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Abstract

This thesis dives deep into the concepts of solvability and control of implicit Max-Min-Plus-
Scaling (MMPS) systems. An advanced mathematical framework used to model discrete-
event systems combining max-plus, min-plus, and conventional algebraic operations. These
systems have a broad spectrum of applications in fields such as scheduling, transportation,
and performance evaluation of networks. An initial overview of MMPS systems, and neces-
sary background is provided through the mathematical preliminaries, including max-plus and
min-plus algebra, spectral theory, and their graph-theoretical interpretations. This thesis rec-
ognizes the distinction between explicit and implicit MMPS systems, where the latter involves
current state dependencies, leading to challenges in analysis and solvability. The focus of the
thesis will solely lie in researching implicit MMPS systems, and is split into two main parts.
The first part providing novel theoretical concepts regarding control and solvability of implicit
MMPS systems.The main contribution of the first part lies in extending the existing solv-
ability theory. This thesis shows that previously proposed solvability conditions are merely
sufficient, but not necessary. A graph-theoretic interpretation of solvability is introduced by
analyzing the structure matrix S, and conditions are developed to identify circuit subsys-
tems, which pinpoint implicit dependencies within the system. The thesis further proposes
a classification of solvability into uniquely solvable-, parametrically solvable-, parametrically
unsolvable-, and strictly unsolvable modes and derives a necessary and sufficient condition
for solvability using rank tests on linear algebraic subsystems. Furthermore, the control of
implicit MMPS systems is explored by proposing open-loop and closed-loop control strate-
gies. The effects of these control strategies on system properties such as time-invariance and
solvability are analytically derived. In the second part, the theoretical results are supported
by application to an urban railway system (URS), which is augmented in order to accom-
modate complex passenger flows, and controlled using the developed implicit MMPS control
framework. Results of the simulation demonstrate the system’s stability and effectiveness of
the control strategies under various disturbances. Overall, this thesis provides significant the-
oretical advancements in implicit MMPS system analysis, and offers practical methodologies
and illustrative examples regarding modeling and controlling complex discrete-event systems.
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Chapter 1

Introduction

This first chapter provides a concise overview of what this thesis consists of. Some relevant
background and context to the topic is provided in Section 1-1. Subsequently, the academic
incentive to perform the research conducted in this report, based on the literature research
conducted prior to this thesis [19] will be elaborated on in Section 1-2. Within this section,
the research questions answered in this report are given. Thereafter, section 1-3 outlines the
approach taken as to answer the research questions. Lastly, the outline of this document is
described in 1-4.

1-1 Background
There is a plethora of modeling techniques to choose from in the pursuit of modeling discrete-
event systems. Some examples of these are; (extended) state machines, max-plus algebra,
hybrid automata, temporal logic, generalized semi-Markov processes, Petri nets, and so on
[5]. Max-plus algebra arose as a tool in system theory for classes of discrete event systems
around the early 1980’s. It is likely inspired by the observation that synchronization, a very
nonlinear, non-smooth phenomenon when described in conventional algebra, can be linearly
modeled using algebraic structures such as max-plus algebra [12]. Most Discrete Event Sys-
tem (DES) are generally not linear, when written in conventional algebra. When DES can
be modeled within the max-plus or min-plus algebra framework, the DES becomes ’linear’,
i.e. linear in the max-plus or min-plus algebraic sense, which can reduce the computational
complexity of controlling, and analyzing the system. Max-Min-Plus-Scaling (MMPS) systems
combine max-plus algebra, min-plus algebra, and conventional algebra, and are a powerful
modeling framework for discrete-event dynamic systems that exhibit synchronization, compe-
tition, and accumulation, common features in applications such as railway networks, manufac-
turing systems, and communication protocols. By integrating max-plus and min-plus algebra
with conventional scaling operations, MMPS systems can describe complex, non-linear be-
haviors in a mathematically structured yet computationally manageable way. Their strength
lies in their ability to represent both temporal states (timing of events such as the arrival of
a train) and quantity states (quantities such as the number of passengers embarking a train)
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2 Introduction

within this mathematical structure. MMPS systems are equivalent to continuous piecewise-
affine systems, making them a natural tool for control and analysis of systems with hybrid
dynamics.

1-2 Problem Description
Despite their broad applicability, important theoretical challenges remain unresolved. In par-
ticular, the analysis of implicit MMPS systems, where current states are defined in terms of
themselves, poses significant difficulties. The solvability of implicit systems can be violated
by these implicit dependencies, but this phenomenon is not fully understood or researched.
Existing conditions are largely sufficient but not necessary, leaving gaps in the theoretical
foundation. Moreover, as MMPS systems are increasingly applied in control contexts, there
is a growing need to understand how input signals, both open-loop and closed-loop, influence
solvability and stability. These gaps highlight the importance of developing more comprehen-
sive methods for analyzing, classifying, and controlling implicit MMPS systems, especially
in the presence of real-world constraints and disturbances. Previous work such as [18] made
attempts to model, and control a complex implicit MMPS system in the form of an Urban
Railway System (Urban Railway System (URS)). However, this model does not allow for
complex passenger flows throughout the system, which does occur in real-life. Furthermore,
very little elaborate examples of analysis, and control of implicit MMPS systems exist, leaving
much room for improvement.

1-2-1 Research Questions
This thesis seeks to fill the identified research gap by investigating the following research
questions;

1. Is it possible to find a necessary solvability condition for implicit MMPS systems?

(a) Can a graph-theoretic interpretation be used to understand, and generalize beyond
the current algebraic criteria?

(b) What degrees of solvability exist for implicit MMPS systems?

(c) Is it possible to identify a method to classify all implicit MMPS systems with
regards to their degree of solvability?

2. How can the existing control strategies for explicit MMPS systems be extended to
control strategies for implicit MMPS systems?

(a) Is it possible to find an open-loop control strategy for implicit MMPS systems?

(b) Is it possible to find a closed-loop control strategy for implicit MMPS systems?

(c) Can conditions for system properties such as time-invariance and solvability be
derived for controlled implicit MMPS systems?
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1-3 Approach 3

3. Can the theoretical results regarding solvability and control of implicit MMPS systems
be validated and/or tested by applying them to a complex real-world system such as an
Urban Railway System?

(a) Is it possible to augment the Urban Railway System proposed in [18] such that it
accommodates complex passenger flows?

(b) What insights can be gained from analyzing the dynamic behaviour of this Aug-
mented Urban Railway System?

(c) Can this Augmented Urban Railway System subsequently be simulated accord-
ing to a uniform timetable, disturbed, and controlled using the proposed control
strategies for implicit MMPS systems?

1-3 Approach

After introducing the subject in 1-1, identifying the research gap, and formulating the research
questions in 1-2 let us introduce an appropriate approach as to answer these research ques-
tions. Before attempting to answer said questions, thorough investigation of existing theory
and literature is essential. An overview of the mathematical foundation is presented, covering
all known relevant literature. A thorough analysis of the existing solvability condition is done
with the aim to relate the structure matrix S to a graph-theoretic interpretation of solv-
ability, thereby answering research question 1.(a). Thereafter, the sufficiency of the existing
solvability condition is proven. The graph-theoretic interpretation of the existing solvability
condition is of great importance when attempting to develop a method to classify implicit
systems in terms of their degree of solvability, which will be subsequently investigated, ulti-
mately answering research questions 1.(b) and 1.(c). The extension of the solvability theory
is concluded by proposing a necessary condition for solvability, answering research question
1.

Afterwards, the existing explicit control strategies will be extended in order to incorporate
implicit dynamics, addressing research question 2. This is subsequently done for both open-
loop control strategies, and closed-loop control strategies, by which research questions 2.(a)
and 2.(b) are answered. The results regarding solvability theory are applied to the derived
control strategies, and existing time-invariance conditions are rederived for the open-loop-,
and closed-loop controlled systems in the pursuit of answering research question 2.(c).

A comprehensive case study as to validate these results is conducted in the form of aug-
menting the Urban Railway System (URS) as presented in [18]. By close examination of the
assumptions done in this research, the mathematical model will be redesigned as to allow for
more complex flows of passengers, addressing research question 3.(a). Thereafter, extensive
analysis of this Augmented Urban Railway System is performed. Topics like solvability, time-
invariance, stability, initialization, etcetera will be elaborated on with regards to this newly
derived system, by which research question 3.(b) is addressed. Said analysis subsequently
serves as a validation of the results regarding the proposed solvability theory. Furthermore,
the simulation of the Augmented Urban Railway System will be disturbed, and controlled
using the proposed implicit MMPS control strategies, addressing research question 3.(c).
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4 Introduction

1-4 Document Outline
The thesis is structured such that the reader experiences a coherent flow of reasoning, guiding
them through the concepts, methods, and results in a natural order. Below, the chapters are
presented in the order they appear in the thesis, along with a summary of their respective
contents. Note that Chapters 4, 5, 6 and 7 provide the academic contributions, whereas
Chapters 1 and 3 provide an overview of the literature study, and introduce the concepts that
are of importance for the research.

Chapter 2 - Mathematical preliminaries: Introduces the existing algebraic foundations
of max-plus, and min-plus algebra, and the MMPS modeling framework, including some
relevant spectral theory concepts, and piecewise-affine system equivalence.

Chapter 3 – Analysis of MMPS systems: Discusses existing theory regarding key system
properties such as time-invariance, monotonicity, and homogeneity, distinguishing between
explicit and implicit MMPS systems. Algorithms for solvability and eigenvalue analysis are
given. Furthermore existing theory regarding bounded-buffer stability, (maximal) invariant
sets, and conditions under which MMPS systems remain stable over time is explained.

Chapter 4 – Solving Solvability: Evaluates existing solvability theory, identifies knowl-
edge gaps, and presents new solvability theory using graph-theoretic tools and matrix struc-
ture analysis. The chapter defines necessary and sufficient conditions and proposes a method-
ology to classify implicit MMPS systems according to their degree of solvability.

Chapter 5 – Control of Implicit MMPS Systems: Proposes open-loop and closed-
loop control strategies for implicit MMPS systems. Conditions for system properties such as
solvability and time-invariance are analytically derived.

Chapter 6 – Augmenting and Analyzing the Urban Railway System: Applies the
MMPS framework to a real-world transportation system. The model is extended and validated
through simulation, demonstrating the theory’s practical relevance.

Chapter 7 – Disturbance and Control of the Augmented Urban Railway System:
Evaluates the effects of disturbances on the AURS and implements a proposed control strategy
to reject the applied disturbance. The results of the applied control strategy are thoroughly
discussed.

Chapter 8 - Conclusions and Contributions: Reflects on all research questions and
shortly summarizes the answers to each. Provides a concise overview of all the research
carried out in this thesis.
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Chapter 2

Mathematical Preliminaries

The aim of this Chapter is to provide an elaborate, complete, yet concise mathematical
basis for understanding the concept of MMPS systems. Firstly, section 2-1 provides the core
concepts of what makes max-plus algebra, what properties operators have, and the properties
of max-plus algebra will be discussed in, all of which will be done for scalars. Subsequently,
this knowledge will be applied to min-plus algebra. Thereafter, the theory will be extended
towards matrices and vectors. Then, section 2-2 provides insights into spectral theory for
max-plus algebra, focusing on graph theory, and the graph-theoretic interpretation of max-
plus matrices. Thereafter, max-plus algebraic eigenvalues and eigenvectors will be introduced,
and an algorithm for determining them will be presented. Lastly, in section 2-3 a model for
MMPS systems will be introduced, as well as the class of Continuous Piecewice Affine systems,
which is a class equivalent to MMPS systems.

2-1 Max-Plus Algebra
The aim of this section is to introduce the concept of max-plus algebra, and lay the mathe-
matical foundation on which all topics discussed after this is built. After reading this section,
the reader should be able to understand what the basic operations of max-plus algebra are,
and how to apply them to matrix operations as well as scalar operations. Furthermore, the
concept of min-plus algebra is defined.

2-1-1 Definitions and Core Concepts
The cornerstones of max-plus algebra are the operations of maximization and addition. These
two binary operations are represented by the mathematical symbols ⊕ "oplus" for maximiza-
tion, and ⊗ "otimes" for addition. From an algebraic point of view, it can be shown that
max-plus algebra is an example of an algebraic structure called a semiring. The following
general definition of a semiring is used.
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6 Mathematical Preliminaries

Definition 2-1.1. [9] (semiring) A semiring is a nonenmpty set R, endowed with two binary
operations ⊕R and ⊗R such that;

• The operation ⊕R is associative, commutative, and has a zero element εR

• The operation ⊗R is associative, and it is distributive with respect to ⊕R and its identity
element eR satisfies εR ⊗R eR = eR ⊗R εR = εR, so essentially, εR is absorbing for ⊗R

Any semiring can be denoted by the notation R = (R,⊕R,⊗R, εR, eR)

Associative means that it does not matter how the elements were grouped, i.e. which part we
calculate first. For example, (2× 3)× 6 = 2× (3× 6), where the order of evaluation is not of
significance for the result. Commutative means that the order of elements in the operation
does not matter, for example 3 + 2 = 5, just like 2 + 3 = 5, so even though the order of 2 and
3 changed, the answer stayed the same.

Furthermore, the semiring is idempotent [13] if the first operation is idempotent, which means
that a mathematical quantity, when applied to itself under a given binary operation, equals
itself. For example, this holds for max(a, a) = a. Also, the semiring is commutative if the
group is commutative.

Operations

Here, the operations of maximization and addition, ⊕ and ⊗ will be introduced. For ⊕ and
⊗ we define

a⊕ b = max(a, b) (2-1)

a⊗ b = a + b (2-2)

for a, b ∈ Rε. Within max-plus algebra, ε = −∞ and e = 0 are defined as the neutral elements
of ⊕ and ⊗, they function as the "zero" and "one", respectively [13]. This is analogous to how
in conventional algebra, 0 and 1 are used as the neutral elements. The algebraic structure
that represents max-plus algebra is given by;

R̄ε = (Rε,⊕,⊗, ε, e) (2-3)

Where Rε = R∪−∞. Sometimes in literature, the set Rε is referred to as Rmax [13], however,
in this report, Rε is used. There is no inverse operation of the ⊕ operation. An example of
an inverse operation in conventional algebra would be multiplication, whose inverse operation
is division. For the conventional operation of addition, the inverse operation is subtraction.
This symmetry of conventional algebra is at the expense of the property of idempotency.
In max-plus algebra, symmetry is lost, but idempotency is gained. Interestingly enough,
the symmetry of the conventional multiplication operation, makes the conventional algebra
defined by binary operations + and ×, not a semiring.
Let r now be defined as r ∈ R. In max-plus algebra, the rth max-plus algebraic power of
x ∈ R can be defined as x⊗r [6]. In conventional algebra, this corresponds to x⊗r = rx. This
leads to the following theorem;
Theorem 2-1.1. [6] If x ∈ R, then x⊗0 = 0, and the inverse of x with respect to ⊗ is
x⊗−1 = −x
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2-1 Max-Plus Algebra 7

Using this theorem it can be explained that there exists no inverse element for ε with respect
to ⊗, as any ε is absorbing for ⊗. Lastly, max-plus algebraic powers have priority over max-
plus algebraic multiplication, which then have priority over max-plus algebraic addition. The
max-plus algebraic order of evaluation corresponds to the evaluation order within conventional
algebra. A few other mathematical properties regarding max-plus and min-plus algebra are
given below;

• −min(a, b) = max(−a,−b)

• −max(a, b) = min(−a,−b)

• min(a, min(b, c)) = min(min(a, b), c)

• max(c, min(a, b)) = min(max(c, a), max(c, b))

• min(c, max(a, b)) = max(min(c, a), min(c, b))

Min-plus Algebra

In this section, the concept of min-plus algebra will be introduced, which is equally as impor-
tant for the construction of MMPS systems as max-plus algebra. As defined in the previous
Section, the algebraic structure for max-plus algebra is given by R̄ε = (Rε,⊕,⊗, ε, e). The
structure describing min-plus algebra is given by R̄⊤ = (R⊤,⊕′,⊗′,⊤, e). Here, ⊤ =∞, and
R⊤ is the set of real numbers, and ⊤, so R⊤ = R ∪ {∞}. Min-plus algebra is isomorphic to
max-plus algebra, meaning that, because of the structural similarities between the two, all
concepts in max-plus algebra can be transformed to concepts in min-plus algebra [17]. But
first, the operators of min-max algebra have to be properly defined;

a⊕′ b = min(a, b)
a⊗′ b =a⊗ b = a + b

(2-4)

So, having introduced the min-plus algebraic structure, its importance in MMPS systems can
be highlighted. In MMPS systems, the operations of maximization, minimization, addition,
and scaling are used. Therefore, min-plus algebra is used for the minimization and addition,
max-plus algebra for the maximization and addition, and conventional algebra for the scaling
operation. All three defined types of algebras will occur. For max-min-plus (scaling) algebra,
the set Rc = R ∪ {−∞} ∪ {∞} can be defined. The notation R can be used to refer to
either R,Rε, R⊤ or Rc [16]. In order to transform concepts from max-plus algebra to min-
plus algebra, generally speaking, the maximization operations have to be changed to the
minimization operation, and the set over which the algebra is defined has to be changed from
Rε to R⊤.

2-1-2 Matrix Calculations

Now that the max-plus algebraic basis is established, this knowledge can be extended to, and
applied to matrix calculations in Rε [9]. Let us introduce n,m and p in the set of positive
integers, n, m, p ∈ Z+, and matrices A and B in A, B ∈ Rn×m

ε . Elements of A and B will
be referred to as aij or bij , with i ∈ n and j ∈ m as the rows and columns, respectively.
Furthermore, matrix C ∈ Rn×p

ε is introduced, with elements cij with i ∈ n and j ∈ p.
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8 Mathematical Preliminaries

Matrix A can be written as;

A =


a11 a12 · · · a1m

a21 a22 · · · a2m
...

... . . . ...
an1 an2 · · · anm

 (2-5)

And matrices B and C can be written as

B =


b11 b12 · · · b1m

b21 b22 · · · b2m
...

... . . . ...
bn1 bn2 · · · bnm

 (2-6) C =


c11 c12 · · · c1p

c21 c22 · · · c2p
...

... . . . ...
cn1 cn2 · · · cnp

 (2-7)

The ⊕ operator can be applied to matrices in the following way;

(A⊕B)ij = aij ⊕ bij = max (aij , bij) ,∀i, j (2-8)

Applying the ⊗ operator to matrices yields the following relation;

(A⊗ C)ij =
n⊕

k=1
aik ⊗ ckj = max

k=1,...,n
(aik + ckj) ,∀i, j (2-9)

The elements of Rn×1
ε are called the vectors of the matrices. The jth column of matrix A can

be referred to as aj , or [a]j . Notice that α ⊗ x, x being a vector in Rn×1
ε and for any scalar

α ∈ Rε, is actually a vector with all entries of value α. In Section 2-1-1, the neutral elements
of max-plus algebra were defined as ε = −∞ and e = 0. Within max-plus algebraic matrix
computations, an identity matrix, and a zero matrix need to be defined as well. Let us define
E(n, n) and E(n, m) as follows [9];

E =


e ε · · · ε
ε e · · · ε
...

... . . . ...
ε ε · · · e

 (2-10) E =


ε ε · · · ε
ε ε · · · ε
...

... . . . ...
ε ε · · · ε

 (2-11)

The max-plus identity matrix E(n, n) has e on its diagonal entries, and ε at all other entries,
and is always a square matrix. The zero matrix E(n, m) has ε at all entries. Using any
arbitrary matrix A, it is easily verified that the following statements hold;

A⊕ E(n, n) = A = E(n, n)⊕A (2-12)

A⊗ E(m, m) = A = E(n, n)⊗A (2-13)

Furthermore, for k ≥ 1 the following tho statements hold as well;

A⊗ E(m, k) = E(n, k) E(k, n)⊗A = E(k, m) (2-14)

Besides the identity, and zero matrices, the unit vector, and zero vector needs to be defined
as well. The unit vector can be denoted by u, or [u]j mathematically, and each entry of this
vector has value e [9]. For any j ∈ n, the jth column of of the identity matrix E(n, n) is
called the jth base vector of Rn

ε and is denoted by ej .
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2-2 Spectral Theory 9

For Rn×m
ε , the matrix addition operation ⊕ is associative, commutative, and has zero element

E(n, m) [9]. The matrix product operation ⊗ is associative, distributive with respect to ⊕,
has unit element E(n, m), and the zero matrix E(n, m) is absorbing for ⊕. The transpose of a
max-plus algebraic matrix A can be determined analogous to how the transpose of a matrix
in conventional algebra is determined, and is denoted by AT . AT is determined as follows;

[AT ]ij = [A]ji (2-15)

Lastly, the method to compute the power of a max-plus algebraic matrix needs to be provided.
Higher powers of matrices can only be computed for square matrices, so matrices in Rn×n

ε .
The kth power of matrix A can be written down as A⊗k , and the definition of the computation
of matrix powers is given as;
Definition 2-1.2. [9] For any matrix A ∈ Rn×n

ε , denote the kth power of A by A⊗k , defined
by

A⊗k = A⊗A⊗ · · · ⊗A︸ ︷︷ ︸
k times

(2-16)

for k ∈ N with k ̸= 0

Lastly, we set A⊗0 = E(n, n).

2-2 Spectral Theory
In the previous section, the necessary mathematical base principles of max-plus algebra for
both scalars, and matrices were introduced. This section deepens that mathematical knowl-
edge, as it provides a graph-theoretic interpretation of max-plus matrices, and an introduction
to eigenvalues and eigenvectors in max-plus algebra.

2-2-1 Graph Theory
There exists a rich relationship between graphs and matrices [13], which is of great use within
max-plus algebra. The extent of this relationship, and its implications on max-plus algebra
will be elaborated on within this Section. The basic observation is that any square matrix
can be translated into a weighted graph, and that the products and powers of matrices over
the max-plus semiring have entries with a graph-theoretical interpretation [9]. In this whole
section [13] is used as a source. A directed graph G is defined as a pair (V, E) where V is
defined as a set of nodes, and E is defined as a set ordered pars of nodes, called arcs. The
pair can consist the same node twice (an arc to itself), and it is also possible to have multiple
arcs between a pair of nodes, in which case we speak of a multigraph. An undirected graph
is a graph in which there is no specified order for arcs. The focus in this Section is almost
exclusively on directed graphs with at most one arc between any two nodes, so it can be
assumed that the word "graph" refers to a directed graph. Now, some basic concepts and
definitions will be introduced, that will lay the base in pursuit of understanding graph theory,
which is useful in the concepts introduced later on.
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10 Mathematical Preliminaries

Predecessor, successor If in a graph (i, j) ∈ E , then i is called the predecessor of j, and
j is called the successor of i. The set of predecessors is denoted by the notation π(j),
and the set of successors is denoted by σ(i) .

Path, circuit, loop, lengths A path p is a sequence of nodes (i1, i2, . . . , ip) , p > 1 such that
ij ∈ π (ij+1) , j = 1, . . . , p− 1. This means that for each node on the path, the current
node is in the set of predecessors of the next node on the path. The path starts at node
i1 and ends at node ip. An elementary path is a path in which no node appears more
than once. If the initial and final node coincide, the path is actually a circuit. A circuit
(i1, i2, . . . , ip = i1) is an elementary circuit if the path (i1, i2, . . . , ip−1) is elementary.
A loop is actually a circuit that consists of one node, that is both the initial and final
node. Basically, it is a path that consists of an arc from a node to itself. If i ∈ π(i),
this loop exists. The length of a path or a circuit is the sum of the lengths of the arcs
it is composed of. The length of an arc is assumed to be 1, unless specified otherwise.
The length of a path p is denoted by the notation pl. The set of all paths and circuits
in a graph is denoted by R. If R does not contain any circuits, the graph is said to be
acyclic.

Descendant, ascendant The set of descendants σ+(i) of node i consists of all nodes j such
that a path exists from i to j. Similarly, the set of ascendants π+(i) of node i is the set
of all nodes j such that a path exists from j to i. The mapping i 7→ π∗(i) = {i} ∪ π+(i)
is the transitive closure of π; the mapping i 7→ σ∗(i) = {i} ∪ σ+(i) is the transitive
closure of σ.

Chain, connected graph A graph is called connected if for all pairs of nodes i and j either
a path from i to j, or a path from j to i exists. An undirected path is called a chain.
So a graph is called connected if for all pairs of i and j there exists a chain joining i
and j.

Strongly connected A graph is called strongly connected if for any two different nodes i
and j there exists a path from i to j. Mathematically this can be described as i ∈ σ∗(j)
for all i, j ∈ V with i ̸= j. An isolated node, with or without a loop, is also a strongly
connected graph, by definition.

Weights directed graph is called weighted if a weight w(i, j) ∈ R is associated with any arc
(i, j) ∈ E [9]

Reduced graph The reduced graph of G is the graph with nodes V def= {1, . . . , q} and with
arcs E where (i, j) ∈ E if (k, l) ∈ E for some node k of Vi and some node l of Vj

Lemma 2-2.1. Any reduced graph is acyclic

Connection to Matrices

Considering all previously introduced knowledge, the strong connection between graph theory,
matrices, and its applications in max-plus algebra will be elaborated on. The relation between
graphs and matrices over the max-plus semiring Rε is described below. Firstly, any square
(n × n) matrix A in Rε can be associated with a graph, which is denoted as G(A)[9]. The
graph associated with matrix A is called the precedence graph of A, of which the definition
is given by;
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2-2 Spectral Theory 11

Definition 2-2.2. [9](Precedence graph) Consider matrix A ∈ Rn×n
ε . The precedence graph

of A, denoted by G(A), is a weighted directed graph with vertices 1, 2, ..., n and an arc (i, j)
in G(A), the weight of (i, j) is given by aji for each aji ̸= ε.

The set of nodes of this graph is given by E(A), and contains n nodes. Any entry of matrix
A corresponds to a possible arc. If the value of aji ̸= ε, an arc between node i and j exists,
which mathematically translates to (i, j) ∈ V(A) ⇔ aji ̸= ε. Here, the set of arcs is denoted
by E(A). Next, let us introduce the Kleene star operator of matrix A [9]; The Kleene star
operator A⋆ is obtained by the following expression;

A⋆ = E ⊗A+ =
⊕
k≥0

A⊗k (2-17)

Where
A+ =

∞⊕
k=1

A⊗k = A⊕A⊗2 ⊕A⊗3 + · · ·+⊕A⊗n ∈ Rn×n
ε (2-18)

Here, entry [A⋆]ij is the maximal weight of any path of arbitrary length in G(A) between
node j and node i. Lastly, it can be noted that [A⊗n]ij refers to the maximal weight of a
path from node j to node i in G(A) of length n.

2-2-2 Eigenvalues and Eigenvectors
Given a matrix A in with entries in Rε, statements can be made about the existence of
eigenvalues and eigenvectors, and how these can be computed. Firstly, the definition of a
max-plus algebraic eigenvalue is given as follows ;
Definition 2-2.3. [13] (Max-plus algebraic eigenvalue) Let A ∈ Rn×n

ε . If there exists λ ∈ Rε

and v ∈ Rn
ε with v ̸= εn×1 such that A⊗ v = λ⊗ v then, λ is a max-plus-algebraic eigenvalue

of A and that v is a corresponding max-plus algebraic eigenvector of A

This definition is similar to the definition of conventional eigenvalues and eigenvectors. But
where in conventional algebra any matrix A ∈ Rn×n has n eigenvalues and n eigenvectors,
this does not hold true for matrices in A ∈ Rn×n

ε . The total number of max-plus algebraic
eigenvalues and eigenvectors is generally less than n [6]. In fact, it can even be proven
that if a matrix is irreducible, it has only one eigenvalue [3]. The first possible method for
computing an eigenvalue of a max-plus algebraic matrix, is given by Karp’s theorem. This
theorem is accompanied by an algorithm, Karp’s algorithm, which computes the eigenvalue
of an irreducible max-plus algebraic matrix.
Theorem 2-2.1. [9] (Max-plus eigenvalue of an irreducible matrix) Let A ∈ Rn×n

max be irre-
ducible with eigenvalue λ, then;

λ = max
i=1,...,n

min
k=0,...,n−1

[A⊗n]ij − [A⊗k]ij
n− k

(2-19)

where j ∈ n can be chosen arbitrarily, and division has to be understood in conventional
algebra.
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Subsequently, the algorithm for determining the eigenvalue described in Karp’s Theorem is
given by;
Theorem 2-2.2. The max-plus algebraic eigenvalue of an irreducible matrix

Algorithm 1 [11] Karp’s algorithm
1: Choose arbitrary j ∈ n, and set x(0) = ej

2: Compute x(k) for k = 0, ..., n
3: Compute the eigenvalue eigenvalue λ as

λ = max
i=1,...,n

min
k=0,...,n−1

xi(n)− xi(k)
n− k

Karp’s algorithm is actually applicable to reducible matrices, as it yields an eigenvalue de-
pending on the choice of j. In [9] it is shown that, in this case, the associated eigenvector may
contain elements equal to ε. Furthermore, Karp’s algorithm does not propose any method to
determine the eigenvector corresponding to the proposed eigenvalue. The second proposed al-
gorithm computes an eigenvalue for any square max-plus algebraic matrix, contains a method
to find the corresponding eigenvector, and is called the Power algorithm;

Algorithm 2 Power algorithm for max-plus matrices[16]
1: Take an arbitrary initial vector x(0) = x0 ̸= ε1,where ε1 is a vector with all entries ε,

such that, x0 has at least one finite element.
2: Iterate x(k) = A ⊗ x(k − 1) until there are integers p and q such that x(p) − x(q) = c1,

where p > q >= 0, and c is a real number
3: Compute eigenvalue λ as λ = c

p−q

4: Compute the eigenvector v as v =
⊕p−q

j=1

(
λ⊗(p−q−j) ⊗ x(q + j − 1)

)

2-3 MMPS Systems

While the previous section laid a foundation in understanding the basic concepts of max-plus
algebra and some important computations and analyses, this section focuses on introducing
the max-min-plus-scaling systems. The maximization, minimization, addition and scaling
operations form the baseline of the MMPS framework. Each of these four operations serve
their purpose in describing discrete-event systems into an MMPS system [18].

1. Maximization Consider a situation with either sequential processing, or synchroniza-
tion. Sequential processing means that, an operation of the next cycle can only start
when the operation of the current cycle is completed. Let u1(k + 1) be the earliest
possible start time of operation x1 in cycle k + 1. Using the max operation, the start-
ing time x1(k + 1) is given by x1(k + 1) = max(x1(k) + τ, u1(k + 1)). In the case of
synchronization, consider operations 1, 2 and 3 where operation 3 can only start when
operations 1 and 2 have been completed. Starting time x3(k) can therefore be given by
x3(k) = max(x1(k) + τ1, x2(k) + τ2).
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So the latest finish time of the previous operations is used as the starting time for the
next operation. These maximization operations are shown in figures 2-1a and 2-1b.

(a) Sequential process-
ing for maximization

(b) Synchronization for maximization

Figure 2-1: Maximization operation

2. Minimization The minimization operation has a ’first come, first serve’ principle.
Again, consider operations 1, 2 and 3. Operation 3 will start as soon as either operation
1 or 2 has been completed. So using the min operation, starting time x3(k) can be
given by x3(k) = min(x1(k) + τ1, x2(k) + τ2). The minimization operation is shown in
Figure 2-2

Figure 2-2: Minimization operation

3. Addition Let x1(k) and x2(k), be the start and finish time of event cycle k, and let τ
be the processing time. The relation between x1(k) and x2(k) can be given by the plus
operation; x2(k) = x1(k) + τ . The operation of addition is shown in Figure 2-3

Figure 2-3: Plus operation
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4. Scaling Let us illustrate two relevant scenario’s using the scaling operation. Firstly,
when the processing time is state dependent, the relation between starting time x1(k)
and starting time x2(k) includes a scaling element. The following relation can be derived;
x2(k) = x1(k) + α + βT x(k), where τ(k) = α + βT x(k). Secondly, if a quantity state
x1(k) splits in two new quantity states x2(k) and x3(k) with ratio η and 1 − η, the
quantity states can be described using a scaling operation. The following expression
can be derived; x2(k) = ηx1(k) and x3(k) = (1 − η)x1(k). The concept of a quantity
state will be elaborated on later in this Section. Figures 2-4a and 2-4b show the scaling
operations.

(a) State dependent process-
ing time in scaling operation

(b) Splitting of quantity
states in scaling operation

Figure 2-4: Scaling operation

2-3-1 State-Space model
Using the four introduced operations, a few ways of describing general MMPS state-space
expressions can be introduced. First, we introduce the definition of the max-min-plus-scaling
(MMPS) expression ;
Definition 2-3.1. [5] A max-min-plus-scaling expression f : Rm → R of the variables
x1, x2, ..., xn is defined by the grammar

f := xi|α|max (fk, fl) |min (fk, fl)| fk + fl | βfk (2-20)
with i ∈ {1, 2, ..., n}, α ∈ R, and fk and fl are again max-min-plus-scaling expressions over the
set R. The symbol ’|’ means "or". For vector-valued MMPS functions, the given statements
hold component-wise.

Keep in mind that in this expression, elements of max-plus algebra (maximization and ad-
dition), min-plus algebra (minimization and addition) and conventional algebra (scaling) ap-
pear. Therefore, this system has lost the property of linearity within the max-plus algebraic
framework. Using the MMPS expression as given in (2-20), the general definition of an MMPS
system can be given
Definition 2-3.2. [18] (Max-min-plus-scaling system) The vector given by

p(k) =
[
xT (k), xT (k − 1), ..., xT (k −M)uT (k), wT (k)

]T
(2-21)

consists of the state x ∈ Rn, the control input u ∈ Rp, external signal w ∈ Rz, where
p ∈ P ⊆ Rnp. A max-min-plus-scaling (MMPS) system description can be given by the
following state-space model where f is a vector-valued MMPS function of the vector p;

x(k) = f(p(k)) (2-22)
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As this is a general model, a few specific cases can be discussed as well.
For example, if the state x(k) does not depend on itself, i.e. the system is explicit, the vector
p(k) looks as follows;

p(k) =
[
xT (k − 1), ..., xT (k −M)uT (k), wT (k)

]T
(2-23)

In the case of an autonomous system, the system is without external input. An autonomous
system can be both implicit, or explicit. The implicit form is given by;

p(k) = [xT (k), xT (k − 1), ..., xT (k −M)]T (2-24)

Any system described using the MMPS framework will have states that represent the times at
which operations for event cycle k start, and end, called the temporal states. However, some
states may represent a quantity rather than a time, for example, the number of passengers in
a train [18]. Therefore, let us distinguish between two types of states within MMPS systems,
namely, temporal states and quantity states. The state of an MMPS system is therefore
denoted as [18]

x(k) =
[

xt(k)
xq(k)

]
(2-25)

Here, [xt(k)] refers to the temporal states, and [xq(k)] refers to the quantity states. [xt(k)]i
Represents the time instant at which event i occurs for the kth time. [xq(k)]j Denotes the
value of the jth quantity at time step k. Subsequently, the vector p(k) can be properly divided
as well, given that [18];

p(k) =
[

pt(k)
pq(k)

]
(2-26)

With
pt(k) =

[
xT

t (k), xT
t (k − 1), ut(k)

]T
pq(k) =

[
xT

q (k), xT
q (k − 1), uq(k)

]T (2-27)

where pt ∈ Pt an pq ∈ Pq. Using these definitions, the MMPS system can be rewritten as;

xt(k) = ft(pt(k), pq(k))
xq(k) = fq(pt(k), pq(k))

(2-28)
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2-3-2 Continuous Piecewise-Affine Systems
It can be shown that, the introduced class of MMPS system is mathematically equivalent to
the class of Continuously Piecewise Affine systems. In [7], the equivalence between continuous
piecewise-affine (PWA) systems and MMPS systems is proven. Firstly, the definition of
continuous PWA function is given by;
Definition 2-3.3. [7] (Continuous piecewise-affine function) A scalar-valued function f :
Rn → R is considered a continuous PWA function if and only if the following conditions hold;

1. The domain space Rn is divided into a finite number of polyhedral regions R(1), ..., R(n)

2. For each i ∈ {1, ..., n}, f can be expressed as f(x) = αT
(i)x + β(i) for any x ∈ R(i) with

α(i) ∈ Rn and β(i) ∈ R

3. f is continuous on any boundary between two regions

Furthermore, a vector-valued function is continuously PWA if each of its components in
continuous PWA. From PWA functions, PWA systems can be constructed, given the following
expression [7];

x(k) = Px(x(k − 1), u(k)), y(k) = Py(x(k), u(k)) (2-29)

Here, Px and Py are vector valued PWA functions. In the case that Px and Py are
continuous, it can be said that the system is continuously PWA. Next, the equivalence between
MMPS and PWA functions can be proven;
Definition 2-3.4. (Continuous PWA functions as MMPS functions) If f is a continuous
PWA function of the form given in definition 2-3.3, then there exist index sets I1, ..., Il ⊆
{1, ..., N} such that;

f = max
j=1,...,ℓ

min
i∈Ij

(
αT

(i)x + β(i)
)

(2-30)

Which is an MMPS function according to (2-20). Therefore, any MMPS function is also a
continuous PWA function.

