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Intelligent nanoparticle design: Unlocking the 
potential of AI for transformative drug delivery
Sepinoud Azimi

Artificial intelligence (AI) is revolutionizing nanoparticle (NP)- 
based drug delivery by tackling design, synthesis, and opti
mization challenges. Traditional approaches to NP develop
ment often rely on trial-and-error methods, leading to 
scalability, biocompatibility, and targeted drug release in
efficiencies. This review explores how AI-driven models are 
transforming the landscape of NP formulation, from enhancing 
drug encapsulation and optimizing release kinetics to 
improving targeted delivery and overcoming physiological 
barriers. Additionally, we examine the challenges associated 
with AI integration, including data limitations and model inter
pretability, and discuss strategies for bridging these gaps. By 
leveraging AI, the field of nanomedicine can accelerate the 
transition from laboratory research to clinical applications, ul
timately improving treatment outcomes for complex diseases.
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Introduction
Nanoparticles (NPs) have emerged as a transformative 

approach in drug delivery, offering the potential to 

enhance therapeutic efficacy while minimizing adverse 

effects, [1]. Their nanoscale dimensions enable them to 

navigate biological barriers, facilitating targeted delivery 

to specific tissues or cells. This precision reduces sys

temic toxicity and improves the bioavailability of drugs, 

making NPs particularly valuable in treating complex 

diseases such as cancer and neurodegenerative disorders.

Although years of research and numerous reports exist, 

fewer than 5 % of nanoparticle (NP) systems progress to 

clinical trials, [2,3]. Alarmingly, nearly 75 % of these 

investments do not lead to successful drug approvals, 

[4]. Developing new medicines remains a slow and 

costly process, taking 10—15 years and exceeding $2 

billion in costs, with nearly 75 % of this investment 

failing, [5]. A key contributor to this inefficiency is the 

costly and time-consuming trial-and-error approach in 

NP development with preclinical testing on animals, 

particularly rodents. Furthermore, animal models lack 

critical physiological features, such as the human 

blood—brain barrier (BBB), [6]. This results in poor 

translation from animal models to humans and ineffec

tive or toxic therapeutics advancing to clinical trials. 

Artificial Intelligence (AI) approaches, especially those 

based on machine learning (ML), have shown promising 

potential to revolutionize the field of drug delivery, [7—

9], offering innovative solutions to longstanding chal

lenges. Predictive models have been employed to design 

self-assembling nanomedicines from drug pairs, miti

gating challenges such as toxicity and instability [10,11]. 

AI has also been used to streamline the clinical trans

lation of nanomedicines by addressing barriers such as 

manufacturing scalability, regulatory hurdles, and 

reproducibility. By fostering early-stage planning and 

collaboration among researchers, industry stakeholders, 

and regulatory bodies, AI-driven frameworks help effi

ciently transition nanomedicines from the lab to the 

clinic, [12]. In parallel, experimental advancements 

such as high-throughput screening and fragment-based 

drug discovery have deepened our understanding of 

molecular self-assembly, offering new directions for 

designing stable, efficient nanocarriers for targeted de

livery, [13].

Current status of NP drug delivery
Despite its promises, the development of nano

medicines in general and NPs for drug delivery is still in 

its early stages. This slow process and unrealized 

promise are partly due to the complex and demanding 

process that every newly developed medicine needs to 

go through, i.e., the design and development phase that 

also includes in vitro and in vivo testing, the clinical trial 

phase, and then regulatory approval, and manufacturing 

and scaling up. This process is more complicated for 

nanomedicine due to the challenges in the design and 

development stage. As shown in Figure 1, several critical 

challenges must be addressed to develop efficient 

nanoparticles. An NP must be non-toxic and biocom

patible to advance to clinical trials, as those that trigger 

adverse immune responses or show cytotoxicity should 
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be avoided. To have impactful therapeutics, NPs need 

precise control over the release kinetics of the drug from 

the NP. At the same time, it is crucial to design NPs that 

have batch-to-batch consistency, maintain sterility, 

adhere to Good Manufacturing Practices (GMP)1, and 

have long-term stability without aggregation or degra

dation. Finally, an efficient NP design should facilitate 

reaching its predefined target region (tissue or cell) 

without being rapidly cleared by the immune system. 

