<]
TUDelft

Delft University of Technology

Latent space modeling of parametric and time-dependent PDEs using neural ODEs

Longhi, Alessandro; Lathouwers, Danny; Perko, Zoltan

DOI
10.1016/j.cma.2025.118394

Licence
cCcBY

Publication date
2026

Document Version
Final published version

Published in
Computer Methods in Applied Mechanics and Engineering

Citation (APA)

Longhi, A., Lathouwers, D., & Perkd, Z. (2026). Latent space modeling of parametric and time-dependent
PDEs using neural ODEs. Computer Methods in Applied Mechanics and Engineering, 448, Article 118394.
https://doi.org/10.1016/j.cma.2025.118394

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.cma.2025.118394
https://doi.org/10.1016/j.cma.2025.118394

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Contents lists available at ScienceDirect

Computer
Methods

in Applied
Mechanics and

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Latent space modeling of parametric and time-dependent PDEs
using neural ODEs

Alessandro Longhi 2 *, Danny Lathouwers, Zoltan Perkd
Department of Radiation Science and Technology, TU Delft University of Technology, Mekelweg 15, Delft, 2629JB, the Netherlands

ARTICLE INFO ABSTRACT
Keywords: Partial Differential Equations (PDEs) are central to science and engineering. Since solving them is
Partial differential equations computationally expensive, a lot of effort has been put into approximating their solution operator

Surrogate modeling
Dimensionality reduction
Neural ordinary differential equations

via both traditional and recently increasingly Deep Learning (DL) techniques. In this paper, we
propose an autoregressive and data-driven method using the analogy with classical numerical
solvers for time-dependent, parametric and (typically) nonlinear PDEs. We present how Dimen-
sionality Reduction (DR) can be coupled with Neural Ordinary Differential Equations (NODEs)
in order to learn the solution operator of arbitrary PDEs accounting both for (continuous) time
and parameter dependency. The idea of our work is that it is possible to map the high-fidelity
(i.e., high-dimensional) PDE solution space into a reduced (low-dimensional) space, which subse-
quently exhibits dynamics governed by a (latent) Ordinary Differential Equation (ODE). Solving
this (easier) ODE in the reduced space allows avoiding solving the PDE in the high-dimensional
solution space, thus decreasing the computational burden for repeated calculations for e.g., un-
certainty quantification or design optimization purposes. The main outcome of this work is the
importance of exploiting DR as opposed to the recent trend of building large and complex archi-
tectures: we show that by leveraging DR we can deliver not only more accurate predictions, but
also a considerably lighter and faster DL model compared to existing methodologies.

1. Introduction

Physical simulations are crucial to all areas of physics and engineering, such as fluid dynamics, nuclear physics, climate science,
etc. Although a lot of work has been done in constructing robust and quick numerical Partial Differential Equations (PDE) solvers
[1], traditional solvers such as finite element methods are still computationally expensive when the system is complex. This is a
problem especially when repeated evaluations of a model for different initial conditions and parameters are needed, which is typical
in sensitivity analysis, design optimization or uncertainty quantification studies [2,3]. To overcome such time limitations, decades of
extensive research has been put into building so called surrogate models, i.e., faster to evaluate but accurate enough approximations
of the original complex model describing the physical system of interest.

The first studies on surrogate modeling fall under the umbrella of Reduced Order Modeling (ROM) [4] methods, with the pioneering
work on Proper Orthogonal Decomposition (POD) by Lumley in 1967 [5]. The main assumption of ROM is that a system determined
by N (potentially infinite) degrees of freedom (full space) can instead be projected into a lower dimensional space of dimension n
(reduced space), hence its evolution can be calculated by solving a much smaller system of n < N equations. A common way of

* Corresponding author.
E-mail address: a.longhi@tudelft.nl (A. Longhi).

https://doi.org/10.1016/j.cma.2025.118394

Received 20 May 2025; Received in revised form 1 September 2025; Accepted 6 September 2025

Available online 23 September 2025

0045-7825/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
https://orcid.org/0009-0008-5808-2164

