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Intelligent nanoparticle design: Unlocking the
potential of Al for transformative drug delivery

Sepinoud Azimi

Artificial intelligence (Al) is revolutionizing nanoparticle (NP)-
based drug delivery by tackling design, synthesis, and opti-
mization challenges. Traditional approaches to NP develop-
ment often rely on trial-and-error methods, leading to
scalability, biocompatibility, and targeted drug release in-
efficiencies. This review explores how Al-driven models are
transforming the landscape of NP formulation, from enhancing
drug encapsulation and optimizing release kinetics to
improving targeted delivery and overcoming physiological
barriers. Additionally, we examine the challenges associated
with Al integration, including data limitations and model inter-
pretability, and discuss strategies for bridging these gaps. By
leveraging Al, the field of nanomedicine can accelerate the
transition from laboratory research to clinical applications, ul-
timately improving treatment outcomes for complex diseases.
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Introduction

Nanoparticles (NPs) have emerged as a transformative
approach in drug delivery, offering the potential to
enhance therapeutic efficacy while minimizing adverse
effects, [1]. Their nanoscale dimensions enable them to
navigate biological barriers, facilitating targeted delivery
to specific tissues or cells. This precision reduces sys-
temic toxicity and improves the bioavailability of drugs,
making NPs particularly valuable in treating complex
diseases such as cancer and neurodegenerative disorders.

Although years of research and numerous reports exist,
fewer than 5 % of nanoparticle (NP) systems progress to

clinical trials, [2,3]. Alarmingly, nearly 75 % of these
investments do not lead to successful drug approvals,
[4]. Developing new medicines remains a slow and
costly process, taking 10—15 years and exceeding $2
billion in costs, with nearly 75 % of this investment
failing, [5]. A key contributor to this inefficiency is the
costly and time-consuming trial-and-error approach in
NP development with preclinical testing on animals,
particularly rodents. Furthermore, animal models lack
critical physiological features, such as the human
blood—brain barrier (BBB), [6]. This results in poor
translation from animal models to humans and ineffec-
tive or toxic therapeutics advancing to clinical trials.
Artificial Intelligence (Al) approaches, especially those
based on machine learning (ML), have shown promising
potential to revolutionize the field of drug delivery, [7—
9], offering innovative solutions to longstanding chal-
lenges. Predictive models have been employed to design
self-assembling nanomedicines from drug pairs, miti-
gating challenges such as toxicity and instability [10,11].
Al has also been used to streamline the clinical trans-
lation of nanomedicines by addressing barriers such as
manufacturing scalability, regulatory hurdles, and
reproducibility. By fostering early-stage planning and
collaboration among researchers, industry stakeholders,
and regulatory bodies, Al-driven frameworks help effi-
ciently transition nanomedicines from the lab to the
clinic, [12]. In parallel, experimental advancements
such as high-throughput screening and fragment-based
drug discovery have deepened our understanding of
molecular self-assembly, offering new directions for
designing stable, efficient nanocarriers for targeted de-
livery, [13].

Current status of NP drug delivery

Despite its promises, the development of nano-
medicines in general and NPs for drug delivery is still in
its early stages. This slow process and unrealized
promise are partly due to the complex and demanding
process that every newly developed medicine needs to
go through, i.e., the design and development phase that
also includes in vitro and in vivo testing, the clinical trial
phase, and then regulatory approval, and manufacturing
and scaling up. This process is more complicated for
nanomedicine due to the challenges in the design and
development stage. As shown in Figure 1, several critical
challenges must be addressed to develop efficient
nanoparticles. An NP must be non-toxic and biocom-
patible to advance to clinical trials, as those that trigger
adverse immune responses or show cytotoxicity should
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The Al-driven NP drug delivery pipeline integrates simulation-generated data with laboratory experiments to build robust datasets. Al models trained
on these datasets optimize NP design by improving drug release kinetics, targeting efficiency, and stability while reducing reliance on extensive
experimental testing. XAl techniques enhance transparency, facilitating regulatory approval and accelerating clinical translation.

