w %

TTuck Routing for Parcel
Delivery

Solving a Multi-depot Pickup and Delivery Problem
with Occasional Drivers using ALNS

TIL-5060 Master Thesis
Shual Wang

-

of Technology

%
TUDelft

Truck Routing for Parcel
Delivery

Solving a Multi-depot Pickup and Delivery
Problem with Occasional Drivers using ALNS

by

Shual Wang

Master of Science

in Transport, Infrastructure and Logistics

at Delft University of Technology

Student number: 5714532

Project duration: March, 2024 - August, 2024
Thesis committee: Prof.dr.ir. L.A. (L6ri) Tavasszy, TU Delft, Chair
Dr. S. (Stefano) Fazi, TU Delft, Supervisor

Dr. A. (Alessandro) Bombelli, TU Delft, Supervisor

]
TUDelft

Preface

In the field of logistics and supply chain management, optimizing delivery routes and scheduling has
become increasingly crucial. This research tackles a significant challenge in this domain: optimizing
delivery routes by integrating multiple depots, occasional drivers, and multiple depot visits. These
features represent the complex realities faced by many companies in their logistics operations today.
As the complexity and scale of delivery operations continue to grow, there is a pressing need for more
sophisticated models that can accommodate these real-world variables.

The motivation for this study stems from a noticeable gap in existing research, which often focuses on
simplified models that do not account for the complexities of modern logistics operations. This research
aims to address this gap by developing a comprehensive mathematical model that includes multiple
depots and occasional drivers and applies an Adaptive Large Neighborhood Search (ALNS) algorithm
to effectively minimize routing costs.

Our approach combines advanced heuristic methods and algorithmic strategies to address routing
problems efficiently. The insights gained from this research are of significant importance both to aca-
demic research and practical applications in the logistics industry. By providing a robust framework
for optimizing delivery routes, this study contributes to the broader field of logistics and supply chain
management and offers valuable tools for practitioners aiming to enhance operational efficiency.

This thesis has been completed with the support of my committee. | would first like to thank Dr. S.
Fazi for his invaluable insights into the research topic selection and various aspects of the thesis. |
am also grateful to Dr. A. Bombelli for his assistance in building the mathematical model and data
visualization. The productive and pleasant meetings with both mentors have been a source of new
ideas and suggestions. | also wish to thank my chair, Prof.dr.ir. L.A. Tavasszy, for helping me secure an
internship in the logistics industry before starting my thesis. This internship provided me with a deeper
understanding of the challenges faced by the logistics industry and improved my problem-solving skills
from various perspectives. Professor Lori’s suggestions on my model, algorithm, report writing, and
presentation were immensely helpful throughout the different stages of my thesis.

Additionally, |1 want to express my gratitude to all my friends in the Netherlands. The two wonderful
years spent with you have flown by, and | appreciate all the support you provided in my personal and
academic life. Most importantly, | want to thank my family for their comprehensive support, which
allowed me the opportunity to study at Delft University of Technology. My family are my strongest
support, always behind me silently. | love you all.

This research has been a rewarding experience both intellectually and personally. It has deepened
my understanding of complex logistics problems and provided me with valuable skills and insights. |
am grateful for the opportunity to contribute to this field and look forward to continuing to explore and
develop these ideas in future research.

Shuai Wang
Delft, August 2024

Executive Summary

Introduction In recent years, the exponential growth of e-commerce, accelerated by the Covid-19
pandemic, has significantly increased urban parcel deliveries, creating major logistical challenges for
last-mile delivery (LMD) in cities, particularly in densely populated areas. For instance, Amsterdam
is expected to handle over 100,000 parcels daily by 2030, putting immense pressure on the logistics
system, exacerbating traffic congestion, environmental pollution, and driving up logistics costs, with
last-mile delivery accounting for 75% of these costs. Traditional LMD strategies often involve increas-
ing vehicle numbers or capacity, which may reduce efficiency and raise costs. To address these is-
sues, crowdshipping (CS) has emerged as a viable alternative, leveraging occasional drivers (ODs) to
complete deliveries on detours at lower costs. This study proposes a new variant of the Pickup and De-
livery Problem with Time Windows (PDPTW), integrating multiple depots, regular drivers (RDs), ODs,
and intermediate centers (stores) to optimize the total vehicle routing cost. The model, referred to as
the Multi-trip Crowd-shipping Split Pickup and Delivery Problem with Time Window and Multi-depots
(MC-PDPTW-MD), aims to incorporate these features into a traditional PDPTW model, focusing on
minimizing routing costs for both RDs and ODs. The key research question is how to optimize the total
vehicle routing cost in the MC-PDPTW-MD problem.

Literature Study The literature review provides insights into the development of models and algo-
rithms related to the Pickup and Delivery Problem with Time Window (PDPTW), Crowd-shipping, and
the Open Vehicle Routing Problem (OVRP). Notable algorithmic approaches include Adaptive Large
Neighborhood Search (ALNS), Variable Neighborhood Search (VNS), Tabu Search (TS), Stochas-
tic and Genetic algorithms, Simulated Annealing, Greedy Randomized Adaptive Search Procedures
(GRASP) for Vehicle Routing, Integer Linear Programming (ILP), and other specialized algorithms.
Upon comparison, it has been found that the ALNS algorithm is a good choice for solving this prob-
lem. The research methods section delves into the steps of the ALNS algorithm and the criteria used
in each step when solving different problems. These integrated studies provide significant reference
value for solving the current problem.

Methodology In the methodology chapter, the specific content of the mathematical model and the
ALNS algorithm is presented. We first constructed a constraint programming model, which is divided
into four main parts based on regular drivers, occasional drivers, and multiple visits to depots. The
first part contains the basic model constraints of the pickup and delivery problem, while the second,
third, and fourth parts respectively address the constraints for regular drivers, occasional drivers, and
the feature of multiple visits to depots by occasional drivers. In the algorithm section, ALNS is applied
to solve the proposed problem. The initial solution of the algorithm uses the Basic Greedy Algorithm,
which can obtain a reasonable initial solution. In the request removal part, random removal operators
and worst removal operators are introduced. The random removal operator has stronger randomness
in destroying the initial solution, while the worst removal operator preferentially removes the costliest
requests. The combination of these two removal operators can avoid the solution falling into a local
optimum to a certain extent. In the inserting requests part, Basic Greedy Insertion and Regret-2 Inser-
tion are introduced. When inserting the removed requests, the Basic Greedy Insertion explores each
request waiting to be restored, and the point and position with the lowest insertion cost are given prior-
ity. Regret-2 addresses the short-sightedness of Basic Greedy Insertion by calculating the sum of the
costs of the top two lowest-cost positions for inserting a request. The request with the highest cost sum
is selected first, which helps jump out of the local optimum. Next, we use a roulette wheel method to
assign weights to each operator, where better-performing operators have greater weights and higher
probabilities of being selected. Acceptance and stopping criteria use simulated annealing acceptance
criteria, which also helps fully explore the solution space and avoid falling into local optima.

11

11

Computational Experiments The Computational Experiments section uses Cplex and the ALNS al-
gorithm to solve the mathematical model, verifying the effectiveness of both the model and the algorithm.
The parameter tuning section finds more universal parameter settings for the algorithm, enhancing its
application range. The sensitivity analysis part explores whether the introduction of OD and subsidies
for OD can lead to cost savings. In the 20 experimental instances, the results show that introducing one
OD, when the OD cost is 90% of the RD cost, the total routing cost can be reduced by 5.18%. When
the OD cost is 80% of the RD cost, the total routing cost can be reduced by 15.21%. When using one
OD and fixing the OD cost at 80% of the RD cost, the introduction of 60% capacity OD can save 7.86%
of the total cost, 70% capacity OD can save 9.97% of the total cost, and 80% capacity OD can save
15.21% of the total cost. We conclude that the introduction of OD can reduce routing costs to varying
degrees. The number of ODs, cost, and capacity directly affect the proportion of cost savings. At the
same time, cost savings require companies to choose the appropriate number of ODs, the subsidy
price for each OD, and the capacity of the ODs based on market research to balance the willingness
of ODs, the quality of service, and cost savings.

Case Study Finally, we conducted a case study based on the Dutch e-commerce company Ochama,
scaling down the instance to 150 requests and similarly reducing vehicle capacity according to actual
vehicle capacity. We mapped the warehouses and intermediate centers to two-dimensional coordi-
nates based on actual physical distances and randomly generated requests within the service area.
Considering that vehicles need to run on highways and urban roads, we assumed an average vehicle
speed of 60km/h, linking unit path distance to unit path distance cost. Out of 10 instances, 9 were valid.
The third instance failed because the ALNS algorithm did not find a solution better than the initial so-
lution within the set 10,000 iterations. The remaining 9 valid instances indicate that the introduction of
different OD vehicle types can save total routing costs to varying degrees. Compared to the research by
(Hou and Wang, 2021), which introduced OD and reduced the total routing cost by 7.3%, our approach
reduced the total routing cost by 11.37% and 6.85% for small and medium-sized vehicles, respectively,
when the cost-to-capacity ratio was equal. For small vehicles, with a cost ratio of 50%, the total routing
cost could still be reduced by 5.11%.

contents

Preface i

Summary i
1 Introduction

2 Literature study 4

21 RelatedModels e 4

2.1.1 Crowd-shipping Problem 4

2.1.2 Open Vehicle Routing Problem 5

2.1.3 Pickup and Delivery Problem with Time Window 6

2.2 Related Algorithms e 6

221 Crowd-shipping Problem 7

2.2.2 Open Vehicle Routing Problem 7

2.2.3 Pickup and Delivery Problem with Time Windows 8

2.3 Conclusion of Literature Review 8

Problem Definition 1"

4 Methodology 13

4.1 Mathematical Model 13

4.2 ALNS Algorithm e e 18

421 Initial Solution 21

422 RequestRemoval 21

4.2.3 InsertingRequests 21

4.2.4 Choosing a Removal and an Insertion Heuristic 25

4.2.5 Adaptive Weight Adjustmento 25

4.2.6 Acceptance and Stopping Criteriao oL 26

5 Computational Experiments 27

5.1 Instance Generation e 27

5.2 ExamplelInstance 27

53 Parameter Tuning e 29

5.4 Computational Experiments 30

5.5 Sensitivity Analysis e 31

5.5.1 Instances for Sensitivity Analysis o L 31

5.5.2 Sensitivity Analysis - Numberof OD 32

5.5.3 Sensitivity Analysis - OD CapacityandCost 33

6 Case Study 36

6.1 Background e e 36

6.2 Instancesfor Case Study 36

6.3 Comparative Experiment L 37

7 Discussion 41

8 Conclusions and Recommendations 43

8.1 Conclusion 43

8.2 Recommendations 44

Reference 45

A Parameters Tuning Result 51

Contents v
B Sensitivity Analysis Results - Capacity and Cost 55
C Scientific Paper 58

1.1
3.1

5.1
5.2
5.3

6.1
6.2
6.3
6.4

List of Figures

Research Framework 3
An illustrative example of multi-trip crowd-shipping split pickup and delivery problem . . 12
ALNS Resultoftestinstance2 1 10 29
Result map of testinstance 2.1 10 29
Sensitivity Analysis Results 35
Case Study Map-NL,BEandDE 37
Comparative View of Different CargoVans 38
Results for adding Small-sized OD 40
Results for adding Middle-sized OD 40

vi

2.1

4.1
4.2
4.3

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3

A1
A2
A3
A4
A5
A6

B.1
B.2
B.3
B.4
B.5
B.6

List of Tables

Summary of Features and Algorithms forModels 10
Set up of Sets, Parametersand Variables 14
Summary of ALNS Algorithm Criteria 20
Score Adjustment Parameters L 26
Testinstance 2.1 10 e 28
Tuning Instances Information 30
Parameter Settings 30
Instances Parameter Tuning Results - Destruction Factorx 31
Instance Performance Comparison - ALNS vs BranchandBound 32
Sensitivity Analysis Instance Information oo oo 0oL 32
Sensitivity Analysis - Numberof OD 33
Sensitivity Analysis - Capacity and Cost-40% Capacity 34
Cost Sensitivity Analysis 34
Case Study-RDonly e 38
Case Study-45% RD Capacity 39
Case Study -60% RD Capacity 39
Instances Parameter Tuning Results - Random Parameterp. 51
Instances Parameter Tuning Results - Reaction Factor» 52
Instances Parameter Tuning Results - Score Adjustment Factoro; 52
Instances Parameter Tuning Results - Score Adjustment Factoro, 53
Instances Parameter Tuning Results - Initial Temperature Tgigrt . . - - 53
Instances Parameter Tuning Results - CoolingRatec 54
Sensitivity Analysis - Capacity and Cost - 50% Capacity 55
Sensitivity Analysis - Capacity and Cost - 60% Capacity 55
Sensitivity Analysis - Capacity and Cost - 70% Capacity 56
Sensitivity Analysis - Capacity and Cost-80% Capacity 56
Sensitivity Analysis - Capacity and Cost - 90% Capacity 56
Sensitivity Analysis - Capacity and Cost - 100% Capacity 57

vii

Introduction

In recent years, due to the exponential growth of e-commerce, the number of urban parcel deliveries
has also rapidly increased. This phenomenon has been further accelerated by the Covid-19 pandemic,
bringing significant logistical challenges to the last-mile delivery in cities, especially in densely populated
urban areas (Bhatti et al., 2020; Gao et al., 2020). Taking Amsterdam as an example, it is anticipated
that by the year 2030, the city will see an influx of over 100,000 parcels each day (Guo et al., 2019).
To complete the delivery of these parcels, it will not only putimmense pressure on the logistics system,
thereby exacerbating traffic congestion, environmental pollution, and disturbing the balance of urban
life. For logistics companies, the increase in logistics costs will be the main issue faced, as studies have
shown that the last-mile delivery costs account for 75% of the total logistics costs (Devari et al., 2017).
To solve the last-mile delivery (LMD) problem, traditional parcel delivery has been modeled as the
Vehicle Routing Problem (VRP) or the Pickup and Delivery Problem (PDP). For detailed definitions of
the VRP and PDP, please refer to (Toth and Vigo, 2014; Parragh et al., 2008). Traditional mathematical
models, when faced with the ever-increasing transportation demand, the most direct method is to use
more vehicles or vehicles with larger capacities, otherwise, it will lead to reduced delivery efficiency,
affecting consumer experience. These two solutions cannot alleviate the problems mentioned above
and will cause transportation costs to increase significantly.

To address these challenges, crowdshipping (CS) has been proposed as a viable alternative to tradi-
tional LMD strategies (Allahviranloo and Baghestani, 2019; Lee et al., 2016), i.e., by utilizing ordinary
people who have already planned routes, namely occasional drivers (OD), to complete pickups and
deliveries on a detour and receive a small compensation. The application of crowdshipping in urban
parcel delivery is not uncommon, with Amazon launching its first crowdshipping service in 2013, ask-
ing in-store customers to detour home after shopping at the grocery store to deliver packages to online
shoppers living nearby. Subsequently, the service expanded to include ordinary drivers, who can pick
up goods from retail stores, distribution centers, or other designated locations. A new program named
Amazon Flex was launched in 2015 and is currently operating in over 50 cities in the United States
(Huang and Ardiansyah, 2019). The development of crowdshipping logistics benefits from its own ad-
vantages: 1. Compared to regular drivers (RDs), ODs obtain less compensation for making detours
to deliver parcels, meaning lower transportation costs (Archetti et al., 2016). 2. Using crowdshipping
during peak times to reduce vehicle demand, thereby alleviating traffic congestion and emissions (Ar-
slan et al., 2019; Ren et al., 2019). 3. Utilizing ODs to assist RDs in delivery can enhance delivery
efficiency (Dahle et al., 2019). 4. By participating in crowdshipping delivery, ODs can earn money from
underutilized assets.

Models combining crowdshipping with traditional VRP and PDP have been continuously proposed,
such as the integration of CS with VRP to produce the Open VRP model (Torres et al., 2022), and the
combination of CS with PDP to generate the PDP with occasional drivers model (Dahle et al., 2019).
Most Open VRP models do not take the pickup process into account. Based on real-life scenarios,
consumers may choose to return products in some cases, which is referred to as reverse logistics.
Therefore, many logistics companies’ fleets, while delivering, also collect parcels as much as possible

according to the vehicle capacity and then deliver them to a designated destination. The PDP with
occasional drivers model considers this process. However, the destination in the PDP with occasional
drivers model is generally not a depot. In reverse logistics, the delivery destination is usually set as
a depot. Combining CS examples has also been studied, namely the Vehicle Routing Problem with
Simultaneous Pickup and Delivery and Occasional Drivers (VRPSPDOD) (Vincent et al., 2023), consid-
ering each set of pickup and delivery requests can be fulfilled by a fleet of ODs or a pool of capacitated
ODs, thus efficiently utilizing ODs to assist RDs in completing all delivery tasks. It is worth noting that
situations may arise where the recipient is not at home for door-to-door delivery. In such cases, studies
have used nearby grocery stores, train stations, and post offices as alternative addresses, which can
be referred to as intermediate centers, offering a significantly lower cost solution compared to return-
ing parcels to the depot (Song et al., 2009). This scheme is also applied in reverse logistics. These
intermediate centers can receive a certain number of parcels from nearby areas, possibly exceeding
the capacity of RDs or ODs. In this case, the consideration of split pickup and delivery (Nowak, 2005)
is necessary, meaning each intermediate center can be served by multiple RDs and ODs. Finally,
considering multiple depots is more in line with the reality of logistics distribution than a single depot.
According to current research, no studies have combined all the aforementioned features.

Therefore, this research will propose a new variant of the PDP, which considers all the features men-
tioned above and can be seen as a combination of CS, PDP, and Open VRP. The new variant involves
several main features: multi-depots, regular drivers, occasional drivers (crowd shippers), customers,
and intermediate centers (stores). In the network, regular drivers (RD) start from the corresponding
depot, serving their associated customers and intermediate centers, and appropriately pick up goods
from intermediate centers when there is spare capacity. It is important to note that the depot and de-
mand points must strictly correspond. Occasional drivers (OD) start from their own origin and reach
the planned destination, which is not a depot, and the origin and destination can be the same. ODs
can choose not only to go directly to a depot but also to pick up goods at an intermediate center, and
ODs can perform multiple pickups and deliveries and visit depots multiple times. Each customer can
only be served by one RD or one OD, while an intermediate center can be served by one or more
RDs and ODs. Each demand point is bound to a depot, meaning that parcels are already stored at
the specified depot, and parcels from the intermediate center need to be delivered to the specified de-
pot. Finally, vehicle capacity and time window constraints are considered. We refer to this problem as:
The Multi-trip Crowd-shipping Split Pickup and Delivery Problem with Time Window and Multi-depots
(MC-PDPTW-MD).

The key to this research is to incorporate the new features mentioned above into the traditional PDPTW
model, while the introduction of ODs will incur certain operational costs. In this study, we will simplify
the objective function, considering only the costs caused by vehicle routing. Therefore, the objective
function is to minimize the total routing costs of RDs and ODs. The main research question of this
paper is:

How to optimize the total vehicle routing cost of vehicles of MC-PDPTW-MD Problem?

The structure of the remaining parts are as follows:

Chapter 2 is the literature review, which is divided into 2 main parts: related models and algorithms.
Each sub-part is divided into three parts based on relevance to this study, exploring the origins and
developments of the Crowd-shipping, Open VRP, and PDP problems, respectively. Chapter 3 provides
a detailed definition and description of the research problem. Chapter 4 is divided into two parts, solving
the proposed research problem using a mathematical model and the ALNS algorithm, respectively.
Chapter 5 visualizes a small-scale instance, verifies the consistency of the mathematical model and the
algorithm, performs parameter tuning on the algorithm, compares the performance of the mathematical
model and the algorithm, and finally conducts a sensitivity analysis. Chapter 6 conducts a case study
using the Ochama company as an example. Chapter 7 discusses the results of each part of this study.
Chapter 8 is conclusions and recommendations. The conclusion part provides an overall summary of
the research. The recommendations part offers some ideas for improving this study and directions for
future research. Figure 1.1 provides the research framework of this thesis.

Conceptual
Model

+ Related Work

Pseudocode Analysis Case Study
* Related Work « Comparison « Comparative
Experiment

ALNS
Algorithm

Algorithm

Verification

Conclusion &
Discussion

Mathematical Model
Model Verification

+ Data input + Python &
« Sets Cplex

+ Parameters + Simple

+ Variables testing

+ Objective instances

functon {7

+ Constraints

+ Initial solution

+ Destroy and
repair
operators

+ Acceptance
Criteria

+ Adaptive
weight
Adjustment

+ Parameter
tuning

+ Simple
testing
instances

+ Testing
Instances
with 30, 50
nodes

+ Sensitivity
Analysis

Figure 1.1: Research Framework

Pros and Cons
Future work

Literature study

Based on the introduction, the research theme of this research is the combination of multiple aspects
of study, including the Crowd-shipping Problem, the Open Vehicle Routing Problem (Open VRP), and
the Pickup and Delivery Problem with Time Window (PDPTW). The mathematical models involved in
these related studies and the algorithms used to solve these problems will be discussed in detail in this
section.

2.1. Related Models

This part will discuss the origin and development of three related problems, discuss in depth the char-
acteristics of the initial model, and different features that are continuously added to the model during
the development process to make the model suitable for specific research problems. These features in-
clude: Number of depots, RD quantity limit, delivery strategy (single/multiple/split), intermediate center,
reverse logistics, etc.

2.1.1. Crowd-shipping Problem

Most research in the crowdsourcing field has focused on virtual tasks that can be completed remotely
via the Internet, such as text editing, translation, and debugging (see Doan et al. (2011)). However,
with the rapid development of e-commerce, crowdshipping as a delivery method in the sharing econ-
omy has garnered significant attention. Subsequently, crowdsourced delivery platforms have been
offered as tools for implementing crowdsourced distribution, where occasional drivers can assist in
the delivery of parcels or goods while earning compensation. In 2015, over 50 startups were cate-
gorized as crowdsourced delivery service providers on global IT platforms (websites and/or mobile
applications), engaging in local delivery, freight, and freight brokerage activities (Carbone et al., 2017).
In 2018, Walmart tested a new last-mile grocery crowdshipping platform called Spark Delivery, and
Amazon introduced the Amazon Flex crowdsourcing service in 79 U.S. cities. These crowdshipping
platforms continue to attract attention in academia and industry (Huang and Ardiansyah, 2019). De-
livery platforms can generally be divided into two categories: e-retailers and courier companies. The
aforementioned Walmart and Amazon belong to e-retailers, while courier companies include DHL My-
Ways, UberFreight, and PickThisUp, among others. This study will focus on courier companies, as
the delivery platforms of Walmart and Amazon are already quite mature, and in the courier parcel field,
due to the diversity of delivery forms, such as parcel lockers, drones, crowdshipping, etc., there are
still many problems waiting to be researched. The operational logic of crowdsourced delivery platforms
is controlled by algorithms written based on mathematical models, which include matching, schedul-
ing, and compensation mechanisms. These crowdsourced delivery models include static and dynamic
types; static models consider all vehicles and transportation demands are already determined, while
dynamic models evolve over time as temporary drivers may join or leave the crowdsourced delivery
platform, and demands are continuously updated over time. Dynamic problems are often solved using
methods such as simulation or a rolling horizon framework (Arslan et al., 2019). In this study, since
there is no need to make immediate adjustments based on temporary drivers and pickup and delivery

2.1. Related Models 5

demands, the problem involved in this study can be modeled as a static model.

Regarding the static crowd-shipping problem, in the initial stages of addressing this issue, researchers
focused on integrating this concept with traditional delivery models. (Archetti et al., 2016) pioneered
this integration by combining RDs with ODs, allowing ODs to perform single pickup and delivery tasks,
aiming to minimize total delivery costs including compensations for these ODs. The model introduced a
unique variant of the classical capacitated vehicle routing problem. Building on (Archetti et al., 2016)’s
research, (Macrina et al., 2017) considered that temporary drivers are not always available for delivery
tasks, and the capacity of temporary vehicles allows these drivers to complete multiple delivery tasks.
Therefore, (Macrina et al., 2017) introduced time windows into the model and explored scenarios that al-
low these drivers to make multiple and split deliveries. Results showed that allowing temporary drivers
to make multiple deliveries significantly improved solution quality and cost savings. (Kafle et al., 2017)
took intermediate centers (grocery stores) into account, but RDs only provided services between depots
and intermediate centers, with occasional drivers responsible for delivering parcels from intermediate
centers to customers. Due to the growth in the number of parcels, it cannot be guaranteed that enough
ODs will deliver parcels from intermediate centers to customers. Therefore, a hybrid delivery model is
more reliable. The research question discussed in this research combines features from the studies
of (Macrina et al., 2017) and (Kafle et al., 2017), introducing intermediate centers in addition to cus-
tomers, to address situations where customers are not at home, considering that ODs and RDs serve
these customers and intermediate centers, and that temporary drivers can complete multiple delivery
tasks. Given that the demand at intermediate centers might exceed the capacity of ODs and RDs, split
deliveries are also considered.

2.1.2. Open Vehicle Routing Problem

In 2000, (Sariklis and Powell, 2000) first introduced the variant of the VRP problem known as Open VRP,
characterized by vehicles not needing to return to the depot, or if needed, they could revisit customers in
the reverse order. A depot has a regular truck fleet with a certain number of vehicles, while companies
can subcontract all or part of the product delivery to external courier companies, i.e., rent vehicles to
complete delivery tasks. Although the cost per unit driving distance (DT) of rented vehicles is higher,
many costs such as capital, maintenance, and depreciation are not incurred (Tarantilis et al., 2004a).
Typical OVRP requires that each demand point is served by only one vehicle, and the rented vehicles
will be assigned to routes that do not require returning to the depot. The issue of vehicles returning
to the station in reverse order, often occurs in the delivery and pickup process, which is the reverse
logistics mentioned earlier. Vehicles first visit customers and deliver the goods they ordered. When
vehicles reach their last assigned customer and the vehicle is empty, they return to the warehouse
along the same route, visiting customers in the reverse order to collect goods that must be returned
to the distribution center. This is somewhat similar to the model proposed by (Archetti et al., 2016),
but (Sariklis and Powell, 2000) consider: 1. The use of a rented fleet instead of in-store customers
as occasional drivers. 2. The limitation on the number of vehicles in the regular fleet, as assuming a
sufficiently large number of regular vehicles is unrealistic. 3. Reverse logistics.

(Tarantilis and Kiranoudis, 2002) added new features to the OVRP: multi-depots. The proposed model
is based on a case where an industrial company in Greece distributes fresh meat from various ware-
houses to customers located in nearby areas. (Brandao, 2004; Fleszar et al., 2009) built on (Sariklis
and Powell, 2000) by adding vehicle operation time restrictions according to the legal driving hours of
drivers. Similarly, in reality, customers cannot receive packages at any time of the day, hence (Repous-
sis et al., 2007) added time window constraints for customers. (Fu et al., 2005) considered not only
the time window restrictions for vehicles but also the maximum operating distance limitations, and split
the OVRP problem into three types: Delivery only, Pickup Only, and Both delivery and pickup. While
previous research considered that each customer can only be served by one vehicle at a time, (Fu
et al., 2005) suggested that perhaps allowing each demand point to be visited by different vehicles mul-
tiple times could offer more vehicle route options, higher vehicle capacity utilization, and less vehicle
demand, and confirmed these speculations. Given the nature of OVRP, where drivers do not have to
return to the depot after completing delivery tasks, not only can delivery tasks be handled by third-party
logistics companies, but combining crowdshipping with OVRP might be a better idea. (Torres et al.,
2022) introduced OVRP using crowdshippers instead of third-party logistics vehicles, proving that this
combination can further reduce costs. Our research will build on (Torres et al., 2022) and combine the

2.2. Related Algorithms 6

discussed variants of OVRP, setting a certain number of RDs, and adding time window constraints for
RDs, ODs, intermediate centers, and customers.

2.1.3. Pickup and Delivery Problem with Time Window

Since the 1990s, the Pickup and Delivery Problem with Time Window (PDPTW) has made significant
progress in the field of logistics and transportation planning. VRPTW (Van Landeghem, 1988) is consid-
ered a special case of PDPTW, where all destinations are depots. Building on VRPTW and considering
simultaneous pickup and delivery, the problem was defined and modeled in 1989 as VRP with simulta-
neous delivery and pick-up points, which can be regarded as an early type of PDP problems. PDPTW
involves constructing optimal routes to satisfy transportation requests, with each route requiring pickup
at the origin and delivery at the destination under capacity, time window, and priority constraints (Du-
mas et al., 1991). Additionally, each route meets pairing constraints, as the corresponding pickup and
delivery locations must be serviced by the same vehicle. Considering issues such as increased energy
costs, driver shortages, and vehicle capacity utilization, (Nowak et al., 2008) drew on the benefits of split
delivery strategies in VRP, i.e., SDVRP, to propose Pickup and Delivery with Split Loads. SDVRP load
planning is completed before the vehicle leaves the parking lot with the same fixed capacity. PDPSL is
a more complex problem, primarily because the vehicle’s available capacity changes with each pickup
or delivery, and the vehicle ultimately does not return to the depot. Previous research only considered
single depot problems, while (Irnich, 2000) studied a multi-depot pickup and delivery problem with a
single hub and heterogeneous vehicles, setting pickups to always involve loading goods at a location
and transporting them to the hub, and deliveries defined as loading goods at the hub and transporting
them to a location. One characteristic of hub transportation networks is that many different requests
need to be transported between a location and the hub. Thus, it is generally assumed that different
requests for pickup or delivery occur at a specific location, i.e., requests with different quantities and
time windows. Differently, we want to discuss the pickup and delivery problem between depots and
intermediate centers, involving demands for pickup and delivery between multiple depots and multiple
intermediate centers. Furthermore, (Irnich, 2000) also used heterogeneous vehicles, which leads us
to think of crowdshippers.

In 2019, (Dahle et al., 2019) combined Crowdshipping with PDPTW to propose The Pickup and Delivery
Problem with Time Windows and Occasional Drivers. Unlike typical heterogeneous vehicles, crowd-
shipping drivers have individual starting locations, destinations, costs, and time matrices. The study
results showed that adding crowdshipping drivers to the traditional PDPTW model could save 10-15%
of costs. While considering Crowdshipping, (Voigt and Kuhn, 2022) introduced a new feature: Tran-
shipment Points (TP), similar to the previously mentioned intermediate centers. Drivers can pick up
goods from pickup points and transport them to these TPs, then new drivers (including regular drivers
and occasional drivers) come to pick up and deliver the parcels to the final recipients. However, we
believe that adding TPs makes the delivery process more complex. If these TPs are directly consid-
ered as intermediate centers near the recipients, when recipients are inconvenient to receive goods,
they can choose to have the goods delivered to nearby intermediate centers in advance, and then
go to pick up the goods themselves. This not only facilitates recipients in picking up goods but can
also reduce transportation costs. When considering multi-depots, the latest research (Tao et al., 2023)
discusses The Pickup and Delivery Problem with Multiple Depots and Dynamic Occasional Drivers in
Crowdshipping Delivery. This is a dynamic problem modeling where temporary drivers post their travel
planning information and time windows on the crowdshipping platform, and the platform matches based
on this information. Since the problem we are studying contains several additional features: multiple
or split deliveries, intermediate centers, etc., we believe the platform will first generate temporary driver
routes, and temporary drivers will choose the provided routes based on their personal circumstances,
therefore, we model the problem we are studying as a static problem.

2.2. Related Algorithms

This section will further discuss the algorithms corresponding to the mathematical models discussed
above, including both exact algorithms and metaheuristic algorithms. Common exact algorithms in-
clude Mixed-Integer Linear Programming (MILP) and Branch and Bound (B&B), etc. Common meta-
heuristic algorithms include Tabu Search, Genetic Algorithms, Simulated Annealing, Ant Colony Opti-
mization, and Variable Neighborhood Search, among others.

2.2. Related Algorithms 7

2.2.1. Crowd-shipping Problem

In terms of algorithms, (Archetti et al., 2016) proposed a multi-start heuristic approach by combining
variable neighborhood search (VNS) and tabu search. It used a greedy insertion algorithm to construct
a route with only regular drivers, and inserted customers in non-decreasing order of distance from the
depot. In the active route, when the capacity limit is exceeded, a new route is restarted, and the cus-
tomers in the initial route are removed, exchanged, etc. using tabu search and variable neighborhood
search mechanisms, and delivered to the temporary driver. Comparing the exact solution of this algo-
rithm with CPLEX for 50 instances of temporary drivers, CPLEX cannot give results in an hour while
the heuristic method can solve it in seconds. (Kafle et al., 2017) chose to use the simulated annealing
algorithm to solve the proposed model. The reason is that the simulated annealing algorithm is more
suitable for large sample instances than the branch and bound algorithm, and is faster than other heuris-
tic algorithms such as genetic algorithms. Provides a pretty good solution to large routing problems.
(Gdowska et al., 2018)using meta-heuristics or MIP, all internally employing Tabu Search algorithms.
However, research on crowd-shipping problems tends towards the use of more complex and hybrid
models, with different studies proposing their unique approaches. To better solve the dynamic crowd-
shipping delivery problem proposed by (Dayarian and Savelsbergh, 2020), (Pugliese et al., 2022) de-
veloped a Variable Neighborhood Search (VNS) method combined with machine learning techniques,
focusing on exploring promising areas in the search space, using reinforcement learning to guide local
search actions during the intensification phase. To address the same problem, (Di Puglia Pugliese
et al., 2022) designed a Greedy Randomized Adaptive Search Procedure (GRASP) and proposed a
hybrid approach where VNS is used as a local search. VNS has been increasingly applied in recent
years to solve more complex routing problems.