Thus, these design requirements can be categorized 

into six key aspects: (1) toxicity and biocompatibility, 
(2) controlled drug release, (3) targeting specific tissues 
or cells, (4) stability and shelf-life, (5) immune system 
clearance, and (6) scalability and manufacturing.

AI-driven NP design
In this section, AI is used as an umbrella term that in

cludes both ML and deep learning (DL) methods. ML 

refers to algorithms that improve performance by 

learning patterns from data, while DL is a subset of ML 

that uses multi-layered neural networks to capture 

complex, non-linear relationships. In the rest of this 

section, we refer specifically to the method used, 

whether ML or DL, while using “AI” more broadly when 

discussing overarching trends or implications.

AI-driven nanoparticle: controlled drug release
Precise timing of drug release is crucial. Rapid release 

can cause toxicity, whereas slow or inconsistent release 

may reduce treatment efficacy. NP-based drug delivery 

offers a promising approach to addressing these 

challenges by enabling precise drug targeting. However, 

fine-tuning drug release is a complex problem, requiring 

tight control over nanoparticle composition, synthesis, 

and characterization. Traditional trial-and-error ap

proaches are valuable but resource-intensive and do not 

capture the intricate relationships between nanoparticle 

properties and drug behavior. This is where AI comes in. 

AI models have been used to support nanoparticle 

design by reducing experimental workload and identi

fying relationships that are not easily captured through 

traditional methods.

AI-driven formulation design: drug encapsulation and 
release prediction
Designing nanoparticles for controlled release requires 

understanding how different formulations affect encap

sulation efficiency and release kinetics. AI has proven 

very effective, moving beyond empirical testing to pre

dictive modeling. For example, Noorain et al. [14] used 

Gaussian Process (GP) modeling to predict drug loading 

and encapsulation efficiency in poly(lactic-co-glycolic 

acid) (PLGA) nanoparticles, reducing the need for 

expensive and time-consuming experimental iterations. 

In Ref. [15], Huang et al. employed convolutional neural 

networks (CNNs) and artificial neural networks (ANNs) 

to analyze the chemical composition of polymeric nano

particles and to design formulations that improve drug 

stability and targeted release. These models allowed re

searchers to quickly find the optimal nanoparticle 

formulation by processing large datasets that describe 

particle properties and drug interactions. Ensemble 

learning methods have taken formulation design to the 

next level by improving the accuracy of nanoparticle 

property prediction. For example [16], utilized Least- 

Figure 1 

The AI-driven NP drug delivery pipeline integrates simulation-generated data with laboratory experiments to build robust datasets. AI models trained 
on these datasets optimize NP design by improving drug release kinetics, targeting efficiency, and stability while reducing reliance on extensive 
experimental testing. XAI techniques enhance transparency, facilitating regulatory approval and accelerating clinical translation.

1 https://www.who.int/teams/health-product-policy-and-standards/standards-and- 

specifications/norms-and-standards/gmp
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Squares Boosting (LSBoost) to fine-tune the size and 

polydispersity index of liposomal nanoparticles―both 

key to drug release rates. In another example, Dong et al. 

[17] used GP modeling to predict encapsulation effi

ciency and therapeutic efficacy to make more informed 

decisions in nanoparticle formulation.

Optimizing synthesis for precise drug release
Even the best-designed nanoparticle formulations must 

undergo synthesis, a process that determines their final 

properties and, ultimately, their ability to control drug 

release. The challenge is to ensure consistency―slight 

variations in particle size, surface charge, or structure 

can lead to significant differences in drug behavior. AI 

has proven valuable for refining synthesis processes to 

make them more predictable and reproducible. One 

approach is to combine Extreme Gradient Boosting 

(XGBoost) with Design of Experiments (DoE) to opti

mize nanoprecipitation methods. This has allowed re

searchers to precisely control nanoparticle size and 

surface properties, both critical for drug release kinetics, 

[18]. In cases where multiple drugs are encapsulated in 

one nanoparticle, Support Vector Machines (SVMs) and 

Decision Trees have been used to ensure synchronized 

drug release to maximize therapeutic outcomes, [19]. 

