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Summary

Structural optimization, first introduced by Schmidt in 1960 [1], is a rapid growing factor in
the development of new aerospace structures. This growth is established by the increase in
numerical modelling techniques, cheaper computer power, the increasing cost of production
and competition between companies. The combination of both structural optimization and
finite element software allowed for the rise of new and more efficient optimization methods
provided that the software can perform sensitivity analysis.

Many programs used in industry today such as BOSS Quattro [2], PASCO [3] and VICONOPT
[4] restrict themselves to basic optimization methods. The goal now is to develop an opti-
mizer for stiffened panels, using a combination of FEM and a more advanced optimization
method.

Interior point methods have been proven to be more efficient than primal-dual methods for
solving sub-problems[5]. Therefore Mehrotra’s predictor-corrector interior point method is
used in the version of Zillober [7]. To reach convergence convex approximations are required.
The conservative approximation from Fleury’s ConLin [6] provides the basis of many other
more advance approximation methods. Therefore this method is chosen to form the initial
optimizer.

A 2D The FEM model is established using shell and bar elements for the panel and stiffeners
respectively. This allows for easy adjustment of the geometry without the need to change
the model itself. The bar element properties are defined by the PBAR card rather than the
PBARL card in NASTRAN. This avoids the input of fixed NASTRAN specified cross sections
with limited design freedom.

The sensitivities with respect to stiffener properties are extracted from NASTRAN. These are
then converted to the required sensitivities using analytical equations. With all the necessary
information available, the inner loop of the optimization process is initiated. Approximations
of the constraints, objective and sensitivities are produced. Based on the approximations, the
predictor step establishes a maximum step size, which is then adjusted by the corrector step
to a more feasible one. This is done iteratively until the duality gap is below a specified limit.
Finally a new outer iteration can start if no convergence is reached.

Master of Science Thesis M. Deklerck



viii Summary

Three goals were achieved by analysing of 11 test cases. First the optimizer shows that it can
handle different property sets for the stiffeners within the same panel. Secondly, the opti-
mization works for different cross sections. Finally, when performed for similar panels with
a different amount of stiffeners, an optimal number is found. The optimization is performed
for minimum weight while limited by stress, buckling and design constraints. The results
indicate that for 8 out of 11 cases convergence is reached within 12 cycles. Due oscillatory
behaviour two other cases converged relatively slow and one did not converge at all. This
happens due to the incapability of the optimizer to consider new buckling modes establish-
ing with the adjustment of the parameters.

In the end however all three statements were proven outside of the three oscillating cases. For
the model that was defined, the optimal amount of stiffeners is 7. Additionally I-beam stiff-
ener provided the most consistent performance with respect to convergence. Finally for this
case, although optimizing for different stiffener properties per panel lead to a small reduction
in weight, it is not worth the computational effort.

So it can be concluded that the optimizer works. On top of this the restrictions on the cross-
section defined by NASTRAN were eliminated by extracting a different set of sensitivities and
adjusting them using analytical equations. This leads to an optimizer, which can perform
size and shape optimization by use of NASTRAN analyses, analytical transformations and an
interior point optimization method.
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Chapter 1

Introduction

Structural optimization, first introduced by Schmidt in 1960 [1], is a rapid growing factor in
the development of new structures. This growth is established by the increase in numerical
modelling techniques, cheaper computer power, the increasing cost of production and com-
petition between companies. The combination of both structural optimization and finite
element software allowed for the rise of new and more efficient optimization methods. These
methods are based on the fact that recent FE software is capable of providing a sensitivity
analysis of the structure.

One of the most important structures in distinct field of engineering is a stiffened panel. In
aerospace, the load bearing part of the wing consists primarily out of stiffened panels as they
allow for low weight and high resistance to compressive and bending loads. Therefore these
are generally optimized using packages such as BOSS Quattro [2], PASCO [3] and VICONOPT
[4]. These however often restrict themselves to basic optimization methods.

The goal of this thesis is to develop an optimizer for stiffened panels by combining FE soft-
ware with an interior point method coded in MATLAB.

The FE software and optimization method selected are NASTRAN and Mehrotra’s predictor
corrector interior point method as described by Zillober [7] respectively. The optimization
method requires convex approximations in order to reach convergence. Therefore the Con-
Lin conservative approximation scheme is used [6]. For the FE analyses, the problem is re-
duced from 3D to 2D for faster analyses and optimization. It simplifies the model and en-
ables adjustment of stiffener dimensions by adjusting the applied properties. Stiffeners can
be defined in NASTRAN by indicating its cross section geometry and dimensions. This limits

Master of Science Thesis M. Deklerck



2 Introduction

the types of cross sections and their design freedom to those in the NASTRAN database. A
free choice of design variables is preferred therefore, a solution for these restrictions is estab-
lished.

Mehrotra’s predictor corrector method was selected together with ConLin’s approximation
method after a thorough literature study. The most important parts of this study are reca-
pitulated in Chapter 2 clarifying the choice of that specific combination. Once the method
is established, a model is defined for optimization. Chapter 3 provides a description of the
setup and a reasoning behind some important choices with respect to property and element
definition. Finally Chapter 4 describes the optimization process, which is applied to several
test cases and discusses the results. The conclusion and recommendations for the thesis can
be found in Chapter 5 and 6 respectively.

M. Deklerck Master of Science Thesis



Chapter 2

Literature Study

Optimizing a stiffened panel requires some general information about stiffened panels and
optimization. Section 2.1 handles the typical stiffeners, loads and failure modes of stiffened
panels, while Section 2.2 discusses the general optimisation process and some typical meth-
ods used for structures.

2.1 Stiffened panels

Stiffened panels are one of the more common structural parts used in distinct fields of en-
gineering such as aerospace. The stiffeners attached to the panels are required to increase
the panel’s resistance against buckling and general stresses accomplishing a high strength
to weight ratio. In practice, companies mostly use a distinct set of stiffener shapes of which
most are depicted in Figure 2.1.

The loads on an aircraft wing during flight are represented by Figure 2.2. These loads clearly
show that the load bearing parts of the wing need to sustain either compressive or tensional
forces. The wingbox, which is the load bearing component of a wing needs to accomplish this
feature. For that reason it consists of two stiffened panels on the top and bottom of the wing,
two spars on the sides and ribs across the length of the wing as shown in Figure 2.3. Stiffened
panels thus form an important part of the load bearing capabilities of a wing.

Compressive loads are the origin for more failure modes than tensional loads. Therefore,
Stiffened panels in compressions form the basis for this section and research in general. Since

Master of Science Thesis M. Deklerck



4 Literature Study

Figure 2.1: Typical cross-sections for stiffeners

Figure 2.2: Loads on a wing of an aircraft
during flight [8]

Figure 2.3: Simplistic
wingbox configuration [9]

the wing is not supposed to fail their are several failure modes that have to be accounted
for. These can consist of failure of the stiffener, panel or a combination of both. Figure 2.4
provides a visual representation of those failure modes while the list below provides a general
description [10].

• Stress failure Failure of the panel induced by a stress exceeding the stress limit, which
is usually the yield or ultimate stress depending if plastic deformation is allowed.

• Buckling failure modes Figure 2.4

a Global buckling: Buckling of the panel and stiffeners in a combined mode. This
buckling mode appears more frequently when the stiffness of the panel is rela-
tively larger than that of the stiffeners.

b Panel buckling: Local buckling of the part of the panel between stiffeners and/or
boundary. This part is also called a sub-panel.

M. Deklerck Master of Science Thesis



2.1 Stiffened panels 5

c Beam-Column buckling: Column buckling of the stiffeners. Can result in global
buckling or just happen in combination with another panel buckling mode. The
buckling mode is enforced by failure of a combination of the stiffener and the
effective panel width.

d Local buckling: Stiffener induced failure mode by local buckling of the web.

e Flexural-torsional buckling: Buckling mode similar to the local buckling of the
stiffener web. However when ’tripping’ occurs the plate loses its effective stiffness,
which results in a global buckling mode.

Figure 2.4: Buckling failure modes for stiffened panels [10]

The finite element model presented in Chapter 3 can not determine failure modes c-e due to
the reduction from 3D to 2D. Therefore, only global and panel buckling are discussed in more
detail.

The global buckling load of a stiffened panel under uni-axial compression can be determined
by handling it as a single beam. In case of a panel that is simply supported at the load bearing
sides, the global buckling load can be determined by Equation (2.1). Where E is the young’s
modulus, I is the area moment of inertia, K is a factor necessary to account for different
boundary conditions and (1−ν2)L2 is the equivalent length [11]. The moment of inertia in
this case is determined by the stiffeners and the effective panel width [12]. The latter is de-
fined by Equation (2.2), where T is the panel thickness, E is young’s modulus and σy is the

Master of Science Thesis M. Deklerck



6 Literature Study

yield stress. The effective width represents the part of the skin which aides in the increase of
the resistance against buckling of the stiffeners.

Pcr = π2E I

K (1−ν2)L2 (2.1)

We f f = T

√
E

σy
(2.2)

Equation (2.3)[11] defines the buckling of a normal simply supported panel. However this
same equation can be used for the sub-panels where the stiffeners define elastic boundary
conditions. D is the flexural stiffness as given by Equation (2.4). The variables a,b and t are
the length, width and thickness of the panel while m and n represent the halve-waves in y
and x direction respectively as depicted in Figure 2.5a. Note that for simplicity the boundary
conditions enforced by the stiffeners are frequently defined as simply supported. However
a slight deviation in the results should be expected under those assumptions. For different
boundary conditions, coefficients for adjustment can be determined by use of Figure 2.5b
[11].

σcr = Dπ2

t

[(m

a

)2
+

(n

b

)2
]2 ( a

m

)2
(2.3)

D = Et 3

12(1−ν2)
(2.4)

2.2 Structural Optimization

The general statement of an optimization problem consists in minimizing an objective func-
tion f0(X ) subjected to behaviour constraints g j (X ) insuring the feasibility of the structural
design. This problem expressed by Equation 2.5 has to be solved in order to reach an optimal
design.

mi n
X

f0(x)

s.t . : g j (x) ≤ 0 j = 1, ...,m

xmi n
i ≤ xi ≤ xmax

i i = 1, ...,n (2.5)

M. Deklerck Master of Science Thesis



2.2 Structural Optimization 7

(a) Simply supported panel under uni-axial
compression.

(b) Effect of different boundary conditions.

Figure 2.5: Panel Buckling

These kind of problems are generally solved in two steps. First an outer loop in which the
analysis of the model is performed and secondly an inner loop where the optimization pro-
cess is performed based on the information of the analysis. The inner loop transforms the
problem into an unconstrained one, which is then optimised by use of dual variables, ap-
proximated sub-problems and a certain optimisation method.

Section 2.2.1 handles different methods used to transform a constraint problem to an uncon-
strained problem. The principle of duality is explained in Section 2.2.2. Some of the most
basic approximation methods are explained in Section 2.2.3. Finally, the optimisation meth-
ods are described in Section 2.2.4. Once all the methods are explained, a small trade-off is
performed to determine which one is most fit for implementation in Section 2.2.5.

2.2.1 Transformation to unconstrained problem

Sequential penalty transformation or exact penalty transformations are the two main meth-
ods for transforming a constrained to an unconstrained problem [14]. The group of sequen-
tial penalty transformation consists of 2 major classes, the barrier function methods and the
penalty function methods. These are also called the interior-point penalty function methods
and exterior-point penalty function methods respectively.