2.2.2. Open Vehicle Routing Problem

(Sariklis and Powell, 2000) proposed a heuristic method based on a minimum spanning tree with a
penalty process to solve Open VRP. The algorithm is divided into three stages. The first stage gener-
ates the initial solution, and the second stage uses penalties to modify the minimum generation. Tree
Solution, The third stage converts infeasible solutions into feasible,solutions and compares them with
the customer exchange heuristic,algorithm. This algorithm was ultimately found to outperform the client
exchange heuristic, especially for large and/or loosely constrained problems, but often requires longer
computation time. Subsequently, in 2004, (Brandao, 2004) attempted to apply algorithms used for solv-
ing VRP to solve Open VRP. Building on (Sariklis and Powell, 2000), they considered the maximum
route length and introduced the Tabu Search algorithm. Continuing the research of (Sariklis and Powell,
2000), (Fu et al., 2005) added vehicle capacity constraints. (Tarantilis et al., 2005) identified that the
practical problem of goods distribution is Open VRP and proposed a simple yet effective variant of the
Threshold Accepting algorithm known as List-Based Threshold Accepting (LBTA), which uses a series
of thresholds to intelligently guide the local search and reflects the method’s memory. Additionally, they
also introduced the Adaptive memory-based tabu search (BR) (Shaw, 1998; Tarantilis et al., 2004a),
and Backtracking adaptive threshold accepting (BATA) (Tarantilis et al., 2004b) algorithms for solving
Open VRP.

In 2007, (Pisinger and Ropke, 2007) mentioned that the ALNS framework could be used to solve
five variants of the vehicle routing problem, including Open VRP, and transformed these variants into
PDPTW. The relevance of the PDP problem will be discussed in the following section. The ALNS
framework is an extension of the neighborhood search model proposed by (Shaw, 1998), where its
algorithm modifies a large number of variables in each iteration. In the ALNS algorithm, the current
partial solution of each iteration is destroyed and repaired using heuristic methods. (Fleszar et al., 2009)
used the Variable Neighborhood Search (VNS) algorithm to solve Open VRP, differing from ALNS in
that it explores the solution space through systematic changes in predefined neighborhood structures.
(Fleszar et al., 2009) suggested using a multi-phase oscillated VNS to address OpenVRP, where, unlike
ALNS, VNS does not generate new solutions through destruction and repair steps but rather gradually
explores the solution space by changing the size of neighborhoods. Following the algorithm of (Fleszar
et al., 2009), (Sevkli and Gler, 2017) modeled a real-world newspaper delivery problem as Open VRP
and proposed a new multi-phase oscillated VNS algorithm using the Kmeans clustering algorithm to
construct an initial solution to solve the problem.

Apart from the ALNS algorithm, researchers have proposed a variety of algorithms to solve Open VRP.

2.3. Conclusion of Literature Review 8

For instance, in 2010, (Cao and Lai, 2010) introduced the concept of OVRP with Fuzzy Demands
(OVRPFD), utilizing a model based on fuzzy credibility theory and an enhanced differential evolution al-
gorithm to tackle the ambiguity in demands. In the same year, (Salari et al., 2010) proposed a heuristic
improvement procedure based on Integer Linear Programming (ILP) technology for OVRP, achieving
new optimal solutions in standard benchmark instances. In 2011, (MirHassani and Abolghasemi, 2011)
applied Particle Swarm Optimization (PSO) algorithms to OVRP, further extending its applicability. By
2014, (Cao et al., 2014) focused on OVRP with demand uncertainty and its robust strategies, expanding
the concept of OVRP, especially in terms of effective route planning under uncertain demands. In 2016,
(Vincent et al., 2016) proposed research combining OVRP with cross-docking technology, aimed at min-
imizing overall costs in a cross-docking environment while ensuring timely service to all customers. In
2019, (Tavakkoli-Moghaddam et al., 2019) presented various types of VRP, emphasizing the impor-
tance of good management in cost and satisfaction. By 2023, (Ahmed and Yousefikhoshbakht, 2023)
researched OVRP with time-windowed heterogeneous fixed fleets, showcasing the applicability of the
OVRP model in more complex environments. However, ALNS proves to be more effective in deal-
ing with particularly complex optimization problems, especially when the solution space is very large
and there is a significant difference in the quality of solutions. This is also the reason why the ALNS
algorithm is becoming increasingly popular.

2.2.3. Pickup and Delivery Problem with Time Windows

In 1991, (Dumas et al., 1991) proposed an exact algorithm for PDP with time windows. This algo-
rithm used a column generation method to solve problems with path constraints and was capable of
handling multiple sites and different types of vehicles. This study laid the foundation for subsequent
solution methods for PDP problems. Entering the 21st century, PDP research began to employ more
complex metaheuristic methods. For example, Nanry and Barnes proposed a reactive tabu search
method in 2000 (Nanry and Barnes, 2000), which effectively solved the PDP problem using different
moving neighborhoods. Similarly, Li and Lim in 2001 (Li and Lim, 2001) proposed a metaheuristic algo-
rithm combining simulated annealing and tabu search, particularly suitable for large-scale multi-vehicle
PDP problems.(Bent and Van Hentenryck, 2006) proposed a two-stage hybrid algorithm, which used
simulated annealing in the first stage to reduce the number of routes and large neighborhood search
in the second stage to lower the total travel cost.

In 2006, (Ropke and Pisinger, 2006a) introduced an adaptive large neighborhood search heuristic
method. This method, utilizing the competitive use of sub-heuristics, effectively improved solutions
for the Pickup and Delivery Problem (PDP). The standard structure of ALNS provided by (Ropke and
Pisinger, 2006a) comprises at least four important parts. These parts are: a the adaptive mechanism
for selecting the deployed operators, b the criterion to accept a newly obtained solution, ¢ the stopping
criterion of the algorithm, and d the design of destroy and repair operators. (Ropke and Pisinger,
2006a) employed strategies such as Random removal, Worst removal, and Shaw removal during the
destroy operator phase, and used Greedy insertion and (k-)Regret insertion during the repair operator
phase. For the Acceptance Criteria stage, a simulated annealing algorithm was used, and finally, an
appropriate Adaptive Weight Adjustments strategy was proposed. As research on PDP deepened,
algorithms began to consider more complex scenarios. For instance, (Ghilas et al., 2016) proposed an
adaptive large neighborhood search heuristic algorithm for solving PDP with scheduled lines, utilizing
the ALNS algorithm for solution finding, with initial solutions generated using a greedy insertion heuristic
algorithm. Various methods were considered for the operator phase, including random removal, route
removal, Late-arrival removal, and others. Similarly, the operator insertion stage considered multiple
methods such as Greedy insertion, second-best insertion, and Greedy insertion with a noise function.
The acceptance stage algorithm adopted the simulated annealing algorithm, similar to (Ropke and
Pisinger, 2006a). (Sampaio et al., 2020) applied the ALNS methodology proposed by (Ropke and
Pisinger, 2006a) to solve a multi-stop pickup and delivery problem with time windows and transfers.

2.3. Conclusion of Literature Review

The literature review section provides a detailed depiction of the evolution and development of models
and algorithms used to solve the Crowd-shipping Problem, Open VRP, and PDPTW. The purpose is to
filter the features contained in the model we intend to study, such as time windows, occasional drivers,
etc., through the discussion and analysis of these models. By combining these features, a new problem

2.3. Conclusion of Literature Review 9

(Multi-trip Crowd-shipping Split Pickup and Delivery Problem with Time Window and Multi-depots) is
proposed. There is no consistent research on the newly proposed problem, which constitutes what is
known as a research gap. At the same time, by analyzing the algorithms used in different models and
the trend of algorithm development, a suitable algorithm will be selected and discussed. This study will
choose ALNS as the preferred algorithm, with the specifics of the ALNS algorithm discussed in chapter
4. Table 2.1 summarizes the features involved in the models reviewed in the literature, with the last
row indicating the features included in our research.

10

2.3. Conclusion of Literature Review

Refereces Type of Problem Features Algorithm
Number of Occasional Single, Multi, or Depot Time Intermediate Delivery only or
Regular Drivers Drivers Split Delivery Window Centers Pickup and Delivery
(Archetti et al., 2016) VRP & Crowd-shipping Unlimited Yes Single 1 No No Delivery only Multi-start heuristic
(Macrina et al., 2017) VRP & Crowd-shipping Limited Yes Single, Multi, and Split 1 Yes No Delivery only Branch and Bound
(Kafle et al., 2017) VRP & Crowd-shipping Limited Yes Single 1 Yes Yes Delivery only Tabu Search
(Sariklis and Powell, 2000) Open VRP Limited Yes (3PL) Single 1 No No Delivery only Heuristic method
(Tarantilis and Kiranoudis, 2002) Open VRP Limited Yes (3PL) Single Multiple No No Delivery only List-based threshold
’ accepting (LBTA)
Mwmmmmwomﬁm%wpmoomv Open VRP Limited Yes (3PL) Single 1 M%méa onlyy N Pickup and Delivery ~ Tabu Search
Yes Greedy look-ahead
(Repoussis et al., 2007) Open VRP Limited Yes (3PL) Single 1 (Driversand No Pickup and Delivery route construction
Customers) heuristic algorithm
(Fu et al., 2005) Open VRP Unlimited No Single 1 Yes No Pickup and Delivery Tabu search
(Torres et al., 2022) Open <_N_.u m Limited Yes Single 1 Yes No Pickup and Delivery Oo_:.Bq generation
Crowd-shipping heuristic
(Dumas et al., 1991) PDPTW Limited No Single 1 Yes No Pickup and Delivery | orward dynamic
programming algorithm.
(Nowak et al., 2008) PDPSL Limited No Split 1 No No Pickup and Delivery Local Search
(Irnich, 2000) PDPTW Limited No Single Multiple Yes No Pickup and Delivery Covering heuristic
(Dahle et al., 2019) MW@.URM%EQ Limited Yes Single Multiple Yes No Pickup and Delivery \
(Voigt and Kuhn, 2022) PDPTW & Limited Yes Single 1 Yes Yes Pickup and Delivery ALNS
’ Crowd-shipping
Online event-based
(Tao et al., 2023) mWﬂMRMnU_:n Limited Yes Single Multiple ~ Yes Yes Pickup and Delivery %Ewmﬁﬂ,mmm a simple
insertion heuristic
PDPTW &
Our Research Limited Yes Multi and Split Multiple Yes Yes Pickup and Delivery ALNS

Crowd-shipping

Note: The table lists some of the main features; see the literature review for specific differences.

Summary of Features and Algorithms for Models

Table 2.1

Problem Definition

In this section the Multi-trip Crowd-shipping Split Pickup and Delivery Problem with Time Window and
Multi-depots (MC-PDPTW-MD) is formally defined. After discussion, in addition to the common time
window constraints and vehicle capacity constraints, the model to be studied also contains the follow-
ing characteristics: Regular drivers, Occasional drivers (crowdshippers), multi-depots, intermediate
centers, multi-delivery and split delivery.

The MC-PDPTW-MD is an complex logistics optimization challenge, focusing on the interplay between
a regular truck fleet and an occasional driver fleet to minimize total routing costs. Figure 3.1 shows an
illustrative example of the multi-trip crowd-shipping split pickup and delivery problem. The operational
framework of this problem encompasses a central Distribution Center (DC), various retailers serving
as intermediate centers, and customers. At the core of this scenario is the regular truck fleet (RDs),
which embarks on its journey from the DC. Each RD is loaded with parcels destined for delivery to
intermediate centers and customers. The delivery schedule is intricately planned within specific time
windows, ensuring timely and efficient service. While delivering the package, RDs engage in the pickup
of return items only from intermediate centers. This aspect of their route is flexible, contingent upon the
spare capacity available post-delivery. The RDs’ routes culminate back at the DC, where they offload
the collected items for further processing. Complementing the regular fleet is the occasional driver (OD)
fleet, characterized by its flexibility and adaptability. ODs initiate their routes from varied locations, not
bound to the DC as their starting point. OD’s primary role is to pick up items from intermediate centers
and delivery them back to depot or pickup items from depots and distribute them to customers and
intermediate centers. while ODs are delivering, parcels can be picked up at intermediate centers as
vehicle capacity allows. ODs head to his/her destination after finishing all delivery tasks. If possible,
RD and OD can visit multiple depots multiple times. The essence of the MC-PDPTW-MD lies in the
seamless coordination between these two fleets. The system strategically allocates tasks and routes
to each fleet, considering real-time dynamics like vehicle capacity, delivery and pickup time windows,
and on-the-ground traffic conditions. The objective is a harmonious balance, where the regular fleet's
structured routes complement the occasional drivers’ flexible pickups, ensuring overall efficiency and
cost-effectiveness. The challenge is to manage these split pickups and deliveries within the constraints
of time windows, aiming for a solution that minimizes routing costs.

+ Intermediate Center (C): A intermediate center or a retailer can receive parcels and have some
to be sent to depot.

* Client (S): Client only receiving parcels at home

+ Distribution Centre (DC): A distribution center or depot can receive packages from copy centers
and store packages for delivery to intermediate centers and customers.

* Regular Driver (RD): Regular drivers depart from DC, and end to DC

» Occasional Driver (OD): Occasional Drivers start from their origin and have a final destination,
they may visit DC multiple times.

11

12

& ‘.) @ Route of RD

Occasional Driver Regular Driver Parcel

VWV 4 o o o

Depot Intermediate Center ~ Customer Origin of OD Destination of OD

Route of OD

Figure 3.1: An illustrative example of multi-trip crowd-shipping split pickup and delivery problem

Methodology

This chapter presents two approaches to solve the problem: an exact method and a metaheuristic algo-
rithm. We begin by formulating a precise mathematical model for the problem in section 4.1. To solve
this model, we employ the branch-and-bound technique, a commonly used exact method. Despite the
accuracy of exact methods, they often require substantial computational time to find feasible or optimal
solutions. This limitation leads us to consider metaheuristic algorithms as a viable alternative.

Metaheuristic algorithms offer a practical solution when the problem scale increases, making exact
methods computationally prohibitive. Previous studies have explored various metaheuristic techniques,
including Local Search and Tabu Search. In 2005, (Ropke and Pisinger, 2006a) introduced the Adap-
tive Large Neighborhood Search (ALNS) framework, an enhancement of the Large Neighborhood
Search (LNS) algorithm. They successfully applied ALNS to the Pickup and Delivery Problem with
Time Windows (PDPTW), demonstrating superior performance compared to standard LNS. Building
on this foundation, our research adopts the ALNS algorithm to effectively address the problem in sec-
tion 4.2. Detailed discussions of the mathematical model and the ALNS implementation are provided
in subsequent sections.

4.1. Mathematical Model

Let V denote the set of all nodes, let A denote the set of distribution centers and A%™™v denote the
set of dummy nodes make sure OD can visit depot multiple times. Let S denote the set of customers,
0°% and D°¢ denote the set of origins and destinations of occasional drivers. Let C' denote the set of
intermediate centers, usually grocery stores.

N consists of DC, C, client and origin and destinations of OD, thus N = AUA®™™y JC'USU0°*U D,
A regular driver set RD, and a occasional driver set OD, are available to serve the requests. A set of
vehicles K consists of RD and OD, thus K = RD U OD. For RD, each vehicle k € RD will start from
and back to Depot. For OD, each vehicle £ € OD has an origin i € 0°? and a destination j € D°?.
As shown in Figure 3.1, all RDs have origins and destinations at the same depot, while the origins and
destinations of the ODs may be spread out.

Each vehicle k has a capacity Cy, and there is a cost factor p* for each vehicle k. When transporting
goods from node ¢ to node j, the time distance between node i and node j is given as T;;. For each
node i € N there is a time window [T'?, T'}!] within which it must be serviced. The delivery and pickup
quantity at node i € N/A are D; and P, respectively. Regular vehicle & has a time window for its origin
depot [T{, Ty]. For the ODs it is assumed that the time window are wide enough to allow for a direct
travel.

The variable xfj is a binary variable denoting if vehicle £ € K uses arc (i,j) when i,j € N . While
variable yfje is pickup and delivery flow variable denotes load on vehicle k£ € K for pickup or delivery
request from node s to node e on arc (4,5), ij € N. Variable z#*¢ denotes pickup or delivery quantity
at node i for vehicle k € K and request from start point s to end point ¢, se € N. Variable dd;; and pdy;

13

4.1. Mathematical Model

14

are decision variables for delivery and pickup requests respectively denoting if vehicle k € K serve

request from start node i and end node j. For variable dd*., n € A,i € A,,,j € DV,,. For variable pd*

75

nelA jeN,, i€ PV, tf means the time of vehicle & € K arrive at node i € N.

Table 4.1 provide an overview about all the mentioned sets, parameters and variables.

Sets

N

A
Adummy
Z&n
S

C
DV
PV
DV,
PV,
K
K,
RD

oD
OOD

DOD

Set of all nodes

Set of depots

Set of dummy depots

Set of depot and its dummy depot for depot n
Set of customers

Set of Intermediate centers

Set of delivery requests

Set of pickup requests

Set of delivery requests of depot n

Set of pickup requests of depot n

Set of vehicles

Regular vehicle set belongs to depot n
Set of regular drivers

Set of occasional drivers

Set of origins occasional drivers

Set of destinations occasional drivers

Parameters

Ti;
DD;;
Ch

Vi

0 1
ok

M

Time distance between nodes i and j

Pickup and delivery quantity between nodes i and j
Capacity vehicle k

Depot that provides service for request i

Time windows of node ¢

Cost factor of vehicle k

Big value

Variables

2
kse
Yij
Zfse
k
dd
pdij
th

2

Routing variable

Pickup and delivery flow variable
Pickup and delivery quantity variable
Decision variable for delivery requests
Decision variable for pickup requests
Time of vehicle k at node 7

Table 4.1: Set up of Sets, Parameters and Variables

The formulate of the problem is given as follows:

Objective Function:

Constraints for all vehicles:

foj*2$?1:0

JEN JEN

minz Z xijijpk

keEK (ij)EN

35

4.1)

Vi e N/ (0°PuDOP) ke K (4.2)

4.1. Mathematical Model

15

YD alh=1

keK jeN

>l <1

JEN

tfl + Tni S tf

o=y

JEN JEN

JEN JEN

k,s,e k,s,e _ _k,s,e
Yo — Yij = %

JEN JEN

Z Zf’s’e = DDVe,i * Z dds)“C

keK keK

k,s,e k,s,e __ _k,s,e
Yii Yij =%

JEN JEN

Z 2%¢ = DDy, * Z P e,k

keEK keK

D> v < Cuxaly

seEN eeN

Vie SUC (4.3)

Vke K,i € A (4.4)

Vie N, ke K (4.5)

Vie N,k e K (4.6)

YneAie DV, ke K.k ¢ K, (4.7)

VneAie DV, ke K (4.8)

VneAie PV keK, k¢ K, (4.9)

YneA,ic PV, ke K (4.10)

Vee DV,s€ Ay,,i € N,k e K (4.11)

Ve e DV,ie N,s € Ay, (4.12)

Vs€ PV,e€ Ay.,i€ N,k € K (4.13)

Vs€ PV,ie N,e € Ay, (4.14)

Vi,j € N,k € K (4.15)

4.1. Mathematical Model 16

Constraints for regular drivers:
th > th + Ty — M ox (1 —2f)) VneAkeK,ijeN,j#n (4.16)

j

VneAkeK,,ij€eNj#*n (417)

th <tk VneAkeK,icN,i#n (4.18)
> al <0 Vi € Adummy, k € RD (4.19)
JEN
> al <0 Vk € RD,i € (0°P uD®P) (4.20)
JEN

Constraints for occasional drivers:

> Zhon; — > 2fpon =0 Vk € OD (4.21)
JEN/(OPPUDOD) JEN/(OPPUDOD)
DN ak - > Thon; > 0 Vk € OD (4.22)
1EAJEN JEN/(OOPUDOD)
> x’ggD ;<1 Vk € OD (4.23)
JEN
> xjogD <0 Vk € OD (4.24)
JEN
D wHpp; <0 Vk € OD (4.25)
jeSs
> x’,ggD ;<0 Vk € OD (4.26)
JEN

x’ggDDgD <0 Vk € OD (4.27)

4.1. Mathematical Model 17

ok <0 Vie Ak € OD (4.28)

i7i+ndepots —

T meonei <0 Vie A ke OD (4.29)
Sk <o Vk € OD,i € 0°P /O (4.30)
JEN

> ak <0 Vk € OD,i € D°P/DPP (4.31)
JEN

> tr 4+ Ty — (1—af,) M Vi,j € N,k € OD (4.32)
th > (TP + Ty;) Vi,j € N,k € OD (4.33)

Constraints generated by allowing vehicles to visit the depot multiple times:

2™ =0 Ve € DV,n € Ay, k € K,i € (AU Agummy),i #n (4.34)
ZPem =0 Vs e PV,n € Ay, k € K,i € (AU Agummy),i #n (4.35)
o> ddf =1 Vn € A, j e DV, (4.36)
keK ieA,

SN pdf =1 Vn € A,i € PV, (4.37)
kEK jeA,

N7 ddk >Nk Vne Aie DVy ke K (4.38)
meA, JEN

> opdf, =Y ak Vn € A,i€ PV, ke K (4.39)
meA, JEN

th<th+ (1—ddf,)«M VneAjieA,,je DV, keK (4.40)

42. ALNS Algorithm 18

th<th+ (1—pdf;)« M VneAjeA,, i€ PV, kecK (4.41)
SN ak =D ak Vn e A,i € DV, k € K (4.42)
meA, jEN JEN
SN ak, =Dl Vn e A,ie PV, ke K (4.43)
meA, jJEN JEN

The objective function 4.1 aims to minimize the total routing cost. Constraints 4.2 - 4.15 are linked to
all vehicles. Constraint 4.2 serves as the vehicle flow conservation constraint. Constraint 4.3 ensures
every request must be served once. Constraint 4.4 restricts each vehicle to depart from the depot on
at most one route. Constraint 4.5 is the time window restriction for vehicles arriving at each point. Con-
straint 4.6 prevents vehicles from passing through the same point consecutively. Constraints 4.7-4.8
ensure that vehicles must pass through the corresponding depot before meeting the delivery require-
ments. Similarly, Constraints 4.9-4.10 ensure that vehicles must pass through the corresponding depot
after meeting the pickup requirements. Constraints 4.11 and 4.13 record the flow for each pickup and
delivery requirement. Constraints 4.12 and 4.14 satisfy the pickup and delivery requirements at all
points. Constraint 4.15 is the vehicle capacity limit.

Constraints 4.16-4.20 are linked to regular drivers. Constraints 4.16-4.17 are the time constraints be-
tween two points for RDs. Constraint 4.18 limits the departure time from the depot for RDs to not
exceed the time to any point. Constraint 4.19 RDs are not allowed to visit dummy depots. Constraint
4.20 RDs are not allowed to visit O°? and DP.

Constraints 4.21 - 4.35 are linked to occasional drivers. Constraint 4.21 flow conservation for origins
and destinations of ODs. Constraint 4.22 if OD departs, then it must visit the depot. Constraint 4.23 at
most one arc after the origin of the ODs. Constraint 4.24 no arc entering the origin of ODs. Constraint
4.25 first arc after origin cannot go to a customer. Constraint 4.26 no arc exiting from destination of
ODs. Constraint 4.27 no link between origins and destinations of ODs. Constraints Constraints 4.28-
4.29 no link between depots and dummy depots. Constraints 4.30-4.31 ODs cannot visit the origin and
destination of other ODs. Constraints 4.32-4.33 are the time constraints between two points for ODs.

Constraints 4.34-4.35 no cross-docking during the pickup and delivery process. Constraints 4.36-4.37
for a delivery or pickup demand, it must be served by its depot or dummy depot. Constraints 4.38-
4.39 the relationship between pickup and delivery variables and path variable. Constraints 4.40-4.41
if the delivery or pickup request is serviced by the corresponding depot/dummy, the time limit is met.
4.42-4 43 if the delivery or demand is served by vehicle k, then vehicle k must have passed through its
depot/dummy.

4.2. ALNS Algorithm

According to literature research, the ALNS algorithm has been widely applied to vehicle routing prob-
lems, and ALNS is suitable for our problem. The strategy of each step in the ALNS algorithm, as
well as the involved parameters, directly affect the computation time and the generation of optimal so-
lutions. Therefore, the selection of strategies and the tuning of parameters is a labor-intensive and
time-consuming process. As discussed in the section 2.1.3, (Mara et al., 2022) summarized the model
proposed by (Ropke and Pisinger, 2006a) into four steps: (a) Adaptive mechanism, (b) Acceptance
criteria, (c) Stopping criteria, and (d) Design of destroy and repair operators. Regarding the Adaptive
mechanism, based on the 251 papers surveyed in (Mara et al., 2022), 250 papers utilized the Roulette
Wheel ((Laporte et al., 2010), (Hemmelmayr et al., 2012), (Braaten et al., 2017)), meaning the prob-
ability of each operator being selected is the same. For Acceptance criteria, most articles adopt the
Metropolis Criterion, allowing the algorithm to accept solutions slightly worse than the current one with
a certain probability to avoid local optima, thereby increasing the algorithm’s capability to explore a

42. ALNS Algorithm 19

broader area of the solution space. Some articles also utilize the Greedy Mechanism and Record-to-
Record. Regarding the Termination Criterion, the majority of articles use the most common Number of
Iterations, with research also employing the Number of Non-Improving lterations, Running Time Limit,
and Annealing Temperature.

The following table 4.2 summarizes the strategies chosen in some of the research studies that utilized
the ALNS algorithm. In the table, each criterion encompasses additional methods. For example, among
the removal operators, it includes Time-based removal ((Demir et al., 2012)), Demand-based removal
((Demir et al., 2012)), and Cluster removal ((Ropke and Pisinger, 2006a), (Pisinger and Ropke, 2007),
and (Pisinger and Ropke, 2019)). Similarly, within the repair operators, it comprises Sequential insertion
((Kovacs et al., 2012)), Swap insertion ((Coelho et al., 2012b)), and Cluster insertion ((Maknoon and
Laporte, 2017) and others). This study will compare some of these criteria and aim to find the criterion
with the shortest computation time.

Algorithm 1 illustrates the framework of the used ALNS algorithm. Each step of this framework will
be discussed in detail in the subsequent sections. The algorithm requires two input parameters: the
initial solution s, which is generated using a greedy algorithm as described in section 4.2.1, and a
number ¢, representing the count of demand nodes to be removed. The core of the algorithm is from
lines 5 to 8. In line 5, an appropriate removal operator is selected based on the current weights of
the removal operators. This paper uses two removal operators: random removal and worst removal,
detailed in section 4.2.2. In line 6, the selected requests are removed from s. In line 7, a suitable repair
operator is chosen based on the current weights of the repair operators. The repair operators used are
greedy repair heuristic and regret-2 repair heuristic, detailed in section 4.2.3. In line 7, the requests are
reinserted into the destroyed solution. The choice of removal and repair operators directly affects the
performance of the algorithm. Following the strategy of (Ropke and Pisinger, 2006a). we use a roulette
wheel method for operator selection, detailed in section 4.2.5. Considering some unnecessary depot
visits in the initial solution, the depot, serving as both a pickup and delivery point, may be permanently
removed during the destruction process. While this can help find a better solution, it may also lead
to infeasible solutions. Therefore, in line 9, we need to check if the repaired solution is feasible. If
feasible, we then determine whether the new solution should be accepted. This paper uses a simulated
annealing acceptance criteria to decide whether to accept the new feasible solution, detailed in section
4.2.6.

Algorithm 1 ALNS Heuristic

1: function ALNS(s € {solutions},q € N)
2 solution spest = s;
3 repeat
4: s'=3s
5: choose a destroy operator
6 remove q requests from s’
7 choose a repair operator
8: reinsert removed requests into s’
9: if s’ is feasible then
10: if £(s') < f(spest) then
1: Spest = S
12: end if
13: if accept(s’, s) then
14: s=3s"
15: end if
16: else
17: continue
18: end if
19: operator adaptive weight adjustment
20: until stop-criterion met
21: return spest

22: end function

20

42. ALNS Algorithm

Criterion Name

Description

Reference(s)

Adaptive Mechanism

Roulette Wheel

The probability of each operator (both destroy and repair) being selected is equal.

(Ropke and Pisinger, 2006a), (Laporte et al., 2010),
(Hemmelmayr et al., 2012), (Braaten et al., 2017)

Acceptance Criterion

Metropolis Criterion

Greedy Mechanism
Record-to-Record

Threshold acceptance

To avoid local optima, the algorithm is allowed to accept slightly worse solutions

than the current one with a certain probability.

Only accept solutions that are better than the current best solution.

The algorithm is allowed to accept worse solution within a pre-determined threshold (R).
The algorithm is allowed to accept worse solution within a pre-determined threshold (R)
and the value of R decreases at every iteration

Kirkpatrick et al., 1983), (Ropke and Pisinger, 2006a)

Muklason et al., 2018)
Dueck, 1993)

—_~ o~~~

Sarasola and Doerner, 2020)

Termination Criterion

Number of Iterations

Annealing Temperature

Algorithm returns the best found solution after a fixed number of iterations.

Algorithm returns the best solution found when the set minimum temperature is reached.

Ropke and Pisinger, 2006a), (Ropke and Pisinger, 2006b),
Demir et al., 2012)

Li et al., 2016), (Santos and de Carvalho, 2018)

Li et al., 2020)

~ e~~~

Destroy Operators

Random Removal

Shaw Removal
Worst Removal

Route removal

Randomly select an operator to remove.

Remove the node with the highest similarity index. The similarity index of a node is

calculated by comparing it to a selected seed node based on a set of predefined criteria.

Remove nodes that significantly contribute to the total cost of the solution.
This operator is commonly found in the vehicle routing domain randomly and removes a
number of routes with all the associated nodes from a solution.

(Ropke and Pisinger, 2006a), (Ropke and Pisinger, 2006b)
(Ghilas et al., 2016)

(Ropke and Pisinger, 2006a), (Ropke and Pisinger, 2006b),
(Shaw, 1998), (Ghilas et al., 2016)

(Ropke and Pisinger, 2006a), (Ropke and Pisinger, 2006b)
A

Demir et al., 2012), (Ghilas et al., 2016)

Repair Operators

Greedy insertion

(k-)Regret insertion

Random insertion

Shaw insertion

Select and insert the node with the smallest insertion cost from all remaining nodes in
the deleted nodes list into the solution.

Select and insert the node with the highest regret value from the remaining nodes in the
deleted nodes list, where the regret value is the difference in cost between the best

and the k-th best insertion positions.

Randomly select a node from the list of deleted nodes and insert it into the position

with the lowest incremental cost.

Select the next node to be inserted into the solution from the list of removed nodes
using the concept of similarity index as described in Shaw removal.

Ropke and Pisinger, 2006a), (Ropke and Pisinger, 2006b),
Pisinger and Ropke, 2007), (Pisinger and Ropke, 2019)

(

(

(Ropke and Pisinger, 2006a), (Ropke and Pisinger, 2006b),
:u_m_:@mﬂm:amo_uxm_mood,eu_m_:@mqmsaxovxm,moav
A
A
A

Coelho et al., 2012b), (Coelho et al., 2012a),
Qu and Bard, 2012), (Qu and Bard, 2013)

Coelho et al., 2012b), (Coelho et al., 2012a)

Table 4.2: Summary of ALNS Algorithm Criteria

42. ALNS Algorithm 21

4.2.1. Initial Solution

The initial solution is a necessary input for the ALNS algorithm. We use a simple Greedy algorithm to
generate the initial solution. The algorithm begins at the vehicle’s starting point and iteratively finds the
nearest unvisited point, checking capacity and time window constraints to decide whether to visit that
point. For delivery points, the algorithm prioritizes finding the nearest depot that can service the point,
ensuring the route remains valid. For pickup points, it ensures that a depot can service the point. After
visiting each point, the vehicle’s load and time are updated until all points are serviced, and the vehicle
returns to its destination, forming a complete route.

The initial solution for Algorithm 2 can be simply divided into two parts. The first part uses occasional
drivers (OD) to handle demand nodes, and the second part uses regular drivers (RD) to handle the
remaining demand nodes. The reason for this separation is that occasional drivers and regular drivers
have different characteristics. Compared to regular drivers who start from the depot, occasional drivers
have specific origins and destinations. Additionally, the cost for OD is lower, so OD is given a higher
priority. In each part, for every nearest point found, we first determine whether the point is a pickup
point, delivery point, or depot, and then execute different handling methods based on the type of point.
Additionally, we must ensure that there are enough vehicles to meet all demands, otherwise, the gen-
erated initial solution will result in some demands not being serviced. Any surplus vehicles in the initial
solution will be removed during the ALNS algorithm.