From this definition, it can be concluded that for a given continuous PWA system, there
exists an MMPS system (and vice versa) such that the input-output behaviour of both models
coincides.
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Chapter 3

Analysis of MMPS Systems

This chapter aims to provide mathematical tools to analyze the dynamic behaviour of MMPS
systems up to the boundaries of existing research. Section 3-1 elaborates on various system
properties of boht implicit, and explicit systems, such as time-invariance, monotonicity, non-
expansiveness, et cetera. Secondly, section 3-2 discusses the property of solvability, and
addresses the existing theory regarding how to determine whether an implicit MMPS system
is solvable. The following section, section 3-3 illustrates the concepts of eigenvalues and
eigenvectors in the context of MMPS systems. Thereafter, steady-state behaviour of MMPS
systems is shortly discussed in section 3-4. The section after that, section 6-8-1 presents
existing theory regarding stability of MMPS systems. Concepts such as linearizing the MMPS
system into conventional algebra are explained, which give rise to the theory presented in the
last two sections. The region for which the linearization is valid, Ωθ is elaborated on in
section 3-6. Lastly, section 3-7 discusses the concepts of maximal invariant sets, and provides
an algorithm on how to determine the maximal invariant set of an MMPS system.

3-1 Properties of MMPS Systems
In the pursuit of thorough analysis, let us distinguish between two types of MMPS systems,
implicit MMPS systems and explicit MMPS systems. It is desirable to rewrite an implicit
system into an explicit system when studying the system dynamics [15]. But besides explic-
itness or implicitness, there is a plethora of properties that can apply to an MMPS system.
Knowing whether a property applies to a given system allows for inference about dynamic
behaviour of the system. In this section, the properties of explicitness, implicitness, auton-
omy, time-invariance, monotonicity, non-expansiveness, and homogeneity will be elaborated
on. The focus of this chapter lies on the analysis of implicit MMPS systems
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18 Analysis of MMPS Systems

3-1-1 Explicit MMPS Systems
Firstly, the concepts of time-invariance, homogeneity, monotonicity, and non-expansiveness
will be presented for explicit MMPS systems. For now, systems that are autonomous and
explicit are considered. In a system that is explicit, the current state does not depend on
itself, only on previous states, so the current state can be explicitly computed, making an
explicit system always solvable [15]. In an autonomous system, the state does not depend
on any external (control)inputs, or disturbances, but rather on previous states. For explicit
MMPS systems, the concepts of homogeneity, monotonicity, and non-expansiveness will be
defined. A global, vector-based definition is given here, to define a homogeneous, monotone,
and non-expansive explicit MMPS system.
Definition 3-1.1. [16] (Homogeneous, monotone, and non-expansive system) Consider an
explicit, autonomous system x(k) = f(x(k − 1)). The system is considered homogeneous if it
holds that;

f(x(k − 1) + α1) = f(x(k − 1)) + α1 (3-1)
Furthermore, the system is considered monotone if it holds that;

if x ≤ y then f(x) ≤ f(y) (3-2)

Lastly, the system is non-expansive in the l-norm if it holds that;

∥f(x)− f(y)∥l ≤ ∥x− y∥l (3-3)

In other words, homogeneity of a system means that adding jump α1, so, adding a vector
with all entries of value α to to the state of the system, yields a jump of the same α1 in
the output of the system. A system that is homogeneous, monotonic, and non-expansive, is
called a topical MMPS system. Furthermore, the definition of time-invariance for a topical
MMPS system can be introduced.
Definition 3-1.2. [16] (Time invariance) A system x(k) = f(x(k − 1)), where x is a time
signal, is called time-invariant if for any τ ∈ R it holds that

x(k) + τ1 = f(x(k − 1) + τ1) (3-4)

From this definition, it can be deduced that an MMPS system is only time invariant if and
only if the system is homogeneous. The reverse is true as well, homogeneity can be deduced
from knowing an MMPS system is time-invariant.

3-1-2 Implicit MMPS Systems
In the previous section, some properties of explicit MMPS systems were elaborated on. The
set of implicit systems can be seen as a superset of explicit systems, because all statements
that hold for implicit MMPS systems, also hold for explicit MMPS systems, but not neces-
sarily the other way around. Mathematically, the definitions of explicit, and implicit MMPS
systems seem very similar, the only difference being the dependence of the state on itself,
for implicit systems. This slight difference does however impact the ability to analyze the
systems’ properties significantly, which will be thoroughly explained throughout this section.
The vector-valued expression of an implicit MMPS system is defined in subsection 2-3-1. An
alternative representation, in the form of a state-space matrix equation, will be presented in
the next section, which will form the basis for further system analysis.
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3-1 Properties of MMPS Systems 19

Canonical Form

The canonical form of implicit MMPS systems can be given by a matrix-based state-space
equation, with matrices A, B, C and D, see the formal definition below;
Definition 3-1.3. [15] (Implicit disjunctive ABCD canonical form) Consider the following
system;

x(k) = A⊗
(
B ⊗′ (C · x(k − 1) + D · x(k))

)
(3-5)

Here, A ∈ Rn×m
ε , B ∈ Rm×p

⊤ , C, D ∈ Rp×n, and x ∈ Rn, k ∈ Z+ This is an implicit MMPS
system in the disjunctive ABCD canonical form.

As the definition suggests, this is the disjunctive ABCD canonical form. Its conjunctive
counterpart also exists, and has the operations of maximization and minimization in reversed
order.
Definition 3-1.4. [15] (Implicit conjunctive ABCD canonical form) Consider the following
system;

x(k) = A2 ⊗′ (B2 ⊗ (C2 · x(k − 1) + D2 · x(k))) (3-6)

Here, A2 ∈ Rn×m
⊤ , B2 ∈ Rm×p

ε and C2, D2 ∈ Rp×n. This system is an implicit MMPS system
in the conjunctive ABCD canonical form.

So, the canonical form is not unique. With the different order of the operations, which
cause the existence of two forms, the same system is represented, just in slightly different
formats. Therefore, for simplicity, the disjunctive convention is used throughout this thesis.
Furthermore, observe that when matrix D = 0, an explicit MMPS system is obtained. The
structure of the matrices in the canonical form can be defined. It is possible for the system to
both include temporal, and quantitative states. The canonical form of the system containing
both temporal, and quantity states is given by the following definition;
Definition 3-1.5. [15] (Autonomous implicit MMPS system) An autonomous implicit MMPS
system, containing both temporal states and quantity states can be written as;[

xt(k)
xq(k)

]
=
[

At ε
ε Aq

]
︸ ︷︷ ︸

A

⊗
([

Bt ⊤
⊤ Bq

]
︸ ︷︷ ︸

B

⊗′
([

C11 C12
C21 C22

]
︸ ︷︷ ︸

C

·
[

xt(k − 1)
xq(k − 1)

]

+
[

D11 D12
D21 D22

]
·
[

xt(k)
xq(k)

])) (3-7)

Here, xt ∈ Rnt , xq ∈ Rnq , At ∈ Rnt×mt
ε , Aq ∈ Rnq×mq

ε , Bt ∈ Rmt×pt
⊤ , Bq ∈ Rmq×pq

⊤ , C11, D11 ∈
Rpt×ntC12, D12 ∈ Rpt×nq , C21, D21 ∈ Rpq×nt, and C22, D22 ∈ Rpq×nq . Also, analogous to
explicit MMPS systems, the subscript t is associated with temporal states, and the subscript q
is associated with quantity states. The matrices denoted by ε and ⊤ represent matrices of the
appropriate sizes in the system matrices where all entries are equal to ε and ⊤ respectively.

Master of Science Thesis V.M. van Heijningen



20 Analysis of MMPS Systems

An alternative, but equivalent notation will be proposed to introduce some overview. Let us
represent the implicit MMPS system in an extended state notation;
Definition 3-1.6. [15] (Extended state MMPS system) An MMPS system can be represented
in the following extended state form;

x(k) = A⊗ y(k)
y(k) = B ⊗′ z(k)
z(k) = C · x(k − 1) + D · x(k)

(3-8)

Note that, in the case of the matrix D = 0, the extended state MMPS system represents an
explicit MMPS system rather than an implicit one. Showcasing how explicit MMPS systems
are a subset of implicit MMPS systems.

Time-Invariance of Implicit MMPS Systems

The concept of time-invariance of MMPS systems was briefly introduced for explicit MMPS
systems in 3-1.2. It can be proven that an MMPS system that is time-invariant, is also partly
additive homogeneous [15]. Considering the MMPS system described by the vector-valued
function x(k) = f(p(k)) as per 2-22, the property of partial additive homogeneity can be
given by the following definition;
Definition 3-1.7. [18] (Partly additive homogeneous system) Consider an MMPS system
with time signal pt and quantity signal pq such that the system is given by 2-28. The MMPS
system is partly additive homogeneous if;

ft(pt + λpq) = ft(pt, pq) + λ

fq(pt + λ, pq) = fq(pt, pq) + λ
(3-9)

for any λ ∈ R.

The intuition behind partial additive homogeneity is found in the concept of time-invariance
[18]. Time-invariance of a system with only time signals xt(k) means that shifting the sig-
nals pt in time, i.e. pt(k) → pt(k) + τ means shifting the states xt(k) in time as well, i.e.
xt(k) → xt(k) + τ . Therefore, the system ft will be time-invariant if it is additive homoge-
neous. A system containing quantity signals as well, is time-invariant if it is partially additive
homogeneous, i.e. both (xt(k), xq(k), pt(k), pq(k)) and (xt(k) + τ, xq(k), pt(k) + τ, pq(k)) are
valid trajectories of the system. For implicit MMPS systems, a deduction of the property
time-invariance can also be done using the ABCD form as per 3-7. In [16], it is proven that
an implicit MMPS system is time invariant if the following properties hold;

∑
i∈nt

[
C11 D11

]
ℓi

= 1, ∀ℓ ∈ pt

∑
i∈nt

[
C21 D21

]
ti

= 0,∀t ∈ pq
(3-10)

The proof of this will be to show that, if the temporal states xt(k) are shifted by an amount
h1 , the extended temporal states are shifted by that same amount.
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This shift can be implemented into the extended state MMPS system, which yields the fol-
lowing;

xt(k) + h1 = At ⊗ (yt(k) + h1)
yt(k) + h1 = Bt ⊗′ (zt(k) + h1)
zt(k) + h1 = C11 · (xt(k − 1) + h1) + C12 · xq(k − 1) + D11 · (xt(k) + h1) + D12 · xq(k)

(3-11)
Since it is known that the following holds;

xt(k) + h1 = At ⊗ yt(k) + h1
yt(k) + h1 = Bt ⊗′ zt(k) + h1

(3-12)

Only time-invariance for the extended temporal state zt(k) will need to be proven now. If it
holds that;

zt(k) + h1 = C11 · xt(k − 1) + C12 · xq(k − 1) + D11 · xt(k) + D12 · xq(k) + h1 (3-13)

the system is considered time-invariant. This is valid for C11 · h1 + D11 · h1 = h1. A similar
condition can be derived for quantity states, where the following should hold;

xq(k) = Aq ⊗ yq(k)
yq(k) = Bq ⊗′ zq(k)
zq(k) = C21 · (xt(k − 1) + h1) + C22 · xq(k − 1) + D21 · (xt(k) + h1) + D22 · xq(k)

(3-14)

Time invariance for zq(k) is proven when it holds that; C21 · h1 + D21 · h1 = 0. Conclusively,
time-invariance of an implicit MMPS system true for the following conditions;∑

i∈nt

[C11D11]ℓi = 1,∀ℓ ∈ pt
∑
i∈nt

[C21D21]ti = 0, ∀t ∈ pq (3-15)

These conditions are equal to the outcome of the proof in 3-10.

The properties of non-expansiveness and monotonicity have not been proven for general im-
plicit MMPS systems, and no conditions for the properties non-expansiveness and monotonic-
ity have been derived in known literature.

3-2 From Implicit to Explicit: Solvability
In this section, the solvability of implicit systems is examined. If it is possible to rewrite
an implicit system into an explicit one, it can be guaranteed that there always exists a
solution x(k), k > 0 for any state x(k − 1). Generally, it is possible to obtain an explicit
system from an implicit one, but it will become nested, which means, a system within a
system, withing a system, andsoforth. The resulting system is obtained by substituting
x(k) = A ⊗ (B ⊗′ (C · x(k − 1) + D · x(k))) into D · x(k), which is still implicit, so again,
A ⊗ (B ⊗′ (C · x(k − 1) + D · x(k))) will be substituted the same way. This substitution is
recursive, and the resulting system is of the following form [15];

x(k) = A⊗
(
B ⊗′ (C · x(k − 1) + D

(
A⊗

(
B ⊗′ · · · (C · x(k − 1) + D

· · ·
(
A⊗

(
B ⊗′ (C · x(k − 1))

))
· · ·
)))) (3-16)
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22 Analysis of MMPS Systems

This newly obtained nested explicit MMPS system in ABC form is not necessarily easier to
work with compared to its original implicit MMPS system, as the complexity will become
very high. A vector-valued implicit MMPS system can be given by the following expression;

x(k) = f(x(k − 1), x(k)) (3-17)

Whereas a vector-valued explicit MMPS system can be given by the following expression;

x(k) = g(x(k − 1)) (3-18)

By successive substitution an explicit function is obtained [15]

xi(k) = fi (x(k − 1), f1(x(k − 1)), f2 (x(k − 1), f1(x(k − 1))) ,

. . . , fi−1 (x(k − 1), f1(x(k − 1)), . . . , fi−2(x(k − 1), . . . , ))
(3-19)

Determining whether an explicit mapping of an implicit MMPS system exists, i.e. whether it
is solvable, can be done using the structure matrices;
Considering the implicit MMPS system as in (3-7), three structure matrices, SA, SB and SD

can be defined as follows[15];

[SA]i,j =
{

1 if [A]i,j ̸= ε
0 if [A]i,j = ε

(3-20)

[SB]i,j =
{

1 if [B]i,j ̸= ⊤
0 if [B]i,j = ⊤ (3-21)

[SD]i,j =
{

1 if [D]i,j ̸= 0
0 if [D]i,j = 0 (3-22)

It can be proven that, using these structure matrices, there may exist a permutation matrix
T ∈ Rn×n such that;

F = T · SA · SB · SD · T −1 (3-23)

where F is a strictly lower-triangular matrix. If this permutation matrix exists such that F
is strictly lower-triangular, there exists a unique solution x(k), k > 0 for any state x(k − 1)
for this implicit MMPS system, and the implicit MMPS system is solvable.

V.M. van Heijningen Master of Science Thesis



3-3 Eigenvalues and Eigenvectors 23

3-3 Eigenvalues and Eigenvectors
The topic of eigenvalues and eigenvectors was briefly touched upon in section 2-2-2. In this
Section, a deduction of eigenvalues and eigenvectors is given. Algorithms for both (topical)
explicit, and implicit MMPS systems will be provided. Let us refer to eigenvalues and eigen-
vectors of MMPS systems as the additive eigenvalues and additive eigenvectors. The definition
for additive eigenvalues and additive eigenvectors are given by;
Definition 3-3.1. [14] (Additive eigenvalue, additive eigenvector) A time-invariant MMPS
system x(k) = f(x(k), x(k − 1)), x ∈ Rn and f : Rn → Rn where both quantity states,
and temporal states are present, has an additive eigenvector if there exists a real number
λ ∈ R and a vector v ∈ Rn such that;

f(v) = v + λ
[

1⊺
nt 0⊺

nq

]⊺
(3-24)

Here, nt and nq are the number of temporal states, and the number of quantity states, respec-
tively. The scalar λ is called the additive eigenvalue, of which v is the corresponding additive
eigenvector. Furthermore, if v is an additive eigenvector, v + h[1T

nt
0T

nq
]T , with h ∈ R, is

also an additive eigenvector.

From this point , the additive eigenvalue can also be referred to as the growth rate, and the
additive eigenvector as the fixed-point.

3-3-1 Eigenvalues of Implicit MMPS Systems
This Section proposes an algorithm to calculate the growth rates and fixed-points for implicit
MMPS systems. It is assumed that the implicit MMPS systems are solvable, and time-
invariant. So an implicit MMPS system as in (3-7) with time-invariance is considered. Firstly,
a few useful properties will be provided as mathematical background. The value of the additive
eigenvalue is the rate at which the system grows [16], i.e. a growth rate. An eigenvalue
whose existence only depends on on the structure of the matrices A, B, C, and D is called a
structural eigenvalue. Any finite numerical changes in the system matrices to not influence the
existence of the additive eigenvalue. The following definition about the existence of structural
eigenvalues can be proven;
Definition 3-3.2. [16] (Existence of structural eigenvalue) A topical MMPS system, charac-
terized by matrices A,B and C, has a structural additive eigenvalue and additive eigenvector
if and only if matrices A and B are elementary and regular;

The definition of an elementary MMPS systems is given by;
Definition 3-3.3. [16] (Elementary MMPS system) An MMPS system is called elementary,
if for each i ∈ 1, ..., n and for each j ∈ 1, ..., m, at least either one of the two entries aij, bji

is finite, and cij ̸= 0 if aij = ε

Furthermore, the following definition of a regular matrix is used;
Definition 3-3.4. [15] (Regular matrix) A matrix A ∈ Rn×m is considered regular if each
row of A has at least one finite element
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24 Analysis of MMPS Systems

The exact proof of the existence of a structural eigenvalue and eigenvector can be found
in [16]. Furthermore, let an MMPS system such as 3-7 have an additive eigenvalue λ, and
additive eigenvector (xte, xqe, yte, yqe, zte, zqe). Then, the systems satisfies the following [15];

zte = C11 · (xte − λ1) + C12 · xqe + D11 · xte + D12 · xqe

zqe = C21 · (xte − λ1) + C22 · xqe + D21 · xte + D22 · xqe

yte = Bt ⊗′ zte, yqe = Bq ⊗′ zqe

xte = At ⊗ yte, xqe = Aq ⊗ yqe

(3-25)

Before providing the Linear Programming Problem (LPP) algorithm by which the growth
rates and fixed-points can be computed, let us introduce the normalized form of the system.
The aim of all of finding the normalized form of a system is to find a an expression for
the matrices Ãt, Ãq, B̃t and B̃q such that they obtain a specific structure that eventually
makes the system have its fixed-point at (x̃te, x̃qe, ỹte, ỹqe, z̃te, z̃qe) = (0, 0, 0, 0, 0, 0) and its
growth rate is λ̃ = 0. The derivation of the normalized form can be found in [15]. From this
derivation, the following state-space equation emerges;[

x̃t(k)
x̃q(k)

]
=
[

Ãt ε

ε Ãq

]
︸ ︷︷ ︸

Ã

⊗
([

B̃t ⊤
⊤ B̃q

]
︸ ︷︷ ︸

B̃

⊗′
([

C11 C12
C21 C22

]
︸ ︷︷ ︸

C

·
[

x̃t(k − 1)
x̃q(k − 1)

]

+
[

D11 D12
D21 D22

]
︸ ︷︷ ︸

D

·
[

x̃t(k)
x̃q(k)

]


(3-26)

The construction of the system matrices of this system has been done in such a way that
the growth rate λ̃ is equal to 0, and the fixed-point is equal to (x̃te, x̃qe, ỹte, ỹqe, z̃te, z̃qe) =
(0, 0, 0, 0, 0, 0). A connection can be drawn between the original MMPS state equations and
the normalized MMPS state equations. which can be represented by the following expressions;

xt(k) = x̃t(k) + (kλ)1 + xte, xq(k) = x̃q(k) + xqe
yt(k) = ỹt(k) + (kλ)1 + yte, yq(k) = ỹq(k) + yqe
zt(k) = z̃t(k) + (kλ)1 + zte, zq(k) = z̃q(k) + zqe

(3-27)

Here, it can be seen that the normalized quantity states are basically the original quantity
states, offset by the fixed-point, placing the normalized quantity state fixed-point at 0. It can
be deduced that for the normalized system matrices, the following holds[14]; Each row in Ã
has at least one zero element, and each non-zero element is less than zero. Each column in
B̃ has at least one zero element, and each non-zero element is larger than zero, this can be
represented by the following expressions;

maxs∈m̄

[
Ã
]

rs
= 0 ∀r ∈ n̄ mint∈p̄

[
B̃
]

st
= 0 ∀s ∈ m̄ (3-28)
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3-3-2 LPP Algorithm

Having introduced the implicit normalized MMPS system, the algorithm for calculating the
growth rates and fixed-points will be introduced. It is possible for multiple growth rates to
exist, and the set of these is denoted as λθ, θ ∈ {1, . . . , S}. Let Ãθ, B̃θ be the corresponding
normalized system matrices as in (3-26). Now, the concept of footprint matrices can be
introduced. Footprint matrices are used to define the location of zeros in the normalized
system matrices, and they are of use in the construction of the LPP that is used to possibly find
the growth rate and corresponding fixed-point [16]. The pair of footprint matrices (GAθ

, GBθ
)

can now be defined as;

GAθ
=
[

GAtθ
0

0 GAqθ

]
GBθ

=
[

GBtθ
0

0 GBqθ

]
(3-29)

Matrix GAθ
locates the entries that are exactly 0, as those are the maximal values in the

matrix Ãθ. Any value that is not equal to 0, will be 0 in the footprint matrix. Therefore, the
off-diagonal submatrices of the footprint matrix of Ãθ will be 0 by default. Mathematically,
this yields the following expressions [14];

[GAtθ
]ij =


1 if

[
Ãtθ

]
ij

= 0

0 if
[
Ãtθ

]
ij

< 0

[
GAqθθ

]
rs

=

 1 if
[
Ãqθ

]
rs

= 0
0 if

[
Ãqθ

]
rs

< 0
(3-30)

Similarly, for matrix GBθ
, it is the aim to try and locate the values that are exactly 0.

However, since every non-zero entry in B̃θ is larger than 0, determining the footprint matrix
is a little different than for GAθ

, since now, any value that is larger than 0 in the system
matrix, will be 0 in the footprint matrix. This is mathematically described by;

[GBtθ
]jl =


1 if

[
B̃tθ

]
jl

= 0

0 if
[
B̃tθ

]
jl

> 0

[
GBqθ

]
st

=

 1 if
[
B̃qθ

]
st

= 0
0 if

[
B̃qθ

]
st

> 0
(3-31)

Let the growth rate be λ, and the fixed-point of the system be given by;

v = (xte, xqe, yte, yqe, wte, wqe) (3-32)

Define vector s =
[

1T
nt 0T

nq

]T
. Using the footprint matrices obtained from the implicit

normalized form as per 3-26, and vector s, all possible linear programming problems (LPP)
can be generated; ∀i ∈ n̄,∀j ∈ m̄, ∀ℓ ∈ p̄ where finally, the LPP is given as follows [15];

min
xe,ye,we

λ

s.t. −[sλ]i − [x]i + [y]j ≤ −[A]ij if [GAθ
]ij = 0

[sλ]i + [x]i − [y]j = [A]ij if [GAθ
]ij = 1

[y]j − [d]ℓλ− [w]ℓ ≤ [B]jℓ if [GBθ
]jl = 0

−[y]j + [d]ℓλ + [w]l = [B]jl if [GBθ
]jl = 1

d = D · s, w = (C + D) · x

(3-33)
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The footprint matrices (GAθ
, GBθ

), defined in (3-29) are used to determine the number of
linear programming problems need to be solved. The total number of possible footprint matrix
pairs is mnt

t pmt
t m

nq
q p

mq
q . Again, the size of each LLP increases quadratically as the system

matrices A, B, C and D increases. The computational complexity is drastically reduced by
dropping the constraints corresponding to any element of ε and ⊤ in matrices A and B. The
exact number of possible footprint matrices is given by[15];

Πn
i=1ai ·Πm

j=1bj (3-34)

Where ai, i ∈ n̄ and bj , j ∈ m̄ are the number of finite entries in A and B respectively.
Consider solution (λ⋆, v⋆ =

[
x⋆⊺ y⋆⊺ w⋆⊺

]
) to the LPP 3-33, by substituting value λ⋆

into the equations, a set of equality and inequality constraints can be obtained [15];

Heq · v = heq, Hineq · v ≤ hineq (3-35)

Matrix Heq is square, and its rank will at most be n + m + p− 1, as the fixed-point is shift-
invariant in the direction of vector s =

[
1T

nt 0T
nq

]T
. The rank deficiency of matrix Heq is

equal to the number of direction vectors where the fixed-points are time-invariant [15]. Let
v⋆ be a solution to 3-33, and let g1, g2, . . . , gf be a set of direction vectors where

g1 =

 s
B ⊗′ ((C + D) · s)

(C + D) · s

 (3-36)

Which is a vector with similar characteristics to vector s, but extended to incorporate 1s for
temporal states in ye and we. Please note that this notation of g1 is slightly different than
what was proposed in [15]. The change accommodates for the dimensions of fixed-point v
correctly, as opposed to what was proposed in [15]. The set of fixed-points Vλ⋆ of the system
for a growth rate λ⋆ can be described by;

Vλ⋆ = {v|Hineq · v ≤ hineq} (3-37)

This set can be parametrically described by the following polyhedron [15];

v = v⋆ + σ1g1 + σ2g2 + · · ·+ σf gf (3-38)

where σi are scaling factors. Scaling factor σ1 is unconstrained, the other scaling factors may
be constrained, and their range can be found from the inequality constraints. In summary, the
set of fixed-points corresponding to growth rate λ⋆ will be a polyhedron which is unconstrained
in the direction of g1.

3-3-3 Algorithms for Explicit MMPS Systems
Whereas the previous section elaborated on a very general method to determine the growth
rates and fixed-points for implicit MMPS systems, there exist algorithms which compute the
growht rates and fixed-points of explicit MMPS systems, specifically. Two different methods
of calculating the additive eigenvalue and additive eigenvector for topical MMPS systems will
be elaborated on. Firstly, the power algorithm, and secondly, the explicit LPP algorithm will
be introduced.
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Power Algorithm

This algorithm is applicable to systems satisfying the requirements for a topical MMPS sys-
tem, and the aforementioned requirements needed for the existence of a structural eigenvalue
3-3.2. It is able to find an additive eigenvalue and corresponding additive eigenvector.

Algorithm 3 [16] Power algorithm for topical MMPS systems
1: Take an arbitrary initial vector x(0) = x0 ̸= ε1, such that, x0 has at least one finite

element
2: Iterate x(k) = f(x(k − 1)) until there are integers p and q such that x(p) − x(q) = c1,

where p > q >= 0, and c is a real number
3: Compute eigenvalue λ as λ = c

p−q

4: Compute the eigenvector v as v = 1
p−q

∑p−1
j=q x(j)

The other proposed algorithm, the LPP algorithm for topical MMPS systems will be elabo-
rated on in the next Section.

Explicit LPP Algorithm

The LPP algorithm described in this section is very similar to the LPP algorithm given by
3-33. It also requires the explicit system to be normalized, in order to obtain all the possible
footprint matrix combinations GAθ

and GBθ
. Normalizing the system is done through a

similar procedure [16], and all properties that hold for the implicit normalized form, hold
for the explicit normalized form as well. The explicit normalized form is simply the implicit
normalized form, without matrix D. Let the variables λ and (xt, xq, yt, yq, zt, zq) be the to
be determined growth rate, and fixed-point, respectively. For each pair of (GAθ

, GBθ
) we

formulate a Linear Programming Problem (LPP) [14];

min
λ,xt,xq,yt,yq,zt,zq

λ s.t.

−λ− [xt]i + [yt]j ≤ − [At]ij if [GAtθ
]ij = 0

λ + [xt]i − [yt]j = [At]ij if [GAtθ
]ij = 1

− [xq]r + [yq]s ≤ − [Aq]rs if
[
GAqθ

]
rs

= 0
[xq]r − [yq]s = [Aq]rs if

[
GAqθ

]
rs

= 1
[yt]j − [zt]l ≤ [Bt]jl if [GBtθ

]jl = 0
− [yt]j + [zt]l = [Bt]jl if [GBtθ

]jl = 1
[yq]s − [zq]t ≤ [Bq]st if

[
GBqθ

]
st

= 0
− [yq]s + [zq]t = [Bq]st if

[
GBqθ

]
st

= 1
zt = C11 · xt + C12 · xq
zq = C21 · xt + C22 · xq

(3-39)

Similarly to the LPP for implicit MMPS systems, the size of this LPP will grow quadratically,
as the size of the system matrices increases [16]. However, the computational complexity is
reduced by any element in At and Aq being ε, as the corresponding constraint is always
satisfied, and thus, always holds and can be disregarded. Same goes for elements in Bt and
Bq being ⊤.
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3-4 Steady-State Behaviour
This section focuses on the steady-state behaviour of time-invariant MMPS systems, and the
difference in steady-state behaviour for temporal, and quantity states. The theory discussed
in this Section holds both for implicit, and explicit systems. Consider the time-invariant
MMPS system [18];

xt(k) = ft (pt(k), pq(k))
xq(k) = fq (pt(k), pq(k))

(3-40)

Due to the difference in nature between the two types of states, their steady-state behaviour
will be different. Temporal states will be nondecreasing, and therefore will not reach an
equilibrium. Therefore, steady-state behaviour will be considered, and stationary regimes
will be studied, which refer to the growth rate of xt becoming constant. For (xt, pt) a steady-
state is reached if, for a certain kss, the growth of xt and pt has become constant;

pt(k) = pt(k − 1) + τt,ss ∀k ≥ kss (3-41)

For quantity states, an equilibrium can be reached, and steady-state behaviour refers to pq

becoming constant;
pq(k) = pq(k − 1) ∀k ≥ kss (3-42)

From these results, the steady-state conditions are obtained;[
pt(k)
pq(k)

]
=
[

pss,t + kτss,t
pss,q

]
(3-43)

for k ≥ kss.

3-5 Bounded-Buffer Stability of MMPS Systems
This section elaborates on the concepts of stability of explicit, and implicit MMPS systems.
Generally it can be stated that, a DES is stable when all the temporal states of the system
have the same growth rate, and the quantity states have a growth rate of zero. This can
be translated into the concept of max-plus bounded-buffer stability [15],i.e. the buffer of
the system stays bounded, and the quantity states do not grow with every event cycle "k".
From this point on, max-plus bounded-buffer stability will be referred to as bounded-buffer
stability. The buffer of an MMPS system is defined as the difference between the time states
in each even ”k”, such that there is no overflow in any state of the system [8]. Bounded-buffer
stability can be formally defined as follows;
Definition 3-5.1. [15] (bounded-buffer stability) An autonomous DES is max-plus bounded-
buffer stable if for every initial time state, x0 ∈ R, a bound M(x0) ∈ R exists such that the
states are bounded in Hilbert’s projective norm; ∥x(k)∥P ≤M (x0) ∀k ∈ Z+

Hilbert’s projective norm can be defined as follows;
Definition 3-5.2. [9] (Hilbert’s projective norm) The Hilbert projective norm of a vector
x ∈ Rn in max-plus algebra is defined as;

||x||P = max
i∈n̄

xi −maxi∈n̄xj (3-44)
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Let us first introduce the linear mappings of explicit- and implicit MMPS systems in con-
ventional algebra, wherefrom the conditions that need to be satisfied for the system to be
bounded-buffer stable will be determined.

3-5-1 Linear Mappings in Conventional Algebra
As was mentioned in the previous section, it is possible to compute a linear mapping of both
implicit, and explicit MMPS systems in conventional algebra. This mapping is valid within
the to be specified polyhedron Ωθ. Firstly, the definition of the conventional linear mapping
of explicit MMPS systems is given.
Definition 3-5.3. [14](Conventional algebra notation of explicit MMPS systems) Any nor-
malized explicit MMPS system can be rewritten as a linear system in conventional algebra for
all x̃θ(k) ∈ Ωθ, k ∈ Z+ in the following way [14];

x̃θ(k) = Mθ · x̃θ(k − 1)
Mθ = GAθ

·GBθ
· C

(3-45)

For implicit MMPS systems, the linear mapping is slightly more complex, as it is not guar-
anteed to exist for implicit MMPS systems, as they might be unsolvable [15];
Definition 3-5.4. [15] (Conventional algebra notation of implicit MMPS system) Any nor-
malized implicit MMPS system can be reformulated as a linear system in conventional alge-
braic notation for all x̃θ(k) ∈ Ωθ, k ∈ Z+ using the following expressions;

x̃θ(k) = Mθ · x̃θ(k − 1)
Mθ = (I −M1)−1 ·M2

M1 = GAθ
·GBθ

·D
M2 = GAθ

·GBθ
· C

(3-46)

if the inverse (I −M1)−1 exists

Hereby, the linearized implicit MMPS system is automatically rewritten into an explicit sys-
tem. It can be proven that, for any implicit MMPS system for which a strictly lower-triangular
matrix F exists, the inverse of (I −M1) exists [15]. For the linear mapping of both implicit,
and explicit MMPS systems, it can be proven that the following holds [14], [15];

Mθ · s = s, s =
[

1⊺
nt 0⊺

nq

]⊺
(3-47)

Furthermore, it can be proven that Mθ has at least one eigenvalue 1 with eigenvector v1 =[
1⊺

nt 0⊺
nq

]⊺
.