In practice, barrier functions are preferred as they will always lead to a feasible design even
if convergence is not reached. Equation (2.6) indicates the general expression for a transfor-
mation using a barrier function. Where the barrier function B(x) is positively defined in the

Master of Science Thesis M. Deklerck



8 Literature Study

interior of the constraint set and goes to infinity as x approaches the boundary. Typical bar-
rier functions are logarithmic as shown in Equation (2.7). Note that barrier functions are not
applicable to equality constraints. An example of the barrier function method can be seen in
Figure 2.6a.

T (x,r )∆= f (x)+ r B(x), r > 0 (2.6)

B(x)∆= −
m∑

j=1
ln[−g j (x)] (2.7)

(a) Barrier Transformation (b) Penalty transformation

Figure 2.6: Transformation methods from problem (f) with constraints (g) to
unconstrained problem ( f̃ )[15]

Penalty function methods are generally used for solving equality constraints. Equation (2.8)
shows the general transformation using the penalty function method. The corresponding
penalty functions are given by Equations (2.9) and (2.10) for inequality and equality con-
straints respectively. The inequality penalty function is more generally named the quadratic
loss function. An example of the penalty function method for inequality constraints can be
seen in Figure 2.6b.

T (x,r )∆= f (x)+ r−1P (x), r > 0 (2.8)

P (x)∆=
m∑

j=1
[max(0, g j (x))]2 (2.9)

P (x)∆=
m∑

j=1
[h j (x)]2 (2.10)

To avoid ill-conditioning of the penalty transformation methods, an augmented Lagrangian
is implemented. This consists of a lagrangian function where the stationary point x∗ is kept
consistent and thus only the Hessian of the Lagrangian projected on the tangent subspace is
adjusted. In order to achieve this the function should comply with the following properties
at x∗;

M. Deklerck Master of Science Thesis



2.2 Structural Optimization 9

• x∗ is a stationary point

• The curvature in the tangent subspace is positive (yT Hy>0 ∀y)

• the curvature in the normal subspace is 0 (O f =0)

2.2.2 Principle of duality

Duality is a very important concept in optimization [16]. It exploits the separable form of
each approximate sub-problem to construct a sequence of explicit dual functions. The most
general principle of duality is explained below. Assume the problem as seen in Equation 2.11.

mi n
X

f0(x) = cT x

s.t . : g j (x) : a j x ≥ b j = 1, ...,m

xi ≥ 0 i = 1, ...,n (2.11)

Now the constraints are replaced by maximum conditions, which leads to a new primal prob-
lem such as shown in Equation (2.12). Where Π and s are dual variables, in this kind of opti-
misation also known as Lagrangian multipliers.

f̃ = cT x+max
Π≥0

(−ΠT (Ax−b))+max
s≥0

(−sT x) (2.12)

By replacing them with maximum conditions the following relations specified by Equations (2.13)
and (2.14) show that the constraints have to be uphold to reach a minimum.

max
Π≥0

(−ΠT (Ax−b)) =
{

0 if Ax ≥ b
−∞ if else

(2.13)

max
s≥0

(−sT x) =
{

0 if x ≥ 0
−∞ if else

(2.14)

Knowing that x and c are not a function of s andΠ, it can be taken into the maximum criterion
resulting in the optimization problem specified in Equation (2.15).

mi n
x

max
s,Π≥0

(
(cT x−ΠT (Ax−b)−sT x

)
(2.15)

Master of Science Thesis M. Deklerck



10 Literature Study

Assuming super duality allows switching between the minimum and maximum criteria while
transposing the components inside them resulting in the optimisation shown in Equation (2.16).

max
s≥,ΠT

mi n
x

(
(c−ATΠ−s)xT +bTΠ

)
(2.16)

This equation using the reversed method from before, it can again be written as a problem as
given by Equation 2.17. Note that the number of variables and constraints have changed.

max
Π

f0(Π) = bTΠ

s.t . : g j (Π) : a jΠ≥ c j = 1, ...,n

si ≥ 0 i = 1, ...,m (2.17)

From this example it is clear that dual functions have the advantage of being solvable within
the dual space for which the dimensionality is lower leading to higher computationally effi-
ciency. Based on the theory of the duality, it is known that solving problems in the space of
primal variables Xi is equivalent to maximizing a function that depends on the Lagrangian
multipliers λ j as proven above. The general expression for the Lagrangian in numerical pro-
cedures is defined by Equation (2.18) [14].

L(x,λ) = f (x)−λT h(x) (2.18)

Note that analytically, the Lagrangian multipliers λ j are determined based on the necessary
condition for a minimum. This condition states that to achieve a minimum, the gradient of
the objective must be a linear combination of the gradients of the constraints, at this mini-
mizing point. The actual Lagrangian multipliers are those who satisfy Equation (2.19). The
ones that do not satisfy the stationary conditions are to be considered Lagrangian multiplier
estimates.

O f (x†)+λTOh(x†) = 0T . (2.19)

Finally the solution to the primal problem can be given by

M ax( Mi n
xi≤xi≤xi

L(x,λ)) (2.20)
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2.2.3 Approximations

Approximation concepts for structures were introduced by Schmidt in 1976 [17]. They were
developed since, up to that point, many optimization approaches lead to an excess of one or
more of the issues mentioned below.

1. Too many independent design variables

2. Too many behaviour constraints are considered throughout the entire process.

3. Too many structural analyses

In 1985 Braibant and Fleury [18] stated that the goal for an approximation concepts approach
is to replace the primary optimization by a sequence of explicit sub-problems by use of:

• Coordinate use of design variable linking

• Temporary constraint deletion

• Construction of high-quality explicit approximations for retained constraints.

The two most basic approximations are described below. [19]

Linear approximation A linear approximation is simply the basic taylor series expansion
as given by Equation (2.21). It uses the information of an initial point in combination with
its gradient to determine a linear approximation of the function such that a new point can be
estimated based on the step length.

f̃ (x) = f (x)+
n∑

i=1
(xi −x0

i )
δ f (x0)

δxi
(2.21)

Reciprocal approximation The reciprocal approximation can be seen as an adjusted form
of the general taylor series expansion. However instead of expanding the function with re-
spect to x it is expanded to 1/x. This expansion leads to Equation (2.22).

f̃ (x) = f (x)+
n∑

i=1
(xi −x0

i )
x0

i

xi

δ f (x0)

δxi
(2.22)
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Figure 2.7: Linear and reciprocal approximation methods

Both approximations are presented in Figure 2.7. Here you can see that if the function y
would represent a constraint, where above is feasible and below is infeasible, the reciprocal
approximation would lead to a feasible point while the linear approximation would lead to
an infeasible point. However if the gradient would be positive, the reciprocal approximation
would deviate from the constraint faster than the linear approximation.

2.2.4 Optimization methods

One of the initial optimisation methods that was applied in structural optimization programs
is the ConLin method introduced by Fleury in 1989 [6]. This method formed the basis of the
well known method of moving asymptotes developed by Svanberg [13]. The globally conver-
gent version of the method of moving asymptotes eventually resulted in a new class of meth-
ods called sequential convex programming. Additionally, another class under the name of
Sequential Quadratic Programming was developed in the 1970’s. All these different methods
are addressed in this section.

ConLin method

ConLin [6] is a convex linearisation algorithm developed by C.Fleury in 1989 and was one of
the pioneering optimization algorithms for structural applications. ConLin is an extension
on the approximation concepts approach. It performs a linearisation process with respect to
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mixed variables, either direct or reciprocal for each function independently. The optimizer
itself will select the appropriate approximation scheme based on the signs of the derivatives
at each successive iteration point. Furthermore, the algorithm has the inherent tendency to
steadily improve the feasible designs. Constraint relaxation is performed on violated con-
straints to cope with infeasible starting points.

The linearisation scheme used in the ConLin algorithm is presented in Equation (2.23) and
is normalized to the unity of the current point x0 in Equation (2.24). Note that within this
equation

∑
+ and

∑
− indicate the summation of the terms where fi is positive and negative

respectively. Therefore this approximation carries out a direct linearisation over the positive
set and a reciprocal linearisation over the negative set resulting in a conservative approxima-
tion.

f (x) = f (x0)+∑
+

f 0
i (xi −x0

i )−∑
−

(x0
i )2 f 0

i (
1

xi
− 1

x0
i

) (2.23)

f (x ′) = f (x0)+∑
+

f ′
i (x ′

i −1)−∑
−

f ′
i (

1

x ′
i

−1) (2.24)

Eventually applying the linearisation technique to each function provides the following ex-
plicit sub-problem presented in Equation 2.25. Note that the superscript ’ has been dropped
to create a simpler representation.

mi n
∑
+

fi 0xi −
∑
−

fi 0

xi
− f0

s.t .
∑
+

gi j xi −
∑
−

gi j

xi
− g j ( j = 1, ...,m)

xi ≤ xi ≤ xi (i = 1, ...,n) (2.25)

This problem can eventually be solved using a dual method approach.

Method of moving asymptotes

The method of moving asymptotes (MMA) is a generalised version of Fleury’s ConLin [6] and
was initially established by Svanberg [13] in 1987. For this method the functions f k

i are de-

fined by Equation (2.26). Here Lk
j and U k

j are the lower and upper asymptotes respectively so

that Lk
j < xk

j <U k
j .
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f k
i = r k

i +
n∑

j=1
(

qk
i j

U k
j −x j

+
pk

i j

x j −Lk
j

) (2.26)

where

pk
i j =

{
(U k

j −x j )2δ fi /δx j if δ fi /δx j > 0

0 if δ fi /δx j ≤ 0
(2.27)

qk
i j =

{
0 if δ fi /δx j ≥ 0

−(x j −Lk
j )2δ fi /δx j if δ fi /δx j < 0

(2.28)

When filling in the coefficients pk
i j and pk

i j and writing them in a similar way as the ConLin
method described by Equation (2.23) leads to Equation (2.29). From this equation it is clear
that now both terms for positive and negative gradient summations possess a linear and re-
ciprocal part. This is why the MMA is said to be a generalised version of ConLin

f k
i = r k

i

∑
+

(U k
j −x j )2

x j −Lk
j

δ fi

δx j
−∑

−

(x j −Lk
j )2

U k
j −x j

δ fi

δx j
(2.29)

The second derivatives of f k
i are given by Equation (2.30).

δ2 f k
i

δx2
j

=
2pk

i j

(U k
j −xk

j )3
+

2qk
i j

(x j −Lk
j )3

(2.30)

Some general rules for changing the variables Lk
j and U k

j are:

• for an oscillating process, then move the asymptotes closer to the current iteration
point as an attempt to stabilise the process.

• For a monotone but slow process, the asymptotes need to be relaxed.

To solve the sub-problem posed by the MMA it is thrown into a dual statement for which the
lagrangian is given by Equation (2.31)

l j (x, y) =
p0 j +λT p j

U j −x j
+

q0 j +λT q j

x j −L j
(2.31)

When in the first iteration, the starting point was badly chosen, artificial variables are pro-
posed by Svanberg [13] such that the sub-problem is still solvable. In that case, the sub-
problem becomes:
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n∑
j=1

(
p0 j

U j −x j
+ q0 j

x j −L j

)
+

m∑
i=1

(di zi +di z2
i )+ r0 (2.32)

In 1993, Zillober [20] showed that an MMA together with a line search subjected to an aug-
mented lagrangian provides a globally convergent version of the MMA. Where the augmented
lagrangian is shown in Equation (2.33)[21]. This method is known as Sequential Convex Pro-
gramming (SCP) and is further discussed in the next section.

