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A B S T R A C T   

The built environment is an important determinant of travel demand and mode choice. Establishing the rela-
tionship between the built environment and transit use using direct models can help planners predict the impact 
of neighborhood-level changes, that are otherwise overlooked. However, limited research has compared the 
impacts of the built environment for different networks and for individual transit modes. 

This paper addresses this gap by developing built environment and transit use models for three multimodal 
networks, Amsterdam, Boston and Melbourne, using a consistent methodology. A sample of train, tram and bus 
sites with similar station-area built environments are selected and tested to establish if impacts differ by mode. It 
is the first study that develops neighborhood-level indicators for multiple locations using a consistent approach. 

This study compares results for ordinary least squares regression and two-stage least squares (2SLS) regression 
to examine the impact of transit supply endogeneity on results. Instrumented values are derived for bus and tram 
frequency in Melbourne and bus frequency in Boston. For other mode and city combinations, the 2SLS approach 
is less effective at removing endogeneity. 

Results confirm that different associations exist between the built environment and transit modes, after ac-
counting for mode location bias, and that this is true in multiple networks. Local access and pedestrian con-
nectivity are more important for bus use than other modes. Tram is related to commercial density. This finding is 
consistent for all samples. Land use mix and bicycle connectivity also tend to be associated with higher tram use. 
Train use is highest where opportunities exist to transfer with bus. Population density is commonly linked to 
ridership, but its significance varies by mode and network. 

More research is needed to understand the behavioral factors driving modal differences to help planners target 
interventions that result in optimal integration of land use with transit modes.   

1. Introduction 

Knowledge of how the built environment impacts travel helps 
planners integrate transport and land use efficiently (Moeckel et al., 
2019; Saujot et al., 2016). The density of population and activities un-
derpins the latent demand for travel (Rodrigue et al., 2009), while mode 
choices are impacted by urban design, land use diversity and the 
accessibility conferred by different modes (Boarnet and Crane, 2001; 
Ewing and Cervero, 2010). 

Aggregate station-level (direct demand) models can help planners 
predict the impact of neighborhood-level changes, that are otherwise 
overlooked in large-scale strategic models (Cervero, 2006). It is also of 
strategic interest to city development to know whether the predictors of 
transit use differ by mode, as this would allow planners to tailor trans-
port and land use integration approaches according to mode. 

Despite important differences in the way transit modes interact with 
the built environment, there is limited evidence as to whether demand 
for different modes shows different associations to urban form and land 
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use. While the sketch modelling literature includes examples of mode- 
specific prediction models (Cervero, 2006; De Gruyter et al., 2020; 
Lane et al., 2006), these studies do not account for the location bias of 
individual modes. This ‘mode location bias’, which is the tendency of 
rail modes to be concentrated in areas of more intense land use relative 
to bus, makes comparison between modes difficult. A recent study by the 
authors in Melbourne developed a technique to mitigate this mode 
location bias and compare the predictors of transit ridership for an un-
biased sample of train, tram and bus. The study found the majority of 
important determinants were not shared between transit modes (Aston 
et al., 2020b). However, the study was undertaken in only one city; there 
is a need to apply this approach in multiple cities using a consistent 
methodology to achieve a wider validity for these conclusions. 

This paper addresses this gap by developing built environment in-
dicators for three multimodal networks, Amsterdam, Boston and Mel-
bourne using a consistent methodology including an approach that 
accounts for mode location bias. By examining multiple locations, this 
study tests the reproducibility of findings under different cultural, 
network and policy contexts. Accordingly, this study aims to determine 
whether the built environment factors affecting transit ridership differ by 
mode in three urban networks. 

The next section of this paper provides a brief review of transit and 
built environment research evidence and applications. The following 
section outlines the methodology, including study areas, overcoming 
issues of endogeneity and mode location bias; and linear model esti-
mation. Results are then presented and discussed in the context of the 
study's aims, before concluding with implications of the research 
findings. 

2. Literature review 

2.1. Evidence for built environment impacts on transit use 

Most prior studies examining built environment associations with 
travel behavior focus on one city; a suitable unit of analysis considering 
most transit networks operate at the city level. Research conducted in 
Brisbane (Australia) found transit-oriented ‘urban’ neighborhoods were 
positively linked to transit use, while activity-center neighborhoods 
showed no significant impact (Kamruzzaman et al., 2015). In Sydney, 
activity density has been positively linked to transit use, while the 
density of dead-ends (a pedestrian barrier) had a negative impact (Tsai 
et al., 2012). In Melbourne, housing mix and local accessibility have 
been found to be positively associated with the probability of using 
transit, while land use diversity and pedestrian connectivity were not 
significant (Boulange et al., 2017). Research in the Netherlands also 
found expected associations, with Rubin et al. (2014) finding a positive 
association between accessibility and transit use. These studies all 
consider transit use across all available modes in multimodal networks. 

Some studies examine multiple networks. Ingvardson and Nielsen 
(2018) found a positive link between urban-level population and job 
density and transit use using a sample of 48 European cities. However, 
once the regional location was accounted for, the built environment was 
no longer an important predictor of transit use. 

Other studies develop direct demand models for transit modes to 
demonstrate the need for fine-grained built environment modelling tools 
(Cervero, 2006). Transit-mode specific tools have been developed in 
operations research, to facilitate the ability of agencies to test different 
route and service level scenarios in terms of demand impacts (van Oort 
et al., 2015). Some studies also develop direct demand models for in-
dividual modes. A study focusing on bus use in Arnhem-Nijmegen 
(Netherlands) found positive links with pedestrian and cycling facil-
ities, as well as activity density (Kerkman et al., 2015). A study of rapid 
transit (light rail and metro) use in Boston found different associations of 
employment density and pedestrian connectivity with transit use 
depending on whether the AM or PM peak, or daily average use was 
considered (Chen and Zegras, 2016). Similar disparities were observed 

for an earlier study in Boston, with results varying depending on 
whether the trip was for work or non-work purposes, and whether the 
trip origin or destination was considered (Zhang, 2004). A meta- 
regression analysis of such studies found that study design, including 
whether one or more transit modes is examined, as well as the built 
environment variables included in the analysis, affects results (Aston 
et al., 2020a). Yet limited attention has been given to comparing asso-
ciations of the built environment with demand for train, tram, bus and 
variants of these public transport modes. 

2.2. Differentiating impacts by transit mode 

A barrier to examining built environment impacts by mode is the bias 
associated with the types of locations in which trains, trams and buses 
are typically supplied. This ‘mode location bias’ occurs for two reasons. 
First, the higher capital cost and capacity of rail modes means railway 
stations tend to be situated in high density areas where ridership returns 
are more likely to justify the investment. Second, fixed right-of-way 
modes are perceived as a safer development prospect (Currie, 2006). 
As a result, policies have tended to favor development intensification 
around rail, commonly referred to as transit-joint or transit-oriented 
development (Cervero et al., 2002; Murakami, 2010). 

Most prior direct demand studies of transit ridership focus on either 
one mode, or transit modes in combination. Prior analysis by the authors 
sought to disentangle the impact of location bias from the predictors of 
transit use by mode in Melbourne. The study found significant differ-
ences in the make-up and magnitude of built environment determinants 
of bus, train and tram use (Aston et al., 2020b). Population density and 
level of service were the only predictors common to all three modes. On 
a modal level, it found train was associated with intermodal transfer 
opportunities and bike and car parking. Tram use was associated with 
commercial density, land use diversity, local living score and bicycle 
connectivity. Bus use showed the weakest association to built- 
environment factors and was predicted by commercial density and 
jobs-housing balance. 

Repeating the analysis in other research settings, using different 
data, provides the opportunity to test these results. If the result holds, 
this increases the confidences of the finding: the possibility that the 
original finding is related to some aspects of the research setting may be 
considered weak (Bonnel et al., 2014). Thus, the focus of this study is to 
validate the finding in Aston et al. (2020b) that the built-environment 
predictors of transit use differ by mode. 

