=1 xi, while the

geometric Mg is defined as Mg = N

√∏N

i=1 xi. This means that Mg = V
2
N

G corresponds to the geometric mean.
Since the function f(x) = N

√
x2 is monotonically increasing, i.e. x1 > x2 ⇐⇒ f(x1) > f(x2), the geometric

mean of the inverse Laplacian eigenvalues reflects the same order between graphs: M (1)
g > M

(2)
g ⇐⇒ V

(1)
G >

V
(2)

G .
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Chapter 4

Conclusion

This thesis describes the contribution to two problems in network science. The first problem
relates to the general pursuit of better understanding the behavior of dynamical processes
on networks. As a particular dynamical process, the spreading of the Susceptible-Infected-
Susceptible disease model on networks is studied. Secondly, the theoretical equivalence be-
tween electrical circuits and graphs is used as a starting point to study the network topology
and network robustness. While at first sight these problems appear to be unrelated, a more
elaborate description in the ‘language’ of networks leads to the conclusion that both problems
can be approached with a same set of tools. In both problems, for instance, the Laplacian
eigenvalues play an important role. These eigenvalues are related to the Laplacian-matrix
representation, in one case of the contact network over which the disease spreads, and in
the other case of the circuit-equivalent graph. For the epidemics problem, we found that
the Laplacian eigenvalues can be used to bound topological mean-field approximations, based
on the geometric notion of the isoperimetric problem. For the circuit-related problem, we
found that a geometric representation of circuits and graphs, i.e. a simplex, could be used
to quantify the robustness of those circuits and graphs. The specific formula that represents
this robustness measure, i.e. the simplex volume, is an expression in terms of the Laplacian
eigenvalues. This somewhat surprising connection between network epidemics and electrical
circuits is a good example of the strength of the ‘network approach’ to solve certain prob-
lems. By providing the common language of networks and dynamical processes, seemingly
disparate problems can be approached with the same set of tools. Hence, developments in
analysis tools or in one of the many fields related to network science, have the possibility to
translate to other fields, and lead to solutions for problems in those fields. In the same line of
thought, the contributions of this thesis might be related to problems in a different context
in the future, which is in itself an interesting direction for future work

Summary of the Chapters

Chapter 1 describes the context and motivation of the thesis contributions, starting from an
introductory description of network science. A general discussion of networks and their use
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in modeling complex systems, provides the context in which the two specific topics of this
thesis are discussed: dynamical processes on networks and electrical circuits.

The work on network epidemics in Chapter 2 consists of an overview of the Markovian SIS
model, the proposal of the Universal Mean-Field Framework as a general framework for SIS
approximation methods, and a discussion of the implications of UMFF in terms of new ap-
proximation bounds and a link to Szemerédi’s regularity lemma.
While this thesis mainly focused on introducing the framework and its properties, possible
further work could focus on (i) a practical comparison of different existing mean-field meth-
ods based on the insights from UMFF, (ii) a quantitative investigation of the isoperimetric
inequalities for the UMFF approximation and (iii) further studying the connection with Sze-
merédi’s regularity lemma, and the possible implications it has for epidemics on large graphs.

The work on the circuit-graph-simplex equivalence in Chapter 3 consists of an overview of
electrical circuit models, the implications of the circuit-graph equivalence and finally of the
effective resistance as a combining ingredient for the CGS equivalence. Then, based on this
equivalence, we introduce a new formula for the volume of a hyperacute simplex and interpret
this volume as a network robustness measure.
Since the simplex volume is discussed only briefly, future work should focus on (i) a deeper
investigation of the implications of the new formula, (ii) a broader literature research to com-
bine the different perspectives related to the result, i.e. simplex geometry, network robustness,
etc. and (iii) experimental quantification of the simplex volume as a robustness measure. All
together, these further steps should make out whether the simplex volume has a practical use
as a robustness measure.
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Appendix A

Appendix UMFF

A-1 Derivation of exact SIS equations for W̃ and E[W̃ ]

A-1-1 The Kolmogorov equations for Markov Chains

As a background for the further derivation of the UMFF equations (2-4), we start with a toy
example to illustrate how the Kolmogorov equations are found for a Markov Chain. Further
details can be found in [25]. Consider the 3-state Markov chain in W (t) below: The Markov

w1 w2 w3r12 r23

r32r21

chain has three states: w1,w2 and w3, with state probabilities Pr[W (t) = wi] and transition
rates rij , for 1 ≤ i 6= j ≤ 3. By the subscript “ij" in the rates rij , we denote the transition
from state i to state j, i.e. i→ j. As mentioned in Section 2-3, we assume that the transition
processes are independent Poisson processes with exponentially distributed inter-event times,
for example for the transition r12 this yields:

Pr[W (t+ h) = w2|W (t) = w1] = r12e
−r12h

For h→ 0, this transition leads to:{
dPr[W (t)=w2]

dt = r12 Pr[W (t) = w1]
dPr[W (t)=w1]

dt = −r12 Pr[W (t) = w1]

Combining all transitions then leads to the Kolmogorov equations:
dPr[W (t)=w1]

dt = −r12 Pr[W (t) = w1] + r21 Pr[W (t) = w2]
dPr[W (t)=w2]

dt = r12 Pr[W (t) = w1]− (r23 + r21) Pr[W (t) = w2] + r32 Pr[W (t) = w3]
dPr[W (t)=w3]

dt = r23 Pr[W (t) = w2]− r32 Pr[W (t) = w3]
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Hence, by identifying the state transitions and according rates, one obtains the Kolmogorov
equations of a Markov Chain, which completely characterize the dynamics of the process for
a given initial distribution Pr[W (0) = wi], for each possible state w.