Φr

(
x
y

)
= f (x)+

m∑
j=1

{
u j h j (x)+ r

2 h2
j (x) if −u j

r ≤ h j (x)

−u2
j

2r otherwise
(2.33)

In 2002, Svanberg who originally developed the method of moving asymptotes, also proposed
a globally convergent version of the MMA (GCMMA) [22]. This method was based on conser-
vative convex separable approximations (CCSA). The main difference between the original
MMA and the GCMMA is that the introduction of CCSA imposed inner iterations to be made.
Within these inner iterations, the curvature of the approximating functions is updated un-
til they become conservative. This conservatism takes away the need for any linesearch and
provides global convergence to the MMA itself. These two versions of Svanberg were imple-
mented in MATLAB in 2007 [23].

The GCMMA of svanberg [22] uses the approximating functions described by Equation (2.34)
with the coefficients p(k,l )

i j ,q (k,l )
i j and r (k,l )

i determined by Equations (2.35) to (2.37)

f (k,l )
i (x) =

n∑
j=1

 p(k,l )
i j

U k
j −x j

+
q (k,l )

i j

x j −Lk
j

+ r (k,l )
i (2.34)

p(k,l )
i j = (σk

j )2max

{
0,
δ fi

δx j
(xk )

}
+

p(k,l )
i σk

j

4
(2.35)

q (k,l )
i j = (σk

j )2max

{
0,− δ fi

δx j
(xk )

}
+

p(k,l )
i σk

j

4
(2.36)

r (k,l )
i = fi (xk )−

n∑
j=1

p(k,l )
i j +q (k,l )

i j

σk
j

(2.37)
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Sequential convex programming

Sequential Convex Programming (SCP) also finds its origin in the CONLIN algorithm of Fleury
[6]. As mentioned in Section 2.2.4 Zillober [24] established a SCP by adding a line search to
the MMA algorithm. The same thing can be done using a thrust region method. Over the
years SCP’s have been proven to surpass most of the other optimization methods with re-
spect to reliability and efficiency. Therefore, a lot of development with respect to this method
has been made. In this section only the most state of the art methods are described. The main
difference between all these methods is the way in which, the sub-problems are defined.

SCP using interior point method SCPIP is a subroutine based on MMA and SCP using
interior point method instead of the dual approach to solve the subproblem [25]. The interior
point method used by Zillober is the one from Mehrotra [26], which was first implemented by
Lustig et al. [5]. This method is called the predictor-corrector interior point method, which
have been proven to be the most efficient for linear programming. [5]

The Method described by Mehrotra [26] is a power series variant of the primal-dual algo-
rithm without considering explicit bounds [27]. Instead of using Newton’s method, the log-
arithmic barrier Lagrangian, presented in Equation (2.38), is used to derive the first order
Karush-Kuhn-Tucker conditions given in Equation (2.39).

Lµ(x, y,c,r, s, t ,dr ,ds ,dt )
= ˜f (x)−µ∑m

j=1 l nr j −µ∑m
i=1 lnsi −µ∑m

i=1 lnti

+yT ( ˜g (x)+ c)+d T
r (−c + r )+d T

s (x ′−x + s)+d T
t (x −x ′+ t )

(2.38)

Ox : O ˜f (x)+ J y −ds +dt = 0
Oy : ˜g (x)+ c = 0
Oc : y −dr = 0
Or : dr −µR−1e = 0
Os : ds −µS−1e = 0
Ot : dt −µT −1e = 0
Odr : −c + r = 0
Ods : x ′−x + s = 0

Odt : x −x ′+ t = 0



= bµ :=



bx

by

bc

bµ,r

bµ,s

bµ,t

bdr

bds

bdt


(2.39)

Where g̃ represents the inequality constraints, which are turned into equality constraints by
the slack variable c. y,dr ,ds ,dt are the dual variable vectors corresponding to the different
sets of equality constraints. s and t are slack variables put on the inequality constraints spec-
ifying the boundaries of domain of x. Finally, r is a slack variable coupled to c as it is used to
enable c to becomes 0 if r is not used, which is possible, the dual variable y and c are to be pos-
itive. Note that the barrier terms are consisting of the slack variables. This is preferred since
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the computational cost for barrier function depending on the slack variable is way lower than
a barrier function dependent on a complicated constraint.

Also, R, S, and T are the diagonal matrices consisting of the elements of r,s and t respectively

while J is defined as O ˜g (x)
T

Newton’s method is applied to obtain the following set up Equation (2.40).

Oxx L J −I I
J T I

I −I
Dr R

Ds S
D t T

−I I
−I I
I I





∆x
∆y
∆c
∆r
∆s
∆t
∆dr

∆ds

∆dt



= bµ (2.40)

Where, Oxx L = O2 ˜f (x)+ d

d x
J y . The second term on the righthandside of this equation is

given by Equation (2.41).

d

d x
J y =

m∑
j=1

δ2 ˜g j (x)

δxkδxi
y j (2.41)

Know that for one particular component of the gradient of a constraint, Equation (2.42) is
used for computational efficiency.

δg̃ j

δxi
|x =


δg j

δxi
|kx

(U k
i −xk

i )2

U k
i −xi )2 if

δg j

δxi
|kx ≥ 0

δg j

δxi
|kx

(xk
i −Lk

i )2

xi−Lk
i )2 if

δg j

δxi
|kx < 0

(2.42)

For the predictor step, the system is solved without the terms including the homotopy pa-
rameter µ in bµ. However, the predictor step is dependent on the definiteness and size of the
system [7].

In corrector step the µ terms are added again due to there part in the original gradient of the
Lagrangian. In addition to this, the terms of Equation (2.43) are added to the right hand side
of Equation (2.40), where the underlined values are those predicted by the predictor step.
These terms represent the non-linear parts of the equations.
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bx : −
(∑m

j=1
δ2 g̃ j

δx2
k
∆xk∆y j

)
k=1,....,n

,

bµ,r : −∆r∆dr ,
bµ,s : −∆s∆ds ,
bµ,t : −∆t∆dt ,

(2.43)

SCP using two-point approximations This method uses the information of the two pre-
vious points rather than just one point as used in all previously mentioned methods. This
was first established by Fadel in 1990 [28] who proposed a two-point exponential approxi-
mation(TPEA). His work combined the ideas of Haftka [29] and Prasad[30] who suggested
the use of previous points and exponential approximations respectively. Fadel’s approxima-
tion is presented by Equation (2.44) where pi is determined to match the derivatives at the
previous point and is given by Equation (2.45).

f (X) = f (X0)+∑
i

[(xi /xoi )pi −1](
xoi

pi
)
δ f (X0)

δxi
(2.44)

pi = 1+ log

([
δ f (X1)/δxi )

δ f (X0)δxi

])
/log (

x1i

x0i
) (2.45)

pi is limited to -1 or +1. This limitation was removed by Wang and Grandhi [31] which lead
to the TPEA-change method.

Further work of Wang and Grandhi is the two point adaptive non-linear approximation (TANA)
method using adaptive intervening variables [31]. The TANA series exist of 3 versions TANA-
1,TANA-2 and TANA-3 [32] [33]. These methods are presented by Equations (2.46) to (2.48)
respectively.

f̃ (x) = f (x1)+
n∑

i=1

δ f (x1)

δxi

x1−pi

i ,1

pi
(xpi

i −xpi

i ,1)+ε1 (2.46)

f̃ (x) = f (x2)+
n∑

i=1

δ f (x2)

δxi

x1−pi

i ,2

pi
(xpi

i −xpi

i ,2)+ 1

2
ε2

n∑
i=1

(xpi

i −xpi

i ,2)2 (2.47)

f̃ (x) = f (x2)+
n∑

i=1

δ f (x2)

δxi

x1−pi

i ,2

pi
(xpi

i −xpi

i ,2)+ 1

2
ε3(x)

n∑
i=1

(xpi

i −xpi

i ,2)2 (2.48)

Where, for TANA-1, ε1 is a constant; For TANA-2 the Hessian’s diagonal elements only have
the value ε2 and for TANA-3 the variable ε3 is defined by Equation (2.49).

ε3(x) = H∑n
i=1(xpi

i −xpi

i ,1)2 +∑n
i=1(xpi

i −xpi

i ,2)2
(2.49)
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In 2001 Kim et al. [34] established the two-point diagonal quadratic approximation (TDQA)
method. This method uses the intervening variables presented in Equation (2.50). Where ci

is the shifting level and pi is determined by Equation (2.51)

yi = (xi + ci )pi (2.50)

pi = 1+ l n

[
δ f (x1)

δxi
/
δ f (x2)

δxi

]
/ln

[
xi ,1 + ci

xi ,2 + ci

]
(2.51)

Eventually the approximation as defined by Kim et al. [34] is shown in Equation (2.52). Gi is
the ith component of the diagonal Hessian matrix and is computed using Equation (2.53).

f̃ (x) = f (x2)+
n∑

i=1

δ f (x2)

δyi
(yi − yi ,2)+ 1

2
η

n∑
i=1

Gi (yi − yi ,2)2 (2.52)

Gi = 1

2(yi ,1 − yi ,2)

(
δ f (x1)

δyi
− δ f (x2)

δyi

)
(2.53)

Kim and Choi elaborated on this method by establishing an enhanced TDQA (eTDQA) method
in 2008 [35]. The approximation used within this method is specified as Equation (2.55). Here
pi is again determined by equation Equation (2.51) and Gi by Equation (2.54). The correc-
tion coefficient ηe is computed using Equation (2.57) and Hi is defined by Equation (2.56) to
avoid the denominator of the quadratic correction term to be 0.

Gi =
{

1
(yi ,1−yi ,2)

(
δ f (x1)
δyi

− δ f (x2)
δyi

)
if [δ f (x1)/δxi ] · [δ f (x2)/δxi ] ≤ 0

0 other wi se
(2.54)

f̃ (x) = f (x2)+∑n
i=1

δ f (x2)
δyi

(yi − yi ,2)+ 1
2

∑n
i=1 Gi (yi − yi ,2)2...

+1

2

ηe
∑n

i=1 Hi (yi − yi ,2)2∑n
i=1 Hi (yi − yi ,1)2 +∑n

i=1 Hi (yi − yi ,2)2

(2.55)

Hi =
{

Gi if [δ f (x1)/δxi ] · [δ f (x2)/δxi ] ≤ 0
1 other wi se

(2.56)

ηe = 2

[
f (x1)− f (x2)−

n∑
i=1

δ f (x2)

δyi
(yi ,1 − yi ,2)− 1

2

n∑
i=1

Gi (yi ,1 − yi ,2)2

]
(2.57)
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Knowing all this, the derivatives of the objective function with respect to x can be derived by
Equation (2.58).

δ f̃ (x)
δxi

=
[
ηe Hi

[
(yi − yi ,2)

∑n
j=1 H j (yi − yi ,1)2 − (yi − yi ,1)

∑n
j=1 H j (yi − yi ,2)2∑n

j=1 H j (yi − yi ,1)2 +∑n
j=1 H j (yi − yi ,2)2

]
...