N

n

$n\ll N$

$s(x,t)$

$s(x,t)\approx \sum _{k=1}^n a_k(t)V_k(x)$

$a_k(t)$

$V_k(x)$

x

n

$a_k(t)$

$s(x,t)$

$h(t)\in \mathbb {R}^D$

$\frac {dh(t)}{dt}=f_\theta (h(t),t)$

$f_{\theta }$

$h(t)$

2

2

t_i

t_{i+1}

Δt

$\Delta t'<\Delta t$

3

Δt

3

f

\begin {align}\frac {d}{dt}\varepsilon (t|\pmb {\mu })=f(\varepsilon (t|\pmb {\mu }),\pmb {\mu }),\quad \text \quad f\in \mathcal {F}:\mathcal {E}\times \mathcal {D}_{\pmb {\mu }}\rightarrow \mathcal {E}, \label {eq:ODE}\end {align}

f

f

f

f_i

i

f_i

f

f

$\mathcal {V}$

$\mathcal {S}$

$\mathcal {S}^0$

\begin {align}\left \{ \begin {aligned} & \mathcal {V} = \{v|v:\partial \mathcal {D}_{\mathbf {x}}\times \mathcal {D}_t\rightarrow \mathbb {R}^m\,;\lVert v_i \rVert _2<\infty \,\forall \,i\in [1,\ldots ,m]\,\,; v\in \mathcal {C}^2\},\\ & \mathcal {S} = \{s|s:\mathcal {D}_{\mathbf {x}}\times \mathcal {D}_t\rightarrow \mathbb {R}^m\,;\lVert s_i \rVert _2<\infty \,\forall \, i \,\in [1,\ldots ,m]\,\,; s\in \mathcal {C}^2\},\\ & \mathcal {S}^0\subseteq \mathcal {S}^t = \{s(x,t=\tilde {t}|\pmb {\mu })|s(x,t=\tilde {t}|\pmb {\mu }):\mathcal {D}_{\mathbf {x}}\rightarrow \mathbb {R}^m, \forall \tilde {t}\in \mathcal {D}_t, \pmb {\mu }\in \mathcal {D}_{\pmb {\mu }}\}, \end {aligned} \right . \label {Xeqn1-1}\end {align}

$\mathcal {S}^t$

$\mathcal {D}_{\mathbf {x}}\subseteq \mathbb {R}^n$

$\mathbf {x}$

$\mathcal {D}_{t}\subseteq \mathbb {R}^+$

$\partial \mathcal {D}_{\mathbf {x}}\subseteq \mathbb {R}^n$

$\mathcal {D}_{\mathbf {x}}$

$\mathcal {D}_{\pmb {\mu }}\subseteq \mathbb {R}^z$

$\pmb {\mu } = (\mu _1,\mu _2,\ldots , \mu _z)$

\begin {align}\left \{ \begin {aligned} &\hat {\mathcal {N}}(s(\mathbf {x},t|\pmb {\mu }),\mathbf {x},t,\pmb {\mu })= g(\mathbf {x},t,\pmb {\mu }) \\ &s(\tilde {\mathbf {x}},t|\pmb {\mu }) = v(\tilde {\mathbf {x}},t,\pmb {\mu }) \\ &s(\mathbf {x},t=0|\pmb {\mu }) = s^0(\mathbf {x},\pmb {\mu }), \end {aligned} \right . \label {eq:PDEsystem}\end {align}

$\hat {\mathcal {N}}(s(\mathbf {x},t|\pmb {\mu }),\mathbf {x},t,\pmb {\mu })$

$g(\mathbf {x}, t ,\pmb {\mu })$

$s\in \mathcal {S}$

$v\in \mathcal {V}$

$s^0\in \mathcal {S}^0$

$\mathbf {x}\in \mathcal {D}_{\mathbf {x}}$

$\pmb {\mu }\in \mathcal {D}_{\pmb {\mu }}$

$\tilde {\mathbf {x}}\in \partial \mathcal {D}_{\mathbf {x}}$

$t\in \mathcal {D}_{t}$

$\pmb {\mu }$

$(\cdot ,\pmb {\mu })$

$(\cdot |\pmb {\mu })$

$v(\tilde {\mathbf {x}},t, \pmb {\mu })$

$g(\mathbf {x},t,\pmb {\mu }) = 0$

$\hat {\mathcal {N}} = \hat {\mathcal {N}}(s(\mathbf {x},t|\pmb {\mu }),\mathbf {x},\pmb {\mu })$

t

$\hat {\mathcal {S}}$

$\hat {\mathcal {H}}$

\begin {align}\hat {\mathcal {S}}:\mathcal {S}^0\times \mathcal {D}_{t}\times \mathcal {D}_{\pmb {\mu }}\rightarrow \mathcal {S}\quad \text {and}\quad \hat {\mathcal {H}}:\mathcal {S}^t\times \mathcal {D}_{\Delta t}\times \mathcal {D}_{\pmb {\mu }}\rightarrow \mathcal {S}^t, \label {eq:global&auto-op}\end {align}