be avoided. To have impactful therapeutics, NPs need
precise control over the release kinetics of the drug from
the NP. At the same time, it is crucial to design NPs that
have batch-to-batch consistency, maintain sterility,
adhere to Good Manufacturing Practices (GMP)', and
have long-term stability without aggregation or degra-
dation. Finally, an efficient NP design should facilitate
reaching its predefined target region (tissue or cell)
without being rapidly cleared by the immune system.
Thus, these design requirements can be categorized
into six key aspects: (1) toxicity and biocompatibility,
(2) controlled drug release, (3) targeting specific tissues
or cells, (4) stability and shelf-life, (5) immune system
clearance, and (6) scalability and manufacturing.

Al-driven NP design

In this section, Al is used as an umbrella term that in-
cludes both ML and deep learning (DL) methods. ML
refers to algorithms that improve performance by
learning patterns from data, while DL is a subset of ML
that uses multi-layered neural networks to capture
complex, non-linear relationships. In the rest of this
section, we refer specifically to the method used,
whether ML or DL, while using “AI” more broadly when
discussing overarching trends or implications.

Al-driven nanoparticle: controlled drug release

Precise timing of drug release is crucial. Rapid release
can cause toxicity, whereas slow or inconsistent release
may reduce treatment efficacy. NP-based drug delivery
offers a promising approach to addressing these

1 hteps://www.who.int/teams/health-product-policy-and-standards/standards-and-

specifications/norms-and-standards/gmp

challenges by enabling precise drug targeting. However,
fine-tuning drug release is a complex problem, requiring
tight control over nanoparticle composition, synthesis,
and characterization. ‘Traditional trial-and-error ap-
proaches are valuable but resource-intensive and do not
capture the intricate relationships between nanoparticle
properties and drug behavior. This is where Al comes in.
Al models have been used to support nanoparticle
design by reducing experimental workload and identi-
fying relationships that are not easily captured through
traditional methods.

Al-driven formulation design: drug encapsulation and
release prediction

Designing nanoparticles for controlled release requires
understanding how different formulations affect encap-
sulation efficiency and release kinetics. Al has proven
very effective, moving beyond empirical testing to pre-
dictive modeling. For example, Noorain et al. [14] used
Gaussian Process (GP) modeling to predict drug loading
and encapsulation efficiency in poly(lactic-co-glycolic
acid) (PLGA) nanoparticles, reducing the need for
expensive and time-consuming experimental iterations.
In Ref. [15], Huang et al. employed convolutional neural
networks (CNNs) and artificial neural networks (ANNSs)
to analyze the chemical composition of polymeric nano-
particles and to design formulations that improve drug
stability and targeted release. These models allowed re-
searchers to quickly find the optimal nanoparticle
formulation by processing large datasets that describe
particle properties and drug interactions. Ensemble
learning methods have taken formulation design to the
next level by improving the accuracy of nanoparticle
property prediction. For example [16], utilized Least-
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Squares Boosting (I.SBoost) to fine-tune the size and
polydispersity index of liposomal nanoparticles—both
key to drug release rates. In another example, Dong et al.
[17] used GP modeling to predict encapsulation effi-
ciency and therapeutic efficacy to make more informed
decisions in nanoparticle formulation.

