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Abstract
The study of epidemic spreading processes on contact based complex networks has gained a lot of
traction in recent years. These processes can entail a variety of problems such as disease spreading,
opinion spreading in social networks or even airport congestion in airline networks. One of the key tasks
in this area of research and also of this work is the prediction of the final epidemic size of an outbreak
in a network, given that a contagion process has been initiated by a seed node. More specifically, the
objective is to predict to which extent a seed node is able to activate the rest of the nodes in a network
using a supervised learning model. In this work, this task is termed: “The node influence prediction
problem”. Being able to predict the epidemic footprint of a node allows the design of robust networks
and the application of efficient intervention strategies.

Recently, a limited number of studies have proposed methods on how to utilize classical network
topology based features to predict the nodal influence. However, two main challenges still persist: (1)
individual topology based features do not fully capture the information of a node and (2) it is tedious to
obtain these features for nodes in large scale networks. As an alternative solution, this work aims to
utilize network embedding based features instead, where feature vectors of the nodes are learned from
the network topology. In this research we assume that the network topology and the nodal influence of
a small subset of the nodes are known. We then proceed to show how to build and optimize a machine
learning framework where only 10% of the nodes are used as training data and which could even be
applicable on large scale networks. Additionally, we also demonstrate why network embedding based
features are applicable in the node influence prediction task.

The findings show that node pairs which are closer in proximity in the network, are also embedded
closer in the embedding space (exhibiting a higher similarity). The performance evaluation of the pre­
dictive models illustrate that network embedding based features can compete with classical topological
metrics, despite the disadvantage of their higher dimensionality. This is achieved by combining the
embedding features with individual low cost topology features such as the degree.
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1
Introduction

This chapter provides a brief description of the topic to the reader. Section 1.1 explains the concept
of complex networks and its utility in both research and society in the context of spreading processes.
After listing some of the advancements, a short summary is presented with the current gaps in research.
The main focus of this work and its associated research questions are addressed in Section 1.2. Lastly,
this chapter is concluded with a list of expected contributions (Section 1.3).

1.1. Motivation
The world is becoming increasingly dependent on complex systems, where each may consist of a set
of interacting components. For example, a set of airports communicating with each other in order to
optimally schedule its flights, a set of genes in a cell collectively regulating its biological processes
or even the electrical power grid where failures are mitigated by efficient power rerouting, are among
others some of the most widely studied systems [8, 61, 4]. The common factor among these complex
systems is the inherent network structure. Here, the system level components are identified as nodes
and the interactions between these components as links. As a result, a dataset can be created with the
”wiring diagram” representing the system architecture. Real world systems with such a characteristic
are called complex networks and have been studied from a network science perspective in several dis­
ciplines for good reason: investigating the underlying network topology allows us to better understand,
design and control those systems [1, 14, 60].

An active area of research is the study of epidemic spreading processes on contact based networks.
Dynamic processes can entail a variety of problems such as disease spreading, opinion spreading
in social networks or even airport congestion in airline networks [2, 64, 39, 8, 44]. In order to re­
search these phenomena, the Susceptible­Infected­Recovered (SIR) epidemic model is commonly
used, where nodes can occur in any of those three states at any given time. The key idea is that
a susceptible node can become infected if it came into contact with another infected node. After being
infected for a while, the node can recover and therefore become immune to the disease. When an
epidemic process initiated by a seed node, unfolds on a network, there are two possible outcomes: (1)
the infection does not cause an outbreak or (2) an outbreak occurs, in which case a significant fraction
of the nodes will be affected by the disease. In both cases, the infection will terminate when all infected
nodes have been recovered. An important quantity of interest in epidemiology and also in this work
is the expected value of the fraction of nodes recovered in the final stable state. This quantity (also
termed the final epidemic size) reflects the influence of the seed node and it varies per seed node. That
is, each node that initiated an infection (or any other diffusion process) in the network has a different
impact on the network [24]. The influence of a node has several utilities depending on the type of
network in question. Some are listed as follows [33]:

• In physical contact and infrastructure networks, it can be used to control the outbreak of a disease
by devising intervention strategies.

• In social networks it can be used to prevent the spreading of misinformation (such as fake news).
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2 1. Introduction

• In the computer router and electrical networks it can be used to prevent failures by isolating the
influential nodes.

The majority of the studies conducted so far have focused on ranking the nodes in the network by
their nodal topological properties. More specifically, the goal has been to identify the top 𝑘 fraction of the
highest influential nodes. On the other hand, little attention has been paid to quantify the magnitude
of the influence of a seed node by utilizing the network topology and the influence of a small set of
the nodes (i.e. the node influence prediction task). Work conducted in [7, 6, 65, 46, 36] and [57]
have made attempts to (1) identify which topological features in a network are indicative of the nodal
influence and (2) build predictive models. However, several shortcomings exist. First, multiple studies
have proposed prediction frameworks based on nodal topological features with the following drawback:
the influence of a large fraction of the nodes in the network should be known beforehand. While this
provides insight for feature engineering, the framework itself may not be applicable in practice where
data is limited. Second, the influence of a node as defined by the SIR epidemic model is dependent
on the infection rate 𝛽 and recovery rate 𝜇. Across several studies conducted so far, the dataset
is generated with different values for these parameters. As a result, positioning the results of each
work poses yet another challenge. Lastly, most of these studies have used classical network topology
based features to predict the nodal influence, which might not fully capture the information of a node.
In addition, when dealing with large scale networks with millions of nodes, some of these features can
be computationally expensive to be obtained. This poses yet another major challenge.

To allow graph analysis on large scale networks, network embedding techniques have been devel­
oped and proven to be effective solutions [19, 42, 63]. In network embedding, each node in the network
is mapped to a low­dimensional vector space where the distance between two nodes represent some
proximity measure in the original network topology [12]. As a result, each node is represented by a
𝑑 dimensional learned feature vector. We see the potential of using the embedding vectors of nodes
to perform the task of the node influence prediction: In the first step, the optimal embedding of a net­
work is generated such that it best preserves its topology structure. This is achieved by optimizing the
network embedding parameters with respect to the link prediction task [19]. In the second step, the
learned features are used as input in a prediction framework to estimate the influence of the nodes in
the network. This has the advantage of not needing to manually handcraft features as is the case with
the traditional network topology based features.

In short, the task of the node influence prediction with limited data has not received enough atten­
tion yet, especially where embedding based features are utilized. Furthermore, the main focus of the
limited number of studies in this area has been the identification and utility of well performing classical
topology based features. As networks grow to millions of nodes, there is a need to incorporate network
embedding based features into the prediction framework. While network embedding based features
seem promising for the given supervised learning task, a prior investigation is needed in order to under­
stand whether the pairwise nodal similarity in the network embedding reflects some network topology
based distance measure. An embedding which preserves the distance of node pairs in the network
topology can be especially effective in the node influence prediction task, as nodes which are closer in
the topology could have a similar influence.

1.2. Project Scope
The aim of this thesis project is to address the previously mentioned needs. Therefore, a predictive
model is designed especially for the setting where limited data is available. In this case, it is assumed
that the network topology and the influence of a subset of its nodes are known. The predictive model
utilizes properties of nodes in the given subset and its influences, in order to predict the influence of the
remaining nodes in the network. In order to achieve this feat, two types of features are extracted from
the network topology and compared: network centrality metrics and network embedding based
features. A second objective is to perform an exploratory study on the optimal network embedding to
determine how the distance in the embedding space is related to the proximity in the network topology.
Based on the objectives, the following research questions can be identified:

1. How can network embedding based features be utilized in order to predict the information
diffusion capability (influence) of a node in a network?
To answer this research question, it is divided into the following sub questions:



1.3. Contributions 3

(a) How is the proximity between the nodes in the network topology captured within in
the network embedding, which optimally preserves the network structure?

(b) In the presence of limited training data, how effective are network embedding based
features in contrast to the classical network topology based features in the node in­
fluence prediction task?

(c) Does the incorporation of the network topology based features into the network em­
bedding based prediction models improve the prediction of the nodal information
diffusion capability?

As previously mentioned, network embeddingmethods represent each node in the network by a learned
embedding (feature) vector, whose utility has been proven to be useful in various supervised learning
tasks [12]. Research question A addresses the motivation why these nodal embedding features may
also be applicable for the main objective of this work: predicting the nodal influence using its embedding
features. This utility is also based on the premise that nodes which are closer in proximity in the network
topology possibly have a similar influence [19]. Therefore, it is hypothesized that a network embedding
in which the pairwise nodal similarity is correlated with their corresponding proximity in the network
topology, could be effective when it is used in the node influence prediction task. Once it has been
investigated how the network embedding captures the nodal proximity in the network topology, research
questionBwill address howwell the embedding can be utilized to predict the nodal influence. In order to
achieve this, its prediction performance is also compared to baseline models where classical network
topology based features are utilized. Finally, research question C will help answer whether further
optimization of the network embedding features with the classical network topology based features is
useful to the objective of this work.

1.3. Contributions
The main contributions of this thesis project can be classified into two categories:

1. As stated before, little attention has been paid into unraveling the relation between the network
embedding and the topological properties of a graph 𝐺. In several applications, the link prediction
task is used to produce an optimal embedding which in turn is applied to downstream application
tasks. With a systematic analysis on the correlations between the cosine similarity (between any
two nodes in the embedding space) and the shortest path distance (between any two nodes in
the network topology), it is shown that the network embedding does preserve the shortest path
distance to some extent.

2. After the exploratory analysis on better understanding the nature of the embedding vector of a
node, a prediction framework has been constructed which utilizes the network embedding based
features in order to predict the nodal influence in a setting where limited training data is avail­
able. Furthermore, it is investigated when the utility of the network embedding based features is
beneficial in comparison with the baseline: the utility of classical network topology based features.

1.4. Outline
This report is structured as follows. Chapter 2 introduces the reader to the theory behind complex
networks, the network embedding algorithm and the task description of the proposed method for node
influence prediction. In addition, several research gaps are identified based on a literature review. To
answer the research questions of this thesis project, a set of experiments have been defined. The de­
tails on how these can be reproduced is found in Chapter 3. Chapter 4 presents: (1) the investigation of
how the distance metrics in the embedding­ and topology space are related and (2) performance eval­
uation of the proposed node influence prediction framework. Insights gained from these experiments
are then discussed, with concluding remarks in Chapter 5. Finally, a set of follow up experiments are
presented for future work in Chapter 6





2
Background

This chapter aims to introduce the reader to the several topics discussed in this work. As a start, the
formal definition of graphs are discussed with a focus on their use, advantages and disadvantages
(Section 2.1). Afterwards, the theory on the background regarding the two main objectives of this work
is elaborated on:

1. Concept and properties of the network embedding (Section 2.2): With an emphasis on dis­
tancemeasures between node pairs in the embedding­ as well as the topology space. Node2Vec,
one of the most commonly used embedding method is also explained in detail.

2. Node Influence Prediction using Network Embedding techniques (Section 2.3): Emphasiz­
ing the specific task description and the state of the art on the existing prediction methods.

2.1. Networks
As described in Chapter 1, examples of complex networks (CN) can be found across various disci­
plines, each being a system with its own set of interacting components. For analysis, these systems
are mathematically defined as Graphs by identifying its components as Nodes (or Vertices) and in­
teractions between these components as Links (or Edges). Figure 2.1 presents a simplified example
of such a CN (US airline network [8]). Airports on the geographical map have been identified as nodes
and connecting flights between any two airports as links (Figure 2.1a). It should be noted that CN in
the real word are rather large (thousands if not millions of nodes) and evolve over time. In this specific
example the number of nodes is kept small for clarity and the CN is assumed to be static. Abstract­
ing away the domain properties of the CN and by only considering the existing nodes and links, the
topology representation is obtained as shown in Figure 2.1b. Formally, it can be defined as follows [58,
1]:

Definition 1. Let G(V, E) denote a graph with vertex set V and undirected edge set E:

• 𝑉 ={𝑣1, 𝑣2, ..., 𝑣𝑁}, where 𝑁 = |𝑉| and 𝑣𝑖 denotes vertice 𝑖.

• 𝐸 ={(𝑣𝑖, 𝑣𝑗) | 𝑖, 𝑗 = 1, 2..., 𝑁}, where (𝑣𝑖, 𝑣𝑗) is an edge in G between vertices 𝑣𝑖 and 𝑣𝑗.

2.1.1. Adjacency Matrix
A mathematical representation of a graph topology is found by encoding the set of edges E as an 𝑁×𝑁
square adjacency matrix A, where 𝑁 denotes the number of nodes (Figure 2.1c). The elements 𝑎𝑖𝑗 = 1
if the edge (𝑛𝑖, 𝑛𝑗) exists between the nodes 𝑛𝑖 and 𝑛𝑗, otherwise they are set to 0 [27]. Assuming that,
(i) each 𝑎𝑖𝑗 is either 0 or 1 (binary), (ii) each 𝑎𝑖𝑗 = 𝑎𝑗𝑖 in matrix A, and (iii) self loops do not exist, the
graph is said to be undirected and unweighted. All real world CN investigated in this work are of this
graph type.

5



6 2. Background

(a) Complex Network. (b) Graph Topology representation. (c) Adjacency matrix representation.

Figure 2.1: Example of a complex network (US airline network adapted from [8]) with a possible topology­ and adjacency matrix
representation.

2.1.2. Network Analysis
Traditionally, the adjacency matrix 𝐴 of a graph has been mainly utilized to calculate various topological
metrics used in graph analysis tasks. A taxonomy and description of the most widely used metrics is
shown in [21] and [31]. Next, a brief description is given for the topology metrics used in this thesis
project. The motivation behind the choice of these features are given in Section 2.3 instead.

Degree Centrality
The degree centrality (𝑑𝑢) of a node 𝑢 is the number of directly connected neighbours it has, normal­
ized by the number of nodes in the graph. This quantity can be computed using the adjacency matrix
𝐴 as follows:

𝑑𝑢 =
1

𝑁 − 1

𝑁

∑
𝑘=1

𝑎𝑢𝑘 (2.1)

where 𝑎𝑖𝑗 ∈ 𝐴.

Closeness Centrality
The closeness centrality (𝑐𝑢) of a node 𝑢 is a measure of the average distance between 𝑢 and all the
other nodes in the graph. It denotes the capability of 𝑢 to exchange information between itself and the
rest of the nodes and is computed as follows:

𝑐𝑢 =
𝑁 − 1
∑𝑢≠𝑘 𝐻𝑢𝑘

(2.2)

where 𝐻𝑢𝑘 denotes the hopcount of the shortest path between the nodes 𝑢 and 𝑘.

Eigenvector Centrality
The eigenvector centrality (𝑥𝑢) of node 𝑢 is a measure which takes into account the importance of its
neighbours, in addition to its degree. Thus, it is interpreted as a weighted degree [58]. This metric can
be computed using:

𝑥𝑢 =
1
𝜆

𝑁

∑
𝑘=1

𝑎𝑢𝑘𝑥𝑘 (2.3)

where �⃗� denotes an eigenvector associated with the eigenvalue 𝜆. In order to ensure that all the com­
ponents in �⃗� are positive, the eigenvector associated with the largest eigenvalue is chosen.