4.2.2. Request Removal

This section introduces two removal operators: random removal and worst removal. In addition, (Ropke
and Pisinger, 2006a) also used Shaw removal proposed by (Shaw, 1997). However, random removal
can be seen as a special form of Shaw removal and has been proven to be more efficient, thus we
adopt random removal. Unlike random removal, worst removal selects those points that seem to be
misplaced, i.e., service points that incur higher costs.

Random Removal

The basic idea of the random removal algorithm is to randomly select ¢ requests and remove them from
the solution. The number of requests ¢ to be removed is obtained by multiplying a destruction factor
x between 0 and 1 by the number of points in the current solution. These randomly selected requests
include pickup points, delivery points, and depots. As mentioned earlier, the solution may contain
some unnecessary visits to depots. Therefore, we need to reselect the nodes chosen for removal.
If the removed points are pickup or delivery points, it means that these points need to be served,
so we retain these points. If the removed points are depots, we randomly select from the removed
depots again. The selected depots are kept for the repair operation, and the unselected depots are
permanently removed from the solution. This ensures unnecessary paths are eliminated, leading to a
lower cost. Algorithm 3 shows the pseudocode for random removal.

Worst Removal

The basic idea of worst removal is that for a pickup or delivery request i served by some vehicle in
a solution s, we define the cost of the request as cost(i,s) = f(s) — f—:(s), where f_;(s) is the cost
of the solution without request i. All requests are sorted by cost in descending order, and the top ¢
requests with the highest costs are removed and reinserted in the repair operator to obtain a better
solution. On this basis, we have made some modifications. Since the solution path includes some
depots, before using worst removal, we first select the depots in the current solution and use random
removal to remove some depots. Suppose the number removed is nemoved, Which ranges from 0 to
min{number of depots in current solution, ¢}. The remaining number of requests to be removed using
worst removal is ¢ — nremoved- 1his allows the algorithm to permanently delete some depots to achieve
a better solution. Algorithm 4 shows the pseudocode for worst removal. To increase the randomness
of the worst removal, a new parameter p > 1 is added, as can be seen in line 11 of the code. A lower
value of p corresponds to greater randomness, so with a certain probability, we will choose the y?|L|-th
worst request.

4.2.3. Inserting Requests
According to the research by (Potvin and Rousseau, 1993), insertion heuristics for the vehicle routing
problem can be broadly divided into two categories: sequential and parallel insertion heuristics. The

42. ALNS Algorithm

22

Algorithm 2 Initial Solution - Basic Greedy

1: Initialization

2: for each vehicle od do

3 if no more unvisited points then
4 Break

5 end if

6: while unvisited points exist do
7 Find nearest point

8 if nearest point is delivery point then
9 Handle delivery point

0

10: else if nearest point is depot point then

1: Handle depot point

12: elsenearest point is pickup point
13: Handle pickup point

14: end if

15: Update unvisited points

16: end while

17: end for

18: if all points are visited then
19: Check solution completeness

20: if complete then

21: Add end point to solution

22: else

23: Find nearest unvisited points and update solution
24: end if

25: else

26: for each vehicle rd do

27: while unvisited points exist do

28: Find nearest point from start

29: if nearest point is None then

30: Break

31: end if

32: if nearest point is delivery point then
33: Handle delivery point

34: else if nearest point is depot point then
35: Handle depot point

36: elsenearest point is pickup point

37: Handle pickup point

38: end if

39: end while

40: end for
41: end if

42. ALNS Algorithm

23

Algorithm 3 Random Removal

1:
2
3
4:
5:
6:
7
8

9:
10:
11:
12:
13:

function RandomRemoval(s € {solutions},q € N)

Copy the current solution s to a new state destroyed
Randomly select ¢ customers from the routes and move them to the unassigned list
Filter out the depots from the unassigned list and store them separately
if only one depot is unassigned then
Select the depot
else if multiple depots are unassigned then
Randomly select a number of depots to keep unassigned
else
No depots are selected
end if
Add the selected depots back to the unassigned list
return new state destroyed

14: end function

Algorithm 4 Worst Removal

1:
2
3
4:
5:
6:
7
8

9:
10:
11:
12:
13:
14:

function RandomRemoval(s € {solutions},q € N;p € R.)

Copy the current solution s to a new state destroyed
Select the depots in the current solution
Randomly select a number of depots to remove and move them to the unassigned list
Update the number of customers to remove, ¢
while ¢ > 0 do
g+ (¢—1)
Calculate the cost difference for removing each customer
Sort customers (L) by cost difference (largest to smallest)
Choose a random number y in the interval [0, 1)
Select a customer r = L[y?|L|]
Remove the selected customer and move them to the unassigned list
end while
return the new state destroyed

15: end function

42. ALNS Algorithm 24

difference between them is that sequential heuristics construct one route at a time, whereas parallel
heuristics can construct multiple routes simultaneously. The insertion heuristics involved in this re-
search are all parallel heuristics. Basic Greedy heuristic and Regret-2 heuristic are applied, as they
are the most common insertion heuristics.

Basic Greedy Heuristic

The principle of the Basic Greedy Heuristic is the same as the greedy strategy used when generating
the initial solution. The program iterates over the requests removed in the previous section. For each
request, we try to insert it into a feasible position in the route, recording the cost change Af; ;. .4» €ach
time a feasible insertion position is found, Af; 1 .4, represents the cost difference when inserting the
request i at position idz in route k£ compared to not inserting it. The request i is inserted at the position
with the smallest cost until all requests are inserted into the routes. If no suitable insertion position is
found in the existing routes, the request is inserted into an empty route of the vehicle corresponding to
the depot of that request. Algorithm 5 shows the pseudocode for the basic greedy heuristic.

Algorithm 5 Basic Greedy Heuristic

1: function RreedyRepair(state : destroyed)

2 Randomly shuffle the unassigned customers

3 while destroyed.unassigned is not None do

4 Pop a customer from the unassigned list

5: route, index = best_insert(customer, destroyed)
6 if route is not None then
7 route.insert(index, customer)
8

else

9: depot = get_depot_for_customer(customer)
10: if a corresponding depot is found then

1: Find a route associated with the depot
12: if a suitable route is found then
13: Insert the customer into the route
14: else
15: Continue

16: end if

17: else

18: Continue

19: end if
20: end if
21: end while
22: return the repaired state

23: end function

Regret Heuristic

The class of regret heuristics was proposed to overcome the main weakness of greedy heuristics, i.e.,
the myopic behavior. In greedy insertion, we always focus on one request at a time, which may result
in the position idx where request i is inserted in the route being the optimal position for another request
j to be inserted later. If request j is inserted at position idx in the route, it may result in a better
solution. For example, the cost of inserting request ¢ at idx 1 in route 1 is 20, and at idx 2 in route
2 is 15. Similarly, the cost of inserting request j at idz 1 in route 1 is 40, and at idz 2 in route 2 is
18. According to the basic greedy insertion, request i is inserted at idx 2 in route 2 because it has
the lowest insertion cost, and then request j is considered. Since idx 2 in route 2 is already occupied
by request i, request j can only be inserted at idz 1 in route 1, resulting in a total insertion cost of 55.
This research considers the Regret-2 insertion heuristic, which improves the basic greedy heuristic by
incorporating a look-ahead information when selecting requests to insert. First, we iterate over each
request to be inserted and find all possible insertion points and insertion costs. For each request, we
set a regret value ¢ = Af; i, idz, — Afiks,idzy, Where the regret value is the difference in the cost of
inserting the request in its best route-index and its second best route-index. In each iteration, we select
the request with the maximum regret value and insert it into the optimal route. The heuristic can be

42. ALNS Algorithm 25

extended to regret-k heuristic, but as k increases, the improvement efficiency of the algorithm slows
down. Therefore, this research only uses the regret-2 heuristic. Algorithm 6 shows the pseudocode for
the regret-2 heuristic.

Algorithm 6 Regret-2 Heuristic

1: function Regret-2Repair(state : destroyed)

2 Randomly shuffle the unassigned customers

3 while destroyed.unassigned is not None do

4 Pop a customer from the unassigned list

5: flag <+ 0 > No feasible insertion found if flag = 0, otherwise flag =1
6 for route in destroyed.routes do

7 if route is None then

8

: Continue

9: else
10: if can_insert(destroyed, customer, route,index) then
11: Record route, index and cost
12: flag 1
13: end if
14: end if
15: if flag == 0 then
16: Find depot for customer: get_depot_for_customer(customer)
17: Calculate cost inserting customer into a empty route
18: Record route, index and cost
19: end if
20: end for
21: Sort insertion costs for every customer in descending way
22: Calculate regret_value for every customer
23: Choose the customer with largest regret_value
24: Insert the customer into its best position
25: end while
26: return the repaired state

27: end function

4.2.4. Choosing a Removal and an Insertion Heuristic

Two removal operators and two repair operators are defined in section 4.2.2 and section 4.2.3. In one
iteration, only one removal and one repair operator need to be used, but ALNS involves multiple removal
and repair operators because different operators may be suitable for different sizes of problems. Even
for problems of the same size, different operators may perform differently. For a specific problem, we
do not know which operator is more suitable, so we let the algorithm choose. To select the appropriate
removal and repair operators, we assign weights to each repair and removal operator and use the
roulette wheel selection principle. Suppose we have k heuristics with weights w;,: € {1,2,...,k}, we
select heuristic j with probability

(wj

—_— (4.44)
25:1 Wy

Note that the selection of insertion heuristic is independent of the removal heuristic (and vice versa).
We can manually set these weights, but if many removal and insertion heuristics are used, this can be
a very complex process. Instead, Section 4.2.5 proposes an adaptive weight adjustment algorithm.

4.2.5. Adaptive Weight Adjustment
This section details how to introduce weights and adaptively adjust them. The Adaptive Weight Adjust-
ment part draws on the method of Adaptive Weight Adjustment in the ALNS framework of (Ropke and

42. ALNS Algorithm 26

Pisinger, 2006a). The basic idea is to track the score of each heuristic, which measures the recent per-
formance of the heuristic. High scores correspond to successful heuristics. However, we made some
modifications. First, we set the initial score of each removal and repair operator to 0, so the probability
of each operator being selected is equal. We will call the ALNS algorithm multiple times, each time
called a segment. Each segment has an inner loop for iterating new solutions. In each segment, each
time a new solution is accepted, the used removal and repair operators are scored according to the
following scoring rules in Table 4.3.

Table 4.3: Score Adjustment Parameters

Parameter Description

o1 The last remove-insert operation resulted in a new global best solution.
P The last remove-insert operation resulted in a solution that has not been accepted
before. The cost of the new solution is better than the cost of the current solution.

In each iteration, we apply two heuristics: a removal heuristic and an insertion heuristic. Both heuristics’
scores are updated by the same amount because we cannot determine whether the removal or insertion
is the successful reason. At the same time, we record the number of successful runs of the heuristic
and calculate the weight of each heuristic before executing the next segment based on the scores and
successful runs of each operator. The weight calculation formula is as follows,

Wi 41 = wij(l — ’I“) + T% (445)

where w; ;1 represents the weight of operator i in segment j+1, w; ; represents the weight of operator
1 in segment j, m; is the score obtained by operator i in the last segment, and 6; is the number of
successes of the operator. The reaction factor r controls the speed of the weight adjustment algorithm
in response to changes in operator effectiveness. If r is zero, then we do not use the score at all and
stick to the initial weight. If is set to 1, then the weight is determined by the score obtained in the last
segment.

4.2.6. Acceptance and Stopping Criteria

The simplest Acceptance and Stopping Criteria is to accept only solutions better than the current solu-
tion, see (Shaw, 1997). This is likely to lead to the solution getting stuck in a local optimum. Therefore,
it is sometimes wiser to accept solutions worse than the current one (Ropke and Pisinger, 2006a).
Therefore, we choose to use simulated annealing acceptance criteria, which means that we accept a
solution s’ worse than the current solution s with a certain probability, given by e(/()=/())/T where
T > 0 represents the temperature. The temperature starts from T,;,,. and is updated at the end of
each iteration by T'= T - ¢, where 0 < ¢ < 1 is the cooling rate. Similarly, if the new solution s’ is better
than the current solution, we accept this solution with 100% probability. The stopping criterion of the
algorithm is to meet the set maximum number of iterations. Of course, for different sizes of instances,
the initial temperature and number of iterations will affect the performance of the results, so parameter
tuning is necessary. See Section 5.3 for details.

Computational Experiments

5.1. Instance Generation

The instances used in this chapter are virtual instances generated by code for the purpose of parameter
tuning and testing algorithm performance. Each instance has fixed characteristics and is created and
stored in a text file. Each instance file starts with 11 lines whose meanings are shown in Figure 5.1.
Following this, there is a matrix containing all the points, where each row of the matrix represents a
point. According to Figure 5.1, there are two depots, corresponding to the first two rows of the matrix.
The dummy depots corresponding to these two depots are represented by the third and fourth rows of
the matrix. Next, there are 6 customers, each with delivery demands. Following these are 4 pickup and
delivery demands for the same intermediate center. Finally, there are the start and end points for two
ODs (Origin-Destination pairs). Rows 14-15 represent the start and end points for the OD 1, while rows
16-17 represent the start and end points for the OD 2. For the columns, the first two columns represent
the two-dimensional coordinates of each node, the third and fourth columns represent the time window
for each node, the fifth column represents the pickup or delivery quantity (positive for delivery, negative
for pickup), and the last column represents the depot corresponding to each pickup or delivery demand.
The naming rule of Instance is composed of three numbers, such as Instance 2_1_10, which means
there are 2 depots, 1 intermediate center and 10 requests.

5.2. Example Instance

Before parameter tuning, we want to verify whether the model and algorithm outputs are consistent
through a simple example, meaning whether they can achieve the same optimal solution. In fact, we
used several requests ranging from 10 to 20 to debug the model and code. Upon completing the de-
bugging, we have verified the consistency between the mathematical model and the ALNS algorithm.
Therefore, this demonstration of the optimal solution generation, along with its description and visual-
ization, helps the readers better understand the model. The test example mentioned here is Instance
2 1_10. All experiments were performed on a PC running Microsoft Windows 10 with the following
specifications:

* Processor: Intel Core i7-8750H 2.20GHz
* RAM: 8 GB

» GPU: NVIDIA GeForce GTX 1050 Ti

» Software: VS Code 1.78.0, Python 3.8.18

Using the CPLEX package in Python to run the mathematical model, we solve it with the branch-and-
bound method, setting a time limit of 3600 seconds. The optimal cost of 303.5 was obtained in 40
minutes, which is the same result as that obtained using the ALNS algorithm, but the ALNS algorithm
only took 8.9 seconds. In practice, the ALNS algorithm should take a shorter time. Typically, when
the number of requests is 10, we set the iteration to 200, and the runtime is approximately 300ms. To
prevent the algorithm from getting stuck in a local optimum during a single loop, we add an outer loop,

27

5.2. Example Instance 28

Table 5.1: Test Instance 2_1_10

Parameter Value
Number of Nodes 18
Number of Depots 2
Number of RD in depot 0 1
Capacity of RD in depot 0 10
Number of RD in depot 1 1
Capacity of RD in depot 1 10
Number of OD 2
Capacity of OD 8
Number of requests in intermediate centers 4
Max number visits depot 2
Coeff Cost OD 0.5
Coor_1 Coor_2 TW_1 TW_2 PD \'
50.0 40.0 0 1236 0 0
125.0 110.0 0 1236 0 0
50.0 40.0 0 1236 0 0
125.0 110.0 0 1236 0 0
45.0 20.0 20 870 2 0
18.0 50.0 30 880 8 0
35.0 100.0 30 880 2 0
125.0 20.0 30 880 2 1
150.0 100.0 30 880 2 1
110.0 140.0 30 880 2 1
85.0 65.0 0 1236 2 0
85.0 65.0 0 1236 -2 0
85.0 65.0 0 1236 -2 1
85.0 65.0 0 1236 2 0
0.0 0.0 100 300 0 0
0.0 0.0 0 1236 0 0
0.0 0.0 100 300 0 0
0.0 0.0 0 1236 0 0

running the ALNS algorithm 30 times and taking the best performance among the 30 runs, as shown
in Figure 5.1. In the figure, the best iteration found 50 feasible solutions within 200 iterations. The
algorithm found the optimal solution within 10 iterations and then attempted to accept worse solutions
to explore the solution space further. Since the optimal solution had already been found, no lower cost
were discovered afterward. The red line in the figure represents the best solution found in the current
iteration, and the blue line represents the current feasible solution. If a current feasible solution is better
than the current best solution, the current best solution is updated. The optimal solution is visualized
in Figure 5.2, and the optimal routes are:

* RD 1: [0]

* RD 2: [1]

+ OD 1: [14, 15]

- OD 2: [16,0,6,10,11,12,13,3,9,1,8,7,4, 2,5, 17]
Since the OD vehicles have sufficient capacity, the RDs were not used, RD 1 and RD 2 stayed at
their respective depots. Here, we assume that the OD vehicles are provided by a third-party logistics
company, so two OD vehicles with the same start and end points were set up to ensure that all demands

can be fully serviced. OD 1 departs from the start point directly to the end point, indicating that OD 1
was not used, while OD 2 handled all the demands.

5.3. Parameter Tuning 29

Objective value at each iteration

— Current

500 A
— Best

475 A

450

375 A

350 A

325 A
T T T T T
0 10 20 30 40

S
e}
wn

Objective Value
-
(=]
o

300

T
50
Iteration

Figure 5.1: ALNS Result of test instance 2_1_10

. Customers

140 1 Intermediate Centers o£9
® Origin/Destination for OD

B Depot

1201
$1/03

100 | £6 \ﬁs
80 |
i€ 1: (10, 11, 12, 13)

60

40

201

~0D: (14, 16)/D_0OD: (15, 17)

T T T T T T
-50 0 50 100 150 200

Figure 5.2: Result map of test instance 2_1_10

5.3. Parameter Tuning

Before parameter tuning, a representative set of tuning instances is required. As our research problem
is a new pickup and delivery problem, no existing instances found that could be directly referenced and
used. Therefore, we will refer to the method of generating instances in (Solomon, 1987) with certain
modifications to suit the specifics of our study. Initially, the scale of the tuning instances needs to be
sufficiently diverse. Our tuning set consists of 6 instances, where the number of requests starts from 10,
with 2 instances added for every increase of 20 requests. The largest instances contain 50 requests.
Request coordinates are uniformly distributed around the depots. Alongside increasing requests, we
will concurrently adjust the vehicle capacity, number of intermediate center, number of OD, and number
of depot. Specific parameter settings for generating tuning instances are shown in Table 5.2.

The primary objective of parameter tuning is to subsequently conduct large-scale testing and compar-
ison of the performance between ALNS algorithm and exact algorithm, and to reveal which heuristic
part or which parameter contributes the most to solution quality. Firstly, it is necessary to determine

5.4. Computational Experiments 30

Table 5.2: Tuning Instances Information

Requests Nodes Depots ICs Requests Requests RDs Capacity ODs Capacity
per per IC each of RD of OD
Depot Depot
10 18 2 1 3 4 1 20 2 16
30 38 2 2 10 5 2 30 2 24
50 60 3 2 10 10 1 50 2 40

which parameters need adjustment. Before executing removal operators, we need to determine how
many requests to remove, i.e., the destruction factor . Random removal involves no parameters, while
worst removal involves a random parameter p. No parameters are involved in repair operators. For
acceptance criteria, two parameters are involved: initial temperature Tt @and cooling rate c. For the
Adaptive weight adjustment criteria, three parameters are involved: reaction factor r, score adjustment
parameters o1, and o,. For these seven parameters, adjustments are made sequentially in a certain
order, with each parameter set to 4 reasonable values as listed in Table 5.3. Each tuning instance is
run 5 times for each parameter value. Thus, for 6 tuning instances, we obtain 30 costs per parameter,
and the parameter corresponding to the lowest average cost is selected as the optimal parameter. Ta-
ble 5.4 shows the tuning results for the destruction factor «, recording the runtime and cost for each
instance, and calculating the average runtime and average cost accordingly. According to Table 5.4,
when k = 0.1, the average cost is minimized at 1073.33, whereas the average costs for the other three
parameter values are 1108.33, 1176.23, and 1192.2, respectively. The tuning results for the other six
parameters are presented in Appendix A. Based on the tuning results, it is evident that only the de-
struction factor x shows sensitivity to different parameter values, while the remaining six parameters
exhibit lower sensitivity. Therefore, these six parameters are deemed suitable for solving instances
within a certain scale range. The optimal parameter value for the destruction factor « is found to be 0.1.
Given that 0.1 represents a relatively small destruction ratio (for instance, in cases with 10 requests,
only one request is destroyed per iteration), we choose not to conduct further in-depth analysis on the
Destruction factor. The best values for each parameter are listed in Table 5.3.

Table 5.3: Parameter Settings

Parameter name Symbol Parameter range Selected values Best Value
Destruction factor K 0, 1) [0.1,0.15,0.2,0.5] 01
Random Parameter P >1 [1,5, 10, 20] 1

Initial Temperature Tstart R* [100, 200, 300, 400] 300
Cooling rate c 0, 1) [0.8,0.85,0.9,0.95] 0.95
Reaction factor r [0, 1) [0.2,0.4,0.6,0.8] 0.2

Score adjustment factor o Rt [10, 20, 30, 40] 30

Score adjustment factor o9 Rt [5, 10, 15, 20] 5

5.4. Computational Experiments

In this section, we conduct a comparative experiment between the ALNS algorithm with tuned param-
eters and an exact method to evaluate the performance of the ALNS algorithm. Using the same logic
as parameter tuning, we generate 30 instances with request quantities of 10, 30, and 50 (10 instances
each). The results of the computational experiments are presented in Table 5.5. The bold fonts in the
table indicate the known optimal solutions. For instances with 10 requests, the exact method using
CPLEX'’s built-in branch and bound algorithm found 4 optimal solutions, with other solutions showing
relatively good performance but longer average runtimes, mostly exceeding 20 minutes. Although the
ALNS algorithm confirmed only one instance as optimal, it demonstrated overall good performance
across the 10 instances. It consistently found solutions within 10 seconds that were better than those
found by the exact algorithm after 1 hour of computation. As the instance sizes increased to 30 and
50 requests, the advantages of the ALNS algorithm became apparent. We configured it to run 10000
and 15000 iterations respectively. The ALNS algorithm significantly improved upon initial solutions in
a short time frame, whereas the exact algorithm achieved only a best bound after running for the set 1

5.5. Sensitivity Analysis 31

Table 5.4: Instances Parameter Tuning Results - Destruction Factor

Fixed Parameter setting: p =1, Tstart =200, c=0.9,7=0.2, 0, =10,02, =5

Tuning Instances Run Time Avg. Time Total Avg. Time Cost Avg. Cost Total Avg. Cost
1 2 3 4 5 1 2 3 4 5

Parameter setting: « = 0.1

2-1-10-1 0.8 0.9 0.7 0.9 0.8 0.82 22.02 357 357 294 357 328.5 338.7 1073.33

2-1-10-2 0.7 0.7 0.7 0.8 0.7 0.72 389 389 389 389 389 389

2-2-30-1 13.6 136 108 10 105 117 1250 1210 1337 1492 14275 13433

2-2-30-2 10.1 10.7 9.7 8.7 8.9 9.62 1042.5 10175 10955 1067.5 10525 1055.1

3-2-50-1 50.8 465 462 46 46 471 1979 1979 1892 1979 1979 1961.6

3-2-50-2 67.9 66.8 60 57.5 585 62.14 1433.5 1302 1298 1430 1298 1352.3

Parameter setting: = 0.15

2-1-10-1 1 0.9 0.8 0.9 0.8 0.88 31.34 294 294 357 357 357 331.8 1108.33

2-1-10-2 0.7 0.8 0.8 0.8 0.9 0.8 430 316 389 389 389 382.6

2-2-30-1 15 169 159 159 163 16 1875 1539 1449.5 1511.5 1509 1576.8

2-2-30-2 135 125 1.3 11.9 12.3 123 1084.5 1030.5 1069.5 1065.5 1039 1057.8

3-2-50-1 75.4 733 773 773 75 75.66 1979 1979 1979 1979 1979 1979

3-2-50-2 725 833 87.8 841 842 8238 1362 1307 1304 1330 1307 1322

Parameter setting: ~ = 0.2

2-1-10-1 1 1 1.3 1.1 1.2 1.12 41.04 294 294 294 294 3915 3135 1176.23

2-1-10-2 1 0.9 0.9 0.8 0.9 0.9 389 389 389 346 389 380.4

2-2-30-1 171 168 149 155 12 15.26 1875 1875 1875 1875 1660 1832

2-2-30-2 14 145 144 149 143 1442 1126.5 11265 11265 11265 11265 1126.5

3-2-50-1 106.2 103.8 1056 1045 106.3 105.28 1979 1979 1979 1979 1979 1979

3-2-50-2 101.2 994 1076 107.5 130.6 109.26 1439.5 1493 1477 1375 13455 1426

Parameter setting: « = 0.25

2-1-10-1 13 13 1.4 1.2 1.2 1.28 57.74 294 294 294 3285 294 300.9 1192.2

2-1-10-2 1.2 1.1 1 1.1 1 1.08 389 389 389 389 389 389

2-2-30-1 241 227 231 294 242 247 1875 1875 1875 1735.5 1875 1847.1

2-2-30-2 21.3 239 218 217 234 2242 1126.5 11265 11265 11265 11265 1126.5

3-2-50-1 143.3 146.5 1423 138.8 139 141.98 1979 1979 1979 1979 1979 1979

3-2-50-2 152.3 150.8 1484 1443 179.2 155 1519.5 1519.5 1519.5 1519.5 1476 1510.8

hour and 1.5 hours for the respective instance sizes.

Due to hardware limitations, the computational experiments and subsequent sensitivity analysis exper-
iments were conducted on a workstation equipped with an Intel Core i9-14900K 24-core CPU, 64 GB
RAM, operating at a frequency of 4800 MHz, and running on Windows 10. The ALNS algorithm was
implemented using VS Code in Python version 3.8.18.

5.5. Sensitivity Analysis

In the business domain, cost is one of the primary concerns for managers. In the process of parcel
delivery, reducing costs and increasing efficiency is a common goal for almost all companies. (Hou and
Wang, 2021)’s research shows that the average delivery cost can be reduced by 7.30% compared to
delivery by dedicated vehicles when incorporating a compensation scheme based on crowdshippers’
acceptance behavior. In this study, there are four factors that influence parcel delivery costs: the
number of occasional drivers, the capacity of occasional vehicles, the transportation cost of occasional
vehicles, and the location of occasional vehicles. Since the location of occasional vehicles is difficult
to evaluate, it will not be discussed in this section. Generally, the capacity of occasional vehicles
is positively correlated with their transportation cost per unit distance or per unit time. This chapter
will also analyze the correlation between vehicle capacity and vehicle transportation cost. Finally, the
sensitivity analysis sequence is to first select different numbers of occasional drivers, determine the
number of occasional drivers, then set vehicle capacity and cost factor within a reasonable range, and
analyze the cost optimization brought by different values.

5.5.1. Instances for Sensitivity Analysis

Sensitivity analysis requires a new set of instances. We decided to modify the instances used for
parameter tuning. First, we only consider instances with 30 and 50 requests, as instances with 10
requests are considered too small to be of analytical value. We retain all coordinates, time windows,
and demands of the 20 instances with 30 and 50 requests from the parameter tuning section. We modify
the values of regular drivers, occasional drivers, occasional vehicle capacity, and cost factors for these
instances. The parameter values for the occasional driver sensitivity analysis are shown in Table 5.6.
For the sensitivity analysis of occasional vehicle capacity and cost factor, except for the different values
of vehicle capacity and cost factor, all other parameters remain the same. Each instance is run once,
with each run having 10000 iterations.

5.5. Sensitivity Analysis 32

Table 5.5: Instance Performance Comparison - ALNS vs Branch and Bound

Instance ALNS CPLEX
Initial Cost Best Cost Time (s) Iteration BestCost BestBound MIP Gap Solve Time (s)

2.1.10.1 663 429 5 5000 436 199.64 54.21% 3600
21102 384 252 17 5000 252 252 0% 476
21103 583.5 377.5 7.6 5000 305.5 305.5 0% 2114
21104 676 315.5 7.8 5000 300 231.79 22.74% 3644
21105 4275 294 5.7 5000 294 254.53 13.42% 3036
21106 546 231.5 54 5000 204.5 204.5 0% 2085
21.10.7 575.5 348.5 5.6 5000 249 206.1 17.23% 3617
2.1.10.8 615.5 273 5.7 5000 236 236 0% 1215
21109 701 336.5 6.9 5000 320.5 244 23.87% 3725
2.1.10.10 395 278.5 5.8 5000 267.5 224.82 15.95% 3607
2.2.30.1 1778 801 63.6 10000 275.92 3600
22302 1035 853.5 48.3 10000 261.08 3600
22303 13395 1017.5 49.5 10000 293.19 3600
22304 12105 837 61 10000 278.6 3600
22305 1076.5 881 66.5 10000 332.31 3600
2.2.30.6 989 879.5 47.5 10000 270.42 3600
22.30.7 1137.5 950 51.6 10000 327.38 3600
2.2.30.8 13345 962 47.9 10000 311.44 3600
22309 10475 912 421 10000 278.13 3600
2.2.30.10 1120 950 65.8 10000 234.45 3600
3.2.50.1 1585.5 1048.5 304.4 15000 374.98 5400
3.250.2 15195 1290.5 273.8 15000 379.96 5400
3.2.50.3 1984 1357.5 2421 15000 409.74 5400
3.2.504 2001.5 1440 244 1 15000 394.61 5400
3.250.5 20195 1410 315.1 15000 3724 5400
3.250.6 1967.5 1045 318 15000 346.03 5400
3.2.50.7 1652 1104 264.3 15000 374.89 5400
3.2.50.8 1633 1170 242 15000 363.4 5400
3.250.9 15315 1204.5 319 15000 327.26 5400
3.2.50.10 1379.5 1088.5 239.4 15000 320.11 5400

Table 5.6: Sensitivity Analysis Instance Information

Requests Nodes Depot Depot 1 Depot Depot Capacity oD Capacity Cost

RD 2RD 3RD RD oD Factor

oD=0

30 34 2 3 3 30 0 0

50 60 2 2 2 2 50 0 0

oD =1

30 36 2 2 3 30 1 24 0.8
50 58 3 2 2 2 50 1 40 0.8
OoD=2

30 38 2 2 2 30 2 24 0.8
50 60 3 2 2 2 50 2 40 0.8
ob=3

30 40 2 1 2 30 3 24 0.8
50 62 3 2 2 2 50 3 40 0.8

5.5.2. Sensitivity Analysis - Number of OD

The results of the sensitivity analysis for occasional drivers are shown in Table 5.7. We conducted four
sets of comparative analyses based on the number of occasional drivers, which is OD = [0, 1,2, 3],
corresponding to the four cost columns in the table. We used the no OD group as the baseline and
calculated the optimization ratio of the other three groups containing ODs compared to the baseline cost,

5.5. Sensitivity Analysis 33

shown in the three columns in the table. A negative ratio indicates a worse result, as the ALNS algorithm
may get stuck in local optima when solving instances. The optimal solutions and their corresponding
optimization ratios are highlighted in bold. Among the 20 instances with optimal costs, the no OD group
accounts for 4 instances, the group with 1 OD accounts for 7 instances, the group with 2 ODs accounts
for 6 instances, and the group with 3 ODs only accounts for 3 instances. When OD = 1, even though
some instance results are not optimal, the cost differences are relatively small, and the results are more
stable. Therefore, we consider 1 OD to be a good choice for instances with 30 and 50 requests. In
subsequent sensitivity analyses of OD capacity and cost, the parameter settings for 1 OD will be used.

In actual operations, company decision-makers can choose either the number of ODs with a cost ad-
vantage or the lowest-cost path each time. In this experiment, when a fixed number of ODs is selected,
having 1 OD increases the total cost of all instances by 19.09% compared to having no OD. With 2
ODs, the total cost increases by 17.19%, and with 3 ODs, the total cost increases by 18.48%. Itis
worth noting that when the cost is worse with a fixed number of OD vehicles, we will continue to choose
the cost without ODs. If each instance selects its corresponding optimal cost, the total cost of the 20
instances increases by 22.07%.