3-5-2 Bounded-Buffer Stability of MMPS Systems
Ultimately, the conditions which are to be satisfied for an MMPS system to be bounded-buffer
stable are given by [10]; For θ ∈ {1, . . . , S}, the MMPS system is;

• Max-plus bounded-buffer stable if the system matrix Mθ only has eigenvalues that are
less than, or equal to 1. All eigenvalues of value 1 have to have corresponding Jordan
blocks of 1× 1

• Unstable if either, at least one eigenvalue is greater than 1, or the corresponding Jordan
block of an eigenvalue 1 does not have dimension 1× 1
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3-6 Polyhedron Ωθ

The aim of this section is to provide the equations describing polyhedron Ωθ, for both implicit,
and explicit MMPS systems. This polyhedron is the region for which the linearization of the
MMPS system is valid. The equations describing the normalized form of explicit, and implicit
MMPS systems, respectively, are given below [14], [15];

x̃θ(k) = Ãθ ⊗
(
B̃θ ⊗′ (C · x̃θ(k − 1))

)
(3-48)

x̃θ(k) = Ãθ ⊗
(
B̃θ ⊗′ (C · x̃θ(k − 1) + D · x̃θ(k))

)
(3-49)

Here, θ ∈ {1 . . . S}. Furthermore, let the region Ωθ be described by the following equations
for explicit, and implicit systems, respectively, such that it contain all the vectors x ∈ Rn

[14], [15];
Ãθ ⊗

(
B̃θ ⊗′ (C · x)

)
= GAθ

·GBθ
· C · x (3-50)

Ãθ ⊗
(
B̃θ ⊗′ (C · x + D · w)

)
= GAθ

·GBθ
· (C · x + D · w) (3-51)

These regions Ωθ associated to equalities 3-50 and 3-51 are polyhedra given by sets of in-
equalities. Let us first introduce some mathematical properties, the understanding of which
is necessary for the sets of inequalities describing the polyhedra. The operations ⊠ and vec(·)
are called the Kronecker product and the vector constructed in row-major order, respectively,
and need to be properly introduced [14].
Definition 3-6.1. [14] (Kronecker product) The Kronecker product of a vector 1n and a
matrix A can represent two different actions depending on the notation and order. A ⊠ 1n

vertically stacks n copies of each row of matrix A, while 1n ⊠ A stacks n copies of the entire
matrix A vertically.
Definition 3-6.2. [14] (Row-major order of a matrix) The row-major order of matrix A ∈
Rn×m is the order of mapping a matrix to a column vector, vec(A). Here, the columns of A
are stacked in one column

vec(A) =
[

A⊺
1 A⊺

2 . . . A⊺
n

]⊺
(3-52)

Here, Ai, i ∈ n̄ denotes the row i of matrix A.
Definition 3-6.3. [15] (Standard basis vector ej) The standard basis vector ej is a row
vector, with the j-th component of this row vector equal to 1 and all other components equal
to 0, the size of the vector is determined by the context in which it is used.

Using the aforementioned mathematical properties, the sets of inequalities describing Ωθ

where the linear mappings in conventional algebra are valid can be defined. Firstly introducing
the set of inequalities describing the region Ωθ for explicit systems;
Definition 3-6.4. [14] (Ωθ for explicit systems) The polyhedral region Ωθ associated with
3-50 is given by the following set of inequalities;

H · x̃ ≤ h, H =
[

U
−L

]
, h =

[
b̃
−ã

]
U = ((GBu ⊠ 1p)− (1m ⊠ Ip)) · C, b̃ = vec(B̃u)
L = ((GAu ⊠ 1m)− (1n ⊠ Im)) ·GBθ

· C, ã = vec(Ãu)

(3-53)

Here, x ∈ Rn, ⊠ is the Kronecker product, and vec(·) is the vector constructed row-major
product.
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A comparable definition for the polyhedron Ωθ of implicit MMPS systems can be drawn up,
which will only slightly differ from the explicit case given above.
Definition 3-6.5. [15] (Ωθ for implicit systems) The region Ωθ associated with implicit lin-
earized systems such as in (3-46) is a polyhedron that can be described given the following set
of inequalities;

H · x̃ ≤ h, H =
[

U
−L

]
, h =

[
b̃
−ã

]
b̃ = vec

(
B̃θ

)
, ã = vec

(
Ãθ

)
U = ((GBθ

⊠ 1p)− (1m ⊠ Ip)) · (C + D ·Mθ)
L = ((GAθ

⊠ 1m)− (1n ⊠ Im)) ·GBθ
· (C + D ·Mθ)

(3-54)

Here, x ∈ Rn, ⊠ is the Kronecker product, and vec(·) is the vector constructed row-major
product.

As mentioned before, the linearization of both the implicit, and explicit linearized systems
are only valid when x̃θ(k) lies in Ωθ. However, it is not generally guaranteed that for any
x̃θ(k) that lies within Ωθ, x̃θ(k + 1) lies in Ωθ as well. There may exist a subset of Ωθ, called
an invariant set, such that, any state initialized in the invariant set, will not leave the set,
and thus, the system is stable within that set, as the states will always be bounded in some
way. In the next section, the algorithm used to derive the largest possible invariant set, i.e.
the maximal invariant set, will be given.

3-7 Maximal Invariant Sets
As thoroughly discussed in the previous sections, the mapping between the normalized systems
3-48, 3-49, and the linearized systems 3-45, 3-46 are valid for x̃θ ∈ Ωθ, defined by Ωθ := H ·x̃ ≤
h [14], [15]. In this section, an approximation of the largest invariant subset of Ωθ will be
given, such that, states of the stable equivalent linear systems 3-48 and 3-49 initialized in this
region will stay there [15]. In order to find this set, the definition of a precursor set to a set
X should be given;
Definition 3-7.1. [2] (Precursor set) For autonomous systems such as 3-46, and 3-45 the
precursor set to a set X is denoted as;

Pre(X ) = {x ∈ Rn : Mθ · x ∈ X} (3-55)

Pre(X ) is the set of states that evolve into the target set X in one event-step.

Furthermore, the definition of a positive invariant set, such as Ωθ is given by;
Definition 3-7.2. [2] (Positive invariant set O) A set O ⊆ Ωθ is considered to be a positive
invariant set for the linearized system 3-46 if;

x̃θ(0) ∈ O =⇒ x̃θ(k) ∈ O,∀k > 0 (3-56)

Next, the definition of when an invariant set is maximal, is given by;
Definition 3-7.3. [2] (Maximal invariant set O∞) The set O∞ ⊆ Ωθ is considered the
maximal invariant set of the autonomous system as in 3-46, if O∞ is invariant, and O∞
contains all the invariant sets contained in Ωθ
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Lastly, the requirement for a set O to be positive invariant, is given in the following theorem;
Theorem 3-7.1. [2] (Positive invariance of O) A set O is considered a positive invariant
set for the autonomous system as in 3-46, if and only if;

O ⊆ Pre(O) (3-57)

This condition is equivalent to;
Pre(O) ∩ O = O (3-58)

The precursor set to the set Ωθ for the autonomous linear systems such as in 3-45 and 3-46
is as follows;

Pre(Ωθ) = {x̃ ∈ Rn : Mθ · x̃ ∈ Ωθ} (3-59)

From 3-50 and 3-51 it is known that Ωθ := H · x̃ ≤ h, therefore the precursor set Pre(Ωθ) is
given by;

Pre(Ωθ) := H ·Mθ · x̃ ≤ h (3-60)

According to Theorem 3-7.1, in case Ωθ ⊆ Pre(Ωθ), the set Ωθ is the maximal invariant
set [15]. However, if this is not the case, the following algorithm can be used to iteratively
approximate the maximal invariant set Ωθ,∞ for the autonomous systems 3-48 and 3-49;

Algorithm 4 [2] Maximal positive invariant set
Input: Mθ, Ωθ

Output: Ω∞
O0 ← Ωθ, k ← −1

repeat
k ← k + 1 Ok+1 ← Pre (Ok) ∩ Ok

until Ok+1 = Ok

O∞ ← Ωk

Please note that, this obtained maximal invariant set may not be the maximal set for the
original MMPS system as per 3-5 [15].
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Chapter 4

Solving Solvability

The contributions of this chapter consist of analyzing the existing solvability condition in a
graph-theoretic context, and extending the solvability condition to a necessary condition. Fur-
thermore, conditions for when a linear mapping of an implicit MMPS system in conventional
algebra exists, are expanded. Let us first present the structure of this chapter. It commences
with a thorough analysis of the existing solvability condition, and a graph-theoretic inter-
pretation of this condition is elaborated on in Section 4-1. Observations regarding structure
matrix S allow for the emergence of several relevant theorems which form the basis for extend-
ing the solvability conditions, which is subsequently discussed in Section 4-2. Four degrees of
solvability are described in Section 4-2 as well. The necessary solvability condition is proposed
in Section 4-3. Lastly, the condition for which the existence of the inverse of (I −M1) can be
guaranteed, provided the condition is satisfied, is presented in Section 4-4. The concept of
solvability in the context of MMPS systems was briefly introduced in Section 3-2. However,
this condition is not a necessary one. Solvability of MMPS systems is an important system
property, as a solvable system is known to have a solution for any given initial condition. This
solution does not necessarily have to be unique, however, it does have to exist.
This gives rise to introduce the definition used in this thesis of when an MMPS system is
considered solvable.
Definition 4-0.1. (Solvability of an MMPS system) An MMPS system is solvable if and only
if, there always exists a solution x(k), k > 0 for the implicit system [15];

x(k) = A⊗ (B ⊗′ (C · x(k − 1) + D · x(k))) (4-1)

for any state x(k − 1)

As opposed to the definition for solvability given in [15], the definition given in 4-0.1 does not
require the solution to be unique, but merely to exist. This allows for parametric solutions
as well. The distinction between the system having a unique solution, and having a solution,
albeit not a unique one, will be elaborated on further in this chapter. The existing theorem
for proving solvability, which is identical to the theory provided in 3-2, is taken from [15], and
can formally be defined as;
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Theorem 4-0.1. [15] (Solvability of Max-Min-Plus-Scaling systems) If a permutation matrix
T ∈ Rn×n exists, such that F ∈ Rn×n is a strictly lower-triangular matrix in the following
context;

F = T · SA · SB · SD · T −1 (4-2)

Then there always exists a unique solution x(k), k > 0 for any state x(k− 1) for this implicit
system.

Here, the structure matrices are defined as; SA ∈ Rn×m, SB ∈ Rm×p and SD ∈ Rp×n.

4-1 Graph-Theoretic Interpretation of Solvability
Within the theorem proposed in 4-2, for the purpose of simplicity, the matrix S can be defined
as follows;

S = SA · SB · SD (4-3)

The matrix S as defined in 4-3 can be represented as a graph [9]. Section 2-2 provides a brief
overview of relevant concepts in spectral theory useful in this Section. Consider matrix F as
per 4-2, due to matrix T being merely a permutation matrix, only permuting the rows and
columns of the matrix S, the graph corresponding to matrix S must be the same as the graph
corresponding to matrix F .
Matrices F and S are both defined within conventional algebra, and the notion of graphs
as referred to in [9] defines graphs as precedence graphs to max-plus algebraic matrices.
Therefore, the max-plus equivalent matrix of matrix S will be defined as matrix S⊗.

[S⊗]i,j =
{

[S]i,j if [S]i,j ̸= 0
ε if [S]i,j = 0 (4-4)

The only difference between matrices S and S⊗ is that all entries that are 0 in matrix S,
are ε in matrix S⊗. Any square matrix A in Rε can be associated with a graph called the
communication graph of matrix A [9]. In this section, all graphs are weighted and directed.
However, the graphs corresponding to any matrix S⊗ as defined in 4-4 will not be referred
to as communication graphs but rather as interconnection graphs. Matrix S⊗ and its entries
carry information about how states in an MMPS system implicitly depend on each other,
i.e how they are interconnected with each other. The value of the non−ε entries in matrix
S⊗ are of importance in the further solvability analysis, and will be elaborated on further in
this chapter. Within graph theory a distinction is made between graphs containing a circuit
and acyclic graphs. The formal definition of a circuit can be found in Subsection 2-2-1 The
following theorem regarding graphs and circuits can be introduced, which is an extension of
the existing theory;
Theorem 4-1.1. (Solvability of MMPS systems using graphs) If the graph of matrix S⊗ does
not contain any circuits, the MMPS system corresponding to this graph is solvable.

Proof. Given matrix S⊗ ∈ Rn×n
ε and matrix F ∈ Rn×n from the following equation;

F = T · SA · SB · SD · T −1 (4-5)
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If the graph corresponding to matrix S⊗ does not contain any circuit, a permutation matrix
T exists that permutes the rows an columns such that S can be rewritten into a strictly
lower-triangular F . Because S⊗, and therefore S is acyclic, there only exist paths in the
graph corresponding to S⊗. Therefore, there exists a topological ordering of the vertices in
those paths, as the graph is directed. For every edge (i, j) in the graph, by reordering the
edges such that i < j for every edge, entry (i, j) in matrix F will appear below the diagonal
by this permutation, yielding a strictly lower-triangular matrix.

This theorem and proof can be illustrated by the example given below;
Example 4-1.2. (Graph corresponding to matrix S⊗ containing a circuit) Suppose the state-
space description of an MMPS system yields the following matrix S;

S =


0 1 0 0
0 0 1 0
1 0 0 0
0 2 1 1

 (4-6)

The equivalent max-plus matrix S⊗ is given by;

S⊗ =


ε 1 ε ε
ε ε 1 ε
1 ε ε ε
ε 2 1 1

 (4-7)

The corresponding interconnection graph is given in Figure 4-1

Figure 4-1: Communication graph corresponding to S⊗

It is immediately visible that there are two circuits present in this graph, one from node 1
to node 3 to node 2, and a loop on node 4. Due to the presence of these circuits there does
not exist a permutation matrix T which permutes matrix S into a strictly lower-triangular
matrix.
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Whereas the previous example showed a system containing a circuit, an example of an acyclic
system is given here;
Example 4-1.3. (Graph corresponding to acyclic matrix S⊗) Suppose the state-space de-
scription of an MMPS system yields the following matrix S;

S =


0 1 1 0
0 0 0 0
0 1 0 1
0 1 0 0

 (4-8)

The equivalent max-plus matrix S⊗ is given by;

S⊗ =


ε 1 1 ε
ε ε ε ε
ε 1 ε 1
ε 1 ε ε

 (4-9)

The corresponding interconnection graph is given in Figure 4-2

Figure 4-2: Communication graph corresponding to S⊗

In this graph, no circuits are present. Therefore, there must exist a permutation matrix T
which permutes matrix S into a strictly lower-triangular matrix. This permutation matrix T ,
and subsequent matrix F are given by;

T =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 , F =


0 0 0 0
1 0 0 0
1 1 0 0
1 0 1 0

 (4-10)

Matrices T and F as per 4-10 clearly shows the lower-triangular permutation of F , therefore
proving this system is solvable

In Example 4-1.2, it is immediately visible that there are circuits present by looking at the
interconnection graph. However, it could be that an interconnection graph is very complex,
and the existence of circuits cannot be immediately concluded by simply looking at the
graph. Therefore, a new theorem can be introduced that mathematically proves the existence
of circuits in an interconnection graph corresponding to matrix S⊗.
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Theorem 4-1.4. (Existence of a circuit in an interconnection graph) Define matrix S+
⊗ ∈

Rn×n as follows;

S+
⊗ =

n⊗
k=1

S⊗k
⊗ (4-11)

Where;
S+

⊗ = S⊗ ⊕ S2
⊗ ⊕ · · · ⊕ Sn

⊗ (4-12)
If all entries [S+

⊗ ]i,i, so all diagonal entries of S+
⊗ , are equal to ε, no path of any length

l ∈ {1, 2, ..., n} exists from any node i ∈ 1, 2, ..., n to itself, and therefore no circuits appear in
the interconnection graph of matrix S⊗

Proof. Consider the definition of A+ as in [9], and presented in 2-18. Because of the way
matrix S+

⊗ is calculated, entry [S⊗]i,j represents the maximum weight of a path of any length
l ∈ {1, 2, ..., n} from node i to node j. If an entry [S⊗]i,j is equal to ε no such path exists of
any length. It is not necessary to check if a path from a node to itself from length larger than
n exists. In case a circuit of any length exists, it must encompass less than n, or exactly n
nodes, as it is impossible for a circuit of length n + 1 to exist, without already containing a
circuit of less than, or exactly n. It is of importance to know whether any circuit exist, and
which states are part of any circuit, its length does not matter. In case all diagonal entries
of S+

⊗ would be ε, no path from any node to itself exists, therefore excluding the possibility
that a circuit appears in the communication graph corresponding to S⊗.

The following example demonstrates this proposed theorem;
Example 4-1.5. (Proving the existence of a circuit) Consider the matrix S⊗ from Example
4-1.2. Applying Theorem 4-1.4, matrix S+

⊗ corresponding to this matrix S⊗ is given by;

S+
⊗ =


3 4 2 ε
2 3 4 ε
4 2 3 ε
5 5 5 4

 (4-13)

It is immediately visible that all entries on the diagonal of [S+
⊗ ]ii are not ε, indicating that

the path for all states, at least one path of finite length from a node to itself exists. On the
other hand, calculating matrix S+

⊗ for matrix S⊗ corresponding to the example given in 4-1.3
yields the following;

S+
⊗ =


ε 3 1 2
ε ε ε ε
ε 2 ε 1
ε 1 ε ε

 (4-14)

This matrix S⊗ does have ε on its diagonal for all [S+
⊗ ]ii, confirming the finding that this

matrix is acyclic and therefore, strictly lower-triangular matrix F exists, thus making this
system solvable.

Hereby, the solvability condition stemming from the graph-theoretic interpretation of the
matrix S is concluded. This proof yields a condition equally strong as the condition already
introduced in 3-2. However, it is possible to use this graph-theoretic solvability condition as a
starting point to extend the solvability condition and yield a stronger one. The next section
is dedicated to extending this condition, and proving validity of the extended condition.
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4-2 Extending the Solvability Condition
In this section, the sufficiency of the existing solvability condition is proven. Furthermore,
the condition is extended, and four degrees of solvability are proposed. The contents of this
section are all extensions of the existing theory, with the exception of some recalled theory that
was discussed in previous sections, in which case, a clear reference to the source is provided.

4-2-1 Proving Sufficiency of the Existing Condition
The previous section proved that the absence of circuits in the interconnection graph corre-
sponding to matrix S⊗ proves the solvability of the corresponding MMPS system. However,
systems that do not adhere to this condition may very well still be solvable. Example 4-2.1
shows a very simple MMPS system with three states. it can be shown that, while the matrix
S⊗ corresponding to this system has an interconnection graph containing a circuit, the explicit
mapping x(k) = g(x(k − 1)) of the implicit system x(k) = f(x(k − 1), x(k)) still exists. This
will again prove what was already known, that the existing solvability condition is merely a
sufficient condition, not a necessary one.
Example 4-2.1. (Sufficiency of the existing solvability condition) Given the following vector-
valued implicit MMPS system, a solvability analysis can be conducted;

x1(k) = 2x2(k) + x1(k − 1) + 4
x2(k) = x3(k) + 2x3(k − 1)
x3(k) = x1(k) + 3x2(k − 1)− 1

(4-15)

The ABCD-form of this system can easily be computed, and is given by the following equation; x1(k)
x2(k)
x3(k)

 =

 4 ε ε
ε 0 ε
ε ε −1

⊗
 0 ⊤ ⊤
⊤ 0 ⊤
⊤ ⊤ 0

⊗′


 1 0 0

0 0 2
0 3 0

 ·
 x1(k − 1)

x2(k − 1)
x3(k − 1)


+

 0 2 0
0 0 1
0 1 0

 ·
 x1(k)

x2(k)
x3(k)




(4-16)

From this ABCD-form, the structure matrices SA,SB and SD can be computed, which are
given by;

SA =

 1 0 0
0 1 0
0 0 1

 , SB =

 1 0 0
0 1 0
0 0 1

 , SD =

 0 1 0
0 0 1
1 0 0

 (4-17)

Using these obtained matrices SA, SB and SD, matrix S and subsequently, matrices S⊗ and
[S+

⊗ ] can be computed.

S =

 0 1 0
0 0 1
1 0 0

 , S⊗ =

 ε 1 ε
ε ε 1
1 ε ε

 S+
⊗ =

 3 1 2
2 3 1
1 2 3

 (4-18)

The interconnection graph corresponding to matrix S⊗, visible in Figure 4-3 clearly shows the
existence of a circuit in this system.

V.M. van Heijningen Master of Science Thesis



4-2 Extending the Solvability Condition 39

Figure 4-3: Interconnection graph of matrix S⊗

So the interconnection graph corresponding to matrix S⊗ does contain a circuit. But simply by
analyzing the vector-valued set of equations as given in 4-15 within the context of conventional
algebra, by successive substitution, an explicit mapping of this system can be found. The result
of this successive substitution is given by the following set of equations;

x1(k) = −6x2(k − 1)− 4x3(k − 1)− 2
x2(k) = −3x2(k − 1)− 2x3(k − 1)− 3
x3(k) = −3x2(k − 1)− 4x3(k − 1)− 3

(4-19)

Example 4-2.1 shows that MMPS systems can still be solvable, even though the interconnec-
tion graph is not acyclic. In this specific example, successive substitution was used to actually
show what this explicit mapping is, and that it therefore exists. However, the greater purpose
of proving solvability in MMPS systems is not necessarily to rewrite an implicit system into
an explicit one, but to determine whether it is possible to rewrite an implicit system into
an explicit one. As Section 3-2 describes, subsequent substitution of implicit states may re-
sult in a nested system, yielding very large state-space equations, which is undesirable. Even
though the resulting nested expression may be explicit, merely knowing whether an explicit
mapping exists is enough. At each k, the configuration of the system can be characterized by
a system of linear equations. Considering there are max and min terms present in the state
equations, at each k, only one of the affine terms in these min or max expressions can be
minimal or maximal. The set of affine equations formed by the expressions that define the
state evolution at k is referred to as the mode of the system. Only one specific combination
of entries of matrices A and B will be relevant at each k, combined with the scaled states
z(k) = C · x(k − 1) + D · x(k).
Proposition 4-2.1. (Mode of a Max-Min-Plus-Scaling system) Suppose we have an MMPS
system of the following form;

x(k) = A⊗ (B ⊗′ (C · x(k − 1) + D · x(k))) (4-20)

The mode of the system at k can be characterized by the following equation;

xi(k) = [A]i,j + [B]j,k + zk(k) (4-21)

Where xi(k) ∈ [x1(k), x2(k), . . . , xn(k)], zk(k) ∈ [z1(k), z2(k), . . . , zp(k)], [A]i,j is entry {i, j}
of matrix A, similarly, [B]j,k is entry {j, k} of matrix B.

Proof. Each affine term that is present in the expression of state xi(k), is an addition of some
term zk(k), and some entry [A]i,j , and some entry [B]j,k.
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Any affine term in xi(k) is an expression of some zk(k), which appears in the expression of
xi(k) by being fed through matrices A and B. From the definitions of max-plus, and min-plus
algebraic matrix operations as per 2-9, it becomes apparent that the corresponding entries of
A and B are added to the affine term zk(k), yielding the proposed expression.

When a system is in a stable configuration, in the region of a fixed-point, the successive modes
are the same. This concept is introduced in [4] as the dominant equations of a system. Each
possible mode corresponds with one entry per row of matrices A and B being "active", i.e.
contributing to the state evolution. Therefore, the number of possible modes can be given by
the same equation that is used to compute the total number of possible footprint matrices[15];

n∏
i=1

ai ·
m∏

j=1
bj (4-22)

The concept of different modes of an MMPS systemis illustrated in the following example;
Example 4-2.2. (Modes of an MMPS system) Consider the following MMPS system equa-
tions;

x1(k) = max(x2(k) + 4, 3x1(k − 1) + 2x3(k − 1))
x2(k) = 5x1(k)− 2x2(k − 1) + 1
x3(k) = min(4x1(k − 1)− 2, x3(k − 1) + x2(k − 1))

(4-23)

This MMPS system can be viewed as a set of general systems of linear equations, considering
possible combinations of affine terms. When simulating an MMPS system, at each event step
k, one of multiple possible modes modes may be active. In this system, the following modes
exist;

x1(k) = x2(k) + 4
x2(k) = 5x1(k)− 2x2(k − 1) + 1
x3(k) = 4x1(k − 1)− 2

(4-24)

x1(k) = x2(k) + 4
x2(k) = 5x1(k)− 2x2(k − 1) + 1
x3(k) = x3(k − 1) + x2(k − 1))

(4-25)

x1(k) = 3x1(k − 1) + 2x3(k − 1))
x2(k) = 5x1(k)− 2x2(k − 1) + 1
x3(k) = 4x1(k − 1)− 2

(4-26)

x1(k) = 3x1(k − 1) + 2x3(k − 1))
x2(k) = 5x1(k)− 2x2(k − 1) + 1
x3(k) = x3(k − 1) + x2(k − 1))

(4-27)

As shown above, there are four modes that could arise in simulation. When analyzing this
system, the matrices S, S⊗ and S+

⊗ can be computed.

S =

 0 1 0
1 0 0
0 0 0

 , S⊗ =

 ε 1 ε
1 ε ε
ε ε ε

 S+
⊗ =

 2 3 ε
3 2 ε
ε ε ε

 (4-28)

Matrix S+
⊗ reveals that a circuit containing nodes x1(k) and x2(k) exists.
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However, when examining the four possible modes, only two out of four modes exhibit contain
a circuit. This means that only two out of the four modes require further inspection as
to analyze their solvability. In order to proceed the deduction of the extended solvability
theorem, let us reintroduce the extended state MMPS system. The extended state MMPS
system can be defined by;
Definition 4-2.1. [15] (Extended state MMPS system) An MMPS system can be represented
in the following extended state form;

x(k) = A⊗ y(k)
y(k) = B ⊗′ z(k)
z(k) = C · x(k − 1) + D · x(k)

(4-29)

This definition is identical to the one given in 3-8. Let us now introduce the necessary, but
sometimes not obvious facts required to structure the extended solvability theorem and its
proof are introduced below;

• Solvability of an MMPS system can only be violated by the states that are included in
any circuit in the interconnection graph of S⊗

• The number of non-ε entries in row i of matrix A defines how many entries of vector
y(k) are included in the expression of state xi(k).

• The number of non-⊤ entries in row i of matrix B defines how many entries of vector
z(k) are included in the expression of yi(k)

• The number of non-0 entries in row i of matrix D defines how many states of state
vector x(k) are included in the expression of zi(k)

• If Si,j of matrix S is not equal to 0, the expression of state xi(k) contains state xj(k)
at least once.

• The entry Si,j of matrix S ∈ Rn×n is a non-negative integer. This is due to matrix S
being constructed from conventional multiplication of matrices SA, SB and SD, whose
entries are all of value 0 or 1.

These statements, some of which may seem obvious, aid tremendously in the eventual ex-
tended solvability proof. It can be concluded that an MMPS system could be unsolvable if
a circuit is present. However, as shown in Example 4-2.2, not all modes necessarily contain
a circuit, as not all entries corresponding to a circuit may be active at the same time, essen-
tially breaking the circuit. It is known that if no circuit is present, the system is solvable.
Therefore, it is sufficient to verify whether the modes that do contain a circuit are solvable.
Even more so, since only the states included in any circuit can violate the solvability of the
whole system, it is also sufficient to only analyze the solvability of the states included in any
circuit. The subset of states that are included in any circuit will be referred to as the circuit
subsystem;
Definition 4-2.2. (Circuit subsystem) Consider an MMPS system containing at least one
circuit. The set of states included in any circuit in the system is called the circuit subsystem
and is given by xc(k); The state-space equation of the circuit subsystem just excludes all
entries corresponding to states not in any circuit, and is given by;

xc(k) = Ac ⊗ (Bc ⊗′ (Cc · xc(k − 1) + Dc · xc(k))) (4-30)
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Where Ac, Bc, Cc and Dc are matrices consisting of a selection of the entries of matrices A,
B, C and D corresponding to the states included in a circuit.

Let us demonstrate how matrices Ac, Bc,Cc and Dc are constructed, assuming it is known
which states are included in any circuit;
Example 4-2.3. (Constructing matrices Ac, Bc, Cc and Dc) Consider the MMPS system
as per Example 4-2.2, where states x1(k) and x2(k) are included in a circuit. The ABCD
matrices of this system are given by;

A =

 4 0 ε ε
ε ε 0 ε
ε ε ε 0

, B =


0 ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ −2 0



C =


0 0 0
3 0 2
0 −2 0
4 0 0
0 1 1

, D =


0 1 0
0 0 0
5 0 0
0 0 0
0 0 0


(4-31)

Since states x1(k) and x2(k) are the only states included in any cycle, the entries of A, B,
C and D corresponding to these states will be used to form Ac,Bc,Cc and Dc. These entries
are coloured light blue in the matrices A,B,C and D above. The resulting matrices Ac, Bc,
Cc and Dc can be given by;

Ac =
[

4 0 ε
ε ε 0

]
, Bc =

 0 ⊤ ⊤
⊤ 0 ⊤
⊤ ⊤ 0


Cc =

 0 0
3 0
0 −2

, Dc =

 0 1
5 0
0 0


(4-32)

Using a similar approach, matrices Sc, S⊗,c and S+
⊗,c, which are matrices consisting of the

entries of S, S⊗ and S+
⊗ corresponding to the circuit subsystem, can be computed as well. It

is worth mentioning that the diagonal entries [S+
⊗,c]i,i of S+

⊗,c consists of only non-ε values, as
only states part of any circuit are included in S⊗,c. Since only the modes containing a circuit
will need further analysis, the number of modes that is to be analyzed will be less than, or
equal to the number of existing modes. A mode containing a circuit will be referred to as a
circuit mode.

4-2-2 Decoding matrix S

This subsection provides a thorough analysis of structure matrix S, and proposes two theorems
regarding the findings of this analysis. Let us first define the concept of a minimal realization
of an MMPS system as follows;
Definition 4-2.3. (Minimal realization of an MMPS system) An MMPS system is a minimal
realization if the following conditions hold;
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1. Every mode of the system can logically be reached, i.e. no mode of the system is redun-
dant. For example, if a state is described by the following equation;

x1(k) = max(x2(k) + 6, x2(k) + 5) (4-33)

The first term, x2(k) + 6 will always be maximal, making the second affine term re-
dundant, and the modes containing this term cannot logically be reached. A system
containing such a mode is not a minimal realization

2. Every term zi(k) must appear in the expression of any state xj(k). This is equivalent
to no row, and no column of matrices A and B being entirely ε or ⊤, respectively.

This definition is used in the further analysis of structure matrix S. The maximum number
of circuit modes can be computed by using the information embedded in the entries of matrix
S. Matrix S carries important information regarding the implicit dependency of states on
each other, as a non-zero value on entry Si,j signifies an implicit dependency of state xi(k) on
state xj(k). The value of this entry is of importance as well. The following theorem regarding
the value of entry Si,j will aid in deriving a formula to compute the maximum number of
circuit modes in an implicit MMPS system;
Theorem 4-2.4. (Interpretation of entry Si,j) The value of entry Si,j represents the number
of affine terms in the expression of state xi(k) in which state xj(k) appears.

Proof. This line of reasoning in this proof originates in the ABCD matrices, and specifically
in the extended state-space description 4-29. The facts stated below, in that order, provide a
conclusive deduction that proves Theorem 4-2.4.

• In case all modes of the systems can logically be reached, i.e. no affine term is redundant,
and all terms of z(k) appear in the final state-space equations, the system is a minimal
realization.

• If a state xj(k) is included in the linear term zi(k), entry [D]i,j ̸= 0

• If linear term zi(k) is included in the expression of yp(k), entry [B]p,i ̸= ⊤

• If expression yp(k) is included in the expression of state xq(k), entry [A]q,p ̸= ε

• For the system to be a minimal realization, every linear term zi(k) must be included
in at least one expression of an entry in y(k), so there exists an entry [B]p,i ̸= ⊤.
Equivalently, no column of B should be all ⊤ if the system is a minimal realization.

• For the system to be a minimal realization, any term yp(k) must be included in at least
one expression of an entry in x(k), so there exists an entry [A]q,p ̸= ε. Equivalently, no
column of A should be all ε if the system is a minimal realization.

From the facts stated above, it can be concluded that, if state xj(k) is included in zi(k), zi(k)
is included in yp(k), and yp(k) is included in xq(k), entries [D]i,j ,[B]p,i [A]q,p will be non-
0/⊤/ε, respectively. Therefore, at least one affine term in the expression of xq(k) implicitly
depends on state xj(k). Assume that the same state xj(k) is included in zs(k), zs(k) is
included in yt(k), and yt(k) is included in xq(k), entries [D]s,j ,[B]t,s [A]q,t will also be non-
0/⊤/ε, respectively. Basically, two different sequences of entries are defined that represent
the implicit dependency of state xq(k) on state xj(k) in the ABD matrices. Sequences like
this also exist for explicit state mappings with entries of C.
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Nonetheless, every entry in matrices B, C, D and A that is non-0/⊤/ε is part of such a se-
quence, either an implicit one or an explicit one. So besides the entries that are part of a
sequence, all entries are 0/⊤/ε in a minimal realization. It is known that the aforementioned
entries which are non-0/⊤/ε, are 1 in the structure matrices, as the structure of the matrices
is conserved. The distinction between the matrix operations ⊗,⊗′ and conventional multi-
plication will give important insights into how the implicit mapping of the MMPS system
relates to the conventional multiplication of the corresponding structure matrices; Given

[B ⊗′ D]i,j =
p⊗

k=1

′

bi,k ⊗′ dk,j

= min
k∈p
{bi,k + dk,j}

[SB · SD]i,j =
p∑

k=1
SB,i,k · SD,k,j

(4-34)

and
[A⊗ (B ⊗′ D)]i,j

m⊗
k=1

ai,k ⊗ (B ⊗′ D)k,j =

= max
k∈m
{ai,k + (B ⊗′ D)k,j}

[SA · SBD]i,j =
m∑

k=1
SA,i,k · SBD,k,j

(4-35)

Given that A ∈ Rn×m
ε , B ∈ Rm×p

⊤ , D ∈ Rp×n and SA ∈ Rn×m,SB ∈ Rm×p, SD ∈ Rp×n, SBD =
SB ·SD. So essentially, the max-plus addition is replaced by conventional multiplication, and
the maximization/minimization is replaced by conventional addition. This is not necessarily
new information, but is an important notion when it comes to relating the value of the
entries in S to the state expressions. Because knowing the only non-0 entry sequences that
exist are the ones that implicitly relate states to each other, the existence of one sequence
[SD]i,j = 1, [SB]p,i = 1, [SA]q,p = 1 results in the value of entry [S]q,j = 1. In the case that
another entry sequence [SD]s,j = 1, [SB]t,s = 1, [SA]q,t = 1 exists, the value of [S]q,j = 2,
andsoforth. Let us illustrate this by representing the implicit dependencies and non-ε/⊤/0
entries in A,B and D in a graph like manner as to clarify this concept of sequences, and how
they relate to the entries in S;

Example 4-2.5. (Graph representation of sequences)
Consider an implicit MMPS system given by the following state-space equations;

x1(k) = min(2x1(k) + 1, x1(k) + x2(k)) + 2
x2(k) = 3x2(k)− 1

(4-36)

Matrices A, B, C and D can be given as follows;

A =
[

0 ε
ε −1

]
, B =

[
1 0 ⊤
⊤ ⊤ 0

]

C =

 0 0
0 0
0 0

, D =

 2 0
1 1
0 3

 (4-37)
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The corresponding matrices SA,SB, SD and S are given by;

SA =
[

1 0
0 1

]
, SB =

[
1 1 0
0 0 1

]
, SD =

 1 0
1 1
0 1

, S =
[

2 1
0 1

]
(4-38)

So, according the to be proven theorem, the state x1(k) contains two affine terms containing
x1(k), and one affine term containing x2(k), which is true. The point of this example is
to illustrate how this entry [S]1,1 = 2 has come about. In Figure 4-4, a graph is visible,
showcasing how state x1(k) and x2(k) implicitly depend on themselves, and each other.

Figure 4-4: Visual representation of interconnection sequences in matrices A,B and D

It becomes visible that there are two distinct paths or ways state x1(k) is connected to state
x1(k). This is a visual representation of how there are two sequences of entries in matrices
A,B and D causing an implicit dependency within a state expression. The weights [D]i,j,
[B]i,j and [D]i,j represent the entries included in these sequences.