Resistance Distance
The shortest path distance (𝐻𝑢𝑘) is a distance metric that only considers a single path between the
nodes 𝑢 and 𝑘. In contrast, the resistance distance (Ω𝑢𝑘) also takes into account multiple paths. It is
based on the premise that the ”effective distance” decreases, if there are more paths between nodes
𝑢 and 𝑘, not necessarily limited to shortest paths [25]. This is relevant in graphs in which flow is trans­
ported between two nodes. If there are more paths to be utilized, the smaller the resistance. The
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resistance matrix Ω with all pairwise Ω𝑢𝑘 can be computed as follows:

Ω = 𝑧 ⋅ �⃗�𝑇 + �⃗� ⋅ 𝑧𝑇 − 2�̂� (2.4)

where �̂� is the pseudo inverse of the Laplacian matrix 𝑄 of graph 𝐺, 𝑧 is the vector containing the
diagonal elements of �̂� and �⃗� the all one vector [58].

2.1.3. Limitations
While the traditional approach of graph characterization based on topology metrics has proven its utility
across several inference tasks, it is limited to small scale graphs [3, 35, 13]. The analysis of large scale
graphs (𝑁 > 104) using the adjacency matrix 𝐴 poses the following challenges (some may also apply
to small scale graphs):

• Manually handcrafting features is tedious: As described in Section 2.1.2, using the graph
topology one can compute various topology metrics. Determining the most effective metric(s)
for a given application task is challenging as one would have to consider every single metric.
Furthermore, it has been shown in the work by Li et al.that these topology metrics are correlated
and dependent. The dependency structure between the metrics may also change with varying
graph topology [31, 29].

• Computing features are intractable for large scale graphs: A subset of graph metrics,
in particular from the distance class are computationally expensive. For example, the closeness
centrality metric requires the computation of the shortest path length between all possible node
pairs. This is intractable for large scale graphs. Another example is the principal eigenvector
component which is computationally expensive since it is computed iteratively for convergence
[12].

• The adjacency matrix 𝐴 cannot be used directly as input for classification and
prediction problems: Machine learning algorithms require each observation in the dataset to
be independent. This is not the case for nodes in a graph. Each node is related to a subset of
other nodes as specified by the edge set 𝐸. CN are in general sparse with a small average degree
[2]. As a result, the majority of the elements in 𝐴 are zeros denoting that the corresponding row
vector of a node is not suitable as a feature vector for machine learning applications.

2.2. Network Embedding
An alternative option to allow network inference on large scale graphs is to learn a low­dimensional
vector representation for each node in the graph. Figure 2.2 illustrates this concept, which is also
referred to as Network Embedding in the network science community. The objective of this ap­
proach is to represent each vertice in an alternative latent vector space, where the distance between
vertices encode some task specific property (this depends on the embedding algorithm used). In the
last decade, several embedding algorithms have been developed which can be classified in three main
categories [12, 11, 18, 62, 10]:

1. Factorization based methods: In matrix factorization based methods, the aim is to learn
a low rank approximation of an input matrix representing a graph. This input matrix can be the
adjacency­ or the laplacian matrix. Techniques such as Singular Valued Decomposition (SVD)
and Principal Component Analysis (PCA) are often used to produce embeddings. The key char­
acteristic of this class of embedding methods is that it is considered as a dimensionality reduction
technique [9, 11].

2. Random walk based methods: In random walk based methods, the aim is to approximate
node similarity by utilizing random walks. Given a starting node 𝑢, its neighbourhood 𝑁𝑢 can be
defined as a sequence of nodes which are sampled using some sampling strategy S. For any
node 𝑣 ∈ 𝑁𝑢, the embedding vectors 𝑒𝑢 and 𝑒𝑣 of the nodes 𝑢 and 𝑣 respectively, are then
optimized such that the dot product of 𝑒𝑢 and 𝑒𝑣 approximates the probability that 𝑣 occurs in𝑁𝑢.
Frameworks that are based on this method are Deepwalk and Node2Vec [42, 19](see Section
2.2.3).
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3. Deep learning based: Deep learning based methods are yet another class of algorithms es­
pecially aimed to capture highly nonlinear structures in the network [12, 59]. Furthermore, deep
learning based frameworks can be constructed that provide end to end solutions to the application
task. In this case, instead of learning embedding vectors and applying off the shelf ML methods,
the network is directly used as input for the task at hand [30].

Figure 2.2: Pictorial overview of the concept of network embedding. The traditional approach of using the graph topology is
compared with the more recent approach of using a network embedding method to map the nodes in the graph onto a lower
dimensional vector space (adapted from [12]).

2.2.1. Properties of the Embedding Space
An embedding of a graph is defined as follows [43]:

Definition 2. Given a graph G(V, E) with vertex set V and edge set E, its corresponding
embedding 𝐺𝐸 is a mapping function 𝑓 ∶ 𝑉 → ℝ𝑑, where each vertex 𝑣𝑖 ∈ 𝑉 is mapped to a
𝑑­dimensional, dense and continuous vector with the following properties:

• 𝑑 ≪ |𝑉|.
• 𝑓 preserves some distance measure between node pairs of graph G in the embedding
space, i.e., similar nodes in the topology space should be embedded closer in the latent
vector space.

A popular metric used to compare vertices in the embedding space is the Cosine Similarity, which
is essentially the cosine of the angle of the corresponding embedding vectors of the vertices. Let �⃗�
and �⃗� denote the embedding vectors for two vertices, then the cosine similarity is defined by Equation
2.5. In this work, this metric is utilized for two objectives, (i) assessing the link prediction performance
when using an embedding, and (ii) for studying its correlation with the topology metrics mentioned in
Section 2.1.2.

𝐶𝑜𝑠𝑖𝑛𝑒(�⃗�, �⃗�) = �⃗� ⋅ �⃗�
‖�⃗�‖‖�⃗�‖

(2.5)

2.2.2. Research Gap
The invention of the random walk based embedding methods and the more recent advances in deep
learning based methods have proven their utility across a wide range of applications [12, 19]. However,
a theoretical understanding on how the embedding vector space is related to the graph topology has yet
to be uncovered. One particular aspect open to research is the correlation between the distance based
metrics in the embedding­ and the graph topology space. Given a network, either its topology (𝐺𝑇) or
embedding (𝐺𝐸) can be used in network inference tasks. For the network embedding to be effective, it
should at least be able to preserve the network topology [12]. That is, node pairs which are immediate
neighbours or positioned closer in the topology, should be embedded in closer proximity. Figure 2.3
illustrates this concept with an example schematic. Let 𝑆𝑇(𝑋, 𝑌) and 𝑆𝐸(𝑒𝑋, 𝑒𝑌) denote a distance (or
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similarity) measure between the nodes 𝑋 and 𝑌 in the topology­ and embedding space, respectively.
Then, by investigating the correlation between 𝑆𝑇(𝑋, 𝑌) and 𝑆𝐸(𝑒𝑋, 𝑒𝑌) for every node pair 𝑋 and 𝑌,
insight can be gained on how the topology of the network is captured in the corresponding embedding.

Figure 2.3: Schematic diagram of a network, whose topology­ and embedding related properties are reflected in the pairwise
distance (similarity) measures 𝑆𝑇(𝑋, 𝑌) and 𝑆𝐸(𝑒𝑋 , 𝑒𝑌) for the topology­ and embedding space, respectively.

2.2.3. Node2Vec
Node2Vec is a random walk based framework, developed by Grover et al. in an attempt to express
the node similarity in the embedding space by incorporating not only local­ but also higher order neigh­
bourhood information [19]. Its key improvement over previous well performing frameworks such as
LINE [53] and Deepwalk [42] is that it generates node sequences using biased random walks. The
Node2Vec embedding algorithm can be divided into three steps, which are discussed next [28].

Step 1: Sample fixed length short random walks
Let𝑊𝑢 denote a random walk that starts in node 𝑢 with a length of 𝑘. Then, nodes are added to𝑊𝑢 by
sampling one of the neighbours of the last visited node, until ‖𝑊𝑢‖ = 𝑘. There are two strategies to
sample a node: (i) using Breadth First Search (BFS), and (ii) using Depth First Search (DFS). These
strategies are visualized in Figure 2.4a. In BFS, nodes are sampled from the neighbours of 𝑢, aiming
to preserve a local microscopic view of node 𝑢. In contrast, DFS samples nodes at increasing distance
from 𝑢. Thus, a macroscopic global view is obtained of node 𝑢. In order to combine both these search
strategies, the authors designed a biased 2𝑛𝑑 order random walk method where two parameters can
control to which extent nodes are sampled in a BFS or a DFS manner. In the 2𝑛𝑑 order random walk,
the next node transition takes into account not only the last visited node 𝑣, but also the node visited
before 𝑣, called 𝑡. Figure 2.4b presents this principle where the random walk started in some node 𝑢,
visited node 𝑡 and currently is at node 𝑣. Let 𝛼𝑡𝑥 denote the unnormalized transition probability, then:

𝛼𝑡𝑥 = {

1
𝑝 , if 𝑑𝑡𝑥 = 0
1, if 𝑑𝑡𝑥 = 1
1
𝑞 , if 𝑑𝑡𝑥 = 2

where 𝑑𝑡𝑥 is the shortest path distance between nodes 𝑡 and 𝑥, 𝑝 the return parameter and 𝑞 the in­out
parameter. Depending on the choice of 𝑝 and 𝑞, the next node is sampled from {𝑡, 𝑥1,𝑥2, 𝑥3} with a
different (biased) transition probability. By tuning 𝑝 and 𝑞 it is thus possible to capture both the local­
and higher order neighbourhood information in each random walk𝑊𝑢.
Step 2: Construct the neighbourhood set
In the next step, the previous randomwalk generation procedure is used to concretely define the dataset
of the neighbourhood of each node 𝑢 ∈ 𝑉. To reduce any implicit bias induced by the starting node
𝑢, multiple walks are generated for 𝑢. Thus, the dataset for each node 𝑢 consists of 𝑟 biased random
walks where each walk has a length of 𝑘. In short, 𝑁𝑢 = {𝑊1

𝑢 ,𝑊2
𝑢 , ...,𝑊𝑟

𝑢 }.

Step 3: Optimize the embedding such that it encodes the statistics of the randomwalks
In the last step, the previously generated dataset for each node is used in the (extended) Skip­gram
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(a) Concept of flexible random walks using Breadth First Search (BFS)
and Depth First Search (DFS).

(b) Biased random walk procedure to approximate the BFS and
DFS search strategy.

Figure 2.4: Search strategy used in Node2Vec to sample nodal neighbourhood [19].

model to generate the embedding vector for each node [37]. The trick is to formulate the feature rep­
resentation learning task as an optimization problem where techniques such as Stochastic gradient
Descent (SGD) can be used fro optimization. More precisely, the goal is to find an embedding vector
𝑒𝑢 of a node 𝑢 such that it can predict the neighbourhood𝑁𝑢 by utilizing the dataset containing multiple
instances (examples) of neighbourhoods. Therefore, the following objective function is maximized:

max
𝑒𝑢

∑
𝑢∈𝑉

log𝑃(𝑁𝑢|𝑒𝑢) (2.6)

where 𝑃(𝑁𝑢|𝑒𝑢) denotes the log probability of observing neighbourhood 𝑁𝑢 given the embedding vec­
tor 𝑒𝑢. After incorporating the assumption of conditional independence and using a softmax parametriza­
tion step, the fully derived loss function is given by:

max
𝑒𝑢

∑
𝑢∈𝑉

∑
𝑥∈𝑁𝑢

log( exp(𝑒𝑇𝑢𝑒𝑥)
∑𝑛∈𝑉 exp(𝑒𝑇𝑢𝑒𝑛)

) (2.7)

One drawback of this derivation is that the normalization term in the denominator iterates once again
over all the nodes in the network. As a result, the run time complexity becomes O(|𝑉|2). To address
this issue, negative sampling is used to estimate the normalization term. A detailed derivation of this
loss function can be found in [19] and [28]. Apart from the fact that a richer notion of neighbourhood
can be expressed in the embedding vectors, Node2Vec has the advantage of parallel execution.

2.2.4. Topology preservation and link prediction
In the link prediction task, the goal is to determine the likelihood of the existence of a link between any
two nodes in the network [32]. Let 𝐸 denote the set links of an observed graph 𝐺. Clearly, 𝐸 ⊆ 𝐿,
where 𝐿 denotes the set of all possible links that can exist in 𝐺. For the observed graph, 𝐿−𝐸 denotes
the set of links that can be either missing or will appear in the future (in case the network is changing
over time). The link prediction task aims to identify these links. This concept is illustrated in Figure 2.5.
Several methods exist to perform link prediction such as (i) similarity based algorithms, (ii) maximum
likelihood based, and (iii) probabilistic models. Lu et al. summarizes the progress of each of these
methods in [34]. Another utility of the link prediction task nowadays is to assess the quality of an
embedding framework that aims to preserve the network structure. This is precisely how the link
prediction task is used in this thesis project: to quantify to which extent an embedding produced by
Node2Vec, preserved the inherent network structure of a graph. The intuition is that an optimal learned
embedding should be able to reconstruct the network it was trained on [59]. The exact procedure of
this application is described in Section 3.2.

One method to perform the link prediction using network embedding is to assign a similarity score
𝑆𝑥𝑦 to each unobserved link 𝑙𝑥,𝑦 ∈ {𝐿−𝐸} between the nodes 𝑥 and 𝑦. In this project, 𝑆𝑥𝑦 is set to the
Cosine Similarity of the corresponding embedding vectors 𝑒𝑥 and 𝑒𝑦 of the nodes 𝑥 and 𝑦, respectively.
As a result, a higher similarity in the embedding space between the vectors 𝑒𝑥 and 𝑒𝑦 denotes a larger
likelihood of a link to exist between the nodes 𝑥 and 𝑦 in the original network. Generally, the method to
assess the embedding reconstruction performance for a given network 𝐺(𝑉, 𝐸), proceeds as follows:

1. Remove a small fraction of the links in 𝐺, while ensuring that the resulting network (𝐺𝑡𝑟𝑎𝑖𝑛) re­
mains connected. The removed links are denoted as positive samples.
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Figure 2.5: Pictorial representation of a typical problem occurring in practice. On the right, the observed graph is missing two
links. The complete or evolved graph is shown on the left. Figure adapted from [34].