Microfluidic systems that provide a controlled nano

particle synthesis environment have also benefited from 

AI-based optimization. Kouhkord et al. [20] utilized 

Differential Evolution (DE) algorithms to tune design 

parameters to ensure uniform drug release properties in 

nanoparticles. Tabular Generative Adversarial Networks 

(TGANs) have also proven successful in generating 

synthetic datasets to improve nanoparticle size predic

tion in microfluidic synthesis, [21,22]. Since the size is 

one of the most critical factors for drug release behavior, 

this data generation translates to a more reliable thera

peutic outcome. Besides these, researchers have used 

central composite design (CCD) within a DoE frame

work to optimize polymeric nanoparticle formulations. 

This allows fine-tuning parameters such as particle size, 

surface charge, and polymer composition and ultimately 

controls drug release, [18]. LGBM models have also 

been used to predict drug release from long-acting 

injectable formulations, speed up nanoparticle design, 

and reduce experimentation, [7].

Characterization and monitoring: ensuring consistency 
in drug release
Even with optimized formulations and synthesis 

methods, batch-to-batch consistency is still challenging. 

Variations in nanoparticle properties can lead to fluctua

tions in drug release and affect treatment outcomes. AI 

improved characterization techniques, making moni

toring NP properties easier and predicting their behavior 

in biological environments more feasible. In Ref. [23] 

Lopez et al. used molecular dynamics (MD) simulations 

and clustering algorithms to study how therapeutic 

peptides interact with PEG—PLGA NPs to understand 

drug storage and release mechanisms. In another study 

Mancoo et al. applied PCA and supervised classification 

models to light scattering data to characterize poly

disperse nanoparticle mixtures and ensure uniformity in 

drug release [24]. Deep learning took nanoparticle 

characterization to the next level. Molecular MD simu

lations combined with deep neural networks (DNNs) 

were used to predict nanoparticle behavior in biological 

environments to ensure drugs are released in a controlled 

and sustained manner, [25]. In Ref. [22], Kibria et al. 

used many-body tensor representation (MBTR) de

scriptors and time-series models to predict the solvent- 

accessible surface area of nanoparticles―a critical factor 

for drug bioavailability and release. Deep learning-based 

image analysis was also used to analyze nanoparticle 

distribution to ensure consistent drug release across for

mulations [26].

While many of these models show promising results, 

they are often tested on specific datasets and under 

controlled conditions. This raises questions about how 

well they would perform in more diverse or less regu

lated environments. Biological systems inherently 

introduce uncertainty that is challenging to model, and 

validating these models outside their original settings is 

seldom addressed.

AI-driven nanoparticle: drug delivery to specific 
tissues or cells
One of the biggest challenges in NP-based drug delivery 

systems is targeting specific tissues or cells. Traditional 

formulations do not efficiently reach their intended 

targets, resulting in systemic toxicity and reduced 

therapeutic outcomes. Several studies have applied 

machine learning techniques to model biological and 

physicochemical factors influencing delivery, with the 

aim of improving formulation outcomes.

Machine learning for personalized nanoparticle targeting
AI-based predictive models have enabled personalized 

NP targeting by combining patient-specific biological 

data. The XGBoost-SHAP model, for example, com

bines tumor genomic mutations with NP properties to 

predict delivery efficiency and improve precision in 

cancer treatment, [27]. Similarly, in Ref. [28] Islam 

et al. used Levenberg—Marquardt neural networks 

(LM-NN) to optimize drug transport in cancerous tis

sues, especially in cases involving foamy structures 

associated with cardiovascular diseases. This has 

improved chemotherapy targeting.

AI has also optimized lipid nanoparticle (LNP) for

mulations for mRNA delivery. XGBoost, a gradient- 

boosting AI model, screened large combinatorial li

braries to identify highly efficient ionisable cationic 

lipids that enhance nanoparticle uptake and intracel

lular delivery and improve the efficacy of RNA-based 

therapies, [29].
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In another study [30], Chou et al. integrated machine 

learning-driven Quantitative Structure—Activity Rela

tionship (QSAR) with traditional Physiologically Based 

Pharmacokinetic (PBPK) modeling to predict nano

particle tumor delivery. This innovative combination of 

data-driven and mechanistic approaches enhances pre

dictive accuracy while minimizing reliance on animal 

data.