3. Methodology 

In this study we use station-level data to identify the built environ-
ment predictors of transit use by mode in three urban networks. The first 
step involves the identification of multimodal transit networks with 
appropriate access to data, and similar network-level built environment 
and demographic characteristics. The subsequent steps relate to anal-
ysis, and include: data aggregation, testing for threats to empirical val-
idity including endogeneity of transit supply and demand and mode 
location bias, and finally conducting a cross-sectional multivariate 
analysis. Each step is elaborated below. 

3.1. Study area 

Differences in policy, culture and investment may influence travel 
norms and supply, which in turn affects travel choices (Nijkamp and 
Pepping, 1998; Ortúzar and Willumsen, 2011). We focus our research on 
cities that display certain macro similarities. To narrow the search for 
eligible networks, we conducted a scan of cities based on three criteria 
and extracting data from the sources listed:  

1. Highly urbanized population: % ‘urbanized’ (World Bank and FAO, 
2017) 
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2. National economic status: national gross domestic product (World 
Bank and OECD, 2017)  

3. Multimodal: a minimum of three public transport modes operational 
in the city 

Melbourne, a city with an extensive train, tram and bus network, was 
the reference case for this search. A robust data set was already compiled 
as part of preliminary work to explore and account for mode location 
bias when comparing built environment impacts by mode (Aston et al., 
2020b). Countries whose level of urbanization and GDP fell was within 
+/− 20% of Australia's were considered eligible. A list of multimodal 
networks was generated for cities in the shortlisted countries (meeting 
criteria 1 and 2) by consulting three sources:  

• UITP mobility in cities database (UITP, 2015) 
• Comparison of transit-oriented development strategies in world cit-

ies (Thomas and Bertolini, 2017)  
• US National Transit Database (FTA, 2018) 

The ability to collect data was also crucial. This led to the narrowing 
of the search to cities for which contact could be made with local data 
custodians or researchers. The final cities meeting all criteria were 
Boston, Rotterdam/The Hague and greater Amsterdam (Stadsregio 
Amsterdam). Stadsregio Amsterdam was preferred over Rotterdam/The 
Hague, as it is characterized by a single agglomeration like Boston and 
Melbourne (although Boston is characterized by two major trip attrac-
tors). However, Dutch smartcard data is owned and reported separately 
by individual operators (van Oort et al., 2015), a number of which are 
responsible for transport in Stadsregio Amsterdam. The consistency of 
data gathered for different operators cannot be guaranteed. The study 
area was narrowed to focus on the Municipality of Amsterdam (hence-
forth referred to as ‘Amsterdam’), where all three transit modes were run 
by a single operator (GVB). Fig. 1 summarizes the study areas and their 
similarities (nation-level selection criteria) and high-level urban 
characteristics. 

The population density of Amsterdam was 4662 persons/km2 (GA 
2016b). In contrast greater Melbourne's population density at last census 
was 450 persons/km2 (ABS, 2017b), while that of the region served by 
the Metropolitan Boston Transit Authority catchment (MBTA), was 702 
persons/km2 (U.S. Census Bureau, 2017a). This disparity in population 
density, driven by the low density urban sprawl in Melbourne and 
Boston, may affect the comparability of the three samples. As such, the 
study areas for Melbourne and Boston were confined to areas within 
approximately 10 km of their respective ‘downtown’ areas, as depicted 
in Fig. 1. 

Like Melbourne, Amsterdam's transit network comprises bus and 
tram operating with shared right-of-way. Amsterdam is also served by a 
metro system which integrates with an intercity railway. Stations asso-
ciated with both networks are included in the analysis. Melbourne's 
heavy rail network incorporates some underground stations serving the 
CBD, but is predominantly a radial system serving suburban stations. 
Boston's rapid transit network comprises a mix of metro and light rail 
service. Prior to conducting analysis, the impact of classifying Boston's 
rapid transit network as an integrated ‘metro’, or distinct light rail 
(Green lines and Mattapan Trolley) and metro networks (other lines) 
was tested. The explanatory power of multivariate models for ridership 
were compared. Separate models for light rail had much stronger 
explanatory power than the combined model. Therefore, we generate 
separate models for light rail and metro lines in this study. Boston also 
has a bus network of similar scale to Melbourne, as well as a commuter 
rail which is operated privately, yet serves the inner core in a radial 
fashion similar to Melbourne's heavy rail network. 

3.2. Data aggregation 

3.2.1. Aggregating indicators 
Table 1 summarizes the definition and source of data for indicators 

collected across the three study areas. Indicators are grouped according 
to the unit of analysis that is relevant for their interaction with transit 
use. The ‘facility’ refers to properties of the transit service, and includes 
ridership and service level. The ‘transfer zone’ encapsulates a small ring 
around the facility where intermodal transfers take place. We use a 160- 
m Euclidian buffer from the transit point to demarcate the transfer zone. 
The ‘neighborhood’ encompasses land uses from which it is convenient 
to access transit by foot or bicycle (Monzón et al., 2016). The land uses 
within the neighborhood are the most important drivers of the under-
lying demand for transit (Litman and Steele, 2017; Mitchell and Rapkin, 
1954). Finally, regional variables measure the relative accessibility to 
opportunities across the network (Mahmoudi and Zhang, 2018). 

3.2.1.1. Facility and transfer-zone variables. Data for tram and bus were 
collected for transit ‘facilities’, made up of bus stops within 50 m of each 
other, or tram or light rail points within 25 m of each other. This clus-
tering of transit stops removed some of the catchment overlap effects 
that would otherwise be encountered if each stop was treated as an 
observation. 

Data for the outcome variable, transit ridership, was linked to transit 
stops, however the approach varied by city. In Melbourne, patronage 
was supplied by the Department of Transport and linked to transit points 
using the common ‘Stop ID’ identifiers. Transit points for Boston could 
also be linked to ridership data published by the Massachusetts Bay 
Transportation Authority (MBTA) using common stop IDs. Transit point 
data for Amsterdam was primarily sourced from Open Street Map 
(GeoFabrik downloads, 2019b). Stop names were used to link this data 
to ridership supplied by the predominant transit operator in Amsterdam, 
GVB. 

The level of service (LOS) is represented by the daily weekday ser-
vices corresponding to a stop between 6 am and 7 pm. Schedules were 
extracted from general transit feed specifications (GTFS) for each 
operating agency for a single date falling within the data collection 
period. Where sample locations comprised more than one stop (bidi-
rectional stop pairs and stops at interchanges), ridership and LOS for 
individual stop IDs were summed to give the total. 

Whereas ridership data for Melbourne and Boston were collected for 
sites identified using stops IDs that are consistent with GTFS (sched-
uling) standards, this was not the case for Amsterdam. This made it 
difficult to extract service level information for each facility, since the 
GTFS identifiers could not be precisely linked to ridership data. Instead, 
the service level metric for Amsterdam was defined as the centroid- 
weighted average service level of transit within the transfer zone. 

A dummy variable was used to represent the presence of overlapping 
transit by mode. A ‘1’ was assigned if stops from a different facility were 
located in the transfer zone, and ‘0’ otherwise. 

3.2.1.2. Neighborhood-level variables. Neighborhood catchments were 
formed by tracing walkable road corridors from the centroid of each 
transit facility. The extremities of these corridors were joined to form 
hulls, or polygons. The shapefile containing road centerlines for Mel-
bourne was cleaned of roads of Class Code ‘1’ and ‘2’, corresponding to 
highways and freeways (DELWP, 2018b). Streets of fclass ‘motorway’ 
and ‘motorway_link’ were excluded from the roads shapefile for 
Amsterdam (GeoFabrik downloads, 2019b). Roads and cycle trails for 
Boston were stored in separate files (DCR, 2019; MassGIS, 2019a). These 
were combined, and roads of type (RDTYPE) ‘1’ and ‘2’, corresponding 
to limited access highways and major highways, were excluded before 
generating the walkable catchments. 