2. Sample a small fraction of links from the set of nonexistent links {𝐿 − 𝐸} and denote this as
negative samples.

3. Use 𝐺𝑡𝑟𝑎𝑖𝑛 to produce an embedding 𝐸𝐺𝑡𝑟𝑎𝑖𝑛 using some learning framework.

4. Evaluate the link prediction capability of 𝐸𝐺𝑡𝑟𝑎𝑖𝑛 using the positive­ and negative links.

It is expected that an optimal embedding gives a higher similarity score to a positive link, rather than
a negative link. This is due to the fact that the positive link already existed in the original network and
that the optimal embedding was able to preserve the structural information of the network. The link
prediction performance is then quantified by performing 𝑛 comparisons of positive­ and negative links.
The probability of a positive link being assigned a higher similarity score than a negative link, is a metric
indicative of the overall link prediction performance of 𝐸𝐺𝑡𝑟𝑎𝑖𝑛 . This metric is known as the Area Under
the Curve (AUC) score [34]:

𝐴𝑈𝐶 = 𝑛′ + 0.5𝑛″
𝑛 (2.8)

where 𝑛 denotes the number of comparisons of the similarity score between the positive­ and negative
links. 𝑛′ denotes the number of times when 𝑆𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 > 𝑆𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 and 𝑛” denotes the number of times
when 𝑆𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 𝑆𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒.

2.3. Predicting Node Influence
2.3.1. Influential nodes
Definition of node influence
The influence of a node is commonly defined in the context of epidemic spreading processes unfolding
on a network, as it generalizes to a variety of problems in different domains. Some examples are the
spreading of diseases, failure cascade in electrical networks and opinion spreading in social networks
etc.. Therefore, the influence of a node is best described using a dynamic process. Suppose a conta­
gion process starts in some node 𝑢 in a network 𝐺. When this process terminates, 𝐺 will have either
a fraction or all of its nodes being affected by the epidemic outbreak. This quantity, also called the
prevalence or the final epidemic outbreak size, denotes the influence of node 𝑢 [33, 39, 17, 41].

Advantages
Most studies on the node influence have been conducted on the identification task rather than its
quantification. Surveys such as [33], [41] and [20] list several methods and advantages of identifying
the top influential nodes, but lack information on the merits of knowing their exact influence. Recent
work in [7] sheds some light on this aspect. Asmentioned by Bucur et al., being able to predict the effect
of a seed node, given a dynamic process, one can select influential nodes according to some threshold
instead of simply selecting the top fraction. Another advantage of having a predictive model for the
node influence is that it can deepen our understanding on how nodal features facilitate a contagion
process, which is often unknown. Lastly, on large scale networks a predictive model is computation­
ally more efficient in contrast to the stochastic simulation of the epidemic process for each node (even
assuming that the exact contagion process and its parameters are known).
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State of the art methods
Predicting the influence of a node using its network structure is more challenging compared to the
ranking problem [7], due to the following reasons:

• The influence of a node does not only depend on the network topological features, but also on
the effective transmission rate (𝜏 = 𝛽

𝜇 ) of the contagion process.

• In the node influence prediction, the machine learning (ML) step is yet another variable to be
optimized. Here, not only the feature engineering step, but also the availability of training data
can negatively impact the generalization performance of the predictive models.

At the time of writing, only a limited number of articles are available that concretely addresses this task.
To justify the next step in this research direction and thus the work conducted in this project, a brief
description is given for each of those articles with their findings. To make it more convenient to compare
each individual work, we will use the following terminology: Let 𝑋𝑖 denote the feature vector and 𝑦𝑖 the
predicted node influence, then 𝑓(𝑋𝑖) denotes the proposed predictive model (see Figure 2.6).

Figure 2.6: Generalized notation of a prediction model.

In 2019, Bucur et al. proposed a machine learning framework to predict the expected epidemic
size 𝑦𝑖 using a set of classical centrality features [7]. Here, the influence of each node was determined
using an exact Susceptible­Infected­Recovered (SIR) model with 1

16 ≤ 𝛽 ≤ 16 (see Table 2.1 for
details). The dataset consisted of all non­isomorphic, connected, simple undirected graphs with a size
of 6 ≤ 𝑁 ≤ 10 nodes. Thus, instead of predicting the node influence in the context of a single
topology, the aim was to build a model which generalizes over all possible graph topologies. The
findings in this work conclude that not all centrality metrics are required to achieve a good prediction
performance. Instead, combinations of metrics such as the degree with a spectral based centrality
metric are sufficient as features (one local­ and one global metric). In addition, the overall prediction
performance slightly decreased with increasing 𝛽.

The previous analysis was extended to a wide variety of real world complex networks in [6] by
the same author. The aim was to generalize the previous observations to multiple networks and to
investigate why some combinations of topological metrics (see Table 2.1) were good predictors for the
top influential nodes. It should be noted that the ML framework predicted whether a node was a top
influential spreader or not, rather than prediction its influence. Based on a SIR contagion process where
𝜏 = 𝜏𝑐 it could be observed that (i) the predictive power of individual metrics were inconsistent across
multiple CNs, (ii) one local­ and one global metric was needed to accurately identify the top influential
nodes, and (iii) using all classical centrality metrics as features, near perfect prediction performance
could be achieved.

While the previous two studies focused on the effect of centrality metrics on the prediction perfor­
mance, others have proposed novel prediction frameworks. Zhao et al. have designed a prediction
method where training and testing has been conducted on different networks. More precisely, let 𝐺1
and 𝐺2 denote two different networks, then the model 𝑓(�⃗�) has been trained using all the nodal fea­
tures from 𝐺1. After training, 𝑓 was evaluated by predicting the influence of the nodes in 𝐺2. A similar
approach has been used in the work of Sebastian M. et al. and has been termed: transfer learning
in [36]. While these approaches seem novel, some key observations are worth mentioning (see Table
2.2):

• Every work uses a SIR model with a different transmission rate 𝜏. While some authors properly
justify the choice of this parameter, others do not.

• The size of the training data set is inconsistent across multiple studies and is commonly larger
than half of the network. In some cases, almost the whole network is used during the training
phase.
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Table 2.1: Overview of the most relevant work conducted on the node influence prediction. For clarity, the metrics used in the
predictive models are abbreviated as follows: Degree Centrality (DC), Eigenvector Centrality (EC), PageRank (PR), Closeness
Centrality (CC), Betweenness Centrality (BC), Clustering Coefficient Centrality (CCC). �⃗�𝑀 denotes the embedding vectors ob­
tained from method 𝑀. Additionally, machine learning models are abbreviated as: Random Forest Regression (RFR), Support
Vector Regression (SVR), Support Vector Machine (SVM), 𝑘 Nearest Neighbours (𝑘­NN), Logistic Regression (LR), Multi­Layer
Perceptron (MLP), Graph Convolutional Networks (GCN), Graph Attention Networks (GAN). XGBoost denotes an extended
version of a gradient boosted decision tree.

Author(s) Article Year ML Framework Details

Features �⃗� Label �⃗� Model 𝑓(�⃗�)

Bucur D. et al. [7] 2019 DC, EC, PR, CC, BC, KC, k­Core Exact SIR RFR, SVR

Bucur D. [6] 2020 DC, EC, PR, CC, k­Core,
Neighbourhood, 2 Hop Neighbourhood

Stochastic SIR SVR

Zhao G. et al. [65] 2020 DC, EC, PR, CC, BC, Load Centrality,
k­Shell, k­Core, CCC

Stochastic SIR Naive Bayes, Decision Trees,
RFR, SVM, k­NN, LR, MLP

Rodrigues F.A. et al. [46] 2019 DC, EC, PR, CC, BC, CCC, k­Core Stochastic SIR RFR, Neural networks

Sebastian M. et al. [36] 2021 DC, EC, PR, Average Out­degree,
number of 2nd neighbours, �⃗�𝑁𝑜𝑑𝑒2𝑉𝑒𝑐, �⃗�𝑆𝑛𝑜𝑅𝑒

Compartmental SIR GCN, GAN, XGBoost

Torricelli M. et al. [57] 2020 �⃗�𝑁𝑜𝑑𝑒2𝑉𝑒𝑐 Compartmental SI Linear Regression

• In some frameworks, the predictive model is evaluated on networks different than the one used
during training.

Table 2.2: Overview of the parameters used in the proposed ML frameworks.

Author(s) Article Year Size Training Data 𝜏
[% of full dataset] [­]

Bucur D. et al. [7] 2019 5 ­ 75* 1/16 ­ 16
Bucur D. [6] 2020 50 𝜏𝑐
Zhao G. et al. [65] 2020 70 0.01 ­ 0.2
Rodrigues F.A. et al. [46] 2019 50 0.3
Sebastian M. et al. [36] 2021 100** 0.1
Torricelli M. et al. [57] 2020 90 1***

As the dataset consisted of all non­isomoprhic networks, the size of the training data
was varied*.
Training and testing conducted on completely different networks**.
SI contagion model used where only 𝛽 is used to control the epidemic spreading***.

2.3.2. Research Gap
The discussion in the last section only partly addresses some of the issues related to the node influence
prediction problem. In a more broader view, some of the main areas open to research are discussed
next.

From feature engineering to feature learning
Determining how classical centrality metrics affect epidemic spreading phenomena has been the main
topic of interest. However, in a practical setting with large scale networks, computing the global based
centrality metrics becomes intractable. A good candidate metric is the closeness centrality which en­
hances the prediction power while being expensive to be computed (with a running time complexity of
O(|𝑉|2)). Therefore, even if certain classical metrics have been proven to be appropriate to the given
prediction problem, the following question remains: Can those metrics be computed efficiently?

An alternative to this issue is to learn latent features instead and use those as input in the several
ML algorithms. As described in Section 2.2, network embedding allows each node 𝑣 in a network to
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be encoded as a latent feature vector 𝑒𝑣. The advantages are twofold (i) embedding vectors can be
readily used as input in ML algorithms. Earlier work in [36] already adopted this idea in which embed­
ding vectors were utilized as nodal features, and (ii) the dimensionality of the embedding vectors can
be tuned for more flexibility. Work conducted in [57] show that increasing the embedding dimension
resulted into slightly better predictions when using a linear regression model.

Predictive models practical to a real world scenario
In a real world scenario where a contagion process unfolds on a network, limited data is available.
Additionally, the full contact structure of the network is often incomplete. Therefore, a predictive model
which utilizes minimal training data is more desirable. Most studies so far have proposed prediction
frameworks learned on at least 50 % of the network structure. While useful for statistical inference,
these frameworks have limited use in a practical setting, especially in the context of large scale net­
works. Thus, there is a need to research on how limited data can be utilized more efficiently during the
ML training phase.

Parameter tuning in embedding­ and prediction models
The node influence prediction task can broadly be divided into three main steps. In the first step,
features are manually handcrafted or learned using some embedding method. In the second step,
a contagion process is utilized to generate the final epidemic size for each node. Lastly, a machine
learning framework is constructed for prediction. Each of those steps contain its own set of parameters
that affect the final performance. Currently, there is a need to concretely assess how the embedding­
and ML parameters affect the node influence prediction.

2.3.3. Task Description
The node influence prediction framework used in this thesis project is defined as follows and is visual­
ized in Figure 2.7:

Definition 3. Given a graph G(V, E), let S denote the set of nodes where for every 𝑠 ∈ 𝑆, the
expected prevalence 𝐸𝑠[𝑅] is known. Then, the aim is to predict 𝐸𝑣[𝑅] for every 𝑣 ∈ {𝐸 − 𝑆}
using a model 𝑓 trained only on the data in 𝑆. In doing so, the following constraints are
imposed:

1. |𝑆| = 𝑎|𝑉|, where 𝑎 ≈ 0.1.

2. When generating 𝐸𝑖[𝑅] for every node 𝑖 using an SIR model, the transmission rate 𝜏 is
chosen such that 𝐸𝑚𝑎𝑥[𝑅] ≈ 0.1. The choice of 𝜏 is unique for every network 𝐺.

The aim is to train a predictive model 𝑓(�⃗�) using only the node influence and features of the nodes in
the training data set 𝑆. Afterwards, 𝑓(�⃗�) is used to predict the node influence of the unknown nodes
in 𝐸 − 𝑆. The novelty in this task definition is the additional two constraints imposed on the learning
framework. First, the training dataset is kept deliberately small in order to better represent a real world
scenario. Second, 𝐸𝑖[𝑅] is maintained at a maximum prevalence level of ≈ 0.1. Instead of using
the epidemic threshold 𝜏𝑐 to guide the choice of 𝜏, the prevalence level is fixed instead. To generate
𝐸[𝑅] for every node, a stochastic SIR model is used which is discussed in the next section. While the
latter two constraints make the task description more rigid, at the same time network embedding based
features generated using Node2Vec are utilized in the prediction models.

2.3.4. SIR Epidemic Model
The Susceptible­Infected­Recovered (SIR) epidemic model is a common choice to investigate the dy­
namics of many real world diffusion processes and is best explained in the context of disease spreading
[39, 24]. In this model, each node in the network can occur in one of the three states at any given time
step:

• Susceptible state (S): The initial state that most of the nodes start in. In this state, the node
is vulnerable for an infection which can occur with some probability per unit time, 𝛽. This is also
called the infection rate.
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Figure 2.7: Schematic overview of the prediction model. Given a graph G, set S denotes the nodes whose influence is known
and set E­S the set of nodes whose influence needs to be predicted.

• Infected state (I): Once a node has been infected with a disease, it resides in the infected state.
In this state, two events may happen: it can infect other susceptible nodes with an infection rate
𝛽 or it can recover from the disease with a recovery rate 𝜇.

• Recovered state (R): A node can occur in this state only if it has been recovered from being
infected. Once this state is reached, the node remains in this state (the equivalent of being
immune to a disease after recovery).

An important quantity to characterize a network on its robustness towards an epidemic process is the
epidemic threshold 𝜏𝑐. Let 𝜏 =

𝛽
𝜇 , then an infected node can cause an epidemic outbreak of finite size

if 𝜏 > 𝜏𝑐. Otherwise, the diffusion process prematurely terminates without any severe consequences.
However, in the stochastic SIR model even if 𝜏 > 𝜏𝑐 it is very well possible that an outbreak does not
occur [24]. This is demonstrated in Figure 2.8, where 1000 repeating simulations of an SIR process is
conducted on a network with 849 nodes. While, 𝜏 > 𝜏𝑐, a non zero fraction of simulations terminate
without causing an outbreak. Assuming that the SIR process leads to an outbreak, it does not matter
which seed node initiated it. However, it is the frequency of the occurrence of an outbreak being
affected. As a result, the node influence is best quantified by the expected final epidemic size, which
is simply the average of the final recovered fraction over many repeating simulations. In the remainder
of this report, this quantity is denoted by 𝑟𝑖, where 𝑟 refers to the influence of node 𝑖, averaged over
1000 iterations of the spreading process.