$\mathcal {D}_{\Delta t}\subseteq \mathbb {R}^+$

$\hat {\mathcal {S}}$

$(s^0,t,\pmb {\mu })$

$s(\mathbf {x},t|\pmb {\mu })$

$\hat {\mathcal {H}}$

$(s(\mathbf {x},t=\tilde {t}|\pmb {\mu }), \Delta t, \pmb {\mu })$

$s(\mathbf {x},\tilde {t}+\Delta t|\pmb {\mu })$

s

t

s^0

t

t

s

t

s

$t+\Delta t$

t

$s(t)$

s^0

$s(t+\Delta t)$

$\mathcal {S}$

s

$\mathbf {X} = \{x_k|x_k\in \mathcal {D}_{\mathbf {x}}, x_k = (x_k^1,\ldots ,x_k^n),k=0,\ldots ,N_\mathbf {x}\}$

$\partial \mathbf {X} = \{\tilde {x}_k|\tilde {x}_k\in \partial \mathcal {D}_{\mathbf {x}}, \tilde {x}_k = (\tilde {x}_k^1,\ldots ,\tilde {x}_k^n), k=0,\ldots ,N_{\tilde {\mathbf {x}}}\}$

$\mathcal {D}_{\mathbf {x}}$

$\pmb {\mathcal {X}} = \mathbf {X}\cup \partial \mathbf {X}$

$\pmb {M} = \{\pmb {\mu }\in \mathcal {D}_{\pmb {\mu }},\pmb {\mu }=(\mu _0,\mu _1,\ldots ,\mu _z)\}$

$\pmb {\mu }$

$\mathbf {T} = \{t|t\in \mathcal {D}_{t},t=(t_0,t_1,\ldots ,t_{F})\}$

$\mathcal {S}$

$\mathcal {S}^0$

$\pmb {\mathcal {X}}$

$\pmb {T}$

$\mathcal {S}_r=\{s_{r}(\mathbf {x},t|\pmb {\mu })|\mathbf {x}\in \pmb {\mathcal {X}}, t\in \mathbf {T}, \pmb {\mu }\in \pmb {M}\}\subset {\mathbb {R}^{|\pmb {\mathcal {X}}|\times n\times m}}$

$\mathcal {S}^{0}_r=\{s^0_{r}(\mathbf {x},\pmb {\mu })|\mathbf {x}\in \pmb {\mathcal {X}},\pmb {\mu }\in \pmb {M}\}\subset \mathcal {S}_r$

r

s

$s_r(\mathbf {x},t_0|\pmb {\mu }) = s_r^0(\mathbf {x},\pmb {\mu })$

s_r

$s_r(\mathbf {x},t|\pmb {\mu })$

$s_r(\mathbf {x},t|\pmb {\mu },s_r^0)$

s_r^0

s^0

$\mathcal {E}$

\begin {align}\mathcal {E}=\{\varepsilon (t|\pmb {\mu })|\varepsilon (t|\pmb {\mu })= (\varepsilon _1(t|\pmb {\mu }), \ldots ,\varepsilon _{\lambda }(t|\pmb {\mu })), t\in \mathcal {D}_t, \pmb {\mu }\in \mathcal {D}_{\pmb {\mu }}\}\subset {\mathbb {R}^{\lambda }}, \label {Xeqn4-4}\end {align}

$\lambda \ll |\mathcal {X}|\cdot nm$

$\varepsilon (t|\pmb {\mu })\in \mathcal {E}$

$s\in \mathcal {S}$

$\pmb {\mu }$

$\varepsilon (t|\pmb {\mu })$

$s(\mathbf {x},t|\pmb {\mu })$

$\varepsilon _i(t)$

s

s

$\mathcal {S}_r$

$\varepsilon (t|\pmb {\mu })$

$\mathcal {S}$

$\varepsilon (t|\pmb {\mu })$

$\mathcal {S}$

$\mathcal {S}$

$\mathcal {E}$

$\varphi $

$\psi $

\begin {align}\varphi : \mathcal {S}\rightarrow \mathcal {E}\quad \text {and}\quad \psi : \mathcal {E}\rightarrow \mathcal {S}, \label {eq:AE}\end {align}