A-1-2 State probability Pr[W̃ (t) = w̃]

As described in Sections 2-4 and 2-5, the reduced-state vector w̃ is introduced to compactly
describe the disease state and to reduce the complexity of the SIS process description. Instead
of describing the state of each node separately, the reduced-state vector w̃ = (w̃1, w̃2, . . . , w̃K)
captures the number of infected nodes in each partition, by the relation w̃k = sTkw. By
Wk
x =

{
w ∈ {0, 1}N

∣∣sTkw = x
}

we denote the set of all full-state vectors w with x nodes
infected in partition k (and with any possible number of nodes nodes in the other partitions
m 6= k). Each full-state vector w ∈

⋂K
k=1Wk

w̃k
then corresponds to the reduced-state vector

w̃, since each setWk
w̃k

constrains the number of infected nodes in a specific partition k. Based
on this notation, we can represent the coarse-graining of the full states to the reduced states
as:

K⋂
k=1
Wk
w̃k

group by partitioning π−−−−−−−−−−−−−−→ w̃

The full-state and reduced-state probabilities are then related as:

Pr[W̃ = w̃] =
∑

w∈
⋂K

k=1W
k
w̃k

Pr[W = w] (A-1)

and similarly, the rates are related as:

rw̃k(w̃k±ẽk) Pr[W̃k = w̃k] =
∑

w∈
⋂K

i=1W
i
w̃i

∑
j∈Nk

rw(w+ej) Pr[W = w] (A-2)

which is illustrated in Figure 2-6. More can be said about the reduced-state transition struc-
ture: firstly, the entries w̃k represent the number of infected nodes in partition k, from which
it follows that

w̃ ∈ {0, 1, . . . , N1} × {0, 1, . . . , N2} × · · · × {0, 1, . . . , NK},

and secondly, since a state transition in the Markovian SIS process reflects a single infection
or curing event, the possible transitions between reduced states are of the form

w̃ → w̃ ± ẽk

Hence, the reduced states and their transitions constitute an (N1+1)×(N2+1)×· · ·×(NK+1)
lattice. This structure can be represented compactly by the chain below, which depicts
one specific “direction" in the lattice, corresponding to one partition k. However, since the
transition rates between reduced states depend on the full states (A-2), the transitions at the
reduced-state level do not describe a Markov chain. Nonetheless, it is still possible to write
the exact, but not-closed differential equations for the reduced-state probabilities by grouping
the Kolmogorov equations according to the partitions:

dPr[W̃ = w̃]
dt

=
∑

w∈
⋂K

k=1W
k
w̃k

dPr[W = w]
dt
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w̃ − ẽk w̃ w̃ + ẽk. . . . . .
r(w̃−ẽk)w̃ rw̃(w̃+ẽk)

r(w̃+ẽk)w̃rw̃(w̃−ẽk)

Considering the transitions within the partitions separately enables the Kolmogorov equations
at the reduced-state level to be written as:

dPr[W̃ (t) = w̃]
dt

=
K∑
k=1

(
− rw̃(w̃−ẽk) Pr[W̃ = w̃] + r(w̃+ẽk)w̃ Pr[W̃ = w̃ + ẽk]

− rw̃(w̃+ẽk) Pr[W̃ = w̃] + r(w̃−ẽk)w̃ Pr[W̃ = w̃ − ẽk]
) (A-3)

The transition rates at the reduced-state level are derived below.

Transition rates rw̃(w̃−ẽk) and r(w̃+ẽk)w̃: node healing in partition k.

By the grouping relation (A-2) between the full states and the reduced states, the reduced-
state transition rates are given by:

rw̃(w̃−ẽk) Pr[W̃ = w̃] =
∑

w∈
⋂K

i=1W
i
w̃i

∑
j∈Nk

rw(w−ej) Pr[W = w] (A-4)

The transition rate rw(w−ej) in equation (A-4) corresponds to node j healing in state w, i.e.
the transition Wj = 1 → Wj = 0. The healing rate in UMFF is δ for any node, hence the
transition rate equals

rw(w−ej) = δwj

for any full-state vector w and node j. The sum of the healing rates for all nodes in a partition
k is then: ∑

j∈Nk

rw(w−ej) = δsTkw = δw̃k (A-5)

Substituting (A-5) in the rate equation (A-4) and invoking (A-1) then yields

rw̃(w̃−ẽk) Pr[W̃ = w̃] = δw̃k Pr[W̃ = w̃] (A-6)

for the reduced-state transition rate corresponding to a node healing in partition k, in state
w̃. A similar derivation yields

r(w̃+ẽk)w̃ Pr[W̃ = w̃ + ẽk] = δ(w̃k + 1) Pr[W̃ = w̃ + ẽk] (A-7)

for the reduced-state transition rate corresponding to a node healing in partition k, in state
w̃ + ẽk.
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Transition rates rw̃(w̃+ẽk) and r(w̃−ẽk)w̃: a node in partition k is infected.