Optimizing synthesis for precise drug release

Even the best-designed nanoparticle formulations must
undergo synthesis, a process that determines their final
properties and, ultimately, their ability to control drug
release. The challenge is to ensure consistency—slight
variations in particle size, surface charge, or structure
can lead to significant differences in drug behavior. Al
has proven valuable for refining synthesis processes to
make them more predictable and reproducible. One
approach is to combine Extreme Gradient Boosting
(XGBoost) with Design of Experiments (DoE) to opti-
mize nanoprecipitation methods. This has allowed re-
searchers to precisely control nanoparticle size and
surface properties, both critical for drug release kinetics,
[18]. In cases where multiple drugs are encapsulated in
one nanoparticle, Support Vector Machines (SVMs) and
Decision Trees have been used to ensure synchronized
drug release to maximize therapeutic outcomes, [19].
Microfluidic systems that provide a controlled nano-
particle synthesis environment have also benefited from
Al-based optimization. Kouhkord et al. [20] utilized
Differential Evolution (DE) algorithms to tune design
parameters to ensure uniform drug release properties in
nanoparticles. Tabular Generative Adversarial Networks
(TGANs) have also proven successful in generating
synthetic datasets to improve nanoparticle size predic-
tion in microfluidic synthesis, [21,22]. Since the size is
one of the most critical factors for drug release behavior,
this data generation translates to a more reliable thera-
peutic outcome. Besides these, researchers have used
central composite design (CCD) within a DoE frame-
work to optimize polymeric nanoparticle formulations.
"This allows fine-tuning parameters such as particle size,
surface charge, and polymer composition and ultimately
controls drug release, [18]. LGBM models have also
been used to predict drug release from long-acting
injectable formulations, speed up nanoparticle design,
and reduce experimentation, [7].

Characterization and monitoring: ensuring consistency

in drug release

Even with optimized formulations and synthesis
methods, batch-to-batch consistency is still challenging.
Variations in nanoparticle properties can lead to fluctua-
tions in drug release and affect treatment outcomes. Al
improved characterization techniques, making moni-
toring NP properties easier and predicting their behavior
in biological environments more feasible. In Ref. [23]
Lopez et al. used molecular dynamics (MD) simulations
and clustering algorithms to study how therapeutic
peptides interact with PEG—PLGA NPs to understand
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drug storage and release mechanisms. In another study
Mancoo et al. applied PCA and supervised classification
models to light scattering data to characterize poly-
disperse nanoparticle mixtures and ensure uniformity in
drug release [24]. Deep learning took nanoparticle
characterization to the next level. Molecular MD simu-
lations combined with deep neural networks (DNNs)
were used to predict nanoparticle behavior in biological
environments to ensure drugs are released in a controlled
and sustained manner, [25]. In Ref. [22], Kibria et al.
used many-body tensor representation (MBTR) de-
scriptors and time-series models to predict the solvent-
accessible surface area of nanoparticles—a critical factor
for drug bioavailability and release. Deep learning-based
image analysis was also used to analyze nanoparticle
distribution to ensure consistent drug release across for-
mulations [26].

While many of these models show promising results,
they are often tested on specific datasets and under
controlled conditions. This raises questions about how
well they would perform in more diverse or less regu-
lated environments. Biological systems inherently
introduce uncertainty that is challenging to model, and
validating these models outside their original settings is
seldom addressed.

Al-driven nanoparticle: drug delivery to specific
tissues or cells

One of the biggest challenges in NP-based drug delivery
systems is targeting specific tissues or cells. Traditional
formulations do not efficiently reach their intended
targets, resulting in systemic toxicity and reduced
therapeutic outcomes. Several studies have applied
machine learning techniques to model biological and
physicochemical factors influencing delivery, with the
aim of improving formulation outcomes.

Machine learning for personalized nanoparticle targeting
Al-based predictive models have enabled personalized
NP targeting by combining patient-specific biological
data. The XGBoost-SHAP model, for example, com-
bines tumor genomic mutations with NP properties to
predict delivery efficiency and improve precision in
cancer treatment, [27]. Similarly, in Ref. [28] Islam
et al. used Levenberg—Marquardt neural networks
(LM-NN) to optimize drug transport in cancerous tis-
sues, especially in cases involving foamy structures
associated with cardiovascular diseases. This has
improved chemotherapy targeting.