Table 5.7: Sensitivity Analysis - Number of OD

Instances OoD=0 oD=1 Gap - OoD=2 Gap - ob=3 Gap -
OD=1 OD=2 OoD=3
2.2.30.1 1091 1029 5.7% 955.4 12.4% 1041.6 4.5%
2.2.30.2 1303.5 1229 5.7% 1018 21.9% 1073.6 17.6%
2.2.30.3 1433 1281 10.6% 1154.2 19.5% 1170 18.4%
2.2.30.4 839 939 -11.9% 1405.8 -67.6% 1085 -29.3%
2.2.30.5 1105 1266.2 -14.6% 1098.2 0.6% 1067 3.4%
2.2.30.6 967 884.4 8.5% 1134 -17.3% 1057 -9.3%
2.2.30.7 1377 1141 171% 1181.2 14.2% 1122.2 18.5%
2.2.30.8 1264 1214 4.0% 1264.2 0.0% 1177.8 6.8%
2.2.30.9 778 854.6 -9.8% 1182 -51.9% 1123 -44.3%
2.2.30.10 979 994 -1.5% 1217 -24.3% 1128.4 -15.3%
3.2.50.1 2021.5 1942.4 3.9% 1836 9.2% 1967 2.7%
3.2.50.2 2581 1718.8 33.4% 1811.6 29.8% 1814 29.7%
3.2.50.3 3516 2568.4 27.0% 2211 37.1% 2053 41.6%
3.2.504 3260 2151.8 34.0% 2044.4 37.3% 2158.6 33.8%
3.2.50.5 1828 1716 6.1% 2206.6 -20.7% 2041 -11.7%
3.2.50.6 2577 1580 38.7% 1929.2 25.1% 1973.2 23.4%
3.2.50.7 2541 1875 26.2% 2180.8 14.2% 2111 16.9%
3.2.50.8 2365.5 1518.4 35.8% 2240.8 5.3% 1556.6 34.2%
3.2.50.9 2280.5 1755.8 23.0% 1668 26.9% 1846.8 19.0%
3.2.50.10 1516 1567.4 -3.4% 1699.6 -12.1% 2058.8 -35.8%

5.5.3. Sensitivity Analysis - OD Capacity and Cost
For the capacity of ODs, we set up seven comparative experiments, reducing the capacity of ODs rela-
tive to the capacity of RDs by a certain percentage. The seven comparative experimental percentage
parameters are set to Capacity = [40%, 50%, 60%, 70%, 80%, 90%, 100%]. For the unit distance cost of
RDs, we set up five comparative experiments, reducing the unit distance cost relative to that of RDs by
a certain percentage. Different vehicle capacity parameter settings correspond to different unit distance
cost ratios for RDs, as detailed below:

» OD Capacity Parameter = 40%: [20%, 30%, 40%, 50%, 60%]

» OD Capacity Parameter = 50%: [30%, 40%, 50%, 60%, 70%]

» OD Capacity Parameter = 60%: [40%, 50%, 60%, 70%, 80%]

» OD Capacity Parameter = 70%: [50%, 60%, 70%, 80%, 90%]

» OD Capacity Parameter = 80%: [50%, 60%, 70%, 80%, 90%]

5.5. Sensitivity Analysis 34

» OD Capacity Parameter = 90%: [50%, 60%, 70%, 80%, 90%]
» OD Capacity Parameter = 100%: [50%, 60%, 70%, 80%, 90%]

A total of 100 cost values were obtained for each OD capacity parameter setting, resulting in 700
cost values across 7 parameter configurations. All results are stored in 7 tables, where Table 5.8
presents the results for OD Capacity = 40%. The results for the remaining 6 OD Capacity values can
be found in Appendix B. In addition to the costs obtained for different parameter values, the lowest
cost parameter results serves as the base cost for calculating the percentage increase in OD costs per
10% increase in capacity. Positive percentages indicate increased costs, while negative percentages
indicate decreased costs. The percentage increase in OD costs for all 7 OD capacity values is shown
in Table 5.9. For each row, if capacity correlates positively with vehicle costs (i.e., when OD vehicle
capacity is 40% of RD vehicle capacity, OD per unit distance costs should also be 40% of RD costs),
we use this as a benchmark to explore scenarios where OD costs are below or above 40%. The
same applies to the other 6 experimental groups. Taking OD capacities of 60% and 70% as examples,
the calculated cost increase percentages are [50%, 60%, 70%, 80%, 90%, 100%] = [11.76%, 4.89%,
9.08%, 8.92%, 8.47%, 7.81%], with an average increase of 8.47%.

Table 5.8: Sensitivity Analysis - Capacity and Cost - 40% Capacity

40% Capacity
Instances 20% Cost 30% Cost Gap Cost=30% 40% Cost Gap Cost=40% 50% Cost Gap Cost=50% 60% Cost Gap Cost=60%

2.2.301 915.6 966.3 5.54% 1191.6 30.14% 119 22.21% 1288.6 40.74%
2.2.30.2 612 832.6 36.05% 823.4 34.54% 920 50.33% 949.2 55.10%
2.2.30.3 1001.2 1058.9 5.76% 1123.4 12.21% 1138 13.66% 889.8 -11.13%
2.2.30.4 786.8 801 1.80% 927 17.82% 980.5 24.62% 1047 33.07%
2.2.30.5 1113.4 1201.8 7.94% 1183.4 6.29% 1205.5 8.27% 1179 5.89%

2.2.30.6 811.4 898.3 10.71% 1023.6 26.15% 1120 38.03% 1011.8 24.70%
2.2.30.7 923.8 1019.8 10.39% 1084.4 17.38% 141 23.51% 1223 32.39%
2.2.30.8 851.8 880 3.31% 950.2 11.55% 1150.5 35.07% 1283.6 50.69%
2.2.30.9 699.2 770 10.13% 747.8 6.95% 794.5 13.63% 840.2 20.17%
2.2.30.10 823.8 961.7 16.74% 964.6 17.09% 1099 33.41% 1115.6 35.42%
3.2.50.1 1525.6 1476.7 -3.21% 1236.4 -18.96% 1787.5 17.17% 1658.2 8.69%

3.2.50.2 1411.2 1379.8 -2.23% 1527.2 8.22% 1865 32.16% 1759.2 24.66%
3.2.50.3 1741.8 1875.2 7.66% 2008.6 15.32% 1862 6.90% 1864.2 7.03%

3.2.50.4 1860 1761.3 -5.31% 1089.8 -41.41% 2229 19.84% 2352 26.45%
3.2.50.5 1831 1975 7.86% 2119 15.73% 2263 23.59% 2407 31.46%
3.2.50.6 1530 11565.2 -24.50% 1538.6 0.56% 1634.5 6.83% 1492 -2.48%

3.2.50.7 1434.8 1563.2 8.95% 1691.6 17.90% 1820 26.85% 1948.4 35.80%
3.2.50.8 1660.4 1787.1 7.63% 1913.8 15.26% 2040.5 22.89% 1662.2 0.11%

3.2.50.9 1409.6 1428.3 1.33% 1571.8 11.51% 1434 1.73% 1423.8 1.01%

3.250.10 1221.8 1357.7 11.12% 1493.6 22.25% 1629.5 33.37% 1765.4 44.49%

Table 5.9: Cost Sensitivity Analysis

Capacity 20% Cost 30% Cost 40% Cost 50% Cost 60% Cost 70% Cost 80% Cost 90% Cost

40% Base Cost 5.88% 11.33% 22.70% 23.21%

50% Base Cost 9.52% 18.48% 21.13% 32.89%

60% Base Cost 6.22% 15.76% 20.66% 26.63%

70% Base Cost 11.95% 21.03% 28.29% 33.71%
80% Base Cost 6.38% 15.30% 16.81% 30.63%
90% Base Cost 2.68% 11.01% 20.74% 28.50%
100% Base Cost 9.96% 17.78% 23.30% 30.22%

Next, we explore the performance of OD capacity or OD cost as single variables compared to path costs
without OD inclusion. As mentioned earlier, both the number of ODs and the sensitivity analysis in this
section use the same instances, adjusting only relevant parameters to facilitate direct comparison of
these results. In Section 5.7, we used OD capacity and OD cost ratios of 80%, as shown in Table 5.6
and Table B.4 in Appendix B. Referring to the path costs when OD = 0 in Table 5.7, we calculated the
cost decrease brought by different OD cost ratios when OD capacity = 80% across 20 instances as
[90%, 80%, 70%, 60%, 50%] = [5.18%, 15.21%, 16.47%, 22.54%, 27.01%]. These results indicate
that path total costs save 5.18% when OD costs are 90% of RD costs, and save 15.21% when OD
costs are 80% of RD costs. We then explore the effect of varying OD capacity on path total costs with
fixed OD costs at 80% of RD costs. Tables B.2, B.3, B.4, B.5, and B.6 in Appendix B correspond to
OD capacities of [60%, 70%, 80%, 90%, 100%)], with path total cost decreases relative to OD = 0 as

5.5. Sensitivity Analysis 35

Routing Cost Reduction Percentage by Cost and Capacity

Cost

Cost 20%
Cost 30%
Cost 40%
Cost 50%
Cost 60%

Cost 70%
Cost 80%
Cost 80%
20
15
10
0

Capacity 40% Capacity 50% Capacity 60% Capacity 70% Capacity 80% Capacity 90% Capacity 100%
Capacity Percentage

30
25

Total Cost Reduction Percentage (%)

Figure 5.3: Sensitivity Analysis Results

[7.86%, 9.97%, 15.21%, 13.96%, 13.94%]. According to the results, using OD with 60% RD capacity
saves 7.86% costs, 70% RD capacity saves 9.97% costs, and 80% RD capacity saves 15.21% costs,
with further capacity increases not resulting in further cost reductions. Figure 5.3 illustrates the total
cost savings ratio across all combinations of vehicle capacities and costs for 20 test instances.

Case Study

6.1. Background

Ochama is an omnichannel retailer, part of the Chinese e-commerce giant JD.com. Headquartered
in the Netherlands, Ochama operates primarily in the Netherlands, Belgium, France, and Germany.
The platform offers over 10,000 high-quality products across various categories. Utilizing an advanced
automated warehousing system, Ochama provides dual fulfillment services of pickup and delivery. Con-
sumers can place orders online through the Ochama platform, with the option to pick up their orders
from pickup points or have them delivered directly to their homes. Ochama has successfully imple-
mented advanced warehouse network and logistics system with over 700 ochama pickup points in
major cities and towns in the Netherlands, Belgium, and Germany.

Ochama currently operates two depots: a self-operated warehouse and a crossdocking warehouse lo-
cated in Rotterdam and Venray, Netherlands, respectively (see Map 6.1). The self-operated warehouse
in Berkel en Rodenrijs, Rotterdam, handles all storage and shipping of goods, as well as distribution
for orders in western and northern Netherlands. Orders from eastern Netherlands, western Germany,
and northern Belgium are consolidated and transported to Ochama'’s crossdocking facility in Venray for
distribution after crossdocking. Ochama has over 700 pickup points, primarily within the Netherlands,
with the remainder in western Germany, Belgium, and parts of France. These pickup points do not op-
erate every day but rather on select days of the week, servicing an average of 150 to 200 pickup points
daily. In China, June 18th annually marks a major e-commerce promotion day, similar to Black Friday.
Ochama continues this tradition, and statistics show that during the recent 2024 June 18th promotion,
Ochama shipped 13,000 parcels. Parcels are delivered using vans sized 5.45m x 2.263m x 2.29m,
with an average parcel size of 40cm x 25cm x 30cm. Each van can accommodate an average of 200
parcels.

6.2. Instances for Case Study

In this study, we scale down the problem based on real-world scenarios. Each instance retains the
positions of two depots and randomly sets 5 intermediate centers (ICs). Each IC contains 20 requests,
and each depot is randomly assigned 25 demand points, totaling 150 demands per instance. The
positions of ICs and demand points are within a range of 80 km from the two depots.

According to research, vehicles are categorized into three types: large, medium, and small. The RDs
use large vehicles, whereas ODs, typically freelance drivers, have a higher proportion of medium and
small vehicles compared to large vehicles, see Figure 6.2. Therefore, ODs consider medium and small
vehicles. The capacities of these three types of vehicles are set in certain proportions, with medium and
small vehicles having cargo capacities of 60% and 45% of a large vehicle’s capacity, respectively. This
design is based on the prevalence of large vehicles in Dutch logistics companies, such as Ford Transit
and Renault, which typically have cargo capacities of 8-9 cubic meters. Medium vehicles are modeled
after Peugeot Expert and Renault models, which usually have cargo capacities of 5-6 cubic meters.
Small vehicles are modeled after Caddy Cargo and Renault Cargo models, which typically have cargo

36

6.3. Comparative Experiment 37

Enschede
.

BELGIUM

« M@astricht
Figure 6.1: Case Study Map - NL, BE and DE

capacities of 4-5 cubic meters. The capacity factors for medium and small vehicles are estimated based
on their cargo capacities. Each warehouse is equipped with two RD vehicles, each with a capacity of
200, and the capacity of each parcel is randomly chosen from [2, 3, 4]. In the comparative experiment,
we chose the strategy of replacing RD with OD instead of adding OD as an additional strategy. This is
because the ALNS algorithm in this study prioritizes the use of OD vehicles. If the results show that the
cost with sufficient use of OD vehicles is higher than that with only RD vehicles, it indicates that adding
OD vehicles does not bring cost benefits to a certain extent.

Below summarizes the common characteristics of the Case Study instances:

* Total number of requests: 150

* Number of requests for customer: 50

* Number of requests for IC: 100

* Number of RD in each depot: 2

* Number of OD (if needed): 2

» Capacity RD: 200

» Capacity OD: 45% and 60% Capacity RD

+ Maximum number of times OD visits the depot: 2

6.3. Comparative Experiment

We aim to compare employing ODs with different vehicle types and whether providing different levels
of subsidies to ODs can reduce overall routing costs. For the former, we set three scenarios: no OD
involvement, 2 medium-sized OD, and 2 small-sized OD. For the latter, when choosing small-sized

6.3. Comparative Experiment 38

Medium: Peugeot Expert Small: Caddy Cargo

Figure 6.2: Comparative View of Different Cargo Vans

vehicles as ODs, we set 5 cost scenarios with OD unit routing costs at 45%, 50%, 60%, 70%, and 80%
of RD routing costs. When choosing medium-sized vehicles as ODs, we set 4 cost scenarios with OD
unit routing costs at 50%, 60%, 70%, and 80% of RD routing costs.

We use the no OD experiment group as a baseline. We compare the total routing costs of instances
using different types of vehicles and different subsidy costs with the total costs of the experimental
group. The results of no OD experiment group are shown in Table 6.1. Due to the infeasible solution of
instance "2.5.150.3”, there are 9 valid instances. The last row of the table gives the total routing costs
of the 9 valid instances. Similarly, the results of introducing small-sized car ODs and medium-sized
car ODs groups also remove instance "2.5.150.3”. Their results are shown in Table 6.2 and Table 6.3,
respectively.

Table 6.1: Case Study - RD only

RD only
Instances Routing Cost

2.5.150.1 1437
2.5.150.2 1270
251504 1388
25.150.5 1084
2.5.150.6 1253
2.5.150.7 1302
2.5.150.8 1360
2.5.150.9 1274
2.5.150.10 1407.4

Sum 11775.4

In the group where 2 RDs were replaced by 2 small-sized cars (45% RD capacity), according to the
data in the last row of the table, when the cost is also 45% of the RD unit distance cost, the total routing
cost decreased by 11.37%, and when the cost is 50% of the RD unit distance cost, the total routing
cost decreased by 5.11%. The costs obtained for other OD costs were higher than the experimental
group costs without OD. In the group where 2 RDs were replaced by 2 medium-sized cars (60% RD
capacity), according to the data in the last row of the table, when the cost is also 50% of the RD unit
distance cost, the total routing cost decreased by 16.57%, and when the cost is 60% of the RD unit

6.3. Comparative Experiment 39

distance cost, the total routing cost decreased by 6.85%. The costs obtained for other OD costs were
higher than the experimental group costs without OD. From the results of the two experimental groups,
it can be concluded that introducing OD vehicles can optimize the total routing cost if the ratio of OD
capacity to RD capacity and the unit distance cost of OD to RD are consistent. Ochama can better
optimize delivery costs based on market research to balance the acceptance of OD compensation and
the required number of ODs.

Table 6.2: Case Study - 45% RD Capacity

45% Capacity
Instances Cost45% Cost50% Cost60% Cost70% Cost80%

2.5.150.1 1302.2 1401.5 1498.8 1630.6 1718.6
2.5.150.2 1077.9 1137 1233.6 1268.2 1594.2
251504 11422 1228 1265.8 1327 1611.6
25.150.5 1148.5 1201.5 1382.2 1450.6 1592.4
251506 1197.2 1249.5 1406.6 1501.8 1574.6

2.5.150.7 1099 1268 1316.4 1427.4 1531
25.150.8 1163.3 1229.5 1335 1449.5 1565.6
251509 1193.1 1242.5 1340.2 1325.6 1566.4
2.5.150.10 1112.7 1216 1291.4 1462.9 1496.4
Sum 10436.1 11173.5 12070 12843.6 14250.8
Gap 11.37% 5.11% -2.50% -9.07% -21.02%

Table 6.3: Case Study - 60% RD Capacity

60% Capacity
Instances Cost50% Cost60% Cost70% Cost80%

2.5.150.1 111 1264.4 1380 1431.6
2.5.150.2 1203 1305.8 1472 1532.4
251504 1263 1389.2 1582.9 1645.4
2.5.150.5 956 1106.6 1182.2 1266
25150.6 1261 1324.4 1467.7 1595
2.5.150.7 901 1030.4 1099.8 1165.6
2.5.150.8 1275 1446.6 1618.2 1789.8
251509 974 1090.4 1229.7 1366.4
2.5.150.10 880 1011 1157.7 1253.2
Sum 9824 10968.8 12190.2 13045.4
Gap 16.57% 6.85% -3.52% -10.79%

Figure 6.3 and 6.4 present the visualized results of all instances’ costs relative to the baseline cost
without OD, with the addition of small-sized OD and middle-sized OD, respectively. In each figure, the
grey dashed line represents the baseline without OD consideration. When OD is introduced, data points
above the baseline indicate cost savings in route expenses, whereas points below the baseline indicate
higher route costs. The x-axis represents each instance, and each differently colored line corresponds
to different OD cost settings. The figures provide a clear visualization of whether cost savings occur
for each instance across different OD cost values.

6.3.

Comparative Experiment 40

Saving Ratio Compared to Base Cost

Cost Saving Ratio Compared to Base Cost for Different OD Costs - Small-sized OD

Cost

= Cost 45%
-04 — mmm Cost50%

mmm Cost 60%

mmm Cost 70%

mmm Cost 80%
05

251501 251502 251504 251505 2515086 251507 251508 251509 25150.10
Instances
Figure 6.3: Results for adding Small-sized OD
Cost Saving Ratio Compared to Base Cost for Different OD Costs - Middle-sized OD
04
Cost

mmm Cost 50%
wem Cost 60%
= Cost 70%
= Cost 80%

Saving Ratio Compared to Base Cost

251501 251502 251504 251505 251506 251507 251508 251509 2515010
Instances

Figure 6.4: Results for adding Middle-sized OD

Discussion

We first consider constructing a mathematical model to solve the research problem. Considering the
difficulty of directly developing the algorithm, the mathematical model can help better understand the
constraints needed to solve the problem, and during the algorithm part, these constraints can be quickly
converted into algorithm functions, making the logic of the algorithm generation phase clearer. Since
this study incorporates multiple features based on actual applications, we have to introduce more vari-
ables to handle the situations of multi-depots and multiple visits to depots by OD. The addition of vari-
ables requires us to impose more constraints to restrict these variables. Therefore, we use a relatively
simple arc-based modeling approach and divide the constraints into four parts based on the features.
This segmentation greatly facilitates the debugging of the mathematical model, allowing us to quickly
locate and solve problems. Next, we generated instances of three request sizes and used Cplex to
evaluate the mathematical model. The evaluation results show that when the number of requests is 10,
the optimal solution can be obtained within the set one-hour runtime. However, as the problem size
increases, the mathematical model cannot obtain a feasible solution within a short time and can only
get the best bound.

Based on the literature review, ALNS is widely used to solve pickup and delivery problems and related
variants, making it the first choice for our research problem. This method was proposed by (Ropke and
Pisinger, 2006a). We modified the ALNS algorithm framework to suit our study. The first step of the
ALNS algorithm is to generate an initial feasible solution. We used the common Basic Greedy Algorithm,
which, after testing, can generally generate a feasible solution within 1 second. This algorithm requires
us to ensure that there are enough vehicles since the basic greedy has a certain short-sighted behavior,
leading to an initial solution that is always more costly than the optimal solution. The initial solution will
be re-destroyed and repaired in the subsequent part of the algorithm, so the number of vehicles will be
minimized during this process.

In the requests removal part, (Ropke and Pisinger, 2006a) studied the problem of single-visit pickup and
delivery by vehicles, and their ALNS algorithm framework cannot be directly applied to our research.
Our study considers the problem of multiple visits to depots by OD. Thus, in the generation of the initial
solution, the Basic Greedy Algorithm frequently adds depots as pickup or delivery points because we
cannot determine the number of visits of each OD to each depot in the optimal solution in advance.
In fact, the total number of visits to depots by all vehicles in the initial solution must be greater than
or equal to the total number of visits to depots by all vehicles in the optimal solution. If we follow
the original ALNS algorithm framework, these redundant visits to depots will be retained, meaning
that vehicles may make some meaningless trips between depots. We devised a strategy to remove
depots and requests separately. First, a certain number of depots are randomly selected, and then
a second random selection is made from these depots. The depots not selected are permanently
deleted, ensuring that the improved ALNS algorithm can fully explore the solution space to obtain a
better solution. However, this setting also has certain limitations. If too many depots are deleted, the
repaired solution will be unreasonable. In this case, we check whether each repaired solution is feasible.
If feasible, we perform the acceptance criteria; if not, we skip this iteration and move to the next one. In

41

42

this study, we considered two removal operators: Random Removal and Worst Removal. During the
experiments, the probabilities of selecting these two removal operators were similar, indicating that the
probabilities of the new solutions being accepted by these two removal operations were similar.

In the requests insertion part, we considered two repair operators: Basic Greedy Heuristic and Regret-2
Heuristic. During the experiments, the probability of selecting Basic Greedy Heuristic was significantly
higher than that of Regret-2 Heuristic, indicating that the probability of the solution repaired by Basic
Greedy Heuristic being accepted was higher. This is because Regret-2 Heuristic calculates the cost
of all feasible insertion positions for each request, sorts the insertion costs for different positions from
small to large, sums the smallest two values for each request, and gives priority to the one with the
largest sum. Since we considered two types of vehicles, RD and OD, the cost of inserting into the RD
route is sometimes higher than that of inserting into the OD route. Therefore, if a request had fewer
feasible insertion positions, its probability of being selected is greater, which disrupt our selection to
a certain extent, making the generated solution more difficult to accept. However, we also found that
once Regret-2 Heuristic generated a feasible solution, it would jump out of the short-sighted behavior
of Basic Greedy Heuristic. Therefore, the introduction of Regret-2 Heuristic is necessary.

In the Computational Experiments section, we firstly verified the consistency of the mathematical model
and the algorithm. We then tuned the 7 parameters included in the ALNS algorithm. The tuning results
showed that certain parameter values were at the boundaries of the values we set. We also tried
values beyond the boundaries but within a reasonable range, finding that further exploration of these
parameters reduced their universality. Therefore, the parameter values chosen did not exceed the set
range. The parameter combinations performed well in the subsequent experiments and case study
sections. Then, we generated 20 instances for sensitivity analysis, showing good results, indicating
that the introduction of OD can optimize route costs to some extent. This finding was also verified in
the case study.

In the Case Study section, we defined the total cost performance of using different types of vehicles
and different subsidy ratios for OD. The results showed that introducing OD optimized the total cost
under certain parameter combinations. The pricing strategy for OD by logistics companies and the
willingness of temporary drivers can be further studied. (Kung and Zhong, 2017) discussed a richer
study of OD pricing strategies, including employee pricing, transaction pricing, and cross-subsidy, which
can provide references for further enriching this study.

Conclusions and Recommendations

8.1. Conclusion

The motivation for this research arises from the lack of models in related studies that integrate the fea-
tures of multiple depots, occasional drivers, and multiple visits to depots. These features are added to
better align with real-world situations. Our research objective is defined as: developing a mathemati-
cal model to solve the proposed operations research problem, and selecting an appropriate algorithm
to convert and solve the mathematical model, finding a solution to the routing problem at the lowest
possible cost within a short time.

The literature review provides insights into the development of models and algorithms related to the
Pickup and Delivery Problem with Time Window (PDPTW), Crowd-shipping, and the Open Vehicle Rout-
ing Problem (OVRP). Notable algorithmic approaches include Adaptive Large Neighborhood Search
(ALNS), Variable Neighborhood Search (VNS), Tabu Search (TS), Stochastic and Genetic algorithms,
Simulated Annealing, Greedy Randomized Adaptive Search Procedures (GRASP) for Vehicle Routing,
Integer Linear Programming (ILP), and other specialized algorithms. Upon comparison, it has been
found that the ALNS algorithm is a good choice for solving this problem. The research methods sec-
tion delves into the steps of the ALNS algorithm and the criteria used in each step when solving different
problems. These integrated studies provide significant reference value for solving the current problem.

In the methodology chapter, the specific content of the mathematical model and the ALNS algorithm is
presented. We first constructed a constraint programming model, which is divided into four main parts
based on regular drivers, occasional drivers, and multiple visits to depots. The first part contains the
basic model constraints of the pickup and delivery problem, while the second, third, and fourth parts
respectively address the constraints for regular drivers, occasional drivers, and the feature of multiple
visits to depots by occasional drivers. In the algorithm section, ALNS is applied to solve the proposed
problem. The initial solution of the algorithm uses the Basic Greedy Algorithm, which can obtain a
reasonable initial solution. In the request removal part, random removal operators and worst removal
operators are introduced. The random removal operator has stronger randomness in destroying the
initial solution, while the worst removal operator preferentially removes the costliest requests. The com-
bination of these two removal operators can avoid the solution falling into a local optimum to a certain
extent. In the inserting requests part, Basic Greedy Insertion and Regret-2 Insertion are introduced.
When inserting the removed requests, the Basic Greedy Insertion explores each request waiting to
be restored, and the point and position with the lowest insertion cost are given priority. Regret-2 ad-
dresses the short-sightedness of Basic Greedy Insertion by calculating the sum of the costs of the top
two lowest-cost positions for inserting a request. The request with the highest cost sum is selected first,
which helps jump out of the local optimum. Next, we use a roulette wheel method to assign weights
to each operator, where better-performing operators have greater weights and higher probabilities of
being selected. Acceptance and stopping criteria use simulated annealing acceptance criteria, which
also helps fully explore the solution space and avoid falling into local optima.

The Computational Experiments section uses Cplex and the ALNS algorithm to solve the mathematical

43

8.2. Recommendations 44

model, verifying the effectiveness of both the model and the algorithm. The parameter tuning section
finds more universal parameter settings for the algorithm, enhancing its application range. The sensitiv-
ity analysis part explores whether the introduction of OD and subsidies for OD can lead to cost savings.
In the 20 experimental instances, the results show that introducing one OD, when the OD cost is 90%
of the RD cost, the total routing cost can be reduced by 5.18%. When the OD cost is 80% of the RD
cost, the total routing cost can be reduced by 15.21%. When using one OD and fixing the OD cost
at 80% of the RD cost, the introduction of 60% capacity OD can save 7.86% of the total cost, 70%
capacity OD can save 9.97% of the total cost, and 80% capacity OD can save 15.21% of the total cost.
We conclude that the introduction of OD can reduce routing costs to varying degrees. The number of
ODs, cost, and capacity directly affect the proportion of cost savings. At the same time, cost savings
require companies to choose the appropriate number of ODs, the subsidy price for each OD, and the
capacity of the ODs based on market research to balance the willingness of ODs, the quality of service,
and cost savings.

Finally, we conducted a case study based on the Dutch e-commerce company Ochama, scaling down
the instance to 150 requests and similarly reducing vehicle capacity according to actual vehicle capacity.
We mapped the warehouses and intermediate centers to two-dimensional coordinates based on actual
physical distances and randomly generated requests within the service area. Considering that vehicles
need to run on highways and urban roads, we assumed an average vehicle speed of 60km/h, linking
unit path distance to unit path distance cost. Out of 10 instances, 9 were valid. The third instance
failed because the ALNS algorithm did not find a solution better than the initial solution within the set
10,000 iterations. The remaining 9 valid instances indicate that the introduction of different OD vehicle
types can save total routing costs to varying degrees. Compared to the research by (Hou and Wang,
2021), which introduced OD and reduced the total routing cost by 7.3%, our approach reduced the
total routing cost by 11.37% and 6.85% for small and medium-sized vehicles, respectively, when the
cost-to-capacity ratio was equal. For small vehicles, with a cost ratio of 50%, the total routing cost could
still be reduced by 5.11%.

8.2. Recommendations

This study addresses the proposed a more realistic pickup and delivery problem through modeling
and algorithm development. However, this is the beginning. This section highlights some areas for
improvement in this study and suggests directions for future research.

* Improving the Mathematical Model
By changing the modeling strategy, this research uses an Arc-based Formulation, which has
the advantage of detailing each step along the path, making it easier to understand. However,
it requires more constraint variables. Alternative modeling approaches, such as Node-based
Formulation, Path-based Formulation, or Column Generation, could be explored to reframe the
problem, reducing the number of constraint variables and potentially shortening the solution time.

* Further Optimization of Total Route Cost for Instances
For the ALNS algorithm, we obtained a relatively good solution. For large-scale problems, we
might obtain a local optimal solution. To explore the optimal solution, we could consider using the
variable values of the current best solution of the ALNS algorithm as input for exact algorithms,
such as branch and bound, to further explore the solution space and obtain better solutions.

» Adding More Destruction and Repair Operators
For the ALNS algorithm, only two repair and destruction operators are used. More repair and
destruction operators could be added later to enhance the algorithm’s selectivity, thereby further
improving its performance.

» Adjusting the Strategy for Selecting Destruction Coefficients
In the parameter tuning section, there is a parameter for the destruction coefficient . This study
uses a destruction coefficient of 0.1, which is suitable for scenarios with a small number of re-
quests. For example, with 50 requests, 5 requests will be selected for removal each time a

8.2. Recommendations 45

destruction operator is executed. However, when the number of requests is large, such as 500
requests, 50 requests will be removed, leading to a lengthy repair process for finding new fea-
sible solutions or better solutions. Therefore, it is advisable to link the value of the destruction
operator to the number of requests in the problem. In large-scale cases, controlling the removal
of a smaller number of requests can help quickly explore the solution space in a short time.

» Solving Real-world Package Delivery Problems
The case study in this research randomly generates demand points based on a selected company.
The actual situation involves a larger number of demands. Therefore, future work could apply this
research to real-world problems. Additionally, companies can conduct market research to deter-
mine the proportion of drivers with each type of vehicle and the subsidies that crowdsourced
vehicle drivers can accept per unit distance or unit time. Based on the research results, compa-
nies can decide whether to introduce OD. If OD is introduced, this study can help analyze which
type of OD to choose and the OD pricing strategy.

Bibliography

Ahmed, Z. H. and Yousefikhoshbakht, M. (2023). An improved tabu search algorithm for solving hetero-
geneous fixed fleet open vehicle routing problem with time windows. Alexandria Engineering Journal,
64:349-363.

Allahviranloo, M. and Baghestani, A. (2019). A dynamic crowdshipping model and daily travel behavior.
Transportation Research Part E: Logistics and Transportation Review, 128:175-190.

Archetti, C., Savelsbergh, M., and Speranza, M. G. (2016). The vehicle routing problem with occasional
drivers. European Journal of Operational Research, 254(2):472—-480.

Arslan, A. M., Agatz, N., Kroon, L., and Zuidwijk, R. (2019). Crowdsourced delivery—a dynamic pickup
and delivery problem with ad hoc drivers. Transportation Science, 53(1):222—-235.

Bent, R. and Van Hentenryck, P. (2006). A two-stage hybrid algorithm for pickup and delivery vehicle
routing problems with time windows. Computers & Operations Research, 33(4):875-893.

Bhatti, A., Akram, H., Basit, H. M., Khan, A. U., Raza, S. M., Naqvi, M. B, et al. (2020). E-commerce
trends during covid-19 pandemic. International Journal of Future Generation Communication and
Networking, 13(2):1449-1452.

Braaten, S., Gjgnnes, O., Hvattum, L. M., and Tirado, G. (2017). Heuristics for the robust vehicle
routing problem with time windows. Expert Systems with Applications, 77:136—147.

Brandao, J. (2004). A tabu search algorithm for the open vehicle routing problem. European Journal
of Operational Research, 157(3):552-564.

Cao, E. and Lai, M. (2010). The open vehicle routing problem with fuzzy demands. Expert Systems
with Applications, 37(3):2405-2411.

Cao, E., Lai, M., and Yang, H. (2014). Open vehicle routing problem with demand uncertainty and its
robust strategies. Expert Systems with Applications, 41(7):3569-3575.

Carbone, V., Rouquet, A., and Roussat, C. (2017). The rise of crowd logistics: a new way to co-create
logistics value. Journal of Business Logistics, 38(4):238-252.

Coelho, L. C., Cordeau, J.-F., and Laporte, G. (2012a). Consistency in multi-vehicle inventory-routing.
Transportation Research Part C: Emerging Technologies, 24:270-287.

Coelho, L. C., Cordeau, J.-F., and Laporte, G. (2012b). The inventory-routing problem with transship-
ment. Computers & Operations Research, 39(11):2537-2548.