2.3.5. Machine Learning algorithms
In this section, a brief description is given of the basic principle of three commonly used machine learn­
ing algorithms: Ridge­, Support Vector­ andRandomForest Regression. The choice for these particular
methods stems from the literature survey conducted in Section 2.3 and by adapting the methodology
proposed by Bucur D. et al. in [7] and [6]

Ridge Regression
The simplest learning model is the linear regression model. Let 𝑋(𝑑)𝑖 denote a 𝑑 dimensional feature
vector with the elements {𝑥(1), 𝑥(2), ..., 𝑥(𝑑)} and 𝑦𝑖 a real­valued quantity to be predicted for an obser­
vation 𝑖. Then, the linear model is defined as:

𝑓(𝑋𝑖) = 𝜃0 +
𝑑

∑
𝑗=1
𝑋(𝑗)𝑖 𝜃𝑗 (2.9)

where 𝜃 represents the unknown parameters, found by minimizing the residual sum of squares over a
dataset with 𝑛 observations:

𝑅𝑆𝑆(𝜃) =
𝑛

∑
𝑖=1
(𝑦𝑖 − 𝑓(�⃗�𝑖))

2
(2.10)
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Figure 2.8: The distribution of the prevalence in a complex network with 849 nodes with a SIR epidemic model. The histogram
is created on a basis of 1000 repeating simulations. The recovered fraction of nodes is measured after the infection terminates.

The main assumption of the linear model is that 𝑦𝑖 can be expressed by a linear dependency structure
between its features in 𝑋(𝑑). An issue with the standard definition of the linear model is overfitting. This
occurs when 𝑛 ≤ 𝑑, resulting into a model with low bias and large variance. To improve the prediction
performance, regularization can be applied. Here, a penalty is imposed in the loss function when 𝜃
becomes too large:

𝑅𝑆𝑆𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑(𝜃) =
𝑁

∑
𝑖=1
(𝑦𝑖 − 𝑓(�⃗�𝑖))

2
+ 𝜆

𝑑+1

∑
𝑗=1
𝜃2𝑗 (2.11)

where 𝜆 is a model parameter controlling the regularization strength. The effect of the network struc­
ture on a dynamic process can be non­linear. While the linear regression model may seem simple, it
can very well outperform non­linear regression models when the number of training samples is limited.
Furthermore, the linear model can easily be extended to capture non­linear patterns by transforming
the feature space using kernel methods [16].

Support Vector Regression
Support Vector Regression (SVR) is a supervised learning method which performs well in a setting
where less training data is available and the dimensionality of the feature vector is high. Let 𝑛 denote
the number of training samples, then this regression method is still effective when 𝑛 ≪ 𝑑. In SVR, the
goal is to find a function 𝑓(𝑋) such that for all training data (𝑥𝑖 , 𝑦𝑖), |𝑦𝑖 − 𝑓(𝑥𝑖)| is at most 𝜖. While in
the linear regression model, an unique and optimal 𝑓(𝑋) could be obtained (the least square solution),
in this case any function that satisfies the constraint is a plausible. The function 𝑓(𝑋) can be found by
minimizing the following loss function:

𝐿 = 1
2

𝑑+1

∑
𝑗=1
𝜃2𝑗 + 𝐶

1
𝑁

𝑁

∑
𝑖=1
𝑅𝜖𝑖 (2.12)

where 𝑅𝜖𝑖 = max{0, |𝑦𝑖 − 𝑓(𝑥𝑖)| − 𝜖}, a quantity denoting deviations larger than 𝜖. 𝐶 is a trade off
parameter between minimizing the magnitude of each coefficient in 𝜃 and error allowed on top of 𝜖
[49, 51]. An advantage of SVR is the application of non­linear kernels. Kernels can be used to map
the original features to an alternative (higher dimensional) feature space allowing it to better capture
non­linear patterns in the training data.



2.3. Predicting Node Influence 17

Random Forest Regression
Random Forest based methods are build on the idea that a collection of learners will perform better
compared to an individual one. In this case, each learner is a regression tree with low bias and high
variance. In other words, each learner is able to capture complex structures in the data, while having
poor generalization performance. It is this latter quality that is improved by aggregating the perfor­
mance of a collection of trees (to reduce the variance). Briefly, the main steps in the RFR algorithm
are described as follows [16]:

1. Given a training data set 𝑋(𝑑)𝑛 with size 𝑛 and dimensionality 𝑑, sample a subset and denote it as
𝑋(𝑑

′)
𝑛′ . Here, 𝑛′ < 𝑛 and 𝑑′ denotes a subset of randomly picked features.

2. Build a regression tree 𝑇(𝑥) on the sampled dataset 𝑋(𝑑
′)

𝑛′ .

3. Repeat step 1 and step 2 𝐵 times and collect all constructed trees in the set {𝑇𝑏(𝑥)}𝐵1 .
4. For prediction, aggregate the outcome of each individual 𝑇𝑏(𝑥) as follows:

𝑦 = 1
𝐵

𝐵

∑
𝑏=1

𝑇𝑏(𝑥) (2.13)

As described before, each individual tree will typically exhibit high variance as it it trained on a subset
of the samples and features. When it is trained on a rather large subset, the size of the tree can grow
large enough such that it overfits the training data set. This can be avoided by controlling the number
of trees (𝐵), tree depth (𝐷𝑇), number of sampled data points (𝑛′) and the number of sampled features
(𝑑′) [54].





3
Methodology

This chapter covers the procedures necessary to reproduce the experiments performed in this work. It
can be divided into three categories. First, all real world networks and its preprocessing steps are pre­
sented in Section 3.1, with an emphasis on characterization. Second, each step in the data analysis
pipeline is presented in a separate section:

• The application of Node2Vec in order to produce the optimal network embedding is described in
Section 3.2. Details on determining the link prediction performance is found in this section as
well.

• Section 3.3 contains the procedure and the network specific parameters used to simulate the
SIR epidemic process.

• Section 3.4 describes the framework used to learn the prediction models for the node influence.
In this step, a minor study is conducted on the properties of the baseline­ and network embedding
based features and the challenges encountered to build the framework.

3.1. Network Data
The experiments proposed in this thesis project have been applied on a set of real world complex
networks. As this project focuses on the properties of the embedding space and the creation of the
node influence prediction framework, less attention is given to the domain related aspects of the net­
works. As a result, networks have been chosen from a variety of categories in order to investigate the
generalization performance of the proposed method. A brief description for each network is as follows:

• Protein protein interaction: This is a network in which nodes represent proteins in a human
cell. Proteins are macro molecules which participate or catalyze chemical reactions, often in
conjunction with other proteins. The dataset consists of 2217 proteins whose interactions have
been measured (see Figure 3.2a) [22, 15].

• Facebook pages (food): This is a social contact network in which the nodes represent face­
book pages on food items. Whenever a user likes two different pages, this interaction is noted
with a link between the corresponding nodes. It consists of a subset of all the interactions among
620 nodes. Figure 3.2b presents a visualization of the network. In contrast to the biological
network, this network exhibits smaller well separated community structures [48].

• Facebook messaging between users: This network is comprised of university students
messaging each other through Facebook. Each node represents an user and whenever two
users communicate, a link is added between the nodes. This network consists of 1266 nodes
(see Figure 3.2c) [38].

• DNC email network: This network represents a set of users which send emails to each other.
Whenever such an event is observed a link is formed between the sender and the co­recipients
of the email (see Figure 3.2d) [47].

19
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Table 3.1: Overview of the static real world networks investigated in this thesis project. For each network, the number of nodes
(𝑉), the number of links (𝐸), average hopcount (𝐸[𝐻]), link density (𝜌) and average clustering coefficient (𝐴𝐶𝐶) are shown.

Network Type Name Notation |𝑁| |𝑉| 𝐸[𝐻] 𝐸[𝐷] 𝜌 𝐴𝐶𝐶
Biological Protein protein interaction BIO1 2217 6418 3.84 5.79 0.003 0.040
Social FB pages food SOC1 620 2091 5.08 6.75 0.011 0.331
Social FB messages interaction SOC2 1266 6451 3.31 10.19 0.008 0.068
Social Human contact SOC3 410 2765 3.63 13.49 0.033 0.436
Communication DNC emails COM1 849 10384 2.76 24.46 0.029 0.507
Communication Computer routers COM2 2113 6632 4.61 6.28 0.003 0.246
Collaboration Citation (netscience) CIT1 379 914 6.04 4.82 0.013 0.431

• Computer routers: This network contains 2113 nodes which represent a computer router.
Whenever two routers communicate through packets, a link is formed in the network (see Figure
3.2e) [52].

• Human contact network: This temporal network contains 410 nodes, where each node rep­
resents a visitor during a science gallery event. Whenever two visitors came into close proximity,
their interaction was recorded using a RFID badge in intervals of 20 seconds. In this work, the in­
tegrated static network is considered instead of the temporal network [23]. Figure 3.2f visualizes
this network, where many community structures can be identified.

• Author citation network (network science): This network presents the co­authorship rela­
tionship between a subset of researchers in the field of network science. It consists of 379 nodes,
where each node represents a researcher. Whenever two (or more) researchers collaborated on
an article, a link has been identified between those researchers (see Figure 3.2g) [47].

Figure 3.1 presents the degree distribution for each of the previously listed networks. Based on the
degree distribution the networks can be classified as follows:

• Scale free networks: In these networks, the degree distribution follows a power­law. On the
log log scale, the dependency between the frequency of the nodes with its degree becomes
approximately linear. In this case, only a handful of nodes have a very high degree, while the
majority of the nodes have a low degree. These nodes, also termed hubs can play a vital role in
the case of an epidemic spreading process. This phenomenon is a typical characteristic of sparse
real world complex networks, which is why these networks have been chosen in this study. The
networks that exhibit the scale free property are shown in Figures 3.1a­e: BIO1, SOC1, SOC2,
COM1 and COM2.

• Random networks: In these networks, the degree of the nodes follow a poisson distribution.
In this case, the majority of the nodes have a similar degree. In addition, very large hubs are not
present in contrast with scale free networks. The networks that exhibit this property are shown in
Figures 3.1f­g: SOC3 and CIT1.

Table 3.1 lists the additional properties of the previous networks such as the average hopcount (𝐸[𝐻]),
average degree (𝐸[𝐷]), link density (𝜌) and average clustering coefficient (𝐴𝐶𝐶). The aim has been to
select networks with varying properties in order to evaluate the robustness of the proposed prediction
framework.

3.1.1. Preprocessing
Each complex network in Table 3.1 is shown after a pre­processing step. In this step, four aspects are
evaluated:

• When the network dataset contains temporal information, the integrated static network is consid­
ered instead.

• When links are directed and (or) contains weights, these are converted to undirected­ and un­
weighted links.
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• Some complex networks may contain self loops. These are removed.

• Finally, the networks are evaluated on connectivity. In this case, the largest connected component
is retained. This is a requirement for the network embedding step.

Note that the network properties are computed after pre­processing.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 3.1: Degree distribution of the networks (a): Protein Protein Interaction (BIO1), (b): Facebook food pages (SOC1), (c):
Facebook messages (SOC2), (d): DNC emails (COM1), (e): Computer routers (COM2), (f): Human contact (SOC3) and (g):
Citation network (CIT1).
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 3.2: Visual depiction of the networks (a): Protein Protein Interaction (BIO1), (b): Facebook food pages (SOC1), (c):
Facebook messages (SOC2), (d): DNC emails (COM1), (e): Computer routers (COM2), (f): Human contact (SOC3) and (g):
Citation network (CIT1).
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3.2. Network Embedding Procedure
Figure 3.3 visualizes the pipeline used to produce the optimal embedding. The purpose of most of the
steps in the pipeline is to determine the optimal set of hyperparameters 𝑝, 𝑞 and 𝑑 of the Node2Vec
embedding framework. Given a network 𝐺(𝑉, 𝐸), the first step is to randomly remove 25% of its links,
while ensuring that the resulting network called 𝐺𝑡𝑟𝑎𝑖𝑛 remains connected. The removed links are
denoted as positive links. Next, the same amount of negative links is sampled from the set 𝐸𝐶 ,
which is the set of nonexistent links. Afterwards, Node2Vec is used to produce an embedding 𝐸𝐺𝑡𝑟𝑎𝑖𝑛
for 𝐺𝑡𝑟𝑎𝑖𝑛, which is then evaluated on its link prediction performance on the positive­ and negative
testing samples. To remove effects of the steps involving random sampling, the performance of the
link prediction is averaged over 50 repetitions (each network is split 5 times and for each training
network, 10 embedding representations are produced). To determine the optimal parameters 𝑝, 𝑞 and
𝑑 in the Node2Vec algorithm, a grid search is performed over a range of values for each parameter:
𝑝, 𝑞 ∈ {0.01, 0.25, 0.50, 1, 2, 4} and 𝑑 ∈ {32, 64, 128}. In the final step, the optimal parameters are
used to embed the original network 𝐺.

The AUC score in the link prediction step is computed according to the method described in Section
2.2.4. First, each node pair (or link) in the positive­ and negative test set is evaluated on the cosine
similarity by using the obtained network embedding. Afterwards, a random positive­ and negative link
is sampled in order to evaluate whether the positive link had a higher score compared to the negative
link. Repeating this comparison step for 𝑛 = 10000 iterations, the AUC was computed using Equation
2.8. The AUC and the optimal parameters of Node2Vec for each network, is presented in Table 3.2. At
the final step, these parameters are used to embed the full network.

Figure 3.3: Pipeline denoting the steps taken in order to produce the optimal embedding for a network.

Table 3.2: Parameters in the Node2Vec algorithm used to produce the optimal embedding for each network.

Network Type Name Notation 𝑝𝑜𝑝𝑡 𝑞𝑜𝑝𝑡 𝑑𝑜𝑝𝑡 𝐴𝑈𝐶
Biological Protein protein interaction BIO1 1.0 0.01 32 0.71
Social FB pages food SOC1 0.01 0.01 128 0.76
Social FB messages interaction SOC2 2.0 0.01 32 0.78
Social Human contact SOC3 0.50 0.25 32 0.94
Communication DNC emails COM1 0.25 0.01 32 0.86
Communication Computer routers COM2 1.0 0.01 32 0.93
Collaboration Citation (netscience) CIT1 0.25 0.25 128 0.98

3.3. Node Influence
For each network, the influence 𝑟𝑢 of each node 𝑢 is computed using a stochastic SIR epidemic model.
As explained in Section 2.3.4, the node influence is characterized by the expected value of the final
epidemic size when the dynamic process terminates. Therefore, the node influence is averaged over
1000 repetitions of a SIR process on a network for a given seed node. The main parameters used in
the SIR model is the effective transmission rate 𝜏 = 𝛽

𝜇 , where 𝛽 is the infection rate and 𝜇 the recovery
rate. While 𝜇 is kept at a constant value of 1, 𝛽 is chosen such that the maximum 𝑟𝑢 over all the nodes
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approximates a value of 0.1. Table 3.3 lists the values for these two parameters for every network.

Table 3.3: Effective transmission rate 𝜏 used in the SIR model for each network in order to ensure that 𝑟𝑢 𝑚𝑎𝑥 ≈ 0.1. 𝜏𝑐 denotes
the numerical estimate of the epidemic threshold as described in Appendix A.