It is however possible that the linear term zi(k) appears in multiple expressions in y(k). If
both of these expressions then appear in the expression for state xq(k), the sequences of
non-0/⊤/ε partly coincide. The same could theoretically be true for two linear terms zi(k)
and zs(k), both containing state xj(k), which can both be included in the expression yp(k),
which then appears in the state expression of xq(k). So it does not matter if in those entry
sequences, parts overlap, however the combinations of the three entries composing a sequence
must be unique to yield a value of [S]q,j > 1. Ultimately, this results in the value of entry
[S]q,j representing the number of times state xq(k) implicitly depends on state xj(k), which
concludes this proof.

So, the matrix S contains information about all implicit dependencies of states. Considering
the knowledge proven in Theorem 4-2.4, the following theorem regarding the number of circuit
modes can be proven;
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Theorem 4-2.6. (Maximum number of circuit modes in an MMPS system) Consider an
implicit MMPS system containing a circuit, and therefore containing circuit modes. The
maximum number of circuit modes is given by multiplying all non-zero entries with each
other. This is mathematically described by;

Πnc
i=1sci (4-39)

Where sci , i ∈ nc is the number of non-0 entries in matrix Sc

Proof. As per Theorem 4-2.4, any entry [S]ij represents the number of affine terms in the
expression of state xi(k) in which state xj(k) appears. The same holds for matrix Sc, as this
matrix consists of entries taken from matrix S, and only considers states actually within a
circuit. Matrix Sc excludes all explicit dependencies, and all implicit dependencies not related
to any circuit. If the value of [Sc]i,j is 1, only one mode of state xi(k) will yield a circuit, in
which it is in a circuit with xj(k). In case the value of [Sc]i,j is larger than 1, 3 for example,
there are 3 modes of state xi(k) which yield a circuit with an implicit affine term including
xj(k), so essentially, three distinct possible violations of the solvability of the system, that
should be investigated separately. If another entry of S, [Sc]p,q for example, has value 2,
yielding 2 possible violations of solvability. Considering both [Sc]i,j = 3 and [Sc]p,q = 2, and
all other non-zero entries being 1, in total, there are a maximum of 6 modes in which a circuit
occurs. Therefore, the maximum number of combinations of affine terms, i.e. modes, that
yield a circuit is given by multiplying all non-0 entries in Sc. This leads to the following
equation;

Πnc
i=1sci (4-40)

It is possible that the actual amount of circuit modes to be examined is actually lower than
the value computed by 4-40. This is because the computed value does not account for affine
terms containing more than one implicit state. Example 4-2.7 showcases this nicely.

Example 4-2.7. Consider the implicit Max-Min-Plus-Scaling system given by the following
equations;

[
x1(k)
x2(k)

]
=
[

0 0 ε
ε ε 0

]
⊗

 0 ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤
⊤ ⊤ 3 0



⊗′




0 0
0 0
0 0
0 0

 ·
[

x1(k − 1)
x2(k − 1)

]
+


2 −7
4 3
1 3
6 0

 ·
[

x1(k)
x2(k)

]
(4-41)

SA =
[

1 1 0
0 0 1

]
, SB =

 1 0 0 0
0 1 0 0
0 0 1 1

 , SD =


1 1
1 1
1 1
1 0

 , S =
[

2 2
2 1

]
(4-42)

This system has multiple circuits, which can immediately be concluded, because matrix S does
not have any entries of value ε.
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According to the theory proposed in Theorem 4-2.6, the maximum number of circuit modes is
equal to Π2

i=1sci = 2 · 2 · 2 · 1 = 8. However, the system only consists of two states, which each
consist of two affine terms. And upon closer inspection, the actual number of circuit modes is
equal to 4, not 8 as Theorem 4-2.6 suggests. Since the size of matrix SD = SDc ∈ R4×2, there
are only 4 distinct affine terms present, and 2 states in the circuit subsystem. Since the state
evolution of each state is defined by one affine term, it is not possible to find 8 combinations of
affine terms for 2 states, given that there are only 4 affine terms to make these combinations
with. This example illustrates that Theorem 4-2.6 merely provides the theoretical maximum
number of circuit modes, not necessarily the actual value.

4-2-3 Degrees of Solvability
This subsection proposes a classification of implicit MMPS systems into four degrees of solv-
ability. Each type is accompanied by an elaborate example. All theory proposed in this
section is an extension of existing knowledge, unless specified otherwise. So, all results ob-
tained in this Chapter so far leads to the following Theorem regarding solvability of MMPS
states that contain at least one circuit;
Theorem 4-2.8. (Solvability of Max Min Plus Scaling systems containing a circuit) An
implicit Max Min Plus Scaling system containing a circuit is solvable if the circuit subsystem
of all modes containing a circuit are solvable.

Proof. In Theorem 4-1.1, it was proven that the absence of any circuit in the interconnection
graph of matrix S is a sufficient condition to conclude an implicit MMPS system is solvable.
Therefrom, it can be concluded that the only states that will possibly violate the solvability of
an implicit MMPS system, are the states included in any circuit. Example 4-2.1 established
the sufficiency of the condition derived in 4-1.4, proving implicit MMPS systems containing
a circuit can still be solvable. By introducing the concepts of modes, circuit modes, and
the circuit subsystem as per 4-2.1 and 4-2.2, the scope of the possible solvability violation
was clarified. If only circuits can violate solvability, but not all modes contain a circuit, as
was illustrated in example 4-2.2, only modes containing a circuit should be further analyzed.
Within such a circuit mode, the states not contained in any circuit within that circuit mode
will never make the system unsolvable, as their implicit dependency will never yield an entry
in matrix F above the diagonal. If all possibly unsolvable parts of the system are proven to
be solvable, the entire system is solvable. Therefore, if solvability is proven for the circuit
subsystem in each circuit mode, the entire MMPS system is solvable.

Having proven that solvable circuit subsystems in all circuit modes begets a solvable implicit
MMPS system, an algorithm to actually substantiate this finding can be derived. Let us first
propose an alternative notation for modes of a circuit subsystem, which will form the base
for the classification methodology.
Proposition 4-2.2. (Alternative notation of a circuit mode) Each mode of the circuit sub-
system can be rewritten into a linear system of the following form;

xc(k) = Q · xc(k) + bf (4-43)

Where Q ∈ Rn×n is a square matrix representing the implicit dynamics of the circuit mode of
the circuit subsystem.
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Vector bf ∈ Rn×1 contains all explicit states, implicit states not included in the circuit sub-
system, and scalars that are part of the original expression of the states included in the circuit
subsystem

Proof. Recall the circuit subsystem described by 4-30. This ABCD form of the circuit sub-
system can be written out as a set of MMPS equations. By extending this set of MMPS
equations by incorporating all terms that fell out of the equation as they were not terms of
the circuit subsystem states, the full equations describing the circuit subsystem states of a
circuit mode of the implicit MMPS system could be obtained. This set of MMPS equations,
a linear set of equations can be determined to describe each possible mode. Let us illustrate
this with the following example;

Example 4-2.9. (Rewriting a circuit mode in a linear system of equations) Suppose an
MMPS system is described by the following MMPS equations;

x1(k) = x2(k) + x3(k − 1) + 1
x2(k) = −2x1(k) + 3x2(k) + x3(k − 1) + 2
x3(k) = min(x1(k − 1) + x2(k − 1) + x2(k)− 3, x1(k − 1) + x3(k − 1))

(4-44)

By analyzing this system, it turns out that at least one circuit is present, and that the circuit
subsystem is given by xc(k) =

[
x1(k)T x2(k)T

]T
, and by writing out the corresponding

circuit subsystem state-space matrix equation, the only circuit mode can be defined by;

x1(k) = x2(k) + x3(k − 1) + 1
x2(k) = −2x1(k) + 3x2(k) + x3(k − 1) + 2

(4-45)

This system of linear equations in conventional algebra can be rewritten as;

xc(k) =
[

0 1
−2 3

]
︸ ︷︷ ︸

Q

·xc(k) +
[

1
2

]
(4-46)

By incorporating all terms that fell out of the original system equations due to the circuit
subsystem matrix equation, the following system of linear equations can be obtained;

xc(k) =
[

0 1
−2 3

]
︸ ︷︷ ︸

Q

·xc(k) +
[

x3(k − 1) + 1
x3(k − 1) + 2

]
︸ ︷︷ ︸

bf

(4-47)

Hereby, the full circuit mode of the implicit MMPS system is obtained, and rewritten into the
proposed form of xc(k) = Q · xc(k) + bf

This example showcased how the circuit subsystem states in a circuit mode could be rewritten
into a system of linear equations in conventional algebra. The symbols Q and bf assigned to
these parts of such a system of linear equations is the convention used in this thesis.

As was mentioned in 4-0.1, a solvable implicit MMPS systems is required to have at least one
solution. A distinction can be made between systems having a unique solution, and systems
having multiple solutions, i.e. a parametric solution.
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Firstly, let us introduce a theorem that provides a method aiming to determine whether a
mode of a circuit subsystem has a unique solution.
Theorem 4-2.10. (Unique solution of a mode of a circuit subsystem) Consider a circuit
mode of a circuit subsystem. This mode can be rewritten into the following conventional
algebraic linear system as per Theorem 4-2.2;

xc(k) = Q · xc(k) + bf (4-48)

If equation 4-49 has a unique solution, or equivalently, equation 4-50 holds, and matrix (I−Q)
has full rank, this circuit mode of this circuit subsystem has a unique solution, and is solvable.

(I −Q) · xc(k) = bf (4-49)

rank(I −Q) = nc (4-50)

Proof. In each mode, one entry per row of matrix Ac and Bc is active, and the active entries
can be described by the pair of footprint matrices GAc , GBc corresponding to this particular
mode. Matrix Q can be obtained using the following expression;

Q = GAc ·GBc ·Dc (4-51)

Matrices GAc and GBc essentially select the entries of matrix Dc active in the corresponding
circuit mode. The circuit mode is rewritten as a system of linear equations in 4-48 within
conventional algebra. Using Gaussian elimination, it can easily be concluded that, if matrix
(I − Q) is full rank, the system of linear equations is uniquely solvable. This leads to the
conclusion that, if matrix (I − Q) is full rank, or equivalently, there is only one solution to
(I −Q) · xc(k) = bf , this circuit subsystem circuit mode is uniquely solvable.

This theorem can be accompanied by an elaborate example, aiming to illustrate a situation
in which a uniquely solvable circuit mode occurs;
Example 4-2.11. (Uniquely solvable circuit mode of an implicit MMPS system) Consider
an MMPS system given by the following ABCD form; x1(k)

x2(k)
x3(k)

 =

 3 0 ε ε
ε ε 0 ε
ε ε ε 0

⊗


0 ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ 2 0 ⊤
⊤ ⊤ ⊤ ⊤ 0



⊗′




0 0 0
0 1 3
1 0 0
0 1 −1
0 0 0

 ·
 x1(k − 1)

x2(k − 1)
x3(k − 1)

+


0 0 2
0 0 0
0 0 0
0 0 0
1 1 0

 ·
 x1(k)

x2(k)
x3(k)




(4-52)

With matrices SA,SB,SD and S as follows;

SA =

 1 1 0 0
0 0 1 0
0 0 0 1

 , SB =


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 1

 , SD =


0 0 1
0 0 0
0 0 0
0 0 0
1 1 0

 , S =

 0 0 1
0 0 0
1 1 0


(4-53)
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This system contains at least one cycle, as becomes apparent when computing S+
⊗ , which is

given by;

S+
⊗ =

 2 2 3
ε ε ε
3 3 2

 (4-54)

Since entries [S+
⊗ ]11 and [S+

⊗ ]33 are non-ε, a path from node 3 to node 3, and a path from
node 1 to node 1 exists. The circuit subsystem can therefore be given by;

[
x1(k)
x3(k)

]
=
[

3 0 ε
ε ε 0

]
⊗

 0 ⊤ ⊤
⊤ 0 ⊤
⊤ ⊤ 0


⊗′


 0 0

0 3
0 0

 · [ x1(k − 1)
x3(k − 1)

]
+

 0 2
0 0
1 0

 · [ x1(k)
x3(k)

]
(4-55)

Matrix Sc corresponding to this circuit subsystem is given by;

Sc =
[

0 1
1 0

]
(4-56)

Therefore, the maximum number of circuit modes is given by 1 · 1 = 1. When inspecting the
system, the full circuit mode that is to be analyzed can be given by the following system of
linear equations;

x1(k) = 2x3(k) + 3
x3(k) = x1(k) + x2(k)

(4-57)

When rewriting this system into the form proposed in 4-2.2, the following expression is found;

xc(k) =
[

0 2
1 0

]
︸ ︷︷ ︸

Q

·xc(k) +
[

3
x2(k)

]
︸ ︷︷ ︸

bf

(4-58)

All that is left is to simply determine if (I−Q) is full rank, as to be able to conclude a unique
solution exists for this circuit subsystem circuit mode;

rank(I −Q) = rank(
[

1 0
0 1

]
−
[

0 2
1 0

]
) = rank(

[
1 −2
−1 1

]
) = 2 = nc (4-59)

So, (I − Q) is full rank, so the only circuit mode in the circuit subsystem given in 4-55 is
uniquely solvable. As this was the only instance in this system where solvability could be
violated, and it has been proven that it will not. Therefore, the entire system as given in 4-52
is uniquely solvable, as all possible modes are uniquely solvable.

Theorem 4-2.10 proposed a method to determine whether a circuit subsystem circuit mode
has a unique solution. In case this unique solution exists for all circuit subsystem circuit
modes, the entire MMPS system is solvable, yielding a unique solution for all x(k), k > 0 for
any x(k−1). In case one or more circuit modes of the circuit subsystem do not have a unique
solution, the system could still be solvable.
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However, in this case, there will be at least one mode of the system that is not uniquely
solvable. Regarding circuit subsystem circuit modes that do not have a unique solution, a
discrepancy can be made between systems that are unsolvable and systems that are para-
metrically solvable. The following two theorems propose a method which conclusively proves
which case transpires.
Theorem 4-2.12. (Parametric solution of a mode of a circuit subsystem) Consider a circuit
mode of a circuit subsystem described by the following equation;

xc(k) = Q · xc(k) + bf (4-60)

If the following equation holds, this circuit mode of the circuit subsystem is said to be solvable,
with a parametric solution;

rank(I −Q) = rank(I −Q|bf ) < nc (4-61)

Here, vector bf is similar to vector b as defined in 4-48. The main difference is that all
explicit, and implicit terms which were initially included in the affine term, but fell out due
to the reduction of states to only the circuit states, are included again.

Proof. Any system that has a parametric solution will not have full rank (I−Q), the reduced
version of this matrix will be of the following structure;

(I −Q) =


⋆ 0 · · · 0
0 ⋆ · · · 0
... . . . . . . ...
0 0 · · · 0

 (4-62)

This system is by definition underdefined, and could have a parametric solution. Extended
matrix (I −Q|bf ) may be able to be reduced into the following form;

(I −Q|bf ) =


⋆ 0 · · · 0 ⋆
0 ⋆ · · · 0 ⋆
... . . . . . . ...

...
0 0 · · · 0 0

 (4-63)

If this form exists, there is no inconsistency in the system, and the solution to this circuit
subsystem circuit mode is parametric. In case rank(I −Q) = rank(I −Q|bf ) = nc, (I −Q) if
full rank, and a unique solution exists, as described in Theorem 4-2.10.
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This theorem can be illustrated by the following example;
Example 4-2.13. (Parametrically solvable circuit mode of an implicit MMPS system) Con-
sider an MMPS system given by the following ABCD form; x1(k)

x2(k)
x3(k)

 =

 2 1 ε ε
ε ε 0 ε
ε ε ε 0

⊗


0 ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ 2 ⊤ ⊤
⊤ ⊤ ⊤ −3 0



⊗′




0 0 1
0 0 1
0 0 2
1 1 0
1 0 1

 ·
 x1(k − 1)

x2(k − 1)
x3(k − 1)

+


0 0 0
0 1 0
−2 3 0
0 1 0
0 0 0

 ·
 x1(k)

x2(k)
x3(k)




(4-64)

Matrices SA, SB, SD and S can be given as follows;

SA =

 1 1 0 0
0 0 1 0
0 0 0 1

 , SB =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1

 , SD =


0 0 0
0 1 0
1 1 0
0 1 0
0 0 0

 , S =

 0 1 0
1 1 0
0 1 0


(4-65)

Using these matrices, matrix S+
⊗ can be computed;

S+
⊗ =

 3 3 ε
3 3 ε
3 3 ε

 (4-66)

So, at least 1 circuit is present in this system, the circuit subsystem consists of states x1(k)
and x2(k), and is given by the following equation;

[
x1(k)
x2(k)

]
=
[

2 1 ε
ε ε 0

]
⊗

 0 ⊤ ⊤
⊤ 0 ⊤
⊤ ⊤ 2


⊗′


 0 0

0 0
0 0

 · [ x1(k − 1)
x2(k − 1)

]
+

 0 0
0 1
−2 3

 · [ x1(k)
x2(k)

]
(4-67)

Matrix Sc corresponding to this circuit subsystem is given by;

Sc =
[

0 1
1 1

]
(4-68)

Therefore, the maximum number of circuit modes is given by 1 · 1 · 1 = 1. The to be analyzed
circuit mode can be given by the following set of MMPS equations;

x1(k) = x2(k) + x3(k − 1) + 1
x2(k) = −2x1(k) + 3x2(k) + 2x3(k − 1) + 2

(4-69)
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Which in turn, can be rewritten into the system of linear equations in conventional algebra as
per 4-2.2, given by;

xc(k) =
[

0 1
−2 3

]
︸ ︷︷ ︸

Q

·xc(k) +
[

x3(k − 1) + 1
2x3(k − 1) + 2

]
︸ ︷︷ ︸

bf

(4-70)

Now the following test can be perormed to determine the rank of (I−Q), which is done below;

rank(I −Q) = rank(
[

1 0
0 1

]
−
[

0 1
−2 3

]
) = rank(

[
1 −1
2 −2

]
) = 1 ̸= nc (4-71)

So, (I−Q) is not full rank, therefore, this circuit mode of the circuit subsystem does not have
a unique solution. However, the solution to this system may be parametric. By applying the
theory presented in Theorem 4-2.12

Now evaluating whether rank(I − Q) = rank(I − Q|bf ) < nc allows us to draw conclusions
regarding the parametric solvability of this circuit mode;

rank(I −Q|bf ) = rank(
[

1 −1 x3(k − 1) + 1
2 −2 2x3(k − 1) + 2

]
)

= rank(
[

1 −1 x3(k − 1) + 1
0 0 0

]
) = 1 = rank(I −Q)

(4-72)

So, this convincingly proves that rank(I −Q) = rank(I −Q|bf ) < nc holds, and a parametric
solution to this mode exists. Since the only circuit mode in the circuit subsystem has been
proven to be solvable, the entire system can be considered solvable, with one mode having
infinitely many solutions.

In case Theorems 4-2.10 and 4-2.12 do not hold, the implicit MMPS system may be unsolvable.
The method to determine whether a circuit mode of an implicit MMPS system is unsolvable
is described by the following theorem;
Theorem 4-2.14. (Unsolvable mode of a circuit subsystem) Consider a circuit mode of a
circuit subsystem described by the following equation;

xc(k) = Q · xc(k) + bf (4-73)

In the case that rank(I − Q) < rank(I − Q|bf ), this circuit mode of the circuit subsystem is
said to be unsolvable.

Proof. In case that rank(I − Q) < rank(I − Q|bf ), the reduced form of this inequality will
have the following structure;

rank




⋆ 0 · · · 0
0 ⋆ · · · 0
... . . . . . . ...
0 0 · · · 0


 < rank




⋆ 0 · · · 0 ⋆
0 ⋆ · · · 0 ⋆
... . . . . . . ...

...
0 0 · · · 0 ⋆


 (4-74)
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It becomes apparent that in case rank(I−Q) < rank(I−Q|bf ), at least one row of (I−Q|bf )
contains an inconsistency in the system of linear equations. For example, interpretation such
an inconsistency can be described by;

x1(k) = x1(k) + 6 (4-75)

There is no value of x1(k) for which this equation can be solved. Such an inconsistency
within the system of linear equation describing the circuit mode will lead to rank(I − Q) <
rank(I −Q|bf ). Such behaviour will cause this circuit mode to be unsolvable.

To illustrate the theorem regarding unsolvable systems, the following example is provided;
Example 4-2.15. (Unsolvable mode of a circuit subsystem) Consider an MMPS system given
by the following ABCD form; x1(k)

x2(k)
x3(k)

 =

 6 ε ε ε
ε 0 ε ε
ε ε 3 0

⊗


0 ⊤ ⊤ ⊤ ⊤
⊤ 1 0 ⊤ ⊤
⊤ ⊤ ⊤ 0 ⊤
⊤ ⊤ ⊤ ⊤ 0



⊗′




0 1 0
0 0 0
1 0 0
0 −1 1
0 0 0

 ·
 x1(k − 1)

x2(k − 1)
x3(k − 1)

+


0 0 0
0 −1 1
0 0 2
0 0 0
0 −4 3

 ·
 x1(k)

x2(k)
x3(k)




(4-76)

Matrices SA, SB, SD and S can be given as follows;

SA =

 1 0 0 0
0 1 0 0
0 0 1 1

 , SB =


1 0 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

 , SD =


0 0 0
0 1 1
0 0 1
0 0 0
0 1 1

 , S =

 0 0 0
0 1 2
0 1 1


(4-77)

Using these matrices, matrix S+
⊗ can be computed;

S+
⊗ =

 ε ε ε
ε 4 5
ε 4 4

 (4-78)

Due to entry [S+
⊗ ]11 and [S+

⊗ ]22 being non-ε, this system contains at least one circuit, and its
circuit subsystem consists of state x2(k) and x3(k). The circuit subsystem can be given by;[

x2(k)
x3(k)

]
=
[

0 ε ε
ε 0 3

]
⊗

 1 0 ⊤ ⊤
⊤ ⊤ 0 ⊤
⊤ ⊤ ⊤ 0



⊗′




0 0
0 0
−1 1
0 0

 ·
[

x2(k − 1)
x3(k − 1)

]
+


−1 1
0 2
0 0
−4 3

 ·
[

x2(k)
x3(k)

]
(4-79)

V.M. van Heijningen Master of Science Thesis



4-2 Extending the Solvability Condition 55

This circuit subsystem will turn out to be unsolvable, but to prevent an unnecessarily long
calculation, the test to prove a unique solution as proposed in Theorem 4-2.10 will not be
carried out. Instead, the proposed algorithm in 4-2.12 and 4-2.14 will be applied. Any system
that is solvable will never prove to be unsolvable by applying this algorithm. The circuit
subsystem as per 4-79 has the following corresponding matrix Sc;

Sc =
[

1 2
1 1

]
(4-80)

The maximum number of circuit modes in this circuit subsystem is given 1 · 2 · 1 · 1 = 2. Upon
further inspection of this circuit subsystem, there indeed exist two different circuit modes. The
following linear system of equations can be obtained;{

x2(k) = −x2(k) + x3(k) + 1
x3(k) = −4x2(k) + 3x3(k) + 3

(4-81)

{
x2(k) = 2x3(k) + x1(k − 1)
x3(k) = −4x2(k) + 3x3(k) + 3

(4-82)

Which in turn can be rewritten into;

xc(k) =
[
−1 1
−4 3

]
︸ ︷︷ ︸

Q

·xc(k) +
[

1
3

]
︸ ︷︷ ︸

bf

(4-83)

xc(k) =
[

0 2
−4 3

]
︸ ︷︷ ︸

Q

·xc(k) +
[

x1(k − 1)
3

]
︸ ︷︷ ︸

bf

(4-84)

In both cases, it should be evaluated whether rank(I −Q) = rank(I −Q|bf );

rank(I −Q) = rank(
[

1 0
0 1

]
−
[
−1 1
−4 3

]
) = rank(

[
2 −1
4 −2

]
) = 1 ̸= nc (4-85)

rank(I −Q) = rank(
[

1 0
0 1

]
−
[

0 2
−4 3

]
) = rank(

[
1 −2
4 −2

]
) = 2 = nc (4-86)

The first system has rank(I −Q) = 1, which is not full rank, making it either parametrically
solvable, or unsolvable. So, the second system has rank(I−Q) = 2, which is full rank, making
this circuit mode uniquely solvable. The first system has to be analyzed further to determine
its degree of solvability;

rank(I −Q|bf ) = rank(
[

2 −1 1
4 −2 3

]
) = rank(

[
2 −1 1
0 0 1

]
) = 2 ̸= rank(I −Q) (4-87)

So, this linear system of equations is inconsistent, and therefore, unsolvable. Therefore, the
corresponding circuit mode is unsolvable, and the entire system is unsolvable, because one
mode is unsolvable. When reflecting back on the definition of solvability as per 4-0.1, the
system given in this Example does not always have a solution x(k), k > 0 for any state
x(k − 1).
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In this section, three degrees of solvability were introduced. A system can either be uniquely
solvable, parametrically solvable, or unsolvable. However, a remark regarding unsolvable
systems needs to be made to accommodate for inconsistent systems, which under certain
conditions, may still be parametrically solvable. The following example illustrates this phe-
nomenon;
Example 4-2.16. (Parametrically unsolvable system) Consider a circuit mode of a circuit
subsystem given by the following linear system of equations, matrix notation;

xc(k) =
[
−4 −3
−10 −5

]
︸ ︷︷ ︸

Q

·xc(k) +
[

3 + x1(k − 1)
2x1(k − 1) + x2(k − 1) + 5

]
︸ ︷︷ ︸

bf

(4-88)

By evaluating rank(I −Q|bf ), the following can be obtained;

rank(I −Q|bf ) = rank(
[

5 3 3 + x1(k − 1)
10 6 2x1(k − 1) + x2(k − 1) + 5

]
)

= rank(
[

5 3 3 + x1(k − 1)
0 0 x2(k − 1)− 1

]
) = 2 ̸= rank(I −Q)

(4-89)

Therefore, this system of linear equations corresponding to the given circuit mode, is theoret-
ically unsolvable.

The solution to the system of linear equations as per is definitely of the structure as seen in
4-2.14;

rank




⋆ 0 · · · 0
0 ⋆ · · · 0
... . . . . . . ...
0 0 · · · 0


 < rank




⋆ 0 · · · 0 ⋆
0 ⋆ · · · 0 ⋆
... . . . . . . ...

...
0 0 · · · 0 ⋆


 (4-90)

However, the term x1(k− 1)− 1, which is causing the inconsistency in the system, is actually
parametric. So, in the specific case that x1(k−1)−1 = 0, the system would be parametrically
solvable. However, definitely falls under the category "even a broken clock is right twice a
day", and it is still definitely true that x(k), k > 0 does not always have a solution for any
x(k− 1), still yielding an unsolvable system. Nevertheless, the theorem for unsolvable modes
of a circuit subsystem does need to be extended to accommodate for this case, by adding the
possibility of a system being parametrically unsolvable. Systems where the term(s) causing
the inconsistency are merely a scalar, will from henceforth be referred to as strictly unsolvable
systems.
Theorem 4-2.17. (Parametrically unsolvable mode of a circuit subsystem) Consider a circuit
mode of a circuit subsystem described by the following equation;

xc(k) = Q · xc(k) + bf (4-91)

In the case that rank(I − Q) < rank(I − Q|bf ), and all terms causing this system of linear
equations to be inconsistent are parametric, the system may be parametrically unsolvable. In
case there exists an initial condition x(k−1) for which all terms causing the inconsistency are
0, yielding a parametrically solvable system, the corresponding circuit mode is parametrically
unsolvable.
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Proof. Similarly to strictly unsolvable circuit modes, the inequality rank(I −Q) < rank(I −
Q|bf ) can be reduced to having the following structure;

rank




⋆ 0 · · · 0
0 ⋆ · · · 0
... . . . . . . ...
0 0 · · · 0


 < rank




⋆ 0 · · · 0 ⋆
0 ⋆ · · · 0 ⋆
... . . . . . . ...

...
0 0 · · · 0 u


 (4-92)

In case u is a (set of) parametric expression(s), it is theoretically possible for this reduced
system to obtain the following structure, if u = 0, yielding a parametrically solvable system.

(I −Q|bf ) =


⋆ 0 · · · 0 ⋆
0 ⋆ · · · 0 ⋆
... . . . . . . ...

...
0 0 · · · 0 0

 (4-93)

If it turns out that the equality u = 0 holds for all initial conditions x(k− 1), the system just
becomes parametrically solvable. This will very rarely be the case, as there likely exists an
initial condition for which u ̸= 0.

4-3 Deriving a Necessary Solvability Condition
As proven in Section 4-2-1, the solvability conditions as defined in [15] are merely sufficient
conditions, not necessary conditions. Within the field of mathematical proofs, a necessary
condition is a much stronger condition than a sufficient proof. In order to prove the necessity
of the derived solvability theorems, a proof by contradiction can be carried out. A system
will be assumed to be solvable, but the solvability theorems do not hold. Firstly, an all-
encompassing solvability theorem can be defined, combining all degrees of solvability in order
to accommodate the given definition of solvability, as per 4-0.1. This is relevant because a
system may violate Theorem 4-2.10, because the solution to some circuit mode is not unique,
but parametric. Therefore the entire system still complies with the definition of a solvable
system. The theorem given below proposes a condition which will prove to be a necessary
condition for solvability of an implicit MMPS system containing a circuit;
Theorem 4-3.1. (Solvability of implicit MMPS systems containing a circuit) An implicit
MMPS system as in 4-1that is assumed to be a minimal realization, i.e. there are no redundant
or logically unreachable modes, and contains at least one circuit, is solvable if and only if for
all circuit modes of the circuit subsystem, it holds that rank(I −Q) = rank(I −Q|bf ) ≤ nc for
all x(k − 1)

Proof. Let us assume a circuit mode of a circuit subsystem is solvable, and described by the
following equation;

xc(k) = Q · xc(k) + bf (4-94)

Let us also assume that rank(I −Q) ̸= rank(I −Q|bf ) ≤ nc for all x(k − 1), but the system
this circuit mode corresponds to is still solvable.
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Since rank(I−Q) = rank(I−Q|bf ) ≤ nc for all x(k−1) does not hold, the rank of (I−Q|bf )
of the system of linear equations as per 4-94 can be rewritten into the following structure;

rank




⋆ 0 · · · 0 ⋆
0 ⋆ · · · 0 ⋆
... . . . . . . ...

...
0 0 · · · 0 ⋆


 (4-95)

In order for the system of linear equations to be solvable, they must not be inconsistent. The
system rewritten into the structure above, is inconsistent for some x(k − 1). This causes a
logical contradiction in the reasoning, as a circuit mode of a circuit subsystem that is solvable,
but rank(I − Q) = rank(I − Q|bf ) ≤ nc for all x(k − 1) does not hold, is inconsistent for
at least some x(k − 1), and therefore it cannot be solvable. Since it is assumed that this
unsolvable mode can logically be reached, the system can end up in this unsolvable mode.
Therefore, it can be concluded that an implicit MMPS system as in 4-1 that contains at least
one circuit, is solvable if and only if for all circuit modes of the circuit subsystem, it holds
that rank(I −Q) = rank(I −Q|bf ) ≤ nc for all x(k − 1).

4-4 Systems with Circuits and Conventional Algebraic Mapping
The previous section provided an extension of the solvability criterion, providing a sufficient,
and a necessary solvability condition for implicit MMPS systems. The initial solvability
criterion assumed the existence of lower-triangular matrix F , see Equation 3-23. When aiming
to reformulate an implicit MMPS system as a linear system in conventional algebra, as seen in
3-5.4, the assumption is made that such a transformation is possible, assuming the existence of
strictly lower-triangular matrix F . In implicit MMPS systems where a circuit occurs, no such
strictly lower-triangular matrix F exists even though the system may be solvable. Therefore,
it cannot be immediately be stated that it is possible to recast the implicit MMPS system into
a linear conventional form. The aim of this section is to derive the conditions under which
implicit MMPS systems containing a circuit can be recast into a conventional linear form
which is valid in region Ωθ. Firstly, theory regarding the linear mapping of implicit MMPS
systems in conventional algebra is recalled from Section 3-5. Thereafter, the conditions for
invertibility of matrix (I −M1) are extended, which is the main contribution of this chapter.

4-4-1 Review of Existing Theory
In [15], the following definition is introduced and proven;
Definition 4-4.1. [15] (Conventional algebra notation of implicit MMPS system) Any nor-
malized implicit MMPS system can be reformulated as a linear system in conventional alge-
braic notation for all x̃θ(k) ∈ Ωθ, k ∈ Z+ using the following expressions;

x̃θ(k) = Mθ · x̃θ(k − 1)
Mθ = (I −M1)−1 ·M2

M1 = GAθ
·GBθ

·D
M2 = GAθ

·GBθ
· C

(4-96)

if the inverse (I −M1)−1 exists
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The specific part of the proof of this definition that is of importance in this section, is regarding
the existence of the inverse of (I −M1)−1. In [15], the existence of the inverse of (I −M1)−1

is guaranteed by the following line of reasoning. Knowing M1 = GAθ
·GBθ

·D, the structure
of M1 is essentially the same as SA · SB · SD, but with some entries of SA and SB removed,
as to obtain the footprint matrices. The product of any footprint matrix combination and
matrix D, GA · GB · D, therefore preserves the strictly lower-triangular structure, which in
turn leads to (I −M1) having full rank, causing the inverse of (I −M1) to always exist.

4-4-2 Conditions for Invertibility of (I −M1)
From Section 4-4-1, it becomes apparent that due to the existence of strictly lower-triangular
matrix F , the existence of the inverse of (I−M1) can be guaranteed. For MMPS systems with
a circuit, this property does not hold true. Firstly, let us properly introduce the requirements
for a matrix to be invertible;
Definition 4-4.2. [1] (Existence of the inverse of a matrix) A matrix A ∈ Rn×n is invertible
if its determinant in not equal to 0, so Det(A) ̸= 0.

Considering this definition, it is clear why a strictly lower-triangular M1 results in (I −M1)
being invertible, as the matrix (I−M1) is of full rank, and Det(I−M1) = 1. From this point
onwards, the matrix M1 of an MMPS system containing a circuit, will be referred to as M1c,
and conditions will be derived under which the inverse of (I −M1c) exists. The expression
that calculates matrix M1c is given by;

M1c = GAθ
·GBθ

·D (4-97)

Even though (I − M1c) cannot be represented as a lower-triangular matrix with diagonal
entries of 1, it can be represented as a block lower-triangular matrix, as per the theorem
given below;
Theorem 4-4.1. (Block lower-triangular form of (I−M1c) For every solvable implicit MMPS
system containing at least one circuit, a block lower-triangular representation (I − M1c)B

exists. Such a block lower-triangular matrix is of the following form;

(I −M1c)B =


L1 0 · · · 0

∗ L2
. . . ...

... . . . . . . 0
∗ · · · ∗ Ln

 (4-98)

Where (I −M1c)B ∈ Rn×n, Li ∈ Rl×l, l ≤ n

Proof. The matrix (I −M1c) is computed by subtracting matrix M1c from identity matrix I.
Identity matrix I is a block diagonal matrix with all blocks being of size R1×1. Matrix M1c is
constructed of GAθ

·GBθ
·D, which, depending on whether the dominant mode corresponding

to this eigenvalue contains a circuit, cannot be transformed into a strictly lower-triangular
matrix. However, a permutation exists such that the only nonzero (upper) diagonal matrices,
are corresponding to the cyclic states. This is easily proven by inspecting the proof given for
Theorem 4-1.1. The proof states that a strictly lower-triangular matrix F exists because of
the possibility to topologically order all edges in the graph such that no entry in matrix F
would appear on, or above the diagonal, due to the absence of a circuit.
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It is known that for matrix S of a system containing a circuit, which is related to matrix M1
as per [15], no topological ordering exists such that matrix F is strictly lower-triangular. As
all states not included in a circuit do not cause any entries on, or above the diagonal of matrix
F to be non-zero, a topological ordering of the edges must exist such that the only entries
on, or above the diagonal are corresponding to the states included in any circuit. Hereby,
the block-lower-triangular form of matrix M1c can be obtained. By subtracting the permuted
block lower-triangular matrix M1c from I, a block lower-triangular matrix is obtained.