Al has also optimized lipid nanoparticle (LNP) for-
mulations for mRNA delivery. XGBoost, a gradient-
boosting Al model, screened large combinatorial li-
braries to identify highly efficient ionisable cationic
lipids that enhance nanoparticle uptake and intracel-
lular delivery and improve the efficacy of RINNA-based
therapies, [29].
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In another study [30], Chou et al. integrated machine
learning-driven Quantitative Structure—Activity Rela-
tionship (QSAR) with traditional Physiologically Based
Pharmacokinetic (PBPK) modeling to predict nano-
particle tumor delivery. This innovative combination of
data-driven and mechanistic approaches enhances pre-
dictive accuracy while minimizing reliance on animal
data.

Physiological barrier penetration

Many Al-driven approaches focus on overcoming phys-
iological barriers that impede nanoparticle transport to
target tissues. In vascular applications, the Radial Basis
Kernel Artificial Intelligence Model has been used to
model nanofluidic gold nanoparticle flow in stenotic
arteries to ensure optimal drug delivery, [31]. Similarly,
Harrison et al. combined CNNs with long short-term
memory (LSTM) to predict the success of lipid NPs
in delivering mRNA to liver cells, which is critical for
RNA-based therapies [32].

For neurodegenerative diseases, an ANN with Linear
Discriminant Analysis (LDA) has been developed to
identify nanoparticle formulations that can cross the
blood—brain barrier (BBB), a crucial step in central
nervous system drug delivery, [33]. Kleandrova et al.
proposed a new Al architecture, i.e., Information
Fusion + Perturbation Theory + Machine Learning
(IFPTML) to improve neuronal drug delivery by
combining multiple datasets, including drug assays and
cytotoxicity studies. Combined with Decision Tree al-
gorithms, this model achieved 96.4 % specificity and
79.3 % sensitivity in predicting NPs that can cross the
BBB and advance treatment for neurodegenerative dis-
orders [34].

Yousfan et al. [35] followed another approach, employ-
ing machine learning-driven statistical models and
mechanistic pharmacokinetic analysis to predict nano-
particle permeability across the BBB.

Al screening and optimization of nanoparticles

Al has been used for large-scale screening and optimi-
zation to improve nanoparticle targeting. The pertur-
bation theory machine learning (PTML) model predicts
the likelihood of drug—nanoparticle complexes hitting
glioblastoma cells, improving tumor penetration strate-
gies, [36]. Random Forest algorithms have been suc-
cessful in analyzing the physicochemical properties that
affect nanoparticle uptake in tumour tissue to develop
better therapeutic strategies, [37]. Al has also improved
drug delivery through mucus barriers. A machine
learning-assist single-vessel analysis model has been
used to study nanoparticle movement in the mucus
environment so that drug carriers reach their target
without premature clearance, [38]. In Ref. [39], Akhtar
et al. optimized magnetic field-assisted nanoparticle
targeting using Al, where machine learning models

predict nanoparticle movement in response to external
magnetic forces to accumulate drugs in tumor tissue.

Deep learning for imaging and spatio-temporal drug
delivery

Deep learning has further improved nanoparticle
tracking and targeted delivery by using imaging-based
functional assays. The LungVis 1.0 framework, a DL-
based imaging system using CNNs, maps nanoparticle
deposition in lung tissue. This system enables profiling
nanoparticle behavior in the bronchial and alveolar re-
gions to optimize the delivery route for respiratory dis-
eases like pulmonary infections and lung cancer, [40]. In
Ref. [29], Lin et al. used to predict nanoparticle bio-
distribution in tumors based on physicochemical prop-
erties, tumor models, and cancer types, outperforming
traditional regression models in accuracy. Al-driven
image-based functional assays and advanced cellular
profiling improve nanoparticle precision, so treatments
are more effective and personalized, [41].