By the grouping relation (A-2) between the full states and the reduced states, the reduced-
state transition rates are given by equation:

rw̃(w̃+ẽk) Pr[W̃ = w̃] =
∑

w∈
⋂K

i=1W
i
w̃i

∑
j∈Nk

rw(w+ej) Pr[W = w] (A-8)

The transition rate rw(w+ej) in equation (A-8) corresponds to node j becoming infected in
state w, i.e. the transition Wj = 0→Wj = 1. Since

eTj Aw =
N∑
i=1

aijwi

is the number of infected neighbors of node j, and since each infected neighbor infects node
j at a rate β if wj = 0, the full-state transition rate

rw(w+ej) = β(1− wj)eTj Aw

is found. The sum of infection rates for all nodes in partition k is then:

∑
j∈Nk

= β
K∑
m=1

(u− w)TA(km)w (A-9)

where the sum over partitions 1 ≤ m ≤ K is introduced such that the block-matrix A(km),
which naturally reflects the partition structure, can be used. Filling (A-9) into the rate
equation (A-8) then yields:

rw̃(w̃+ẽk) Pr[W̃ = w̃] = β
K∑
m=1

∑
w∈Wk

w̃k
∩Wm

w̃m

(u− w)TA(km)wPr[W = w] (A-10)

for the reduced-state transition rate corresponding to a node becoming infected in partition
k, in state w̃. A similar derivation yields

r(w̃−ẽk)w̃ Pr[W̃ = w̃ − ẽk] = β
K∑
m=1

∑
w∈Wk

(w̃k−1)∩W
m
w̃m

(u− w)TA(km)wPr[W = w] (A-11)

for the reduced-state transition rate corresponding to a node becoming infected in partition
k, in state w̃ − ẽk.

Resulting reduced-state equations

Introducing the rates (A-6),(A-7),(A-10) and (A-10) the Kolmogorov equations (A-3) estab-
lishes equation (2-7) in Section 2-5.
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A-1-3 Expected number of infected nodes E[W̃k]

The equations for the expected number of infected nodes E[W̃k] can be derived from the
reduced-state probability equations (2-7), based on the definition of expectation and the law
of total probability. For any partition k, we can write the expected number of infected nodes
as:

E[W̃k] =
Nk∑
w̃k=0

w̃k Pr[W̃k = w̃k] (A-12)

Since by the law of total probability, the marginal probability can be written as:

Pr[W̃k = w̃k] =
N1∑
w̃1=0

· · ·
Nl∑
w̃l=0
· · ·

NK∑
w̃K=0︸ ︷︷ ︸

∀l 6=k

Pr[W̃ = w̃]

such that (A-12) equals

E[W̃k] =
N1∑
w̃1=0

· · ·
Nl∑
w̃l=0
· · ·

NK∑
w̃K=0︸ ︷︷ ︸

∀l

w̃k Pr[W̃ = w̃] (A-13)

Differentiation with respect to time of equation (A-13) then yields:

dE[W̃k]
dt

=
N1∑
w̃1=0

· · ·
Nl∑
w̃l=0
· · ·

NK∑
w̃K=0︸ ︷︷ ︸

∀l

w̃k
dPr[W̃ = w̃]

dt
(A-14)

After substitution of dPr[W̃=w̃]
dt from equation (2-7), we arrive at equation (2-8) in Section

2-5.

A-2 Higher-order UMFF

The UMFF equations can be extended to higher-order moments, in order to better capture
the dynamic correlations of the SIS process.
For the case of K = N partitions, Cator et al. [28] and Mata et al. [14] have described
how the NIMFA [11] and Quenched Mean-Field (QMF) [29] equations can be extended to
n’th-order moments:

E[Wi]→ E[Wi],E[WiWj ], . . . ,E[WiWj . . .Wl︸ ︷︷ ︸
n

]

based on the exact SIS dynamics. In order to have a closed set of equations for order n, the (n+
1)’th-order moments must be approximated by lower-order moments, i.e. an approximation
of the form:

E[WiWj . . .Wl︸ ︷︷ ︸
n+1

] ≈ f

E[WiWj . . .Wl︸ ︷︷ ︸
∀m≤n

]


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where different choices for the moment-closure approximation f are given in [28] and [14].
Similarly, we can define the higher-order Universal Mean-Field Framework as:

Definition 12 (Higher-order UMFF). Consider a graph G(N ,L), an epidemic process with
rates (β, δ) and a graph partitioning π. For any integer n ≤ K, the n’th-order UMFF equa-
tions are given by:

dE
[∏K

k=1 W̃
pk
k

]
dt

=
N1∑
w̃1=0

· · ·
Nk∑
w̃k=0

· · ·
NK∑
w̃K=0︸ ︷︷ ︸

∀k

K∏
k=1

w̃pk
k

dPr[W̃ = w̃]
dt

(A-15)

for all vectors p ∈
{
p ∈ NK |0 ≤ pk ≤ Nk,∀k and uT p ≤ n

}
and with dPr[W̃=w̃]

dt given by equa-
tion (2-10). The (n + 1)’th-order moments appearing in the higher-order UMFF equations
are approximated by:

E
[
K∏
k=1

W̃ pk
k

]
≈ f

{E
[
K∏
k=1

W̃ qk
k

]}
∀q∈Q

 (A-16)

for all vectors p ∈
{
p ∈ NK |0 ≤ pk ≤ Nk, ∀k and uT p = n+ 1

}
and with

Q =
{
q ∈ NK |0 ≤ qk ≤ pk,∀k and uT q ≤ n

}
. The function f represents a generic moment-

closure approximation.