Network 𝜏 𝜏𝑐
BIO1 0.080 0.054
SOC1 0.110 0.080
SOC2 0.065 0.048
SOC3 0.090 0.070
COM1 0.020 0.015
COM2 0.095 0.060
CIT1 0.410 0.35

3.4. Prediction Framework
In this section the procedure used to obtain the node influence prediction model is described in multiple
steps. As can be seen in Figure 2.7 in Section 2.3.3, the first step in this process is to choose a
small subset of nodes as the training data. The choice of this subset with its prepossessing method is
described in Section 3.4.1. Afterwards, the cross­validation strategy with its parameters are presented
in Section 3.4.2 for each of the learning models. Finally, the evaluation metrics are discussed in Section
3.4.3.

3.4.1. Data Set
Splitting the data into Training­ and Testing Set
In order to obtain a prediction model, two data types are needed: training­ and testing data. In the
case of this study, the training data refers to the ”small” subset 𝑆 with nodes from the network whose
influence is known. The testing data refers to the set 𝑉 − 𝑆, where the nodal influence information is
not used in model training, but only in model testing. The default size of the training data is 10% of
the nodes in the network, while the testing data consists of the remaining 90%. In some experiments
these may be different and will be specified accordingly. One important aspect is the method used to
split the original network into the two datasets. As can be seen in Figure 3.4, the distribution for the
node influence over all the nodes in the Protein protein interaction network, shows that most of the
nodes have a very low influence. In contrast only few nodes have a large node influence. These are
also the nodes of interest. Determining the set 𝑆 randomly is desired as in practice we cannot control
how the data presents itself. In addition, the training data and the testing data should both have the
same distribution. However, since the size of the network is relatively small, it can be the case that
zero highly influential nodes will be sampled randomly. This is less of an issue when the networks are
larger. Therefore, a stratified random sampling strategy is used to maintain the same distribution of the
node influence in the training­ and testing data. In this strategy, the nodes are divided into 𝑏 = 5 bins,
and from each bin the same proportion is sampled into the training data, depending on the size of the
training data needed. This ensures that at least one sample node with a high influence will be present
in the training data set. As mentioned before, in a practical setting, the distribution of the given training
dataset cannot be controlled beforehand. Thus, in this work we explore two different scenarios: (1)
splitting the data randomly and (2) using a stratified sampling strategy.
Data imbalance in Regression
Figure 3.4 presents an additional issue which should be accounted for during model training: data
imbalance. It should be noted that this work is not heavily focused on the machine learning aspects.
However, mentioning these topics are important as it will help to better position the observations. In
the problem of data imbalance, the nodes for which the prediction framework should work the best
during prediction, occurs in orders of magnitude lower quantity than the nodes for which the prediction
is irrelevant. In machine learning a distinction is then made between the majority class and the minority
class [45]. There are several methods that can alleviate the drawbacks of such an imbalanced dataset,
some of which are:
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Figure 3.4: Probability density function 𝑓𝑅(𝑥) of the average prevalence 𝑅 of a random node. The histogram consists of 40 bins
split in the interval [0, 1] with the same bin size. The probability density function 𝑓𝑅(𝑥) at a given bin 𝑥 then equals the fraction
of data within each bin normalized by the bin size (1/40).

• Data Sampling: This is a preprocessing technique where the imbalance in the data is evened
out by either(i) oversampling the minority data, and (ii) undersampling the majority data. In the
first case, the less frequent nodes are either duplicated or synthetically generated by introducing
some noise in the features and the target variable [26]. In the second case, the more frequent
nodes which are not of interest are removed from the dataset. Methods also exits where both
these approaches are combined in order to produce a well distributed data set such as SMOTER
and SMOGN [5, 56].

• Sample Weights: This is a method which is applied during the model training step. Here, the
minority nodes are weighted higher in comparison with the majority nodes. As a result, during
model training or optimization, prediction errors on the minority data are amplified in the loss
function, guiding the model to correctly learn the minority data.

During the initial model development phase a sample weighting scheme based approach as proposed
by Torgo et al. in [55] had been utilized in order to address the class imbalance issue. However, as no
significant improvement was observed in the node influence prediction performance, the results were
omitted in this report.

Comparison with Baseline Features
One objective of this work is to not only investigate the utility of embedding features, but also to bench­
mark those against classical topology based metrics. As of recent, several studies have already been
conducted on which individual or combinations of centrality metrics are needed to predict the node
influence [7, 6]. A common conclusion among these two studies is that a classical network topology
based feature vector should contain at least a local­ and a global metric. As a result, three centrality
metrics have been chosen: the Degree­ (𝑑𝑢), Closeness­ (𝑐𝑢) and Eigenvector Centrality (𝑥𝑢). Here,
the 𝑑𝑢 denotes a local metric, the 𝑐𝑢 a global metric and the 𝑥𝑢 a spectral (global) metric.

3.4.2. Model Training
Each of the models described in Section 2.3.5 contains several tuning parameters. In order to tune
these parameters and to reduce the effects of over­fitting, a grid search is performed over every possible
parameter configuration. At each step of the grid search 5 fold cross­validation is applied to determine
the performance of the prediction model. Finally, the model is retrained on the parameter configuration
which produced the best results. It should be noted that in this case, the cross­validation procedure
also utilized the previously defined sample weights. All these procedures with data preprocessing and
model training have been conducted using the scikit learn library in Python [40]. The model specific
parameters are as follows:

• Random Forest Regression: #Decision trees (estimators) trained: [10, 20, 50, 80, 100]. The
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loss is the mean absolute error.

• Support Vector Regression: Regularization parameter 𝜆 ∈ [0.0001, 0.0005, 0.001, 0.01,
0.1, 1.0, 10, 20]. The kernels used: [polynomial with degree 2, radial basis function with auto
scaling].

• Ridge Regression (Linear model): Regularization parameter 𝜆 ∈ [0.0001, 0.0005, 0.001,
0.01, 0.1, 1.0, 10, 20].

3.4.3. Model Evaluation
Machine learning frameworks, in the context of regression are evaluated by computing the coefficient
of determination (𝑟2):

𝑟2 = 1 −
∑𝑁𝑖=1(𝑦𝑖 − �̂�𝑖)2

∑𝑁𝑖=1(𝑦𝑖 − �̄�𝑖)2
(3.1)

where �̄� = 1
𝑁 ∑

𝑁
𝑖=1 𝑦𝑖, �̄�𝑖 the predicted value and 𝑦𝑖 the ground truth for observation 𝑖. The intuition

behind this performance metric is that it is a comparison between two models in terms of the residual
error: (i) the learned regression model 𝑓(𝑥) on the training data, and (ii) a model that always outputs
the expected value of 𝑦. Thus, the better the regression model, the less variance it will have where
𝑟2 will be closer to 1. While this may denote a good prediction performance, it is difficult to judge the
prediction performance of a model where 𝑟2 is lower. This is generally application specific. In addition,
especially for imbalanced datasets, this metric may give an incorrect estimate on the prediction perfor­
mance. While the frequently occurring samples may be correctly predicted and the infrequent samples
incorrectly, the 𝑟2 metric can still take a value close to 1. Therefore, other metrics that specifically mea­
sures the prediction performance on the infrequent samples are needed. In classification problems,
the most suitable metrics are the precision, recall and the F1 score to assess the classification perfor­
mance of the minority class in comparison with the majority class. For network analysis, a similar set
of metrics exist that can quantify how well a model is capable of correctly predicting the top 𝑓 fraction
of influential nodes (minority data):

• Recognition rate 𝑟(𝑓): The recognition rate makes use of two rankings: the top 𝑓𝑁 nodes
in the network according to the true nodal influence and the top 𝑓𝑁 nodes as identified using the
predicted nodal influence. The number of common nodes in both rankings denote the recognition
rate:

𝑟(𝑓) =
|𝑅𝑇𝑓 ∩ 𝑅𝑃𝑓 |
|𝑅𝑇𝑓 |

(3.2)

, where 𝑅𝑇𝑓 represents the nodes in the top 𝑓 fraction as ranked by the true node influence and
𝑅𝑃𝑓 the nodes in the top 𝑓 fraction as ranked by the predicted node influence.

• Precision function 𝑝(𝑓): . The previous metric is useful for determining whether the model is
capable of identifying the nodes with the highest influence, with respect to the true values. To get
a measure how well the prediction itself is on each of those nodes the precision function 𝑝(𝑓) as
defined in [6] can be used:

𝑝(𝑓) =
𝐼𝑖∈𝑅𝑃𝑓 𝑟𝑖
𝐼𝑖∈𝑅𝑇𝑓 𝑟𝑖

(3.3)

, where 𝑟𝑖 denotes the influence of node 𝑖 and 𝐼(.), the mean. This metric quantifies the average
prediction on the node influence in comparison with the true average node influence at the top
𝑓 fraction of nodes in the network. Therefore, in conjunction with the recognition rate, these two
metrics can give a clear view on the prediction performance of a model on the top influential
nodes.

The previous two metrics give insight on the prediction of minority samples only when used in tan­
dem. In case the recognition rate is low, while the precision is higher, this may still denote sub­par
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performance. Therefore, these metrics are commonly aggregated into a single metric called the F1
score:

𝐹1(𝑓) = 2
𝑟(𝑓)−1 + 𝑝(𝑓)−1 (3.4)



4
Results

This chapter contains the experimental results that are used to answer the research questions defined in
Chapter 1. The experiments are divided into two groups (i) exploration of the embedding feature space,
and (ii) evaluation of the node influence prediction framework. The aim of the first set of experiments
is to study whether the network topology information is captured into the optimal network embedding
(see Section 4.1). The second set of experiments is constructed to evaluate the performance of the
prediction framework (see Section 4.2). Additionally, the effect of the network topology on the node
influence prediction performance is also investigated in order to justify some of the observed results
(Section 4.3).

4.1. Exploring the Nodal Embedding Vector
The analysis on the relation between the distance (shortest path­ and resistance distance) of two nodes
in topology and the proximity of the two nodes between their corresponding embedding vectors is di­
vided into two sections. In the first subsection, a study is performed to investigate whether a correlation
indeed exists between the distance in the network topology and the proximity between the correspond­
ing embedding vectors for each node pair. In this case, the network embedding is obtained as the one
which best preserves the network topology according to the link prediction task. Afterwards, the effects
of the embedding parameters are investigated on the observed correlation patterns.

4.1.1. Correlation Study on Distance Metrics
Description
In the first experiment, an optimal embedding is created for each network. Afterwards, the shortest
path distance (SPD) and the resistance distance (RD) have been calculated for each node pair in the
network topology. In addition, the cosine similarity (CS) has also been computed for each node pair
using the corresponding (normalized) embedding vectors of each node. A correlation study has been
performed between each topological distance and the proximity in embedding space. The goal is to
then identify how the distance metrics in the topology space correlate with the CS. Note, the terms
”similarity” and ”distance” are interchanged as they convey the same concept in the embedding space
(a smaller angle between two embedding vectors translates into a closer proximity). There are two
reasons why these topology based distance metrics are interesting:

• Embedding of network topology: As described in Section 2.2.2, an optimal embedding
should at least be able to reconstruct the original network topology for it to be effective in network
inference tasks. Therefore, in the embedding it is expected that node pairs with a shorter SPD
in the topology, have a higher CS (due to the closer proximity between the embedding vectors of
the node pairs). As a result, the correlation pattern could affirm the possibility of the embedding
to preserve the network topology.

• Embedding of shortest path distance: A wide variety of classical topology based metrics
utilizes the SPD between all possible node pairs (for example the closeness 𝑐𝑢 of a node 𝑢).

29
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Table 4.1: Pearson correlation coefficient between the Cosine Similarity (CS), Shortest Path Distance (SPD) and Resistance
Distance (RD) metrics of all possible node pairs in the network.

Network Pearson Correlation
𝑝(𝑆𝑃𝐷, 𝐶𝑆) 𝑝(𝑆𝑃𝐷, 𝑅𝐷) 𝑝(𝑅𝐷, 𝐶𝑆)

BIO1 0.40 0.67 0.16
SOC1 0.34 0.74 0.03
SOC2 0.43 0.71 0.19
SOC3 0.21 0.46 0.08
COM1 0.25 0.44 0.12
COM2 0.34 0.75 0.12
CIT1 0.58 0.78 0.36

Investigating the correlation pattern may give insight whether the network embedding can be
used to represent only the SPD of the node pairs in the original network.

Observations
Table 4.1 presents the Pearson correlation coefficient 𝑝(𝑋, 𝑌) between the metrics 𝑋 and 𝑌, where
𝑋, 𝑌 ∈ {Shortest Path Distance (SPD), Cosine Similarity (CS), Resistance Distance (RD)}. This test
outputs a value in the range {−1, 1} which denotes the degree of linearity between 𝑋 and 𝑌. Three
observations can be made. First, the SPD and CS are weakly correlated over most of the networks
(𝑝(𝑆𝑃𝐷, 𝐶𝑆) ≤ 0.4). Second, the SPD and RD are moderately correlated in all networks. Lastly,
the correlation between the CS and RD is negligible for all networks except for CIT1. Table B.1 in Ap­
pendix B also shows the Spearman correlation coefficient between the metrics in order to test whether
a nonlinear relation exists or not. However, the same observations made on the basis of the Pearson
correlation coefficient also hold for the correlation analysis using the Spearman correlation coefficient.
While at first glance, these observations conclude that the network embedding hardly captures the
distance in the network topology, more insight is obtained by consulting the (averaged) scatter plot be­
tween the various distance metrics. Figure 4.1 presents the SPD versus the CS of a node pair, where
node pairs are grouped according to their SPD on the x­axis. It can be observed, if the SPD between
a node pair increases in the network topology, then its similarity in the embedding space decreases at
first, after which it starts to increase again. On the bottom row of each figure, the hopcount distribution
is presented for all possible node pairs. It shows that the majority of the node pairs in the network
have a relatively small hopcount. For such node pairs, the CS does decrease with increasing SPD.
Therefore, the CS and SPD of a node pair tend to be negatively correlated. Figure 4.2 presents the
relation between the SPD and RD of a node pair. As can be seen, the RD increases monotonically
with the SPD in the network topology. The SPD between two node pairs is a distance measure which
only considers a single (shortest) path between the two nodes. On the other hand, the RD also takes
all other possible paths into account between the two nodes. It is based on the premise that the two
nodes are effectively closer in distance if they are reachable via multiple paths. The previous observa­
tion shows that node pairs at increasing SPD are effectively harder to reach, despite the contribution
of the multiple paths between these nodes.