Dahle, L., Andersson, H., Christiansen, M., and Speranza, M. G. (2019). The pickup and delivery
problem with time windows and occasional drivers. Computers & Operations Research, 109:122—
133.

Dayarian, I. and Savelsbergh, M. (2020). Crowdshipping and same-day delivery: Employing in-store
customers to deliver online orders. Production and Operations Management, 29(9):2153-2174.

Demir, E., Bektas, T., and Laporte, G. (2012). An adaptive large neighborhood search heuristic for the
pollution-routing problem. European journal of operational research, 223(2):346-359.

Devari, A., Nikolaev, A. G., and He, Q. (2017). Crowdsourcing the last mile delivery of online orders by
exploiting the social networks of retail store customers. Transportation Research Part E: Logistics
and Transportation Review, 105:105-122.

46

Bibliography 47

Di Puglia Pugliese, L., Ferone, D., Festa, P., Guerriero, F., and Macrina, G. (2022). Solution approaches
for the vehicle routing problem with occasional drivers and time windows. Optimization Methods and
Software, 37(4):1384-1414.

Doan, A., Ramakrishnan, R., and Halevy, A. Y. (2011). Crowdsourcing systems on the world-wide web.
Communications of the ACM, 54(4):86-96.

Dueck, G. (1993). New optimization heuristics: The great deluge algorithm and the record-to-record
travel. Journal of Computational physics, 104(1):86—-92.

Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The pickup and delivery problem with time windows.
European journal of operational research, 54(1):7-22.

Fleszar, K., Osman, I. H., and Hindi, K. S. (2009). A variable neighbourhood search algorithm for the
open vehicle routing problem. European Journal of Operational Research, 195(3):803—809.

Fu, Z., Eglese, R., and Li, L. Y. (2005). A new tabu search heuristic for the open vehicle routing problem.
Journal of the operational Research Society, 56(3):267-274.

Gao, X., Shi, X., Guo, H., and Liu, Y. (2020). To buy or not buy food online: The impact of the covid-19
epidemic on the adoption of e-commerce in china. PloS one, 15(8):e0237900.

Gdowska, K., Viana, A., and Pedroso, J. P. (2018). Stochastic last-mile delivery with crowdshipping.
Transportation research procedia, 30:90-100.

Ghilas, V., Demir, E., and Van Woensel, T. (2016). An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows and scheduled lines. Computers & Operations
Research, 72:12-30.

Guo, X., Jaramillo, Y. J. L., Bloemhof-Ruwaard, J., and Claassen, G. (2019). On integrating crowd-
sourced delivery in last-mile logistics: A simulation study to quantify its feasibility. Journal of Cleaner
Production, 241:118365.

Hemmelmayr, V. C., Cordeau, J.-F., and Crainic, T. G. (2012). An adaptive large neighborhood search
heuristic for two-echelon vehicle routing problems arising in city logistics. Computers & operations
research, 39(12):3215-3228.

Hou, S. and Wang, C. (2021). Matching models for crowd-shipping considering shipper’s acceptance
uncertainty. In 2021 IEEE International Conference on Autonomous Systems (ICAS), pages 1-6.
IEEE.

Huang, K. and Ardiansyah, M. N. (2019). A decision model for last-mile delivery planning with crowd-
sourcing integration. Computers & Industrial Engineering, 135:898-912.

Irich, S. (2000). A multi-depot pickup and delivery problem with a single hub and heterogeneous
vehicles. European Journal of Operational Research, 122(2):310-328.

Kafle, N., Zou, B., and Lin, J. (2017). Design and modeling of a crowdsource-enabled system for urban
parcel relay and delivery. Transportation research part B: methodological, 99:62—-82.

Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. science,
220(4598):671-680.

Kovacs, A. A., Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2012). Adaptive large neighborhood
search for service technician routing and scheduling problems. Journal of scheduling, 15:579-600.

Kung, L.-C. and Zhong, G.-Y. (2017). The optimal pricing strategy for two-sided platform delivery in the
sharing economy. Transportation Research Part E: Logistics and Transportation Review, 101:1-12.

Laporte, G., Musmanno, R., and Vocaturo, F. (2010). An adaptive large neighbourhood search heuristic
for the capacitated arc-routing problem with stochastic demands. Transportation Science, 44(1):125-
135.

Bibliography 48

Lee, S., Kang, Y., and Prabhu, V. V. (2016). Smart logistics: distributed control of green crowdsourced
parcel services. International Journal of Production Research, 54(23):6956—6968.

Li, B., Krushinsky, D., Van Woensel, T., and Reijers, H. A. (2016). The share-a-ride problem with
stochastic travel times and stochastic delivery locations. Transportation Research Part C: Emerging
Technologies, 67:95-108.

Li, H. and Lim, A. (2001). A metaheuristic for the pickup and delivery problem with time windows.
In Proceedings 13th IEEE International Conference on Tools with Artificial Intelligence. ICTAI 2001,
pages 160-167. IEEE.

Li, W., Wu, Y., Kumar, P. R., and Li, K. (2020). Multi-trip vehicle routing problem with order release time.
Engineering Optimization, 52(8):1279-1294.

Macrina, G., Di Puglia Pugliese, L., Guerriero, F., and Lagana, D. (2017). The vehicle routing problem
with occasional drivers and time windows. In Optimization and Decision Science: Methodologies
and Applications: ODS, Sorrento, Italy, September 4-7, 2017 47, pages 577-587. Springer.

Maknoon, Y. and Laporte, G. (2017). Vehicle routing with cross-dock selection. Computers & Opera-
tions Research, 77:254-266.

Mara, S. T. W., Norcahyo, R., Jodiawan, P., Lusiantoro, L., and Rifai, A. P. (2022). A survey of adap-
tive large neighborhood search algorithms and applications. Computers & Operations Research,
146:105903.

MirHassani, S. and Abolghasemi, N. (2011). A particle swarm optimization algorithm for open vehicle
routing problem. Expert Systems with Applications, 38(9):11547—-11551.

Muklason, A., Bwananesia, P. C., YT, S. H., Angresti, N. D., and Supoyo, V. A. (2018). Automated
examination timetabling optimization using greedy-late acceptance-hyperheuristic algorithm. In 2018
International Conference on Electrical Engineering and Computer Science (ICECOS), pages 201—
206. IEEE.

Nanry, W. P. and Barnes, J. W. (2000). Solving the pickup and delivery problem with time windows
using reactive tabu search. Transportation Research Part B: Methodological, 34(2):107—121.

Nowak, M., Ergun, O., and White lll, C. C. (2008). Pickup and delivery with split loads. Transportation
science, 42(1):32—43.

Nowak, M. A. (2005). The pickup and delivery problem with split loads. Georgia Institute of Technology.

Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2008). A survey on pickup and delivery problems: Part
i: Transportation between customers and depot. Journal fiir Betriebswirtschaft, 58:21-51.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers &
operations research, 34(8):2403-2435.

Pisinger, D. and Ropke, S. (2019). Large neighborhood search. Handbook of metaheuristics, pages
99-127.

Potvin, J.-Y. and Rousseau, J.-M. (1993). A parallel route building algorithm for the vehicle routing and
scheduling problem with time windows. European Journal of Operational Research, 66(3):331-340.

Pugliese, L. D. P., Ferone, D., Festa, P., Guerriero, F., and Macrina, G. (2022). Combining variable
neighborhood search and machine learning to solve the vehicle routing problem with crowd-shipping.
Optimization Letters, pages 1-23.

Qu, Y. and Bard, J. F. (2012). A grasp with adaptive large neighborhood search for pickup and delivery
problems with transshipment. Computers & Operations Research, 39(10):2439-2456.

Qu, Y. and Bard, J. F. (2013). The heterogeneous pickup and delivery problem with configurable vehicle
capacity. Transportation Research Part C: Emerging Technologies, 32:1-20.

Bibliography 49

Ren, S., Luo, F,, Lin, L., Hsu, S.-C., and Li, X. I. (2019). A novel dynamic pricing scheme for a large-
scale electric vehicle sharing network considering vehicle relocation and vehicle-grid-integration. /n-
ternational Journal of Production Economics, 218:339-351.

Repoussis, P. P., Tarantilis, C. D., and loannou, G. (2007). The open vehicle routing problem with time
windows. Journal of the Operational Research Society, 58(3):355-367.

Ropke, S. and Pisinger, D. (2006a). An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation science, 40(4):455—-472.

Ropke, S. and Pisinger, D. (2006b). A unified heuristic for a large class of vehicle routing problems
with backhauls. European Journal of Operational Research, 171(3):750-775.

Salari, M., Toth, P., and Tramontani, A. (2010). An ilp improvement procedure for the open vehicle
routing problem. Computers & Operations Research, 37(12):2106—2120.

Sampaio, A., Savelsbergh, M., Veelenturf, L. P., and Van Woensel, T. (2020). Delivery systems with
crowd-sourced drivers: A pickup and delivery problem with transfers. Networks, 76(2):232—-255.

Santos, V. G. M. and de Carvalho, M. A. M. (2018). Adaptive large neighborhood search applied to the
design of electronic circuits. Applied Soft Computing, 73:14-23.

Sarasola, B. and Doerner, K. F. (2020). Adaptive large neighborhood search for the vehicle routing
problem with synchronization constraints at the delivery location. Networks, 75(1):64—85.

Sariklis, D. and Powell, S. (2000). A heuristic method for the open vehicle routing problem. Journal of
the Operational Research Society, 51:564-573.

Sevkli, A. Z. and Giiler, B. (2017). A multi-phase oscillated variable neighbourhood search algorithm
for a real-world open vehicle routing problem. Applied Soft Computing, 58:128—-144.

Shaw, P. (1997). A new local search algorithm providing high quality solutions to vehicle routing prob-
lems. APES Group, Dept of Computer Science, University of Strathclyde, Glasgow, Scotland, UK,
46.

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing
problems. In International conference on principles and practice of constraint programming, pages
417-431. Springer.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations research, 35(2):254-265.

Song, L., Cherrett, T., McLeod, F., and Guan, W. (2009). Addressing the last mile problem: transport
impacts of collection and delivery points. Transportation research record, 2097(1):9-18.

Tao, Y., Zhuo, H., and Lai, X. (2023). The pickup and delivery problem with multiple depots and dynamic
occasional drivers in crowdshipping delivery. Computers & Industrial Engineering, 182:109440.

Tarantilis, C. and Kiranoudis, C. (2002). Distribution of fresh meat. Journal of Food Engineering,
51(1):85-91.

Tarantilis, C. D., Diakoulaki, D., and Kiranoudis, C. T. (2004a). Combination of geographical informa-
tion system and efficient routing algorithms for real life distribution operations. European Journal of
Operational Research, 152(2):437—-453.

Tarantilis, C. D., loannou, G., Kiranoudis, C. T., and Prastacos, G. P. (2004b). A threshold accepting
approach to the open vehicle routing problem. RAIRO-Operations Research, 38(4):345-360.

Tarantilis, C. D., loannou, G., Kiranoudis, C. T., and Prastacos, G. P. (2005). Solving the open vehicle
routeing problem via a single parameter metaheuristic algorithm. Journal of the Operational research
Society, 56:588-596.

Bibliography 50

Tavakkoli-Moghaddam, R., Meskini, M., Nasseri, H., and Tavakkoli-Moghaddam, H. (2019). A multi-
depot close and open vehicle routing problem with heterogeneous vehicles. In 2019 international
conference on industrial engineering and systems management (IESM), pages 1-6. |IEEE.

Torres, F., Gendreau, M., and Rei, W. (2022). Crowdshipping: An open vrp variant with stochastic
destinations. Transportation Research Part C: Emerging Technologies, 140:103677.

Toth, P. and Vigo, D. (2014). Vehicle routing: problems, methods, and applications. SIAM.

Van Landeghem, H. (1988). A bi-criteria heuristic for the vehicle routing problem with time windows.
European Journal of Operational Research, 36(2):217-226.

Vincent, F. Y., Aloina, G., Jodiawan, P., Gunawan, A., and Huang, T.-C. (2023). The vehicle routing
problem with simultaneous pickup and delivery and occasional drivers. Expert Systems with Appli-
cations, 214:119118.

Vincent, F. Y., Jewpanya, P., and Redi, A. P. (2016). Open vehicle routing problem with cross-docking.
Computers & Industrial Engineering, 94:6-17.

Voigt, S. and Kuhn, H. (2022). Crowdsourced logistics: The pickup and delivery problem with trans-
shipments and occasional drivers. Networks, 79(3):403—426.

Parameters Tuning Result

Table A.1: Instances Parameter Tuning Results - Random Parameter p

Fixed parameter setting: « = 0.1, Tstart = 200, c=0.9,7=0.2, 0, =10,02, =5

Tuning Instances Run Time Avg. Time Total Avg. Time Cost Avg. Cost Total Avg. Cost
1 2 3 4 5 1 2 3 4 5

Parameter setting: p =1

2-1-10-1 0.7 07 07 06 06 066 22.00 294 357 314 357 357 335.8 1057.87

2-1-10-2 0.7 07 08 07 07 072 400.5 4005 389 389 389 393.6

2-2-30-1 11.9 129 112 118 11.3 11.82 13435 1278 1310 1176 1332 1287.9

2-2-30-2 9.6 80 77 76 78 8.14 1049 1030 1009 1067.5 1092.5 1049.6

3-2-50-1 49.0 49.3 475 46.8 46.6 47.84 1979 1979 1979 1979 1979 1979

3-2-50-2 66.7 629 542 619 684 6282 12945 1306 1304 1304 1298 1301.3

Parameter setting: p=5

2-1-10-1 0.8 07 07 08 06 072 20.82 357 3915 357 357 294 351.3 1060.95

2-1-10-2 0.6 07 07 07 07 068 389 389 400.5 4005 389 393.6

2-2-30-1 1.1 125 1.8 127 115 11.92 1620.5 13315 1221 1006 1557.5 13473

2-2-30-2 6.4 6.1 57 56 63 6.02 1008 1033.5 1091.5 1031.5 1046 1042.1

3-2-50-1 45.6 59.2 474 483 457 49.24 1979 1640 1979 1979 1979 1911.2

3-2-50-2 69.5 48.8 464 551 62.0 56.36 1364.5 1302 1298 1304 13325 1320.2

Parameter setting: p =10

2-1-10-1 0.7 06 06 06 06 062 20.29 357 294 357 357 357 344.4 1063.32

2-1-10-2 0.6 07 07 08 09 074 389 389 4005 389 389 391.3

2-2-30-1 9.9 1.1 107 105 11.0 10.64 1549.5 970 1132 11455 1572 1273.8

2-2-30-2 7.8 85 84 9.1 93 862 1051 1098.5 1038 1022 1066 1055.1

3-2-50-1 46.4 44.0 435 447 444 4460 1979 1979 1979 1979 1979 1979

3-2-50-2 63.0 624 66.2 41.7 493 56.52 1457.5 1320 1304 1302 1298 1336.3

Parameter setting: p = 20

2-1-10-1 0.6 06 07 07 06 064 23.25 357 357 357 357 3285 3513 1064.87

2-1-10-2 0.8 08 07 07 06 072 389 400.5 389 389 389 391.3

2-2-30-1 11.6 107 109 1.0 11.0 11.04 1328.5 14285 15825 1277 1028 1328.9

2-2-30-2 7.2 69 66 68 67 684 1023 1049.5 995 1029.5 1104.5 1040.3

3-2-50-1 45.0 477 457 448 453 4570 1979 1979 1979 1979 1979 1979

3-2-50-2 66.6 64.7 655 624 68.7 6558 12945 1306 1306 1306 1298 1302.9

51

52

Table A.2: Instances Parameter Tuning Results - Reaction Factor r

Fixed parameter setting: x = 0.1, p =1, Tgtart =200, ¢c=0.9,0, =10,0,=5

Tuning Instances Run Time Avg. Time Total Avg. Time Cost Avg. Cost Total Avg. Cost
1 2 3 4 5 1 2 3 4 5

Parameter setting: » = 0.2

2-1-10-1 1.0 1.0 1.0 1.1 0.8 0.98 28.97 357 357 294 357 357 344.4 1064.63

2-1-10-2 1.2 1.0 09 1.3 1.5 1.18 389 389 464 389 464 419.0

2-2-30-1 16.1 155 149 144 146 15.10 1556 1483 1136 1176 1285 1327.2

2-2-30-2 13.7 96 97 10.7 9.8 10.70 1065.5 11155 1025 1011 1016.5 1046.7

3-2-50-1 73.8 70.3 574 564 60.0 63.58 1833 1979 1979 1979 1979 1949.8

3-2-50-2 733 80.4 859 87.7 842 8230 1304 1304.5 1298 1293 1304 1300.7

Parameter setting: r = 0.4

2-1-10-1 1.7 1.5 1.5 1.0 08 1.30 26.30 357 357 357 357 357 357.0 1079.62

2-1-10-2 1.8 17 12 08 09 1.28 389 400.5 389 389 389 391.3

2-2-30-1 14.5 128 128 134 11.2 12.94 1559 14645 1176.5 1404 1423 1405.4

2-2-30-2 10.3 9.9 105 112 10.0 10.38 1080.5 1054.5 1013.5 1027.5 1055 1046.2

3-2-50-1 58.1 59.7 573 608 632 59.82 1979 1979 1979 1979 1979 1979.0

3-2-50-2 78.5 735 63.1 746 708 7210 13235 1298 1304 1293 12755 1298.8

Parameter setting: = 0.6

2-1-10-1 0.8 08 08 08 09 0.82 29.14 357 357 357 3915 357 363.9 1070.48

2-1-10-2 0.8 09 08 09 1.0 0.88 464 389 389 389 407.8

2-2-30-1 12.9 145 141 129 139 13.66 1530 1405 1495 1483 1514 1485.4

2-2-30-2 9.9 10.7 10.8 10.6 10.9 10.58 1052 1038 1026 1009.5 1026.5 1030.4

3-2-50-1 63.7 611 777 69.2 59.0 66.14 1979 1979 1706.5 1566.5 1979 1842.0

3-2-50-2 81.8 632 67.3 97.3 104.1 8274 12955 1287.5 1290.5 12955 1298 1293.4

Parameter setting: » = 0.8

2-1-10-1 0.9 08 08 09 07 0.82 27.30 357 357 357 357 357 357.0 1093.55

2-1-10-2 1.0 1.0 09 13 09 1.02 389 389 389 389 389 389.0

2-2-30-1 11.5 166 18.6 13.8 16.0 15.30 1590 1425 1637.5 1393 1379 1484.9

2-2-30-2 10.6 9.9 10.1 9.9 1.5 10.40 1093.5 1082 1050.5 1005.5 1032.5 1052.8

3-2-50-1 60.3 55,5 56.3 553 56.0 56.68 1979 1979 1979 1979 1979 1979.0

3-2-50-2 87.5 76.0 776 80.2 76.7 79.60 1298 1304 1298 1295 1298 1298.6

Table A.3: Instances Parameter Tuning Results - Score Adjustment Factor o

Fixed parameter setting: x = 0.1, p =1, Tstart =200,¢c=0.9,7=0.2,0, =5

Tuning Instances Run Time Avg. Time Total Avg. Time Cost Avg. Cost Total Avg. Cost
1 2 3 4 5 1 2 3 4 5

Parameter setting: 0, =10

2-1-10-1 1.2 1.1 1.1 0.9 1.0 1.06 26.25 357 357 357 357 357 357.0 1086.8

2-1-10-2 1.0 1.0 1.2 1.3 1.7 1.24 389 389 389 389 389 389.0

2-2-30-1 16.6 163 129 142 13.0 1440 1524 1470.5 15215 1516 1433.5 1493.1

2-2-30-2 11.0 8.7 9.1 89 94 942 1126.5 1126.5 1091 10525 1126.5 1104.6

3-2-50-1 56.8 556 56.9 585 827 62.10 1979 1979 1979 18325 1590 1871.9

3-2-50-2 86.9 839 572 621 56.3 69.28 13245 1304 12945 1310 1293 1305.2

Parameter setting: o, = 20

2-1-10-1 1.0 1.2 1.2 1.2 1.0 1.12 26.35 357 357 3915 357 357 363.9 1077.2

2-1-10-2 1.4 1.3 1.1 08 07 1.06 389 389 389 389 389 389.0

2-2-30-1 125 144 146 135 127 13.54 1164.5 17345 12535 1298.5 14755 1385.3

2-2-30-2 8.8 10.3 103 88 9.2 9.48 1068 1026 1016 1051.5 1068 1045.9

3-2-50-1 54.0 551 54.0 549 557 5474 1979 1979 1979 1979 1979 1979.0

3-2-50-2 787 80.8 821 70.7 784 78.14 1302 12875 1286.5 1326.5 1298 1300.1

Parameter setting: o, = 30

2-1-10-1 0.8 08 07 07 08 076 26.29 357 357 357 357 357 357.0 1060.1

2-1-10-2 0.8 09 08 09 08 084 389 389 389 389 389 389.0

2-2-30-1 15.3 12.7 153 136 149 1436 14755 1530 1493 1424 1557 1495.9

2-2-30-2 8.4 8.5 10.2 94 10.1 9.32 1068 1059 1003.5 1032.5 1001.5 1032.9

3-2-50-1 56.1 57.8 66.7 49.0 67.5 59.42 1979 1979 1483.5 1979 1469.5 1778.0

3-2-50-2 83.8 841 818 581 574 73.04 1307 1298 1304 1326 1304 1307.8

Parameter setting: 0, = 40

2-1-10-1 0.8 08 08 08 09 082 27.33 357 357 357 357 357 357.0 1088.73

2-1-10-2 0.8 08 08 07 07 076 389 389 4005 389 389 391.3

2-2-30-1 15.6 145 154 146 10.7 14.16 1442 1560 14615 1319.5 1493 1455.2

2-2-30-2 10.3 9.7 101 9.2 94 974 1089.5 1070 1016 1031.5 1032.5 1047.9

3-2-50-1 56.2 56.8 543 549 60.5 56.54 1979 1979 1979 1979 1979 1979.0

3-2-50-2 81.0 93.0 832 76.8 759 8198 1298 1298 1304 1312 1298 1302.0

53

Table A.4: Instances Parameter Tuning Results - Score Adjustment Factor o2

Fixed parameter setting: « = 0.1, p =1, Tgtar =200, c=0.9, »r = 0.2, 0y, =30

Tuning Instances Run Time Avg. Time Total Avg. Time Cost Avg. Cost Total Avg. Cost
1 2 3 4 5 1 2 3 4 5

Parameter setting: o> =5

2-1-10-1 1.0 1.1 1.2 1.0 1.0 1.06 27.83 294 357 357 357 357 344.4 1048.48

2-1-10-2 1.1 1.2 1.2 1.5 1.7 1.34 389 389 389 389 389 389.0

2-2-30-1 17.9 127 138 147 15.0 14.82 1281.5 1483.0 1404.0 1430.0 1521.5 1424.0

2-2-30-2 10.8 10.2 123 1.7 11.8 11.36 1084.0 1093.0 988.5 1108.5 996.0 1054.0

3-2-50-1 62.5 619 812 498 618 63.44 1979.0 1979.0 1476.0 1868.5 1569.5 17744

3-2-50-2 76.0 739 791 743 7.4 74.94 1326.0 1326.0 1290.0 1293.0 1290.5 1305.1

Parameter setting: o> =10

2-1-10-1 1.6 1.4 14 1.2 0.8 1.28 25.67 357 294 3915 357 357 351.3 1067.48

2-1-10-2 1.5 1.3 1.1 0.8 0.9 1.12 389 389 389 389 389 389.0

2-2-30-1 12.8 129 126 124 12.1 12.56 1469 1492 1420 1410 1529 1464.0

2-2-30-2 9.9 94 9.0 10.6 10.8 9.94 1009.0 1059.5 10175 11140 10175 1043.5

3-2-50-1 56.6 56.6 554 830 552 61.36 1979.0 1979.0 1979.0 1372.0 1979.0 1857.6

3-2-50-2 68.4 526 63.7 734 806 67.74 1302.0 12925 1298.0 1307.0 1298.0 1299.5

Parameter setting: o, =15

2-1-10-1 0.8 08 08 08 0.7 0.78 26.19 357 357 3925 357 3915 371.0 1072.67

2-1-10-2 0.9 09 09 09 0.9 0.90 400.5 389.0 389.0 389.0 389.0 3913

2-2-30-1 13.2 16.8 18.1 200 20.2 17.66 1261.0 1496.5 13085 1437.0 1313.0 1363.2

2-2-30-2 8.4 90 85 94 8.4 8.74 1067.5 995.0 1052.5 1009.0 1037.5 1032.3

3-2-50-1 56.8 559 54.1 556 559 55.66 1979.0 1979.0 1979.0 1979.0 1979.0 1979.0

3-2-50-2 86.9 794 693 712 603 7342 1290.5 1298.0 1302.0 1298.0 1307.5 1299.2

Parameter setting: o, =20

2-1-10-1 0.8 10 09 08 1.0 0.90 28.7 357 357 357 357 357 357.0 1110.27

2-1-10-2 1.0 09 08 09 1.0 0.92 389 389 389 389 389 389.0

2-2-30-1 12,5 120 189 151 121 14.12 1875.0 1528.5 1483.0 1483.0 1518.0 15775

2-2-30-2 8.7 92 89 93 9.5 9.12 1126.5 1022.0 1023.0 1126.5 1025.0 1064.6

3-2-50-1 57.7 549 552 543 564 55.70 1979.0 1979.0 1979.0 1979.0 1979.0 1979.0

3-2-50-2 79.9 81.7 852 1059 1044 9142 1294.0 1299.0 1298.0 1291.0 1290.5 1294.5

Table A.5: Instances Parameter Tuning Results - Initial Temperature Titart

Fixed parameter setting: x=0.1,p=1,¢=0.9,r=0.2,0, =30,0,=5

Tuning Instances Run Time Avg. Time Total Avg. Time Cost Avg. Cost Total Avg. Cost
1 2 3 4 5 1 2 3 4 5

Parameter setting: 7Tstart = 100

2-1-10-1 2.0 1.8 14 1.1 1.0 1.46 27.93 357 357 357 357 357 357.0 1073.97

2-1-10-2 1.1 1.0 1.1 1.2 1.4 1.16 389 389 389 389 400.5 3913

2-2-30-1 20.9 141 174 164 149 16.74 1134.5 1530.5 1545.5 1264 1368.5 1368.6

2-2-30-2 14.6 9.3 9.3 73 76 9.62 1061 1003.5 1001.5 1066.5 1032.5 1033.0

3-2-50-1 64.6 58.2 621 61.7 619 6170 1979 1979 1979 1979 1979 1979.0

3-2-50-2 100.0 86.3 616 68.2 684 76.90 1364.5 1304.0 1304.0 1298 1304 1314.9

Parameter setting: Tgart = 200

2-1-10-1 1.1 1.1 1.2 1.3 1.3 1.20 28.20 357 357 357 357 357 357.0 1081.87

2-1-10-2 1.7 1.3 12 11 07 120 400.5 389 389 389 4005 393.6

2-2-30-1 12.2 12.2 11.7 123 134 1236 1340.5 1502.5 15225 1152 1483 1400.1

2-2-30-2 10.8 10.5 10.0 106 104 10.46 1082 1030.5 1078 1108.5 1013.5 1062.5

3-2-50-1 61.9 614 624 618 63.1 6212 1979 1979 1979 1979 1979 1979.0

3-2-50-2 85.8 823 798 80.3 81.0 8184 1293.5 1304 12955 1298 1304 1299.0

Parameter setting: Tstart = 300

2-1-10-1 0.8 0.8 0.8 1.0 10 088 30.18 357 357 3915 357 357 363.9 1042.35

2-1-10-2 0.7 0.8 08 09 10 084 400.5 389 389 389 389 391.3

2-2-30-1 16.4 213 200 19.0 16.9 18.72 13325 1146 1170.5 12795 11445 12146

2-2-30-2 10.3 9.8 10.8 9.8 10.5 10.24 1107.5 1091 1054.5 10525 1068 1074.7

3-2-50-1 63.6 944 618 594 588 67.60 1979 1635 1979 1979 1979 1910.2

3-2-50-2 77.0 80.7 889 816 859 8282 1298 1299 1298 1304 1298 1299.4

Parameter setting: Tstart = 400

2-1-10-1 0.9 0.8 08 09 08 084 28.89 357 357 357 357 357 357.0 1081.47

2-1-10-2 0.9 0.9 1.0 12 09 0.98 389 389 389 389 389 389.0

2-2-30-1 14.7 14.3 146 119 153 14.16 1875 1328.5 1471 1492 1459 1525.1

2-2-30-2 9.4 10.8 127 130 126 11.70 1055.,5 1017.5 990.5 1029 1067 1031.9

3-2-50-1 60.0 709 645 57.6 57.3 62.06 1979 17415 1719.5 1979 1979 1879.6

3-2-50-2 89.3 100.7 735 80.7 73.8 83.60 1334 1294 1298 1298 1307 1306.2

54

Table A.6: Instances Parameter Tuning Results - Cooling Rate ¢

Fixed parameter setting: x =0.1, p =1, Tgtart =300, 7 =0.2, 0, =30,0, =5

Tuning Instances Run Time Avg. Time Total Avg. Time Cost Avg. Cost Total Avg. Cost
2 3 4 5 1 2 3 4 5

Parameter setting: ¢ = 0.8

2-1-10-1 1.4 12 12 15 14 134 27.21 357 357 357 357 357 357.0 1074.72

2-1-10-2 1.4 13 1.0 1.0 1.0 114 389 389 389 389 389 389.0

2-2-30-1 15.7 96 121 126 83 11.66 1734 1205 1692.5 1483 1475.5 1518.0

2-2-30-2 14.6 1.3 101 107 125 11.84 1083.5 1001.5 1050.5 1066.5 1023.0 1045.0

3-2-50-1 70.8 70.0 608 569 658 64.86 1786.5 1848.5 1979 1979 1620.0 1842.6

3-2-50-2 68.1 66.5 685 833 756 724 1287.5 1304 1296 1298 1298 1296.7

Parameter setting: ¢ = 0.85

2-1-10-1 1.4 16 12 09 1.1 1.24 26.98 294 357 357 357 357 344.4 1083.68

2-1-10-2 0.9 1.0 141 1.1 1.0 1.02 389 389 389 389 389 389.0

2-2-30-1 12.0 123 1.7 121 133 1228 14245 1529 1439 1334.5 1481 1441.6

2-2-30-2 10.5 109 97 102 95 10.16 1076.5 1068 1022 1017.5 1033.5 1043.5

3-2-50-1 56.8 58.3 558 57.2 585 57.32 1979 1979 1979 1979 1979 1979.0

3-2-50-2 79.6 836 812 794 754 79.84 1326 1297 1304 1298 1298 1304.6

Parameter setting: ¢ =0.9

2-1-10-1 1.0 1.0 1.0 1.0 1.0 1.00 26.43 357 357 357 357 357 357.0 1073.1

2-1-10-2 0.8 09 09 08 09 0.86 389 389 389 389 389 389.0

2-2-30-1 14.6 132 133 137 132 13.60 12525 11855 16415 1393.5 13045 13555

2-2-30-2 11.0 102 97 88 88 9.70 1070 1001.5 11265 10525 10415 1058.4

3-2-50-1 57.7 56.5 56.9 56.6 56.7 56.88 1979 1979 1979 1979 1979 1979.0

3-2-50-2 827 888 740 712 66.0 76.54 1298 12955 13055 12955 1304 1299.7

Parameter setting: ¢ = 0.95

2-1-10-1 1.0 09 09 09 1.0 094 30.42 3915 357 357 357 357 363.9 1056.3

2-1-10-2 0.8 08 07 07 07 074 389 389 389 464 389 404.0

2-2-30-1 16.2 163 154 138 129 1472 1362.5 989.5 12445 1461 1483 1308.1

2-2-30-2 14.0 153 141 168 150 15.04 1001.5 1036 1013.5 1001.5 10245 10154

3-2-50-1 57.4 58.2 539 564 605 57.28 1979 1979 1979 1979 1779 1939.0

3-2-50-2 93.8 87.8 945 1013 915 93.78 1402 1318.5 12615 1287 1268 1307.4

Sensitivity Analysis Results -
Capacity and Cost

Table B.1: Sensitivity Analysis - Capacity and Cost - 50% Capacity

50% Capacity

Instances 30% Cost 40% Cost Gap - Cost=40% 50% Cost Gap - Cost=50% 60% Cost Gap - Cost=60% 70% Cost Gap - Cost=70%

2.2.30.1 1026 1060.6 3.37% 1094 6.63% 1035.6 0.94% 1470.6 43.33%
2.2.30.2 695.7 836.6 20.25% 950 36.55% 922.6 32.61% 1080.5 55.31%
2.2.30.3 814.1 1214.2 49.15% 948.5 16.51% 1088.2 33.67% 1051.4 29.15%
2.2.30.4 819.5 879 7.26% 946 15.44% 1029 25.56% 1139.5 39.05%
2.2.30.5 872.3 974.4 11.70% 1076.5 23.41% 1146.2 31.40% 1136.8 30.32%
2.2.30.6 904.4 817 -9.66% 961.5 6.31% 1067.4 18.02% 968.9 7.13%