Knowing such a block lower-triangular form (I −M1c)B exists for any (I −M1c) forms the
basis in understanding the conditions under which (I −M1c)B, and therefore (I −M1c) is
invertible. From Definition 4-4.2, a matrix is proven to be invertible if its determinant is
non-zero. This definition combined with the block lower-triangular form (I −M1c)B allows
for the introduction of the following Theorem;
Theorem 4-4.2. (Invertibility of matrix (I − M1c)B) Let (I − M1c)B be a block lower-
triangular matrix with diagonal blocks {Li}. Matrix (I −M1c)B is invertible if the following
statement holds;

∀i,
{

if dim(Li) > 1, det(Li) ̸= 0
if dim(Li) = 1, Li ̸= 0

(4-99)

Proof. From the definition of invertibility of a matrix as per Definition 4-4.2, the inverse of
(I −M1c)B exists if its determinant is not equal to 0. The determinant of (I −M1c)B is
computed by the following equation;

Det((I −M1c)B) = Det(L1) ·Det(L2) · · · · ·Det(Ln) (4-100)

Which is only non-zero if the determinant of block Li is non-zero for all i.

For acyclic matrices M1, All diagonal blocks Li are of size 1×1, so Li ∈ R1×1 ∀i ∈ {1, ..., n},
and have value 1.
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Chapter 5

Control of Implicit MMPS Systems

The contributions of this chapter lie in the proposition of open-loop and closed-loop control
strategies for implicit MMPS systems. In [4], multiple control strategies for MMPS systems
were proposed. However, the work was mostly limited to control of explicit MMPS sys-
tems, and multiple unjust assumptions were made. The aim of this chapter is to extend the
existing explicit control strategies to incorporate implicit MMPS systems, and derive gen-
eral descriptions for such a framework. The results presented in this chapter are additions
to the existing knowledge. If material is taken from an existing source, this is specifically
mentioned. Section 5-1 proposes a general input expression that includes implicit dynam-
ics. Subsequently, Section 5-2 introduces open-loop control strategies for implicit MMPS
systems. Furthermore, this section contains the derivation of time-invariance- and solvability
conditions for the open-loop controlled implicit MMPS system. The last section, Section 5-3
offers closed-loop control strategies for implicit MMPS systems, and describes a closed-loop
extended-state-space description. Ultimately, conditions for time-invariance and solvability of
the proposed closed-loop control strategies are provided as well. The ABCD canonical form
as given in 3-1.5, from [15]. In [4], an extension of the ABCD canonical form was presented,
where input signals were implemented into the system definition;
Definition 5-0.1. [4] (Implicit ABCDE form) The ABCD canonical from given in 3-1.5 can
be extended with an additional input matrix (E) multiplied with input vector u(k) consisting
of both temporal and quantity input signals;[

xt(k)
xq(k)

]
=
[

At ε
ε Aq

]
︸ ︷︷ ︸

A

⊗
([

Bt ⊤
⊤ Bq

]
︸ ︷︷ ︸

B

⊗′
([

C11 C12
C21 C22

]
︸ ︷︷ ︸

C

·
[

xt(k − 1)
xq(k − 1)

]

+
[

D11D12
D21D22

]
︸ ︷︷ ︸

D

·
[

xt(k)
xq(k)

]
+
[

E11 E12
E21 E22

]
︸ ︷︷ ︸

E

·
[

ut(k)
uq(k)

]


(5-1)
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62 Control of Implicit MMPS Systems

The block diagram of this ABCDE canonical form is given in Figure 5-1;

Figure 5-1: Block diagram of an implicit MMPS system with an applied input signal

After defining this ABCDE canonical form it was assumed in [4] that D = 0, and therefore,
all presented results only apply to explicit MMPS systems. When aiming to apply the control
strategies for explicit systems to implicit MMPS systems, logical additions to the theory
proposed in [4] can be done. Firstly, a general input function is derived, allowing for implicit
input signals.

5-1 Adding Input to Implicit MMPS Systems
Adding an input signal of any kind will change the implicit MMPS description, as the ABCDE
form in 5-1 shows. Considering what this input signal consists of is of great importance.
Depending on the expression of the input signal, either open-loop control, or closed-loop
control occurs. In this chapter, both open-loop and closed-loop input signals will be analyzed,
and their influence on the MMPS system description, or characteristics like time-invariance.
A function for the input signal encompassing all types of input signals can be described by;

u(k) = f(x(k), u(k), r(k)) (5-2)

Where x(k) is the state of the system, u(k) is the input signal itself, as the input may
implicitly, or explicitly depend on itself. Lastly, r(k) is the reference signal. A matrix-based
expression can be derived for the most general input function, essentially a translation of the
ABCDE form used to describe the dynamics of the state, but for the input;
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Proposition 5-1.1. (Implicit input function) Any input signal for an MMPS system can be
described by the following expression;

u(k) = F⊗(H⊗′(K0 ·x(k−1)+K1 ·x(k)+L0 ·u(k−1)+L1 ·u(k)+R0 ·r(k−1)+R1 ·r(k)) (5-3)

Where F ∈ Rn×m
ε , H ∈ Rm×p

⊤ , K0, K1 ∈ Rp×nx, L0, L1 ∈ Rp×nu, R0, R1 ∈ Rp×r and k ∈ Z+.
Depending on the type of signal input, and therefore, the type of control applied, some of these
matrices may be not relevant.

Proof. This is an extension of the input function proposed in [4]. The implicit terms in this
expression can logically be added.

This input function itself is also an MMPS function, and therefore, an extended state form
for this function can be derived, similar to how the extended state form was defined for the
ABCD form of an implicit MMPS system as in 3-8 from [16].
Proposition 5-1.2. (Extended state MMPS input system) The expression for an implicit
input signal can be represented by the following extended state form;

u(k) = F ⊗ q(k)
q(k) = H ⊗′ w(k)
w(k) = K0 · x(k − 1) + K1 · x(k) + L0 · u(k − 1) + L1 · u(k) + R0 · r(k − 1) + R1 · r(k)

(5-4)

Proof. By successively substituting w(k) into q(k) into u(k), this result follows directly, as by
successive substitution the implicit input function 5-3 is obtained.

Since this input function is an MMPS function by itself, it can be represented by the following
block diagram;

Figure 5-2: General implicit input function block diagram
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64 Control of Implicit MMPS Systems

This proposed block diagram can be connected to the implicit MMPS system which is given
in Figure 5-1.

The applied input signal u(k) can either be an external signal, in a scenario with open-loop
control, or can be computed using a block-diagram structure of the form proposed in 5-2 in
the case of closed-loop control. In the closed-loop control scenario, the current, and previous
states x(k) and x(k − 1) will be fed into the matrices K0 and K1 as shown in Figure 5-2.
Open-loop control occurs when the input signal does not depend on the state of the system,
i.e. there is no state-feedback control. Closed-loop control occurs when the input signal is an
expression containing the state x(k) of the system, either explicitly, or implicitly. In the next
two sections, these two types of control, open-loop and closed-loop control, will be thoroughly
examined in the context of applying them to implicit MMPS systems.

5-2 Open-Loop Control
Open-loop control can be visualized using the same block diagram given in 5-1, as the input
is an external signal;

Figure 5-3: Open-loop control block diagram

This figure clearly shows there is no feedback of the state of the system into the control input
signal. Therefore, in open-loop control, matrices K0 and K1 are 0, and the input signal can
be defined by the following function;

u(k) = f(u(k), r(k)) (5-5)

Theoretically, the broadest open-loop input signal matrix description can be given by;

u(k) = F ⊗ (H ⊗′ (L0 · u(k − 1) + L1 · u(k) + R0 · r(k − 1) + R1 · r(k)) (5-6)
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This equation is an implicit MMPS function in itself. However, when analyzing how the
input signal u(k) influences the implicit MMPS system, only matrix E is relevant. Assuming
the values of u(k) are finite, when examining the behaviour of the implicit MMPS system
the input signal is applied to, it is only relevant to know the value of u(k), no state-space
expression as in 5-9 is necessary in open-loop control. Therefore, the ABCDE form of the
open-loop controlled system with input signal u(k) is given by the following equation;[

xt(k)
xq(k)

]
=
[

At ε
ε Aq

]
︸ ︷︷ ︸

A

⊗
([

Bt ⊤
⊤ Bq

]
︸ ︷︷ ︸

B

⊗′
([

C11 C12
C21 C22

]
︸ ︷︷ ︸

C

·
[

xt(k − 1)
xq(k − 1)

]

+
[

D11D12
D21D22

]
︸ ︷︷ ︸

D

·
[

xt(k)
xq(k)

]
+
[

E11 E12
E21 E22

]
︸ ︷︷ ︸

E

·
[

ut(k)
uq(k)

]


(5-7)

A distinction is made between the temporal input signals ut(k) and the quantity input signals
uq(k). Depending on where input signal is applied, the ABCDE form may require a slight
modification. In the next subsection, two possible input strategies are elaborated on, and
their respective ABCDE forms are presented.

5-2-1 Input Strategies
As mentioned in the previous section, depending on where the input signals are added in
the system equations, the proposed ABCDE form might slightly change. Input strategy 1
elaborates on the scenario where the input signal is added in the scaling stage.

Input strategy 2 elaborates on the scenario’s where the input signal is applied in the maxi-
mization or minimization stage.

Input Strategy 1

The first input strategy is in effect when the input signals are added in the scaling stage, for
example;

x1(k) = max(x2(k) + u1(k), x(k − 1) + 2) (5-8)

Within this strategy, the input signals are added to an existing affine terms in z(k). Therefore,
when controlling an MMPS system where only Open-Loop (OL) control strategy 1 is applied,
the size of the original matrices A, B, C and D do not need to change in order to accommodate
for affine terms in z(k) introduced by u(k). The ABCDE form of this system is therefore given
by equation 5-9, which is identical to the ABCDE form given in 5-1.[

xt(k)
xq(k)

]
=
[

At ε
ε Aq

]
︸ ︷︷ ︸

A

⊗
([

Bt ⊤
⊤ Bq

]
︸ ︷︷ ︸

B

⊗′
([

C11 C12
C21 C22

]
︸ ︷︷ ︸

C

·
[

xt(k − 1)
xq(k − 1)

]

+
[

D11D12
D21D22

]
︸ ︷︷ ︸

D

·
[

xt(k)
xq(k)

]
+
[

E11 E12
E21 E22

]
︸ ︷︷ ︸

E

·
[

ut(k)
uq(k)

]


(5-9)
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Input Strategy 2

The second input strategy provides a framework for implementing input signals implemented
after the scaling step. This means an input signal could be a separate affine term in a
maximization, or minimization operation. Therefore, adding such a input signal requires the
dimension of matrices A, B, C and D to possibly grow. The input signal can either occur
in a minimization operation, maximization operation, or in both. A separate ABCDE forms
will be derived for each of these situations. When the input signal u(k) is applied in the
minimization step, the competition operation is in effect. When aiming to push the value of
a state to a lower value, this can be an effective input strategy [4]. Because the minimum
of some affine terms, and the value of an affine term including the input signal is taken. An
example of a state in such a system can be described by the following expression [4];

x2(k) = min(x1(k) + d1, u(k)) (5-10)

Proposition 5-2.1. (OL input strategy 2 - minimization) The general ABCDE form of an OL
controlled MMPS system with an input signal in the minimization operation can be described
as follows;

x(k) = A⊗
([

B Bu

]′
⊗
([

C
0

]
· x(k − 1) +

[
D
0

]
· x(k) +

[
0
E

]
· u(k)

))
(5-11)

The added matrix Bu ensures the input signal is included correctly in the system equations.
Augmenting matrix C, D and E with zeroes ensures the other states are unaffected.

Proof. This is an extension of the open-loop controlled strategy proposed in [4] by logically
adding the implicit dynamics through matrix D.

Similarly to adding an input signal in the minimization operation, an input can be added in
the maximization operation, hereby the synchronization situation is in effect. When aiming
to introduce a lower bound to the system, this can be an effective input strategy, since the
maximum of some affine terms, and an affine term consisting of the input signal is taken. An
example of a state in such a system can be described by the following expression [4];

x2(k) = max(x1(k) + d1, u(k)) (5-12)

The ABCDE form of an implicit MMPS system with an input signal applied in the maxi-
mization step is given in the following definition;
Proposition 5-2.2. (OL input strategy 2 - maximization) The general ABCDE form of a
system with an input signal in a maximization operation can be described as follows;

x(k) =
[
A Au

]
⊗
([

B ⊤
⊤ I⊗′

]
⊗′
([

C
0

]
· x(k − 1) +

[
D
0

]
· x(k) +

[
0
E

]
· u(k)

))
(5-13)

here, matrix Au implements the input signal in the maximization. Matrix I⊗′ is a min-plus
identity matrix which directly feeds through the input. Matrices C and D are augmented with
zeroes to accommodate for the change in size of z(k) without affecting the existing system.

Proof. This is an extension of the open-loop controlled strategy proposed in [4] by logically
adding the implicit dynamics through matrix D.
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Lastly, when implementation of input signals in the minimization operation, and the maxi-
mization operation occur in the same system, a combination of the proposed canonical forms
proposed in 5-2.1 and 5-2.2 can be defined as follows;
Proposition 5-2.3. (OL input strategy 2 - minimization and maximization) An implicit
MMPS system to which input signals are applied, that occur in both minimization operations
and maximization operations, can be described by the following canonical form;

x(k) =
[
A Au

]
⊗
([

B Bu

⊤ I⊗′

]
⊗′
([

C
0

]
· x(k − 1) +

[
D
0

]
· x(k) +

[
0
E

]
· u(k)

))
(5-14)

Here, matrix Au ensures proper processing of the input signal in the maximization operation.
Similarly, Bu ensures proper processing of the input signal in the minimization operation.
Matrix I⊗′ ensures direct feedthrough of the input signals to the maximization operation. Ma-
trices C, D and E are augmented with zeroes accordingly. In scenario’s where this canonical
form is needed, both elements of synchronization and competition occur.

Proof. This is an extension of the open-loop controlled strategy proposed in [4] by logically
adding the implicit dynamics through matrix D, and combining propositions 5-2.1 and 5-
2.2.

This concludes the input strategies of the OL input signals into implicit MMPS systems.
Next, the influence these input signals have on the time-invariance of OL controlled MMPS
systems is discussed.

5-2-2 Time-Invariance of Open-Loop Controlled Systems
The conditions for time-invariance of the ABCDE canonical form corresponding to open-loop
control can be derived. Recall the time-invariance conditions for the ABCD canonical form as
in 3-10, and the definition for partial additive homogeneity 3-1.7. Notice that for determining
the time-invariance conditions for the ABCD canonical form, the vector p(k) as defined in
2-3.2 only contains the current and previous state of the system. However, for the ABCDE
form corresponding to open-loop control, the vector p(k) also contains input signal u(k).
Therefore, when deriving the conditions for partial-additive homogeneity, or equivalently,
time-invariance, all temporal signals must be shifted, so the temporal input signal as well.
The conditions for time-invariance of the ABCDE form 5-9 are very similar to those of the
ABCD form, and defined by;
Theorem 5-2.1. (Time-invariance of an open-loop controlled implicit MMPS system) An
open-loop controlled implicit MMPS system described by the ABCDE form as per 5-1, is
time-invariant when the following properties hold;∑

i∈nt

[
C11 D11 E11

]
ℓi

= 1, ∀ℓ ∈ pt

∑
i∈nq

[
C21 D21 E21

]
ti

= 0,∀t ∈ pq
(5-15)

Proof. In 3-1-2, the proof for time-invariance, or equivalently, the MMPS system being addi-
tively homogeneous with respect to the temporal states was given, taken from [15].
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For the ABCDE form, a similar approach in proving this property is taken. Let us shift the
temporal states xt(k) by a finite amount h1, and the temporal input signals ut(k) by the
same finite amount h1. The extended state system equations 3-1.6 are used as a framework
for the following expressions;

xt(k) + h1 = At ⊗ (yt(k) + h1)
= At ⊗ yt(k) + h1

yt(k) + h1 = Bt ⊗′ (zt(k) + h1)
= Bt ⊗′ zt(k) + h1

zt(k) + h1 = C11 · (xt(k − 1) + h1) + C12xq(k − 1) + D11 · (xt(k) + h1) + D12 · xq(k)
+ E11 · (ut(k) + h1) + E12 · uq(k)

(5-16)
From these equations, states xt(k) and yt(k) are naturally partially additive homogeneous
as their extended state system equations are essentially Max-Min-Plus (MMP) expressions,
therefore, they are naturally time-invariant [20]. State zt(k) is additively homogeneous when
it holds that;

zt(k)+h1 = C11 ·xt(k−1)+C12 ·xq(k−1)+D11 ·xt(k)+D12 ·xq(k)+E11 ·ut(k)+E12 ·uq(k)+h1
(5-17)

This is in turn only true when it holds that;∑
i∈nt

[
C11 D11 E11

]
ℓi

= 1, ∀ℓ ∈ pt (5-18)

Furthermore, when the temporal states and temporal inputs are shifted by h1, the quantity
states should not be shifted at all. Therefore, the following equations can be derived;

xq(k) = Aq ⊗ yq(k)
yq(k) = Bq ⊗′ zq(k)
zq(k) = C21 · (xt(k − 1) + h1) + C22 · xq(k − 1) + D21 · (xt(k) + h1) + D22 · xq(k)

+ E21 · (ut(k) + h1) + E22 · uq(k)

(5-19)

From these equations, only zq(k) has additional time-invariance conditions, as the expressions
for xq(k) and yq(k) are MMP functions, which are always time-invariant [20]. For zq(k) it
must hold that;

zq(k) = C21 ·xt(k−1)+C22 ·xq(k−1)+D21 ·xt(k)+D22 ·xq(k)+E21 ·ut(k)+E22 ·uq(k) (5-20)

Which leads to the following condition;∑
i∈nt

[
C21 D21 E21

]
ti

= 0,∀t ∈ pq (5-21)

The obtained results as in 5-18 and 5-21 are proof the conditions proposed in 5-15.
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Even though this theorem holds for all OL control strategies, a small distinction has to be
made between input signals embedded in the system equations, and input signals applied
to an already time-invariant system. In case input signals are applied to a time-invariant
implicit MMPS system, the following conditions, as in 3-10 are known to have to hold;∑

i∈nt

[
C11 D11

]
ℓi

= 1, ∀ℓ ∈ pt

∑
i∈nq

[
C21 D21

]
ti

= 0,∀t ∈ pq
(5-22)

In order for the conditions proposed in 5-2.1 to hold as well, another condition naturally
follows; ∑

i∈nt

[
E11

]
ℓi

= 0,∀ℓ ∈ pt (5-23)

Which must hold for in a scenario where 3-10 holds, and 5-15 has to hold as well.

5-2-3 Solvability of Open-loop Controlled Systems
In chapter 4, an elaborate study to the conditions for solvabiltiy of implicit MMPS systems
was carried out. Using the results of this study, the solvability of OL controlled systems
can be determined as well. Chapter 4 considered the solvability of implicit MMPS systems,
represented in the ABCD form 3-1.5, whereas in OL controlled systems, matrix E is present
as well. Even thought this matrix E is added to the system, and applies an external input
signal to the system, its presence will never violate solvability of the OL controlled system.
The objective of determining whether an implicit MMPS systems is solvable, is essentially
figuring out whether an explicit mapping exist;

x(k) = f(x(k), x(k − 1))⇒ x(k) = g(x(k − 1)) (5-24)

In OL controlled implicit MMPS systems, described by x(k) = fOL(p(k)), u(k) is an external
input signal that does not depend on x(k), and is always explicitly known, as it is an external
input signal. The objective of determining solvability is still to figure out whether an explicit
mapping exists, but the explicit mapping can be a function of u(k), as u(k) is assumed to be
always explicitly known;

x(k) = fOL(x(k), x(k − 1), u(k))⇒ x(k) = g(x(k − 1), u(k)) (5-25)

As long as all modes of the OL controlled system can logically be reached, i.e. no mode is
made redundant by the applied input, all solvable implicit MMPS systems that are open-loop
controlled, will remain solvable.
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5-3 Closed-Loop Control
In a Closed-Loop (CL) controlled system, the input signal u(k) depends on the past state
x(k−1) and/or present state x(k) of the system. Here, the most general input signal function
applies;

u(k) = f(x(k), u(k), r(k)) (5-26)

Input u(k) and reference r(k) can also be in this function, as the input may depend on itself,
or the external reference signal. Using this general input function, a general structure of the
closed-loop ABCDE, or technically, the ABCDR form of the system can be described;

[
x(k)
u(k)

]
=
[
A ε
ε F

]
︸ ︷︷ ︸

Aes

⊗


[
B ⊤
⊤ H

]
︸ ︷︷ ︸

Bes

⊗′


[

C 0
K0 L0

]
︸ ︷︷ ︸

Ces

·
[
x(k−1)
u(k−1)

]

+
[

D E
K1 L1

]
︸ ︷︷ ︸

Des

·
[
x(k)
u(k)

]
+
[
0 0
0 R0

]
︸ ︷︷ ︸

R0,es

·
[

0
r(k−1)

]
+
[
0 0
0 R1

]
︸ ︷︷ ︸

R1,es

·
[

0
r(k)

]


(5-27)

Let us introduce the block diagram of this closed-loop control structure in Figure 5-4.
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Figure 5-4: Block diagram of closed-loop input function
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This form of the closed-loop controlled system can be simplified into the closed-loop extended
ABCD form, which can be described by matrices Aes, Bes, Ces, Des, R0,es and R1,es;

Aes =
[
A ε
ε F

]
, Bes =

[
B ⊤
⊤ H

]
, R0,es =

[
0 0
0 R0

]

Ces =
[

C 0
K0 L0

]
, Des =

[
D E
K1 L1

]
, R1,es =

[
0 0
0 R1

] (5-28)

The extended state xes(k) can be described as xes =
[

x(k)⊺ u(k)⊺
]⊺

Let us then introduce
the simplified extended ABCDR form of a CL controlled implicit MMPS system as follows;

xes(k) = Aes⊗ (Bes⊗′ (Ces ·xes(k−1)+Des ·xes(k)+R0,es · res(k−1)+R1,es · res(k)) (5-29)

An interesting observation is that the input signal is no longer an external signal, but rather
integrated as an extension of the state x(k). The only external input to this system is the
reference signal r(k) or r(k − 1). In case there is no reference signal applied to the system,
the autonomous closed loop system can be given by;

[
x(k)
u(k)

]
=
[
A ε
ε F

]
︸ ︷︷ ︸

Aes

⊗


[
B ⊤
⊤ H

]
︸ ︷︷ ︸

Bes

⊗′


[

C 0
K0 L0

]
︸ ︷︷ ︸

Ces

·
[
x(k − 1)
u(k − 1)

]
+
[

D E
K1 L1

]
︸ ︷︷ ︸

Des

·
[
x(k)
u(k)

]
 (5-30)

Or equivalently;

xes(k) = Aes ⊗ (Bes ⊗′ (Ces · xes(k − 1) + Des · xes(k)) (5-31)

Still, it is worth deriving some different structures of the extended ABCDR form for different
input strategies, depending on where input u(k) is applied. Similar to the OL input strategies,
the CL input strategies explained are the scenario where the input signal is applied within the
scaling stage, and the scenario where the input signal is applied in the maximization/mini-
mization stage.
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5-3-1 Input Strategies

Similar adjustments to the ABCDR form can be made as was done in Section 5-2 by analyzing
the differences in applying the input signal in different stages. These stages are again, during
the scaling stage, and the maximization/minimization stage.

Input Strategy 1

When the input signals are applied only in the scaling phase, the ABCDR form does not have
to change. The dimensions of the matrices Aes, Bes, Ces, Des, R0,es and R1,es remain the
same, and the ABCDR form is given by;

[
x(k)
u(k)

]
=
[
A ε
ε F

]
︸ ︷︷ ︸

Aes

⊗


[
B ⊤
⊤ H

]
︸ ︷︷ ︸

Bes

⊗′


[

C 0
K0 L0

]
︸ ︷︷ ︸

Ces

·
[
x(k−1)
u(k−1)

]

+
[

D E
K1 L1

]
︸ ︷︷ ︸

Des

·
[
x(k)
u(k)

]
+
[
0 0
0 R0

]
︸ ︷︷ ︸

R0,es

·
[

0
r(k−1)

]
+
[
0 0
0 R1

]
︸ ︷︷ ︸

R1,es

·
[

0
r(k)

]


(5-32)

Input Strategy 2

The necessary structure adjustments for CL control of an implicit MMPS system where the
input signals are added in the minimization stage, maximization stage, or both, are given by
the following definitions, respectively;
Proposition 5-3.1. (CL input strategy 2 - minimization)

[
x(k)
u(k)

]
=
[
A ε
ε F

]
︸ ︷︷ ︸

Aes

⊗
([B Bu ⊤
⊤ ⊤ H

]
︸ ︷︷ ︸

Bes

⊗′
( C 0

0 0
K0 L0


︸ ︷︷ ︸

Ces

[
x(k − 1)
u(k − 1)

]
+

D 0
0 E

K1 L1


︸ ︷︷ ︸

Des

[
x(k)
u(k)

]
+

0 0
0 0
0 R0


︸ ︷︷ ︸

R0,es

·
[

0
r(k − 1)

]
+

0 0
0 0
0 R1


︸ ︷︷ ︸

R1,es

·
[

0
r(k)

])) (5-33)

Proof. This is an extension of the open-loop controlled strategy proposed in [4] by logically
adding the implicit dynamics matrix D, and rearranging the system matrices such that the
ABCDR matrix could be obtained.

The function of matrix Bu is to ensure the input signal is correctly applied in the system
equations, identical to the purpose of matrix Bu in 5-2.1 and 5-2.3.
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Proposition 5-3.2. (CL input strategy 2 - maximization) When applying CL input signals
in the maximization stage, some adjustments to the ABCDR form have to be made to accom-
modate for correct processing of these input signals;

[
x(k)
u(k)

]
=
[
A Au ε
ε ε F

]
︸ ︷︷ ︸

Aes

⊗
(B ⊤ ⊤
⊤ I⊗′ ⊤
⊤ ⊤ H


︸ ︷︷ ︸

Bes

⊗′
( C 0

0 0
K0 L0


︸ ︷︷ ︸

Ces

[
x(k − 1)
u(k − 1)

]
+

D 0
0 E

K1 L1


︸ ︷︷ ︸

Des

[
x(k)
u(k)

]
+

0 0
0 0
0 R0


︸ ︷︷ ︸

R0,es

·
[

0
r(k − 1)

]
+

0 0
0 0
0 R1


︸ ︷︷ ︸

R1,es

·
[

0
r(k)

])) (5-34)

Identical to matrix Au in 5-2.2 and 5-2.3, matrix Au implements the input signal in the
maximization. Matrix I⊗′ is a min-plus identity matrix which directly feeds through the input.
Matrices Ces and Des are augmented with zeroes in the appropriate places to accommodate
for the change in size of z(k) without affecting the existing system.

Proof. This is an extension of the open-loop controlled strategy proposed in [4] by logically
adding the implicit dynamics matrix D, and rearranging the system matrices such that the
ABCDR matrix could be obtained.

Lastly, combining the previous two propositions, it is possible for a system to have input
signals applied in both the maximization, and minimization step. Propositions 5-3.1 and
5-3.2 can be combined into the following proposition;
Proposition 5-3.3. (CL input strategy 2 - minimization and maximization) Combining the
structural adjustments to the ABCDR form proposed in 5-3.1 and 5-2.2, allowing for CL
input signals to be applied in both the maximization, and minimization stage, the following
ABCDR form is obtained;

[
x(k)
u(k)

]
=
[
A Au ε
ε ε F

]
︸ ︷︷ ︸

Aes

⊗
(B Bu ⊤
⊤ I⊗′ ⊤
⊤ ⊤ H


︸ ︷︷ ︸

Bes

⊗′
( C 0

0 0
K0 L0


︸ ︷︷ ︸

Ces

[
x(k − 1)
u(k − 1)

]
+

D 0
0 E

K1 L1


︸ ︷︷ ︸

Des

[
x(k)
u(k)

]
+

0 0
0 0
0 R0


︸ ︷︷ ︸

R0,es

·
[

0
r(k − 1)

]
+

0 0
0 0
0 R1


︸ ︷︷ ︸

R1,es

·
[

0
r(k)

])) (5-35)

Proof. This is an extension of the open-loop controlled strategy proposed in [4] by logically
adding the implicit dynamics matrix D, and rearranging the system matrices such that the
ABCDR matrix could be obtained.
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5-3-2 Time-Invariance of Closed-Loop Controlled Systems
Similar to OL control, time-invariance conditions can be derived for CL controlled systems.
The approach for deriving these conditions is similar to how the open-loop conditions were
derived. In contrast to the open-loop scenario, time-invariance will have to be proven for
extended state xes(k), consisting of both x(k) and u(k). Similarly to the open-loop controlled
system, the vector p(k) in vector-valued description of this system as per 2-3.2 now contains
input signals u(k), but reference signals r(k) as well. When deriving the conditions for partial
additive homogeneity or equivalently, time-invariance, these temporal input and reference
signals will have to be shifted as well. The following theorem proposes the time-invariance
conditions for closed-loop controlled implicit MMPS systems, which will thereafter be proven.
Theorem 5-3.1. (Time-invariance of closed-loop controlled implicit MMPS systems) A closed-
loop controlled implicit MMPS system as per 5-27 can be considered time-invariant when the
following conditions are satisfied; ∑

i∈n̄t+ūt

Wt,ℓi = 1,∀ℓ ∈ p̄t∑
i∈n̄t+ūt

Wq,ℓi = 0,∀ℓ ∈ p̄t

(5-36)

Where;

Wt =
[

C11 0 D11 E11 0 0
K0,11 L0,11 K1,11 L1,11 R0,11 R1,11

]

Wq =
[

C21 0 D21 E21 0 0
K0,21 L0,21 K1,21 L1,21 R0,21 R1,21

] (5-37)

Proof. Essentially, time-invariance has to be proven for the following CL implicit system;

xes(k) = Aes⊗ (Bes⊗′ (Ces · xes(k− 1) + Des · xes(k) + R0,es · res(k− 1) + R1,es · r(k)) (5-38)

However, state xes(k) is the extended state composed off of stacking x(k) and u(k), and
as shown in 5-30, all system matrices consist of multiple submatrices. The proposed time-
invariance condition applied conditions to some of these submatrices. Therefore, let us define
the system matrices as follows, such that time-invariance conditions can be derived for the
whole system by considering the characteristics of the submatrices;

xes(k) =
[
x(k)
u(k)

]
=


xt(k)
xq(k)
ut(k)
uq(k)

 (5-39)

res(k) =
[

0
r(k)

]
=


0
0

rt(k)
rq(k)

 (5-40)

Ces =
[

C 0
K0 L0

]
=


C11 C12 0 0
C21 C22 0 0

K0,11 K0,12 L0,11 L0,12
K0,21 K0,22 L0,21 L0,22

 (5-41)
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Des =
[

D E
K1 L1

]
=


D11 D12 E11 E12
D21 D22 E21 E22

K1,11 K1,12 L1,11 L1,12
K1,21 K1,22 L1,21 L1,22

 (5-42)

R0,es =
[
0 0
0 R0

]
=


0 0 0 0
0 0 0 0
0 0 R0,11 R0,12
0 0 R0,21 R0,22

 (5-43)

R1,es =
[
0 0
0 R1

]
=


0 0 0 0
0 0 0 0
0 0 R1,11 R1,12
0 0 R1,21 R1,22

 (5-44)

By shifting the temporal states xt(k), ut(k) and temporal reference signals rx,t(k) and ru,t(k)
with h1x and h1u respectively, the following equations should hold for the time-invariance;

xes,t(k) + h1 = Aes,t ⊗ (yes,t(k) + h1)
= Aes,t ⊗ yes,t(k) + h1

yes,t(k) + h1 = Bes,t ⊗′ (zes,t(k) + h1)
= Bes,t ⊗′ zes,t(k) + h1

(5-45)

zes,t(k) + h1 =
[

C11 0
K0,11 L0,11

]
·
[

xt(k − 1) + h1x

ut(k − 1) + h1u

]
+
[

C12 0
K0,12 L0,12

]
·
[

xq(k − 1)
uq(k − 1)

]

+
[

D11 E11
K1,11 L1,11

]
·
[

xt(k) + h1x

ut(k) + h1u

]
+
[

D12 E12
K1,12 L1,12

]
·
[

xq(k)
uq(k)

]

+
[

0 0
0 R0,11

]
·
[

0
rt(k − 1) + h1u

]
+
[

0 0
0 R0,12

]
·
[

0
rq(k − 1)

]

+
[

0 0
0 R1,11

]
·
[

0
rt(k) + h1u

]
+
[

0 0
0 R1,12

]
·
[

0
ru,q(k)

]
(5-46)

By grouping the temporal (sub) states xt(k) and ut(k), and the quantity states xq(k) and
uq(k), the submatrices can be grouped more efficiently. Since the expressions for xes,t and
yes,t are MMP expressions, they are already time-invariant [20]. In order for 5-46 to hold, it
must hold that the rows of the following matrix add up to 1, providing a condition for the
time-invariance of zes,t;

∑
i∈n̄t+ūt

[
C11 0 D11 E11 0 0

K0,11 L0,11 K1,11 L1,11 R0,11 R1,11

]
ℓi

= 1,∀ℓ ∈ p̄t (5-47)

Which is equivalent to;∑
i∈n̄t+ūt

Wt,ℓi = 1,∀ℓ ∈ p̄t

Wt =
[

C11 0 D11 E11 0 0
K0,11 L0,11 K1,11 L1,11 R0,11 R1,11

] (5-48)
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Which is identical to the proposed condition. Now all is left is to prove the proposed time-
invariance condition for the quantity states, which is done by identifying the conditions under
which these equations hold;

xes,q(k) = Aes,q ⊗ yes,q(k)
yes,q(k) = Bes,q ⊗′ zes,q(k)

(5-49)

zes,q(k) =
[

C21 0
K0,21 L0,21

]
·
[

xt(k − 1) + h1x

ut(k − 1) + h1u

]
+
[

C22 0
K0,22 L0,22

]
·
[

xq(k − 1)
uq(k − 1)

]

+
[

D21 E21
K1,21 L1,21

]
·
[

xt(k) + h1x

ut(k) + h1u

]
+
[

D22 E22
K1,22 L1,22

]
·
[

xq(k)
uq(k)

]

+
[

0 0
0 R0,21

]
·
[

0
rt(k − 1) + h1u

]
+
[

0 0
0 R0,22

]
·
[

0
rq(k − 1)

]

+
[

0 0
0 R1,21

]
·
[

0
rt(k) + h1u

]
+
[

0 0
0 R1,22

]
·
[

0
rq(k)

]
(5-50)

As the expressions for xes,q(k) and yes,q are MMP expressions, which are always time invariant
[20], only condition for the time-invariance of zes,q will have to be derived. It follows that this
equation holds under the following condition;

∑
i∈n̄t+ūt

[
C21 0 D21 E21 0 0

K0,21 L0,21 K1,21 L1,21 R0,21 R1,21

]
ℓi

= 0,∀ℓ ∈ p̄t (5-51)

Which can be rewritten as;∑
i∈n̄t+ūt

Wq,ℓi = 0, ∀ℓ ∈ p̄t

Wq =
[

C21 0 D21 E21 0 0
K0,21 L0,21 K1,21 L1,21 R0,21 R1,21

] (5-52)

Which again, is identical to the proposed condition.