+δ f (x2)

δyi
+Gi (yi − yi ,2)

]
pi (xi + ci )pi−1

(2.58)

The eTDQA method developed by Kim[35] was implemented into the SCP environment by
Park et al. in 2014 [36]. To solve this in the dual environment of Falk [37], strict convexity of
the approximate objective function and constraints is necessary. This was enforced by adjust-
ing the diagonal Hessian terms by dividing it into two parts as indicated by Equations (2.59)
to (2.61)

gi , j = P1 +P2 (2.59)

P1 = pi −1

xi ,2 + ci

(
δ f (x2)

δxi

)
(2.60)

P2 = max

(
ε,

[
ηe Hi∑n

l=1 Hl (yl ,2 − yl ,1)2 +Gi

]
(pi (xi ,2 + ci )pi−1)2

)
(2.61)

Since the Hessian has to be positive definite, and ε is a small positive value, certain condi-
tions, specified by Equation (2.62) apply for P1.

I f

{
δ f
δxi

< 0 ⇒ pi < 1, then P1 ≥ 0
δ f
δxi

≥ 0 ⇒ pi > 1
(2.62)

More recent, in 2012 Groenwold [38] established an SQP type method from the SCP class
using approximated approximations [39].

Sequential quadratic programming

Sequential quadratic programming (SQP) is a class of methods that came to existence in the
1970’s. It is a general purpose method to solve smooth non-linear optimization problems.
These should not be to large, well scaled and of the functions and gradients can be deter-
mined with a sufficient quality[40]. It was established from extensive comparative numeri-
cal tests[41]. Convergence of the method was proven by Schittkowski [42]. Equation (2.63)

M. Deklerck Master of Science Thesis



2.2 Structural Optimization 21

shows the quadratic programming problem as specified by Schittkowski [40], where Bk is the
approximation of the Hessian of the Lagrangian function.

mi n 1
2 d T Bk d +O f (xk )T d

d ∈R : O f j (xk )T d + f j (xk ) = 0, j = 1, ...,me

O f j (xk )T d + f j (xk ) ≥ 0, j = 1, ...,m
(2.63)

From this problem, Equation (2.64) can be derived for obtaining the next iterate where dk is
the optimal solution and uk is the corresponding multiplier.

(
xk+1

vk+1

)
=

(
xk

vk

)
+αk

(
dk

uk − vk

)
(2.64)

αk is any value between 0 and 1 that provides a suitable step length. To enforce global con-
vergence, this step length should provide a sufficient decrease in a merit functionφr (α) given
by Equation (2.65). Within this equation ψr (x, v) is a penalty function. Implementing this
penalty function leads to the augmented Lagrangian function presented by Equation (2.33).
Do note that the Lagrangian given there is for inequality constraints of the type f j (x) ≤ 0
where for this problem f j (x) ≥ 0 is used.

φr (α) :=ψr

((
x
v

)
=

(
x
v

)
+α

(
d

u − v

))
(2.65)

2.2.5 Starting point

In order to have an idea of which optimization methods and approximation methods to use
in which situation, they have to be tested and compared. This is usually done using numer-
ical examples such as the popular 10-bar truss problem and many more. In this section, a
comparison is presented between the methods described in Section 2.2.4. Initially, the meth-
ods themselves are compared. After which, the efficiency of the approximation methods is
investigated. The efficiency of the sub-problem solvers, which are required to solve the ap-
proximated sub-problems, are then discussed. Finally a starting point is defined.

Efficiency of the optimization methods

Initially Svanberg proved that the Method of Moving Asymptotes (MMA) was superior to the
traditional methods in 1987 [13]. This was proved based on three different numerical prob-
lems, the cantilever beam problem, a 8-bar truss problem and a 2-bar truss problem. Later
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on, the globally convergent version of the MMA (SCP) proved to be even more efficient as it
ensured that the objective function improved at each consecutive step [20]. To prove this, the
typical 10-bar truss problem was used.

The paper of Zillober [24] provides proof that SCP is more reliable and has better convergence
properties than SQP in the CUTE [43] test environment. The SQP algorithm presented was
the routine NLPQL [44], which has been proven to be very robust. Although, as suggested by
Etman et al. [38], it is possible to achieve a SQP type-method based on the SCP method by
implementation of the approximate approximation concept of Groenwold [39]. This paper
suggests that the established method shows promise for the use in optimization problems
where the number of design variables and constraints are high, based on the multilevel can-
tilever beam problem.[45]

Efficiency of the approximation methods

As mentioned above, the approximated approximations concept was introduced by Groen-
wold in 2010 [39], which lead to the establishment of an SQP-type method from the SCP
method. In this paper however a large comparison between approximation methods was
made. The approximations at hand are:

L: linear approximation.

R: reciprocal approximation.

E: exponential approximation.

C: conservative approximation.

MMA: approximations from the method of moving asymptotes.

T2:R: a quadratic approximation to the reciprocal approximation.

T2:E: a quadratic approximation to the exponential approximation.

T2:C: a quadratic approximation to the conservative approximation.

T2:MMA: a quadratic approximation to the approximations from the method of
moving asymptotes.

T2:TANA-3: a quadratic approximation to the TANA-3 approximation.

Using the 10-bar truss problem and the 5 variate cantilever beam problem as tests, it becomes
clear that the quadratic approximations of the original approximations outperform the orig-
inal approximations. There are some discrepancies on some test problems but in general the
above statement is correct.
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In 2008 Kim et al. already showed that their revised version of the two-point diagonal quadratic
approximation (eTDQA) was more efficient that their original.[35][34] In 2014 Park et al. pro-
posed a scheme to enforce convexity onto the eTDQA algorithm and with it ensure global
convergence.[36] They renamed it to gc-T2:eTDQA and proved based on the same typical
problems such as the vanderplaats 5 variate cantilever beam problem that it is indeed glob-
ally convergent and it even outperforms the original eTDQA.

Efficiency of the sub-problem solver

One of the sub-problem solvers is based on the principle of duality that was discussed in
Section 2.2.2. The primal-dual method, basically uses dual variables to compute the step size
for the next primal iteration. The other sub-problem solver, which is slightly discussed in
Section 2.2.4, is the predictor-corrector interior point method. In the paper of Lustig et al.
[5] it has been proven that the predictor-corrector interior point method is generally more
efficient than the primal-dual method. This was based on 86 test cases presented by the
NETLIB test set [46].

Definition starting point

Based on the above trade-off, the starting point for this research should be the gc-T2:eTDQA
approximation method in combination with an interior point sub-problem solver.

However it should also be noted that generally most of the approximation methods used in
structural optimization originate from Fleury’s ConLin method [6]. Since the initial goal is
to set up the optimization with a direct link to FEM analysis for sensitivities, a sturdy base
is required. Therefore, the complexity of the initial set-up needs to be reduced although this
will have its influences on efficiency.

Eventually, the approximation method from ConLin will be used in combination with Mehro-
tra’s [26] predictor-corrector interior point method as presented by Zillober [7]. When a good
base is formed and the validity of the concept is proven, it will pave the way to improvement.
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Chapter 3

Model definition

The model is defined using MATLAB version 2015 to generate a bdf file, which is inserted into
the NASTRAN solver version 2010. Therefore, first the initial 3D model and its transformation
to 2D are described in Section 3.1.

The 2D mode is then implemented into NASTRAN. This however does not come without any
complications such as the definition of the NASTRAN cards and the element types. All of
this is discussed in Section 3.2. Generating accurate results from a FEM analysis requires
a refined mesh. Since computational effort does make a huge difference in optimization, a
mesh convergence study is performed. Section 3.3 presents the results of this study, such
that a trade-off between accuracy and sparsity of the mesh can be performed. Finally, in
Section 3.4 the basic model is verified with respect to analytical results.

3.1 Basic model

The initial setup model is shown in Figure 3.1, where the values for the dimensions and ma-
terial properties have been defined as presented by Table 3.1. The model is a basic stiffened
panel where the edges are restrained in x and z direction. The force as seen in the table is the
total force, which is distributed by MPC’s in the FEM setup. Note that this model is under-
designed, as shown by analysis later. This to ensure that the global and panel buckling modes
will occur for verification purposes.

Now that the basic 3D model is defined, it has to be converted to a finite element model. For
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Figure 3.1: Test model for NASTRAN analysis

Table 3.1: Model Properties

Dimensions Properties

Panel: Material:
Wp 1000 [mm] E 71700 [MPa]
Lp 1000 [mm] Nu 0.33 [-]

T 3 [mm] σy 503 [Mpa]
Stiffeners(5): Load:

H 26 [mm] Fytot 160 [kN]
W2 8 [mm]
W1 8 [mm] Constraints:

t3 2 [mm] All Edges xz translation
t2 2 [mm]
t1 2 [mm]

simplifications the model is therefore transformed from 3D to 2D as presented in Figure 3.2.
The final unmeshed 2D model is shown in Figure 3.3, where the dotted lines represent the
stiffeners.

Now the panel itself can be represented by shell elements and the stiffeners by bar elements.
Doing this has major advantages for the optimization to come. Because for a 2D model, the
properties of the stiffener can be adjusted without having to adjust the model itself. Meaning
that only the properties cards have to be adjusted.

The goal is to use NASTRAN for analysis, which means a bdf file is required to represent the
model. This can either be done by directly extracting a file from a NASTRAN GUI such as PA-
TRAN or by defining it manually. Since the bdf file should be adjustable for the optimization,
it is written by setting up a data structure in MATLAB, which is easily converted to a bdf file.
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Figure 3.2: Conversion from 3D model to 2D FEM

Figure 3.3: Conversion from 3D model to 2D FEM

3.2 Model translation to NASTRAN

The model as shown in Figure 3.1 needs to be converted to a finite element model and used
for optimization. The basic setup of the bdf for the optimization is discussed in Section 3.2.1.
As mentioned before, shell and bar elements are used to define the panel and stiffeners re-
spectively. Except for that, nodes, properties, constraints and loads are defined. Furthermore,
since the eventual goal is to use this set-up for optimization, design variables and responses
are defined. The NATRAN input cards for this are listed in Section 3.2.2. Additionally, a choice
between the two different property cards for bar elements is made in Section 3.2.3.
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3.2.1 Basic information for NASTRAN bdf setup

A basic bdf file consists of two major parts, the case control section and the bulk data section.
The first specifies the solver, type of analyses, active load cases and the requested output. The
bulk data entries define the element types and properties, loads and constraints, optimiza-
tion specific information, etc.

NASTRAN cards are used as input for all bulk data. The format for these cards consist of
10 columns of which 9 are used for card entries and one for continuations symbols. Each
column consists 8 digits [47]. Some entries require integers, some characters and some real
values. If an integer has to be specified it is critical no decimals are noted e.g. 1.0 is not
allowed. A function was written, outside the scope of this thesis to write cards within the
correct format. This was partially rewritten with respect the data structure used to set up the
stiffened panel problem. Additional cards had to be implemented , such as PBARL, PBAR,
CBAR, MDLPRM, MPC1 and MPCADD, since these were not yet accounted for within the
provided script [47].

The model is analysed using SOL200, which specifies an optimization solution. Since the
optimization process itself is programmed into MATLAB only the sensitivities are required.
Therefore the command DSAPRT is added within the case control section to only compute
sensitivities. Sub-cases are defined for static and buckling analysis such that the required
responses can be computed. A full overview of the case control section is presented in Ap-
pendix A.