The distance individuals are prepared to walk or cycle to transit 
varies by mode, due to differing speed and reliability characteristics (Wu 
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Fig. 1. - Study area boundary and characteristics. Sources: Amsterdam -Metropolitan Area (metropol regioamsterdam, 2020)/Study area (GA 2016b), Boston - (U.S. 
Census Bureau, 2017a), Melbourne - (ABS, 2017b). 
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and Levinson, 2018), as well as by individual and contextual factors 
across a network (Tao et al., 2020). Therefore, we tested the sensitivity 
of ridership models to different buffer sizes for each mode. The mix of 
variables and model fit differed little from the standard catchment 
buffers specified in Melbourne's planning provisions (DELWP, 2006). 
Therefore, walking catchments of 400 m for bus, 600 m for tram and 
light rail, and 800 m for heavy rail, including trains, metro and 
commuter rail, are used across all three locations. This testing procedure 
highlighted the unique associations of Boston's commuter rail network. 
For example, it was the only mode that did not show significant asso-
ciations with service level. This is consistent with the findings from other 
studies (Chen and Zegras, 2016). Therefore, commuter rail was not 
examined in the pooled models. 

Neighborhood-level variables, including density and measures of 
land use diversity, were estimated by calculating the proportional 
overlap of census geographic units or land use zones/parcels, with the 
catchment. The geographic unit for which data was collected for each 
varied in size; with implications for the precision of variables in each 
city. Most variables were able to be operationalized using consistent 
input data. However, commercial density and level of employment 

could not be measured using comparable data. This is addressed under 
‘Location errors’, below. 

Sensitivity tests were used to determine the appropriate trans-
formation of population and employment density, which can vary 
logarithmically with ridership (Voulgaris et al., 2017). The logarithmic 
transformation of employment density, and linear form of population 
density were found to provide the best fit with the ridership data. 

3.2.1.3. Regional variable. The study locations were chosen due to the 
radial nature of their transit networks which service a dominant central 
trip generator (or ‘Central Business District’). The proximity of any given 
stop in the network to the CBD is likely to be an indicator of accessibility 
to jobs and activity. Therefore, distance to the urban downtown was 
estimated as a measure of regional or network-level accessibility for all 
study areas. 

3.2.2. Location errors 
Differences exist in the way data is collected in each city. This can 

affect the comparability of the data. Some studies adopt location con-
stants to account for these impacts (Currie and Delbosc, 2013). A recent 

Table 1 
Indicator descriptions and data sources.   

Indicator 
Description Source 

Amsterdam Boston Melbourne 

Facility-level variables 
Ridership Daily average normal weekday boardings (GVB, 2020) (MBTA, 2020a, 2020b, 2020c) (DOT, 2019a, 2019b)1 

Level of Service Number of daily services by mode (6 am – 7 
pm)2 

(OV, 2019) (MBTA, 2018, 2019) (PTV, 2018a, 2018b)  

Transfer-zone variables 
Overlapping 

transit 
Count of overlapping transit stops (by mode) (OV, 2019) (MBTA, 2019) (PTV, 2018a)  

Neighborhood (access/egress catchment) level 
Population 

density 
Residents/km2 (GA, 2016b) 3 (U.S. Census Bureau, 2017a) (ABS, 2017b) 

Jobs density Jobs (or workers)/km2 (GA, 2016b) 3 (Center for Economic Studies, 2019) (ABS, 2017f) 
Commercial 

density4 
Fraction of land use zoned ‘commercial’ GA GA (Gemeente 

Amsterdam) (2017) 
(MassGIS, 2019b (DELWP, 2018a) 

Land use diversity 
−

∑

k

[
(pi)

(
lnpi

) ]

lnk 
(p = prop. Area occupied by land use i; k = 6 
land use types)5 

Formula: Shannon (1948)  
Jobs-housing 

balance 
1 −

|(workersC − populationC)|

workersC + populationC 
Balance of residents to jobs 
Formula: Cervero (2002)  

(GA, 2016b) (Center for Economic Studies, 2019;  
U.S. Census Bureau, 2017a)1 

(ABS, 2017b; ABS, 2017f) 

Pedestrian 
connectivity 

3-or-more-way street intersections/km2 (GeoFabrik downloads, 
2019b) 

(DCR, 2019; MassGIS, 2019a) (DELWP, 2017) 

Cycle connectivity Length of cyclable paths (km) within the 
catchment 

(GeoFabrik downloads, 
2019b) 

(DCR, 2019; MAPC, 2019) (VicRoads, 2017) 

Destination score Score out of 7 types of destination present6 

Adapted from (Badland et al., 2017;  
Boulange et al., 2017) 

(GA, 2019) (MassGIS, 2019b) (GeoFabrik downloads, 2019a; PSMA 
Australia Limited, 2018) 

Proportion employed7 (GA, 2016a) (U.S. Census Bureau, 2017a, 2018) (ABS, 2017b; ABS, 2017d) 
Mean household size (GA, 2016b) (U.S. Census Bureau, 2010) (ABS, 2017b; ABS, 2017c) 
Proportion overseas born (GA, 2016a) (U.S. Census Bureau, 2017a) (ABS, 2017a; ABS, 2017b) 
Proportion tertiary educated (GA, 2016a) (U.S. Census Bureau, 2017b) (ABS, 2017e) 
Regional level variables 
Distance to CBD km, Euclidian Amsterdam Centraal Park Station Center of CBD Grid (Elizabeth x 

Swanston) 

1 – Melbourne train and tram patronage has correction factor applied for non-touch-on rate. Tram touch-ons are assigned to a ‘polygon’ of tram stops and divided 
evenly among composite stops. 
2 – LOS for Amsterdam is centroid-weighted average of all stops within transfer zone. 
3 – Data obtained from the Amsterdam transport model were linearly interpolated for 2018, from 2015 and 2020 data. 
4 – Pooled model uses commercial density standardized at city-level. 
5 – Land use zones: Civic, commercial, industrial, other, recreation, residential. 
6 – Destination types: Community, culture and leisure; Convenience; Early years; Education; Food; Health and social services; Transport. 
7 – Pooled model uses proportion employed standardized at city-level. 
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study of obesity developed a multi-city built environment dataset which 
was examined for a pooled sample without location constants. Although 
some indicators varied among cities by orders of magnitude, these ten-
ded to reflect real variation in the built environment patterns in the 
study sites (Kerr et al., 2013). In this study, we examined the network- 
level averages and standard deviation of the indicators to gauge the 
comparability of scores between the study areas. 

Three indicators had large discrepancies: commercial density, pro-
portion employed and pedestrian connectivity. The classification of land 
use types in the Netherlands yielded a substantially smaller fraction of 
commercial land overall. The definition of ‘employed’ reported in na-
tional statistics also varied, with Australia reporting ‘full time equiva-
lent’ employment, and USA reporting workforce participation as 
‘employment’. Therefore, these two indicators were scaled at the city 
level before being incorporated into the clusters (commercial density) 
and the pooled regression model (both). 

The third variable with large discrepancies was pedestrian connec-
tivity. The average intersection density (the measure of pedestrian 
connectivity) in Amsterdam was almost six times larger than in Mel-
bourne. On closer examination, this was traced to differences in the 
street typology in Amsterdam, which was characterized by multi-part 
crossing with numerous refuges and sidewalks available to pedestrians 
to stem vehicular traffic and provide safer crossings for pedestrians. As 
such, this measure was kept in its unstandardized form. As more ‘off-the- 
shelf’ tools for extracting network data become available, they could be 
harnessed in future studies to streamline the network data extraction 
process (Boeing, 2017; Lovelace, 2021). 

3.3. Accounting for endogeneity between transit supply and demand 

Ordinary least square regression is a suitable analysis method for 
relationships that are unidirectional (Wooldridge, 2013). If this 
assumption is violated, such that the outcome variable also influences 
one or more of the independent variables, the model suffers ‘endoge-
neity’. Endogeneity is a specification issue in travel behavior modelling 
because transit service level both impacts, and is impacted by, ridership 
(Holmgren, 2007; Louviere et al., 2005). Transit demand studies have 
increasingly adopted two stage least squares regression (2SLS) to 
address this bias (Diab et al., 2020; Estupiñán and Rodríguez, 2008; 
Mattson, 2020; Taylor et al., 2009). 2SLS involves (1) defining an 
equation to estimate a proxy value for the expected level of the endog-
enous variable; and (2) estimating the outcome using the expected value 
of the endogenous variable, instead of the original value (Stock, 2001; 
Tyvimaa and Kamruzzaman, 2019). 