Similarly to OL controlled systems, depending on where the input signal is applied, some
additional conditions might apply. However, as long as the conditions in Theorem 5-3.1 is
satisfied, the CL controlled implicit MMPS system will be time-invariant.
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5-3-3 Solvability of Closed-Loop Controlled Systems
Contrary to OL controlled implicit MMPS systems, CL controlled implicit MMPS systems
are not always solvable. Input signal u(k) is a function of state x(k), and can therefore violate
solvability as it may not always be explicitly know. Essentially, new states are added to the
system, and these states can logically violate solvability of the existing system.
For OL controlled systems of the ABCDR form as given below, solvability could immediately
be inferred;

x(k) = A⊗ (B ⊗′ (C · x(k − 1) + D · x(k) + E · u(k))) (5-53)

In CL controlled systems, a system of similar structure can be obtained. The extended state
system can be given as;

xes(k) = Aes⊗ (Bes⊗′ (Ces ·xes(k−1)+Des ·xes(k)+R0,es · res(k−1)+R1,es · res(k)) (5-54)

This system also has an ABCDR form, but the uncontrolled implicit MMPS system is incor-
porated in the extended state matrices. However, the same solvability conditions must apply
to this extended ABCDR form. Therefore, it can already be concluded that the reference
matrix Res and the known reference signal r(k), which is the only external input signal, will
never violate solvability of the extended ABCDR system. Therefore, solvability will have to
be concluded for the following ABCD form;

xes(k) = Aes ⊗ (Bes ⊗′ (Ces · xes(k − 1) + Des · xes(k)) (5-55)

The solvability of this extended ABCD form system can easily be analyzed using the results
presented in Chapter 4.
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Chapter 6

Augmenting and Analyzing the Urban
Railway System

The main contributions of this chapter are the augmentation, and subsequent analysis of
the existing Urban Railway System (URS) described in [18], recalled in Section 6-1. The
sections that follow contain the actual research carried out, whereas Section 6-1 is merely a
recollection of the work presented in [18]. The system model is extended to include complex
passenger flows using a flow matrix, and adding two quantity states, which is described in
Section 6-2. Sections 6-3, 6-4 and 6-5 propose the ABCD form of the augmented model,
analyze its solvability using the theory proposed in Chapter 4, and describe the initialization
of the system. Section 6-6 computes and analyzes the properties of the fixed-points of the
AURS, after which it is simulated according to a uniform timetable in Section 6-7. The
chapter concludes with an analysis of the stability and maximal invariant set of the AURS in
Sections 6-8 and 6-9.

6-1 Current Mathematical Model
This section elaborates illustrates the theoretical case study research in [18], and considers an
urban railway line with passengers embarking, and disembarking at every station. Consider
an urban railway line as shown in Figure 6-1

Figure 6-1: Urban railway system
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This system can be described by four states, two of which are quantity states, and two
of which are temporal states. The arrival, and departure time of train k at station j is
denoted by temporal states aj(k) and dj(k) respectively. Quantity state ρj(k) is the number
of passengers in train k when leaving station j. The number of passengers at station j when
train k is leaving the station is denoted by quantity state σj(k). Multiple assumptions will
be done in order to properly model this system, which are given below;

• Every train has a maximum capacity of ρmax

• Running times τr,j between station j − 1 and station j are fixed

• The number of passengers entering the platform at station j per time unit is ej

• The number of passengers boarding the train per unit of time is a fixed value b for the
boarding rate

• The number of passengers that can disembark the train per time unit is a fixed value
denoted by f

• It is assumed that the boarding rate is larger than the arrival rate, i.e. b > ej , if this
would not be the case, trains would never leave the station unless they were full, in
which case the system overflows, and is unstable

• The number of passengers leaving train k at station j is always a fixed fraction βj of
the number of passengers in train j at the moment train j arrives

• Passengers that have disembarked the train will leave the station immediately

Firstly, the function to determine the arrival time is modeled. The arrival time of train k at
station j is the maximum of the departure time at station j−1 plus the running time τr, and
the departure time of train k− 1 at station j plus the headway time. The trains k = 1, ..., K
depart from station 1 with a headway interval of τ0. Mathematically, this is described as;

aj(k) = max (dj−1(k) + τr,j , dj(k − 1) + τH) (6-1)

The dwell time is defined as the sum of the time for disembarking, τd,j(k), and the time for
boarding the train, τb,j(k). If it is assumed that there is no additional waiting time for the
train, the departure time of train k can be modeled as;

dj(k) = aj(k) + τd,j(k) + τb,j(k) (6-2)

The number of passengers in train k when leaving station j can be modeled as the number of
passengers in train k when it left station j − 1, subtracting the passengers that disembarked
at station j, adding the passengers that boarded at station j. Which mathematically can be
described as;

ρj(k) = ρj−1(k)− fτd,j(k) + bτb,j(k) (6-3)

The number of passengers that are standing on the platform at station j when train k leaves,
can be modeled as the number of passengers still on the platform when train k−1 left, plus the
number of passengers that entered the station between the departures of train k−1 and train
k. Subtracting the amount of passengers boarding train k at station j yields the following
expression;

σj(k) = σj(k − 1) + ej (dj(k)− dj(k − 1))− ejτb,j(k) (6-4)
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Furthermore, the time that it takes to disembark τd,j is proportional to the number of pas-
sengers disembarking the train;

τd,j(k) = βj

f
ρj−1(k) (6-5)

The boarding time can be modeled as the dwell time, subtracting the arrival time, and
subtracting the time it takes to disembark;

τb,j(k) = dj(k)− aj(k)− τd,j(k)

= dj(k)− aj(k)− βj

f
ρj−1(k)

(6-6)

Calculating the equation to calculate the departure time becomes more complex taking into
account two scenarios. Because the train departs from station j, either if all passengers on
the station have boarded the train, or if the train is full, and no more passengers can board
the train k. The first scenario occurs if ρj(k) ≤ ρmax, and the second scenario occurs when
ρj(k) = ρmax. In the case that ρj(k) ≤ ρmax, the number of passengers that board train k,
b
(
dj(k)− aj(k)− βj

f ρj−1(k)
))

, is equal to the number of passengers that want to board train
k, which is σj(k − 1) + ej (dj(k)− dj(k − 1)). Therefrom the following expression follows;

b

(
dj(k)− aj(k)− βj

f
ρj−1(k)

)
= σj(k − 1) + ej (dj(k)− dj(k − 1)) (6-7)

From this expression, dj(k) can be written explicitly, deriving a new expression for departure
time, in the case that ρj(k) ≤ ρmax;

dj(k) = µ1aj(k) + µ2ρj−1(k) + µ3σj(k − 1) + (1− µ1) dj(k − 1) (6-8)

Where, µ1 = b
b−ej

, µ2 = b
b−ej

βj

f and µ3 = 1
b−ej

, for simplicity.

For the second scenario, where ρj(k) = ρmax, the train leaves station k as soon as the train
is full. Therefore, the number of passengers that remained seated in train k at station j, and
the number of passengers who embarked train k at station j added together is equal to the
maximum capacity, ρmax yielding the following expression;

(1− βj)ρj−1(k) + b(dj(k)− aj(k)− βj

f
ρj−1(k)) = ρmax (6-9)

Writing dj(k) explicitly leads to the following expression;

dj(k) = γ1 + aj(k) + γ2ρj−1(k) (6-10)

Where γ1 = 1
b ρmax and γ2 = βj

f −
1−βj

b By combining the two scenarios, and letting the actual
departure time be the minimum of the two, the following expression can be calculated;

dj(k) = min (µ1aj(k) + µ2ρj−1(k) + µ3σj(k − 1) + (1− µ1) dj(k − 1), γ1 + aj(k) + γ2ρj−1(k))
(6-11)
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Now, the final system equations for j > 1 and k > 0 can be derived;

aj(k) = max (dj−1(k) + τr,j , dj(k − 1) + τH)
dj(k) = min (µ1aj(k) + µ2ρj−1(k) + µ3σj(k − 1) + (1− µ1) dj(k − 1), γ1 + aj(k) + γ2ρj−1(k))

ρj(k) = (1− βj) ρj−1(k) + b

(
dj(k)− aj(k)− βj

f
ρj−1(k)

)
σj(k) = σj(k − 1) + ej (dj(k)− dj(k − 1))− b

(
dj(k)− aj(k)− βj

f
ρj−1(k)

)
(6-12)

6-2 Augmenting the Mathematical Model

In the mathematical model for the Urban Railway System (URS) as described in 6-12, some
assumptions are an abstract approximation of reality. The existing mathematical model
can be used as a baseline when aiming to develop model that more closely resembles reality.
Currently, the number of passengers entering station j per time unit, ej , is taken as a constant
value, or rather, a constant flow rate. This flow rate is said to be the same for each station.
Furthermore, the number of people disembarking train k at station j is taken as a fixed
fraction βj of the number of passengers on train k when it leaves station j − 1. For the
augmented model, the aim is to accommodate for the origin and the destination of traveling
passengers, and to allow for different flow rates ej,k for each station, and each train. A vast
range of modifications to the system description is required to enable these additions, and
model the Augmented Urban Railway System (AURS).

6-2-1 Introducing the Augmentation

1. Rather than having a fixed fraction βj of passengers, a matrix ζ will be introduced.
This matrix described how passengers traveling on this railway line pass through the
system. Each entry will represent a fraction of passengers traveling from station i to
station j.

2. A state βj(k) will be introduced, representing the number of passengers disembarking
train k at station j. Thus, the number of passengers leaving the train k at the station
j is not just a fixed fraction of the number of passengers already in the train, but a
combination of all passengers who got on the train k at any previous station, whose
destination is station j. The state βj(k) is a quantity state.

3. A second state, quantity state ∆j(k) will be introduced, representing the number of
passengers embarking train k at station j. State ∆j(k) is a quantity state.

4. The matrix e will be introduced, which contains the rate at which passengers enter each
station, and will replace fixed flow rate ej .

5. The four existing states are to be re-derived in order to accomodate for the two newly
added states.

The next section will provide a structured derivation of the augmented state-space description.
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6-2-2 Deriving the Augmented Model

The most straightforward augmentation to the system would be redefining fixed flow rate ej ,
which requires the introduction of matrix e;

e =


e1,1 e1,2 · · · e1,K

e2,1 e2,2 · · · e2,K
... . . . . . . ...

eJ,1 eJ,2 · · · eJ,K

 (6-13)

Here, ej,k ∈ RJ×K , at each station j, passengers are arriving to the stations to travel to any
destination. Conclusively, the flow rate of passengers entering station j when train k arrives
is described as ej,k, an represents the j, k-th entry of matrix e.

Implementing the other functionalities as described in the previous section will be more elab-
orate, as they concern changing the dynamics of the states. Therefore, the derivation of the
new state-space equations will be done in a structured manner. Firstly, the new states βj(k)
and ∆j(k) are introduced , thereafter the existing states will be modified and re-derived.

Deriving the New States

The two states that are to be added, βj(k) and ∆j(k) will be derived in this section. To
start with, the state representing the amount of passengers disembarking train k at station j,
βj(k) will be derived. Since the aim of augmenting the URS is to implement the possibility of
assigning travel destinations to passengers embarking at any station, state βj(k) will have to be
the sum of all passengers who embarked train k at previously passed station, whose destination
is station j. Since this summation will have to be done for each possible destination j and
each origin i, a matrix can be introduced that represents the fraction of passengers embarking
at station i, who disembark at station j. Hereby, matrix ζ can be introduced;

ζ =


ζ1,1 ζ1,2 · · · ζ1,J

ζ2,1 ζ2,2 · · · ζ2,J
... . . . ...

ζJ,1 · · · ζJ,J

 (6-14)

Here, ζ ∈ RJ×J , entry [ζ]i,j shows the fraction of passengers getting on train k at station
i traveling to station j. In the case of this URS, some simplifications can be made to this
matrix due to the nature of the system. Since passengers can only travel to future stations, the
matrix ζ will be upper triangular. Furthermore, all diagonal entries will be 0, as passengers
cannot travel to the destination they embarked at. Therefore, the matrix ζ can be rewritten
for this specific application;

ζ =



0 ζ1,2 · · · ζ1,(J−1) ζ1,J

0 0 · · · ζ2,(J−1) ζ2,J
... . . . . . . ...

...

0 · · · . . . 0 ζ(J−1),J
0 · · · · · · 0 0


(6-15)

Master of Science Thesis V.M. van Heijningen



84 Augmenting and Analyzing the Urban Railway System

This matrix however, only shows fractions of passengers, not actual quantities. By multiplying
row i of this matrix with the number of passengers embarking at station i, the exact amount
of passengers disembarking at which station can be generated. By multiplying matrix ζ
by a diagonal matrix with the amount of embarking passengers as the diagonal entries, the
following matrix can be obtained, assuming that the amount of passengers embarking at each
station is represented by state ∆j(k).

diag(∆i(k)) · ζ =



0 ζ1,2 ·∆1(k) · · · ζ1,(J−1) ·∆1(k) ζ1,J ·∆1(k)
0 0 · · · ζ2,(J−1) ·∆2(k) ζ2,J ·∆2(k)
... . . . . . . ...

...

0 · · · . . . 0 ζ(J−1),J ·∆J−1(k)
0 · · · · · · 0 0


(6-16)

If the entries of column j of this matrix are summed, the total amount of passengers on train
k that will disembark at station j is calculated. This results in the final expression for state
βj(k);

βj(k) =
j−1∑
s=1

∆s(k) · ζs,j (6-17)

At first glance, this state may seem implicit, due to the term ∆s(k) within the summation.
However, since the summation is done from s = 1 up to s = j − 1, it only takes into account
values of ∆s(k) up until the previous station, ergo, passengers who embarked at previous
stations.
Lastly, let us derive the expression for quantity state ∆j(k). The amount of passengers who
embark train k at station j can be computed as the minimum of the amount of passengers
who want to board, and the amount of passengers who can board. Both terms will first be
derived separately before combining them into the final expression.
The amount of passengers that can embark depends on the available capacity on the train
after the disembarking passengers have left the train. One can calculate the available capacity
by taking the maximum capacity, ρmax, subtracting the amount of passengers that were on
train k when it left station j − 1, adding the amount of passengers who disembarked train k
at station j, as this space has been freed up. This yields the following expression;

∆j(k) = ρmax + βj(k)− ρj−1(k) (6-18)

Subsequently, the expression to compute the amount of passengers that want to disembark
at station j can be derived as well, but is slightly more complex. The amount of passengers
that were left on station j when train k−1 departed from that station are for sure passengers
that want to embark train k. In the time between the departure of train k − 1 and the time
passengers can start boarding train k, passengers arrive on the platform at rate ej,k. The
time passengers can start boarding train k is equal to the arrival time of train k, plus the
time it takes for the disembarking passengers to disembark. The amount of passengers who
arrived to the platform in this time frame can be computed using the following expression;

ej,k(aj(k)− dj(k − 1) + βj(k)
f

) (6-19)

The time it takes for the amount of passengers as calculated in 6-19 to board, can be calculated
by dividing the expression in 6-19 by f .
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Whilst these passengers are boarding, other passengers can still arrive to the platform, at rate
ej,k. In the time it takes these passengers to board, new passengers can arrive as well. The
concept that, in the time frame that passengers board, new passengers arrive who want to
board as well, and during their boarding process, again new passengers arrive, and so forth,
can be represented by the following expression;

ej,k(aj(k)− dj(k) + βj(k)
b ) + e2

j,k

f (aj(k)− dj(k) + βj(k)
b )

+ e3
j,k

f2 (aj(k)− dj(k) + βj(k)
b ) + e4

j,k

f3 (aj(k)− dj(k) + βj(k)
b ) + . . .

(6-20)

Within the original system description, the requirement that ej << b, which regards system
stability was introduced [18]. Choosing the system parameters in the augmented system
such that this still holds, allows for drawing some conclusions from the expression stated in
6-20. Because it is known that ej,k << b, the boarding time increments during which new
passengers can arrive, decreases. By rewriting the expression stated in 6-20, it can be seen
that it can be simplified into a power series;

(ej,k +
e2

j,k

f
+

e3
j,k

f2 +
e4

j,k

f3 + .....)︸ ︷︷ ︸
Power series

(aj(k)− dj(k) + βj(k)
b

) (6-21)

The underlined part of the expression in 6-21 is a power series of the form;

a + ar + ar2 + ar3 + ... =
∞∑

k=0
ark (6-22)

Here, r = ej,k

f , and a = ej,k. Since it was previously established that ej,k << f , it can
be concluded that |r| = | ej,k

f | < 1, and therefore, the sequence of partial sums Sn converge
to a limit value of a

1−r , which in this case is ej,k

1−
ej,k

f

. Therefore, the expression in 6-21 can

confidently be simplified into;

( ej,k

1− ej,k

f

)(aj(k)− dj(k) + βj(k)
b

) (6-23)

After which the completed expression for the amount of passengers who want to board train
k at station j can be derived, where the underbraced expression can be written as γ ;

∆j(k) = σj(k − 1) + ( ej,k

1− ej,k

f

)︸ ︷︷ ︸
γ

(aj(k)− dj(k) + βj(k)
b

) (6-24)

Thereupon, the final state-space equation for ∆j(k) can be assembled from the formerly
defined expressions;

∆j(k) = min(ρmax + βj(k)− ρj−1(k), σj(k − 1) + γ(aj(k)− dj(k) + βj(k)
b

)) (6-25)
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Re-deriving Existing States

The four existing states, aj(k), dj(k), ρj(k) and σj(k) will all represent the same times and
quantities as they did in the previous model. The equations used to calculate these values will
change, for all but the arrival time, which will still be described by the following equation;

aj(k) = max(dj−1(k) + τr,j , dj(k − 1) + τH) (6-26)

Subsequently, the three remaining existing states can be derived. In order of appearance in
the previous model, commencing with departure time dj(k). Whereas the departure time was
a complex state which required the examination of two scenarios for when train k would leave
station j, the approach is much more simple in the augmented model. The departure time
of train k at station j can be described as the de arrival time of train k at station j, plus
the time it takes for the disembarking passengers to disembark, plus the time it takes for the
embarking passengers to embark. Mathematically this relation can be formulated as;

dj(k) = aj(k) + βj(k)
b

+ ∆j(k)
f

(6-27)

Hereafter, the state ρj(k) will be derived. The updated state-space equation will again be
very straightforward, by the help of the newly added states. The number of passengers in
train k when it departs station j can, in words, be described by the number of passengers in
train k when it departed station j−1, subtracting the number of passengers that disembarked
the train at station j, adding the number of passengers that embarked the train at station j.
This mathematically results in the following description;

ρj(k) = ρj−1(k)− βj(k) + ∆j(k) (6-28)

Lastly, the state σj(k) can be derived. In the original model, the number of passengers at
station j when train k departs was just a summation of terms where no max or min operation
occurred. In the augmented model however, the state σj(k) can be described by taking the
maximum of the amount of passengers who want to board, minus the amount of passengers
who can board, and zero. In the case that the amount of passengers who want to board is
larger than the amount who can board, this subtraction results in a positive value. When
taking the maximum of that positive value and zero, the maximization will yield this positive
value. On the other hand, when the amount of passenger who want to board is less than
the amount who can board, this value will become negative, resulting in the max operation
yielding zero. By implementing this maximization, the possibility of obtaining a negative
number of passengers at station j when train k leaves is bypassed. The expression that gives
amount of passengers that want to and can board the train is given by;

∆want
j (k) = σj(k − 1) + γ(aj(k)− dj(k − 1) + βj(k)

f
)

∆can
j (k) = ρmax + βj(k)− ρj−1(k)

(6-29)

Combining these to expressions into a maximization will yield the mathematical expression
for σj(k);

σj(k) = max(0, ∆want
j (k)−∆can

j (k))

σj(k) = max(0, (σj(k − 1) + γ(aj(k) + dj(k − 1) + βj(k)
f

))− (ρmax + βj(k)− ρj−1(k)))
(6-30)
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6-2-3 Augmented State-Space Model
This concludes the (re)derivation of the augmented state-space model, and allows for a proper
overview of these new states. Without further ado, the complete set of state space equations
is given by;

aj(k) = max(dj−1(k) + τr, dj(k − 1) + τH)

dj(k) = aj(k) + βj(k)
f

+ ∆j(k)
b

ρj(k) = ρj−1(k)− βj(k) + ∆j(k)

σj(k) = max(0, (σj(k − 1) + γ(aj(k) + dj(k − 1) + βj(k)
f

))− (ρmax + βj(k)− ρj−1(k)))

βj(k) =
j−1∑
s=1

∆s(k) · ζsj

∆j(k) = min(ρmax + βj(k)− ρj−1(k), σj(k − 1) + γ(aj(k)− dj(k − 1) + βj(k)
f

))
(6-31)

The previous section concluded with the set of state-space equation, given in 6-31.This marks
the starting point of the elaborate system analysis performed in this chapter. Where first and
foremost, the state-space equations will be transformed into the ABCD form.

6-3 ABCD Form
Using the framework for the ABCD form proposed for the original URS in [15] as inspiration,
a framework for constructing the ABCD form for the augmented system can be developed.
The state-space equations in 6-31 are the equations used to calculate the dynamics related
to train k at station j. The ABCD form should allow for these dynamics to be calculated
for each station j, and therefore, the ABCD form can be divided into j sets of state-space
systems, compiled together into the larger, all-encompassing system. Matrices A, B, C and
D can be divided into submatrices which simplify the task of creating the full system;

A =


Ā1 ε · · · ε

ε Ā2 · · · ε
... . . . . . . ...
ε · · · ε ĀJ

 , B =


B̄1 ⊤ · · · ⊤
⊤ B̄2 · · · ⊤
... . . . . . . ...
⊤ · · · ⊤ B̄J

 (6-32)

C =


C̄1 0 · · · 0

0 C̄2
. . . ...

... . . . . . . 0
0 · · · 0 C̄J

 , D =



D̄1,1,1 0 · · · · · · 0

D̄2,2,1 D̄1,2,2 0 . . . ...

D̄3,3,1 D̄2,3,2 D̄1,3,3
. . . ...

... . . . . . . . . . 0
D̄3,I,1 · · · D̄3,I,J−2 D̄2,I,J−1 D̄1,I,J


(6-33)

These matrices can be merged into the following ABCD state-space description, which is
merely a repetition of the disjunctive state-space description provided in 3-1.3.

x(k) = A⊗
(
B ⊗′ (C · x(k − 1) + D · x(k))

)
(6-34)
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In order to fully define these matrices, six different types of submatrices will have to be
computed in order to completely define the system. Firstly, an overview of the to be defined
submatrices, and their dimensions, is given below;

1. Āj ∈ Rn×m
ε

2. B̄j ∈ Rm×p
⊤

3. C̄j ∈ Rp×n

4. D̄1,i,j ∈ Rp×n

5. D̄2,i,j ∈ Rp×n

6. D̄3,i,j ∈ Rp×n

Now defining these submatrices one by one allows for further analysis.

Āj =



τr τH ε ε ε ε ε ε
ε ε 0 ε ε ε ε ε

ε ε ε 0 ε ε ε ε
ε ε ε ε 0 −ρmax ε ε
ε ε ε ε ε ε 0 ε
ε ε ε ε ε ε ε 0


(6-35)

B̄j =



0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ρmax 0


(6-36)

C̄j =



0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −γ 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −γ 0 1 0 0


(6-37)
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D̄1,i,j =



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 1

f
1
b

0 0 0 0 −1 1
0 0 0 0 0 0
γ 0 0 0 γ

f − 1 0
0 0 0 0 0 0
0 0 0 0 1 0
γ 0 0 0 γ

f 0


(6-38)

D̄2,i,j =



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 ζi,j

0 0 −1 0 0 0
0 0 0 0 0 0


(6-39)

D̄3,i,j =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ζi,j

0 0 0 0 0 0
0 0 0 0 0 0


(6-40)

These submatrices can be compiled together to compute the ABCD form of the AURS.
The dimensions of the complete ABCD form for K trains and J stations has the following
dimensions; A ∈ RnJ×mJ

ε , B ∈ RmJ×pJ
⊤ , C, D ∈ RpJ×nJ .

6-3-1 Time-Invariance
Since the D matrix of the state-space exists, and is not empty, the AURS is an implicit
system. Equation 3-10 provides the conditions under which an implicit MMPS system is
time-invariant, and is recalled below.∑

i∈nt

[
C11 D11

]
ℓi

= 1, ∀ℓ ∈ pt

∑
i∈nt

[
C21 D21

]
ti

= 0,∀t ∈ pq
(6-41)

By examining whether this condition holds, time-invariance can be proven, or disproven. It is
important to note that, the property of time-invariance is checked for each individual station,
not for the full system matrix.
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The dynamics for each train and station are identical, therefore this is not necessary either.

∑
i∈nt

[
C11 D1,11 D2,11 D3,11

]
ℓi

=

 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

 = 1

∑
i∈nt

[
C21 D1,21 D2,21 D3,21

]
ti

=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −γ γ 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −γ γ 0 0 0 0 0


= 0

(6-42)

Hereby, the conclusion can be drawn that the AURS is time-invariant.

6-4 Solvability of the AURS
Considering the solvability of the system, the theory presented in Chapter 4 can be applied.
Firstly, matrices SA, SB and SD will be derived;

SA =



1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


SB =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1



SD =



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 0 0
1 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 1 0
1 0 0 0 1 0



(6-43)

Matrix S = SA · SB · SD will therefore have the following structure;

S =



0 0 0 0 0 0
1 0 0 0 1 1
0 0 0 0 1 0
1 0 0 0 1 0
0 0 0 0 0 0
1 0 0 0 2 0


(6-44)

The obtained matrix S is not immediately strictly lower-triangular.
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In order to determine whether this transformation exists, i.e. the system does not contain a
circuit, Theorem 4-1.4 will be applied, which yields matrix S+

⊗ ;

S+
⊗ =



ε ε ε ε ε ε
2 ε ε ε 3 1
2 ε ε ε 3 1
1 ε ε ε 1 ε
ε ε ε ε ε ε
1 ε ε ε 2 ε


(6-45)

The diagonal entries [S+
⊗ ]ii are all ε, excluding the possibility a circuit exists in this system.

Therefore, the transformation matrix T exists that yields a strictly lower-triangular matrix
F , and the Augmented Urban Railways system is solvable as per Theorem 4-1.1.

6-5 Initializing the System

In order to simulate the AURS, it must be initialized. Ultimately, the aim is to simulate the
system according to a uniform timetable. This refers to the intervals between the departures
and the arrivals to be identical for all trains, and stations. This is desirable as this uniform
behaviour, when initialized correctly, yields a stable system, without the need for any control.
Since there exists a propagation of dynamics in two directions, namely, the trains and the
stations, both the dynamics of the initial station(s), and the initial train must be initialized.
Within the state-space equations as per 6-31, terms containing dynamics from the previous,
and current train, as well as dynamics from the previous and current station are included.
Assuming the system is solvable, in order to compute the evolution of a state, all necessary
information about previous stations and/or trains must be available. The dynamics of the
first station are therefore different than the other stations, as their state evolution equations
cannot depend on dynamics from the previous station, as it simply does not exist. The
dynamics of the first station are given by the following equations;

a1(k) = a1(k − 1) + τ0 ∀k ∈ {1, . . . K}
d1(k) = d1(k − 1) + τ0 ∀k ∈ {1, . . . K}
ρ1(k) = ρ1(k − 1) ∀k ∈ {1, . . . K}
σ1(k) = σ1(k − 1) ∀k ∈ {1, . . . K}
β1(k) = β1(k − 1) ∀k ∈ {1, . . . K}
∆1(k) = ∆1(k − 1) ∀k ∈ {1, . . . K}

(6-46)
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The state-space equations for the first station as given in 6-46 can be written into the ABCD
form;

Ā1 =



τ0 ε ε ε ε ε
ε τ0 ε ε ε ε

ε ε 0 ε ε ε
ε ε ε 0 ε ε
ε ε ε ε 0 ε
ε ε ε ε ε 0


, B̄1 =



0 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ ⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ ⊤ 0 ⊤
⊤ ⊤ ⊤ ⊤ ⊤ 0



C̄1 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, D̄1,1,1 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



(6-47)

Even though the dimensions of Ā1, B̄1, C̄1 and D̄1,1 are different than those of Āj , B̄j , C̄j and
D̄j where j ̸= 1, the matrix structure as described in 6-32 and 6-33 will still concatenate
nicely, as all off-diagonal submatrices of matrices A and B are ε or ⊤ anyway. Furthermore,
the matrices C̄1 and D̄1 still comply with the time-invariance conditions as per 6-41, and do
not violate solvability of the system.

6-6 Growth Rates and Fixed-Points
Having fully described the dynamics and initial station of the augmented model, the growth
rates and fixed-points can be derived. The linear programming problem (LPP) that is used
to compute the eigenvalues of this implicit system are derived and presented in [15]. This
algorithm is already mentioned in 3-33, and repeated below;

min
xe,ye,we

λ

s.t. −[sλ]i − [x]i + [y]j ≤ −[A]ij if [GAθ
]ij = 0

[sλ]i + [x]i − [y]j = [A]ij if [GAθ
]ij = 1

[y]j − [d]ℓλ− [w]ℓ ≤ [B]jℓ if [GBθ
]jl = 0

−[y]j + [d]ℓλ + [w]l = [B]jl if [GBθ
]jl = 1

d = D · s, w = (C + D) · x

(6-48)

The following parameters are chosen for the augmented urban railway network. These can,
to some extent, be chosen arbitrarily. However, similarly to the original URS, stability re-
quirement ej << b was defined. By stating the arrival rate of passengers at the stations must
be significantly smaller than the embark rate of passengers, it is at least possible for the train
to leave the station without being full and no passengers being left behind at the platform.
Comparable stability requirements can be derived for the AURS.
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The following stability requirements can be derived for the AURS;

• ej << b ∀j ∈ {1, 2, . . . , J} The requirement of the arrival rate being significantly lower
than the boarding rate as described above must hold for the AURS as well

• ej << f ∀j ∈ {1, 2, . . . , J} Similarly to the arrival rate having to be significantly less
than the boarding rate, the disembark rate must be significantly smaller than the arrival
rate as well.

• ej · τH ≤ ρmax The number of passengers arriving in the minimum headway time must
be less than the train capacity. In case this number is larger, the amount of passengers
wanting to disembark when any train arrives is always larger than the train capacity,
causing all trains to always be full, with the value of state σj(k) always growing.

•
∑J

j=1[ζ]ij = 1 Since matrix ζ is a probability matrix, the sum of its rows must always
be equal to 1. If the sum is of a row is larger than 1, passengers are created out of thin
air, and if the sum is smaller than 1, some passengers never disembark.

The chosen parameters must comply with the stability requirements. A small remark re-
garding the last stability requirement must be made. Theoretically, if the AURS is an urban
railway line beginning at station 1, and ending at station J , no passengers can embark at
station the last station, as they have no destination to travel to. Therefore, the sum of the
last row of matrix ζ cannot theoretically be 1. However, let us assume this AURS can be
physically interpreted as an urban railway line of N >> J stations, where just a segment of
J stations is analyzed. Hereby, the first and last stations can function according to the dy-
namics of an intermediate station, without making unrealistic assumptions. The dimensions
of matrix ζ used in simulation can therefore be larger than ζ ∈ RJ×K , allowing for assigning
a destination of passengers embarking at station J , without actually analyzing the behaviour
of the trains past station J . Let us introduce the values of the parameters present in the
system matrices in the table below, this is not the actual initial condition of the system.
So, matrix ζ was chosen such that, passengers embarking at any station j, half the passengers
disembark at station j + 1, and the other half disembark at station j + 2. The state βj(k)
can be simplified to the following expression;

βj(k) = 0.5 ·∆j−2(k) + 0.5 ·∆j−1(k) (6-49)

Knowing the state βj(k) can be described by this equation, it becomes apparent that for this
choice of matrix ζ, when computing xj(k), only state values of xj(k − 1), xj−1(k), xj−2(k),
and xj(k) itself are needed. Therefore, the proposed matrix D as per 6-33 can be simplified
into the following matrix;

D =



D̄1,1,1 0 · · · · · · · · · · · · 0

D̄2,2,1 D̄1,2,2 0 . . . . . . . . . ...

D̄3,3,1 D̄2,3,2 D̄1,3,3 0 . . . . . . ...

0 D̄3,4,2 D̄2,4,3 D̄1,4,4
. . . . . . ...

0 0 D̄3,5,3 D̄2,5,4
. . . . . . ...

... . . . . . . . . . . . . . . . ...
0 · · · · · · 0 D̄3,I,J−2 D̄2,J−1 D̄1,I,J


(6-50)
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Table 6-1: Parameters of the AURS

Parameter Value Unit Definition
τ0 60 s Initial headway time
τH 20 s Minimum headway time
τr 180 s Running time
ρmax 150 passengers Maximum train capac-

ity
b 2 passengers/s Boarding rate
f 2 passengers/s Disembark rate
γ = ej,k

1−
ej,k

b

2
3 passengers/s Sum of power series

ej,k


0.5 0.5 · · · 0.5
0.5 0.5 · · · 0.5
... . . . . . . ...