Remark (1): The higher-order UMFF equations are found from the definition of expectation
and the law of total probability, similar to the derivation of the first-order moments in Ap-
pendix A-1-3.
Remark (2): For a certain partition k, only the moments E

[
. . . W̃ pk

k . . .
]
for values pk ∈

{1, . . . , Nk} are considered. Since w̃k ∈ {0, 1, . . . , Nk} has (Nk + 1) possible values, the prob-
ability distribution Pr[W̃k = w̃k] is fully determined by the first Nk moments. Hence the
set

{
p ∈ NK |0 ≤ pk ≤ Nk, ∀k and uT p ≤ n

}
represents the set of powers of all n’th-order mo-

ments.

The approximation function f in the moment-closure approximation (A-16) is not further
specified here. The current form of the moment-closure approximation expresses the condi-
tion that the higher-order moments need to be expressed in terms of lower-order moments,
such that the set of equations (A-2) is closed in those moments.
Conceptually however, these moment-closure approximations are related to assumptions on
the correlation of higher-order variables. Cator et al. [28] for instance, base their second-order
moment-closure on the assumption1:

Cov[WiWj ,Wk] ≈ 0

which, by definition of covariance yields:

E[WiWjWk] ≈ E[WiWj ]E[Wk]
1This specific approximation is used for third-order terms E[WiWjWk] appearing in the equation of

d Pr[Wi=wi,Wj =wj ]
dt

.
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for some triple of nodes (i, j, k). The accuracy of the moment-closure approximation thus
depends on the actual covariance value which is assumed to be zero, which could be studied
similar to how the investigation of the first-order moment-closure approximation in NIMFA
[27].
As another example, Mata et al. [14] formulate a second-order moment-closure approximation,
based on the assumption2:

Cov [Wi,Wj |Wk] ≈ 0

which, by definition of covariance, and because Wn is a Bernoulli random variable for each
node n, yields:

E[WiWjWk] ≈
E[WiWk]E[WjWk]

E[Wk]

for some triple of nodes (i, j, k). Again, the accuracy of this approximation depends on the
actual conditional covariance, which is assumed to be zero.
Taylor et al. [53] describe more elaborate moment-closure approximations by including topo-
logical information of the graph and discuss the accuracy of their approximation, based on
simulations. For the more general case of higher-order UMFF however, it is not immediately
clear which higher-order independence assumptions would work, and what difference it makes
that the reduced-state variables W̃k are not necessarily Bernoulli random variables.

A-3 Proof of isoperimetric inequalities

In this section, we prove the isoperimetric inequalities (2-24) and (2-25) of Theorem 3 and
Theorem 4. We start by introducing some definitions and notations, based on the work of
Haemers [32]. We then state and prove Lemma 1, from which Theorem 3 follows. Finally, we
prove Theorem 4 based on the specific structure of bi-regular graphs.

A-3-1 Interlacing and quotient matrices

The following definitions are given in [32] and [19]:

Definition 13 (Interlacing sequences). Consider two sequences of real numbers: α1 ≥ α2 ≥
· · · ≥ αN and γ1 ≥ γ2 ≥ · · · ≥ γK with K ≤ N . The second sequence is said to interlace the
first whenever

αi ≥ γi ≥ αN−K+i for i = 1, . . . ,K
2Mata et al. [14] define the approximation of third-order probabilities Pr[Wi = wi,Wj = wj ,Wk = wk]

that appear in the equation of d Pr[Wi=wi,Wj =wj ]
dt

as:

Pr[Wi = wi,Wj = wj ,Wk = wk] ≈ Pr[Wi = wi,Wk = wk] Pr[Wj = wj ,Wk = wk]
Pr[Wk = wk]

This approximation can be rewritten as a conditional independence approximation: Pr[Wi = wi,Wj =
wj |Wk = wk] ≈ Pr[Wi = wi|Wk = wk] Pr[Wj = wj |Wk = wk], which implies Cov [Wi,Wj |Wk] ≈ 0. While in-
dependence of random variables is stronger than zero correlation, the latter suffices in this case to characterize
the moment-closure approximation.
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Definition 14 (Quotient matrix). The quotient matrix A(π) of an adjacency matrix A ac-
cording to a partitioning π, is the matrix whose entries are the average row sums of the blocks
of A. More precisely, a(π)

km is the entry in the quotient matrix according to the submatrix of A
between nodes of Nk and Nm with value

a
(π)
km = 1

Nk
sTkAsm

These concepts can be combined by the interlacing theorem [32]:

Theorem 10 (Interlacing theorem). Suppose A(π) is the quotient matrix of a matrix A, then
the eigenvalues of A(π) interlace the eigenvalues of A.

The interlacing theorem is crucial for the proof of the isoperimetric inequality as will become
clear in the proof of Lemma 1.