Analysis
To make an attempt at the analysis of the previous observations, it is best to consider what the CS
entails. As discussed in Section 2.2.3, the CS encodes the co­occurrence frequency of a node 𝑣 in
the neighbourhood of a source node 𝑢, when performing random walks. The results show that nodes
in the immediate neighbourhood are deemed less similar by the embedding, at increasing SPD. This
indicates homophily, where nodes in the closer vicinity (or community) are highly connected and there­
fore similar [19]. On the other hand, node pairs where the SPD is much larger can also be embedded
in closer proximity in the embedding space. At first, this suggests that Node2Vec is identifying similar
nodes at a larger SPD. According to the work in [19], this result hints at node pairs at larger SPD to
have a similar structural neighbourhood. However, based on the current results it is not clear whether
this is indeed the case. Overall, the findings of this correlation analysis show that the distance between
the majority of the node pairs in the topology is captured by the proximity in the embedding space.
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(a) Protein Protein Interaction (BIO1).
𝐸[𝐷] = 5.79
𝐸[𝐻] = 3.84

(b) Facebook pages food (SOC1).
𝐸[𝐷] = 6.75
𝐸[𝐻] = 5.08

(c) Facebook messages interaction (SOC2).
𝐸[𝐷] = 10.19
𝐸[𝐻] = 3.31

(d) Human contact (SOC3).
𝐸[𝐷] = 13.49
𝐸[𝐻] = 3.63

(e) DNC emails (COM1).
𝐸[𝐷] = 24.46
𝐸[𝐻] = 2.76

(f) Computer routers (COM2).
𝐸[𝐷] = 6.28
𝐸[𝐻] = 4.61

(g) Citation netscience (CIT1).
𝐸[𝐷] = 4.82
𝐸[𝐻] = 6.04

Figure 4.1: Cosine similarity versus the shortest path distance for all possible node pairs in the networks (Top row). The bottom
row in each graph denotes the corresponding hopcount distribution of all possible node pairs.
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(a) Protein Protein Interaction (BIO1). (b) Facebook pages food (SOC1). (c) Facebook messages interaction (SOC2).

(d) Human contact (SOC3). (e) DNC emails (COM1). (f) Computer routers (COM2).

(g) Citation netscience (CIT1).

Figure 4.2: Shortest path distance versus the resistance distance for all possible node pairs in the networks.
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4.1.2. Effect of Embedding Parameters
Description
The previous experiment has shown that the SPD of the majority of the node pairs in the network
topology is preserved in the optimal embedding. However, it was also observed that for a minority of the
node pairs in the network (where the SPD is larger than the average hopcount), the CS was relatively
higher. In order to obtain the optimal embedding of the network using Node2Vec, the three tuning
parameters {𝑝, 𝑞 and 𝑑} are optimized according to the link prediction task. This part of the experiment
aims to investigate how these parameters affect the previously observed negative correlation between
the CS and SPD of the node pairs. This is interesting due to the following two reasons:

• A parameter configuration could exist, which leads to an embedding in which the SPD and CS of
the node pairs with a larger SPD, are negatively correlated as well. That is, the CS and the SPD
exhibiting a monotonic correlation.

• For the node influence prediction task, the predictive models are trained where the optimal net­
work embedding vectors for each node are used as features. The performance of these models
could be improved by utilizing an embedding with a lower dimension, while ensuring that it still
has preserved the observed negative correlation between the CS and SPD of the node pairs.

Therefore, in this experiment an embedding is produced on the given network for different values of
{𝑝, 𝑞, 𝑑}. Whenever, the effect of an individual tuning parameter is investigated, the other two param­
eters are set to the optimal values as listed in Table 3.2.

Observations
Figures 4.3­4.9 illustrate the CS versus the SPD for the node pairs in each of the networks in Table
3.1. Additionally, each sub figure in each graph depicts the individual effect of either 𝑝, 𝑞 or 𝑑 on the
obtained correlation between the CS and the SPD of the node pairs. The following observations can
be made:

• For the networks where 𝑑 = 32 (BIO1, SOC2, COM1, COM2 and SOC3), individually varying
the tuning parameters 𝑝 or 𝑞, hardly affects the previously observed negative correlation between
the CS and SPD (as shown in Section 4.1.1).

• For the remaining two networks where 𝑑 = 128 (SOC1 and CIT1), the majority of the node pairs
still tend to have a negative correlation between their CS and SPD. However, the effect of the
embedding parameters 𝑝 and 𝑞 are more prevalent.

• The embedding dimension 𝑑 has by far the largest effect on the correlation between the CS
and the SPD of the node pairs. In general, when 𝑑 increases, nodes which are far apart in the
network topology are deemed more similar in the embedding space. On the other hand, when 𝑑
decreases, so does the correlation between the CS and the SPD. When 𝑑 < 8, most of the node
pairs tend to have the same CS, denoting that the embedding is not able to distinguish the nodes
in the network in terms of similarity.

Analysis
The previous set of observations show that individual tuning of the return parameter (𝑝) and the in­out
parameter (𝑞) or both together, could result into a similar correlation between the CS and the SPD of the
nodes, when the embedding dimension is not too large. When the embedding dimension is increased
however, the negative correlation between the CS and the SPD of the node pairs becomes stronger.
This could indicate that an embedding with a larger dimension is able to capture the distance in the
network topology to a larger extent. While a network embedding with a lower dimension is favoured by
supervised learning models, the results of this experiment show that an optimum value might exist, as
an embedding with an extremely low dimension could not properly capture the SPD of the node pairs
in the network topology.
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(a) Varying 𝑝
𝑞 = 0.01 and 𝑑 = 32

(b) Varying 𝑞.
𝑝 = 1 and 𝑑 = 32

(c) Varying 𝑑.
𝑝 = 1 and 𝑞 = 0.01

Figure 4.3: Cosine similarity (CS) versus the shortest path distance (SPD) for all possible node pairs in the protein protein
interaction network (BIO1). Whenever one of the parameters are varied, the other two are kept constant at the optimal values
as listed in Table 3.2.

(a) Varying 𝑝
𝑞 = 0.01 and 𝑑 = 128

(b) Varying 𝑞.
𝑝 = 0.01 and 𝑑 = 128

(c) Varying 𝑑.
𝑝 = 0.01 and 𝑞 = 0.01

Figure 4.4: Cosine similarity (CS) versus the shortest path distance (SPD) for all possible node pairs in the Facebook food pages
network (SOC1). Whenever one of the parameters are varied, the other two are kept constant at the optimal values as listed in
Table 3.2.
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(a) Varying 𝑝
𝑞 = 0.01 and 𝑑 = 32

(b) Varying 𝑞.
𝑝 = 2 and 𝑑 = 32

(c) Varying 𝑑.
𝑝 = 2 and 𝑞 = 0.01

Figure 4.5: Cosine similarity (CS) versus the shortest path distance (SPD) for all possible node pairs in the Facebook messages
interaction network (SOC2). Whenever one of the parameters are varied, the other two are kept constant at the optimal values
as listed in Table 3.2.

(a) Varying 𝑝
𝑞 = 0.01 and 𝑑 = 32

(b) Varying 𝑞.
𝑝 = 0.25 and 𝑑 = 32

(c) Varying 𝑑.
𝑝 = 0.25 and 𝑞 = 0.01

Figure 4.6: Cosine similarity (CS) versus the shortest path distance (SPD) for all possible node pairs in the DNC emails network
(COM1). Whenever one of the parameters are varied, the other two are kept constant at the optimal values as listed in Table
3.2.
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(a) Varying 𝑝
𝑞 = 0.01 and 𝑑 = 32

(b) Varying 𝑞.
𝑝 = 1 and 𝑑 = 32

(c) Varying 𝑑.
𝑝 = 1 and 𝑞 = 0.01

Figure 4.7: Cosine similarity (CS) versus the shortest path distance (SPD) for all possible node pairs in the computer routers
network (COM2). Whenever one of the parameters are varied, the other two are kept constant at the optimal values as listed in
Table 3.2.

(a) Varying 𝑝.
𝑞 = 0.25 and 𝑑 = 32.

(b) Varying 𝑞.
𝑝 = 0.5 and 𝑑 = 32.

(c) Varying 𝑑.
𝑝 = 0.5 and 𝑞 = 0.25.

Figure 4.8: Cosine similarity (CS) versus the shortest path distance (SPD) for all possible node pairs in the human contact
network (SOC3). Whenever one of the parameters are varied, the other two are kept constant at the optimal values as listed in
Table 3.2.
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(a) Varying 𝑝.
𝑞 = 0.25 and 𝑑 = 128.

(b) Varying 𝑞.
𝑝 = 0.25 and 𝑑 = 128.

(c) Varying 𝑑.
𝑝 = 0.25 and 𝑞 = 0.25.

Figure 4.9: Cosine similarity (CS) versus the shortest path distance (SPD) for all possible node pairs in the citation (netscience)
network (CIT1). Whenever one of the parameters are varied, the other two are kept constant at the optimal values as listed in
Table 3.2.
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4.2. Framework Evaluation: Node Influence Prediction
In this section, the aim is to evaluate the performance of the Linear­, SVR and RFR regression models
on the node influence prediction task. In order to achieve this, two different features are utilized: (1)
classical network topology features and (2) network embedding based features. The analysis on this
comparison is presented in Section 4.2.1). In the next step, the previous experiments have been
repeated with two different splitting strategies in order to determine how the regression models would
be affected by the manner in which the data is available in practice (see Section 4.2.2). In a subsequent
experiment, the effect of reducing the embedding dimension is explored to determine whether this can
improve the prediction performance (Section 4.2.3). In Section 4.2.4, the size of the training data set
is increased even further to evaluate how much the network embedding based regression models can
improve. Lastly, the network embedding­ and classical topology based features are combined in order
to determine scenarios where network embedding based features could prove to be the better solution
(Section 4.2.5).

4.2.1. Comparison of Embedding and Topology features
Description
In this experiment, each model (Linear, SVR and RFR) is trained on a subset consisting of 10% of
the nodes in a network, using either topology features (�⃗�𝑇𝑜𝑝) or embedding features (�⃗�𝐸𝑚𝑏). In the
latter case, the features are based on the optimal network embedding as determined by the link predic­
tion task. As mentioned in the previous chapter, the topology based features consists of the degree­
(𝑑𝑢), eigenvector­ (𝑥𝑢) and closeness centrality (𝑐𝑢) metrics. The model training is repeated 50 times
and the results for each performance metric, averaged. It should be noted that in this experiment the
training dataset is obtained using stratified sampling (as described in Section 3.4). The main purpose
of this experiment is to evaluate the performance of the network embedding based regression models
with respect to those trained using the topology based features. An important criterion in the evaluation
step is to determine how well the predictions are made on nodes with the highest influence. Therefore,
the recognition rate 𝑟(𝑓), precision function 𝑝(𝑓) and the 𝐹1(𝑓) score are all computed at 𝑓 = 0.1.
In other words, the top 10% of the influential nodes are investigated.

Observations
Table 4.2 presents the benchmarking results of the several prediction models on all the networks. For
each combination of {model and network}, the performance metrics are depicted. Additionally, the best
performing prediction model for each network is presented in bold for both types of features. As can be
observed, the RFR model has the best overall performance over all networks when using the topology
features. In contrast, the Linear model performs the worst overall. While nearly all the models perform
well when using topology features, the RFR outperforms those on all four performance metrics. Strik­
ingly, in the case of the Linear model, the 𝑟2 metric can be negative while 𝐹1 is acceptable. This could
indicate that the linear model under predicts the nodal influence. A second observation is that the SVR
model exhibits the best performance when the experiments are conducted using network embedding
features. However, it is still sub­par in comparison with the RFR model where topology features are
used instead.

Analysis
The observations in this experiment regarding the topology based features is not surprising. the RFR
model can generally interpolate the non­linear patterns well within the training data in contrast to for
example the Linear model. In addition, when considering topology based features, the dimensionality
of the feature vector is much lower compared to the size of the training dataset. Therefore, sufficient
data is available for not only the RFR, but also the Linear and SVR models to generalize well, resulting
into the best prediction performance overall. In the case of the network embedding based features,
each feature vector has at least a network dimension of 32 (for the networks, SOC1 and CIT1 the
dimension is 128). SVR models are known to work well in this setting where the number of features
is large relative to the size of the training dataset. As a result, its performance is expected to be su­
perior than the Linear­ and RFR models. This experiment concludes the following finding: When the
degree­, eigenvector­ and closeness centrality metrics are available for each node in the network, the
RFR model is the best choice in the node influence prediction task. In the opposite case, network
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embedding features are best utilized by the SVR model.
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Table 4.2: Prediction performance of the models trained on a training dataset, consisting of 10% of the nodes in each network.
Here, stratified sampling has been used to obtain the training data. Performance indicators have been computed on the remaining
90% of the unused nodes and averaged over 50 repetitions. For each model and each network, a comparison is shown between
the baseline features (�⃗�𝑇𝑜𝑝) and the network embedding features (�⃗�𝐸𝑚𝑏). The network embedding is based on the optimal
parameter configuration.

Linear SVR RFR

Network Metric �⃗�𝑇𝑜𝑝 �⃗�𝐸𝑚𝑏 �⃗�𝑇𝑜𝑝 �⃗�𝐸𝑚𝑏 �⃗�𝑇𝑜𝑝 �⃗�𝐸𝑚𝑏
BIO1 𝑟2 0.01 ­0.64 0.77 0.50 0.95 0.01

𝑟(0.1) 0.89 0.29 0.90 0.60 0.89 0.19
𝑝(0.1) 0.55 0.29 0.91 0.77 0.95 0.56
𝐹1(0.1) 0.68 0.28 0.90 0.68 0.92 0.28

SOC1 𝑟2 0.22 ­0.46 0.85 0.29 0.98 0.27
𝑟(0.1) 0.93 0.40 0.93 0.55 0.93 0.38
𝑝(0.1) 0.62 0.43 0.84 0.46 0.95 0.58
𝐹1(0.1) 0.74 0.41 0.88 0.50 0.94 0.45

SOC2 𝑟2 ­0.19 ­0.99 0.89 0.45 0.98 0.05
𝑟(0.1) 0.95 0.13 0.94 0.62 0.94 0.16
𝑝(0.1) 0.63 0.29 0.89 0.71 0.97 0.59
𝐹1(0.1) 0.76 0.17 0.91 0.66 0.95 0.25

SOC3 𝑟2 ­1.21 ­1.56 0.84 0.52 0.87 0.38
𝑟(0.1) 0.77 0.41 0.66 0.58 0.81 0.38
𝑝(0.1) 0.52 0.38 0.87 0.76 0.93 0.73
𝐹1(0.1) 0.62 0.39 0.75 0.66 0.86 0.49

COM1 𝑟2 0.47 0.19 0.89 0.77 0.98 0.49
𝑟(0.1) 0.84 0.62 0.82 0.77 0.83 0.51
𝑝(0.1) 0.75 0.58 0.87 0.81 0.98 0.73
𝐹1(0.1) 0.79 0.59 0.84 0.79 0.90 0.59

COM2 𝑟2 0.34 ­0.28 0.84 0.41 0.96 0.13
𝑟(0.1) 0.90 0.46 0.93 0.59 0.93 0.34
𝑝(0.1) 0.64 0.34 0.90 0.76 0.96 0.60
𝐹1(0.1) 0.75 0.39 0.91 0.66 0.94 0.43

CIT1 𝑟2 ­2.10 ­2.60 0.42 0.34 0.75 0.29
𝑟(0.1) 0.75 0.47 0.51 0.53 0.73 0.49
𝑝(0.1) 0.58 0.38 0.76 0.70 0.83 0.71
𝐹1(0.1) 0.65 0.41 0.60 0.60 0.77 0.57
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4.2.2. Effect of Sampling Strategy
Description
To determine whether the sampling strategy used to obtain the training dataset did contribute to the
prediction performance, another set of experiments is conducted where the training data is sampled
randomly. As the previous analysis already established that the RFR model for topology features and
SVR model for the embedding features were the top performing frameworks, only these two models
are considered in this experiment for better clarity.