Once all sub-cases are defined, including active load cases and constraints, the bulk data en-
tries are loaded. Finally as the entire BDF is defined it is send to NASTRAN using the following
code:

!C:\Users\MDeklerck\MSC.Software\MD_Nastran\20101\bin\mdnastran
SOL_200_PanelOptim.bdf SCR=YES old=no

Note that the requested output format has been altered for the extraction of the correct sen-
sitivities and responses to MATLAB. This is possible by inclusion of alteration files within the
bdf.

3.2.2 Required cards

The required cards for the bulk data setup are presented below. These includes a small de-
scription of its function within the bdf file.
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• Model

GRID: Defines the nodes required for element creation

CQUAD4: Defines the shell elements representing the panel

CBAR: Defines bar elements representing the stiffener and determines the actual posi-
tion of the stiffener and its orientation

MDLPRM: Defines the offset definition of the bar elements by addition of "OFFDEF".

• Properties

MAT1: Defines the isotropic material to be used for the panel and stiffener

PBARL: Defines the stiffener based on stiffener type and dimensions as input

PBAR: Defines the stiffener based on property input such as area, moment of inertia,...

PSHELL: Defines the properties of the shell elements, which represent the panel

• Load case

SPC1: Defines a single point constraint on a node

SPCADD: Creates a set of SPC containing all SPCs for constraint selection

MPC: Defines an explicit multi-point constraint linking degrees of freedom of a depen-
dent node to those of an independent node

MPCADD: Creates a set of MPC containing all MPCs for constraint selection

FORCE: Defines a point force on a grid point

LOAD: Creates a set of forces, moments,... containing all loads on the model for load
selection

EIGRL: Defines the amount of roots requested for the eigenvalue analysis and is required
to perform buckling analysis

• Optimization

DESVAR: Defines the design variables for optimization

DVPREL1: Defines the relation between the design variables and property inputs

DRESP1: Defines the responses for the optimization

DCONSTR: Defines the upper and lower boundaries on the design variables

Some additional remarks for these cards are necessary to fully understand the NASTRAN set-
up. The bar elements themselves for instance are defined in plane with the shell elements.
However, in order to represent the physical model, an offset needs to be determined such
that the beam is located beneath the panel instead of centred in the middle of it. The value of
this offset is defined in the CBAR card.
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Except for the value also the method in which NASTRAN should interpret is critical. MDL-
PRM is used to define exactly this. Now the default of this card specifies a fixed offset, which
presents problems when initializing the buckling analyses as this requires the differential
stiffness matrix. Therefore the offset is defined using "MDLPRM OFFDEF LROFF", which
specifies large rotation offsets and enables the computation of the differential stiffness ma-
trix.

On top of this is the issue of defining which property card to use for the bar elements. This
problem will be discussed in more detail in Section 3.2.3. More information with respect to
the definition of the design variables and responses is available in Chapter 4.

3.2.3 Defining stiffeners

There are several ways to represent a stiffener by use of a one-dimensional element. NAS-
TRAN uses either CBEAM or CBAR. These elements require designated properties. The prop-
erties in turn can again be set up in several ways, which are PBEAM, PBEAML, PBAR and
PBARL. As seen before, only bar elements are considered. Although beam elements present
more possibilities, the model at hand is relatively simple and thus has no need for more elab-
orate types of elements. Now that this has be established, one question remains. Which type
of bar element would present the most interesting opportunities?

PBARL The PBARL card in NASTRAN defines the properties of an element based on a cross
section type and its dimensions. Within this thesis only two cross-sections are used, which
are the basic I and Z-cross sections. These cross-sections including dimensions as required
by NASTRAN [47] are presented in Figure 3.4.

This type of property definition is limited to the amount of cross-sections pre-described in
NASTRAN and thus no free design can be defined by this property card. In addition to this
there are only a limited number of free dimensions in some of the prescribed cases such as
for the Z-stiffener. On the upside it does not produce the same amount of round-off errors as
the PBAR property card.

PBAR The PBAR property card defines the geometrical properties of a certain element
solely based on direct input. In other words the area, moments of inertia and rotational stiff-
ness need to be hand in manually. To do this several equations are required, which are pre-
sented below. The variables cg zi and cg xi represent the location of the centre of gravity (CG)
for the sub-parts of the stiffener as defined in Figure 3.5 with respect to the reference axes.
Note that the middle of the web and the top of the stiffener are considered the x-axis and z-
axis respectively in these calculations. Ai represents the area of the ith sub-part, I represents
the moment of inertia where the subscript defines the axis around which it is defined and J is
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(a) I-beam cross section (b) Z-beam cross section

Figure 3.4: I and Z cross sections with relating dimensions for NASTRAN cars [47]

the rotational stiffness of the cross section.
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I-stiffener
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Since the dimensions can be chosen, the Z-stiffener is made slightly more controllable. The
dimensions are linked as shown in Figure 3.5. This directly indicates one of the major advan-
tages of this property card. It is independent on the shape of the cross section and the amount
of different dimensions necessary to define it. This paves the way to great opportunities for
optimization since it breaks with the bounds of the standard cross-section types and/or defi-
nitions in FEM packages. However the user himself does need to put in the effort to compute
these properties. Additionally, analytical expressions for transforming the sensitivities from
extracted to required design variables will be a necessity.

Final definition of bar element By exploring all possibilities it can be stated that a PBAR
property definition should be used in order to freely design the stiffeners. This also gives
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(a) I-beam cross section (b) Z-beam cross section

Figure 3.5: Tested stiffener cross sections and their design variables

room to test a new principle for optimization. By extracting the sensitivities with respect to
the geometrical properties from FEM, they can be adjusted analytically to the desired design
variables. Since the properties have already been computed, those same equations can be
used to transform them to the required design variables.

The offset as requested by CBAR is the distance between the middle of the panel and the CG
of the stiffener. This because all properties are determined with the CG as reference point.

3.3 Mesh convergence study

FEM results are very dependent on the mesh size. Therefore, mesh refinement is an impor-
tant part of this process as it will lead to the accuracy needed for a decent optimization. The
mesh density is defined based on the amount of nodes along the x (nx )and y axis (ny ). nx is
determined based on the amount of nodes required for the sub-panels (nbs).

Buckling analysis is more mesh dependent than the static analysis for this load case. There-
fore, the eventual mesh size is decided based on its convergence with respect to the eigen-
values. To find the optimal solution, the amount of nodes is changed according to a certain
step size and the convergence is checked. Note that for both variables, only one is adjusted
and the other remains the same to find the influence of the amount of nodes in a single di-
rection. Once the value converged sufficiently, both converged values are used to create the
final mesh density.

The variable of nbs is chosen to check convergence instead of total nodes along the x-axis.This
to ensure a steady accuracy for the buckling in between the stiffeners. The mesh densities
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checked and their eigenvalues for different sets of nbs and ny is shown in Tables 3.2 and 3.3
respectively. The reduction is defined as the change in eigenvalue with respect to that of the
mesh density of the row above.

The final selected mesh is an nbs is 9 and ny is 11. The selection of nbs is most likely an
exaggeration however, for low amounts of stiffeners, this higher value will become critical for
buckling modes where more than one half wave appears in between stiffeners.

Table 3.2: Mesh convergence for nbs

nbs ny Mode 1 Mode 2 Mode 3 Reduction

3 9 0,518572 0,534381 0,640502
5 9 0,516455 0,530392 0,639374 0,41%
7 9 0,51576 0,529079 0,639004 0,13%
9 9 0,515456 0,528501 0,638844 0,06%

11 9 0,515302 0,528201 0,638762 0,03%

Table 3.3: Mesh convergence for ny

nbs ny Mode 1 Mode 2 Mode 3 Reduction

9 3 0,501631 0,513677 0,617174
9 5 0,504892 0,525101 0,616405 -0,65%
9 7 0,511834 0,526779 0,632356 -1,36%
9 9 0,515456 0,528501 0,638844 -0,70%
9 11 0,517391 0,529601 0,642025 -0,37%

The final FEM model is shown in Figure 3.6, where black and blue represent the shell and bar
elements respectively. The pink edges are the applied MPC’s.

Figure 3.6: 2D FEM model
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3.4 Model Verification

Now that the model has been defined in 2D, the stiffener’s properties by property card PBAR
and the mesh density is set to 9 nodes in between stiffeners and 11 across the length. All that
remains is to verify the results. To do this, the model as described in Section 3.1 is used.

The model is verified solely based on buckling responses. If this is achieved, it is assumed
that the stiffness matrix of the panel is correct. In that case, it can be assumed that also the
stress is determined with sufficient accuracy. The validity of this assumption comes from
the fact that the load case is relatively simple and thus the relation between stiffness and
stress is considered linear. To minimize errors due to mesh density, it is increased (ny =41) for
verification purposes.

However since the equations as provided in Section 2.1 are for a simply supported panel
rather than a panel where the edges are constrained in x and z direction. The boundary con-
ditions are therefore altered to those for simply supported panels.

From the initial analysis of the panel, it shows that most of the buckling modes are combined
modes. To simplify things, two modes were selected for, which the buckling mode can be
assumed either global buckling or pure panel buckling. These modes are shown in Figure 3.7.
The two chosen buckling modes are the first and ninth. Although the ninth is not pure panel
buckling, notice the difference in amount of halve waves across the sub-panels, the buckling
of a single sub-panel is relatively pure.

(a) Mode 1: Global buckling mode (b) Mode 9: Panel buckling mode

Figure 3.7: Nearly pure buckling modes for verification purposes

Now in Section 2.1 global buckling of a panel is defined by Equation (2.1). However this is
under the assumption that it can treated as column buckling. In other words, the edges along
the direction of the force are free.

Since this is not the case an effective width (We f f ) needs to be determined. This determines
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the width of the panel that actually caries part of the load when global buckling initiates. The
effective width is determined by Equation (2.2). Note that this is an equation for the effective
width accounted for per stiffener so the total width of load carrying part is multiplied with
the amount of stiffeners.

The load carrying part of the panel is now added to the stiffener and the whole thing is han-
dled as if it is a column. The moment of inertia of the full structure is thus presented by Equa-
tion (3.3). Here the summation includes the effective panel sections and the CG is determined
solely on the effective parts. The buckling of the sub-panel is determined by Equation (2.3)
based on the middle part where the number of halve waves, as presented by Figure 3.7b, are
m=5 and n=1.

I =∑
i

Ii +
∑

i
(cgi −CG)2 Ai (3.3)

The numerical and analytical results are presented in Table 3.4. It can be seen that there is a
slight difference, less than 7%, between the two.

A deviation of 3,49% is seen for the global buckling. This value can partially be devoted to
the round-off errors of the stiffener properties or offset input. Another influential part off-
course is that it is a 2D model. This includes that the geometrical properties are defined by a
property card rather than the elements themselves.

For panel buckling the biggest deviation, of 6,58%, between analytical and numerical results
is found. One factor for this is most likely the mesh density. Although it was increased for
verification purposes, an even finer mesh should lead to an even more accurate result. An-
other factor is the fact that mode 9, which was selected for this purpose, closely represents
pure panel buckling. In other words there is already a basic deviation to be expected since
it is still a mixed panel buckling mode. On top of this, simply supported boundaries are as-
sumed, while the stiffeners actually represent elastic boundaries instead. This should slightly
increase the eigenvalue.