Physiological barrier penetration
Many AI-driven approaches focus on overcoming phys

iological barriers that impede nanoparticle transport to 

target tissues. In vascular applications, the Radial Basis 

Kernel Artificial Intelligence Model has been used to 

model nanofluidic gold nanoparticle flow in stenotic 

arteries to ensure optimal drug delivery, [31]. Similarly, 

Harrison et al. combined CNNs with long short-term 

memory (LSTM) to predict the success of lipid NPs 

in delivering mRNA to liver cells, which is critical for 

RNA-based therapies [32].

For neurodegenerative diseases, an ANN with Linear 

Discriminant Analysis (LDA) has been developed to 

identify nanoparticle formulations that can cross the 

blood—brain barrier (BBB), a crucial step in central 

nervous system drug delivery, [33]. Kleandrova et al. 

proposed a new AI architecture, i.e., Information 

Fusion + Perturbation Theory + Machine Learning 

(IFPTML) to improve neuronal drug delivery by 

combining multiple datasets, including drug assays and 

cytotoxicity studies. Combined with Decision Tree al

gorithms, this model achieved 96.4 % specificity and 

79.3 % sensitivity in predicting NPs that can cross the 

BBB and advance treatment for neurodegenerative dis

orders [34].

Yousfan et al. [35] followed another approach, employ

ing machine learning-driven statistical models and 

mechanistic pharmacokinetic analysis to predict nano

particle permeability across the BBB.

AI screening and optimization of nanoparticles
AI has been used for large-scale screening and optimi

zation to improve nanoparticle targeting. The pertur

bation theory machine learning (PTML) model predicts 

the likelihood of drug—nanoparticle complexes hitting 

glioblastoma cells, improving tumor penetration strate

gies, [36]. Random Forest algorithms have been suc

cessful in analyzing the physicochemical properties that 

affect nanoparticle uptake in tumour tissue to develop 

better therapeutic strategies, [37]. AI has also improved 

drug delivery through mucus barriers. A machine 

learning-assist single-vessel analysis model has been 

used to study nanoparticle movement in the mucus 

environment so that drug carriers reach their target 

without premature clearance, [38]. In Ref. [39], Akhtar 

et al. optimized magnetic field-assisted nanoparticle 

targeting using AI, where machine learning models 

predict nanoparticle movement in response to external 

magnetic forces to accumulate drugs in tumor tissue.

Deep learning for imaging and spatio-temporal drug 
delivery
Deep learning has further improved nanoparticle 

tracking and targeted delivery by using imaging-based 

functional assays. The LungVis 1.0 framework, a DL- 

based imaging system using CNNs, maps nanoparticle 

deposition in lung tissue. This system enables profiling 

nanoparticle behavior in the bronchial and alveolar re

gions to optimize the delivery route for respiratory dis

eases like pulmonary infections and lung cancer, [40]. In 

Ref. [29], Lin et al. used to predict nanoparticle bio

distribution in tumors based on physicochemical prop

erties, tumor models, and cancer types, outperforming 

traditional regression models in accuracy. AI-driven 

image-based functional assays and advanced cellular 

profiling improve nanoparticle precision, so treatments 

are more effective and personalized, [41].

AI-driven solutions for stability, self-assembly, and 
toxicity in nanoparticle design
Most AI research in NP drug delivery has focused on 