0.5 0.5 · · · 0.5

 passengers/s Inflow of passengers at
each station

ζ



0 0.5 0.5 0 0 · · · 0
0 0 0.5 0.5 0 · · · 0
0 0 0 0.5 0.5 · · · 0
0 0 0 0 0.5 · · · 0
0 0 0 0 0 · · · 0
... . . . . . . . . . . . . . . . ...
0 0 · · · · · · · · · 0 0


- Matrix with fractions of

passenger travel direc-
tions

Keep in mind this is a parametric representation, adaptable to any number of stations J Since
computation of the number of passengers requires information from the previous two stations
the train has passed, not only the first, but also the second station should be initialized. Only
from the third station onwards, information about the previous two stations is available. It
would theoretically be possible to let these unknown values ∆−1(k) and ∆0(k) be zero, but
this would be unfavourable considering the aim to simulate the URS according to a uniform
timetable. Therefore, the following equations will describe the dynamics of the second station;

a2(k) = d1(k) + τr ∀k = 1, . . . K

d2(k) = d2(−1k) + τ0 ∀k = 1, . . . K

ρ2(k) = ρ2(k − 1) ∀k = 1, . . . K

σ2(k) = σ2(k − 1) ∀k = 1, . . . K

β2(k) = β2(k − 1) ∀k = 1, . . . K

∆2(k) = ∆2(k − 1) ∀k = 1, . . . K

(6-51)
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The ABCD matrices describing these dynamics are given by;

Ā2 =



τr ε ε ε ε ε
ε τ0 ε ε ε ε

ε ε 0 ε ε ε
ε ε ε 0 ε ε
ε ε ε ε 0 ε
ε ε ε ε ε 0


, B̄2 =



0 ⊤ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊤ ⊤ ⊤ ⊤
⊤ ⊤ 0 ⊤ ⊤ ⊤
⊤ ⊤ ⊤ 0 ⊤ ⊤
⊤ ⊤ ⊤ ⊤ 0 ⊤
⊤ ⊤ ⊤ ⊤ ⊤ 0



C̄2 =



0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, D̄1,2,2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, D̄2,2,1 =



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



(6-52)

It can easily be verified that the time-invariance conditions as per 6-41 still apply here. The
LPPs given in 6-48 can be solved in MATLAB using a linear solver for J = 4 stations. In
this case, the Gurobi solver was used. A total of 64 footprint matrix combinations is possible.
For each station added to the simulated system, this number would be multiplied by a factor
8, as the dynamics of each additional station would generate 4 extra possible GA matrices,
and 2 extra possible GB matrices. The running time to evaluate 64 combinations of footprint
matrices is 11.7 s. Out of the 64 combinations, 40 yield a growth rate, each of them has value
λ∗ = 60. This eigenvalue is expected, as some time dynamics are initialized in the system
matrices. The difference between temporal state a1(k − 1) and a1(k) for example, is always
τ0 which is defined as 60, as visible in the system matrix Ā1. In order for the eigenvalue to
exist, all temporal states must grow with the same value for each event step k. The only way
for the system to adhere to this requirement, which is also embedded in the LPPs, is for the
value λ to be equal to 60. Equivalently, in the original URS as in [18], the initial headway
time was set at τ0 = 120, and the computed eigenvalues were also all equal to 120. Solving the
LPP yields 40 eigenvalues 60, all corresponding to a unique combination of footprint matrices
GAθ

GBθ
, and corresponding set of eigenvectors, denoted by V = {v1, v2, . . . , v40}, where

vi = (xT
e,i, yT

e,i, zT
e,i). Let us first verify whether these obtained eigenvalues and eigenvectors

actually satisfy the conditions for them to be eigenvectors and values. By computing xe,λ =

xe − sλ and Aλ =
[

At,λ ε
ε Aq

]
where At,λ = Aitjt − λ, and verifying whether the set of

equations as given in 3-25 hold true for all obtained eigenvectors vi. All obtained eigenvalue
and eigenvector combinations are confirmed to actually be eigenvectors and eigenvalues.
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Any of these solutions λ∗, v∗ = [ x∗⊤ y∗⊤ z∗⊤ ] are solutions to the LLP, but might not be
the only solutions. Substituting the value λ∗ = λ in the LPPs in 6-48, a system of equality
and inequality constraints such as in 3-35 can be obtained;

Heq · v = heq, Hineq · v ≤ hineq (6-53)

Matrices Heq, heq, Hineq and hineq will not be given here due to their respective sizes, and
quantities; Heq ∈ R82×82, heq ∈ R82×1, Hineq ∈ R6×82 and hineq ∈ R6×1. All four of these
matrices exist for all 40 fixed-points. The set of fixed-points can be described by Vλ∗ =
{v|Hineq · v ≤ hineq} as per 3-37 where v = v∗ + σ1g1 + σ2g2 + · · · + σf gf . The number of
terms in the expression for v is related to the rank deficiency of Heq, as was described in
Subsection 3-3-2 . For all 40 instances of eigenvalue 60, the rank deficiency is equal to 11,
meaning 11 direction vectors to describe all fixed-points exist. Each of the 40 eigenvectors
that were obtained solutions of the LPP is unique, and 11 direction vectors form the base for
the fixed-point solution space. Therefore, the rank of the matrix Ve = [ v1 v2 . . . v40 ],
in which each column is one obtained eigenvector, must be maximum 11, so rank(Ve) ≤ 11.
The rank of Ve is in this case 4. So, the solutions to the LPP yielded only 4 of the existing
11 direction vectors, leaving 7 of these direction vectors unknown. The remaining 7 direction
vectors can theoretically obtained by constructing them one by one from the matrix Heq [15].
The expression for v can be described by;

v = v∗ + σ1g1 + σ2g2 + σ3g3 + σ4g4 + σ6g6 + σ7g7 + σ8g8 + σ9g9 + σ10g10 + σ11g11 (6-54)

Due to the time invariance property, scaling factor σ1 is unbounded, as mentioned in [15].
The possible bounds on the other scaling factors σj ∈ {σ2, σ3, . . . , σ11} can be found from the
following equation;

Hineq · vp + σ1 ·Hineq · g1 + σ2 ·Hineq · g2 + · · ·+ σ11 ·Hineq · g11 ≤ hineq (6-55)

Since 7 out of the 11 direction vectors remain unknown, the bounds on the scaling factors
cannot be determined, as this is an underdefined problem. However, the direction vectors can
be determined. The first of the direction vectors, g1, can already be determined as follows.
For each station j, vector g1,j a vector with similar characteristics to s = [ 1⊺

nt
0⊺

nq
]⊺, as

mentioned in Subsection 3-3-2;

g1,j =

 g1,x,j

gg,y,j

g1,z,j

 (6-56)

Basically, for x∗⊺, y∗⊺ and z∗⊺ in v∗ = [ x∗⊤ y∗⊤ z∗⊤ ]⊺, a vector with ones on the rows rep-
resenting temporal states, and zeroes representing quantity states will be computed. There-
fore, g1,x,j = s, where s = [ 1⊺

nt
0⊺

nq
]⊺. Vectors g1,y,j and g1,z,j can be found using the

following equations;
g1,y,j = B ⊗′ ((C + D) · s)
g1,z,j = (C + D) · s

(6-57)
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For the AURS, vectors g1,x,j , g1,y,j and g1,z,j can be given by;

g1,x,j =



1
1
0
0
0
0


, g1,y,j =



1
1
1
0
0
0
0
0


, g1,z,j =



1
1
1
0
0
0
0
0
0


(6-58)

Lastly, vectors g1,j will be stacked to compute full direction vector g1 as shown in equation
6-59.

g1 =


g1,1
g1,2

...
g1,j

 (6-59)

For this AURS with parameters as in Table 6-2, the vectors g1,1 and g1,2, for the initial
stations, can be given by g1 =

[
g⊺1,x,j , g⊺1,x,j , g⊺1,x

]⊺
, as the sizes of the submatrices B̄1 B̄2,

C̄1, C̄2, D̄1,1,1, D̄1,2,2 and D̄2,2,1 are all R6×6. Please note that this parametric description of
vector g1 only applies to the AURS, as a more general approach does not include stacking
dynamics of multiple stations. A more general approach to computing g1 is given in 3-3-2.

6-7 Simulation of the AURS
In the previous analysis, fixed-point analysis was performed on the AURS with 4 stations.
When aiming to simulate the AURS according to a uniform timetable, the behaviour of a
train is the same across all stations, meaning the dwell times of each train at each station must
be the same, and the quantity states must not grow as the train passes more stations. This
corresponds to a constant number of passengers embarking and disembarking each train at
each station, and a constant number of passengers in each train between stations. Uniformity
of the temporal states directly relates constant state values for the quantity states, as the
dwell time directly relates to the number of passengers embarking and disembarking through
the boarding rate b, and disembark rate f . Furthermore, it would be interesting to see the
dynamics of the trains across more than 4 stations. In order to obtain a fixed-point that is
feasible for a system with J > 4 stations, the size of the algorithm used in Section 6-6 will
grow. Considering the eightfold increase in footprint matrix combinations, the running time
for each extra added station is theoretically 8 times longer. When evaluating this algorithm
with a system with 5 stations, the running time for 512 footprint matrix combinations is 85.6
s. The algorithm yields one eigenvalues of value 60, and 136 corresponding eigenvalues. This
running time is a little less than 8 · 11.7 = 93.6 s, this is probably due to the postprocessing
of the obtained eigenvalues and assigning them an eigenvector. The number of eigenvalues
has not increased with a factor 8, therefore, the postprocessing will have to be done for less
than 8 · 40 = 320 eigenvectors, yielding a lower running time.
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However, continuing the trend of increasing the running time by at least a factor 7, the
running time for evaluating a system with 12 stations would take approximately 2.14 years,
which is a conservative estimation. In conclusion, it is not feasible to run this algorithm
for many stations. Furthermore, similarly to the analysis performed on the URS in [18],
the eigenvectors obtained by solving the LPPs did not provide a fixed-point that would be
fit as an initial condition to attain such uniform behaviour. Therefore, a fixed-point will
be proposed which, if proven to be valid, will serve as the initial condition for simulating
the system according to a uniform timetable. Initial condition x(1) can be described by the
following expression;

x(1) =


x1(1)
x2(1)

...
xJ(1)

 (6-60)

A parametric description of the initial condition of the j-th station can be manually derived;

x1(1) =



a1(1) = 0
d1(1) = d̄

ρ1(1) = ρ̄

σ1(1) = 0
β1(1) = β̄

∆1(1) = ∆̄

(6-61)

xj(1) =



aj(1) = dj−1(1) + τr ∀j = 2, . . . N

dj(1) = aj(1) + τd ∀j = 2, . . . N

ρj(1) = ρj−1(1) ∀j = 2, . . . N

σj(1) = 0 ∀j = 2, . . . N

βj(1) = βj−1(1) ∀j = 2, . . . N

∆j(1) = ∆j−1(1) ∀j = 2, . . . N

(6-62)

The values of parameters d̄, ρ̄, β̄ and ∆̄ are given in Table 6-2.

Parameter Value Unit Definition
d̄ 30 s Dwell time at station 1
ρ̄ 45 passengers Number of passengers in train when leaving station 1
β̄ 30 passengers Number of passengers embarking train at station 1
∆̄ 30 passengers Number of passengers disembarking train at station 1

Table 6-2: Initial conditions for simulating the AURS
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The choice for these exact values is not random, and do not require complex derivation, given
some logical assumptions. The interval between two trains arriving at a station is 60 seconds,
as this is the growth rate. Within those 60 seconds, 60 · ej,k = 60 · 0.5 = 30 passengers arrive
at each station. The number of embarking passengers βj(k) at any station is therefore equal
to 30, making β̄ = 30. In a uniform timetable scenario, the trains are never at capacity, and
all of these 30 passengers are able to board the train. Matrix ζ is known, and tells us that half
the passengers embarking at station j disembark at station j+1, and the other half disembark
at station j + 2. Therefore, from these 30 embarking passengers, 15 disembark at the next
station, and 15 at the one after that. Given that the train exhibits the same behaviour at
every station, 30 passengers disembark from any given train at each station, yielding a value
of ∆̄ = 30. Therefore, d̄ the dwell time at the first station, and therefore at every station is
30 seconds. In these 30 seconds, all passengers wanting to disembark must have disembarked,
and all passengers wanting to embark must have embarked. From this information, the value
of d̄ can be computed;

d̄ = β1(1)
f

+ ∆1(1)
b

d̄ = 30
2 + 30

2
d̄ = 30

(6-63)

Assuming the trains never overflow in a correctly chosen uniform timetable scenario, value
σj(1) = 0. Lastly, the number of passengers in the train after leaving station j, ρ̄ is equal
to 45, as 30 passengers embark at station j, and 15 are traveling to the next station. This
constitutes the derivation of the manually constructed initial condition. For J = 15 stations,
the initial condition vector would be x(1) ∈ R90×1. It can be established this initial condi-
tion functions as a fixed-point by substituting x(1) as xe in 3-25 with λ = 60, and verifying
whether the equations hold, which they do, by which this proposed x(1) also functions as xe.

So, using this x(1) with J = 15 stations, and K = 10 trains the AURS can be simulated,
which is given in Figures 6-2, 6-3, 6-4. 6-4 and, 6-6. As is visible in these figures, all quantity
states ρj(k), βj(k), ∆j(k) and σj(k) have constant values of 45, 30, 30 and 0 passengers,
respectively. This proves the uniformity of the behaviour of the trains relative to each other,
and themselves. Furthermore, the train trajectory plot 6-2 shows a very constant timetable ,
with every line describing the trajectory of one train. Each train’s schedule is represented as
a staircase-like function: horizontal segments for when the train is standing still at a station,
vertical segments for running between stations. All ten of these functions are translated along
the time axis in 60 second increments, so the time between the arrival or departure of any two
successive trains is always 60 seconds, which is equal to the growth rate of this system. The
difference between the departure of a train and the arrival of the next is always 30 seconds,
which is 10 seconds more than the minimum headway time.
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Figure 6-2: Train trajectories of the uniform timetable simulation of the AURS with 10 trains
and 15 stations

Figure 6-3: Number of passengers in each train at each station of the uniform timetable simu-
lation of the AURS with 10 trains and 15 stations
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Figure 6-4: Number of passengers disembarking each train at each station of the uniform
timetable simulation of the AURS with 10 trains and 15 stations

Figure 6-5: Number of passengers embarking each train at each station of the uniform timetable
simulation of the AURS with 10 trains and 15 stations
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Figure 6-6: Number of passengers at each platform after each train [k] has left station [j] of the
uniform timetable simulation of the AURS with 10 trains and 15 stations

The aim of augmenting the URS to this simulated system was to incorporate dynamics that
could describe a real-life scenario much more truthfully. However, some necessary assumptions
needed to be made in order to be able to simulate the system according to a uniform timetable;

1. The initial conditions assume there are passengers disembarking at the first station,
which is not physically possible as these passengers had to board somewhere. This was
still a valid design choice, as letting 0 passengers disembark the first will disturb the
uniformity, and make the system unstable.

2. Theoretically, it is not possible for passengers to embark at the last station, as these
passengers cannot travel any further. However, allowing passengers to embark at the
last station allows for preservation of uniformity and stability of the system.

The physical interpretation of the AURS that makes sense including these assumptions, as
described in Section 6-6, is that a short segment, of j ∈ {1, 2, . . . , 15}, of a very long Urban
Railway line J >> 15 is being inspected with regards to its dynamic behaviour. Therefore,
the "cornercases" such as the physical limitations of the first and last station regarding the
dynamics, can be disregarded.
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6-8 Stability of the Augmented Urban Railway System

The concept of stability of explicit, and implicit MMPS systems was thoroughly discussed
in Chapter 3. Determining whether the AURS is bounded-buffer stable for certain initial
conditions, is very valuable. The buffer of the system is the difference between time states in
each event k. The notion of boundedness in the definition of stability for discrete event systems
refers to the buffer levels, at an average, taking constant values [8]. The overall purpose is to
not let any state of the system overflow, which is the case if the MMPS system is bounded-
buffer stable. In the previous section, Section 6-7, the AURS was simulated with fixed-point xe

described by equations 6-60, 6-61, and 6-62. In this section, the bounded-buffer stability of the
simulated system is analyzed. Furthermore, the bounded-buffer stability of the fixed-points
and growth rate obtained by solving the LPPs as per 6-48 is analyzed and commented on. In
order to conclusively determine bounded-buffer stability of any implicit MMPS system with
growth rate λ, the system must be normalized, and subsequently, linearized. Normalization is
done using the theory provided in Subsection 3-3-1. The general expression for a normalized
implicit MMPS system is given by the following expression, which is identical to the expression
provided in 3-26;

x̃(k) = Ã⊗
(
B̃ ⊗′ (C · x̃(k − 1) + D · x̃(k))

)
(6-64)

Having obtained this normalized form, the normalized system can be linearized using the
theory provided in Section 3-5. The definition of a linearized system as given in Section 3-5
is repeated below;
Definition 6-8.1. [15](Linearized MMPS system) Any normalized implicit MMPS system
can be recast as a linear system in conventional algebraic notation for all x̃θ(k) ∈ Ωθ, k ∈ Z+

using the following expressions;

x̃θ(k) = Mθ · x̃θ(k − 1)
Mθ = (I −M1)−1 ·M2

M1 = GAθ
·GBθ

·D
M2 = GAθ

·GBθ
· C

(6-65)

If the inverse of (I −M) exists.

The polyhedron Ωθ is the region for which this linearization is valid. The next Section will
thoroughly examine the polyhedron Ωθ for various bounded-buffer stable linearized systems.
A linearized implicit MMPS system of the form given in 6-65 is;

• Bounded-buffer stable if the system matrix Mθ only has multiplicative eigenvalues
smaller than, or equal to 1. All multiplicative eigenvalues of magnitude 1 have to have
corresponding Jordan blocks of size 1× 1. Equivalently, the multiplicative eigenvectors
corresponding to multiplicative eigenvalues of magnitude 1 must be independent.

• Unstable if either, at least one multiplicative eigenvalue of Mθ is greater than 1, or the
multiplicative eigenvectors of associated with the multiplicative eigenvalues of magni-
tude 1 are not independent.

This condition is identical to the one given in Subsection 3-5-2.
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6-8-1 Bounded-Buffer Stability of the Simulated AURS
By simply looking at the figures obtained by simulating the AURS using fixed-point xe given
by 6-60, 6-61, and 6-62, the time states seem to constantly adhere to a buffer level of 60
seconds, which coincides with the growth rate of λe = 60 seconds. Furthermore, the quantity
states do not grown at all over time for any station or any train, as is visible in Figures 6-3,
6-4, 6-5 and 6-6. This information subtly points to the system possibly being bounded-buffer
stable. However, this cannot be definitively concluded by simply looking at the figures. The
AURS is linearized around the aforementioned fixed-point x(1) = xe with λθ = λ = 60. For
the AURS as in 6-31, with J = 15 stations, the matrix Mθ will be of size Mθ ∈ R90×90, as 6
states per station, for 15 stations leads to a a total of 90 states. The inverse of (I−M) surely
exists since for this system, in Section 6-4, it is proven that a strictly lower-triangular matrix
F exists. When attempting to prove linearized system x̃θ = M · x̃θ(k − 1) is bounded-buffer
stable, the bounded-buffer stability condition as defined in 6-8 must hold. When applying
this theory to the AURS, the following conclusions can be drawn;

• Matrix Mθ ∈ R90×90 has 11 multiplicative eigenvalues of magnitude 1.

• Of these 11 multiplicative eigenvalues of magnitude 1, all of them have a corresponding
Jordan block of size 1× 1.

• No multiplicative eigenvalue of matrix Mθ has a magnitude larger than 1.

• Therefore, the simulated AURS is bounded-buffer stable.

The multiplicity of multiplicative eigenvalue 1 can be related to the rank deficiency of matrix
Heq [15]. The rank deficiency of this matrix for the AURS with J = 15 is equal to 11, which
as expected, coincides with the multiplicity of multiplicative eigenvalue 1 in this matrix Mθ.

6-8-2 Bounded-Buffer Stability of the LPP Obtained Fixed-Points
Whereas the previous section proved the bounded-buffer stability of the simulated AURS,
this section aims to investigate the bounded-buffer stability of the 40 fixed-points obtained
by solving the LPPs in 6-48. The initial condition x(1) ∈ R90×1 was proven to be a fixed-point
for the AURS with J = 15 stations. Due to computational effort and running time constraints
as discussed in Section 6-7, it is not possible to solve the LPPs for the AURS with J = 15.
From analysis of the obtained fixed-points of solving the LPPs for the AURS with J = 4, 4
distinct fixed-points direction vectors have been found. Since the initial condition described
by 6-60, 6-61 and 6-62 was a fixed-point for J = 15, it is worth considering using the same
parametric initial condition, but for J = 4 and investigating whether this initial condition
might be a fixed-point for the AURS with J = 4. This would then yield a fifth fixed-point
direction vector s5. This initial condition for J = 4 is given as follows;

x(1) = [ x1(1)⊺ x2(1)⊺ x3(1)⊺ x4(1)⊺ ]⊺ (6-66)

Substituting this x(1) as xe, into equation 3-25, proposed x(1) turns out to be a fixed-point
as well. From this finding, a fifth direction vector g5 can be determined, leaving "only" 6
direction vectors unknown. So, in total there are 41 known fixed-points corresponding to
growth rate λ = 60. The bounded-buffer stability of the linearized system around each
of these fixed-points will be determined through the same reasoning as was carried out in
Subsection 6-8-1.
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All 41 matrices Heq corresponding to all 41 unique combinations GA and GB will be evaluated.
It turns out the rank deficiency of Heq is equal to 11 for all 41 GA, GB combinations. From
the linearization of the AURS around these 41 fixed-points, the following conclusions can be
drawn;

• 10 Out of the 41 linearizations are bounded-buffer stable. Each matrix Mθ corresponding
to the bounded-buffer stable systems have 11 multiplicative eigenvalues of value 1.

• Out of these 10 bounded-buffer stable systems, 9 are linearizations around the fixed-
points obtained from solving the LPP, and 1 is the linearization around fixed-point
chosen for the uniform simulation with J = 4.

• All 31 unstable system have more than 11 multiplicative eigenvalues 1 in their respective
matrices Mθ.

– 15 Out of these 31 matrices Mθ corresponding to the unstable systems have 12
multiplicative eigenvalues of value 1.

– 12 Out of these 31 matrices Mθ corresponding to the unstable systems have 13
multiplicative eigenvalues of value 1.

– 4 Out of these 31 matrices Mθ corresponding to the unstable systems have 14
multiplicative eigenvalues of value 1

• None of the 41 matrices Mθ have a multiplicative eigenvalue larger than 1

So a very large number of fixed-points do not yield a bounded-buffer stable linearized system.
The 40 fixed-points found by solving the LPPs 6-48 all had unique corresponding footprint
matrix combinations GAθ

and GBθ
. These 40 unique combinations were formed from 12

different matrices GAθ
and 4 different matrices GBθ

. The footprint matrix combination GAθ

and GBθ
corresponding to the fixed-point xe of the uniformly simulated system consists of

matrices GAθ
and GBθ

that did not yield a solution when solving the LPPs. In total, 13 unique
matrices GAθ

and 5 unique matrices GBθ
create the 41 footprint matrices corresponding to

the 41 fixed-points and growth rate of λ = 60. The rank deficiency of matrix Heq of the
simulated AURS with J = 15 is also 11, suggesting the dynamics introduced by adding more
stations, did not cause the rank deficiency of Heq to grow.

6-9 Maximal Invariant Set of the Augmented Urban Railway Sys-
tem

In the previous Section, bounded-buffer stability was proven for 10 out of the 41 linearized
systems. These systems were all linearized around their respective fixed-points xe,i, i ∈
{1, 2, . . . , 41}. Furthermore, the AURS simulated from a uniform fixed-point with J = 15
stations was linearized, and stability was proven. The mapping between the normalized sys-
tem 3-26 and the linearized system 3-46 is valid for all x̄θ ∈ Ωθ. A more elaborate definition
of polyhedron Ωθ is given in Section 3-6. The definition of a maximal invariant set as per
3-7.3 is repeated here;
Definition 6-9.1. [2] (Maximal invariant set O∞) The set O∞ ⊆ Ωθ is considered the
maximal invariant set of the autonomous system as in 3-46, if O∞ is invariant, and O∞
contains all the invariant sets contained in Ωθ
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In this section, we aim to find the maximal invariant set for the uniformly simulated AURS
with J = 15 stations, and the 10 bounded-buffer stable linearizations of the AURS with J = 4
stations. The region, or polyhedron Ωθ where this linearization is valid is obtained from [15];

Ωθ = {x ∈ Rn|H · x ≤ h} (6-67)

Where matrix H and vector h are obtained as described in 3-3-2. Using Algorithm 4 from
3-7, we attempt to find O∞. The algorithm is repeated below;

Algorithm 5 [15] Maximal positive invariant set
Input: Mθ, Ωθ

Output: Ω∞
O0 ← Ωθ, k ← −1

repeat
k ← k + 1 Ok+1 ← Pre (Ok) ∩ Ok

until Ok+1 = Ok

O∞ ← Ωk

The precursor set to the set Ωθ is given by [15];

Pre(Ωθ) = {x ∈ R90|H ·M ≤ h} (6-68)

6-9-1 Maximal Invariant Set of Multiple Fixed-Points
Having concluded that 10 out of the 41 found fixed-points have a corresponding bounded-
buffer stable linearization, it is useful to approximate the maximal invariant set for each. For
each fixed-point, and their corresponding Mθ and Ωθ = {x ∈ R24|H · x ≤ h}, Algorithm 5 is
executed a maximum of 300 iterations. This number is arbitrarily chosen. An overview of the
characteristics of each fixed-point is presented in Appendix C, where the last row represents
the fixed-point as per 6-60, 6-61 and 6-62. From left to right, the following information about
the numbered fixed-points is presented; multiplicity of multiplicative eigenvector of value 1
of Mθ, whether the linearized system is bounded-buffer stable, the rank deficiency of matrix
Heq, whether a maximum invariant set was found within 300 iterations, and if so, in how
many iterations. A few interesting observations can be made about this data in this table.
As expected, for all 10 bounded-buffer stable linearized systems, a maximal invariant set was
found. Furthermore, this invariant set was reached within 2 to 4 iterations of Algorithm
5. Interestingly, for 14 out of the 31 unstable linearized systems, Algorithm 5 did converge
within less than 300 iterations. However, it is obvious that the number of iterations after which
Algorithm 5 converged is significantly larger than the number of iterations the algorithm took
for the bounded-buffer stable systems to converge. Since Algorithm 5 is programmed to find
any invariant set, for unstable systems, it is possible that the only way to ensure Ok+1 = O, is
to force the setO∞ to become infinitely small, i.e. empty. Upon verification, it indeed becomes
apparent that the maximal invariant sets O∞ found for the unstable linearized systems are
in fact, empty. Therefore, it can be concluded only bounded-buffer stable linearized systems
have nonempty maximal invariant sets.

V.M. van Heijningen Master of Science Thesis



6-9 Maximal Invariant Set of the Augmented Urban Railway System 107

J # e.v. 1 Mθ BB stable Heq rank def. O∞ found Iter Empty
4 11 Yes 11 Yes 4 No
5 11 Yes 11 Yes 5 No
6 11 Yes 11 Yes 8 No
7 11 Yes 11 Yes 10 No
8 11 Yes 11 Yes 3 No
9 11 Yes 11 No 3 Yes
10 11 Yes 11 No 3 Yes
11 11 Yes 11 No 3 Yes
12 11 Yes 11 Yes 2 Yes
13 11 Yes 11 Yes 3 Yes
14 11 Yes 11 Yes 3 Yes
15 11 Yes 11 Yes 2 Yes

Table 6-3: System characteristics of the AURS with J ∈ {4, 5, . . . , 15} stations

6-9-2 Maximal Invariant Set of the Simulated System
The AURS as in 6-31, linearized around xe as per 6-60, 6-61 and 6-62 for J = 15 stations
was proven to be bounded-buffer stable in Subsection 6-8-1. Polyhedron Ωθ for this system
is defined as Ωθ = {x ∈ R90|H · x ≤ h}. Within two iterations, a maximal invariant set O∞
is found. Upon verificiation, it unfortunately becomes apparent this found maximal invariant
set is empty. In the previous subsection, it was concluded that the linearization around the
same fixed-point, but with J = 4 instead of J = 15, did have a nonempty maximal invariant
set after 4 iterations. Let us therefore analyze the AURS for j ∈ {4, 5, 6, . . . 14, 15}, as to
determine from which number of stations, an empty maximal invariant set is found. The
following characteristics of the same parametric initial condition 6-60 for each value of J will
be determined;

• Whether the linearization of the AURS around x(1) is bounded-buffer stable

• The multiplicity of multiplicative eigenvalue 1 of Mθ

• The rank deficiency of Heq

• Whether an invariant set O∞ can be found

• In how many iterations (Iter) this invariant set O∞ was found

Firstly, the number of multiplicative eigenvalues 1 is equal to 11, no matter how many stations
were added, and the rank of deficiency of Heq stays 11 even when extra dynamics are added.
Also, all linearized systems are bounded-buffer stable. So, nor the bounded-buffer stability,
nor the number of multiplicative eigenvalues 1, nor the rank deficiency of Heq is influenced
when dynamics of additional stations are added. However, it becomes apparent that, from 8
stations onward, no nonempty maximal invariant set can be found. Intuitively, there would
be no reason for there to only be empty maximal invariant sets after 8 stations. However, it
is explicable why this phenomenon might occur. Bounded-buffer stability does not guarantee
the existence of a nonempty maximal invariant set. As the number of stations grows, the
number of inequalities in H · x ≤ h grows, and the dimension of H grows, there are simply
more constraints the maximal invariant set must satisfy.
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Furthermore, since none of the matrices Mθ have all multiplicative eigenvalues strictly less
than 1. Any eigenvector v of this Mθ satisfies Mθ · v = v. Another interesting takeaway from
this table is, bounded-buffer stability is conserved for AURS with larger number of stations.
Adding more stations to the system makes analysis more computationally expensive. When
analyzing implicit MMPS systems consisting of multiple nodes/stations that have identical
dynamics, as is the case for the AURS, it might be interesting to see whether the dynamics and
characteristics of a system with a lot of nodes/stations can be determined by simply analyzing
the same system with much less nodes/stations, improving the computational efficiency of
analysis.
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Chapter 7

Disturbance and Control of the
Augmented Urban Railway System

This chapter examines how the AURS responds to various disturbances, such as changes in
passenger arrival and boarding rates. In Section 7-1, four different types of small, momentary
disturbances are applied to the AURS simulated according to a uniform timetable. The
propagation of the states of the disturbed system are discussed as well. Thereafter, Section
7-2 proposes an offline, open-loop control strategy using the framework proposed in 5 designed
to reject the applied disturbances, and restore uniform behaviour. Lastly, the results of this
applied control strategy are discussed. In chapter 6, an augmented mathematical model
for describing an urban railway line was derived, modeled, and analyzed. Using an initial
condition that was proven to be a fixed-point, the AURS was simulated according to a uniform
timetable. The propagation of the states, and the train trajectories in this simulation are
shown in Figures 6-2, 6-3, 6-4, 6-5, and 6-6. The aim of augmenting the existing URS in the
first place was to model the system in such a way that it better resembles reality, which was
achieved by allowing for more complex flows of passengers traveling to multiple destinations.
In the pursuit of simulating the system according to the uniform timetable, assumptions
regarding the initial and final stations were done to accommodate this uniformity. These
assumptions are justified and elaborated on in 6-7. In this chapter, the fragility of the system’s
uniform behaviour will be shown by applying multiple (small) disturbances to the uniformly
simulated system. In a real-life scenario, such disturbances will inevitably occur. Therefore,
the disturbed system will be analyzed, and a control strategy will be applied in the pursuit
of rejecting said disturbances.
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7-1 Disturbing the AURS

In [18], the original URS was disturbed by introducing a sudden momentary decline in pas-
sengers arriving to the 5th station when the 5th train arrives. The arrival rate decreased
from e5 = 0.5 passengers/s to e5 = 0.3 passengers/s. By applying this small disturbance,
the uniformity was disturbed, and the quantity states started growing, yielding an unstable
system. By applying four different types of disturbance to the uniformly simulated AURS,
an analysis of its response to such disturbances can be done. The disturbances applied are;

• A momentary drop of the arrival rate ej,k from 0.5 passengers/s to 0.3 passengers/s for
station 5 train 5. All other values of ej,k remain 0.5 for all stations and all trains. This
is the same disturbance as applied to the original URS [18].

• A momentary surge of the arrival rate ej,k from 0.5 passengers/s to 0.7 passengers/s for
station 4 train 6. All other values of ej,k remain 0.5 for all stations and all trains.

• A momentary drop of the disembark rate f from 2 passengers/s to 1.5 passengers/s for
station 4 train 6. All other values of f remain 2 for all stations and all trains.

• A momentary surge of the embark rate b from 2 passengers/s to 2.5 passengers/s for
station 5 train 6. All other values of b remain 2 for all stations.

The figures showing the propagation of the train trajectories, and the quantity state σj(k) are
given by the figures below, as these figures nicely demonstrate how the quantity state σj(k)
will grow unbounded over time, after the disturbances have been applied. The divergence in
train trajectories demonstrates the non-uniformity of the simulation after the disturbances
have been applied.

Figure 7-1: Train trajectories of the uniform timetable simulation of the AURS with 10 trains
and 15 stations, disturbed with disturbance 1

V.M. van Heijningen Master of Science Thesis



7-1 Disturbing the AURS 111

Figure 7-2: Number of passengers left on the platform of each station after each train has
departed of the simulation of the AURS with 15 stations and 10 trains, disturbed with disturbance
1

Figure 7-3: Train trajectories of the uniform timetable simulation of the AURS with 10 trains
and 15 stations, disturbed with disturbance 2
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Figure 7-4: Number of passengers left on the platform of each station after each train has
departed of the simulation of the AURS with 15 stations and 10 trains, disturbed with disturbance
2

Figure 7-5: Train trajectories of the uniform timetable simulation of the AURS with 10 trains
and 15 stations, disturbed with disturbance 3
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Figure 7-6: Number of passengers left on the platform of each station after each train has
departed of the simulation of the AURS with 15 stations and 10 trains, disturbed with disturbance
3

Figure 7-7: Train trajectories of the uniform timetable simulation of the AURS with 10 trains
and 15 stations, disturbed with disturbance 4
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Figure 7-8: Number of passengers left on the platform of each station after each train has
departed of the simulation of the AURS with 15 stations and 10 trains, disturbed with disturbance
4

The propagation of the other three quantity states βj(k), ∆j(k) and ρj(k) for these four
disturbed systems are visible in Appendix A. It is immediately visible that for each type of
disturbance, whether it be a surge or a drop of the value of a variable, the system becomes
unstable. The disturbed original URS as in [18], has been controlled using a model predictive
controller, and the applied disturbance has been successfully rejected, stabilizing the system.
The next section will propose, apply, and analyze a control strategy for the AURS.
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7-2 Controlling the URS
In this section, an Open-Loop (OL) control strategy to stabilize the disturbed AURS will
be proposed, applied, and analyzed, respectively. Chapter 5 provided a mathematical frame-
work for applying control strategies to implicit MMPS systems. The AURS is implicit, and
therefore, the results from Chapter 5 will apply, and be of use in the process of constructing
a disturbance rejection controller.

7-2-1 Control Structure
Similarly to the control strategy applied to the original URS, the control strategy of the
AURS relies on shortening or elongating the running time of train k between station j − 1
and j. The state equation for the arrival time of train k at station j, aj(k) is given by;

aj(k) = max(dj−1(k) + τr, dj(k − 1) + τH) (7-1)

When applying control input signal uj(k), this equation can be rewritten as;

aj(k) = max(dj−1(k) + τr + uj(k), dj(k − 1) + τH) (7-2)

The control input is defined as a time difference with a value between −20 and 20 seconds,
−20 ≤ uj(k) ≤ 20. So the unit is seconds (s), however, this control input signal is a quantity
signal. This may sound counterintuitive, as the distinction between temporal signals and
quantity signals could lead us to assume otherwise. However, the applied input signal does
not show temporal signal behaviour, as it is always bounded between −20 s and 20 s and
does not grow steadily as the event counter continues. Therefore, the applied input signal is a
quantity signal. Furthermore, what is defined as a temporal signal is not necessarily a signal
whose unit is seconds (s), hours (h) or some other time quantity, but rather a signal that is
nondecreasing in nature as the event counter k grows.
The system equations of the OL controlled AURS, using the parameters proposed in 6-2 can
be given by the following equations;

aj(k) = max(dj−1(k) + τr + uj(k), dj(k − 1) + τH)

dj(k) = aj(k) + βj(k)
f

+ ∆j(k)
b

ρj(k) = ρj−1(k)− βj(k) + ∆j(k)

σj(k) = max(0, (σj(k − 1) + γ(aj(k) + dj(k − 1) + βj(k)
f

))− (ρmax + βj(k)− ρj−1(k)))

βj(k) = ζj−2,k∆j−2(k) + ζj−1,k∆j−1(k)

∆j(k) = min(ρmax + βj(k)− ρj−1(k), σj(k − 1) + γ(aj(k)− dj(k − 1) + βj(k)
f

))
(7-3)

From these state-space equations, the ABCDE form can be constructed.

7-2-2 ABCDE Form of the OL Controlled System
The set of state-space equations in 7-3 can be transformed in an ABCDE matrix form as per
5-1. The proposed control strategy is an OL control strategy according to strategy 1, where
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the input signal is implemented in the scaling stage. The corresponding ABCDE form of this
system with the proposed control input can therefore be given by;

x(k) = A⊗ (B ⊗′ (C · x(k − 1) + D · x(k) + E · u(k))) (7-4)

In Section 6-3, the ABCD form of this exact system was given. Since the applied control
input signal does not affect either the dimensions, or the entries of the ABCD matrices, only
matrix E will have to be specified in order to fully define the ABCDE form. Recall that input
signal uj(k) can be described by;

uj(k) =
[

uj,t(k)
uj,q(k)

]
(7-5)

E =


Ē1 0 · · · 0

0 Ē2
. . . ...