2.2.30.7 884.9 1036.4 17.12% 1078 21.82% 1157 30.75% 1276.7 44.28%
2.2.30.8 1108.1 938.8 -15.28% 1227.5 10.78% 1102.2 -0.53% 10567.3 -4.58%
2.2.30.9 666.9 708.2 6.19% 893.5 33.98% 877.4 31.56% 832.1 24.77%
2.2.30.10 7911 810.6 2.46% 1033.5 30.64% 766.2 -3.15% 1109.4 40.24%
3.2.50.1 1550.2 1727.8 11.46% 1688 8.89% 1764 13.79% 2002.4 29.17%
3.2.50.2 1535.6 1713.2 11.57% 1741.5 13.41% 2114.4 37.69% 1881.6 22.53%
3.2.50.3 1555.1 1759.8 13.16% 2008.5 29.16% 1895.2 21.87% 2076.4 33.52%
3.2.50.4 1828.1 1861.4 1.82% 2255 23.35% 2378.8 30.12% 2022.2 10.62%
3.2.50.5 1975 2119 7.29% 2263 14.58% 2407 21.87% 2551 29.16%
3.2.50.6 1257.6 1482.2 17.86% 1671 32.87% 1909 51.80% 2326.5 85.00%
3.2.50.7 1834.7 1977.6 7.79% 2120.5 15.58% 2263.4 23.37% 2406.3 31.15%
3.2.50.8 1622.2 1756.6 8.29% 1501 -7.47% 1578.8 -2.68% 2159.8 33.14%
3.2.50.9 1550.5 1679 8.29% 1807.5 16.58% 1936 24.86% 2064.5 33.15%
3.2.50.10 1340.5 1479 10.33% 1617.5 20.66% 1328 -0.93% 1894.5 41.33%

Table B.2: Sensitivity Analysis - Capacity and Cost - 60% Capacity

60% Capacity

Instances 40% Cost 50% Cost Gap - Cost=50% 60% Cost Gap - Cost=60% 70% Cost Gap -Cost=70% 80% Cost Gap - Cost=80%

2.2.30.1 1086.8 1356 24.77% 1219.6 12.22% 1438.1 32.32% 1229 13.08%
2.2.30.2 866 760.5 -12.18% 913.4 5.47% 1121.4 29.49% 1153 33.14%
2.2.30.3 1155.6 1137.5 -1.57% 1150.2 -0.47% 1145 -0.92% 1135.2 -1.77%
2.2.30.4 892.6 936 4.86% 994.6 11.43% 1032.8 15.71% 1073.4 20.26%
2.2.30.5 905 915 1.10% 1100.8 21.64% 1228.3 35.72% 1312.4 45.02%
2.2.30.6 859 775 -9.78% 1025.4 19.37% 983.5 14.49% 1144.8 33.27%
2.2.30.7 796.4 1042 30.84% 1256 57.711% 1187.8 49.15% 1300.6 63.31%
2.2.30.8 883.2 1038 17.53% 1255.8 42.19% 1071.6 21.33% 996.8 12.86%
2.2.30.9 859.2 949.5 10.51% 1062.8 23.70% 1144 33.15% 1195 39.08%
2.2.30.10 9458 1031 9.01% 1099.4 16.24% 1140 20.53% 1152.8 21.89%
3.2.50.1 1700.6 1904.5 11.99% 1751.4 2.99% 1956 15.02% 2034.4 19.63%
3.2.50.2 1472 1576.5 7.10% 1794 21.88% 1734.3 17.82% 1967.2 33.64%
3.2.50.3 1691 1801.5 6.53% 1826 7.98% 2105.2 24.49% 2015 19.16%
3.2.50.4 1793.6 1786.5 -0.40% 1791.8 -0.10% 1980.8 10.44% 2149.8 19.86%
3.2.50.5 2119 2263 6.80% 2407 13.59% 2551 20.39% 2695 27.18%
3.2.50.6 1370.2 1465 6.92% 1310.6 -4.35% 1416 3.34% 1672.6 22.07%
3.2.50.7 1977.6 2120.5 7.23% 2263.4 14.45% 2406.3 21.68% 2136.8 8.05%

3.2.50.8 1674.6 1433.5 -14.40% 1949.4 16.41% 1614.6 -3.58% 22242 32.82%
3.2.50.9 1645.8 1777.5 8.00% 1874.6 13.90% 2040.9 24.01% 21726 32.01%
3.2.50.10 14942 1636.5 9.52% 1778.8 19.05% 19211 28.57% 2063.4 38.09%

55

56

Table B.3: Sensitivity Analysis - Capacity and Cost - 70% Capacity

70% Capacity

Instances 50% Cost 60% Cost Gap - Cost=60% 70% Cost Gap - Cost=70% 80% Cost Gap - Cost=80% 90% Cost Gap - Cost=90%
2.2.30.1 884 1274.2 44.14% 1328.5 50.28% 1141 29.07% 1404.8 58.91%
2.2.30.2 856 913.4 6.71% 1025 19.74% 1155.4 34.98% 1313 53.39%
2.2.30.3 1126.5 177.2 4.50% 1182.4 4.96% 1188.8 5.53% 1178.2 4.59%
2.2.30.4 928.5 995.6 7.23% 1048.8 12.96% 1280.6 37.92% 1165.9 25.57%
2.2.30.5 826 1073.2 29.93% 1068.7 29.38% 1148.6 39.06% 1336.8 61.84%
2.2.30.6 959 1001.2 4.40% 1051.6 9.66% 1172.2 22.23% 1265.6 31.97%
2.2.30.7 1031 1094.2 6.13% 1189.7 15.39% 1264.6 22.66% 1340.2 29.99%
2.2.30.8 1033.5 1166.2 12.84% 1211.7 17.24% 1257 21.63% 1189.7 15.11%
2.2.30.9 965 1034.8 7.23% 1037.6 7.52% 1190.8 23.40% 1228.8 27.34%
2.2.30.10 1040.5 1049.4 0.86% 1113.4 7.01% 1252.2 20.35% 1279.8 23.00%
3.2.50.1 1357 1670 23.07% 1822.4 34.30% 2008.8 48.03% 1945.7 43.38%
3.2.50.2 1528 1719.8 12.55% 1889.1 23.63% 1774.6 16.14% 1859.3 21.68%
3.2.50.3 1838.5 1779.2 -3.23% 2121.3 15.38% 2098 14.11% 2072.7 12.74%
3.2.50.4 1488 1866.8 25.46% 2054.6 38.08% 2035.6 36.80% 2335.7 56.97%
3.2.50.5 1791 1877.2 4.81% 1715.7 -4.20% 2073.8 15.79% 2284.5 27.55%
3.2.50.6 1255 1438 14.58% 1449.7 15.51% 1500.2 19.54% 1772.9 41.27%
3.2.50.7 2135 2285.4 7.04% 2435.8 14.09% 2586.2 21.13% 2736.6 28.18%
3.2.50.8 1411.5 1438 1.88% 2111.4 49.59% 2252.6 59.59% 1830.7 29.70%
3.2.50.9 1329.5 1447 .4 8.87% 1610.3 21.12% 1705 28.24% 1604.2 20.66%
3.250.10 1328 1593 19.95% 1844.1 38.86% 1986.4 49.58% 2128.7 60.29%
Table B.4: Sensitivity Analysis - Capacity and Cost - 80% Capacity
80% Capacity
Instances 50% Cost 60% Cost Gap - Cost=60% 70% Cost Gap - Cost=70% 80% Cost Gap - Cost=80% 90% Cost Gap - Cost=90%
2.2.301 1142.5 1143.6 0.10% 1248.6 9.29% 1368.8 19.81% 15721 37.60%
2.2.30.2 856 920 7.48% 1011.6 18.18% 1129.8 31.99% 1205.3 40.81%
2.2.30.3 1171 1163.4 -0.65% 1240.2 5.91% 1227.2 4.80% 12341 5.39%
2.2.30.4 809.5 983.6 21.51% 1034.8 27.83% 934.8 15.48% 1082.9 33.77%
2.2.30.5 971 1037.4 6.84% 1132.1 16.59% 1092.8 12.54% 1320.3 35.97%
2.2.30.6 922.5 951.2 3. 1% 1084.1 17.52% 1049.8 13.80% 1151.5 24.82%
2.2.30.7 968 935 -3.41% 988.5 2.12% 1173.2 21.20% 1279.6 32.19%
2.2.30.8 1116.5 1227.6 9.95% 1293.3 15.84% 1215.6 8.88% 1514.4 35.64%
2.2.30.9 1047.5 1060.4 1.23% 1200.5 14.61% 1236.8 18.07% 1246.1 18.96%
2.2.30.10 1011 1026.6 1.54% 1208.4 19.53% 1236.2 22.27% 1246.8 23.32%
3.2.50.1 1349.5 1815.4 34.52% 1810.5 34.16% 1593.2 18.06% 1997.9 48.05%
3.2.50.2 1550 1628.6 5.07% 1743.4 12.48% 1818 17.29% 1979.4 27.70%
3.2.50.3 1889 1916 1.43% 2121.3 12.30% 2300.4 21.78% 2054.3 8.75%
3.2.50.4 1793.5 1871.4 4.34% 2011.8 12.17% 2034.4 13.43% 2227.5 24.20%
3.2.50.5 1973 1948.8 -1.23% 1948.4 -1.25% 2084 5.63% 2280.5 15.59%
3.2.50.6 1286 1324.6 3.00% 1753.4 36.35% 1712.8 33.19% 1935.5 50.51%
3.2.50.7 1647.5 2063.6 25.26% 21453 30.22% 2005.2 21.71% 2371 43.92%
3.2.50.8 17235 1524 -11.58% 1593.3 -7.55% 1652 -4.15% 2389.4 38.64%
3.2.50.9 1475.5 1715.6 16.27% 1675.2 13.53% 1793.6 21.56% 1879 27.35%
3.2.50.10 1299.5 1335 2.73% 1510 16.20% 1546 18.97% 1811.2 39.38%
Table B.5: Sensitivity Analysis - Capacity and Cost - 90% Capacity
90% Capacity
Instances 50% Cost 60% Cost Gap - Cost=60% 70% Cost Gap - Cost=70% 80% Cost Gap - Cost=80% 90% Cost Gap - Cost=90%
2.2.30.1 1109 813.2 -26.67% 1031.3 -7.01% 1528.6 37.84% 1634.6 47.39%
2.2.30.2 857 959 11.90% 1079.9 26.01% 1081.6 26.21% 12181 42.14%
2.2.30.3 1208.5 1148.6 -4.96% 1140.9 -5.59% 1277.8 5.73% 1293.8 7.06%
2.2.30.4 907 962.2 6.09% 1041.2 14.80% 934.8 3.07% 1154.9 27.33%
2.2.30.5 963.5 1020.8 5.95% 1102.4 14.42% 12154 26.14% 1321.5 37.16%
2.2.30.6 894.5 964.8 7.86% 1046.7 17.02% 1229 37.40% 12494 39.68%
2.2.30.7 1035.5 1066.8 3.02% 1233.4 19.11% 1275 23.13% 1306.8 26.20%
2.2.30.8 1079 1070.2 -0.82% 1291.4 19.68% 1251.8 16.01% 1424.4 32.01%
2.2.30.9 954.5 994 4.14% 1071.2 12.23% 1243.4 30.27% 1289.8 35.13%
2.2.30.10 10245 1064.8 3.93% 1163.7 13.59% 1279.6 24.90% 1253.2 22.32%
3.2.50.1 1612 1655.8 2.72% 1659 2.92% 1879.6 16.60% 1954.3 21.23%
3.2.50.2 1507 1593.6 5.75% 1724.3 14.42% 1798 19.31% 1955.9 29.79%
3.2.50.3 1836 1929.4 5.09% 2024.2 10.25% 2162 17.76% 2388.3 30.08%
3.2.50.4 1723.5 1761.2 2.19% 2011.2 16.69% 2139.6 24.14% 2042.4 18.50%
3.2.50.5 1847.5 1867.6 1.09% 2270.6 22.90% 1731 -6.31% 2140.7 15.87%
3.2.50.6 1354 1637.2 20.92% 1286.8 -4.96% 1324.6 -217% 1542.8 13.94%
3.2.50.7 1395.5 1500.4 7.52% 1514.3 8.51% 1744 24.97% 1854.7 32.91%
3.2.50.8 1523 1492 -2.04% 1543.4 1.34% 1827.2 19.97% 1885.1 23.78%
3.2.50.9 1532.5 1504.4 -1.83% 1665.8 8.70% 2375.4 55.00% 1854.4 21.00%
3.2.50.10 1179 1199.4 1.73% 1359 15.27% 1352.8 14.74% 1727.8 46.55%

57

Table B.6: Sensitivity Analysis - Capacity and Cost - 100% Capacity

100% Capacity

Instances 50% Cost 60% Cost Gap - Cost=60% 70% Cost Gap - Cost=70% 80% Cost Gap - Cost=80% 90% Cost Gap - Cost=90%

2.2.301 1131 1272.8 12.54% 1277.9 12.99% 1436.6 27.02% 1335.8 18.11%
2.2.30.2 866 919.4 6.17% 995.2 14.92% 1051 21.36% 1271.4 46.81%
2.2.30.3 1049 1310.4 24.92% 1188.7 13.32% 1180.8 12.56% 1279.8 22.00%
2.2.30.4 732.5 962.2 31.36% 895 22.18% 1098.2 49.92% 949.8 29.67%
2.2.30.5 947.5 937.2 -1.09% 1193.8 25.99% 1162.8 22.72% 1245.8 31.48%
2.2.30.6 879.5 956.6 8.77% 1118.2 27.14% 1116 26.89% 1165.9 32.56%
2.2.30.7 968 1042.8 7.73% 1108.6 14.52% 1181.8 22.09% 1226.6 26.71%
2.2.30.8 1231 1127.2 -8.43% 1290.7 4.85% 1353.2 9.93% 1530.9 24.36%
2.2.30.9 945.5 1029.8 8.92% 1032.6 9.21% 1088.6 15.13% 1193.2 26.20%
2.2.30.10 969 1092.4 12.73% 1137.8 17.42% 1242.6 28.24% 1245 28.48%
3.2.50.1 1523.5 1740 14.21% 1786 17.23% 2006.8 31.72% 1910.1 25.38%
3.2.50.2 1526 1582.4 3.70% 1856.7 21.67% 1990.8 30.46% 2029.2 32.98%
3.2.50.3 2054.5 1917.2 -6.68% 1875.1 -8.73% 2048.8 -0.28% 2365.8 15.15%
3.2.50.4 1601.5 1878.6 17.30% 2057.8 28.49% 2080.4 29.90% 2267.5 41.59%
3.2.50.5 1880.5 1925.8 2.41% 2014.5 7.13% 2529.2 34.50% 2108.7 12.14%
3.2.50.6 1374.5 1323.8 -3.69% 1557.4 13.31% 1510 9.86% 2400.9 74.67%
3.2.50.7 1398 1512.4 8.18% 1715.2 22.69% 1733.6 24.01% 1858.5 32.94%
3.2.50.8 1345.5 1643.6 22.16% 1645.7 22.31% 1603.2 19.15% 1646.8 22.39%
3.2.50.9 1498.5 2024 35.07% 2178.5 45.38% 1877.8 25.31% 1852.3 23.61%

3.2.50.10 1088.5 1120.8 2.97% 13441 23.48% 1365.4 25.44% 1492.7 37.13%

Scilentific Paper

The scientific paper starts on the next page.

58

Truck Routing for Parcel Delivery:

Solving a Multi-depot Pickup and Delivery Problem with Occasional Drivers using ALNS

S. Wang, Dr. S. Fazi, Dr. A. Bombelli, Prof.dr.ir. L.A. Tavasszy

Abstract— This research presents a mathematical model for
routing that incorporates multiple depots, occasional drivers,
and multiple depot visits, a problem faced by many companies
in reality. An Adaptive Large Neighborhood Search (ALNS)
algorithm was employed, using Random and Worst removal
operators, Basic Greedy and Regret-2 insertion strategies, a
roulette wheel for operator selection, and simulated annealing
for acceptance criteria. Computational experiments validated
the effectiveness of the ALNS algorithm and model. Sensitivity
analysis revealed that adding depots (ODs) can reduce routing
costs by up to 15.21%, with various OD capacities offering
additional savings (7.86 % for 60% capacity and 9.97 % for 70 %
capacity). A case study with the Dutch e-commerce company
Ochama, scaled to 150 requests, confirmed practical applicabil-
ity, achieving cost reductions of 11.37% for small vehicles and
6.85% for medium-sized vehicles. The results highlight that
integrating ODs into routing strategies can significantly lower
costs, with optimal outcomes dependent on market research to
balance savings, service quality, and OD capacity.

I. INTRODUCTION

In recent years, the exponential growth of e-commerce,
accelerated by the Covid-19 pandemic, has significantly
increased urban parcel deliveries, creating major logistical
challenges for last-mile delivery (LMD) in cities, partic-
ularly in densely populated areas. For instance, Amster-
dam is expected to handle over 100,000 parcels daily by
2030, putting immense pressure on the logistics system,
exacerbating traffic congestion, environmental pollution, and
driving up logistics costs, with last-mile delivery accounting
for 75% of these costs. Traditional LMD strategies often
involve increasing vehicle numbers or capacity, which may
reduce efficiency and raise costs. To address these issues,
crowdshipping (CS) has emerged as a viable alternative,
leveraging occasional drivers (ODs) to complete deliveries
on detours at lower costs. This study proposes a new variant
of the Pickup and Delivery Problem with Time Windows
(PDPTW), integrating multiple depots, regular drivers (RDs),
ODs, and intermediate centers (stores) to optimize the total
vehicle routing cost. The model, referred to as the Multi-
trip Crowd-shipping Split Pickup and Delivery Problem with
Time Window and Multi-depots (MC-PDPTW-MD), aims to
incorporate these features into a traditional PDPTW model,
focusing on minimizing routing costs for both RDs and ODs.
The key research question is how to optimize the total vehicle
routing cost in the MC-PDPTW-MD problem.

II. LITERATURE STUDY

The research theme of this research is the combination
of multiple aspects of study, including the Crowd-shipping
Problem, the Open Vehicle Routing Problem (Open VRP),

and the Pickup and Delivery Problem with Time Window
(PDPTW). The mathematical models involved in these re-
lated studies and the algorithms used to solve these problems
will be discussed in detail in this section.

A. Related Models

This part will discuss the origin and development of three
related problems, discuss in depth the characteristics of the
initial model, and different features that are continuously
added to the model during the development process to
make the model suitable for specific research problems.
These features include: Number of depots, RD quantity limit,
delivery strategy (single/multiple/split), intermediate center,
reverse logistics, etc.

1) Crowd-shipping Problem: Most research in crowd-
sourcing has focused on virtual tasks like text editing,
translation, and debugging, which can be completed remotely
via the Internet [11]. However, with the rise of e-commerce,
crowdshipping has gained significant attention as a delivery
method in the sharing economy. Platforms such as Wal-
mart’s Spark Delivery and Amazon Flex have popularized
crowdsourced delivery, where occasional drivers assist in
parcel delivery while earning compensation [7], [18]. This
study focuses on courier companies, which face diverse
delivery challenges, including parcel lockers, drones, and
crowdshipping, areas still rich for research. The operational
logic of crowdsourced delivery platforms, governed by algo-
rithms, can be divided into static and dynamic models. While
dynamic models adapt to real-time changes, static models
assume fixed vehicles and demands [2]. This study addresses
a static crowdshipping problem, integrating elements from
traditional delivery models. Building on Archetti et al. [1]
and Macrina et al. [23], it considers intermediate centers
and scenarios where occasional drivers (ODs) and regular
drivers (RDs) work together, allowing for multiple and split
deliveries to enhance reliability when customer demand
exceeds capacity [20].

2) Open Vehicle Routing Problem: In 2000, Sariklis
& Powell introduced the Open Vehicle Routing Problem
(OVRP), where vehicles do not need to return to the depot or
may revisit customers in reverse order [35]. In OVRP, a depot
with a limited regular truck fleet may subcontract delivery
tasks to external couriers, whose higher per-unit driving
costs are offset by savings in capital, maintenance, and
depreciation [41]. OVRP typically assigns rented vehicles to
routes without return to the depot and often involves reverse
logistics, where vehicles deliver goods and then return to
the depot in reverse order to collect returns. This model

is similar to Archetti et al.’s research [1] but focuses on
rented fleets and vehicle limitations rather than occasional
drivers. Tarantilis & Kiranoudis [40] expanded OVRP by
incorporating multi-depots, applied in real-world cases like
fresh meat distribution in Greece, while Brandao [4] and
Fleszar et al. [13] added operational time restrictions, and
Repoussis et al. [31] introduced customer time windows.
Fu et al. [14] further diversified OVRP by splitting it
into delivery-only, pickup-only, and combined delivery and
pickup models, allowing multiple vehicles to serve the
same demand point, thus improving route options, vehicle
capacity utilization, and reducing vehicle needs. Combining
OVRP with crowdshipping, as explored by Torres et al.
[43], demonstrated cost reductions by using crowdshippers
instead of third-party logistics vehicles. Our research builds
on this by integrating various OVRP variants, incorporating
time window constraints for regular drivers (RDs), occasional
drivers (ODs), intermediate centers, and customers.

3) Pickup and Delivery Problem with Time Window:
Since the 1990s, the Pickup and Delivery Problem with Time
Window (PDPTW) has made significant strides in logistics
and transportation planning. A special case of PDPTW is
the Vehicle Routing Problem with Time Window (VRPTW),
where all destinations are depots [44]. The problem was ex-
tended in 1989 to include simultaneous pickup and delivery,
marking an early form of the PDP problems [12]. PDPTW
involves creating optimal routes that satisfy transportation re-
quests under capacity, time window, and priority constraints,
with the additional requirement that the same vehicle handles
both pickup and delivery. To address challenges such as
rising energy costs, driver shortages, and vehicle capacity
utilization, Nowak et al. [27] introduced Pickup and Delivery
with Split Loads (PDPSL), drawing on the benefits of split
delivery strategies from SDVRP. PDPSL is more complex
because the vehicle’s capacity changes with each pickup
or delivery, and vehicles do not return to the depot. While
early research focused on single-depot problems, Irnich [19]
expanded the scope to a multi-depot setup with a single
hub and heterogeneous vehicles, emphasizing the transport
of diverse requests between a location and the hub.

In 2019, Dahle et al. [8] combined Crowdshipping with
PDPTW to introduce The Pickup and Delivery Problem with
Time Windows and Occasional Drivers, where crowdship-
ping drivers have individual starting locations, destinations,
costs, and time matrices. This model showed a 10-15% cost
savings by incorporating crowdshipping drivers. Expanding
on this, Voigt & Kuhn [45] introduced Transhipment Points
(TPs), similar to intermediate centers, where goods are trans-
ferred between drivers. However, we propose that treating
TPs as intermediate centers near recipients simplifies the
process, allowing recipients to pick up goods themselves if
direct delivery is inconvenient, thus reducing transportation
costs. Considering multi-depot scenarios, Tao et al. [39]
discussed The Pickup and Delivery Problem with Multiple
Depots and Dynamic Occasional Drivers in Crowdshipping
Delivery, a dynamic problem where temporary drivers post
their travel plans on a crowdshipping platform for route

matching. Given our focus on multiple and split deliveries
and intermediate centers, we model our problem as a static
one, where temporary drivers select pre-generated routes
based on their availability.

B. Related Algorithms

This section will further discuss the algorithms corre-
sponding to the mathematical models discussed above, in-
cluding both exact algorithms and metaheuristic algorithms.
Common exact algorithms include Mixed-Integer Linear Pro-
gramming (MILP) and Branch and Bound (B&B), etc. Com-
mon metaheuristic algorithms include Tabu Search, Genetic
Algorithms, Simulated Annealing, Ant Colony Optimization,
and Variable Neighborhood Search, among others.

1) Crowd-shipping Problem: Archetti et al. [1] intro-
duced a multi-start heuristic combining variable neighbor-
hood search (VNS) and tabu search, which constructs routes
with regular drivers and adjusts them using tabu and VNS
mechanisms. This heuristic method outperformed CPLEX
in solving instances involving temporary drivers, providing
solutions in seconds compared to CPLEX’s inability to solve
within an hour. Kafle et al. [20] opted for simulated annealing
due to its suitability for large instances and faster perfor-
mance compared to other heuristics like genetic algorithms.
More recent approaches, such as Dayarian & Savelsbergh’s
research [9], have utilized advanced methods like VNS
combined with machine learning [30] and hybrid models
integrating GRASP with VNS for local search [10], high-
lighting the growing trend towards using VNS in complex
routing problems.

2) Open Vehicle Routing Problem: Sariklis & Powell
[35] introduced a heuristic method based on a minimum
spanning tree with penalties to solve Open VRP, showing
strong performance but with longer computation times for
large problems. Building on this, Branddo [4] applied Tabu
Search, adding maximum route length constraints, while
Fu et al. [14] incorporated vehicle capacity limits. Later,
Tarantilis et al. [42] proposed the List-Based Threshold
Accepting (LBTA) algorithm, Adaptive Memory-based Tabu
Search (BR), and Backtracking Adaptive Threshold Accept-
ing (BATA) for solving Open VRP. In 2007, Pisinger &
Ropke [28] used the Adaptive Large Neighborhood Search
(ALNS) framework, which systematically modifies solutions
in each iteration, to solve Open VRP variants. Fleszar et
al. [13] introduced Variable Neighborhood Search (VNS)
for Open VRP, exploring the solution space by varying
neighborhood sizes, which was further enhanced by Sevkli &
Giiler [36] using a multi-phase VNS approach. Other notable
approaches include algorithms like Particle Swarm Opti-
mization [25], Integer Linear Programming-based heuristics
[33], and models addressing fuzzy demands [5] and demand
uncertainty [6]. Despite these advancements, ALNS has
emerged as particularly effective for complex optimization
problems, making it increasingly popular for solving Open
VRP.

3) Pickup and Delivery Problem with Time Windows:
In 1991, Dumas et al. [12] introduced an exact algorithm

for the Pickup and Delivery Problem (PDP) with time
windows, using a column generation method to handle
multiple sites and vehicle types, laying the foundation
for future PDP solutions. Entering the 21st century, more
complex metaheuristics emerged, such as the reactive tabu
search by Nanry & Barnes [26] and the combination of
simulated annealing and tabu search by Li & Lim [22],
which were particularly effective for large-scale PDPs. In
2006, Ropke & Pisinger [32] significantly advanced the
field by introducing the Adaptive Large Neighborhood
Search (ALNS) heuristic, which employs sub-heuristics for
solution improvement, using methods like random and worst
removal during destruction phases and greedy insertion
during repair phases, with a simulated annealing-based
acceptance criterion. This ALNS framework was later
expanded to tackle more complex scenarios, as seen in [15]
for PDP with scheduled lines and [34] for multi-stop PDP
with time windows and transfers.

The literature review section provides a detailed depiction
of the evolution and development of models and algorithms
used to solve the Crowd-shipping Problem, Open VRP, and
PDPTW. The purpose is to filter the features contained in the
model we intend to study, such as time windows, occasional
drivers, etc., through the discussion and analysis of these
models. By combining these features, a new problem (Multi-
trip Crowd-shipping Split Pickup and Delivery Problem with
Time Window and Multi-depots) is proposed. There is no
consistent research on the newly proposed problem, which
constitutes what is known as a research gap. At the same
time, by analyzing the algorithms used in different models
and the trend of algorithm development, a suitable algorithm
will be selected and discussed. This study will choose ALNS
as the preferred algorithm, with the specifics of the ALNS
algorithm discussed in methodology chapter.

III. PROBLEM DEFINITION

In this section the Multi-trip Crowd-shipping Split Pickup
and Delivery Problem with Time Window and Multi-depots
(MC-PDPTW-MD) is formally defined. After discussion, in
addition to the common time window constraints and vehicle
capacity constraints, the model to be studied also contains the
following characteristics: Regular drivers, Occasional drivers
(crowdshippers), multi-depots, intermediate centers, multi-
delivery and split delivery.

The MC-PDPTW-MD is an complex logistics optimization
challenge, focusing on the interplay between a regular truck
fleet and an occasional driver fleet to minimize total routing
costs. Figure 1 shows an illustrative example of the multi-
trip crowd-shipping split pickup and delivery problem. The
operational framework of this problem encompasses a central
Distribution Center (DC), various retailers serving as inter-
mediate centers, and customers. At the core of this scenario
is the regular truck fleet (RDs), which embarks on its journey
from the DC. Each RD is loaded with parcels destined for
delivery to intermediate centers and customers. The delivery
schedule is intricately planned within specific time windows,

ensuring timely and efficient service. While delivering the
package, RDs engage in the pickup of return items only from
intermediate centers. This aspect of their route is flexible,
contingent upon the spare capacity available post-delivery.
The RDs’ routes culminate back at the DC, where they
offload the collected items for further processing. Comple-
menting the regular fleet is the occasional driver (OD) fleet,
characterized by its flexibility and adaptability. ODs initiate
their routes from varied locations, not bound to the DC as
their starting point. OD’s primary role is to pick up items
from intermediate centers and delivery them back to depot
or pickup items from depots and distribute them to customers
and intermediate centers. while ODs are delivering, parcels
can be picked up at intermediate centers as vehicle capacity
allows. ODs head to his/her destination after finishing all
delivery tasks. If possible, RD and OD can visit multiple
depots multiple times. The essence of the MC-PDPTW-MD
lies in the seamless coordination between these two fleets.
The system strategically allocates tasks and routes to each
fleet, considering real-time dynamics like vehicle capacity,
delivery and pickup time windows, and on-the-ground traffic
conditions. The objective is a harmonious balance, where the
regular fleet’s structured routes complement the occasional
drivers’ flexible pickups, ensuring overall efficiency and cost-
effectiveness. The challenge is to manage these split pickups
and deliveries within the constraints of time windows, aiming
for a solution that minimizes routing costs.

o Intermediate Center (C): A intermediate center or a
retailer can receive parcels and have some to be sent to
depot.

¢ Client (S): Client only receiving parcels at home

o Distribution Centre (DC): A distribution center or
depot can receive packages from copy centers and
store packages for delivery to intermediate centers and
customers.

o Regular Driver (RD): Regular drivers depart from DC,
and end to DC

e Occasional Driver (OD): Occasional Drivers start from
their origin and have a final destination, they may visit
DC multiple times.

IV. METHODOLOGY

This chapter presents two approaches to solve the prob-
lem: an exact method and a metaheuristic algorithm. We
begin by formulating a precise mathematical model for the
problem. To solve this model, we employ the branch-and-
bound technique, a commonly used exact method. Despite
the accuracy of exact methods, they often require substantial
computational time to find feasible or optimal solutions. This
limitation leads us to consider metaheuristic algorithms as a
viable alternative.

Metaheuristic algorithms offer a practical solution when
the problem scale increases, making exact methods compu-
tationally prohibitive. Previous studies have explored various
metaheuristic techniques, including Local Search and Tabu
Search. In 2005, Ropke & Pisinger [32] introduced the
Adaptive Large Neighborhood Search (ALNS) framework,

Route of RD

Occasional Driver Regular Driver Parcel = — - ------—--—--—

vACQO

Origin of OD Destination of OD

7. Routeof OD

Depot Intermediate Center ~ Customer

Fig. 1. An illustrative example of multi-trip crowd-shipping split pickup
and delivery problem

an enhancement of the Large Neighborhood Search (LNS) al-
gorithm. They successfully applied ALNS to the Pickup and
Delivery Problem with Time Windows (PDPTW), demon-
strating superior performance compared to standard LNS.
Building on this foundation, our research adopts the ALNS
algorithm to effectively address the problem. Detailed dis-
cussions of the mathematical model and the ALNS imple-
mentation are provided in subsequent sections.

A. Mathematical Model

Let N denote the set of all nodes, let A denote the set of
distribution centers and AY“™™¥ denote the set of dummy
nodes make sure OD can visit depot multiple times. Let S
denote the set of customers, O°? and D°¢ denote the set of
origins and destinations of occasional drivers. Let C' denote
the set of intermediate centers, usually grocery stores.

N consists of DC, C, client and origin and destinations of
OD, thus N = AUA®™™ yC'USUO° U D, A regular
driver set RD, and a occasional driver set OD, are available
to serve the requests. A set of vehicles K consists of RD and
OD, thus K = RD U OD. For RD, each vehicle £k € RD
will start from and back to Depot. For OD, each vehicle
k € OD has an origin i € O°? and a destination j € D°?.
As shown in Figure 1, all RDs have origins and destinations
at the same depot, while the origins and destinations of the
ODs may be spread out.

Each vehicle k has a capacity C, and there is a cost factor
p¥ for each vehicle k. When transporting goods from node
i to node j, the time distance between node 7 and node j is
given as T;;. For each node i € N there is a time window
[T?,T}] within which it must be serviced. The delivery and
pickup quantity at node i € N/A are D; and P; respectively.
Regular vehicle k£ has a time window for its origin depot
[T9,T3]. For the ODs it is assumed that the time window
are wide enough to allow for a direct travel.