Instrument must be relevant and exogenous, and ideally should not 
already be included in the explanatory equation (Spearing et al., 2012; 
Stock, 2001). Some transit demand studies use the presence of nearby 
transit as an instrument (Estupiñán and Rodríguez, 2008). Some use 
novel measures such as agency operating budget and voting patterns 
which are hypothesized to affect the quality of transit provision (Diab 
et al., 2020; Taylor et al., 2009). Most use a measure of catchment 
density (Diab et al., 2020; Estupiñán and Rodríguez, 2008; Mattson, 
2020; Taylor et al., 2009). However, if the population density of a 
catchment is used as the instrument then it should be excluded from the 
main model. To avoid dropping important explanatory variables from 
the main model, we developed spatially ‘lagged’ measures of transit 
stops, built environment density and walkability, to predict transit ser-
vice level. Spatially lagged variables are those which are spatially offset 
from the observation. They are used in 2SLS models developed in similar 
fields examining spatial correlations with demand, such as demand for 
housing (Tyvimaa and Kamruzzaman, 2019). In this case, we tested 
average measures derived from catchments neighboring (intersecting) 
each observation, as well as measures estimated for the 200 m ‘ring’ just 
beyond the neighborhood catchment boundary for each mode. 

We develop models for each mode in each city using the 2SLS 
approach. The selection of an instrument was guided by the ‘relevance’ 

test based on the F-statistic when regressed exclusively on transit supply. 
Instrument exogeneity was tested using the Hausman test; carried out 
after the second stage model was developed. The Hausman test checks 
whether the regressors are correlated with the errors. The null hypoth-
esis is that the errors are uncorrelated. The most appropriate test for 
endogeneity is a comparison of fixed and random models; however, this 
is not possible for cross-sectional data. Instead, we use the Wu-Durbin- 
Hausman test to retrospectively determine whether the instrument 
was efficient at removing endogeneity (Durbin, 1954; Nakamura and 
Nakamura, 1981). 

For the purpose of testing for endogeneity on a sample-by-sample 
basis, we jointly instrument for transit service level and run the sec-
ond stage of the regression using the ivreg package in RStudio (Fox et al., 
2020). This approach ensures that the errors estimated in the second 
stage model are correct (Colonescu, 2016). For the samples exhibiting 
endogeneity, the instrumented values of service level are used in the 
subsequent, pooled sample. The original values are used for samples that 
are unaffected by endogeneity. 

3.4. Testing and mitigating mode location bias 

Bias between groups that are the subject of comparison can threaten 
the validity of observations made between the groups (Stuart, 2010). We 
checked whether the location characteristics of transit stops by mode 
was characterized by such bias. To do this, we computed the standard-
ized mean difference of built environment and sociodemographic vari-
ables between modes, using a pooled sample the three networks, 
segmented by mode. We used a constant catchment size of 800-m for all 
modes just for the purpose of comparing the neighborhood of transit 
stops. If the mean difference of a variable exceeds 0.25 standard de-
viations when compared between two modes, we consider their loca-
tions to suffer from imbalance, or mode location bias (Cochran, 1968). 
Thirteen neighborhood variables were compared; most were imbal-
anced suggesting systematic bias in the locations of different modes. Ten 
variables were imbalanced between bus and train and bus and tram. 
Four variables were imbalanced for train and tram. 

Two methods were developed in past research to address this mode 
location bias. These include (1) sampling stops that are co-located, and 
(2) stratified sampling based on built environment typologies (clusters) 
[citation redacted to facilitate blind review]. The former approach reduces 
the sample size to a small number of co-located sites. Competition be-
tween the co-located modes also affects results. The stratified sampling 
approach is more flexible and lends itself to larger sample sizes. By 
considering all transit facilities, not just co-located facilities, it produces 
a sample that may be expected to be more representative of the entire set 
of stops in a network [citation redacted to facilitate blind review]. 

The aim of sampling using subclassifications is to remove bias by 
sampling from clusters of “like” observations (with respect to the 
covariates) (Stuart, 2010). Stratified sampling achieves this by grouping 
observations into similar built environment clusters and then sampling 
in equal proportion across modes. 

Seven variables, representing distinctive aspects of the built envi-
ronment were used to form built environment clusters across the three 
networks. These were: population density, land use diversity, jobs- 
housing balance, pedestrian connectivity, cycle connectivity, destina-
tion score and distance to CBD. Cluster solutions ranging from three to 
ten centroids were examined. The optimal clustering solution was cho-
sen based on the percentage reduction in within-cluster sum of squared 
errors (WSS), as well as the distinctiveness and reproducibility of the 
clusters when examined visually. R's inbuilt k-means clustering function 
was used to generate clusters, and ggplot2 was used to visualize the 
clusters against two principal dimensions (RCore team, 2019; Wickham, 
2016). A six-cluster solution with good interpretability and distinctive 
clusters was chosen. The WSS was reduced by 54.6%, compared to 
50.3% for the five-cluster solution or 57.7% for a seven-cluster solution. 
The modes were first interpreted based on the cluster variables. The 
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clusters were validated by checking the theoretical plausibility of the 
average ridership for each cluster, based on their physical characteristics 
(Kamruzzaman et al., 2014). 

The unbiased sample was formed by selecting an equal number of 
observations for each mode from each cluster. The sampling rate for 
each cluster is set by the mode with the least members in that cluster. 
Metro or train sites were the constraining case for all six clusters. The 
inbuilt R function for random sampling was used to select observations 
from the non-constraining cases (RCore team, 2019). The distribution of 
transit in each of the study areas, and the reduced distribution of transit 

modes in the sample, is illustrated in Fig. 2. 

3.5. Pooled direct demand model estimation 

Multivariate linear models were developed for the pooled and 
stratified samples for all modes. All theoretically relevant variables were 
checked for multicollinearity using the variance inflation factor (VIF). 
Those with VIF exceeding five were excluded from the maximally 
adjusted model. Linear regression proceeded with the remaining vari-
ables. Insignificant variables were removed in a stepwise fashion, 

Fig. 2. Biased and stratified samples for study areas.  
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commencing with the variable showing the least significant effect. The 
parsimonious model was accepted when the subsequent iteration after a 
variable was removed showed reduced explanatory power (signified by 
the R2 value). In the latter case, the variable was returned to the model. 
The residual plots of parsimonious models were checked for concor-
dance with the assumptions of linear regression. If the assumptions were 
not met due to one or two clear outliers, or an individual value exceeded 
Cook's distance, the outlier(s) were removed, and the estimation process 
was repeated. 

4. Results 

4.1. Tests for endogeneity 

Table 2 summarizes the endogeneity tests performed for all modes 
and networks. The optimal instrument for each sample differed, as 
shown in the table. The biased model results for each city, with and 
without instrumenting for service level, are included as supplementary 
Tables 6–8. 

The chosen instruments explain relatively little of the variation in the 
outcome variable (transit supply). Many prior studies of built environ-
ment and transit use have used explanatory power as a test of the suit-
ability of the instrument in terms of relevance, typically finding stronger 
associations between the instruments (e.g. population density and 
voting patterns) with transit supply than those used in this study (Diab 
et al., 2020). This is indicated by the R2 of the OLS model, used to derive 
the predicted values of service level. Nevertheless, the instrument tests 
suggest they perform adequately, and in some cases very well, as indi-
cated by the F-statistics greater than 10 in all but one case, and a weak 
probability of the null hypothesis being true (Colonescu, 2016). The F- 
statistics ranged from 9.59 (applied to bus service level, Melbourne) to 
277 (bus service level, Boston). 