A-3-2 General isoperimetric inequality

We start by proving Lemma 1 below:

Lemma 1. Consider a graph G(N ,L) with N nodes. For any c ∈ R and any pair of Bernoulli
vectors wx, wy ∈ {0, 1}N , with Nx = uTwx and Ny = uTwy ones, respectively, and with
wTxwy = 0, the following inequality holds:∣∣∣∣wTxAwy − c

N
NxNy

∣∣∣∣ ≤ θ

N

√
N(N −Nx)Ny(N −Ny) (A-17)

where |c− µi| ≤ θ for 1 ≤ i < N holds.

A first proof of Lemma 1 is given by Chung [30] in the context of isoperimetric inequalities
and discrepancy inequalities on graphs. The proof is mainly based on algebraic manipulations
of the term wTxAwy and the eigendecomposition of the Laplacian matrix Q. As mentioned in
Section 2-3, the Laplacian Q is a positive semidefinite matrix possessing the eigendecomposi-
tion:

Q = ZMZT

where Z is the orthogonal eigen-matrix with eigenvectors zi as columns, andM = diag(µ1, µ2, . . . , µN ),
the diagonal matrix containing the eigenvalues. These eigenvalues can be ordered as 0 = µN <
µN−1 ≤ · · · ≤ µ1, where the 0 eigenvalue corresponds to the all-one eigenvector zN = u√

N
.

Now, if we denote by Z̃ theN×(N−1) matrix with zN removed, and by M̃ the (N−1)×(N−1)
diagonal matrix M̃ = diag(µ1, . . . , µN−1), then we can also write:

Q = Z̃M̃Z̃T

If we further denote by QK = NI − uuT the Laplacian matrix of the complete graph, then
we can write Z̃Z̃T = 1

NQK , which holds for Z̃ of any Laplacian matrix.
Proof A:
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We start by rewriting wTxAwy = wTx (∆−Q)wy. Due to the condition that wTxwy = 0, we have
wTx∆wy = 0 and thus wTxAwy = −wTxQwy. We then introduce the value c ∈ R as follows:

wTxAwy = −wTxQwy + c

N
wTxQKwy −

c

N
wTxQKwy

= wTx ( c
N
QK −Q)wy −

c

N
wTxQKwy

Since wTxQKwy = −NxNy, and using the eigendecomposition of Q and QK , we obtain:

wTxAwy = wTx Z̃(cI − M̃)Z̃Twy + c

N
NxNy

or,
wTxAwy −

c

N
NxNy = wTx Z̃(cI − M̃)Z̃Twy

By introducing the variables αi = wTx zi and βi = wTy zi, we can write:

wTxAwy −
c

N
NxNy =

N−1∑
i=1

αiβi(c− µi) (A-18)

We can upper-bound the right-hand side as
∣∣∣∑N−1

i=1 αiβi(c− µi)
∣∣∣ ≤ θ

∑N−1
i=1 |αiβi|, where we

introduce θ with |c−µi| ≤ θ,∀i 6= N as an upper bound. Equation (A-18) can then be written
as: ∣∣∣∣wTxAwy − c

N
NxNy

∣∣∣∣ ≤ θ N−1∑
i=1
|αiβi|

Now, invoking the Cauchy-Schwartz inequality on the right-hand side of the equation and
replacing αi, βi by their original values yields:

∣∣∣∣wTxAwy − c

N
NxNy

∣∣∣∣ ≤ θ
√√√√N−1∑

i=1
α2
i

N−1∑
i=1

β2
i ≤ θ

√
(wTx Z̃Z̃Twx)(wTy Z̃Z̃Twy)

which by Z̃Z̃T = NI − uuT and wTx (NI − uuT )wx = Nx(N −Nx) proves (A-17). �

A second proof for Lemma 1 can be formulated based Haemers’ interlacing theorem and
applications [32]. Haemers ingeniously describes how quotient matrix constructions com-
bined with the interlacing theorem can lead to algebraic expressions (i.e. involving Laplacian
eigenvalues) for combinatorial quantities (i.e. possible number of links between subsets of
nodes in a graph).
Proof B:
Haemers defines the block-matrix B

B =
[

0 Q+ cI
Q+ cI 0

]
(A-19)

for some graph Laplacian Q, and any scalar c ∈ R. By the anti-diagonal blockform of B, we
know that each eigenvalue µj of the Laplacian Q corresponds to two eigenvalues λ̃i = µj + c
and λ̃2N−i = −(µj + c) of B.
We consider a specific partitioning π of the rows of B (nodes in the combined graph), for
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which we can explicitly write the quotient matrix. For the Laplacian in the upper-right
block, we partition the nodes N into a subset Nx of size Nx, and a remainder set Nrx. For
the Laplacian in the lower-left block, we partition the nodes N into a subset Ny of size Ny,
where Ny is non-overlapping with the Nx-size block of the other Laplacian, and a remainder
set Nry. Overall, this results in the partitioning {N ,N} → {Nx,Nrx,Ny,Nry} for matrix B.
For this partitioning, and because Bu = cu due to Qu = 0, we can write the quotient matrix
B(π) explicitly as:

B(π) =
1
Nx

0 0 0
0 1

N−Nx
0 0

0 0 1
N−Ny

0
0 0 0 1

Ny




0 0 cNx +m −m
0 0 c(N −Nx −Ny)−m cNy +m

cNx +m c(N −Nx −Ny)−m 0 0
−m cNy +m 0 0


(A-20)

where m is the number of links between subsets Nx and Ny, i.e. wTxAwy in Lemma 1.
We can write the determinant of B(π) in two ways: an equality involving m and an inequality
involving the eigenvalues of the Laplacian Q. Combining both expressions for the determinant
then yields the isoperimetric inequality (A-17) of Lemma 1.
From (A-20), the determinant of B(π) can be calculated as:

det
(
B(π)

)
= c2 (cNxNy +Nm)2

Nx(N −Nx)Ny(N −Ny)
(A-21)

Secondly, if we call δ1 ≥ δ2 ≥ δ3 ≥ δ4 the eigenvalues of B(π), where δ1 = −δ4 and δ2 = −δ3
hold because of the anti-diagonal blockmatrix structure, then we have a second equation for
the determinant:

det
(
B(π)

)
= δ1δ2δ3δ4 = δ2

1δ
2
2 (A-22)

From the definition of B(π), it follows that the all-one vector u is an eigenvector with eigenvalue
c, i.e. B(π)u = cu. This means that either |δ1| = c or |δ2| = c. Additionally, because B(π)

is a quotient matrix of B, we know that the eigenvalue sequence δi of B(π) interlaces the
eigenvalue sequence λ̃i of B:

−λ̃2 ≤ δ1 ≤ λ̃1 and − λ̃3 ≤ δ2 ≤ λ̃2

Because we know that either δ1 or δ2 equals λ̃i = µN + c = c, we can write:

det
(
B(π)

)
= δ2

1δ
2
2 ≤ c2

(
max
∀i 6=N

|µi + c|
)

(A-23)

Combining (A-21) and (A-23) gives:

c2 (cNxNy +Nm)
Nx(N −Nx)Ny(N −Ny)

≤ c2θ2, (A-24)

with |c + µi| ≤ θ,∀i 6= N . By taking the square root of both sides, replacing m by wTxAwy
and c by −c, we find again the isoperimetric inequality (A-17) in Lemma 1. �
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Remark: Proofs A and B are two different ways to arrive at the same result. Proof A, based on
Chung’s approach, involves two approximations that upper-bound the cut-set approximation.
The first approximation is upper bounding the (c−µi) values by θ, i.e.

∣∣∣∑N−1
i=1 αiβi(c− µi)

∣∣∣ ≤
θ
∑N−1
i=1 |αiβi|. The second approximation involves the Cauchy-Schwartz inequality applied to

the inner-product
∑N−1
i=1 |αiβi|. Proof B based on Haemers’ approach, involves one approxi-

mation step. The absolute value of the second largest eigenvalue |δ2| of the quotient matrix
B(π) is upper bounded by the second largest absolute eigenvalue maxi 6=N |µi + c| of Q + cI,
based on the interlacing theorem.
Since both approaches lead to the same result, we can conclude that the error due to inter-
lacing is of the same nature as the error due to upper-bounding (c − µi) combined with the
Cauchy-Schwartz inequality, which is a non-trivial relationship.

A-3-3 Proof of Theorem 3

Theorem 3 follows from Lemma 1 by particular choices of (c, A,wx, wy).
Proof:
First, we choose wx = (u−w) ◦ sk and wy = w ◦ sm, where (. ◦ sk) represents the Hadamard
product (elementwise product) with sk. For this choice of wx and wy, which are Bernoulli
vectors satisfying wTxwy = 0, and any adjacency matrix A, we can write:

wTxAwy = (uk ◦ (u− w))TA(w ◦ um) = (u− w)TA(km)w

Secondly, we choose the specific value c = Nãkm which satisfies the condition c ∈ R.
These choices allow us to rewrite Lemma 1 as:∣∣∣(u− w)TA(km)w − (ũ− w̃)T Ã(km)w̃

∣∣∣ ≤ θ

N

√
w̃m(N − w̃m)(Nk − w̃k)(N − (Nk − w̃k))

for any adjacency matrix A, which equals equation (2-24) and thus proves Theorem 3. �

A-3-4 Proof of Theorem 4

Theorem 4 states that the topological approximation error can be bounded more tightly for
bi-regular graphs Akm,r, which we prove based on Haemers’ interlacing techniques [32].
Proof:
Consider a bi-regular graph Gkm,r with partitions Nk and Nm, for which the adjacency matrix
has the block-form:

Akm,r =
[

0 B
BT 0

]
,

with Bu = d1u and uTB = d2u
T , because the graph is biregular. The values d1 = L

Nk
and

d2 = L
Nm

are the degrees of the partitions.
Furthermore, we consider a partitioning π of the nodes ofGkm,r into four sets {N x

k ,N r
k ,N y

m,N r
m}

according to {
N x
k ∪N r

k = Nk, N x
k ∩N r

k = ∅ and |N x
k | = Nx

N x
m ∪N r

m = Nm, N x
m ∩N r

m = ∅ and |N x
m| = Nx
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In other words, partition k is further refined into a subset of Nx nodes and a remainder subset,
and similarly for partition m. For this partitioning π, the quotient matrix can be explicitly
written as:

A
(π)
km,r =

1
Nx

0 0 0
0 1

Nk−Nx
0 0

0 0 1
Ny

0
0 0 0 1

Nm−Ny




0 0 m L
Nk
Nx −m

0 0 L
Nm

Ny −m L
(
1− Nx

Nk
− Ny

Nm

)
+m

m L
Nm

Ny −m 0 0
L
Nk
Nx −m L

(
1− Nx

Nk
− Ny

Nm

)
+m 0 0


(A-25)

where m is the number of links between partitions N x
k and N y

m, i.e. the cut-set size (u −
w)TA(km)w in Theorem 4.
We can write the determinant of A(π)

km,r in two ways: an expression involving m, which follows
directly from the block-matrix form and secondly, an inequality involving the eigenvalues of
A

(π)
km,r. Combining both expressions for the determinant yields the isoperimetric inequality of

Theorem 4. From (A-25), the determinant of A(π)
km,r can be calculated as:

det
(
A

(π)
km,r

)
=

L2
(
m− L

NkNm
NxNy

)2

Nx(Nk −Nx)Ny(Nm −Ny)
(A-26)

Secondly, if we call δ1 ≥ δ2 ≥ δ3 ≥ δ4 the eigenvalues of A(π)
km,r, where δ1 = −δ4 and δ2 = −δ3

hold because of the anti-diagonal block structure, then we have a second equation for the
determinant:

det
(
A

(π)
km,r

)
= δ1δ2δ3δ4 = δ2

1δ
2
2 (A-27)

Next, two facts about the eigenvalues of A(π)
km,r are combined to find expression (2-25). Firstly,

because A(π)
km,r is a quotient matrix of Akm,r, we know by Theorem 10 that the eigenvalues of

the first interlace those of the latter. In other words, we can bound δ2 by:

λN−K+2 ≤ δ2 ≤ λ2

Because λN−k+2 = λN−2 = −λ3 ≥ −λ2, we find

δ2
2 ≤ λ2

2 (A-28)

The second fact we use is
δ1 = L√

NkNm
(A-29)

which can be verified by considering the eigenvalue equation:

(
A

(π)
km,r −

L√
NkNm

)
√
Nm√
Nm√
Nk√
Nk

 = 0
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from which follows that
[√
Nm,
√
Nm,
√
Nk,
√
Nk

]T is the right eigenvector of A(π)
km,r according

to eigenvalue δ1 = L
NkNm

. By the Perron-Frobenius theorem [19], we know that for non-
negative matrices such as A(π)

km,r, the largest (possibly non-unique) eigenvalue accords to an
eigenvector with non-negative elements. This means that δ1 is the largest eigenvalue of A(π)

km,r

since its corresponding eigenvector is a vector with non-negative elements.
Combining (A-28) and (A-29) then yields an upper-bound for the determinant of A(π)

km,r in
equation (A-27):

det
(
A

(π)
km,r

)
≤ L2

NkNm
λ2

2

Combined with (A-26) this gives

L2
(
m− L

NkNm
NxNy

)2

Nx(Nk −Nx)Ny(Nm −Ny)
≤ L2

NkNm
λ2

2

Which reduces to equation (2-25) if we replace m by (u−w)TA(km)w, and which thus proves
Theorem 4. �
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Appendix B

Appendix circuit-graph-simplex
equivalence

B-1 Derivation of the (x, v)-characterization by Ω, equation (3-5)

Based on the definition of the effective resistance (3-4) and the fact that ωii = 0 for all
connections i, we can write:

ωij = −1
2(ei − ej)TΩ(ei − ej) = (ei − ej)TQ†(ei − ej)

for all connections i and j. Similarly, the following equality holds:

− 1
2(ek − em)TΩ(ei − ej) = (ek − em)TQ†(ei − ej) (B-1)

for all connections i, j, k,m. Next, we introduce the external-current vector x with uTx = 0, by
noticing that x can always be written as a linear combination of (ei−ej) vectors. In particular,
for any external-current vector x, there exists weights αij for all pairs of connections i, j, such
that

x =
N∑
i=1

N∑
j=i

αij(ei − ej)

holds. By linearity of equation (B-1), the external-current vector can be introduced as

−1
2(ek − em)TΩx = (ek − em)TQ†x

which by the (x, v)-relation v = Q†x can be rewritten as:

− 1
2(ek − em)TΩx = (ek − em)T v (B-2)
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Similar to the introduction of x, we can now introduce the matrix
(
I − uuT

N

)
by noticing that

this matrix can be written as a linear combination of (ek − em) vectors. In particular, we
have the relation

NI − uuT =
N∑
k=1

N∑
m=k

(ek − em)(ek − em)T

Hence, by linearity of equation (B-2), the matrix
(
I − uuT

N

)
can be introduced as

−1
2

(
I − uuT

N

)
Ωx =

(
I − uuT

N

)
v

which by uT v = 0 leads to equation (3-5).

B-2 Proof of expression (3-11) for the Cayley-Menger determinant.