So in general, although there is a difference between the analytical and numerical results,
there are plenty of influential factors that need to be considered before dismissing the model.
After careful consideration of those factors, it can be stated that the accuracy of the model is
sufficient and that it can be used for optimization purposes.

Table 3.4: Comparison between analytical and numerical results for buckling

Buckling type Analytical Numerical Difference

Mode 1 Global 0,532 0,513 3,49%
Mode 9 Panel 1,597 1,702 6,58%
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Model optimization

This section handles the optimization of the model. Several test cases will be presented to
prove the following points.

• Show basic optimization capabilities on the model defined in Chapter 3

• Show its capability to handle different cross sections

• Show its capability to handle different property sets for stiffeners on the same panel

• Optimize model with respect to different amount of stiffeners finding the actual opti-
mal panel

In order to do so, the basic optimization problem is presented in Section 4.1. After which, the
process of the optimization is described in Section 4.2. Once the entire process is known, the
test cases are represented in Section 4.3. Finally the results are discussed in Section 4.4.

4.1 Problem

In optimization the goal is to reach the best possible design within a set of constraints while
minimizing a certain objective. In this case the optimization is performed for stress, buckling
and design constraints while minimizing weight. Equation 4.1 represents the problem where
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σ is vector containing the axial stress in the bar elements and normal stress in the shell ele-
ments; λ is a vector containing 20 eigenvalues; Dc represents the design constraints for the
stiffeners and xmi n

i and xmax
i the minimum and maximum boundaries of the design variables

(DVs) respectively. The objective is the volume, which is the area A(x) times the length of the
panel Lp . Note that the area is a function of the DVs. The DVs are the stiffener dimensions
and the panel thickness. The areas of the different stiffener cross-sections are determined
using the equations provided in Section 3.2.3. The respective dimensions for each stiffener
type are indicated in Figure 3.5.

mi n
X

A(x)Lp

s.t . :σ≤σy (4.1)

1/λ≤ 1 (4.2)

Dc ≤ 1

xmi n
i ≤ xi ≤ xmax

i i = 1, ...,n (4.3)

The design constraints are implemented such that no excessive ratio’s between the dimen-
sions of the stiffeners can occur. The implemented design rules are extracted from the paper
of COLSON et al. [48] and are described in Table 4.1. This results in a total of 7 constraints
where, T is the panel’s thickness and the other dimensions are those as defined for the I-
stiffener as given in Figure 3.5. Note that the same ratio’s and boundaries apply for the Z-
stiffener only there W2 should become W .

Table 4.1: Design rules

Design rule Constraint values

Attatched flange ratio (AFR) 3 ≤ 26.8+ t3

t1
≤ 20

Web ratio (WR) 3 ≤ H − t1 − t2

t3
≤ 20

Free flange ratio (FFR) 3 ≤ W2

t2
≤ 10

Attatched flange vs. skin thickness (AFSR) 1.3 ≤ t1

T

The minimum and maximum values for the DVs are shown in Table 4.2.

4.2 Process

The entire optimization process is depicted in Figure 4.1. After the initial model has been
established as explained in Chapter 3 the optimization is initiated. This section will serve as a
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Table 4.2: Minimum and maximum dimensions for different stiffener types

I-Stiff [mm] Z-Stiff [mm]

25 ≤ H ≤ 55 25 ≤ H ≤ 55
8 ≤ W2 ≤ 26 8 ≤ W ≤ 26
8 ≤ W1 ≤ 4 2 ≤ t3 ≤ 4
2 ≤ t3 ≤ 4 1,6 ≤ t2 ≤ 4

1,6 ≤ t2 ≤ 4 1,6 ≤ t1 ≤ 4
1,6 ≤ t1 ≤

guide through the process. First the analysis is performed and the sensitivities and responses
are extracted. The first step is to adjust the sensitivities obtained from the analysis to those in
function of the DVs, which is explained in Section 4.2.1. Now that the required data is at hand,
the inner loop of the optimization can start. Initially the primal problem is approximated us-
ing the CONLIN approximation, which is discussed more into detail in Section 4.2.2. Once
the approximation is defined it serves as starting point for Mehrotra’s [26] predictor-corrector
interior point method as implemented by Zillober [7]. Section 4.2.3 discusses the implemen-
tation of this method. Finally if the inner loop is finished, a new model has to be defined for
re-analysis and the convergence criteria have to be checked as discussed in Section 4.2.4.

4.2.1 Sensitivity adjustment

Analysing the model in NASTRAN provides the basic information such as responses (stress
and buckling) and the sensitivities. However, the latter can be determined in two different
ways.

1. Extract from NASTRAN with respect to DVs.

2. Extract from NASTRAN with respect to geometrical properties.

Statement (1) can be accomplished by defining a linear approximation between the geomet-
rical properties and the DVs to serve as coefficient input for the PREL card [47]. Statement
(2) has the great advantage that the extracted sensitivities can be transformed to the required
ones using analytical equations. This should provide a higher accuracy due to lack of round-
off errors and fixes the amount of DVs requested from NASTRAN per property.

A transformation of sensitivities is shown in Equation (4.4). Here, y j and xi represent the
available and requested DVs respectively and f represents the response vector.
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Figure 4.1: Optimization process

δ f

δxi
=∑

j

δ f

δy j

δy j

δxi
(4.4)
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Since the derivatives δ f /δy j are extracted from NASTRAN only the derivatives of the avail-
able DVs with respect to the required ones are necessary. In MATLAB this is entered in a
symbolic manner such that the values can just be filled into the respective equations for each
outer iteration minimizing computation times.

Table 4.3 shows an overview of the DVs available from analysis and those requested for the
different stiffeners. Here A is the cross-sectional area, I1,I2 and I12 are the moments of iner-
tia, J is the rotational stiffness and O f fz and O f fx are the offsets of the element in z and x
direction respectively.

Table 4.3: Available and required design variables for assorted stiffener types

Cross-section DV from analysis DV required

I A, I1, I2, I12, J ,O f fz H ,W2,W1, t3, t2, t1

Z A, I1, I2, I12, J ,O f fz ,O f fx H ,W, t3, t2, t1

The equations presenting the relation between the DV from analysis and the required ones
are those mentioned in Section 3.2.3 and 3.2. So eventually, the sensitivities of the responses
to the requested DVs can be computed using Equation (4.5). Note that O f fx for I-stiffeners
inherently zero due to symmetry.

δ f

δxi
= δ f

δA

δA

δxi
+ δ f

δI1

δI1

δxi
+ δ f

δI2

δI2

δxi
+ δ f

δI12

δI12

δxi
+δ f

δJ

δJ

δxi
+ δ f

δO f fz

δO f fz

δxi
+ δ f

δO f fx

δO f fx

δxi
(4.5)

4.2.2 Approximation of the primal problem

The approximation used for this optimization process is the same as for the CONLIN opti-
mizer [6]. It is a combination of linear and reciprocal approximations coupled to the sign of
the gradient. Equation (4.6) is used to create the approximate sub-problems. Here r is the
approximated function consisting of all constraints and objective. It is important to approx-
imate everything in the same manner such that all approximated sub-problems are convex.
Note that x0

i and xk
i are the ith DV from the initial and kth iteration.

r = c+∑
ai j (xk

i −x0
i )+∑

bi j

(
1

xk
i

− 1

x0
i

)
(4.6)
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Where

r =


σ̃

λ̃

D̃c
˜ob j



ai j =


δ f j

δxi
if
δ f j

δxi
> 0

0 if
δ f j

δxi
≤ 0

bi j =


0 if

δ f j

δxi
> 0

−(xi )2
δ f j

δxi
if
δ f j

δxi
≤ 0

Note that the resulting equation is exactly the same as Equation (2.23) however now a and
b have the same size, which makes the implementation into MATLAB much easier. Also it
should be mentioned that the coefficients a,b and c are determined solely based on the in-
formation available from the outer loop (0th step). Therefore the approximation is adjusted
throughout the inner loop as a function of the initial values and the step size.

On top of this, the coefficients are normalised such that all quantities are in the same order of
magnitude. The stress is normalised toσy and the buckling modes by adjusting λ to 1/λ. The
design constraints are normalised to their upper bound as Dc/U and to their lower bound
as L/Dc, where U and L represent the values for upper and lower bound respectively. So in
general, the constraints are normalised such that g ≤ 1. To this extent design constraints are
defined in inverse relation to their lower bound to define them in the same manner. After
normalisation they are defined as required where g ≤ 0.

4.2.3 Predictor-Corrector interior point method

Before the implementation of the method it is described in a more elaborate matter. In other
words, an extension to the paragraph of SCPIP [25] [7] in Section 2.2.4 is required. Here the
equations as used within the script are defined with respect to the variables used. To initialise
this procedure, the first thing required is the Lagrangian, which is specified by Equation (4.7).
Where the variables are defined below.

x Design variables

s Slack variables of the constraints

r Slack variables of design variables to the upper bound
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t Slack variables of the design variables to the lower bound

ds Dual variable of the constraints

dr Dual variable of design variables to the upper bound

dt Dual variable of the design variables to the lower bound

z Normalized objective = f0

f(x) Normalised constraints

µ Homotopy parameter

L(x, y,r, s, t ,dr ,ds ,dt ) =
f0 +d T

s ( f (x)− z ·e + s)+d T
r (x −xmax + r )+dt (xmi n −x + t )

−µ∑
lnsi −µ∑

lnri −µ∑
lnti

(4.7)

e is a vector containing zeros for constraints and a one for the objective. In this way, both con-
straints and objective can be defined in one vector while e is used to filter out the necessary
equations. To reach an optimal design, a Karush-Kuhn-Tucker point needs to be found. This
is where the gradient of the Lagrangian becomes zero, leading to the equations presented in
4.8. The capital letters define diagonal matrices where the diagonal the entries correspond to
the related vector.

O f0 : 1−d T
s e = 0

Ox : O f (x)ds +dr −dt = 0
Or : Dr r −µe = 0
Os : Ds s −µe = 0
Ot : D t t −µe = 0
Odr : x −xmax + r = 0
Ods : f (x)− z + s = 0
Odt : xmi n −x + r = 0

(4.8)

These equations are expanded using Newton’s method, which is shown in Equation (4.9)[49].
The variable x is unrelated to the problem and f(x) represents any function of x and f’(x) is the
derivative of f(x). Applying this to the equations in 4.8 results in Equations 4.10 to 4.17. These
equations are used to determine the step size of the variables. Where H(x) is the hessian
matrix.