When the instrumented values for level of service were used to 
predict ridership for tram and bus in Melbourne, and bus in Boston, 
endogeneity was detected. The endogeneity tests suggest that the 
remaining samples were not affected by endogeneity. Nevertheless, 
there are many differences between the instrumented (2SLS) and non- 
instrumented (OLS) models. In many cases, this is caused by multi-
collinearity in the instrumented model, which introduced the need to 
remove additional covariates. In the subsequent analysis, the instru-
mented values for level of service were used in those samples for which 
endogeneity was detected: bus and tram in Melbourne and bus in Bos-
ton. For the remaining samples, the original values of LOS were used. 

4.2. Mode location bias mitigation 

Six distinctive built environment clusters were formed using k-means 
clustering. The clusters were first interpreted based on the mean 
(‘centroid’) for each of the seven input variables: population density, 
commercial density scaled for each city, balance, land use mix, 

destination score, pedestrian connectivity and cycle connectivity. Fig. 3 
depicts the distribution of the clusters. The clusters are colored on a 
spectrum ranging from highest anticipated transit use (‘downtown 
core’) to lowest (‘balanced suburbia’), based on the built environment 
characteristics of each. The average ridership of observations in each 
cluster is shown in the first row of the descriptive table, and membership 
is broken down by mode and city. 

The clusters provide a meaningful typology of station-area built 
environments because of their distinctiveness and logical association 
with ridership. However, as Fig. 3 reveals, the distribution of clusters by 
study area is uneven. Amsterdam is dominated by the ‘active mode 
friendly cluster’. Melbourne is not represented in this cluster. This re-
flects a systematic difference in the supply of bicycle and pedestrian 
paths in Amsterdam, compared to Melbourne and Boston. Both Mel-
bourne and Boston exhibit ‘downtown core’ properties, characterized by 
extremely high job densities. Boston has the highest representation of 
‘high-density residential’. Both Melbourne and Boston have a high 
proportion of sites with low scores, reflecting of the higher average auto 
mode share in these two cities compared to Amsterdam, which had not 
sites in the ‘suburban residential’ cluster. 

Stratification also reduced the size of the sample significantly. Metro 
or train services were the constraining variable in all six clusters. As a 
result, just 194 of the available 5021 bus and 1109 tram facilities are 
included in this study. Despite over-representation of certain clusters 
across study areas, the final sample contained a mix of train, tram and 
bus from different clusters in each city. Amsterdam is more evenly 
represented after stratification, constituting 19% of sties, compared to 
just 9% initially. Sites from Melbourne make up 57% of the sample and 
sites from Boston make up 24%. 

Table 3 summarizes the results of testing for imbalance between each 
mode pair before (‘Biased’) and after (‘Stratified’) mitigating location 
bias. Stratification succeeded at eliminating bias for most variables, with 
85% of pairs improved or balanced after stratification. The low rate of 
imbalanced between train:tram pairs suggests train and tram are less 
susceptible to location bias, considering the “inner” urban nature of the 
study areas. This contrasts to the empirical study for greater metropol-
itan Melbourne, which found large differences in the distribution of 
these modes. 

4.3. Built environment and transit use models 

This study aims to determine whether the predictors of transit use 
differ by mode. The stratified samples contain observations that are 
located in similar, or unbiased, built environments, irrespective of the 
mode. This means the predictors for each mode in the subset of sites in 
the stratified sample can be robustly compared. However, to account for 
the possibility that transit supply is adjusted in response to ridership (a 
bidirectional relationship), service level was instrumented using two 
stage least squares regressions. Ridership models were developed for 
each mode in each city, using the expected (instrumented) service level 

Table 2 
Summary of diagnostic test results for 2SLS for all samples (Significance levels: *: p < 0.1, **: p < 0.05, *** p < 0.01).  

Sample Endog. var. Instrument 1st step 2nd step  

Instrument test Wu-Hausmann 
endogeneity test   

R2 F Pr > |p| F PR > |p| R2 VIF 

Amsterdam bus ln(LOS) Log of activity density for intersecting catchments 0.065 9.59 0.002*** 0.04 0.850 0.406 3.30 
tram LOS Commercial density for intersecting catchments 0.200 11.4 <0.001*** 1.86 0.174 0.416 4.18 
train ln(LOS) Count of buses within transfer zone of stop 0.669 28.1 <0.001*** 0.24 0.632 0.774 2.55 

Boston bus ln(LOS) Activity density for 200 m ring outside catchment 0.132 277 <0.001*** 22.55 <0.001*** 0.072 1.37 
LRT LOS Ped. connectivity for intersecting catchments 0.499 29.3 <0.001*** <0.001 0.992 0.877 2.79 
metro LOS Ped. connectivity for intersecting catchments 0.237 12.9 <0.001*** 0.17 0.685 0.518 1.65 

Melbourne bus ln(LOS) Log of activity density for 200 m ring outside catchment 0.053 37.5 <0.001*** 4.18 0.041** 0.465 3.57 
tram LOS 0.291 90.5 <0.001*** 5.18 0.023** 0.651 3.92 
train ln(LOS) Activity density for 200 m ring outside catchment 0.612 42.6 <0.001*** 2.69 0.105 0.802 4.18  
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(supplementary Tables 6–8). Endogeneity was detected in three of the 
city-level models: bus and tram in Melbourne and bus in Boston. For 
these three subsamples, the instrumented value for level of service was 
used instead of the actual level of service in the pooled model. Table 4 
presents the standardized coefficients for the pooled linear regression 
models for each mode. All variables which add explanatory power to the 
models are shown. 

The most consistent finding for all modes and at all levels of aggre-
gation is the positive association of ridership to service level. In the 
combined bus model, the coefficient for pedestrian connectivity was 
larger than service level after instrumentation. The high explanatory 
power of the train models and the limited number of other significant 

predictors in the model, suggests that service level explains more vari-
ability in train ridership than all aspects of the built environment. 

Increasing commercial density is associated with higher tram or light 
rail use. This finding is consistent for all study areas for tram, including 
the combined sample. In contrast, commercial density only shows as-
sociations with train use in Boston; and with bus use in Melbourne. This 
is an intuitive finding: tram ‘corridor’ intensification is a strategy that 
has been promoted and supported for its bidirectional benefits for real 
estate values, appropriate growth and ridership gains (Parsons Brinck-
erhoff Quade and Douglas Inc. et al., 1996; Woodcock et al., 2013). Prior 
empirical research verified this (Currie et al., 2011). An empirical study 
of the land use change that occurred at three light rail lines in Houston, 
Texas, found that vacant commercial land was more likely to be acti-
vated than vacant residential land, following the introduction of the 
light rail corridor (Lee and Sener, 2017). At the inter-network level, 
commercial density is also detected as a significant predictor of heavy 
rail use, although its magnitude is not as large as for tram ridership. This 
study confirms commercial density is strongly linked to tram use; and is 
more important for tram use than use of other transit modes. 

This study finds positive associations of ridership with population 
density, but only in certain contexts. For train, population density is the 
strongest built environment predictor of ridership at the inter-network 
level. However, at the intra-network level, population density is not a 

Fig. 3. Cluster distribution and membership by mode and study area.  

Table 3 
Rate of imbalance between modes before and after Stratification.    

Tram:Bus Train:Bus Train:Tram  

# variables tested 13 13 13 
Biased Balanced 3 3 9 

Imbalanced 10 10 4 
Stratified Balanced 8 13 10 

Imbalanced 5 0 3 
% Improved or balanced 92% 100% 85%  
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significant predictor of ridership. This suggests that variation in popu-
lation density within cities does not have a meaningful impact on 
ridership. However, when comparing cities with more variation in 
population density, its impact on ridership becomes pronounced. Pop-
ulation density is linked to tram use at the inter-network level, and also 
within Amsterdam and Boston. Population density is not associated with 
tram use in Melbourne. This may be due to the comparably lower speeds 
of trams in high density areas, which research has found is negatively 
associated with ridership (Currie et al., 2011). 

Bus use is linked to population density within Melbourne and 
Amsterdam, but not at the inter-city level. Bus use was highest overall in 
Amsterdam by an order of magnitude compared to the other two cities. 
The effect of population density may be obscured by other variables that 
show a different pattern of association with bus ridership at the inter- 
city level: namely pedestrian connectivity and destination score. 