controlled drug release and targeting specific tissues or 

cells. However, AI has also played a role in addressing 

other fundamental NP design challenges. Structural 

stability, self-assembly efficiency and toxicity reduction 

are important but underexplored compared to drug 

release kinetics and targeting. One of the challenges in 

NP design is structural stability, which directly impacts 

drug delivery efficacy and shelf life. NPs must remain 

intact under physiological conditions to prevent pre

mature degradation, aggregation or loss of therapeutic 

function. Ataei et al. tackled this issue using machine 

learning-assisted segmentation to analyze the micro

structural evolution of oil-shell microbubbles coated 

with gold nanoparticles, [42]. They could track 

morphological changes and optimize NP formulations 

for increased stability. This study introduced a scalable 

method for developing structurally stable NP carriers 

using AI-driven image analysis in theranostic applica

tions. Pink et al. used self-organizing maps (SOMs) to 

analyze the internal morphology of liquid lipid nano

particles (LLNs), [43]. The study showed how lipid and 

surfactant distribution affects NP stability by clustering 

molecular conformations within the NPs. These AI- 

driven methods can design NPs that remain structur

ally intact during storage and therapeutic application. 

Besides stability, another important design aspect in 

NP-based drug delivery is self-assembly efficiency, to 

ensure uniform nanoparticle properties. The formation 

of NPs with consistent size, shape and molecular 

arrangement is key to a reproducible therapeutic effect. 

Zanganeh et al. tackled this challenge by using quanti

tative structure—property relationship (QSPR) models 

combined with SVMs to predict the critical aggregation 

concentration (CAC) of amphiphilic peptides, [44]. 

4 Artificial Intelligence in Biomedical Engineering

Current Opinion in Biomedical Engineering 2025, 36:100625 www.sciencedirect.com



CAC is key in determining how well self-assembling 

peptides form stable NP carriers. Using AI-driven pre

dictions, researchers could design peptides with higher 

aggregation efficiency, reducing the need for costly and 

time-consuming experimental iterations. Azagury et al. 

used decision tree-based machine learning models to 

predict how small-molecule drug pairs self-assemble 

into stable NPs, [11]. Their AI-driven approach 

allowed for rapid identification of synergistic drug 

combinations that form highly stable NPs, improving 

drug loading and minimizing formulation failures. 

Toxicity, while maintaining therapeutic efficacy, is one 

of the biggest challenges in biomedical applications. 

While nanoparticles offer precise drug delivery, some 

formulations can be cytotoxic, immunogenic or off- 

target. Basso et al. addressed this issue using hierarchi

cal clustering (HCA), principal component analysis 

(PCA) and neural networks to analyze the effect of 

cationic lipid properties on NP toxicity in glioblastoma 

treatment, [45]. They found that specific lipid struc

tures could enhance NP uptake by tumor cells while 

minimizing toxic effects on healthy tissues. Using un

supervised AI methods, they identified safer lipid for

mulations, reducing cytotoxicity concerns associated 

with traditional cationic nanoparticles.

Although AI approaches offer promise for improving 

delivery precision, many rely on assumptions that are 

difficult to justify in biological systems. Variables such as 

immune response, tissue variability, and unintended 

distribution are hard to model reliably. These aspects are 

often under-reported, and model outputs are rarely 

interpreted in light of such limitations.

Challenges in AI-driven design
Despite AI’s promises and advancements in overcoming 

several NP design-related challenges over the past few 

years, some limitations remain. Data quality and avail

ability are two such issues. AI-driven solutions are data- 

hungry by design. However, the available data is most of 

the time scarce, unbalanced, or of low quality. The main 

reason is the cost of data collection, which requires 

expensive and extensive in vitro and in vivo experi

ments. In addition to limited availability, another 

concern is the bias present in the training data. Many 

datasets used to train AI models in nanoparticle research 

are derived from narrow experimental settings or 

restricted chemical libraries. As a result, models may 

perform well on specific tasks but fail to generalize to 

new compounds, delivery routes, or patient groups. 

These biases are often implicit and not systematically 

assessed, which complicates both model evaluation and 

future deployment. Adoption of these AI-based solu

tions is also a significant challenge. Although lab ex

periments test some of these approaches, there is no 

report of a clinical trial involving an NP designed using 

AI. Besides all the usual bottlenecks in moving from 

research design to lab experiments to clinical trials, one 

important reason is the interpretability challenges of AI- 

driven solutions. Most of the studies investigated in this 

research either skipped the interpretation/explanation 

of their models, opted for using basic models that are 

inherently explainable but incapable of fully capturing 

complex systems or used basic interpretable models that 

do not offer actionable explanations.