The variable xi—“j is a binary variable denoting if vehicle
k € K uses arc (¢,j) when ¢,57 € N . While variable yz’fjse
is pickup and delivery flow variable denotes load on vehicle
k € K for pickup or delivery request from node s to node

TABLE I
SET UP OF SETS, PARAMETERS AND VARIABLES

Sets

N Set of all nodes

A Set of depots

Adummy Set of dummy depots

Ap Set of depot and its dummy depot for depot n
S Set of customers

C Set of Intermediate centers

DV Set of delivery requests

PV Set of pickup requests

DV, Set of delivery requests of depot n
PV, Set of pickup requests of depot n

K Set of vehicles

Ky Regular vehicle set belongs to depot n
RD Set of regular drivers

oD Set of occasional drivers

o°eb Set of origins occasional drivers

Dob Set of destinations occasional drivers
Parameters

T;; Time distance between nodes ¢ and j
DD;; Pickup and delivery quantity between nodes 4 and j
Ck Capacity vehicle &

Vi Depot that provides service for request ¢
79, Ti1 Time windows of node %

p% Cost factor of vehicle k&

M Big value

Variables

xfj Routing variable

yfjse Pickup and delivery flow variable
zfse Pickup and delivery quantity variable
ddfj Decision variable for delivery requests
pdfj Decision variable for pickup requests
th Time of vehicle k at node ¢

e on arc (i,j), ij € N. Variable 2F*¢ denotes pickup or
delivery quantity at node ¢ for vehicle k¥ € K and request
from start point s to end point e, se € N. Variable ddfj and
pdfj are decision variables for delivery and pickup requests
respectively denoting if vehicle k& € K serve request from
start node ¢ and end node j. For variable ddfj, neAiec
A,,j € DV,,. For variable pdfj, neANjeA,i€ PV,
t¥ means the time of vehicle k € K arrive at node i € N.

Table I provide an overview about all the mentioned sets,
parameters and variables.

The formulate of the problem is given as follows:

Objective Function:

minz Z xijijpk @))]

keEK (ij)EN

Constraints for all vehicles:

doal =Y ak=0 VieN/(0°PUDOP) ke K

JEN JEN

2

Yie SUC (3)

YD =1

kEK jEN

th 4 T < tF

k k
PIETED B
JEN JEN
th >t 4+ 1Ty,

JEN JEN

JEN JEN

Vee DV,s€ Ay, i€ N, ke K

k,s,e

Do =D

VEke K,ic A (4)

Vie N, ke K (5)

Vie N, ke K (6)

VneAjie DV, ke K,k ¢ K, (7)

VYneA,ic DV, ke K (8)

YneAjie PV, ke K,k ¢ K, 9)

VYn e A,i€ PV, ke K (10)

D 2T =DDy,ix Y ddgik

keK

Ve e DV,ie N,s € Ay,

JEN JEN

Vse PViec Ay,,i e Nke K

k,s,e

Do =D v

Z ch,s,e = D.Di’v5 * Z pdi,e,k

keK

Vs € PV,i € N,e € Ay,

D> " < Cuxaly

seN eeN

k,s,e
=z
(11)
keK
(12)
k,s,e
= Zi
(13)
keK
(14)

Vi,j e N, ke K (15)

Constraints for regular drivers:

th > th + Ty — M ox (1—2f))

Vne A ke K,,i,jE N,j#*n

tf > (Tio—i—Tij)*x -

(16)

Vne A ke Ky,i,jE N,j#n
(17)

th < ¢k

n — "1

fojﬁ()

JEN

> @i <0

JEN

VneAkeK,,i€ N,i#n (18)
Vi € Aqummy, k € RD (19)

Vk € RD,i € (0°P uDOP) (20)

Constraints for occasional drivers:

2 k
Z‘Okopj

E k —
ijkOD = 0

jEN/(OOPUDOD) JEN/(OOPUDOD)

Vk € OD 1)
DD owi— X wopn; 20

i€EAJEN JEN/(OOPUDOD)

Vk € OD (22)
Y wHon; <1 Yk € OD (23)
JEN

> @hhon <0 Vk € OD (24)
JEN

Y whon; <0 Vk € OD (25)
jES

Y #hon; <0 Vk € OD (26)
JEN

l'légDDl?D <0 vk e OD (27)

k
Tiyitngepots <0

Tk .
1+ Ndepots,t —

D aly<0

JEN

> w5 <0

JEN

k k
tj Zti +Tij*(17$

th > (T) + Ty;) o

Vie Ak e OD (28)

Vie A ke OD (29)

Vk € OD,i € 0°P /097 (30)

Vk € OD,i € D°P/DOP (31)

E) M Vi,j € N,k € OD (32)

)

Vi,j € N,k e OD (33)

Constraints generated by allowing vehicles to visit the
depot multiple times:

k,n,
2271620

Vee DV,n € Ay, k€ K,i € (AU Agummy),t #n
(34

ks _
g =0

Vse PV,ne Ay, k€ K,i € (AU Agummy),t # 0

z
(35)

Yo Y ddf;=1

Vn € A,j € DV, (36)

keK ic A,

SN pdf =1 Vn e A,ie PV, (37)
keEK jEA,

> oddy, >N Vn e A,i€ DV, k€ K (38)
meA, JEN

> opdf,, = > al Vn e A,i€ PV, ke K (39)
meEA,, JEN

tr <t (1—ddf;)«M

VneAieA,,jeDV,,ke K (40)
tf < t? + (1 —pdf,j) * M
VneAjeA,,ie PV, ke K 41

YD Tz

YneAjie DV, ke K (42)

meA,, jJEN JEN
SN ak, =D ak WnediePV, ke K 43)
meN, jJEN JEN

The objective function 1 aims to minimize the total routing
cost. Constraints 2 - 15 are linked to all vehicles. Constraint 2
serves as the vehicle flow conservation constraint. Constraint
3 ensures every request must be served once. Constraint 4
restricts each vehicle to depart from the depot on at most one
route. Constraint 5 is the time window restriction for vehicles
arriving at each point. Constraint 6 prevents vehicles from
passing through the same point consecutively. Constraints 7-
8 ensure that vehicles must pass through the corresponding
depot before meeting the delivery requirements. Similarly,
Constraints 9-10 ensure that vehicles must pass through the
corresponding depot after meeting the pickup requirements.
Constraints 11 and 13 record the flow for each pickup
and delivery requirement. Constraints 12 and 14 satisfy the
pickup and delivery requirements at all points. Constraint 15
is the vehicle capacity limit.

Constraints 16-20 are linked to regular drivers. Constraints
16-17 are the time constraints between two points for RDs.
Constraint 18 limits the departure time from the depot for
RDs to not exceed the time to any point. Constraint 19 RDs
are not allowed to visit dummy depots. Constraint 20 RDs
are not allowed to visit O°P and DOP.

Constraints 21 - 35 are linked to occasional drivers.
Constraint 21 flow conservation for origins and destinations
of ODs. Constraint 22 if OD departs, then it must visit
the depot. Constraint 23 at most one arc after the origin
of the ODs. Constraint 24 no arc entering the origin of
ODs. Constraint 25 first arc after origin cannot go to a
customer. Constraint 26 no arc exiting from destination of
ODs. Constraint 27 no link between origins and destinations
of ODs. Constraints Constraints 28-29 no link between
depots and dummy depots. Constraints 30-31 ODs cannot
visit the origin and destination of other ODs. Constraints
32-33 are the time constraints between two points for ODs.

Constraints 34-35 no cross-docking during the pickup
and delivery process. Constraints 36-37 for a delivery or
pickup demand, it must be served by its depot or dummy
depot. Constraints 38-39 the relationship between pickup and
delivery variables and path variable. Constraints 40-41 if the
delivery or pickup request is serviced by the corresponding
depot/dummy, the time limit is met. 42-43 if the delivery
or demand is served by vehicle k, then vehicle k must have
passed through its depot/dummy.

B. ALNS Algorithm

According to literature research, the ALNS algorithm has
been widely applied to vehicle routing problems, and ALNS
is suitable for our problem. The strategy of each step in
the ALNS algorithm, as well as the involved parameters,
directly affect the computation time and the generation of
optimal solutions. Therefore, the selection of strategies and
the tuning of parameters is a labor-intensive and time-
consuming process. Windras Mara et al. [24] summarized
the model proposed by Ropke & Pisinger [32] into four
steps: (a) Adaptive mechanism, (b) Acceptance criteria, (c)
Stopping criteria, and (d) Design of destroy and repair
operators. Regarding the Adaptive mechanism, based on the
251 papers surveyed [24], 250 papers utilized the Roulette
Wheel ([21], [16], [3]), meaning the probability of each
operator being selected is the same. For Acceptance criteria,
most articles adopt the Metropolis Criterion, allowing the
algorithm to accept solutions slightly worse than the current
one with a certain probability to avoid local optima, thereby
increasing the algorithm’s capability to explore a broader
area of the solution space. Some articles also utilize the
Greedy Mechanism and Record-to-Record. Regarding the
Termination Criterion, the majority of articles use the most
common Number of Iterations, with research also employing
the Number of Non-Improving Iterations, Running Time
Limit, and Annealing Temperature.

Algorithm 1 illustrates the framework of the used ALNS
algorithm. Each step of this framework will be discussed in
detail in the subsequent sections. The algorithm requires two

input parameters: the initial solution s, which is generated
using a greedy algorithm, and a number ¢, representing the
count of demand nodes to be removed. The core of the
algorithm is from lines 5 to 8. In line 5, an appropriate
removal operator is selected based on the current weights
of the removal operators. This paper uses two removal
operators: random removal and worst removal. In line 6, the
selected requests are removed from s’. In line 7, a suitable
repair operator is chosen based on the current weights of the
repair operators. The repair operators used are greedy repair
heuristic and regret-2 repair heuristic. In line 7, the requests
are reinserted into the destroyed solution. The choice of
removal and repair operators directly affects the performance
of the algorithm. Following the strategy [32], we use a
roulette wheel method for operator selection. Considering
some unnecessary depot visits in the initial solution, the
depot, serving as both a pickup and delivery point, may be
permanently removed during the destruction process. While
this can help find a better solution, it may also lead to
infeasible solutions. Therefore, in line 9, we need to check
if the repaired solution is feasible. If feasible, we then
determine whether the new solution should be accepted.
This paper uses a simulated annealing acceptance criteria
to decide whether to accept the new feasible solution.

Algorithm 1 ALNS Heuristic
1: function ALNS(s € {solutions},q € N)

2: solution Spest = S;

3 repeat

4 s'=s

5 choose a destroy operator

6: remove ¢ requests from s’

7 choose a repair operator

8 reinsert removed requests into s’
9: if s’ is feasible then

10: if f(s') < f(spest) then

11: Spest = S’

12: end if

13: if accept(s’, s) then

14: s=s

15: end if

16: else

17: continue

18: end if

19: operator adaptive weight adjustment
20: until stop-criterion met
21: return Speg

22: end function

1) Initial Solution: The initial solution is a necessary
input for the ALNS algorithm. We use a simple Greedy
algorithm to generate the initial solution. The algorithm
begins at the vehicle’s starting point and iteratively finds the
nearest unvisited point, checking capacity and time window
constraints to decide whether to visit that point. For delivery
points, the algorithm prioritizes finding the nearest depot that
can service the point, ensuring the route remains valid. For

pickup points, it ensures that a depot can service the point.
After visiting each point, the vehicle’s load and time are
updated until all points are serviced, and the vehicle returns
to its destination, forming a complete route.

The initial solution for Algorithm can be simply divided
into two parts. The first part uses occasional drivers (OD)
to handle demand nodes, and the second part uses regular
drivers (RD) to handle the remaining demand nodes. The
reason for this separation is that occasional drivers and
regular drivers have different characteristics. Compared to
regular drivers who start from the depot, occasional drivers
have specific origins and destinations. Additionally, the
cost for OD is lower, so OD is given a higher priority. In
each part, for every nearest point found, we first determine
whether the point is a pickup point, delivery point, or
depot, and then execute different handling methods based
on the type of point. Additionally, we must ensure that there
are enough vehicles to meet all demands, otherwise, the
generated initial solution will result in some demands not
being serviced. Any surplus vehicles in the initial solution
will be removed during the ALNS algorithm.

2) Request Removal: This section introduces two removal
operators: random removal and worst removal. In addition,
Ropke & Pisinger [32] also used Shaw removal proposed
by Shaw [37]. However, random removal can be seen as
a special form of Shaw removal and has been proven to
be more efficient, thus we adopt random removal. Unlike
random removal, worst removal selects those points that
seem to be misplaced, i.e., service points that incur higher
costs.

Random Removal The basic idea of the random removal
algorithm is to randomly select g requests and remove them
from the solution. The number of requests ¢ to be removed
is obtained by multiplying a destruction factor x between 0
and 1 by the number of points in the current solution. These
randomly selected requests include pickup points, delivery
points, and depots. As mentioned earlier, the solution may
contain some unnecessary visits to depots. Therefore, we
need to reselect the nodes chosen for removal. If the removed
points are pickup or delivery points, it means that these
points need to be served, so we retain these points. If the
removed points are depots, we randomly select from the
removed depots again. The selected depots are kept for the
repair operation, and the unselected depots are permanently
removed from the solution. This ensures unnecessary paths
are eliminated, leading to a lower cost.

Worst Removal The basic idea of worst removal is
that for a pickup or delivery request ¢ served by some
vehicle in a solution s, we define the cost of the request
as cost(i,s) = f(s) — f—i(s), where f_;(s) is the cost
of the solution without request ¢. All requests are sorted
by cost in descending order, and the top ¢ requests
with the highest costs are removed and reinserted in the
repair operator to obtain a better solution. On this basis,
we have made some modifications. Since the solution
path includes some depots, before using worst removal,

we first select the depots in the current solution and
use random removal to remove some depots. Suppose
the number removed iS 7pemoveds Which ranges from 0
to min{number of depots in current solution,q}. The
remaining number of requests to be removed using worst
removal iS ¢ — TNremoved- Lhis allows the algorithm to
permanently delete some depots to achieve a better solution.
To increase the randomness of the worst removal, a new
parameter p > 1 is added. A lower value of p corresponds
to greater randomness, so with a certain probability, we will
choose the y?|L|-th worst request.

3) Inserting Requests: According to the research by
Potvin & Rousseau [29], insertion heuristics for the vehicle
routing problem can be broadly divided into two categories:
sequential and parallel insertion heuristics. The difference
between them is that sequential heuristics construct one route
at a time, whereas parallel heuristics can construct multiple
routes simultaneously. The insertion heuristics involved in
this research are all parallel heuristics. Basic Greedy heuristic
and Regret-2 heuristic are applied, as they are the most
common insertion heuristics.

Basic Greedy Heuristic The principle of the Basic Greedy
Heuristic is the same as the greedy strategy used when
generating the initial solution. The program iterates over the
requests removed in the previous section. For each request,
we try to insert it into a feasible position in the route,
recording the cost change Af; 1 4, €ach time a feasible
insertion position is found, Af;j 4» represents the cost
difference when inserting the request ¢ at position idx in
route k compared to not inserting it. The request ¢ is inserted
at the position with the smallest cost until all requests are
inserted into the routes. If no suitable insertion position is
found in the existing routes, the request is inserted into an
empty route of the vehicle corresponding to the depot of that
request.

Regret Heuristic The class of regret heuristics was
proposed to overcome the main weakness of greedy
heuristics, i.e., the myopic behavior. In greedy insertion,
we always focus on one request at a time, which may
result in the position ¢dr where request ¢ is inserted in
the route being the optimal position for another request
j to be inserted later. If request j is inserted at position
idr in the route, it may result in a better solution. For
example, the cost of inserting request ¢ at ¢dx 1 in route 1
is 20, and at idx 2 in route 2 is 15. Similarly, the cost of
inserting request j at ¢dx 1 in route 1 is 40, and at idx 2
in route 2 is 18. According to the basic greedy insertion,
request ¢ is inserted at idr 2 in route 2 because it has
the lowest insertion cost, and then request j is considered.
Since idx 2 in route 2 is already occupied by request i,
request j can only be inserted at ¢dz 1 in route 1, resulting
in a total insertion cost of 55. This research considers
the Regret-2 insertion heuristic, which improves the basic
greedy heuristic by incorporating a look-ahead information
when selecting requests to insert. First, we iterate over each
request to be inserted and find all possible insertion points

and insertion costs. For each request, we set a regret value
¢; = Afikidey, — Afiko,idsy» Where the regret value is
the difference in the cost of inserting the request in its
best route-index and its second best route-index. In each
iteration, we select the request with the maximum regret
value and insert it into the optimal route. The heuristic
can be extended to regret-k heuristic, but as k increases,
the improvement efficiency of the algorithm slows down.
Therefore, this research only uses the regret-2 heuristic.

4) Choosing a Removal and an Insertion Heuristic: Two
removal operators and two repair operators are defined in
section IV-B.2 and section IV-B.3. In one iteration, only
one removal and one repair operator need to be used,
but ALNS involves multiple removal and repair operators
because different operators may be suitable for different
sizes of problems. Even for problems of the same size,
different operators may perform differently. For a specific
problem, we do not know which operator is more suitable,
so we let the algorithm choose. To select the appropriate
removal and repair operators, we assign weights to each
repair and removal operator and use the roulette wheel se-
lection principle. Suppose we have k heuristics with weights
wi, i € {1,2,...,k}, we select heuristic j with probability

Wi
k
Dim Wi
Note that the selection of insertion heuristic is independent
of the removal heuristic (and vice versa). We can manually
set these weights, but if many removal and insertion
heuristics are used, this can be a very complex process.
Instead, Section IV-B.5 proposes an adaptive weight
adjustment algorithm.

(44)

5) Adaptive Weight Adjustment: This section details how
to introduce weights and adaptively adjust them. The Adap-
tive Weight Adjustment part draws on the method of Adap-
tive Weight Adjustment in the ALNS framework [32]. The
basic idea is to track the score of each heuristic, which
measures the recent performance of the heuristic. High scores
correspond to successful heuristics. However, we made some
modifications. First, we set the initial score of each removal
and repair operator to 0, so the probability of each operator
being selected is equal. We will call the ALNS algorithm
multiple times, each time called a segment. Each segment has
an inner loop for iterating new solutions. In each segment,
each time a new solution is accepted, the used removal and
repair operators are scored according to the following scoring
rules in Table II.

In each iteration, we apply two heuristics: a removal
heuristic and an insertion heuristic. Both heuristics’ scores
are updated by the same amount because we cannot de-
termine whether the removal or insertion is the successful
reason. At the same time, we record the number of successful
runs of the heuristic and calculate the weight of each heuristic
before executing the next segment based on the scores and

TABLE 11
SCORE ADJUSTMENT PARAMETERS

Parameter \ Description \

o1 The last remove-insert operation resulted in a new global
best solution.
o2 The last remove-insert operation resulted in a solution

that has not been accepted before. The cost of the new
solution is better than the cost of the current solution.

successful runs of each operator. The weight calculation
formula is as follows,

T
0;

where w; ;41 represents the weight of operator 4 in seg-
ment j+1, w; ; represents the weight of operator 7 in segment
7, m; is the score obtained by operator ¢ in the last segment,
and 6; is the number of successes of the operator. The
reaction factor r controls the speed of the weight adjustment
algorithm in response to changes in operator effectiveness. If
r 1s zero, then we do not use the score at all and stick to the
initial weight. If 7 is set to 1, then the weight is determined
by the score obtained in the last segment.

6) Acceptance and Stopping Criteria: The simplest Ac-
ceptance and Stopping Criteria is to accept only solutions
better than the current solution, see [37]. This is likely
to lead to the solution getting stuck in a local optimum.
Therefore, it is sometimes wiser to accept solutions worse
than the current one [32]. Therefore, we choose to use
simulated annealing acceptance criteria, which means that
we accept a solution s’ worse than the current solution s
with a certain probability, given by e(/(s)=f /T where
T > 0 represents the temperature. The temperature starts
from T4+ and is updated at the end of each iteration by
T =T :c where 0 < ¢ < 1 is the cooling rate. Similarly,
if the new solution s’ is better than the current solution,
we accept this solution with 100% probability. The stopping
criterion of the algorithm is to meet the set maximum number
of iterations. Of course, for different sizes of instances, the
initial temperature and number of iterations will affect the
performance of the results, so parameter tuning is necessary.

w41 = wii(1—7r)+7 (45)

V. COMPUTATIONAL EXPERIMENTS
A. Instance Generation

The instances used in this chapter are virtual instances
generated by code for the purpose of parameter tuning
and testing algorithm performance. Each instance has fixed
characteristics and is created and stored in a text file. Each
instance file starts with 11 lines whose meanings are shown
in Figure III. Following this, there is a matrix containing all
the points, where each row of the matrix represents a point.
According to Figure III, there are two depots, corresponding
to the first two rows of the matrix. The dummy depots corre-
sponding to these two depots are represented by the third and
fourth rows of the matrix. Next, there are 6 customers, each
with delivery demands. Following these are 4 pickup and

delivery demands for the same intermediate center. Finally,
there are the start and end points for two ODs (Origin-
Destination pairs). Rows 14-15 represent the start and end
points for the OD 1, while rows 16-17 represent the start
and end points for the OD 2. For the columns, the first two
columns represent the two-dimensional coordinates of each
node, the third and fourth columns represent the time window
for each node, the fifth column represents the pickup or
delivery quantity (positive for delivery, negative for pickup),
and the last column represents the depot corresponding to
each pickup or delivery demand. The naming rule of Instance
is composed of three numbers, such as Instance 2_1_10,
which means there are 2 depots, 1 intermediate center and
10 requests.

TABLE III
TEST INSTANCE 2_1_10

Value

8

Parameter

Number of Nodes 1
Number of Depots 2
Number of RD in depot 0 1
Capacity of RD in depot 0 10
Number of RD in depot 1 1
Capacity of RD in depot 1 10
Number of OD 2
Capacity of OD 8
Number of requests in 4
intermediate centers

Max number visits depot 2
Coeff Cost OD 0.5
Coor_1 Coor_2 TW_1 TW_2 PD A%
50.0 40.0 0 1236 0 0
125.0 110.0 0 1236 0 0
50.0 40.0 0 1236 0 0
125.0 110.0 0 1236 0 0
45.0 20.0 20 870 2 0
18.0 50.0 30 880 8 0
35.0 100.0 30 880 2 0
125.0 20.0 30 880 2 1
150.0 100.0 30 880 2 1
110.0 140.0 30 880 2 1
85.0 65.0 0 1236 2 0
85.0 65.0 0 1236 -2 0
85.0 65.0 0 1236 -2 1
85.0 65.0 0 1236 2 0
0.0 0.0 100 300 0 0
0.0 0.0 0 1236 0 0
0.0 0.0 100 300 0 0
0.0 0.0 0 1236 0 0

B. Example Instance

Before parameter tuning, we want to verify whether the
model and algorithm outputs are consistent through a simple
example, meaning whether they can achieve the same optimal
solution. In fact, we used several requests ranging from 10
to 20 to debug the model and code. Upon completing the
debugging, we have verified the consistency between the
mathematical model and the ALNS algorithm. Therefore,
this demonstration of the optimal solution generation, along
with its description and visualization, helps the readers better
understand the model. The test example mentioned here
is Instance 2_1_10. All experiments were performed on

a PC running Microsoft Windows 10 with the following
specifications:

e Processor: Intel Core i7-8750H 2.20GHz
« RAM: 8 GB

e GPU: NVIDIA GeForce GTX 1050 Ti

o Software: VS Code 1.78.0, Python 3.8.18

Using the CPLEX package in Python to run the mathemat-
ical model, we solve it with the branch-and-bound method,
setting a time limit of 3600 seconds. The optimal cost of
303.5 was obtained in 40 minutes, which is the same result
as that obtained using the ALNS algorithm, but the ALNS
algorithm only took 8.9 seconds. In practice, the ALNS
algorithm should take a shorter time. Typically, when the
number of requests is 10, we set the iteration to 200, and the
runtime is approximately 300ms. To prevent the algorithm
from getting stuck in a local optimum during a single loop,
we add an outer loop, running the ALNS algorithm 30 times
and taking the best performance among the 30 runs, as shown
in Figure 2. In the figure, the best iteration found 50 feasible
solutions within 200 iterations. The algorithm found the
optimal solution within 10 iterations and then attempted to
accept worse solutions to explore the solution space further.
Since the optimal solution had already been found, no lower
cost were discovered afterward. The red line in the figure
represents the best solution found in the current iteration,
and the blue line represents the current feasible solution.
If a current feasible solution is better than the current best
solution, the current best solution is updated. The optimal
solution is visualized in Figure 3, and the optimal routes
are:

« RD 1: [0]

« RD 2: [1]

« OD 1: [14, 15]

« OD 2:[16,0, 6, 10, 11, 12, 13, 3,9, 1, 8,7, 4, 2, 5, 17]

Since the OD vehicles have sufficient capacity, the RDs
were not used, RD 1 and RD 2 stayed at their respective
depots. Here, we assume that the OD vehicles are provided
by a third-party logistics company, so two OD vehicles with
the same start and end points were set up to ensure that all
demands can be fully serviced. OD 1 departs from the start
point directly to the end point, indicating that OD 1 was not
used, while OD 2 handled all the demands.

Objective value at each iteration

— current
— Best

450

Obijective Value
5 &
5 8
g &

4

350

iteration

Fig. 2. ALNS Result of test instance 2_1_10

),

= \

P13

6 / s
\\‘ 1€ 1:(10,11,12,13)

+
&\
w0 o2

Zq* £

Fig. 3. Result map of test instance 2_1_10

C. Parameter Tuning

Before parameter tuning, a representative set of tuning
instances is required. As our research problem is a new
pickup and delivery problem, no existing instances found
that could be directly referenced and used. Therefore, we
will refer to the method of generating instances in [38]
with certain modifications to suit the specifics of our study.
Initially, the scale of the tuning instances needs to be
sufficiently diverse. Our tuning set consists of 6 instances,
where the number of requests starts from 10, with 2 instances
added for every increase of 20 requests. The largest instances
contain 50 requests. Request coordinates are uniformly dis-
tributed around the depots. Alongside increasing requests,
we will concurrently adjust the vehicle capacity, number of
intermediate center, number of OD, and number of depot.
Specific parameter settings for generating tuning instances
are shown in Table IV.

The primary objective of parameter tuning is to subse-
quently conduct large-scale testing and comparison of the
performance between ALNS algorithm and exact algorithm,
and to reveal which heuristic part or which parameter con-
tributes the most to solution quality. Firstly, it is necessary
to determine which parameters need adjustment. Before
executing removal operators, we need to determine how
many requests to remove, i.e., the destruction factor . Ran-
dom removal involves no parameters, while worst removal
involves a random parameter p. No parameters are involved
in repair operators. For acceptance criteria, two parameters
are involved: initial temperature Ty, and cooling rate c.
For the Adaptive weight adjustment criteria, three parameters
are involved: reaction factor r, score adjustment parameters
01, and oo. For these seven parameters, adjustments are
made sequentially in a certain order, with each parameter
set to 4 reasonable values as listed in Table V. Each tuning
instance is run 5 times for each parameter value. Thus, for
6 tuning instances, we obtain 30 costs per parameter, and
the parameter corresponding to the lowest average cost is
selected as the optimal parameter. Table ?? shows the tuning
results for the destruction factor s, recording the runtime
and cost for each instance, and calculating the average
runtime and average cost accordingly. Based on the tuning
results, it is evident that only the destruction factor x shows

TABLE IV
TUNING INSTANCES INFORMATION

Requests Nodes Depots ICs Requests Requests RDs each Capacity ODs Capacity
per per IC Depot of RD of OD
Depot
10 18 2 1 3 4 1 20 2 16
30 38 2 2 10 5 2 30 2 24
50 60 3 2 10 10 1 50 2 40

sensitivity to different parameter values, while the remaining
six parameters exhibit lower sensitivity. Therefore, these six
parameters are deemed suitable for solving instances within
a certain scale range. The optimal parameter value for the
destruction factor x« is found to be 0.1. Given that 0.1
represents a relatively small destruction ratio (for instance,
in cases with 10 requests, only one request is destroyed per
iteration), we choose not to conduct further in-depth analysis
on the Destruction factor. The best values for each parameter
are listed in Table V.

TABLE V
PARAMETER SETTINGS

Parameter Symbol Parameter Selected values Best
name range value
Destruction factor K ©, 1) [0.1, 0.15, 0.2, 0.5] 0.1
Random Parameter D >1 [1, 5, 10, 20] 1
Initial Temperature Ttart Rt [100, 200, 300, 400] 300
Cooling rate c 0, 1) [0.8, 0.85, 0.9, 0.95] 0.95
Reaction factor r [0, 1) [0.2, 0.4, 0.6, 0.8] 0.2
Score adjustment factor o1 RT [10, 20, 30, 40] 30
Score adjustment factor oo Rt [5, 10, 15, 20] 5

D. Computational Experiments

In this section, we conduct a comparative experiment
between the ALNS algorithm with tuned parameters and
an exact method to evaluate the performance of the ALNS
algorithm. Using the same logic as parameter tuning, we
generate 30 instances with request quantities of 10, 30, and
50 (10 instances each). The results of the computational
experiments are presented in Table VI. The bold fonts in
the table indicate the known optimal solutions. For instances
with 10 requests, the exact method using CPLEX’s built-
in branch and bound algorithm found 4 optimal solutions,
with other solutions showing relatively good performance
but longer average runtimes, mostly exceeding 20 minutes.
Although the ALNS algorithm confirmed only one instance
as optimal, it demonstrated overall good performance across
the 10 instances. It consistently found solutions within 10
seconds that were better than those found by the exact
algorithm after 1 hour of computation. As the instance
sizes increased to 30 and 50 requests, the advantages of
the ALNS algorithm became apparent. We configured it
to run 10000 and 15000 iterations respectively. The ALNS
algorithm significantly improved upon initial solutions in a
short time frame, whereas the exact algorithm achieved only
a best bound after running for the set 1 hour and 1.5 hours
for the respective instance sizes.

E. Sensitivity Analysis

In the business domain, cost is one of the primary concerns
for managers. In the process of parcel delivery, reducing
costs and increasing efficiency is a common goal for almost
all companies. Hou & Wang’s [17] research shows that the
average delivery cost can be reduced by 7.30% compared
to delivery by dedicated vehicles when incorporating a
compensation scheme based on crowdshippers’ acceptance
behavior. In this study, there are four factors that influence
parcel delivery costs: the number of occasional drivers, the
capacity of occasional vehicles, the transportation cost of
occasional vehicles, and the location of occasional vehicles.
Since the location of occasional vehicles is difficult to
evaluate, it will not be discussed in this section. Generally,
the capacity of occasional vehicles is positively correlated
with their transportation cost per unit distance or per unit
time. This chapter will also analyze the correlation between
vehicle capacity and vehicle transportation cost. Finally,
the sensitivity analysis sequence is to first select different
numbers of occasional drivers, determine the number of
occasional drivers, then set vehicle capacity and cost factor
within a reasonable range, and analyze the cost optimization
brought by different values.

1) Instances for Sensitivity Analysis: Sensitivity analysis
requires a new set of instances. We decided to modify the
instances used for parameter tuning. First, we only consider
instances with 30 and 50 requests, as instances with 10
requests are considered too small to be of analytical value.
We retain all coordinates, time windows, and demands of
the 20 instances with 30 and 50 requests from the parameter
tuning section. We modify the values of regular drivers,
occasional drivers, occasional vehicle capacity, and cost
factors for these instances. The parameter values for the
occasional driver sensitivity analysis are shown in Table VII.
For the sensitivity analysis of occasional vehicle capacity and
cost factor, except for the different values of vehicle capacity
and cost factor, all other parameters remain the same. Each
instance is run once, with each run having 10000 iterations.