Observations
Table 4.3 presents the results for the comparison study. It mainly shows that for both the topology­ and
network embedding features, both sampling strategies have a similar effect on the prediction perfor­
mance. While in the RFR model, the stratified sampling strategy show slight improvement in the 𝐹1
score (for the networks SOC1, CIT1 and COM1), it is negligible. In the case of the embedding features
based SVR model, the stratified sampling strategy does on average produce slightly better prediction
performance. However, even in this case the improvement is small enough such that it is negligible.

Analysis
The observations conclude that the stratified sampling strategy used to obtain the training data does
not improve the best performing regression models significantly, when compared to the case where a
random sampling strategy is used to produce the training dataset. This suggests that the current pre­
diction framework is applicable in both scenarios. The added value of the stratified sampling strategy
is that the highly influential nodes which occur in the minority would be sampled as well. The results of
this experiment suggests that the random sampling strategy already achieves this effect.
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Table 4.3: Prediction performance of the best regression models with random­ and stratified based training data. Each training
data set consists of 10% of the nodes in the original network and the testing data set, the remaining nodes. All the results shown
are an average over 50 repetitions. The highest value for the 𝐹1 score is presented in bold.

RFR (�⃗�𝑇𝑜𝑝) SVR (�⃗�𝐸𝑚𝑏)
Network Metric Random Stratified Random Stratified
BIO1 𝑟2 0.94 0.95 0.43 0.50

𝑟(0.1) 0.89 0.89 0.58 0.60
𝑝(0.1) 0.95 0.95 0.69 0.77
𝐹1(0.1) 0.92 0.92 0.62 0.68

SOC1 𝑟2 0.96 0.98 0.18 0.29
𝑟(0.1) 0.93 0.93 0.49 0.55
𝑝(0.1) 0.91 0.95 0.38 0.46
𝐹1(0.1) 0.92 0.94 0.41 0.50

SOC2 𝑟2 0.98 0.98 0.50 0.45
𝑟(0.1) 0.93 0.94 0.66 0.62
𝑝(0.1) 0.97 0.97 0.71 0.71
𝐹1(0.1) 0.95 0.95 0.68 0.66

SOC3 𝑟2 0.87 0.87 0.51 0.52
𝑟(0.1) 0.81 0.81 0.58 0.58
𝑝(0.1) 0.94 0.93 0.77 0.76
𝐹1(0.1) 0.87 0.86 0.66 0.66

COM1 𝑟2 0.99 0.98 0.76 0.77
𝑟(0.1) 0.83 0.83 0.77 0.77
𝑝(0.1) 0.97 0.98 0.80 0.81
𝐹1(0.1) 0.89 0.90 0.78 0.79

COM2 𝑟2 0.96 0.96 0.41 0.41
𝑟(0.1) 0.93 0.93 0.59 0.59
𝑝(0.1) 0.96 0.96 0.72 0.76
𝐹1(0.1) 0.94 0.94 0.64 0.66

CIT1 𝑟2 0.73 0.75 0.31 0.34
𝑟(0.1) 0.72 0.73 0.52 0.53
𝑝(0.1) 0.82 0.83 0.72 0.70
𝐹1(0.1) 0.76 0.77 0.59 0.60
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4.2.3. Effect of Embedding Dimension
Description
In this experiment, the network embedding dimension has been varied between 𝑑 ∈ {2, 4, 8, 16, 32, 64,
128}. For each 𝑑 a separate network embedding has been produced, while keeping the other tuning
parameters 𝑝 and 𝑞 the same as in the optimal setting. Ideally these would have to be tuned as well
at different embedding dimensions, however due to the high run time complexity and the negligible
effects of these parameters, this idea was put on hold. As usual, the SVR model is trained on 10%
of the nodes in the network for 50 repetitions and the results have been averaged. The aim of this
experiment is evaluate whether the prediction performance of the current best prediction model (the
SVR framework) can be improved even further by decreasing the embedding dimension.

Observations
Figure 4.10 shows the recognition rate 𝑟(0.1), precision 𝑝(0.1) and the F1 score 𝐹1(0.1) for the cases
with a different embedding dimension. The following observations can be made:

• For the networks {BIO1, SOC1, SOC2}, decreasing 𝑑 will slightly improve the recognition rate,
while for the remaining networks it has the opposite effect. The optimal embedding of the networks
COM1, COM2 and CIT1 (in the figure marked by an asterisk) exhibits the highest recognition rate
and decreasing the embedding dimension has a negative effect on the prediction performance.
There seems to be an optimum value for the embedding dimension.

• The precision metric 𝑝(0.1) consistently increases as 𝑑 decreases for all the networks except
SOC3 and CIT1. The 𝐹1(0.1) score, which is the harmonic mean of the previous two measures,
therefore displays two behaviours: (1) for the networks {BIO1, SOC1, SOC2, COM1 and SOC3}
lowering the dimension to 𝑑 = 4, 𝑑 = 16, 𝑑 = 2, 𝑑 = 16 and 𝑑 = 16 respectively, will result in
the best prediction performance and (2) changing the embedding dimension for the COM2 and
CIT1 networks does not necessarily lead to an improvement in the nodal influence prediction.

Analysis
Considering the previous observations, two phenomena can be identified. Decreasing the dimension of
the network embedding results into a prediction model with a better prediction performance. This is ex­
pected as for every supervised learning model, when the size of the training dataset is small, reducing
the number of features may increase the prediction performance. This can be seen on the improve­
ment in the precision. However, the results suggest that the optimization of the network embedding
dimension is network specific.
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(a) 𝑟(0.1)

(b) 𝑝(0.1)

(c) 𝐹1(0.1)

Figure 4.10: Performance measurements for different values of embedding dimension. Each value shown is averaged over 50
runs, where the SVR model has been used for training and prediction. As in the previous cases, the training data set comprised
of 10% of the network nodes.
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4.2.4. Increasing the Training Data
Description
The effect of increasing the training data set is investigated in this experiment. From classical machine
learning theory, a larger training dataset will positively affect its prediction performance in nearly all
cases. The goal of this experiment is to evaluate how much better the model will perform when given
more data and whether the initial size of 10% had been chosen appropriately. Here, only the results
for the SVR model using embedding features is shown as this has been deemed the best performing
prediction model in the previous analysis. As presented in Section 4.2.1, the RFR model based on
topology features already exhibits near perfect prediction performance. Therefore, in this experiment
the topology based features have been omitted. As usual, all experiments are conducted using the
optimal embedding parameters and the results averaged over 50 runs.

Observations
Figure 4.11 shows the 𝐹1(0.1) score of the SVR prediction model with increasing training data. As
expected, when the model is trained on more data, it better predicts the influence of the top 10% of the
most influential nodes. However, relative to the default training data size of 10% of the nodes in the
network, when the training data size is doubled, only a slight increase in the 𝐹1(0.1) score is observed.
For all the networks except SOC2 and CIT1, this increase is≤ 10%. On the other hand, the coefficient
of determination (𝑟2) has a larger increase when the training data set is doubled (see Figure 4.12),
suggesting that a larger training dataset affects the prediction of the low influential nodes positively to
a larger extent in comparison with the high influential nodes in the minority.

Analysis
The previous observation suggests that more data positively affects the predictions of the nodal influ­
ence. The training data set consisting of 10% of the nodes in the network is sufficient, as doubling the
training dataset produces minimal improvement. This result is also expected as the SVR model works
exceptionally well in a setting with a low quantity of training data while the number of features is large.

Figure 4.11: F1(0.1) measure for the SVR model, where the size of the training data is increased by 10% and 20%. Each
embedding is generated using the optimal parameters in Node2Vec. The percentage on top of each bar represents the increase
relative to the default case.
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Figure 4.12: 𝑟2 score for the SVR model, where the size of the training data is increased by 10% and 20%. Each embedding
is generated using the optimal parameters in Node2Vec. The percentage on top of each bar represents the increase relative to
the default case.

4.2.5. Effect of combining the embedding­ and topology features
Description
In Section 4.2.3 it was found that the network embedding based SVR prediction model could further
be optimized by decreasing the embedding dimension. In this experiment, a second optimization step
is investigated where topology features are concatenated with the network embedding based features.
Therefore, the SVR model has been re­trained on different feature sets, where in each case the em­
bedding vector has been combined with the degree­, closeness­ and eigenvector centrality metric.
Note that first individual contributions are investigated and afterwards the performance improvement
by adding all centrality metrics. All results in this case has been generated with the optimized embed­
ding dimension for each network. Furthermore, the prediction performance of the RFR model with only
topology based (individual) features have been presented as well in order to better position the benefit
of using the network embedding based features.

Observations
Table 4.4 presents the prediction performance (F1(0.1) metric) for the SVR model with the combined
features (network embedding­ and topology based), while Table 4.5 the results for the RFR model with
only (individual) topology absed features. The following observations can be made:

• Network embedding features + degree centrality: For all networks, adding the degree
centrality to the network embedding based features results into a better F1(0.1) score for all the
networks in comparison with using only the network embedding based features. However, as
can be seen in Table 4.5, using only the degree centrality as a single feature in the RFR model
will result into a prediction performance which is on par with the previous case (the difference
between the F1(0.1) score of both methods is small).

• Network embedding features + eigenvector centrality: An improvement in prediction
performance is achieved when compared to the case with only network embedding based fea­
tures in the SVR model. Table 4.5 shows that the eigenvector centrality without the addition of
the network embedding based features is a slightly better predictor for all the networks except
BIO1.

• Network embedding features + closeness centrality: In general the addition of the close­
ness centrality metric improves the F1(0.1) score slightly. In contrast to the previous two topology
metrics, this feature combination predicts the nodal influence of the top nodes better in compari­
son with the RFR model where only the eigenvector centrality metric has been used.

• Network embedding features + all centrality metrics: As in the previous cases, adding
all topology based features to the network embedding based SVR model does lead to an im­
provement in the influence prediction of the top 10% of the most influential nodes. However,
for all the networks except COM2 and CIT1, adding individual topology features can achieve
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Table 4.4: Overview of the F1(0.1) scores for the SVR model where embedding­ and topology features have been combined.
The following features have been combined with the embedding vectors: Degree Centrality (DC), Closeness Centrality (CC) and
Eigenvector Centrality (EC). In the last column, all three centrality features have been added to the embedding vector of each
node. Results are shown for the SVR model and as usual averaged over 50 repetitions.

F1(0.1) SVR

�⃗�𝐸𝑚𝑏 �⃗�𝐸𝑚𝑏+𝐷𝐶 �⃗�𝐸𝑚𝑏+𝐸𝐶 �⃗�𝐸𝑚𝑏+𝐶𝐶 �⃗�𝐸𝑚𝑏+𝑎𝑙𝑙 𝑇𝑜𝑝
BIO1 0.79 0.83 0.88 0.91 0.87
SOC1 0.75 0.84 0.85 0.84 0.85
SOC2 0.83 0.88 0.90 0.91 0.89
SOC3 0.72 0.79 0.73 0.75 0.77
COM1 0.81 0.83 0.85 0.81 0.84
COM2 0.67 0.82 0.78 0.83 0.85
CIT1 0.56 0.63 0.59 0.60 0.65

Table 4.5: Overview of the F1(0.1) scores for the RFR model where individual topology features have been have been used in
the prediction framework: Degree Centrality (DC), Closeness Centrality (CC) and Eigenvector Centrality (EC). In the last column,
all three centrality features have been concatenated. Results are averaged over 50 repetitions.

F1(0.1) RFR

�⃗�𝐷𝐶 �⃗�𝐸𝐶 �⃗�𝐶𝐶 �⃗�𝑎𝑙𝑙 𝑇𝑜𝑝
BIO1 0.78 0.83 0.89 0.92
SOC1 0.76 0.95 0.80 0.94
SOC2 0.90 0.94 0.91 0.95
SOC3 0.75 0.77 0.42 0.86
COM1 0.88 0.89 0.77 0.90
COM2 0.80 0.87 0.91 0.94
CIT1 0.48 0.66 0.55 0.77

the same result. Therefore, it is not necessary to add all three centrality metrics to the network
embedding based features. When comparing the prediction capability of the two feature sets
�⃗�𝐸𝑚𝑏+𝑎𝑙𝑙 𝑇𝑜𝑝 and �⃗�𝑎𝑙𝑙 𝑇𝑜𝑝, the latter is better when used in the RFR model. More specifically,
when all three topology based features are available, then the network embedding does not add
additional benefit to the prediction framework.

Analysis
This experiment denotes that the prediction model should be constructed based on the availability of
network topology based features. When the DC, EC and CC are all available, network embedding
information will not enhance the prediction of the nodal influence. Network embedding is beneficial to
the current prediction task in the following case: either single or none of the topology based centrality
metrics are available. When only one of either DC, EC or CC metrics are available, it is best to add it
to the network embedding based features in the SVR model.

4.3. Network Topology based Analysis
One of the broad objectives in network science regarding network embedding algorithms (and also
partly of this research project) is being able to relate which information of the network topology is cap­
tured in the embedding vectors of each node. In this section, a brief exploratory analysis is conducted
on this matter. Therefore, a brief qualitative comparison is made between the network embedding and
the network topology on its ability to predict the influence of each node. More specifically, an investi­
gation is conducted on possible correlations between the individual topology based centrality metrics
and the network embedding information by means of the node influence prediction task.

Figures 4.13, 4.14 and 4.15 each show the effect of the degree­, eigenvector­ and closeness cen­
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trality metrics on the true nodal influence, respectively for each network. Additionally, each node is
color coded with the predicted nodal influence by the optimal network embedding based SVR model.
It should be noted that in this case, the embedding dimension is also reduced for a better prediction
performance, according to the results in Section 4.2.3.