In all samples except Amsterdam, train use was positively linked to 
the number of overlapping bus stops within the transfer zone. Bus often 
serves as a feeder to train stations. Other studies also finding a signifi-
cant link between rail use and the presence of bus services (Liu et al., 
2016). This suggests bus is most commonly acting expand the rail 
catchment beyond the walkable access and egress corridor, thereby 
increasing ridership demand. In contrasts, where bus services overlap 
with other buses, they are found to be in competition (Amsterdam and 
Melbourne). 

Three built environment variables explain bus use in the pooled 
sample: pedestrian connectivity (+), cycle connectivity (− ) and desti-
nation score (+). However, none of these variables is significant for 
individual networks. This gives another indication that variability at 
within an urban network is not sufficient to produce a marked effect on 
ridership. Pedestrian connectivity is six times higher, on average, in 
Amsterdam than in Melbourne and Boston. Bus ridership is ten times 
higher in Amsterdam. Therefore, much of this difference is attributable 
to the gradient in crossing opportunities. Bicycle connectivity is also 

higher in Amsterdam; however, its negative impact suggests that when 
considering pedestrian connectivity and bicycle connectivity together, 
those locations where pedestrian access is superior to bicycle access are 
associated with higher bus use. In contrast, pedestrian connectivity in 
negatively associated with train use. In Amsterdam, metro ridership is 
slightly lower than Boston, which accounts for this effect. The high 
pedestrianisation of Amsterdam means that distances between destina-
tions are small, which negates some of the demand for train use, 
compared to a city like Boston where the metro provides a more critical 
link to key destinations across the city. 

Destination score is also important for bus use. It is related to 
pedestrian connectivity as it captures the provision of daily services 
within walking distance from the train catchment. The better the 
walkability of a catchment, the larger the area that can be covered in a 
given amount of time. This in turn increases the catchment of places, or 
destinations, accessible to bus users. 

Land use diversity represents the evenness of different land use types 
within a catchment, and is positively associated with tram use across 
cities. Land use mix can be considered a measure of the mixture of trip 
origins and destinations. Tram ridership is highest, therefore, where 
there is a consistent spread of different uses, including commercial, 
residential, institutional (government) and recreational. Bicycle con-
nectivity is also positively associated with tram use. Trip chaining be-
tween bicycle and tram is uncommon (Rijsman et al., 2019); therefore, 
this finding may suggest that the types of locations that are suited to 
bicycle routes, such as low-traffic streets, are also suited to trams. 

Tram ridership was also lower for stops located further from the CBD. 
For urban areas like Melbourne, Amsterdam and Boston with strong 
downtown areas, this finding is expected. The mobility networks of each 
city are also spatially biased; with areas close to the CBD characterized 
by a higher density of transit stops. This pattern reflects the assumptions 
of transit friendly design set out in Chapter 2 and 5 (Aston et al., 2021). 

4.3.1. Tests for overfitting of data and the impact of residual endogeneity 
Given the relatively small sample sizes and concern for endogeneity, 

we also ran some tests to check for model overfitting. We split the 
samples in half using random sampling, and estimated models for each 
sub-sample with and without service level included among the cova-
riates. We observed the following variables to have relatively stable 
effects across the models; meaning they showed consistent, significant 
effects across the four models: 

• Bus: pedestrian connectivity (+), service level (+), bicycle connec-
tivity (− )  

• Tram: service level (+), commercial density (+), Distance to CBD 
(− ), Proportion employed (− ), overlapping tram (− ), bicycle con-
nectivity (+)  

• Train: Service level (+), pedestrian connectivity (− ), population 
density (+) 

Some variables were consistent for two or three of the models:  

• Bus: destination score (+)  
• Tram: land use diversity (+), Population density (+)  
• Train: overlapping bus (+) 

In the train sub-samples without service level included in the cova-
riates, jobs density was revealed to have a significant association with 
ridership. This suggests that train service level is endogenous to jobs 
density, which means its effect on ridership is masked in our main 
models. Other variables that had some or no significant associations 
with ridership may also exert an influence that we failed to detect, 
whether due to endogeneity or other reasons. Nevertheless, the obser-
vations that are most pronounced in the full model presented in Table 4 
held true in all subsamples. In the ensuing discussion, we focus on these 
observations, as the most reliable among our findings. 

Table 4 
Regression results for unbiased, pooled samples (Significance levels: *: p < 0.1, 
**: p < 0.05, *** p < 0.01).   

Bus Tram/light 
rail 

Metro/Heavy rail 
transit  

Outliers removed 6 7 4  
Sample size 188 187 190   

Standardized regression coefficient (β)  
Population density  0.156** 0.233***  
ln(job density) − 0.091    
Jobs density     
Rel. commercial density1  0.278*** 0.213***  
Jobs-housing balance − 0.087    
Land use diversity 0.086 0.129** 0.059  
Pedestrian connectivity 0.484***  − 0.416***  
Bicycle connectivity − 0.204** 0.122*   
Destination score 0.136**    
Dist. to CBD  − 0.233*** 0.060  
Rel. prop. employed1  − 0.197***   
Mean household size  − 0.106*   
Prop. foreign born 0.092    
Prop. tertiary educated  − 0.066 0.052  
Ln(LOS) 0.340***    
LOS  0.321*** 0.878***  
N bus (overlapping)   0.068*  
N tram (overlapping)  − 0.199***   
N metro (overlapping)     
N commuter rail 

(overlapping)   
0.114***  

Intercept (p) 0.003*** <0.001*** <0.001***  
Residual standard error 1.331 0.610 0.5156  
df 179 176 180  
R2 0.454 0.668 0.778  
Adjusted R2 0.430 0.649 0.767  

‘Relative’ measures (standardized at city-level to account for measurement 
differences. 
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5. Discussion 

5.1. Comparing ridership predictors between modes 

When comparing the results obtained at the inter-city level (pooled 
models, Table 4) to those obtained for modes within each city (supple-
mentary Tables 6–8), it is apparent that many variables show different 
associations with ridership depending on both the mode and the 
network. It is clear that both urban context and mode are important 
factors influencing the relationship between the built environment and 
transit use. Furthermore, due to limitations in this study's design, the 
absence of associations for particular variables and modes cannot 
conclusively be interpreted as the absence of an effect. It means that for 
the samples and specification strategy we adopted, some relationships 
were detected for certain modes and not others. Table 5 summarizes 
these patterns. The table distinguishes attributes that are revealed to 
affect individual modes on multiple levels:  

• Within and between urban networks  
• Only at the inter-urban level (between networks)  
• Only at the intra-urban level (within networks) 

Patterns identified for individual modes at different levels include:  

• Ridership is strongly linked to transit supply for all modes  
• Commercial density is a strong predictor of tram use.  
• Population density is important, but effects vary  
• Train use is highest where opportunities exist to transfer with bus  
• Local access and pedestrian connectivity are important for bus use  
• Land use mix and bicycle connectivity are important for tram 

Most of the remaining associations between the built environment 
and transit are specific to each network and mode. One possible expla-
nation is that differences in the study locations, or differences in the data 
collected from each, are much more important than the built environ-
ment for explaining ridership at the inter-urban level. As a result, the 
results generated from a combined sample of data sets has limited pre-
cision for predicting mode use in individual cities. Urban-level com-
parison of modes would be useful to understand the specific predictors 
of modes in each location. 

5.2. Residual endogeneity in transit supply and demand 

The makeup of explanatory variables differed between the instru-
mented and non-instrumented models for all samples (supplementary 
Tables 6–8). Yet endogeneity was only detected in three out of the nine 
samples. This suggests that the instrumental variable models are inef-
ficient (Durbin, 1954; Nakamura and Nakamura, 1981). Why do these 
results depart from the conventional logic that transit service level has a 
bidirectional relationship with demand? While most prior studies that 
adopt 2SLS to address endogeneity of transit supply and demand report 

on the relevance of the chosen instrument to transit service level, using 
the coefficient of determination (Diab et al., 2020; Mattson, 2020; 
Taylor et al., 2009), it is less clear how the instruments performed ac-
cording to diagnostic tests and whether endogeneity was actually 
present. 