Al-driven solutions for stability, self-assembly, and
toxicity in nanoparticle design

Most Al research in NP drug delivery has focused on
controlled drug release and targeting specific tissues or
cells. However, Al has also played a role in addressing
other fundamental NP design challenges. Structural
stability, self-assembly efficiency and toxicity reduction
are important but underexplored compared to drug
release kinetics and targeting. One of the challenges in
NP design is structural stability, which directly impacts
drug delivery efficacy and shelf life. NPs must remain
intact under physiological conditions to prevent pre-
mature degradation, aggregation or loss of therapeutic
function. Ataei et al. tackled this issue using machine
learning-assisted segmentation to analyze the micro-
structural evolution of oil-shell microbubbles coated
with gold nanoparticles, [42]. They could track
morphological changes and optimize NP formulations
for increased stability. This study introduced a scalable
method for developing structurally stable NP carriers
using Al-driven image analysis in theranostic applica-
tions. Pink et al. used self-organizing maps (SOMs) to
analyze the internal morphology of liquid lipid nano-
particles (LLLLNs), [43]. The study showed how lipid and
surfactant distribution affects NP stability by clustering
molecular conformations within the NPs. These Al-
driven methods can design NPs that remain structur-
ally intact during storage and therapeutic application.
Besides stability, another important design aspect in
NP-based drug delivery is self-assembly efficiency, to
ensure uniform nanoparticle properties. The formation
of NPs with consistent size, shape and molecular
arrangement is key to a reproducible therapeutic effect.
Zanganeh et al. tackled this challenge by using quanti-
tative structure—property relationship (QSPR) models
combined with SVMs to predict the critical aggregation
concentration (CAC) of amphiphilic peptides, [44].
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CAC is key in determining how well self-assembling
peptides form stable NP carriers. Using Al-driven pre-
dictions, researchers could design peptides with higher
aggregation efficiency, reducing the need for costly and
time-consuming experimental iterations. Azagury et al.
used decision tree-based machine learning models to
predict how small-molecule drug pairs self-assemble
into stable NPs, [11]. Their Al-driven approach
allowed for rapid identification of synergistic drug
combinations that form highly stable NPs, improving
drug loading and minimizing formulation failures.
Toxicity, while maintaining therapeutic efficacy, is one
of the biggest challenges in biomedical applications.
While nanoparticles offer precise drug delivery, some
formulations can be cytotoxic, immunogenic or off-
target. Basso et al. addressed this issue using hierarchi-
cal clustering (HCA), principal component analysis
(PCA) and neural networks to analyze the effect of
cationic lipid properties on NP toxicity in glioblastoma
treatment, [45]. They found that specific lipid struc-
tures could enhance NP uptake by tumor cells while
minimizing toxic effects on healthy tissues. Using un-
supervised Al methods, they identified safer lipid for-
mulations, reducing cytotoxicity concerns associated
with traditional cationic nanoparticles.

Although Al approaches offer promise for improving
delivery precision, many rely on assumptions that are
difficult to justify in biological systems. Variables such as
immune response, tissue variability, and unintended
distribution are hard to model reliably. These aspects are
often under-reported, and model outputs are rarely
interpreted in light of such limitations.

Challenges in Al-driven design

Despite AI’s promises and advancements in overcoming
several NP design-related challenges over the past few
years, some limitations remain. Data quality and avail-
ability are two such issues. Al-driven solutions are data-
hungry by design. However, the available data is most of
the time scarce, unbalanced, or of low quality. The main
reason is the cost of data collection, which requires
expensive and extensive in vitro and in vivo experi-
ments. In addition to limited availability, another
concern is the bias present in the training data. Many
datasets used to train Al models in nanoparticle research
are derived from narrow experimental settings or
restricted chemical libraries. As a result, models may
perform well on specific tasks but fail to generalize to
new compounds, delivery routes, or patient groups.
These biases are often implicit and not systematically
assessed, which complicates both model evaluation and
future deployment. Adoption of these Al-based solu-
tions is also a significant challenge. Although lab ex-
periments test some of these approaches, there is no
report of a clinical trial involving an NP designed using
Al Besides all the usual bottlenecks in moving from
research design to lab experiments to clinical trials, one
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important reason is the interpretability challenges of Al-
driven solutions. Most of the studies investigated in this
research either skipped the interpretation/explanation
of their models, opted for using basic models that are
inherently explainable but incapable of fully capturing
complex systems or used basic interpretable models that
do not offer actionable explanations.