Although many studies report high model performance, 

few extend their validation beyond the original datasets 

or computational settings. External testing, particularly 

in biological or clinical contexts, is rarely carried out. This 

is a critical weakness, especially in drug delivery, where 

variability between physiological systems can undermine 

predictive accuracy. Models trained and tested in silico 

often show promising results, but this does not guarantee 

comparable performance under experimental or clinical 

conditions. Follow-up studies involving wet-lab validation 

have been relatively rare, and examples of clinical pro

gression remain even more limited. As a result, the gap 

between computational output and practical application 

continues to raise concerns in the field.

Conclusion
Nanoparticles (NPs) are promising tools for targeted 

and personalized treatments, primarily because they can 

address biological barriers, decrease systemic toxicity, 

and enhance drug bioavailability―qualities especially 

advantageous in treating complex diseases. Designing 

such NPs remains challenging, requiring careful 

consideration of toxicity, biocompatibility, controlled 

drug release, targeted delivery, stability, immune system 

clearance, and scalability. Emerging AI-based solutions 

have shown significant capabilities in addressing several 

of these challenges. However, they are not challenge- 

free themselves; as mentioned earlier, data and inter

pretability challenges are two critical bottlenecks in the 

AI-based design reaching to clinical trials and being 

adopted. To address these bottlenecks, there are a few 

avenues to explore. One promising direction is the use 

of in-silico simulations. Simulations are increasingly 

used in nanoparticle design, yet their role is not always 

clearly defined. Some studies treat them as stand-alone 

tools, overlooking experimental variability, while others 

exclude them entirely. Integrating simulations with 

laboratory data, rather than relying on either in isolation, 

could offer a more dependable foundation for AI model 

development. Such integration ensures realistic repre

sentation while supplying sufficient data volume for 

effective AI model training. Iterative updates through 

continuous experimental validation would further 

improve dataset quality and AI model accuracy.

One potential solution for the challenge of interpret

ability is shifting away from traditional black-box models 

and focusing on inherently explainable AI models. 

Recent reports indicate promising advancements in this 

field [46]. Current high-performing black-box models 
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are often too complex for explainable AI (XAI) tech

niques to effectively interpret. Studies have shown that 

many of these models contain substantial architectural 

redundancies [47], making them overly intricate and 

difficult to analyze. Developing AI models with reduced 

redundancy could be a promising direction to enhance 

interpretability.

Reducing architectural redundancy may help clarify how 

models reach their conclusions. Still, even well- 

structured models can fall short when applied outside 

controlled settings. In many studies, the focus remains 

on model accuracy or predictive performance, while 

downstream considerations―such as how these nano

particle designs behave in manufacturing or clinical 

contexts―receive less attention. These aspects, though 

less explored, often determine whether an approach can 

be carried forward.

Looking ahead, several developments in AI may shape 

the next phase of nanoparticle design. Foundation 

models, large-scale pretrained architectures initially 

developed for other domains, are beginning to find ap

plications in chemistry and materials science, offering 

the potential to generalize across different molecular 

and formulation tasks with minimal fine-tuning. Trans

fer learning and active learning approaches are also 

gaining traction, as they reduce the need for large an

notated datasets by selectively focusing on the most 

informative data points. Physics-informed models, 

which integrate basic biophysical knowledge into the 

learning process, are also gaining interest. By combining 

data-driven learning with established principles, these 

approaches may help improve model reliability in bio

logical contexts.

Figure 1 suggests a practical route for improving nano

particle (NP) design. It starts with combining simula

tion results and lab-based data, allowing the strengths of 

each to inform a more representative dataset. AI models 

trained on this composite dataset may reduce the 

dependence on extensive experimental screening. In 

parallel, the use of explainable AI methods and inter

pretable model structures can help clarify how design 

decisions affect NP behavior, an important step toward 

clinical testing and regulatory acceptance. However, 

most existing models remain confined to controlled 

settings, with limited validation in real biological sys

tems. To advance toward clinical relevance, it is essen

tial that computational tools are developed in close 

coordination with experimental workflows and tested 

across diverse, clinically meaningful scenarios.
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