From Fiedlers inverse Q-Ω relation (3-7), we know that

−1
2

[
0 uT

u Ω

]
=
[
ζTQζ + 4RG

N2 −(Qζ + 2
N u)T

−(Qζ + 2
N u) Q

]−1

Hence, for the Cayley-Menger determinant [51] of the distance matrix Ω we have:

det
[

0 uT

u Ω

]
= det

−2
[
ζTQζ + 4RG

N2 −(Qζ + 2
N u)T

−(Qζ + 2
N u) Q

]−1


which by rules of the determinant reduces to

det
[

0 uT

u Ω

]
= (−2)N+1 det

([
ζTQζ + 4RG

N2 −(Qζ + 2
N u)T

−(Qζ + 2
N u) Q

])−1

(B-3)

For convenience, we rewrite the block-matrix by introducing the scalar α = ζTQζ + 4RG
N2 and

the N × 1 vector β = [β1 β2 . . . βN ] = −(Qζ + 2
N u). These replacements result in the

simplified notation: [
ζTQζ + 4RG

N2 −(Qζ + 2
N u)T

−(Qζ + 2
N u) Q

]
=
[
α βT

β Q

]
(B-4)

By cofactor expansion along the first row, followed by cofactor expansion of the remaining
first column, the determinant of the simplified matrix in equation (B-4) can be written as:

det
[
α βT

β Q

]
= α det (Q) +

N∑
i=1

(−1)iβi
N∑
j=1

(−1)j+1βj det
(
Q\{i,j}

)
or

det
[
α βT

β Q

]
= −

N∑
i=1

N∑
j=1

(−1)i+jβiβj det
(
Q\{i,j}

)
(B-5)
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where we used det(Q) = 0. The factor det
(
Q\{i,j}

)
is related to the Laplacian eigenvalues

by the so-called Kirchhoff’s matrix-tree theorem1[19] :

ξ = det
(
Q\{i,j}

)
= 1
N

N−1∏
i=1

1
µi

Introducing ξ in equation (B-5) yields the compact expression:

det
[
α βT

β Q

]
= −ξ(uTβ)2

which, by definition of β, and uTβ = −uT (Qζ + 2
N u) = −2, equals

det
[
ζTQζ + 4RG

N2 −(Qζ + 2
N u)T

−(Qζ + 2
N u) Q

]−1

= − 1
4ξ (B-6)

Filling in equation (B-6) in equation (B-3) finally leads to equation (3-11) for the Cayley-
Menger determinant of the effective resistance matrix Ω.

B-3 The effective resistance matrix Ω is an SED matrix

The result that electrical circuits are equivalent to hyperacute simplices, and that the effective
resistance matrix is an SED matrix, is discussed by Sharpe in [18], who refers to earlier work by
Moore [50]. In [43] uses this fact to establish the circuit-graph-simplex equivalence, amongst
other results. In [54] on the “Geometry of the Laplacian”, Fiedler gives a clear proof as to
why the Ω matrix is an SED matrix:
Proof:
We start by considering the eigendecomposition of the Laplacian matrix Q:

Q = ZMZT =
N∑
i=1

µiznz
T
n = [√µ1z1

√
µ2z2 . . .

√
µNzN ] [√µ1z1

√
µ2z2 . . .

√
µNzN ]T

By omitting the zero eigenvalue µN = 0 with corresponding eigenvector zN = u/
√
N , this

can can be rewritten as

Q =
[√
µ1z1

√
µ2z2 . . .

√
µN−1zN−1

] [√
µ1z1

√
µ2z2 . . .

√
µN−1zN−1

]T
By defining the N × (N − 1) matrix S =

[√
µ1z1

√
µ2z2 . . .

√
µN−1zN−1

]T , this yields Q =
STS which is commonly called the Gram decomposition, with S the Gram matrix. A nice

1A spanning tree of a graph G(N ,L,W) is a subgraph with links T ⊆ L such that all nodes are in the
subgraph, and such that the subgraph contains no loops. If by T(G) we denote the set of all spanning trees
of a graph, and by π(T ) =

∏
∀l∈T

wl the weight of a spanning tree, then the weighted number of spanning
trees ξ is defined as: ξ =

∑
∀T∈T(G) π(T ). Kirchhoff’s matrix-tree theorem states the following relations for

the weighted number of spanning trees:

ξ =
∑

∀T∈T(G)

π(T ) = 1
N

N−1∏
i=1

1
µi

= (−1)i+j det
(
Q\{i,j}

)
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property of the Gram matrix is that inner products of its columns are directly related to the
elements of Q, in particular:

Qij = sTi sj

holds, with si = Sei the i’th column of the Gram matrix S. Repeating the same procedure
for the pseudo-inverse Laplacian matrix Q†, yields the Gram decomposition

Q† = S†TS†

with the N × (N − 1) Gram matrix S† =
[
z1√
µ1

z2√
µ2

. . .
zN−1√
µN−1

]T
. Again, the column in-

ner products yield Q†ij = s†Ti s†j , which results in the following expression for the effective
resistance:

(s†i − s
†
j)
T (s†i − s

†
j) = s†Ti s†i + s†Tj s†j − 2s†Ti s†j = Q†ii +Q†jj − 2Q†ij = ωij

that is, the effective resistance ωij equals the squared Euclidean distance between vectors s†i
and s†j . In other words, if we consider the N columns of S† as a set of (N − 1)-dimensional
points, i.e. P = {s†1, s

†
2, . . . , s

†
N}, then the SED matrix of this point set equals the effective

resistance matrix Ω. This can also be written as:

H̃(S(P)) = Ω

which thus means that, indeed, Ω is an SED matrix. �
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