2) Sensitivity Analysis - Number of OD: The results of
the sensitivity analysis for occasional drivers are shown in
Table VIII. We conducted four sets of comparative analy-
ses based on the number of occasional drivers, which is
OD = [0,1,2,3], corresponding to the four cost columns
in the table. We used the no OD group as the baseline and
calculated the optimization ratio of the other three groups
containing ODs compared to the baseline cost, shown in
the three columns in the table. A negative ratio indicates

TABLE VI
INSTANCE PERFORMANCE COMPARISON - ALNS VS BRANCH AND BOUND

Instance ~ ALNS CPLEX
Initial Cost Best Cost Time (s) Iteration Best Cost Best Bound MIP Gap Solve Time (s)
2.1.10.1 663 429 5 5000 436 199.64 54.21% 3600
2.1.10.2 384 252 17 5000 252 252 0% 476
2.1.10.3 583.5 377.5 7.6 5000 305.5 305.5 0% 2114
2.1.104 676 315.5 7.8 5000 300 231.79 22.74% 3644
2.1.10.5 427.5 294 5.7 5000 294 254.53 13.42% 3036
2.1.10.6 546 231.5 54 5000 204.5 204.5 0% 2085
2.1.10.7 575.5 348.5 5.6 5000 249 206.1 17.23% 3617
2.1.10.8 615.5 273 5.7 5000 236 236 0% 1215
2.1.10.9 701 336.5 6.9 5000 320.5 244 23.87% 3725
2.1.10.10 395 278.5 5.8 5000 267.5 224.82 15.95% 3607
2.2.30.1 1778 801 63.6 10000 275.92 3600
2.2.30.2 1035 853.5 48.3 10000 261.08 3600
2.2.30.3 1339.5 1017.5 49.5 10000 293.19 3600
2.2.304 1210.5 837 61 10000 278.6 3600
2.2.30.5 1076.5 881 66.5 10000 332.31 3600
2.2.30.6 989 879.5 47.5 10000 270.42 3600
2.2.30.7 1137.5 950 51.6 10000 327.38 3600
2.2.30.8 1334.5 962 479 10000 311.44 3600
2.2.30.9 1047.5 912 42.1 10000 278.13 3600
2.2.30.10 1120 950 65.8 10000 234.45 3600
3.2.50.1 1585.5 1048.5 304.4 15000 374.98 5400
3.2.50.2 1519.5 1290.5 273.8 15000 379.96 5400
3.2.50.3 1984 1357.5 242.1 15000 409.74 5400
3.2.504 2001.5 1440 244.1 15000 394.61 5400
3.2.50.5 2019.5 1410 315.1 15000 372.4 5400
3.2.50.6 1967.5 1045 318 15000 346.03 5400
3.2.50.7 1652 1104 264.3 15000 374.89 5400
3.2.50.8 1633 1170 242 15000 363.4 5400
3.2.50.9 1531.5 1204.5 319 15000 327.26 5400
3.2.50.10 1379.5 1088.5 2394 15000 320.11 5400
TABLE VII
SENSITIVITY ANALYSIS INSTANCE INFORMATION
Requests Nodes Depot Depot 1 Depot 2 Depot 3 Capacity oD Capacity Cost
RD RD RD RD oD Factor
oD =0
30 34 2 3 3 30 0 0
50 60 2 2 2 2 50 0 0
oD =1
30 36 2 2 3 30 1 24 0.8
50 58 3 2 2 2 50 1 40 0.8
oD =2
30 38 2 2 2 30 2 24 0.8
50 60 3 2 2 2 50 2 40 0.8
oD =3
30 40 2 1 2 30 3 24 0.8
50 62 3 2 2 2 50 3 40 0.8

a worse result, as the ALNS algorithm may get stuck in
local optima when solving instances. The optimal solutions
and their corresponding optimization ratios are highlighted
in bold. Among the 20 instances with optimal costs, the no
OD group accounts for 4 instances, the group with 1 OD
accounts for 7 instances, the group with 2 ODs accounts for
6 instances, and the group with 3 ODs only accounts for 3
instances. When OD = 1, even though some instance results
are not optimal, the cost differences are relatively small, and

the results are more stable. Therefore, we consider 1 OD to
be a good choice for instances with 30 and 50 requests. In
subsequent sensitivity analyses of OD capacity and cost, the
parameter settings for 1 OD will be used.

In actual operations, company decision-makers can choose
either the number of ODs with a cost advantage or the
lowest-cost path each time. In this experiment, when a fixed
number of ODs is selected, having 1 OD increases the total
cost of all instances by 19.09% compared to having no OD.

With 2 ODs, the total cost increases by 17.19%, and with 3
ODs, the total cost increases by 18.48%. It is worth noting
that when the cost is worse with a fixed number of OD
vehicles, we will continue to choose the cost without ODs.
If each instance selects its corresponding optimal cost, the
total cost of the 20 instances increases by 22.07%.

3) Sensitivity Analysis - OD Capacity and Cost: For the
capacity of ODs, we set up seven comparative experiments,
reducing the capacity of ODs relative to the capacity of
RDs by a certain percentage. The seven comparative ex-
perimental percentage parameters are set to Capacity =
[40%, 50%, 60%, 70%, 80%, 90%, 100%)]. For the unit dis-
tance cost of RDs, we set up five comparative experiments,
reducing the unit distance cost relative to that of RDs by
a certain percentage. Different vehicle capacity parameter
settings correspond to different unit distance cost ratios for
RDs, as detailed below:

o OD Capacity Parameter = 40%: [20%, 30%, 40%, 50%, 60%]
o OD Capacity Parameter = 50%: [30%, 40%, 50%, 60%, 70%]
o OD Capacity Parameter = 60%: [40%, 50%, 60%, 70%, 80%]
o OD Capacity Parameter = 70%: [50%, 60%, 70%, 80%, 90%]
o OD Capacity Parameter = 80%: [50%, 60%, 70%, 80%, 90%]
e OD Capacity Parameter = 90%: [50%, 60%, 70%, 80%, 90%]
o OD Capacity Parameter = 100%: [50%, 60%, 70%, 80%, 90%]

A total of 100 cost values were obtained for each OD
capacity parameter setting, resulting in 700 cost values across
7 parameter configurations. In addition to the costs obtained
for different parameter values, the lowest cost parameter
results serves as the base cost for calculating the percentage
increase in OD costs per 10% increase in capacity. Positive
percentages indicate increased costs, while negative percent-
ages indicate decreased costs. The percentage increase in
OD costs for all 7 OD capacity values is shown in Table IX.
For each row, if capacity correlates positively with vehicle
costs (i.e., when OD vehicle capacity is 40% of RD vehicle
capacity, OD per unit distance costs should also be 40% of
RD costs), we use this as a benchmark to explore scenarios
where OD costs are below or above 40%. The same applies
to the other 6 experimental groups. Taking OD capacities
of 60% and 70% as examples, the calculated cost increase
percentages are [S0%, 60%, 70%, 80%, 90%, 100%]
[11.76%, 4.89%, 9.08%, 8.92%, 8.47%, 7.81%], with an
average increase of 8.47%.

Next, we explore the performance of OD capacity or OD
cost as single variables compared to path costs without OD
inclusion. As mentioned earlier, both the number of ODs
and the sensitivity analysis in this section use the same
instances, adjusting only relevant parameters to facilitate
direct comparison of these results. In Section VIII, we used
OD capacity and OD cost ratios of 80%. Referring to the
path costs when OD = 0, we calculated the cost decrease
brought by different OD cost ratios when OD capacity =
80% across 20 instances as [90%, 80%, 70%, 60%, 50%]
= [5.18%, 15.21%, 16.47%, 22.54%, 27.01%]. These results
indicate that path total costs save 5.18% when OD costs
are 90% of RD costs, and save 15.21% when OD costs are
80% of RD costs. We then explore the effect of varying OD
capacity on path total costs with fixed OD costs at 80% of

RD costs.

When the OD cost is fixed at 80%, and the OD capacity
takes values of [60%, 70%, 80%, 90%, 100%], the total
routing cost reduction relative to no OD situation is [7.86%,
9.97%, 15.21%, 13.96%, 13.94%]. According to the results,
using OD with 60% RD capacity saves 7.86% costs, 70%
RD capacity saves 9.97% costs, and 80% RD capacity saves
15.21% costs, with further capacity increases not resulting
in further cost reductions. Figure 4 illustrates the total cost
savings ratio across all combinations of vehicle capacities
and costs for 20 test instances.

VI. CASE STUDY
A. Background

Ochama is an omnichannel retailer, part of the Chinese e-
commerce giant JD.com. Headquartered in the Netherlands,
Ochama operates primarily in the Netherlands, Belgium,
France, and Germany. The platform offers over 10,000
high-quality products across various categories. Utilizing an
advanced automated warehousing system, Ochama provides
dual fulfillment services of pickup and delivery. Consumers
can place orders online through the Ochama platform, with
the option to pick up their orders from pickup points or
have them delivered directly to their homes. Ochama has
successfully implemented advanced warehouse network and
logistics system with over 700 ochama pickup points in
major cities and towns in the Netherlands, Belgium, and
Germany.

Ochama currently operates two depots: a self-operated
warehouse and a crossdocking warehouse located in Rot-
terdam and Venray, Netherlands, respectively (see Map 5).
The self-operated warehouse in Berkel en Rodenrijs, Rot-
terdam, handles all storage and shipping of goods, as well
as distribution for orders in western and northern Nether-
lands. Orders from eastern Netherlands, western Germany,
and northern Belgium are consolidated and transported to
Ochama’s crossdocking facility in Venray for distribution
after crossdocking. Ochama has over 700 pickup points,
primarily within the Netherlands, with the remainder in
western Germany, Belgium, and parts of France. These
pickup points do not operate every day but rather on select
days of the week, servicing an average of 150 to 200 pickup
points daily. In China, June 18th annually marks a major e-
commerce promotion day, similar to Black Friday. Ochama
continues this tradition, and statistics show that during the
recent 2024 June 18th promotion, Ochama shipped 13,000
parcels. Parcels are delivered using vans sized 5.45m X
2.263m x 2.29m, with an average parcel size of 40cm x
25cm x 30cm. Each van can accommodate an average of
200 parcels.

B. Instances for Case Study

In this study, we scale down the problem based on real-
world scenarios. Each instance retains the positions of two
depots and randomly sets 5 intermediate centers (ICs). Each
IC contains 20 requests, and each depot is randomly assigned
25 demand points, totaling 150 demands per instance. The

Total Cost Reduction Percentage (%)

TABLE VIII

SENSITIVITY ANALYSIS - NUMBER OF OD

Instances Ob=0 ODb=1 Gap - OD=1 ODb =2 Gap - OD=2 ODb=3 Gap - OD=3
2.2.30.1 1091 1029 5.7% 955.4 12.4% 1041.6 4.5%
2.2.30.2 1303.5 1229 5.7% 1018 21.9% 1073.6 17.6%
22303 1433 1281 10.6% 1154.2 19.5% 1170 18.4%
2.2.30.4 839 939 -11.9% 1405.8 -67.6% 1085 -29.3%
2.2.30.5 1105 1266.2 -14.6% 1098.2 0.6% 1067 3.4%
2.2.30.6 967 884.4 8.5% 1134 -17.3% 1057 -9.3%
2.2.30.7 1377 1141 17.1% 1181.2 14.2% 1122.2 18.5%
2.2.30.8 1264 1214 4.0% 1264.2 0.0% 1177.8 6.8%
2.2.30.9 778 854.6 -9.8% 1182 -51.9% 1123 -44.3%
2.2.30.10 979 994 -1.5% 1217 -24.3% 1128.4 -15.3%
3.2.50.1 2021.5 1942.4 3.9% 1836 9.2% 1967 2.7%
3.2.50.2 2581 1718.8 33.4% 1811.6 29.8% 1814 29.7%
3.2.50.3 3516 2568.4 27.0% 2211 37.1% 2053 41.6%
32504 3260 2151.8 34.0% 2044.4 37.3% 2158.6 33.8%
3.2.50.5 1828 1716 6.1% 2206.6 -20.7% 2041 -11.7%
3.2.50.6 2577 1580 38.7% 1929.2 25.1% 1973.2 23.4%
3.2.50.7 2541 1875 26.2% 2180.8 14.2% 2111 16.9%
3.2.50.8 2365.5 1518.4 35.8% 2240.8 5.3% 1556.6 34.2%
3.2.50.9 2280.5 1755.8 23.0% 1668 26.9% 1846.8 19.0%
3.2.50.10 1516 1567.4 -3.4% 1699.6 -12.1% 2058.8 -35.8%
TABLE IX

COST SENSITIVITY ANALYSIS
Capacity 20% Cost 30% Cost 40% Cost 50% Cost 60% Cost 70% Cost 80% Cost 90% Cost
40% Base Cost 5.88% 11.33% 22.70% 23.21%
50% Base Cost 9.52% 18.48% 21.13% 32.89%
60% Base Cost 6.22% 15.76% 20.66% 26.63%
70% Base Cost 11.95% 21.03% 28.29% 33.71%
80% Base Cost 6.38% 15.30% 16.81% 30.63%
90% Base Cost 2.68% 11.01% 20.74% 28.50%
100% Base Cost 9.96% 17.78% 23.30% 30.22%

25

Capacity 40%

Capacity 50%

Routing Cost Reduction Percentage by Cost and Capacity

Capacity 60%

Capacity 70%

Capacity 80%

Capacity Percentage

Fig. 4. Sensitivity Analysis Results

Capacity 90%

Capacity 100%

Cost

Cost 20%
Cost 30%
Cost 40%
Cost 50%
Cost 80%
Cost 70%
Cost 80%
Cost 90%

2Zwolle
.

Zaanslad

BELGIUM

Fig. 5. Case Study Map - NL, BE and DE

positions of ICs and demand points are within a range of 80
km from the two depots.

According to research, vehicles are categorized into three
types: large, medium, and small. The RDs use large vehicles,
whereas ODs, typically freelance drivers, have a higher
proportion of medium and small vehicles compared to large
vehicles, see Figure 9. Therefore, ODs consider medium
and small vehicles. The capacities of these three types of
vehicles are set in certain proportions, with medium and
small vehicles having cargo capacities of 60% and 45% of a
large vehicle’s capacity, respectively. This design is based on
the prevalence of large vehicles in Dutch logistics companies,
such as Ford Transit and Renault, which typically have cargo
capacities of 8-9 cubic meters. Medium vehicles are modeled
after Peugeot Expert and Renault models, which usually
have cargo capacities of 5-6 cubic meters. Small vehicles
are modeled after Caddy Cargo and Renault Cargo models,
which typically have cargo capacities of 4-5 cubic meters.
The capacity factors for medium and small vehicles are
estimated based on their cargo capacities. Each warehouse is
equipped with two RD vehicles, each with a capacity of 200,
and the capacity of each parcel is randomly chosen from [2,
3, 4]. In the comparative experiment, we chose the strategy of
replacing RD with OD instead of adding OD as an additional
strategy. This is because the ALNS algorithm in this study
prioritizes the use of OD vehicles. If the results show that
the cost with sufficient use of OD vehicles is higher than that
with only RD vehicles, it indicates that adding OD vehicles
does not bring cost benefits to a certain extent.

Below summarizes the common characteristics of the Case
Study instances:

o Total number of requests: 150

o Number of requests for customer: 50
o Number of requests for IC: 100

o Number of RD in each depot: 2

15

Number of OD (if needed): 2

Capacity RD: 200

Capacity OD: 45% and 60% Capacity RD
Maximum number of times OD visits the depot: 2

N

Fig. 7. Medium: Peugeot Expert
Fig. 9.

Fig. 8.

Small: Caddy Cargo

Comparative View of Different Cargo Vans

C. Comparative Experiment

We aim to compare employing ODs with different vehicle
types and whether providing different levels of subsidies to
ODs can reduce overall routing costs. For the former, we
set three scenarios: no OD involvement, 2 medium-sized
OD, and 2 small-sized OD. For the latter, when choosing
small-sized vehicles as ODs, we set 5 cost scenarios with
OD unit routing costs at 45%, 50%, 60%, 70%, and 80% of
RD routing costs. When choosing medium-sized vehicles as
ODs, we set 4 cost scenarios with OD unit routing costs at
50%, 60%, 70%, and 80% of RD routing costs.

We use the no OD experiment group as a baseline. We
compare the total routing costs of instances using different
types of vehicles and different subsidy costs with the total
costs of the experimental group. The results of no OD
experiment group are shown in Table X. Due to the infeasible
solution of instance "2.5.150.3", there are 9 valid instances.
The last row of the table gives the total routing costs of
the 9 valid instances. Similarly, the results of introducing
small-sized car ODs and medium-sized car ODs groups also
remove instance "2.5.150.3". Their results are shown in Table
XI and Table XII, respectively.

In the group where 2 RDs were replaced by 2 small-sized
cars (45% RD capacity), according to the data in the last
row of the table, when the cost is also 45% of the RD unit
distance cost, the total routing cost decreased by 11.37%,
and when the cost is 50% of the RD unit distance cost, the
total routing cost decreased by 5.11%. The costs obtained
for other OD costs were higher than the experimental group
costs without OD. In the group where 2 RDs were replaced
by 2 medium-sized cars (60% RD capacity), according to
the data in the last row of the table, when the cost is also
50% of the RD unit distance cost, the total routing cost
decreased by 16.57%, and when the cost is 60% of the
RD unit distance cost, the total routing cost decreased by

TABLE X
CASE STUDY - RD ONLY

RD only

Instances Routing Cost
2.5.150.1 1437
2.5.150.2 1270
2.5.1504 1388
2.5.150.5 1084
2.5.150.6 1253
2.5.150.7 1302
2.5.150.8 1360
2.5.150.9 1274
2.5.150.10 1407.4
Sum 11775.4

6.85%. The costs obtained for other OD costs were higher
than the experimental group costs without OD. From the
results of the two experimental groups, it can be concluded
that introducing OD vehicles can optimize the total routing
cost if the ratio of OD capacity to RD capacity and the unit
distance cost of OD to RD are consistent. Ochama can better
optimize delivery costs based on market research to balance
the acceptance of OD compensation and the required number
of ODs.

TABLE XI
CASE STUDY - 45% RD CAPACITY

45% Capacity

Instances Cost 45% Cost 50% Cost 60% Cost 70% Cost 80%
2.5.150.1 1302.2 1401.5 1498.8 1630.6 1718.6
2.5.150.2 1077.9 1137 1233.6 1268.2 1594.2
2.5.150.4 1142.2 1228 1265.8 1327 1611.6
2.5.150.5 1148.5 1201.5 1382.2 1450.6 1592.4
2.5.150.6 1197.2 1249.5 1406.6 1501.8 1574.6
2.5.150.7 1099 1268 1316.4 14274 1531
2.5.150.8 1163.3 1229.5 1335 1449.5 1565.6
2.5.150.9 1193.1 1242.5 1340.2 1325.6 1566.4
2.5.150.10 1112.7 1216 1291.4 1462.9 1496.4
Sum 10436.1 11173.5 12070 12843.6 14250.8
Gap 11.37% 5.11% -2.50% -9.07% -21.02%
TABLE XII
CASE STUDY - 60% RD CAPACITY
60% Capacity
Instances Cost 50% Cost 60% Cost 70% Cost 80%
2.5.150.1 1111 1264.4 1380 1431.6
2.5.150.2 1203 1305.8 1472 1532.4
2.5.150.4 1263 1389.2 1582.9 1645.4
2.5.150.5 956 1106.6 1182.2 1266
2.5.150.6 1261 13244 1467.7 1595
2.5.150.7 901 1030.4 1099.8 1165.6
2.5.150.8 1275 1446.6 1618.2 1789.8
2.5.150.9 974 1090.4 1229.7 1366.4
2.5.150.10 880 1011 1157.7 1253.2
Sum 9824 10968.8 12190.2 13045.4
Gap 16.57% 6.85% -3.52% -10.79%

Figure 10 and 11 present the visualized results of all
instances’ costs relative to the baseline cost without OD,
with the addition of small-sized OD and middle-sized OD,

respectively. In each figure, the grey dashed line represents
the baseline without OD consideration. When OD is intro-
duced, data points above the baseline indicate cost savings in
route expenses, whereas points below the baseline indicate
higher route costs. The x-axis represents each instance, and
each differently colored line corresponds to different OD cost
settings. The figures provide a clear visualization of whether
cost savings occur for each instance across different OD cost
values.

VII. CONCLUSIONS AND FUTURE RESEARCH
A. CONCLUSIONS

This research addresses the need for models that integrate
multiple depots, occasional drivers, and multiple depot visits,
features often overlooked in existing studies. We developed a
mathematical model and applied an Adaptive Large Neigh-
borhood Search (ALNS) algorithm to address the routing
problem, aiming to minimize costs efficiently. Our literature
review highlighted various algorithms for the Pickup and
Delivery Problem with Time Windows (PDPTW), Crowd-
shipping, and Open Vehicle Routing Problem (OVRP), in-
cluding ALNS, Variable Neighborhood Search (VNS), and
Integer Linear Programming (ILP). We found ALNS to
be particularly effective for our problem, offering a robust
solution through a combination of random and worst re-
moval operators, and Basic Greedy and Regret-2 insertion
strategies. The use of a roulette wheel method for operator
selection and simulated annealing for acceptance criteria fur-
ther improved solution quality. Computational experiments
validated the model and ALNS algorithm, demonstrating
their effectiveness. Parameter tuning and sensitivity analysis
revealed significant cost savings with the introduction of
additional depots (ODs). Specifically, introducing an OD
with an 80% cost relative to regular depots (RDs) can
reduce total routing costs by up to 15.21%. Varying OD
capacities also showed potential savings, with 60% capacity
ODs saving 7.86%, and 70% capacity ODs saving 9.97%.
A case study with the Dutch e-commerce company Ochama,
scaled to 150 requests, confirmed the practical applicability
of our approach. Out of ten instances, nine were valid. Our
method achieved total routing cost reductions of 11.37%
for small vehicles and 6.85% for medium-sized vehicles,
outperforming previous research which reported a 7.3%
reduction. Overall, our findings indicate that integrating ODs
into routing strategies can substantially lower costs. The
choice of the number, cost, and capacity of ODs should be
guided by market research to optimize cost savings while
balancing service quality and OD willingness.

B. Future Research

This study addresses the proposed a more realistic pickup
and delivery problem through modeling and algorithm de-
velopment. However, this is the beginning. This section
highlights some areas for improvement in this study and
suggests directions for future research.

+ Improving the Mathematical Model

This study employs an Arc-based Formulation, which

Cost Saving Ratio Compared to Base Cost for Different OD Costs - Small-sized OD

Saving Ratio Compared to Base Cost

Cost

Cost 45%
Cost 50%
Cost 80%
Cost 70%
Cost 80%

251501 251502 251504 251505

251506

Instances

251507 251508 251509 25150.10

Fig. 10. Results for adding Small-sized OD

Cost Saving Ratio Compared to Base Cost for Different OD Costs - Middle-sized OD

04
Cost

Cost 50%
Cost 60%
Cost 70%
Cost 80%

Saving Ratio Compared to Base Cost

251501

251502 251504 251505

Fig. 11.

provides detailed path analysis but increases the num-
ber of constraints. Exploring alternative modeling ap-
proaches, such as Node-based or Path-based Formula-
tions, or Column Generation, might reduce constraints
and solution time.

Further Optimization of Route Cost

While the ALNS algorithm provides good solutions, it
may only yield local optima for large problems. Using
the best solution from ALNS as input for exact algo-
rithms like branch and bound could help in exploring
the solution space further and achieving better results.

o Adding More Operators

2515086

Instances

17

251507 251508 251509 2515010

Results for adding Middle-sized OD

Currently, the ALNS algorithm uses only two repair and
destruction operators. Incorporating additional operators
could enhance selectivity and improve algorithm perfor-
mance.

Adjusting Destruction Coefficient Strategy

The destruction coefficient k is set to 0.1, which works
well for fewer requests. For larger instances, adjusting
k in relation to the number of requests can help avoid
excessive removal, speeding up the repair process and
improving solution exploration.

Application to Real-world Problems

This study used simulated demand points. Future work

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

(19]

[20]

should apply these methods to real-world scenarios,
considering actual demand volumes and market con-
ditions. Companies can use this research to determine
optimal OD types and pricing strategies based on market
research and driver preferences.

REFERENCES

Claudia Archetti, Martin Savelsbergh, and M Grazia Speranza. The
vehicle routing problem with occasional drivers. European Journal of
Operational Research, 254(2):472-480, 2016.

Alp M Arslan, Niels Agatz, Leo Kroon, and Rob Zuidwijk. Crowd-
sourced delivery—a dynamic pickup and delivery problem with ad
hoc drivers. Transportation Science, 53(1):222-235, 2019.

Simen Braaten, Ola Gjgnnes, Lars Magnus Hvattum, and Gregorio
Tirado. Heuristics for the robust vehicle routing problem with time
windows. Expert Systems with Applications, 77:136—-147, 2017.

José Branddo. A tabu search algorithm for the open vehicle routing
problem. European Journal of Operational Research, 157(3):552-564,
2004.

Erbao Cao and Mingyong Lai. The open vehicle routing problem with
fuzzy demands. Expert Systems with Applications, 37(3):2405-2411,
2010.

Erbao Cao, Mingyong Lai, and Hongming Yang. Open vehicle routing
problem with demand uncertainty and its robust strategies. Expert
Systems with Applications, 41(7):3569-3575, 2014.

Valentina Carbone, Aurélien Rouquet, and Christine Roussat. The rise
of crowd logistics: a new way to co-create logistics value. Journal of
Business Logistics, 38(4):238-252, 2017.

Lars Dahle, Henrik Andersson, Marielle Christiansen, and M Grazia
Speranza. The pickup and delivery problem with time windows and
occasional drivers. Computers & Operations Research, 109:122—133,
2019.

Iman Dayarian and Martin Savelsbergh. Crowdshipping and same-
day delivery: Employing in-store customers to deliver online orders.
Production and Operations Management, 29(9):2153-2174, 2020.
Luigi Di Puglia Pugliese, Daniele Ferone, Paola Festa, Francesca
Guerriero, and Giusy Macrina. Solution approaches for the vehicle
routing problem with occasional drivers and time windows. Optimiza-
tion Methods and Software, 37(4):1384-1414, 2022.

Anhai Doan, Raghu Ramakrishnan, and Alon Y Halevy. Crowdsourc-
ing systems on the world-wide web. Communications of the ACM,
54(4):86-96, 2011.

Yvan Dumas, Jacques Desrosiers, and Francois Soumis. The pickup
and delivery problem with time windows. European journal of
operational research, 54(1):7-22, 1991.

Krzysztof Fleszar, Ibrahim H Osman, and Khalil S Hindi. A variable
neighbourhood search algorithm for the open vehicle routing problem.
European Journal of Operational Research, 195(3):803-809, 2009.
Zhuo Fu, Richard Eglese, and Leon YO Li. A new tabu search heuristic
for the open vehicle routing problem. Journal of the operational
Research Society, 56(3):267-274, 2005.

Veaceslav Ghilas, Emrah Demir, and Tom Van Woensel. An adaptive
large neighborhood search heuristic for the pickup and delivery prob-
lem with time windows and scheduled lines. Computers & Operations
Research, 72:12-30, 2016.

Vera C Hemmelmayr, Jean-Francois Cordeau, and Teodor Gabriel
Crainic. An adaptive large neighborhood search heuristic for two-
echelon vehicle routing problems arising in city logistics. Computers
& operations research, 39(12):3215-3228, 2012.

Shixuan Hou and Chun Wang. Matching models for crowd-shipping
considering shipper’s acceptance uncertainty. In 2021 IEEE Interna-
tional Conference on Autonomous Systems (ICAS), pages 1-6. IEEE,
2021.

Kuancheng Huang and Muhammad Nashir Ardiansyah. A decision
model for last-mile delivery planning with crowdsourcing integration.
Computers & Industrial Engineering, 135:898-912, 2019.

Stefan Irnich. A multi-depot pickup and delivery problem with a single
hub and heterogeneous vehicles. European Journal of Operational
Research, 122(2):310-328, 2000.

Nabin Kafle, Bo Zou, and Jane Lin. Design and modeling of
a crowdsource-enabled system for urban parcel relay and delivery.
Transportation research part B: methodological, 99:62-82, 2017.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[40]

[41]

[42]

Gilbert Laporte, Roberto Musmanno, and Francesca Vocaturo. An
adaptive large neighbourhood search heuristic for the capacitated arc-
routing problem with stochastic demands. Transportation Science,
44(1):125-135, 2010.

Haibing Li and Andrew Lim. A metaheuristic for the pickup and
delivery problem with time windows. In Proceedings 13th IEEE
International Conference on Tools with Artificial Intelligence. ICTAI
2001, pages 160-167. IEEE, 2001.

Giusy Macrina, Luigi Di Puglia Pugliese, Francesca Guerriero, and
Demetrio Lagana. The vehicle routing problem with occasional
drivers and time windows. In Optimization and Decision Science:
Methodologies and Applications: ODS, Sorrento, Italy, September 4-
7, 2017 47, pages 577-587. Springer, 2017.

Setyo Tri Windras Mara, Rachmadi Norcahyo, Panca Jodiawan, Luluk
Lusiantoro, and Achmad Pratama Rifai. A survey of adaptive large
neighborhood search algorithms and applications. Computers &
Operations Research, 146:105903, 2022.

SA MirHassani and N Abolghasemi. A particle swarm optimization
algorithm for open vehicle routing problem. Expert Systems with
Applications, 38(9):11547-11551, 2011.

William P Nanry and J Wesley Barnes. Solving the pickup and delivery
problem with time windows using reactive tabu search. Transportation
Research Part B: Methodological, 34(2):107-121, 2000.

Maciek Nowak, Ozlem Ergun, and Chelsea C White III. Pickup and
delivery with split loads. Transportation science, 42(1):32-43, 2008.
David Pisinger and Stefan Ropke. A general heuristic for vehicle
routing problems. Computers & operations research, 34(8):2403—
2435, 2007.

Jean-Yves Potvin and Jean-Marc Rousseau. A parallel route building
algorithm for the vehicle routing and scheduling problem with time
windows. European Journal of Operational Research, 66(3):331-340,
1993.

Luigi Di Puglia Pugliese, Daniele Ferone, Paola Festa, Francesca
Guerriero, and Giusy Macrina. Combining variable neighborhood
search and machine learning to solve the vehicle routing problem with
crowd-shipping. Optimization Letters, pages 1-23, 2022.

Panagiotis P Repoussis, Christos D Tarantilis, and George Ioannou.
The open vehicle routing problem with time windows. Journal of the
Operational Research Society, 58(3):355-367, 2007.

Stefan Ropke and David Pisinger. An adaptive large neighborhood
search heuristic for the pickup and delivery problem with time
windows. Transportation science, 40(4):455-472, 2006.

Majid Salari, Paolo Toth, and Andrea Tramontani. An ilp improvement
procedure for the open vehicle routing problem. Computers &
Operations Research, 37(12):2106-2120, 2010.

Afonso Sampaio, Martin Savelsbergh, Lucas P Veelenturf, and Tom
Van Woensel. Delivery systems with crowd-sourced drivers: A pickup
and delivery problem with transfers. Networks, 76(2):232-255, 2020.
Dimitrios Sariklis and Susan Powell. A heuristic method for the open
vehicle routing problem. Journal of the Operational Research Society,
51:564-573, 2000.

Aigse Ziilal Sevkli and Bekir Giiler. A multi-phase oscillated variable
neighbourhood search algorithm for a real-world open vehicle routing
problem. Applied Soft Computing, 58:128-144, 2017.

Paul Shaw. A new local search algorithm providing high quality
solutions to vehicle routing problems. APES Group, Dept of Computer
Science, University of Strathclyde, Glasgow, Scotland, UK, 46, 1997.
Marius M Solomon. Algorithms for the vehicle routing and schedul-
ing problems with time window constraints. Operations research,
35(2):254-265, 1987.

Yi Tao, Haibing Zhuo, and Xiaofan Lai. The pickup and deliv-
ery problem with multiple depots and dynamic occasional drivers
in crowdshipping delivery. Computers & Industrial Engineering,
182:109440, 2023.

CD Tarantilis and CT Kiranoudis. Distribution of fresh meat. Journal
of Food Engineering, 51(1):85-91, 2002.

Christos D Tarantilis, Danae Diakoulaki, and Chris T Kiranoudis.
Combination of geographical information system and efficient routing
algorithms for real life distribution operations. European Journal of
Operational Research, 152(2):437-453, 2004.

Christos D Tarantilis, George Ioannou, Chris T Kiranoudis, and
Gregory P Prastacos. Solving the open vehicle routeing problem via a
single parameter metaheuristic algorithm. Journal of the Operational
research Society, 56:588-596, 2005.

[43]

[44]

[45]

Fabian Torres, Michel Gendreau, and Walter Rei. Crowdshipping: An
open vrp variant with stochastic destinations. Transportation Research
Part C: Emerging Technologies, 140:103677, 2022.

HRG Van Landeghem. A bi-criteria heuristic for the vehicle routing
problem with time windows. European Journal of Operational
Research, 36(2):217-226, 1988.

Stefan Voigt and Heinrich Kuhn. Crowdsourced logistics: The pickup
and delivery problem with transshipments and occasional drivers.
Networks, 79(3):403-426, 2022.

	Preface
	Summary
	Introduction
	Literature study
	Related Models
	Crowd-shipping Problem
	Open Vehicle Routing Problem
	Pickup and Delivery Problem with Time Window

	Related Algorithms
	Crowd-shipping Problem
	Open Vehicle Routing Problem
	Pickup and Delivery Problem with Time Windows

	Conclusion of Literature Review

	Problem Definition
	Methodology
	Mathematical Model
	ALNS Algorithm
	Initial Solution
	Request Removal
	Inserting Requests
	Choosing a Removal and an Insertion Heuristic
	Adaptive Weight Adjustment
	Acceptance and Stopping Criteria

	Computational Experiments
	Instance Generation
	Example Instance
	Parameter Tuning
	Computational Experiments
	Sensitivity Analysis
	Instances for Sensitivity Analysis
	Sensitivity Analysis - Number of OD
	Sensitivity Analysis - OD Capacity and Cost

	Case Study
	Background
	Instances for Case Study
	Comparative Experiment

	Discussion
	Conclusions and Recommendations
	Conclusion
	Recommendations

	Reference
	Parameters Tuning Result
	Sensitivity Analysis Results - Capacity and Cost
	Scientific Paper