Another question arising from these results is why results differ be-
tween the OLS models and the 2SLS models, if no endogeneity was 
detected. The answer to this is not clear but there are three factors 
limiting the strength of the 2SLS models in this study that suggest a 
different approach is needed to address the conceptual issue of bidi-
rectional transit supply and demand. First, no consistent instrument 
could be found which was regarded as ‘strong’ across the simples. In-
struments were tailored to each mode/network because it was essential 
that they be relevant to ridership. This creates comparability issues, but 
also demonstrates further that there are differences in the patterns of 
associations between attributes of transit modes and their predictors. 
Second, the instruments explained only a small amount of the variation 
in service level. As a result, the predicted values for service level are 
likely to show a different relationship with ridership compared to the 
actual values. Finally, the most pervasive source of difference between 
the models is likely to be the collinearity introduced due to choosing 
spatially-derived instruments, which introduced collinearity issues with 
other variables in the model. In some cases, predictors which were 
among the strongest explanatory factors in the OLS model had to be 
removed from the 2SLS model due to collinearity. While finding a 
stronger instrument is an obvious remedy to these issues, this is very 
challenging in practice (Spearing et al., 2012; Tyvimaa and Kamruzza-
man, 2019). Subject to data availability, it may be worth testing whether 
demographic or policy indicators such as transit investment, can over-
come the pitfalls of spatial indicators. Such indicators have received 
relatively less attention as instruments, but do feature in some transit 
use studies (Diab et al., 2020; Taylor et al., 2009). Nevertheless, this lack 
of stability highlights the need to investigate more robust ways to ac-
count for the bidirectionality of transit supply and demand, which was 
not able to be resolved by 2SLS in this study. 

5.3. Distilling complexity for forecasting applications 

This is the first study to combine data aggregated to individual sta-
tions, for networks in three countries. Doing so reveals that several 
distinctive patterns by mode are important at the inter-network level. 
However, as the city-level models in supplementary Tables 6–8 reveal, 
most of the associations are specific to network and mode. 

These findings add complexity to the already difficult process of 
integrated modelling and planning. It is not clear how useful these 
findings are in practice, and whether they would translate to meaningful 
differences in project appraisals. Research finds that this complexity acts 
as a key barrier to adopting integrated land use and transport models in 
practice (Saujot et al., 2016; te Brömmelstroet and Bertolini, 2010). This 
also introduces additional margin for error (Alonso, 1968; Bonnel et al., 
2014). 

While the results of this study suggest find different impacts by 
mode, it would be useful to evaluate the value-add of a mode-specific 
direct modelling approach, compared to generalized transit modelling. 
Voulgaris (2019) recommends two tests that could be used for this 
evaluation: usefulness and accuracy. First, it would be useful to explore 
whether a different decision would be made concerning the location of a 
particular mode or the mode chosen for a particular location, based on 
the ridership that is predicted when using direct models by mode (a test 
of ‘usefulness’). Second, it is important to gauge the relative accuracy of 
mode-specific models. If mode-specific predictions provide more toler-
able errors, then it may be worth incurring the added complexity of 
segmenting future forecasts by mode. 

Table 5 
Framework for built environment associations with transit use by mode.   

Mode affected 

Variable Level of discernible influence Bus Tram Train 

Commercial density within and between networks  +

Population density within and between networks  +

Bus transfers within and between networks   +

Population density between networks   +

Commercial density between networks   +

Land use mix between networks  +

Pedestrian connectivity between networks +

Destination score between networks +

Bicycle connectivity between networks − +

Distance to CBD between networks  −
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6. Conclusion 

This study aimed to determine whether the built environment factors 
affecting transit ridership differ by mode in multiple cities. It combined 
data for three cities - Amsterdam, Boston and Melbourne - to ensure the 
result was not contingent on the properties of any one city. It adopted a 
stratified sampling approach to mitigate bias in the types of locations 
that modes are typically situated, to facilities robust comparison. 

The variables used in this study are measured at four levels: the fa-
cility, the transfer zone, the neighborhood catchment, and the region. 
This extends prior advances in the field that proposed the use of sketch 
models to capture neighborhood-level effects (Cervero, 2006). The 
models in this study are pooled for multiple cities and prioritize theo-
retical validity over predictive accuracy and expediency. While they are 
not stand-alone forecasting tools, the approach followed to aggregate 
data could be applied to develop city-level sketch models to assist with 
predicting the impact of neighborhood interventions on ridership for 
individual modes. However, careful attention must be paid when 
developing such models to the conceptual issue of transit supply 
endogeneity. 

This study is the first to collect consistent indicators of 
neighborhood-level built environment impacts for stations in three 
networks in different countries. Built environment clusters generated for 
the three cities were non-uniformly distributed across the three net-
works. Amsterdam was dominated by a cluster characterized by high 
quality pedestrian and cycle links, with strong transit ridership. Both 
Boston and Melbourne had dense ‘downtown core’ clusters with the 
highest ridership of any mode. However, they were dominated by less 
permeable, lower- density suburban clusters, characterized by low 
transit use. These systematic differences in the built environment are 
expected to produce differences in the underlying demand for transit 
(Currie et al., 2011; Renne et al., 2016). 

Stratified sampling enabled a sample of train, tram and bus locations 
from across the three cities to be selected so that their locations were 
balanced across the majority of neighborhood characteristics. This was 
important, because the built environment characteristics of modes were 
systematically different according to mode. The use of this stratified 
sample means the findings are independent of the types of location in 
which modes are found. In addition, the use of a combined sample for 
three cities makes the finding robust to many of the differences in the 
study locations. 

The study detected different associations between the built envi-
ronment and transit use for individual modes. This finding corroborates 
earlier evidence from Melbourne (Aston et al., 2020b), but this time with 
three cities in the sample. Local access and pedestrian connectivity are 
more important for bus use than other modes. Tram is related to com-
mercial density. This finding is consistent for all samples. Land use mix 
and bicycle connectivity also tend to be associated with higher tram use. 
Train use is highest where opportunities exist to transfer with bus. 
Population density is commonly linked to ridership, but its significance 
varies by mode and network. In contrast, service level is a consistent 
predictor of ridership across modes. This finding suggests that unlike 
supply-side characteristics, the built environment determinants of 
transit use differ by mode. 

These findings have important strategic implications for transport 
and land-use integration. One such application is in sketch planning that 
seeks to quantify the expected demand increase that might result from 
modifications to the built environment. The models on which these 
forecasts are based should enable impacts to be explored on a mode-by- 
mode basis. Further research is needed to both validate and form 
behavioral understanding as to why different built environment attri-
butes may impact individual modes, to help shape policy and planning. 

6.1. Limitations and further research 

This study is inherently limited by its cross-sectional research design, 

which prevents causal inference from being drawn and which may suffer 
from endogeneity bias due to the bidirectional relationship of transit 
supply and demand. We adopted an approach that has gained currency 
in transit direct demand studies (2SLS) to address the latter concern. 
However diagnostic tests suggested that this approach did not perform 
well at addressing endogeneity. This suggests that alternate methods or 
better instruments are worth exploring to address the persistent con-
ceptual issue of the endogeneity of transit supply and demand. Alter-
natively, to overcome these limitations of cross-sectional research 
design, individual-level analysis of time-series data is needed to estab-
lish the causal associations between the built environment and mode 
use. 

As with any application of quantitative models, expected results of 
mode-specific forecasts will be susceptible to external influences and 
contextual factors. To fully harness the implications of this study's 
finding, further research should seek to explore the reason why associ-
ations differ. One possible explanation, and the impetus for this 
research, are differences in the ways transit modes interact with their 
surrounding environment. This is a potential physical or “hard” factor 
influencing differences by mode. However, there may also be “soft” 
factors, related to individual perceptions or attitudes, that are also 
driving the differences observed in this study. Therefore, carefully 
designed research that links perceptions of the built environment to 
revealed or stated preferences to travel by modes, may be useful. Mixed- 
method or interdisciplinary research that compares measured or 
perceived built environment quality to individual responses or ethnog-
raphies may be useful (Scheiner, 2018). 