∆x =− f (x)

f ′(x)
(4.9)
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−∆ds = eT ds −1 (4.10)

O f (x)∆ds +H(x)ds∆x +∆dr −∆dt =−O f (x)ds −dr +dt (4.11)

−∆x +∆t = x −xmi n − t (4.12)

∆x +∆r = xmax −x − r (4.13)

O f T (x)∆x −∆ze +∆s = ze − f (x)− s (4.14)

s∆ds +ds∆s =µ−ds s (4.15)

r∆dr +dr∆r =µ−dr r (4.16)

t∆dt +dt∆t =µ−dt t (4.17)

To simplify the equations above, a variable is assigned to each equation’s left hand side and
listed below in Equation (4.18).



fz

fx

fdt

fdr

fds

fs

fr

ft


=



eT ds −1
−O f (x)ds −dr +dt

x −xmi n − t
xmax −x − r
ze − f (x)− s
µ−ds s
µ−dr r
µ−dt t


(4.18)

Relating the variables to each other results in a reduction of the system. The final system
is defined by Equation (4.19). Where Ky and s y s fds

are defined by Equations 4.20 and 4.21
respectively. This system can be solved to define the step size for the DVs.[

0 −eT

−eT Ky

][
∆z
∆ds

]
=

[
fz

s y s fds

]
(4.19)

Ky =−(O f T (x)di ag−1(H(x)ds + dt

t
+ dr

r
)x +di ag (

s

ds
)) (4.20)

s y s fds
= fds −di ag−1(ds) fs −O f T (x)di ag−1(H(x)ds + dt

t + dr
r )

( fx +di ag−1(t )( ft −dt fdt )−di ag−1(r )( fr −dr fdr ))
(4.21)

In order to solve the system, initial values for the dual variables need to be determined, which
is done using Equation 4.22

ds = µ0

s

dr = µ0

r
(4.22)

dt = µ0

t
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Where µ0 is defined by Equation (4.23). Here dimx and dimds are vectorial lengths for the x
and ds variables respectively.

µ0 = 1

di mds +2di mx
(4.23)

Predictor step In the predictor step, an initial guess for the step size of the DVs is made.
After setting the homotopy parameter µ to zero the system of Equation (4.19) is solved. This
produces values for the increments of the design, slack and dual variables. This information
is used to determine the value of µ for the corrector step. To do so, first the step size for the
primal and dual parameters should be computed, which is done in Equations 4.24 and 4.25
respectively.

δpr i m = 0.95mi n{max{
−ti

∆ti
},max{

−si

∆si
},max{

−ri

∆ri
},0.95} (4.24)

δdual = 0.95mi n{max{
−dti

∆dti

},max{
−dsi

∆dsi

},max{
−dri

∆dri

},0.95} (4.25)

Now the duality gap has to be computed for previous and updated solution, as provided by
Equation (4.26) and 4.27.

dg apol d = sT ds + r T dr + t T dt (4.26)

dg ap = (s +δpr i m∆s)T (ds +δdual∆ds)+
(r +δpr i m∆r )T (dr +δdual∆dr )+ (t +δpr i m∆t )T (dt +δdual∆dt )

(4.27)

Finally the homotopy parameter µ can be determined by use of Equation (4.28). This param-
eter enables the use of constraint relaxation in the optimization process.

µr un = mi n{max{(dg ap /dg apol d )2,0.1},1}µr un−1 (4.28)

As you can see, µ is restricted such that it will always be smaller or equal to the one in the
previous iteration. Additionally, a minimum reduction of µ of 90% is introduced. This is
done to avoid µ going to 0 in just a few iterations.

Corrector step In the corrector step Equation (4.19) is solved once more with the imple-
mentation of µ as computed in the predictor step. Additionally some additional backward
substitution is required to add the non-linear terms of the gradient to the corrector step.
Equation (4.29) represents the terms that need to be added to the right hand side of the re-
spective equations as shown in Equation (4.18). Note that the ∆ values in this equation are
those computed by the predictor step.

fx : −H∆x∆ds

fs : −∆s∆ds

fr : −∆r∆dr

ft : −∆t∆dt

(4.29)
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Once this is done, again the primal and dual steps are determined using Equations 4.24 and
4.25 respectively. Now the solution is updated as shown below.

xk+1 = xk +δpr i m∆x

sk+1 = sk +δpr i m∆s

r k+1 = r k +δpr i m∆r

t k+1 = t k +δpr i m∆t (4.30)

d k+1
s = d k

s +δdual∆ds

d k+1
r = d k

r +δdual∆dr

d k+1
t = d k

t +δdual∆dt

This entire process is repeated until a duality gap smaller than 10−5 is reached.

4.2.4 Convergence

Once the inner loop is converged and a new analysis is performed, a convergence check be-
comes imminent. To reach convergence two statements must hold.

• The new design must be feasible, meaning it must satisfy all constraints

• The new objective value must be lower than the minimum of the old feasible objective
values

If these statements hold, the convergence requirements are checked using Equations 4.31
and 4.32.

CCconstr ≥ 1−max(g) (4.31)

CCob j ≥ 1− ob jnew

ob jol d
(4.32)

Note that g represents the normalized constraint values. Therefore, due to the statement that
the new design has to be feasible, this value should be slightly smaller than 1. This is similar
for CCob j . Now one can decide to either go for both or just one of those requirements to
be fulfilled in order to achieve convergence. However it should be noted that the CCconstr

criterion not necessarily results in the best feasible design. But due to the statement that the
objective value should have decreased, the final design will be more optimal than the initial
one.
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Eventually it is chosen to only converge with respect to CCob j for which the value is set to
0.005. Although this value is very small, the goal of this thesis is to show the optimization
process, for which convergence is a critical aspect. Therefore the value is set low to have
more iterations and thus more test data.

4.3 Test Cases

As mentioned in the introduction of this chapter, there are several points that should be
achieved by this thesis. In order to prove that this is the case, certain test cases are defined.
These cases are defined under the same loads and boundary conditions as specified in Chap-
ter 3. The changing variables for these cases are shown below.

Ns The amount of stiffeners on the panel. This variable is adjusted to show the conver-
gence with respect to the amount of stiffeners such that also the ideal number can be
determined.

Np The amount of possible properties for different stiffeners in one panel. These are gen-
erally selected such that the panel is still forced to be symmetrical. However this will
prove that the optimization process can handle multiple sets of properties.

Type The type of cross-section. Although only one cross-section is handle per test case, it
will show the optimizer’s possibilities to handle different cross-sections.

The different test cases that were optimized are shown in Table 4.4. In the table, the amount
of stiffeners Ns , the amount of different stiffener properties Np and the type of stiffener are
specified. On top of this, the column Prop/Stiff determines which property is assigned to
which stiffener knowing that the stiffeners are also placed on the panel in that order starting
from the left side while looking in the direction of the force.

For all the test cases, the values for the DVs have starting values defined by Table 4.5. Note
however that the ∗ for test case three means that the starting values for the DVs were adjusted
to reach an optimal solution, and will be discussed in more detail in Section 4.4.

The convergence of the test cases is solely defined on its decrease in objective function. So
if the difference from one feasible point to the next is less than 0.5%, then the optimization
has converged. This margin is relatively strict however the goal is to show the convergence
therefore such strict criteria has to be implemented.
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Table 4.4: Different test case settings for optimization

Test Case Nstiff Nprop Prop/Stiff type

1 5 1 [1 1 1 1 1] I
2 5 3 [1 2 3 2 1] I

3∗ 5 1 [1 1 1 1 1] Z
4 5 3 [1 2 3 2 1] Z
5 4 1 [1 1 1 1] I
6 6 1 [1 1 1 1 1 1] I
7 6 1 [1 1 1 1 1 1] Z
8 7 1 [1 1 1 1 1 1 1] I
9 7 1 [1 1 1 1 1 1 1] Z

10 8 1 [1 1 1 1 1 1 1 1] I
11 8 1 [1 1 1 1 1 1 1 1] Z

Table 4.5: Initial values for the parameters

Panel

T 3 mm

I-stiff Z-stiff

H 55 mm H 55 mm
W2 26 mm W 26 mm
W1 26 mm t3 4 mm

t3 4 mm t2 4 mm
t2 4 mm t1 4 mm
t1 4 mm
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4.4 Results

In this section, the results of the test cases are displayed and discussed. They are related
to the statements mentioned in the introduction of this chapter. The general convergent
properties of the program are shown in Section 4.4.1 based on the initial model defined in
Chapter 3. Next Z-stiffeners are implemented into the initial model instead of I-stiffeners
and optimized the results of which are shown in Section 4.4.2. Eventually, the programs ca-
pability of handling a different amount of property sets within one optimization is shown in
Section 4.4.3. Finally the optimal amount of stiffeners is deduced in Section 4.4.4. Note that
the area is defined to describe the objective rather than the volume since the length of the
panel is constant. Furthermore, all test cases showed to be buckling critical therefore only
the first eigenvalue is shown as constraint. However it is important to state that although
only the first eigenvalue is shown, the first 20 are taken into account.

The results presented here are partially restricted to the optimal solution. For the complete
set of results and the MATLAB script used to generate them please refer to this link : http:
//we.tl/RJYM0pNHz9.

Additionally, for the abbreviations used for the design constraints please refer to Table 4.1.
Finally note that the ∗ in test case 3 specifies the use of a different starting point.

4.4.1 Basic Optimization

To show the basic optimization capabilities of the program, it is applied to the model dis-
cussed in Chapter 3, which is evidently test case 1. Figure 4.2 shows the convergence of the
objective along the optimization and the respective values are presented by Table 4.6.

Figure 4.2: Convergence of objective

Table 4.6: Objective
values per iteration

Obj Area [mm2]

Initial 4980,000
run 1 3362,343
run 2 3634,173
run 3 3549,019
run 4 3560,915
run 5 3559,354

Reduction 28,53%
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These results clearly indicate a steady convergence towards an optimal solution, which has
28.53% less area than the initial model. The values for the constraints across the optimiza-
tion are shown in Table 4.7. Here it can be seen that although some infeasible designs were
achieved in the process, the method does converge to a feasible one. The reason for this is
most likely the use of the approximations.

Approximations are always most accurate in the neighbourhood of the initial point. A large
step size as seen in run 1 for example leads to a less accurate approximation. By slowly getting
closer to the optimal result, the step size computed in the inner loop decreases leading to a
more accurate approximation. Eventually this leads to new feasible designs.

Table 4.7: Constraint values per iteration

Mode 1 AFR[-] WR[-] FFR[-] AFSR[-]

Initial 1,577 7,700 11,750 6,500 1,333
run 1 0,595 7,922 13,836 6,164 1,310
run 2 1,042 7,970 19,554 6,155 1,300
run 3 0,981 7,992 19,979 5,904 1,300
run 4 1,000 8,023 19,989 5,660 1,300
run 5 1,000 8,031 19,999 5,409 1,300

For completeness of this section, the values of the parameters for each consecutive step are
provided in Table 4.8. Looking at the values shows that the parameters behave as expected.
The optimizer has the tendency of decreasing the thickness and levelling out the other pa-
rameters with respect to it. The height and the width of the free flange remain the highest
resulting in higher buckling resistance.

Table 4.8: Parametric History

T[mm] H[mm] W2[mm] W1[mm] t3[mm] t2[mm] t1[mm]

Initial 3,000 55,000 26,000 26,000 4,000 4,000 4,000
run 1 2,776 33,592 14,083 8,189 2,000 2,285 3,635
run 2 2,791 47,932 17,889 8,000 2,117 2,906 3,628
run 3 2,775 47,000 15,933 8,000 2,037 2,699 3,608
run 4 2,769 47,995 15,557 8,000 2,083 2,749 3,600
run 5 2,768 48,284 15,024 8,000 2,095 2,777 3,598

4.4.2 Different cross-sections

To show the programs capability of handling different cross sections, Z-stiffeners were im-
plemented instead of I-stiffeners into the initial model. This should not be any problems

M. Deklerck Master of Science Thesis



4.4 Results 51

since the properties entered in NASTRAN are unrelated to the cross section type. However
the amount of requested sensitivities and the equations for the conversion are different. This
should prove the ease of implementation of this concept.