The results show that in general each individual centrality metric correlates well with the true nodal
influence: if the centrality metric of a node has a higher value, it will have a larger influence in the
network. However, these findings are not consistent for some networks. For the networks such as
SOC3 and CIT1 it is clear that the individual centrality metrics are not a good predictor for the true
nodal influence. This can be seen by the larger variation in the true nodal influence at any specific
value of either the degree­, eigenvector­ or closeness centrality metrics (x­axis). This observation is
consistent with the quantitative results in the previous section, where the F1(0.1) score for the nodal
influence prediction using the RFR model is lower in comparison with the other networks. The same
conclusion holds for the nodal influence prediction using the network embedding based features. In the
CIT1 network, it is apparent that even the network embedding based SVR model is not able to properly
quantify the top influential nodes. For the networks, where the individual centrality metrics are good
predictors (for example SOC1 and SOC2), the network embedding based SVR model also performs
well. This hints at the possibility that the predictive power of the network embedding based features
are also correlated with the predictive power of the topology based features in regards to the nodal
influence.
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(a) Protein Protein Interaction (BIO1). (b) Facebook pages food (SOC1).

(c) Facebook messages interaction (SOC2). (d) Human contact (SOC3).

(e) DNC emails (COM1). (f) Computer routers (COM2).

(g) Citation netscience (CIT1).

Figure 4.13: Scatter plot between the true nodal influence (final epidemic size) versus the degree centrality. The color coding
on each point (node) represents the predicted nodal influence by the best prediction model (SVR) based on embedding features
only.
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(a) Protein Protein Interaction (BIO1). (b) Facebook pages food (SOC1).

(c) Facebook messages interaction (SOC2). (d) Human contact (SOC3).

(e) DNC emails (COM1). (f) Computer routers (COM2).

(g) Citation netscience (CIT1).

Figure 4.14: Scatter plot between the true nodal influence (final epidemic size) versus the eigenvector centrality. The color
coding on each point (node) represents the predicted nodal influence by the best prediction model (SVR) based on embedding
features only.
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(a) Protein Protein Interaction (BIO1). (b) Facebook pages food (SOC1).

(c) Facebook messages interaction (SOC2). (d) Human contact (SOC3).

(e) DNC emails (COM1). (f) Computer routers (COM2).

(g) Citation netscience (CIT1).

Figure 4.15: Scatter plot between the true nodal influence (final epidemic size) versus the closeness centrality. The color coding
on each point (node) represents the predicted nodal influence by the best prediction model (SVR) based on embedding features
only.





5
Discussion & Conclusion

In this chapter a brief discussion is given of the experimental results presented in the previous chapter.
For a convenient overview it is divided into two parts: (1) Investigation of the relation between the net­
work embedding and the network topology, and (2) The application of the network embedding features
in order to predict the nodal influence. In both topics, a reflection is given on the assumptions and
the underlying methods which might aid into explaining the observed results. Finally, the conclusion is
presented where the research questions are answered.

5.1. Discussion: Relation between Network Embedding and Net­
work Topology

The main objective of this project was to utilize network embedding based features to predict the nodal
influence of the nodes in a given network. In this case it was assumed: (1) that the network topology
was known and (2) the nodal influence for a relatively small subset of its nodes were known. In a
preliminary exploratory study, an investigation was performed on whether the embedding features of
a node correlated with its proximity in the network topology. The intuition behind this investigation has
been that nodes in close proximity in the network topology have a similar epidemic influence. There­
fore, the first set of exploratory experiments aimed to confirm whether the optimal network embedding
did indeed capture the distance between node pairs in the network topology. In order to achieve this
feat, two similarity (distance) metrics have been compared for every node pair: the shortest path dis­
tance (SPD) and the cosine similarity (CS). In addition to the various proven advantages of network
embedding methods in machine learning applications, the findings of this experiment highlight yet an­
other advantage of these class of algorithms [12]. In particular, it has been demonstrated that the CS
between the embedding vectors of any two nodes is indicative of how far apart the nodes are located
in the network itself. However, the findings also suggest that for a minority of the node pairs where the
SPD is relatively larger, the CS tends to be higher as well. While these results are promising, several
limitations can be identified with the current approach, which need further exploration:

• In order to unravel the relation between the network embedding and the network topology, only
the SPD and CS distance metrics have been explored in this study. In the context of network
topology, definitions of distance measures other then the SPD may yield different results.

• The observed correlation pattern between the SPD and CS in this experiment is limited to network
embedding based features which are optimized on the link prediction task. Optimizing the network
embedding on other tasks can lead to embedding features with a better predictive capability for
the nodal influence. For example, one could directly optimized the embedding parameters 𝑝 and
𝑞 in Node2Vec, based on the performance of the predictive models.

• Lastly, the found relation between the SPD and CS may be explained and be specific to the
random walk based embedding methods, where local­ and global neighbourhood information is
preserved in the embedding features. Non­random walk based embedding methods may yield
different correlation patterns when applying the same correlation analysis as in this work.
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5.2. Discussion: Node Influence Prediction using Network Embed­
ding

In the second part of this project, the extent to which a set of classical prediction models (Linear, RFR
and SVR) were able to utilize the information of the optimal structure preserving network embedding
were investigated. In particular the size of the training data set was kept at 10% of the total number
of nodes in the network in order to reflect a real world scenario with an ongoing epidemic spreading
process. In order to position the prediction capability of the network embedding based features, the
results have been compared to a baseline model. This baseline model utilized a feature vector for each
node with three network topology metrics: the degree­, eigenvector and closeness centrality metrics.

Among the three prediction models used, it was found that network embedding based features
were best utilized by the SVR model, while the topology based metrics by the RFR model. This finding
affirmed that the dimensionality of the feature vector played a key role in the prediction performance: the
SVR model excels when the number of features are large, thus being the most suitable for the network
embedding based features. Bearing these aspects in mind, the comparison of the prediction results
based on the F1(0.1) score revealed that the best network embedding based prediction framework did
not perform on par in comparison with the baseline (RFR model with all three centrality metrics). This
result was expected due to the large dimensionality of the network embedding features (> 32 for all
networks). When the embedding dimension was optimized (reduced) in the SVR model, the prediction
performance increased for all networks except for the author citation network (CIT1) and the computer
router network (COM2). However, even after this optimization step the RFRmodel utilizing the degree­,
eigenvector and closeness centrality metrics has been proven to be superior to the SVR model utilizing
the network embedding based features. This observation is not surprising as work conducted in [6]
shows that a combination of a local­ and global based topology metric is sufficient to achieve a near
perfect prediction of the nodal influence.

In spite of the previous finding, network embedding based features does have its niche utility. This
is highlighted by the outcome of the set of experiments where both topology­ and embedding based
features have been combined. When the closeness centrality metric is available, the addition of the
network embedding based features will result into a slightly better prediction performance according
to the F1(0.1) score. This observation also holds for the degree­ and eigenvector centrality as well,
but only for specific networks. Due to the limited number of networks investigated in this research
project, the exact reason for this latter observation was not investigated. It is hypothesized that the
homogeneity of the degree distribution of a network may close the gap of the prediction performance
between network embedding­ and topology based features. Another argument can be made on why
the network embedding based features might be preferable to the classical topology based metrics:
scalability. While the networks investigated in this project contained at most in the order of 103 nodes,
real world networks can span millions of nodes. In this case, network embedding features can be
obtained more efficiently in comparison with for example the closeness centrality, where all possible
pairwise shortest paths need to be computed. The degree centrality in contrast to the closeness­
and eigenvector centrality is a metric that can be obtained relatively efficiently as long as the complete
network structure is known. When this metric is used in combination with the network embedding based
features, an improvement in the prediction performance is observed. Therefore, it is recommended
to always incorporate the degree centrality in the SVR model using the network embedding based
features.

It is worthwhile to note that the prediction results of this work should be taken into consideration
with the following factors and assumptions:

• As the focus of this work was to evaluate the utility of the network embedding based features in
the node influence prediction task, little attention has been paid to optimize the machine learning
methods (Linear­, SVR­ and RFRmodels). As described in Section 3.4.1 the training dataset was
processed based on two factors: (1) the method of splitting the nodes into validation­ and training
data and (2) class imbalance. While the experimental results demonstrated that there was a
negligible difference between the random­ and stratified sampling strategy, the class imbalance
issue was not tackled in this work as the main focus was not to dive too much into the machine
learning aspects. It is believed that in a future work this aspect should be investigated in detail,
as this might produce better network embedding based prediction models.
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• The true nodal influence of each node has been obtained by means of a SIR spreading process.
Here, the infection­ and recovery rates were chosen such that the maximum prevalence level of
the SIR process was approximately 10%. The current findings in this work is based on this pa­
rameter setting. Different values for these parameters may paint a better picture on the scenarios
where network embedding based features are preferable in the node influence prediction task.

5.3. Conclusion
The main objective of this thesis project was to investigate whether a structure preserving embedding
of a network could be used to predict the epidemic influence of its nodes. In order to tackle this chal­
lenge, the following master research question was defined:

How can network embedding based features be utilized in order to predict the infor­
mation diffusion capability (influence) of a node in a network? In order to answer this main
question, a set of sub research questions in Chapter 1 were defined. These sub research questions
with their corresponding answers are as follows:

1. How is the proximity between the nodes in the network topology captured within
in the network embedding, which optimally preserves the network structure?
As a first step, the optimal network embedding which best preserved the structure of the network
was obtained by optimizing it according to the link prediction task. Subsequently, the correlation
analysis affirmed that for any two arbitrary nodes in the network, its distance (or similarity) in
the network embedding space reflects the shortest path distance in the network topology. More
specifically, the closer two nodes are in a network, the higher the similarity in the network em­
bedding space. As a consequence, the observations concluded that network embedding based
features are a good candidate in predictive models for the nodal influence, as nodes closer in
proximity in the network topology are expected to have a similar nodal influence.

2. In the presence of limited training data, how effective are network embedding
based features in contrast to the classical network topology based features in
the node influence prediction task?
To answer this research question, the main set of experiments focused on contrasting the node in­
fluence prediction performance of three machine learning models (Linear, SVR and RFR) with two
sets of features: network embedding based and classical topology based (degree­, eigenvector­
and closeness centrality). It was found that the RFR model utilizing all three classical central­
ity metrics outperformed the best network embedding based SVR model. Further optimization
of the network embedding dimension did indeed result into better prediction performance over
several networks, however even in this case, the SVR model did not outperform the baseline
RFR model. Thus, it is concluded that network embedding in the presence (availability) of all the
classical degree­, eigenvector­ and closeness centrality metrics, is not recommended to be used
in the node influence prediction task.

3. Does the incorporation of the network topology based features into the network
embedding based prediction models improve the prediction of the nodal informa­
tion diffusion capability?
In order to answer this research question, the best network embedding basedmodels were further
enhanced by (1) individual centrality metrics and (2) all three centrality metrics. The experiments
on the node influence prediction showed that in comparison to the original SVR model with net­
work embedding based features, adding either individual or all centrality metrics would enhance
the prediction performance. However, in the case where all centrality metrics are available, the
RFR model utilizing only the centrality metrics as features is the best model. Here, it is not rec­
ommended to use network embedding based features. The network embedding based features
should only be utilized when a single centrality metric is available (either degree­, eigenvector or
closeness centrality).





6
Future Work

The findings in this work demonstrate that there is still room for improvement in both sets of experiments:
analysis of the network embedding features and optimizing the predictive models for the node influence
prediction task.

6.1. Relation between Network Embedding and Network Topology
In order to investigate and affirm that the network embedding indeed was suitable to be used in the
node influence prediction task, a correlation analysis was performed between the pairwise shortest
path distance (SPD) and cosine similarity (CS). Another experiment that could have been conducted
was to perform the same correlation analysis between two nodal pairwise metrics: (1) the shortest path
distance between the nodes in the network topology and (2) the difference between the influence of the
pairwise nodes. This analysis could demonstrate that nodes which are closer in the network topology
have a similar influence.

The network embedding used to generate the results in this work was optimized on the link prediction
task such that it best preserved the network topology. In order to achieve this the AUC metric was
used to assess the link prediction performance. One question that arose was: Does optimizing the
embedding on the link prediction task indeed result in a network embedding best suitable
for the node influence prediction task? It is expected that nodes which are closer proximity in the
network topology will have a similar influence. As a result, optimizing the embedding to better preserve
the local community structures might yield different results. Lastly, the experiments in this work is
based on a single network embedding method: Node2Vec. As surveyed in [12] a plethora of network
embedding methods exist that could potentially be more suitable for the node influence prediction task.

6.2. Node Influence Prediction using Network Embedding
Chapter 5 lists several limitations that should be considered when analyzing the results regarding the
node influence prediction performance when using both network embedding­ and topology based fea­
tures. Here, the performance of the predictive models could be optimized even further by addressing
the following aspects:

• In this work, little attention was paid to optimize the predictive models on machine learning as­
pects. Therefore, the three predictive models were implemented with default parameter settings
in accordance with the state of the art. In a next study, these learning models could be further
improved by tackling the class imbalance problem.

• The learning models (Linear, SVR and RFR) applied in this work belong the class of supervised
learning methods. In this case, it is assumed that the features and nodal influence of a subset
of the nodes in the network are known. Since the full network structure is also available, the
relational structure of the neighbouring nodes can also be utilized during model training using
semi­supervised learning methods.
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• In this work only seven networks have been used in the node influence prediction task. The
prediction performance analysis can be extended even further by analyzing more networks with
different properties.

• In order to obtain the nodal influence for each node in the network, the SIR spreading process was
simulated at a specific infection­ and recovery rate. Here, it was ensured that the maximal nodal
influence remained≈ 0.1. As shown in Table 3.3 in Section 3.3, in some cases the effective trans­
mission rate would be higher than the epidemic threshold. Another interesting parameter setting
where the current experiments should be conducted is the case where the effective transmission
rate is closer to the epidemic threshold.



A
Epidemic Threshold

The epidemic threshold 𝜏𝑐 in the case when a SIR epidemic process unfolds on a network is determined
numerically using the method outlined in [6] and [50].
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(a) Protein Protein Interaction (BIO1) (b) Facebook pages food (SOC1) (c) Facebook messages interaction (SOC2)

(d) Human contact (SOC3) (e) DNC emails (COM1) (f) Computer routers (COM2)

(g) Citation netscience (CIT1)

Figure A.1: Numerical estimate of the epidemic threshold (𝜏𝑐) for the networks investigated in this work. The vertical line denotes
the value of the effective transmission rate approximately equal to the epidemic threshold. The horizontal x­axis denotes the
effective transmission rate at which the epidemic variability Δ has been computed according to the method described in [6] and
[50].



B
Correlation Analysis

Table B.1: SPearman correlation coefficient between the Cosine Similarity (CS), Shortest Path Distance (SPD) and Resistance
Distance (RD) metrics of all possible node pairs in the network.

Network SPearman Correlation
𝑝(𝑆𝑃𝐷, 𝐶𝑆) 𝑝(𝑆𝑃𝐷, 𝑅𝐷) 𝑝(𝑅𝐷, 𝐶𝑆)

BIO1 0.36 0.64 0.19
SOC1 0.38 0.73 0.00
SOC2 0.42 0.71 0.29
SOC3 0.18 0.55 0.10
COM1 0.25 0.46 0.21
COM2 0.32 0.73 0.15
CIT1 0.53 0.76 0.24
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