Although many studies report high model performance,
few extend their validation beyond the original datasets
or computational settings. External testing, particularly
in biological or clinical contexts, is rarely carried out. This
is a critical weakness, especially in drug delivery, where
variability between physiological systems can undermine
predictive accuracy. Models trained and tested in silico
often show promising results, but this does not guarantee
comparable performance under experimental or clinical
conditions. Follow-up studies involving wet-lab validation
have been relatively rare, and examples of clinical pro-
gression remain even more limited. As a result, the gap
between computational output and practical application
continues to raise concerns in the field.

Conclusion

Nanoparticles (NPs) are promising tools for targeted
and personalized treatments, primarily because they can
address biological barriers, decrease systemic toxicity,
and enhance drug bioavailability—qualities especially
advantageous in treating complex diseases. Designing
such  NPs remains challenging, requiring careful
consideration of toxicity, biocompatibility, controlled
drug release, targeted delivery, stability, immune system
clearance, and scalability. Emerging Al-based solutions
have shown significant capabilities in addressing several
of these challenges. However, they are not challenge-
free themselves; as mentioned earlier, data and inter-
pretability challenges are two critical bottlenecks in the
Al-based design reaching to clinical trials and being
adopted. To address these bottlenecks, there are a few
avenues to explore. One promising direction is the use
of in-silico simulations. Simulations are increasingly
used in nanoparticle design, yet their role is not always
clearly defined. Some studies treat them as stand-alone
tools, overlooking experimental variability, while others
exclude them entirely. Integrating simulations with
laboratory data, rather than relying on either in isolation,
could offer a more dependable foundation for Al model
development. Such integration ensures realistic repre-
sentation while supplying sufficient data volume for
effective Al model training. Iterative updates through
continuous experimental validation would further
improve dataset quality and Al model accuracy.

One potential solution for the challenge of interpret-
ability is shifting away from traditional black-box models
and focusing on inherently explainable Al models.
Recent reports indicate promising advancements in this
field [46]. Current high-performing black-box models
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are often too complex for explainable Al (XAI) tech-
niques to effectively interpret. Studies have shown that
many of these models contain substantial architectural
redundancies [47], making them overly intricate and
difficult to analyze. Developing Al models with reduced
redundancy could be a promising direction to enhance
interpretability.

Reducing architectural redundancy may help clarify how
models reach their conclusions. Still, even well-
structured models can fall short when applied outside
controlled settings. In many studies, the focus remains
on model accuracy or predictive performance, while
downstream considerations—such as how these nano-
particle designs behave in manufacturing or clinical
contexts—receive less attention. These aspects, though
less explored, often determine whether an approach can
be carried forward.

Looking ahead, several developments in Al may shape
the next phase of nanoparticle design. Foundation
models, large-scale pretrained architectures initially
developed for other domains, are beginning to find ap-
plications in chemistry and materials science, offering
the potential to generalize across different molecular
and formulation tasks with minimal fine-tuning. Trans-
fer learning and active learning approaches are also
gaining traction, as they reduce the need for large an-
notated datasets by selectively focusing on the most
informative data points. Physics-informed models,
which integrate basic biophysical knowledge into the
learning process, are also gaining interest. By combining
data-driven learning with established principles, these
approaches may help improve model reliability in bio-
logical contexts.

Figure 1 suggests a practical route for improving nano-
particle (NP) design. It starts with combining simula-
tion results and lab-based data, allowing the strengths of
each to inform a more representative dataset. Al models
trained on this composite dataset may reduce the
dependence on extensive experimental screening. In
parallel, the use of explainable AI methods and inter-
pretable model structures can help clarify how design
decisions affect NP behavior, an important step toward
clinical testing and regulatory acceptance. However,
most existing models remain confined to controlled
settings, with limited validation in real biological sys-
tems. To advance toward clinical relevance, it is essen-
tial that computational tools are developed in close
coordination with experimental workflows and tested
across diverse, clinically meaningful scenarios.
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