Table 4.9 shows the results of the optimization with Z-stiffeners (test case 3) with that of the
I-stiffeners (test case 1). The final optimal weight is less for Z-stiffeners than for I-stiffeners. It
must be stated that a different starting point had to be chosen in order to reach a feasible de-
sign after optimization. The starting values for the DVs are shown in Table 4.10. If the original
starting point is used, the optimization would get stuck in an endless oscillatory sequence.
This happens due to an overshoot in the first iteration resulting an extreme infeasible design,
which can no longer return to a feasible one. A similar phenomenon is seen when imple-
menting test case 4, which will be discussed in Section 4.4.3.

Table 4.9: Comparison for optimization objective with different cross sections

Test Case Cross-Section Nr.it Initial Optimal reduction

1 I 5 4980 3559 28,53%
3∗ Z 12 4515 3556 21,24%

To reach an optimal design the constraints must hold. Prove of this is shown in Table 4.11.
Therefore it can be concluded that the optimizer is capable of addressing different cross-
sections while the FEM input and output request remain the same. This proves that random
cross-sections can be utilised within this optimization provided that the analytical equations
are available to transform the received sensitivities into the required ones.

Table 4.10: Start values for design
variables

DV Value [mm]

T 3
H 55
W 8
t3 3
t2 3
t1 3

Table 4.11: Constraint values for test
case 3

Constr Value [-]

Buck 1,000
AFR 8,061
WR 19,937
FFR 3,000

AFSR 1,300

4.4.3 Multiple properties

There are two test cases where multiple properties are addressed, case 2 and 4. Where they
define multiple I and Z-beam properties respectively. The bar properties are assigned sym-
metrically on the panel in the order as defined in Table 4.4.
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The optimal objective value for case 2 with respect to the initial case is found in Table 4.12.
The reason that test case 4 is not included in this table is because it did not converge. More
explanation on this follows. From Table 4.12 it can be seen that the total reduction is higher
when different properties are assigned to the stiffeners. This is only logical as it enables the
optimizer to adjust the stiffeners more freely and thus a more optimal design can be found.
Off course this also has its influence on the computational time.

The optimization for the different properties takes 138 outer iterations while for one property
only 5. For a increase in reduction of only 0.39%, it does not seem reasonable to optimize
for different properties. However when the load cases become more complex this reduction
should increase drastically, which would make it very attractive.

Table 4.12: Comparison for optimization objective with different amount of properties

Test Case #it Initial Optimal reduction

1 5 4980 3559 28,53%
2 138 4980 3540 28,92%

Table 4.13 shows an overview of the different properties after optimization of test case 2 and
1. Clearly the middle stiffener with property 3 is less significant than the others.

Table 4.13: Parameters per property after optimization

Test Case Property T H W2 W1 t3 t2 t1

1 1 2,768 48,284 15,024 8,000 2,095 2,777 3,598
2 1 2,791 47,583 10,666 8,000 2,022 3,544 3,629
... 2

... 48,835 11,104 8,000 2,080 3,686 3,629
... 3

... 46,692 9,640 8,000 2,000 3,070 3,629

Table 4.14 shows once more that all constraints are satisfied and thus de design is feasible.

Table 4.14: Constraint values for test case 1 and 2 after optimization

Test Case Property Mode 1 AFR WR FFR AFSR

1 1 1,000 8,03 20,00 5,41 1,30
2 1 1,001 7,9424 19,9895 3,00985 1,30004
... 2

... 7,95847 19,9623 3,01224 1,30004
... 3

... 7,93645 19,9967 3,13981 1,30004

For test case 4 the solution did not converge. Figure 4.3 shows the change in objective through-
out the optimization process. It was halted at 200 iterations. A trendline was added to the
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graph and its equation is shown within the figure. The graph only starts at run 21 such that
the oscillatory part is better represented. This indicates that although the process is oscillat-
ing continuously, the objective is slowly minimizing.

Figure 4.3: Evolution of the objective during optimization of case 4

The same visualisation is prepared for the critical buckling mode in Figure 4.4. Here can be
seen that a similar trend as for the objective exists for the critical buckling mode. Since the
eigenvalue is already beneath its constraint value after the first iteration, this value should
not keep decreasing. However the rate at which it does is nearly 0 so it can be assumed to be
a stable oscillation.

Figure 4.4: Evolution of the buckling constraint during optimization of case 4

The reason for the oscillatory behaviour is simply its design freedom. During the inner loop
only the 20 modes determined by the analysis can be taken into account. Therefore, it cannot
account for possible new modes due to adjustment of the parameters.

The critical buckling modes for runs 20 to 29 are presented in Figure 4.5. Note that most
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modes that are not symmetrical have a symmetric counterpart with a slightly higher eigen-
value due to the slight shift in CG along the x-axis of the Z-stiffeners with respect to the el-
ements. Taking for example run 21 shows that the stiffeners with property 1 and 2 are un-
derdesigned. During the optimization these are thus adjusted to be more stiff while property
3 is adjusted to be counter the increase for 1 and 2 since the objective function should not
increase. This results in an underdesigned stiffener in the middle with property 3. Therefore,
the new critical buckling mode originates from that stiffener in the successive iteration. This
continues such that eventually a pattern forms as seen in Figure 4.5.

So for this section it can be concluded that for this specific load case, optimizing with respect
to a set of properties rather than one is not very beneficial. On top of this it may cause serious
oscillatory behaviour and lead to non-convergence.

4.4.4 Different amount of stiffeners

Finally the program is run for different cases with a variable number of stiffeners. This is done
for both I-stiffeners and Z-stiffeners. Figure 4.6 and 4.7 show the convergence for different
amounts of I and Z-stiffeners respectively. These indicate that all cases nicely converge. Note
however that for Figure 4.7, case 9 is not included because it takes 182 iterations to converge
as can be seen in Table 4.16. The slow convergence is devoted to similar oscillatory behaviour
as test case 3.

The data for the optimized cases can be found in Table 4.15 and 4.16. Again for all panels,
buckling formed the critical constraint and therefore the stress constraints are omitted. From
the data its clear that test case 8 and 9 propose the most optimal result for I and Z-stiffeners
respectively. These test cases both refer to 7 stiffeners as the optimal amount. So it can be
concluded 7 stiffeners are required to reach the optimal result for this specific load case.

Table 4.15: Optimization data for cases with different amount of I-stiffeners

Objective Constraints

Test Case #it Initial Optimal reduction Buck AFR WR FFR AFSR

1 5 4980 3559 28,53% 1,000 8,03 20,00 5,41 1,30
5 3 4584 4170 9,04% 1,021 7,45 13,66 6,50 1,30
6 5 5376 3443 35,96% 1,001 8,97 20,00 5,39 1,30
8 9 5772 3375 41,53% 1,001 9,66 20,00 4,37 1,30

10 10 6168 3384 45,13% 1,001 9,93 20,00 4,39 1,30
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(a) Run 20 (b) Run 21 (c) Run 22

(d) Run 23 (e) Run 24 (f) Run 25

(g) Run 26 (h) Run 27 (i) Run 28

(j) Run 29

Figure 4.5: Critical buckling modes for case 4 for different steps in the optimization
process
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Figure 4.6: Evolution of the objective during optimization for different amounts of
I-stiffeners

Figure 4.7: Evolution of the objective during optimization for different amounts of
Z-stiffeners

Table 4.16: Optimization data for cases with different amount of Z-stiffeners

Objective Constraints

Test Case #it Initial Optimal reduction Buck AFR WR FFR AFSR

3 12 4515 3556 21,24% 1,000 8,06 19,94 3,00 1,30
7 4 5376 3442 35,98% 1,001 8,92 20,00 3,01 1,30
9 182 5772 3386 41,33% 1,000 9,74 20,00 3,00 1,30

11 5 6168 3405 44,80% 1,001 10,04 20,00 3,00 1,30
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Chapter 5

Conclusion

The goal of this thesis was to develop an optimizer for shape and size optimization of stiffened
panels by combining FE software with an interior point method coded in MATLAB.

This is achieved using Mehrotra’s predictor-corrector interior point method as implemented
by Zillober [7]. In combination with Fleury’s ConLin approximation scheme it results in an
easy implementable optimizer.

The input for the optimizer is defined by NASTRAN based on a 2D model of a stiffened panel.
A 2D representation enables the adjustment of bar properties and shell thickness without
having to change the mesh, which is very attractive for optimization purposes. The panel
and stiffeners are defined by shell and bar elements respectively. The bar elements need to be
defined using the PBAR property card. These directly implement the geometrical properties
instead of stiffener cross sections and dimensions into the bar element. Therefore a free cross
section design is made possible. Note that this has the drawback of having to calculate the
properties manually and the production of additional round-off errors.

The sensitivity’s are extracted from NASTRAN. To achieve the highest accuracy, they are re-
quested with respect to the geometrical properties rather than the design variables. This al-
lows for the transformation of the extracted sensitivities to the required ones by use of analyt-
ical equations. Provided these equations are available, this method allows for a fixed amount
of extracted information, which can be adjusted to any number of design variables.

The optimizer is capable of handling problems with different properties for the stiffeners. It
is also capable of handling different cross sectional shapes and can be used to determine the
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optimal amount stiffeners. These statements are supported by the results. Steady conver-
gence for most cases is achieved however some showed oscillatory behaviour. From investi-
gation it can be concluded that this behaviour originates from the optimizer’s incapability to
anticipate buckling modes, outside of those set as constraints, within inner loop.

In the end the goal of developing the optimizer was achieved while additional restrictions
due to the FEM package were circumvented.
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Chapter 6

Recommendations

For further research on this approach, some small recommendations are in order. These
should help to establish a more robust program capable of solving different load cases and
achieve more stable convergence.

Momentarily the program uses MATLAB to define the data structure for the bdf. However a
method could be developed where MATLAB can analyse the bdf and extract its data struc-
ture from it. This would provide the user with the opportunity to create his model in a FEM
GUI environment rather than having to learn the setup method of the data structure. All the
same properties can still be implemented and the equations for sensitivity adjustment and
geometrical properties could be provided through an additional input. This method would
also allow for easier implementation of new load cases. On the other hand it would restrict
the automatic FEM model generation for a variable number of stiffeners.

Another issue noticed in the program until now is the oscillatory behaviour. In the optimiza-
tion scheme, constraint relaxation is implemented in the inner loop such that the approxi-
mated solution can steadily converge towards the constraints. If a similar approach would
be implemented for the outer loops, the inner loop would be less likely to adjust the design
variables in such manner that a new and maybe even more critical buckling mode is reached.
Eventually this would provide possibly slower but more stable convergence.

Finally as mentioned, one of the most basic approximations methods is implemented within
the optimizer. This could be adjust such that more elaborate approximation schemes can be
used. Doing this will allow the program to more accurately approximate the functions in the
inner loop. More accurate approximations should also lead to a more robust program.
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Appendix A

BDF setup

Figure A.1 shows the basic set-up for the bdf files used within this thesis. Note that after this
initialisation part of the bdf, the bulk data entries as specified by Section 3.2.2 are included.
In this initialisation part, some similar commands are seen. These however do not represent
the NASTRAN input cards but merely reference which sets of SPC, MPC, LOADS, etc. have
to be used within the analysis of the subcase. Furthermore, STRAIN, STRESS, FORCE, etc.
refer to the output request. More information can be found in the Quick Reference Guide of
NASTRAN [47].
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Figure A.1: BDF analysis set-up
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