The variables in the model explain 38.9% of variance in bus rider-
ship, compared to 62.9% for tram or light rail, and 76.6% of variance for 
heavy rail modes. A recent study of bus ridership in US cities Miami, 
Minneapolis, Portland and Atlanta found an important role for a wider 
range of demographic variables including age bracket, race, car 
ownership and as high school educational attainment (as distinct from 
tertiary educational attainment used in this study) (Berrebi and Watkins, 
2020). Levinson and King (2019) posit that factors ranging from in- 
vehicle ride quality, legibility and payment options; to the intangible 
aspects of novelty and status ascribed to modes, affect ridership. Much 
more research is needed across wide subject matter to identify and un-
derstand the determinants of bus ridership so that bus transit can pro-
vide an attractive and efficient mass transit option for congested cities. 
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Appendix A. Supplementary results  

Table 6 
Model for transit ridership by mode in Amsterdam including ordinary (OLS) and instrumented models (2SLS) (Significance levels: *: p < 0.1, **: p < 0.05, *** p < 0.01).  

Mode Bus Tram Train 

Method OLS 2SLS OLS 2SLS OLS 2SLS 

Sample size 370 164 33  
Standardized coefficient (significance level) 

Pop density 0.176*** 0.218***     
ln(pop density)   0.195*** 0.123*  0.199** 
Job density − 0.063  0.201*  0.615*** 0.557*** 
ln(job density)       
Commercial density 0.054  0.248** 0.168*  0.154* 
Jobs-housing balance − 0.088 − 0.150*** 0.212*** 0.147* 0.196*  
Land use diversity − 0.119**      
Pedestrian connectivity   − 0.100    
Bicycle connectivity     0.314** 0.280** 
Destination score 0.012  − 0.104* − 0.116*   
Dist. to CBD − 0.110**  0.190** 0.221***   
Prop. employed  − 0.062   − 0.211 − 0.198 
Mean hh size 0.091* 0.076*   0.187 0.167 
Prop. foreign born − 0.061    0.091 0.082 
Prop. tertiary educated − 0.068  − 0.083 0.119   
LOS   0.560*** 0.801***   
ln(LOS) 0.568*** 0.623*   0.401** 0.333** 
N bus (overlapping)   0.099 0.111*   
N tram (overlapping) − 0.193*** − 0.193***     
N metro (overlapping) 0.081*  0.089    
Intercept (p)  0.039 <0.001** 0.048  − 0.093 
Residual standard error 1.67 0.747 0.694 0.697 0.335 0.394 
df 357 363 152 156 25 25 
R2 0.439 0.416 0.549 0.441 0.825 0.824 
Adjusted R2 0.421 0.406 0.516 0.416 0.776 0.774 
Instrument  1  2  3 
Instrument test  9.59***  11.4***  28.1*** 
Wu-Hausmann test  0.036  1.865  0.24 
Instrumental variables used to estimate ‘expected’ service level:   

1 Log of activity density of intersecting catchments (spatially lagged activity density)  
2 Commercial density of intersecting catchments (spatially lagged commercial density  
3 Count of buses within transfer zone of stop   

Table 7 
Model for transit ridership by mode in Boston including ordinary (OLS) and instrumented models (2SLS) (Significance levels: *: p < 0.1, **: p < 0.05, *** p < 0.01).  

Mode Bus LRT Metro 

Method OLS 2SLS OLS 2SLS OLS 2SLS 

Sample size 2404 62 49  
Standardized coefficient (significance level) 

Job density       
ln(job density)       
Pop density   0.154** 0.155*** 0.107 0.082 
ln(pop density) 0.121***      
Commercial density 0.029 0.029 0.219***  0.115  
Jobs-housing balance 0.019 0.032 − 0.146*    
Land use diversity  − 0.036  0.091**   
Pedestrian connectivity 0.041** 0.033 0.167*** 0.159**   
Bicycle connectivity       
Destination score       
Dist. to CBD       
Prop. employed 0.120  − 0.131***    
Mean hh size   − 0.106**    
Prop. foreign born 0.025 0.074***     
Prop. tertiary educated − 0.091***    0.243** 0.199** 
LOS   0.591*** 0.681*** 0.458*** 0.561*** 
ln(LOS) 0.312*** 0.592***     
N bus (overlapping) − 0.127***  0.083 0.136** 0.206* 0.145 
N rapid transit (overlapping) 0.058**      
N commuter rail (overlapping) 0.063*** 0.054***   0.274** 0.281** 
Intercept (p) <0.001*** > − 0.001 <0.001*** > − 0.001 <0.001*** 0.146** 
Residual standard error 1.376 0.963 0.446 0.342 0.484 0.598 

(continued on next page) 
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Table 7 (continued ) 

Mode Bus LRT Metro 

Method OLS 2SLS OLS 2SLS OLS 2SLS 

df 2392 2396 54 56 42 43 
R2 0.175 0.075 0.916 0.887 0.607 0.598 
Adjusted R2 0.171 0.072 0.905 0.877 0.551 0.518 
Instrument  4  5  5 
Instrument test  277.4***  29.3***  15.5*** 
Wu-Hausmann Test  22.55***  <0.001  1.05 

Instrumental variables used to estimate ‘expected’ service level: 
1. Activity density of 200 m ring outside catchment (spatially lagged activity density) 
2. Pedestrian connectivity of intersecting catchments (spatially lagged pedestrian connectivity)  

Table 8 
Model for transit ridership by mode in Melbourne including ordinary (OLS) and instrumented models (2SLS) (Significance levels: *: p < 0.1, **: p < 0.05, *** p < 0.01).  

Mode Bus Tram Train 

Method OLS 2SLS OLS 2SLS OLS 2SLS 

Sample size 2242 872 107  
Standardized coefficient (significance level) 

ln(job density) 0.097**      
Pop density  0.061** 0.058*    
Commercial density 0.043**  0.271*** 0.193*** 0.093 0.102 
Jobs-housing balance − 0.068*** − 0.046** − 0.065*** − 0.047** − 0.114** − 0.093 
Land use diversity 0.045** 0.109***   0.090 0.097 
Pedestrian connectivity − 0.021   0.077**  − 0.092 
Bicycle connectivity   0.085*** 0.081*** − 0.107* − 0.081 
Destination score 0.126***  0.108*** 0.115*** 0.121** 0.122** 
Dist. to CBD 0.048**  − 0.127***  0.078  
Prop. employed − 0.027 − 0.080*** 0.028 0.063** 0.099*  
Mean hh size 0.046*** 0.029*    − 0.098 
Prop. foreign born 0.084***  − 0.083**  0.191**  
Prop. tertiary educated 0.105*** 0.130*** − 0.056** − 0.040  − 0.115* 
LOS   0.576*** 0.768***   
ln(LOS) 0.617*** 0.901***   0.643*** 0.859*** 
N bus (overlapping) − 0.067*** − 0.035* 0.042** 0.054** 0.100** 0.081* 
N tram (overlapping) 0.022 0.051***   0.100* 0.083 
N metro (overlapping) 0.127***  0.030 0.027   
N commuter rail (overlapping)       
Intercept (p) <0.001*** − 0.008 <0.001*** 0.006*** <0.001 > − 0.001 
Residual standard error 1.009 0.731 0.606 0.581 0.415 0.445 
df 2226 2231 859 861 95 95 
R2 0.563 0.467 0.680 0.655 0.841 0.823 
Adjusted R2 0.560 0.464 0.676 0.650 0.823 0.802 
Instrument  6  6  4 
Instrument test  37.5***  90.52***  42.6*** 
Wu-Hausmann Test  4.18**  5.18**  2.69 

Instrumental variables used to estimate ‘expected’ service level: 
4. Activity density of 200 m ring outside catchment (spatially lagged activity density) 
6. Log of activity density of 200 m ring outside catchment (spatially lagged activity density) 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jtrangeo.2021.103136. 
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