... . . . . . . 0
0 · · · 0 ĒJ

 (7-6)

With j ∈ {1, 2, . . . , J}. All submatrices Ēj are identical, and can be given by;

Ēj =
[

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

]⊺
(7-7)

Applying the results of Chapter 5, time-invariance and solvability can be determined for the
OL controlled system. Time-invariance will be determined by applying the results from 5-2-2,
where the OL controlled AURS is time-invariant if the following holds;∑

i∈nt

[
C11 D11 E11

]
ℓi

= 1, ∀ℓ ∈ pt

∑
i∈nq

[
C21 D21 E21

]
ti

= 0,∀t ∈ pq
(7-8)

However, since there are no temporal input signals, and therefore, matrices E11 and E21 are
all 0 it must hold that; ∑

i∈nt

[
C11 D11

]
ℓi

= 1, ∀ℓ ∈ pt

∑
i∈nt

[
C21 D21

]
ti

= 0,∀t ∈ pq
(7-9)

The time-invariance condition is now reduced to the time-invariance condition for implicit
MMPS systems as per 3-10. Time-invariance for the uncontrolled AURS was already proven
in 6-3-1, therefore, the OL controlled AURS using this input signal is also time-invariant.
Since the proposed control method is open-loop control, solvability of the controlled implicit
MMPS system will never be violated as per 5-2-3.

7-2-3 Control Methods
Having derived the system properties of the OL controlled AURS, the optimization problem
can be defined. Firstly, an objective function will have to be derived. In the control method
used for controlling the original URS, the following performance signal was defined [18];

pwait
j (k) = ej,k(aj(k)− dj(k − 1) + σj(k − 1)) (7-10)
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The reference value of this performance signal is given as pwait
ref = 15 passengers. The perfor-

mance signal will be used in the objective function for this optimization problem as well. Let
us define the objective function for this optimization as follows;

J(k) = ||pwait(k)− pwait
ref ||1 + ||ρ(k)− ρref ||1 + wu||u(k)||1 (7-11)

This objective function consists of adding three terms. The first term is the absolute difference
between the reference signal pwait

ref and the performance signal, summed over each station for
train k. The second term is the absolute difference between the number of passengers in the
train after leaving the station, and its reference value ρref = 45, summed over each station
for train k. Lastly, the control input is penalized slightly with trade-off weight wu = 0.001.
Hereby, the formal optimization problem can be defined as follows;

min
u(k)

J(k) = ||pwait(k)− pwait
ref ||1 + ||ρ(k)− ρref ||1 + wu||u(k)||1

s.t. x(k) = A⊗ (B ⊗′ (C · x(k − 1) + D · x(k) + E · u(k)))
uj(k) ≤ 20
−20 ≤ uj(k)
x(1) = xe

j ∈ {1, 2, . . . , 15}
k ∈ {2, . . . , 10}

(7-12)

Please note the state-space equation for x(k) is given in this form as to compactly present the
optimization problem. These state-space equations can be recast as a set of linear constraints.
Furthermore, initial condition xe is the initial condition described in Section 6-7, used to
uniformly simulate the system, ensuring the undisturbed system will operate according to
the uniform timetable. Also, as a direct consequence of the way the system is initialized, the
input signal uj(k) is 0 for the all stations of the first train, and the first and second station of
all trains. In Sections 6-5 and 6-6, the initial conditions were given as parametric equations,
and their respective ABCD forms. These parametric equations and ABCD forms do not
include an input signal uj(k). This problem is an Mixed Integer Linear Programming (MILP)
problem, as all constraints are linear, and the system itself can be recast as a continuously
piecewise affine system [7]. Therefore, the global optimum of this optimization problem can
be found. Furthermore, this optimization is an offline optimization, as a single optimization
is performed, and all parameters, constraints and states are known in advance. The result
of the optimization is an optimal input sequence uj(k) for each station and train. A linear
solver in Matlab can be used to solve this problem. The analysis described in this chapter
has been carried out by solving the optimization problems in Matlab using a Gurobi solver.
In the next section, the results of the optimization for the four disturbed systems will be
presented and analyzed.
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7-3 Results and Observations
In this section, the results of solving the optimization problem for the four disturbed systems
given in 7-1 will be presented, and discussed. Each disturbed system will be discussed sep-
arately, after which a general conclusion about the proposed control strategy can be drawn.
However, there are a few general conclusions that can be drawn that hold for all four controlled
systems;

• The value of state σj(k) never exceeds 0, as no passenger is ever left at any station j
when any train k departed as visible in 7-9, B-7, B-12, and B-17. This is to be expected,
and desired, as the trains are never full, which is visible in B-3, B-8, B-13, and 7-12.

• All quantity states converge to their steady-state value after the disturbance was atten-
uated. In the case of the uncontrolled disturbed systems, all quantity states grew over
time after the system was disturbed.

• The trains that ran undisturbed, i.e. the disturbance occurred at a later train, all have
uj(k) = 0 for all stations. This is because their trajectory is still undisturbed, and runs
uniformly, eliminating the need for any control input signal.

• The optimal objective values are significantly lower for the third en fourth disturbed
system, as the system deviated much less from the uniform simulation. Their control
effort was also much lower, strengthening this argument.

More in depth conclusions regarding the specifics of each controlled system are provided in
the following subsections;
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7-3-1 Control of Disturbance 1

The AURS disturbed by disturbance 1 had a momentary drop of inflow of passengers at
station 5 when train 5 arrived. The inflow of passengers e5,5 momentarily dropped from 0.5
passengers/s to 0.3 passengers/s. The figure showing the applied control effort is given in
Figure B-2;

Figure 7-9: Number of passengers left on the platform of each station after each train has
departed of the simulation of the controlled AURS with 15 stations and 10 trains, disturbed with
disturbance 1

The figures showing the propagation of the quantity states, and the train trajectories having
applied the optimal control are visible in Appendix B-1. By applying the proposed control
strategy, and solving the optimization for the optimal control input signal uj(k), the distur-
bance could be attenuated. The used Gurobi solver in Matlab took 5.3 seconds to solve this
optimization problem. Furthermore, the value of the objective function is 11.5726, which is
the optimal value for the optimization problem. By closely examining the figures in Appendix
B-1, the following conclusions can be drawn;

• The number of passengers in train 5 dropped significantly after the disturbance occurred,
which is to be expected if the inflow of passengers decreases.

• The optimal input signal shows some form of oscillatory behaviour within the provided
bounds as it aims to stabilize the system. The oscillations die out as the states converge
to their steady-state value.

• The number of passengers disembarking, represented by state βj(k), logically also drops
when the number of passengers embarking decreases.

• The value of the control input signal reaches the upper bound of 20 seconds for the 5th

train on the 5th station, which is exactly when the disturbance occurs.
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7-3-2 Control of Disturbance 2
The AURS disturbed by disturbance 2, which consisted of a momentary surge of inflow of
passengers at station 4 when train 6 arrived. The inflow of passengers e4,6 increased from 0.5
to 0.7 passengers/s. The figure showing the applied control effort is given in Figure 7-10;

Figure 7-10: Input signal used for attenuating disturbance 2 applied to the AURS with 15 stations
and 10 trains

The figures showing the propagation of the quantity states, and the trajectories having applied
the optimal control are visible in Appendix B-2. By applying the proposed control strategy,
and solving the optimization for the optimal control input signal uj(k), the disturbance could
be attenuated. The used Gurobi solver in Matlab took 6.4 seconds to solve this optimization
problem. Furthermore, the value of the objective function is 13.4530, which is the optimal
value for the optimization problem. By closely examining the figures in Appendix B-2, the
following insights can be obtained;

• The number of passengers in train 6 increased significantly after the disturbance oc-
curred, which is to be expected if the inflow of passengers increased at that moment.
This surge is attenuated by the control input signal.

• The value of state βj(k) also oscillates, which is to be expected. This is because the num-
ber of passengers embarking is logically tied to the number of passengers disembarking.
As more passengers embark, more will eventually disembark.

• The optimal input signal again shows oscillatory behaviour within the provided bounds
as it aims to stabilize the system. The oscillations of the control input signal die out as
the states converge to their steady-state value.

• The magnitudes of the control input signals are significantly lower than for the controlled
system disturbed by disturbance 1.

V.M. van Heijningen Master of Science Thesis



7-3 Results and Observations 121

7-3-3 Control of Disturbance 3

The AURS disturbed by disturbance 3, which consisted of a momentary drop of the disembark
rate of passengers at station 4 when train 6 arrived. The disembark rate f momentarily
decreased from 2 passengers/s to 1.5 passengers/s. The figure showing the applied control
effort is given in Figure 7-11 ;

Figure 7-11: Input signal used for attenuating disturbance 3 applied to the AURS with 15 stations
and 10 trains

The figures showing the propagation of the quantity states, and the train trajectories having
applied the optimal control are visible in Appendix B-3. By applying the proposed control
strategy, and solving the optimization for the optimal control input signal uj(k), the distur-
bance could be attenuated. The used Gurobi solver in Matlab took 5.5 seconds to solve this
optimization problem. Furthermore, the value of the objective function is 2.5050, which is the
optimal value for the optimization problem. By closely examining the figures in Appendix
B-3, the following insights can be obtained;

• Contrary to the previous two controlled systems, this controlled system does not have a
significant drop or surge in passengers in the trains, passengers embarking, or passengers
disembarking. This can logically be explained, as in this case, the number of passengers
embarking train 6 at station 4 does not increase. The applied disturbance does not
change the number of passengers entering the system, just the speed at which they
disembark. By making the train run slightly faster, this loss in time is accommodated
for, and the number of passengers in the train remains the same.

• As visible in the figure for the number of passengers embarking and disembarking, there
is a negligably small decrease in the number of passengers embarking and disembarking.
Since any number of passengers can only be an integer, this numerical error can be
disregarded.
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• The optimal input signal shows a very small control effort at the time of disturbance,
but other than that no oscillatory behaviour.

7-3-4 Control of Disturbance 4

The AURS disturbed by disturbance 4, which consists of a momentary surge of the boarding
rate of passengers at station 5 when train 6 arrived. The embark rate b momentarily increases
from 2 passengers/s to 2.5 passengers/s. The figure showing the applied control effort is given
by Figure 7-12 ;

Figure 7-12: Input signal used for attenuating disturbance 4 applied to the AURS with 15 stations
and 10 trains

The figures showing the propagation of the quantity states, and the train trajectories having
applied the optimal control are visible in Appendix B-4. By applying the proposed control
strategy, and solving the optimization for the optimal control input signal uj(k), the distur-
bance could be attenuated. The used Gurobi solver in Matlab took 5.8 seconds to solve this
optimization problem. Furthermore, the value of the objective function is 1.5030, which is the
optimal value for the optimization problem. By closely examining the figures in Appendix
B-3, the following insights can be obtained;

• Similar to the third controlled system, this controlled system does not have a signif-
icant drop or surge in passengers in the trains, passengers embarking, or passengers
disembarking. Again, this can logically be explained, as in this case, the number of
passengers embarking train 6 at station 4 does not increase. The applied disturbance
does not change the number of passengers entering the system, just the speed at which
they embark. By making the train run slightly slower, the time "saved" by the sped up
boarding stage is accommodated for, and the number of passengers in the train remains
the same.
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• The optimal input signal shows a very small control effort at the time of disturbance,
but other than that no oscillatory behaviour.

7-3-5 Conclusions on the Applied Control Strategies
As was elaborately described in the previous section, all applied disturbances could be atten-
uated by the proposed open-loop control strategy. Designing a controller requires taking into
account a lot of considerations, and demands choices are being made which all have benefits
and drawbacks. The chosen open-loop controller is fast, optimal, will not violate solvablity,
and is easy to implement. However, it is not suitable to compensate for real-time disturbances
or sudden system changes. A closed-loop controller such as a Model Predictive Controller
(MPC) would be a better fit to attenuate real-time disturbances and system changes. Never-
theless, implementing a closed-loop controller is not a fix-all solution, as it brings about its
own challenges. For example, it is much more computationally expensive, the design is more
complex, and could cause the system to become unsolvable and unstable. The purpose of
this chapter was to illustrate that disturbances applied to the AURS could be attenuated by
some control strategy, and the choice was made to attempt to do so by applying an open-loop
controller. An interesting future research opportunity would be to design, apply, and evaluate
different control strategies.
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Chapter 8

Conclusions and Contributions

This Chapter concludes the research carried out in this thesis, and reflects on how the obtained
results answer the research questions posed in Chapter 1. These conclusions are separated into
three parts, with Section 8-1 reflecting on research question 1 and its subquestions. Section
8-2 attempts to form an answer to research question 2 and subquestions, whereas Section 8-3
attempts to answer research question 3 and subquestions. Lastly, a concise overview of the
academic contributions made by the work in this thesis work is given in Section 8-4.

8-1 On Solving Solvability

In this section, the first research question and its subquestions are answered by reflecting on
the results from the research carried out in Chapter 4. Firstly, let us recall the first research
question posed in 1-2. Thereafter, each subquestion, and ultimately, the first main research
question is answered.

1. Is it possible to find a necessary solvability condition for implicit MMPS systems?

(a) Can a graph-theoretic interpretation be used to understand, and generalize beyond
the current algebraic criteria?

(b) What degrees of solvability exist for implicit MMPS systems?

(c) Is it possible to identify a method to classify all implicit MMPS systems with
regards to their degree of solvability?

Having recalled the first research question, the subquestions are subsequently answered;

(a) Can a graph-theoretic interpretation be used to understand, and generalize beyond the
current algebraic criteria?

• In short, yes it can. Section 4-1 describes how structure matrix S = SA · SB · SD

can be represented as an interconnection graph.
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• The value of all non-0 entries in structure matrix S, i.e. the "weights" on the arcs
in the interconnection graph, were proven to have significance as well. Theorem
4-2.4 was proven, and stated that the value of entry [S]ij referred to the number
of times state xj(k) is implicitly included in the expression of state xi(k).

• It is proven that, the existing solvability condition as described in 3-2, holds if the
interconnection graph does not contain any circuits. If the interconnection graph
contains a circuit, the system may not be solvable.

• Furthermore, a method is proposed by which the existence of a circuit can be
proven. Hereby, an different condition that is equally strong as the initial algebraic
solvability condition is derived.

• The states are included in any circuit in the implicit MMPS system, together form
the circuit subsystem, which is a starting port for further analysis of solvability for
implicit MMPS systems.

• Also considering the concept of modes as introduced in 4-2.1, if a mode does not
contain a circuit, it is solvable. Therefore, solvability can only be violated in modes
that do contain a circuit. Multiple degrees of solvability emerge from analysis of
the concept of circuit modes.

(b) What degrees of solvability exist for implicit MMPS systems?

• Section 4-2 proposes four different types of solvability, a system can either be;
uniquely solvable, parametrically solvable, parametrically unsolvable, and strictly
unsolvable.

• The initial solvability condition could determine whether a system is uniquely
solvable. However, Section 4-2 also showed not all systems that are uniquely
solvable satisfy this condition, proving its sufficiency.

• In case an implicit MMPS system is uniquely solvable, all modes have a unique
solution, the system satisfies the solvability condition 4-0.1.

• In case at least one mode of the circuit subsystem of the implicit MMPS system has
a infinitely many solutions, i.e., has a parametric solution, and none of the modes
are (parametrically) unsolvable, the system can be classified as parametrically
solvable. Parametrically solvable implicit MMPS systems satisfy the solvability
condition 4-0.1.

• If at least one mode of the circuit subsystem of the implicit MMPS system is
unsolvable, the entire implicit MMPS system is unsolvable, and the system does
not satisfy the solvability condition 4-0.1.

• An unsolvable system is parametrically unsolvable if the unsolvable mode is still
parametrically solvable under specific values of state x(k−1). Still, a parametrically
unsolvable system does not satisfy the solvability condition 4-0.1

• For implicit MMPS systems that are uniquely solvable, the existence of the in-
verse of (I −M1) can be guaranteed, which is necessary for the linear mapping in
conventional algebra to exist. This property is proven in section 4-4.
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(c) Is it possible to identify a method to classify all implicit MMPS systems with regards
to their degree of solvability?

• Yes, Section 4-2 provides a method to determine which degree of solvability an
implicit MMPS system has.

• The following steps need to be followed in order to determine the degree of solv-
ability;

– Compute matrix S+
⊗ , and determine whether the system contains a circuit

– If all diagonal entries of S+
⊗ are ε, the system is uniquely solvable. This is

equivalent to the initial solvability condition

– Identify the circuit subsystem

– Identify all modes of the circuit subsystem that contain a circuit

– Rewrite each circuit mode of the circuit subsystem in conventional algebra in
the following form; xc(k) = Q · xc(k) + bf

– If rank(I−Q) = rank(I−Q|bf ) = nc, this circuit mode of the circuit subsystem
is uniquely solvable

– If rank(I−Q) = rank(I−Q|bf ) < nc, this circuit mode of the circuit subsystem
is parametrically solvable

– If rank(I −Q) ̸= rank(I −Q|bf ), this circuit mode of the circuit subsystem is
unsolvable

– If there exists a state x(k) for which an unsolvable system, i.e. rank(I −Q) ̸=
rank(I −Q|bf ), becomes parametrically solvable, i.e. rank(I −Q) = rank(I −
Q|bf ) < nc, this circuit mode of the circuit subsystem is parametrically un-
solvable.

Lastly, the first main research question can be answered.

1. Is it possible to find a necessary solvability condition for implicit MMPS systems?

• Yes, a necessary condition for solvability of implicit MMPS systems exists, encom-
passes all aforementioned solvability degrees, and is proven in Section 4-3. This
condition is only necessary under the assumption the system is a minimal realiza-
tion.
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8-2 On Control of Implicit MMPS systems
In this section, the second research question and its subquestions are answered by reflecting
on the results from the research carried out in Chapter 5. Firstly, let us recall the second
research question posed in 1-2. Thereafter, each subquestion, and ultimately, the second main
research question is answered.

2. How can the existing control strategies for explicit MMPS systems be extended to
control strategies for implicit MMPS systems?

(a) Is it possible to find an open-loop control strategy for implicit MMPS systems?

(b) Is it possible to find a closed-loop control strategy for implicit MMPS systems?

(c) What are the conditions for system properties such as time-invariance and solv-
ability for controlled implicit MMPS systems?

Having recalled the research questions, the subquestions can subsequently be answered;

(a) Is it possible to find an open-loop control strategy for implicit MMPS systems?

• Yes, an open-loop control strategy for implicit MMPS systems can easily be derived
by extending the existing explicit open-loop control strategies as proposed in [4].
By adding implicit dynamic matrix D appropriately, the open-loop control strategy
is applicable to implicit systems as well. This control strategy is elaborated on in
Section 5-2.

(b) Is it possible to find a closed-loop control strategy for implicit MMPS systems?

• Yes, similarly to how the open-loop control strategies proposed in [4] were extended
to accommodate for implicit dynamics, the closed-loop control strategies could be
extended as well. An extended state matrix equation was proposed, making the
closed-loop controlled system with state-feedback closely resemble the ABCDE
form as in 5-1.

• Furthermore, a more general implicit input signal expression was proposed, as to
allow the input signals to be implicit as well.

(c) What are conditions for system properties such as time-invariance and solvability for
controlled implicit MMPS systems?

• The conditions for time-invariance of both the open-loop controlled, and the closed-
loop controlled implicit MMPS system were derived. These derived conditions
included the input system matrices, as their addition ought to not violate time-
invariance. These conditions were derived in 5-2-2 and 5-3-2.

• In the case of open-loop control of implicit MMPS systems, there exists no implicit
mapping from the input signals onto themselves, and the input signals are also not
part of the extended state. Therefore, solvability cannot be violated by open-loop
controlling a solvable implicit MMPS system.

• In the case of closed-loop control of implicit MMPS systems however, solvability
may be violated if closed-loop control is applied to a solvable implicit MMPS
system. In Section 5-3, the closed-loop state space equation shows clearly that
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the state is extended by the input signal u(k), which is dependent on the state
x(k). Therefore, an implicit mapping from u(k) to u(k) may occur, which could
violate the solvablility of the closed-loop controlled system. By applying the theory
proposed in Chapter 4, the degree of solvability can be determined.

Lastly, the second main research question can be answered;

2. How can the existing control strategies for explicit MMPS systems be extended to
control strategies for implicit MMPS systems?

• As the answers of the subquestions to this main research question show, this can
be done by developing a framework that does allow implicit dynamics into the
system, instead of merely allowing explicit dynamics.

• When open-loop-, or closed-loop controlling an implicit MMPS system, as opposed
to an explicit MMPS system, solvability is a factor to take into consideration. The
results regarding solvability of implicit MMPS systems as presented in Chapter 4
should be applied to the controlled implicit systems to account for this.
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8-3 On Augmenting, Analyzing and Controlling the Urban Railway
System

In this Section, the third research question and its subquestions are answered by reflecting
on the results from the research carried out in Chapter 6 and Chapter 7. Firstly, let us recall
the third research question posed in 1-2. Thereafter, each subquestion, and ultimately, the
third, and last main research question is answered.

3. Can the theoretical results regarding solvability and control of implicit MMPS systems
be validated and/or tested by applying them to a complex real-world system such as an
Urban Railway System?

(a) Is it possible to augment the Urban Railway System proposed in [18] such that it
accommodates complex passenger flows?

(b) What insights can be gained from analyzing the dynamic behaviour of this Aug-
mented Urban Railway System?

(c) Can this Augmented Urban Railway System subsequently be simulated accord-
ing to a uniform timetable, disturbed, and controlled using the proposed control
strategies for implicit MMPS systems?

(a) Is it possible to augment the Urban Railway System proposed in [18] such that it
accommodates complex passenger flows?

• Yes, by changing the dynamics of the system, complex passenger flows are accom-
modated for in the system equations,

• Instead of having a fixed fraction of passengers disembark train k at station j,
matrix ζ is introduced, where entry [ζ]ij represents the fraction of passengers who
embarked at station i, who disembark at station j. Hereby, it is possible to assign
passengers an origin, and a destination, rather than not considering the origin of
the passengers in the train, and having a fixed fraction of them disembark.

• Furthermore, the state-space equations must change to accommodate for this flow
matrix. This is done by rewriting the existing states, and adding two quantity
states, one for the number of passengers embarking train k at station j, and one
for the number of passengers disembarking train k at station j.

• The resulting system has 6 states, 2 of which are temporal states, and 4 of which
are quantity states.

(b) What insights can be gained from analyzing the dynamic behaviour of this Augmented
Urban Railway System?

• By attempting to simulate the system according to a uniform timetable, it became
apparent that initialization of such a system is incredibly important. Besides
having to initialize the first train, with the chosen matrix ζ, the first two stations
have to be initialized as well.

• Furthermore, some of the initialization dynamics, regarding the time interval of
trains departing the first, and second station, appear in the state-space matrices,
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therefore already constraining the system to have one predetermined growth rate.

• Multiple (stable) fixed-points corresponding to this growth rate could be deter-
mined, by solving the LPP given in 3-33 for all possible footprint matrices. An
important conclusion regarding these fixed-points is that, even though these fixed-
points are fixed-points in a mathematical sense, they do not always correspond to
desired behaviour of the system. The fixed-points obtained by solving the LPPs
did not correspond to system behaviour corresponding to a uniform timetable.

(c) Can this Augmented Urban Railway System subsequently be simulated according to a
uniform timetable, disturbed, and controlled using the proposed control strategies for
implicit MMPS systems?

• By manually deriving an initial condition, and verifying that this initial condition
is a fixed-point, it turned out to be possible to simulate the system according to a
uniform timetable, as was done in Section 6-7.

• Four different types of small, momentary disturbances were applied to the system,
all causing the uniformity of the system behaviour to be compromised. The number
of passengers left behind on the platforms after the trains left the stations started
to grow linearly, indicating an unstable system.

• By applying open-loop control to the disturbed systems, these disturbances could
all successfully be attenuated. The control strategy could be described using the
open-loop control framework proposed in Chapter 5. This MILP problem could be
solved using a Gurobi solver in a matter of seconds.

Lastly, the third main research question could be answered;

3. Can the theoretical results regarding solvability and control of implicit MMPS systems
be validated and/or tested by applying them to a complex real-world system such as an
Urban Railway System?

• In short, yes, this is possible. An important remark is that obviously only an
open-loop control strategy was applied, so the closed-loop control strategy could
not be validated. The solvability could however be determined using the proposed
methods.
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8-4 Contributions
This thesis contributes to research in the fields of Systems and Control and Discrete Event
Systems, specifically, to the field of Max-Min-Plus-Scaling systems. The academic contribu-
tions made by this thesis are quantified by the following results;

• Developed a graph-theoretic interpretation of the existing solvability condition,

• Identified four different degrees of solvability within implicit Max-Min-Plus Scaling sys-
tems

• Introduced methods to classify all implicit MMPS systems according to their degree of
solvability

• Derived a condition for implicit MMPS systems containing a circuit that guarantees the
existence of the inverse of (I −M1), provided the condition is satisfied

• Proved a necessary solvability condition for implicit MMPS systems under the assump-
tion of the system being a minimal realization

• Proposed open-loop control strategies for implicit MMPS systems

• Proposed closed-loop control strategies for implicit MMPS systems

• Derived conditions for solvability and time-invariance for the proposed open-loop, and
closed-loop control strategies

• Augmented the Urban Railway System described in [18] to allow for complex passenger
flow through the system, more closely modeling reality

• Analyzed, disturbed, and controlled the Augmented Urban Railway System using the
theoretical results regarding solvability and control of implicit MMPS systems
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Recommendations for Further
Research

As with almost all research, this work raises new questions alongside the answers it provides.
This section reflects on the main findings and outlines several directions for future research.
All proposed future research opportunities, and described uncovered knowledge gaps aim to
deepen the understanding of Max-Min-Plus-Scaling (MMPS) systems, Discrete Event Sys-
tems, or control of Implicit (MMPS) systems;

• Derive conditions for monotonicity and non-expansiveness for implicit MMPS
systems

Having thoroughly researched the property of solvability for implicit MMPS systems, it may
be an interesting research direction to try to develop conditions for the properties of mono-
tonicity and non-expansiveness. In case such conditions were to be established, the concept
of topical implicit MMPS systems may emerge, allowing properties of topical systems to ap-
ply to topical implicit MMPS systems as well. For example, there always being exactly one
growth rate.

• Establish requirements for when a realization of an (implicit) MMPS system
is minimal

The necessary solvability condition only holds under the assumption that the system is a
minimal realization, so no redundant mode, or unused term in z(k) exists. However, the
concept of minimal realizations in this context has not been properly defined or researched in
known literature. Accurately determining conditions that a system must satisfy in order to
be a minimal realization is very useful, as it reflects back on whether the necessary solvability
condition is applicable. Furthermore, it may aid in reducing the size of the MMPS system,
as identifying redundant nodes means they can be removed from the system equations.

• Accommodate for the dynamics of the first, and last station of the state-
space description of the Augmented Urban Railway System (AURS)
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Section 6-7 thoroughly described the simulation of the AURS according to a uniform timetable.
Assumptions regarding the first and last station had to be done to preserve this uniformity.
Therefore, a logical physical interpretation of the AURS simulated according to the uniform
timetable is that the observed stations are part of a larger network, i.e. the physical limita-
tions regarding first and last station can be disregarded. However, when aiming to simulate
the system resembling a real-life scenario where the first station is actually the start of an
urban railway line, these physical limitations, such as, no passengers disembark at station 1,
will have to be accounted for. Further research could investigate how to properly integrate
these dynamics into the system equations.

• Apply closed-loop control strategies, or online control strategies to the AURS

The control strategy applied to the AURS is an offline, open-loop control strategy. It would
be interesting to uncover how other types of control, such as a receding horizon MPC, which
is an online control strategy, would attenuate different types of disturbances. The limitation
of applying offline control, is that it is not able to deal with real-time disturbances, which
a control strategy like a receding horizon MPC could handle better. Furthermore, state-
feedback controllers, i.e. closed-loop controllers have not been applied to implicit MMPS
system in any known literature, constituting an interesting research opportunity.

• Improve the AURS by modeling an intersection of two railway lines

The dynamics describing the AURS are still limited to describing a single urban railway line.
An interesting research direction would be to investigate how an intersection of two railway
lines, i.e. a URS containing stations where passengers can transfer can be modeled. Adding
such complexities in the system require advanced mathematical modeling, and will surely
enlarge the size of the model. However, adding such dynamics will broaden the applicability
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Disturbances applied to the AURS

A-1 Disturbance 1 - decrease in passenger arrival rate ej,k

Figure A-1: Number of passengers in each train after leaving each station of the simulation of
the Augmented URS with 15 stations and 10 trains, disturbed with disturbance 1
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Figure A-2: Number of passengers disembarking each train at each station of the simulation of
the Augmented URS with 15 stations and 10 trains, disturbed with disturbance 1

Figure A-3: Number of passengers embarking each train at each station of the simulation of the
Augmented URS with 15 stations and 10 trains, disturbed with disturbance 1
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A-2 Disturbance 2 - surge in passenger arrival rate ej,k

Figure A-4: Number of passengers in each train after leaving each station of the simulation of
the Augmented URS with 15 stations and 10 trains, disturbed with disturbance 2

Figure A-5: Number of passengers disembarking each train at each station of the simulation of
the Augmented URS with 15 stations and 10 trains, disturbed with disturbance 2
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Figure A-6: Number of passengers embarking each train at each station of the simulation of the
Augmented URS with 15 stations and 10 trains, disturbed with disturbance 2

A-3 Disturbance 3 - decrease in disembark rate f

Figure A-7: Number of passengers in each train after leaving each station of the simulation of
the Augmented URS with 15 stations and 10 trains, disturbed with disturbance 3
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Figure A-8: Number of passengers disembarking each train at each station of the simulation of
the Augmented URS with 15 stations and 10 trains, disturbed with disturbance 3

Figure A-9: Number of passengers embarking each train at each station of the simulation of the
Augmented URS with 15 stations and 10 trains, disturbed with disturbance 3
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A-4 Disturbance 4 - surge in embark rate b

Figure A-10: Number of passengers in each train after leaving each station of the simulation of
the Augmented URS with 15 stations and 10 trains, disturbed with disturbance 4

Figure A-11: Number of passengers disembarking each train at each station of the simulation
of the Augmented URS with 15 stations and 10 trains, disturbed with disturbance 4
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Figure A-12: Number of passengers embarking each train at each station of the simulation of
the Augmented URS with 15 stations and 10 trains, disturbed with disturbance 4
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Appendix B

Controlled AURS

B-1 Controlled system 1 - decrease in passenger arrival rate ej,k

Figure B-1: Train trajectories of the controlled simulation of the Augmented URS with 10 trains
and 15 stations, disturbed with disturbance 1
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Figure B-2: Input signal used for attenuating disturbance 1 applied to the AURS with 15 stations
and 10 trains

Figure B-3: Number of passengers in each train after leaving each station of the simulation of
the controlled Augmented URS with 15 stations and 10 trains, disturbed with disturbance 1
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Figure B-4: Number of passengers disembarking each train at each station of the simulation of
controlled the Augmented URS with 15 stations and 10 trains, disturbed with disturbance 1

Figure B-5: Number of passengers embarking each train at each station of the simulation of the
controlled Augmented URS with 15 stations and 10 trains, disturbed with disturbance 1
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B-2 Controlled system 2 - surge in passenger arrival rate ej,k

Figure B-6: Train trajectories of the controlled simulation of the Augmented URS with 10 trains
and 15 stations, disturbed with disturbance 2

Figure B-7: Number of passengers left on the platform of each station after each train has
departed of the simulation of the controlled AURS with 15 stations and 10 trains, disturbed with
disturbance 2
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Figure B-8: Number of passengers in each train after leaving each station of the simulation of
the controlled Augmented URS with 15 stations and 10 trains, disturbed with disturbance 2

Figure B-9: Number of passengers disembarking each train at each station of the simulation of
controlled the Augmented URS with 15 stations and 10 trains, disturbed with disturbance 2
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Figure B-10: Number of passengers embarking each train at each station of the simulation of
the controlled Augmented URS with 15 stations and 10 trains, disturbed with disturbance 2

B-3 Controlled system 3 - decrease in disembark rate f

Figure B-11: Train trajectories of the controlled simulation of the Augmented URS with 10
trains and 15 stations, disturbed with disturbance 3
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Figure B-12: Number of passengers left on the platform of each station after each train has
departed of the simulation of the controlled AURS with 15 stations and 10 trains, disturbed with
disturbance 3

Figure B-13: Number of passengers in each train after leaving each station of the simulation of
the controlled Augmented URS with 15 stations and 10 trains, disturbed with disturbance 3
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Figure B-14: Number of passengers disembarking each train at each station of the simulation
of controlled the Augmented URS with 15 stations and 10 trains, disturbed with disturbance 3

Figure B-15: Number of passengers embarking each train at each station of the simulation of
the controlled Augmented URS with 15 stations and 10 trains, disturbed with disturbance 3
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B-4 Controlled system 4 - surge in embark rate b

Figure B-16: Train trajectories of the controlled simulation of the Augmented URS with 10
trains and 15 stations, disturbed with disturbance 4

Figure B-17: Number of passengers left on the platform of each station after each train has
departed of the simulation of the controlled AURS with 15 stations and 10 trains, disturbed with
disturbance 4
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Figure B-18: Number of passengers in each train after leaving each station of the simulation of
the controlled Augmented URS with 15 stations and 10 trains, disturbed with disturbance 4

Figure B-19: Number of passengers disembarking each train at each station of the simulation
of controlled the Augmented URS with 15 stations and 10 trains, disturbed with disturbance 4
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Figure B-20: Number of passengers embarking each train at each station of the simulation of
the controlled Augmented URS with 15 stations and 10 trains, disturbed with disturbance 4
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Appendix C

Fixed point analysis of the AURS

Table C-1: Analysis of 41 fixed points of the AURS with J = 4 stations

# Multiplicity e.v. 1 Mθ BB stable? Heq rank def. O∞ found Iter
1 11 Yes 11 Yes 2
2 11 Yes 11 Yes 3
3 11 Yes 11 Yes 3
4 11 Yes 11 Yes 4
5 12 No 11 No −
6 11 Yes 11 Yes 2
7 12 No 11 No −
8 11 Yes 11 Yes 3
9 12 No 11 No −
10 12 No 11 No −
11 12 No 11 No −
12 12 No 11 No −
13 11 Yes 11 Yes 2
14 11 Yes 11 Yes 3
15 13 No 11 Yes 45
16 12 No 11 Yes 34
17 12 No 11 Yes 17
18 11 Yes 11 Yes 2
19 13 No 11 No −
20 12 No 11 Yes 27
21 12 No 11 No −
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156 Fixed point analysis of the AURS

# Multiplicity e.v. 1 Mθ BB stable? Heq rank def. O∞ found Iter
22 12 No 11 No −
23 12 No 11 No −
24 12 No 11 No −
25 13 No 11 No −
26 12 No 11 Yes 28
27 13 No 11 Yes 236
28 12 No 11 Yes 38
29 13 No 11 No −
30 13 No 11 No −
31 13 No 11 No −
32 13 No 11 No −
33 13 No 11 Yes 61
34 13 No 11 Yes 115
35 14 No 11 No −
36 13 No 11 Yes 26
37 14 No 11 Yes 117
38 13 No 11 Yes 27
39 14 No 11 Yes 24
40 14 No 11 Yes 141
41 11 Yes 11 Yes 4
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Glossary

List of Acronyms
AURS Augmented Urban Railway System
CL Closed-Loop
DES Discrete Event System
LPP Linear Programming Problem
MILP Mixed Integer Linear Programming
MMP Max-Min-Plus
MMPS Max-Min-Plus-Scaling
OL Open-Loop
URS Urban Railway System
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