$\varphi \circ \psi =\psi \circ \varphi = \mathds {1}$

$\varphi $

$\psi $

$\varphi _\theta :\mathcal {S}_r\rightarrow \mathcal {E}$

$\psi _\theta :\mathcal {E}\rightarrow \mathcal {S}_r$

$\varepsilon $

$\mathcal {E}$

$\mathcal {E}$

$\pmb {\mu }\in \pmb {M}$

f

t

$\mathcal {E}$

$\hat {\mathcal {N}}$

$g(\mathbf {x},t,\pmb {\mu })$

t

$f = f(\varepsilon (t|\pmb {\mu }),\pmb {\mu },t)$

t

$\pmb {\mu }$

\begin {align}\label {eq:processor} \pi :\mathcal {E}\times \mathcal {F}\times \mathcal {D}_{\pmb {\mu }}\times \mathcal {D}_{\Delta t}\rightarrow \mathcal {E},\end {align}

$\varepsilon (t|\pmb {\mu })$

\begin {align}\pi (\varepsilon (t_i|\pmb {\mu }),f,\pmb {\mu },\Delta t_{i+1,i}) = \varepsilon (t_i|\pmb {\mu })+\int _{t_i}^{t_{i+1}}f(\varepsilon (t|\pmb {\mu }),\pmb {\mu }) \,dt, \label {eq:NODE}\end {align}

$\Delta t_{i+1,i} = t_{i+1}-t_i$

$\pmb {\mu }$

f

$\pi (\varepsilon (t_i|\pmb {\mu }),f,\pmb {\mu },\Delta t_{i+1,i})= \varepsilon (t_{i+1}|\pmb {\mu })$

$\varphi $

$\psi $

$\pi $

$\pi $

f

$f_\theta $

f

$\pi _\theta $

$\pi $

$\mathcal {E}$

\begin {align}\pi _\theta (\varepsilon (t_{i}|\pmb {\mu }), \pmb {\mu },\Delta t_{i+1,i}) = ODESolve(\varepsilon (t_{i}|\pmb {\mu }),\pmb {\mu },\Delta t_{i+1,i}), \label {Xeqn9-9}\end {align}

$f_\theta $

$\varepsilon (t|\pmb {\mu })$

$\varepsilon (t|\pmb {\mu })$

\begin {align}\pi _\theta (\varepsilon (t_{i}|\pmb {\mu }),\pmb {\mu },\Delta t_{i+1,i}) = \varepsilon (t_i|\pmb {\mu })+\Delta t_{i+1,i}\,f_\theta (\varepsilon (t_{i}|\pmb {\mu }),\pmb {\mu }). \label {Xeqn10-10}\end {align}

$\pi $

$\hat {\mathcal {H}}$

$\mathcal {E}$

$\pi $

$\mathcal {S}_r$

$\mathcal {E}$

$\pi _\theta $

\begin {align}\mathcal {L}_{1,i} = \frac {||s_r(\mathbf {x},t_i|\pmb {\mu })-\psi _\theta \circ \varphi _\theta (s_r(\mathbf {x},t_i|\pmb {\mu })||_2}{||s_r(\mathbf {x},t_i|\pmb {\mu })||_2} \label {Xeqn11-11}\end {align}

\begin {align}\left \{ \begin {aligned} &\varepsilon _i^{\pmb {\mu }} = \varphi _\theta (s(\mathbf {x},t_i|\pmb {\mu })),\\ &\varepsilon _{i}^{\pmb {\mu },k} = \pi _\theta (\cdot ,\pmb {\mu },\Delta t_{i,i-1})\circ \ldots \circ \pi _\theta (\varepsilon _{i-k}^{\pmb {\mu }},\pmb {\mu },\Delta t_{i-k+1,i-k}), \\ \end {aligned} \right . \label {eq:notation-simplified}\end {align}

\begin {align}\left \{ \begin {aligned} &\mathcal {L}_{2,i}^{T,k_1} = \frac {||\varepsilon _i^{\pmb {\mu }}-\varepsilon _{i}^{\pmb {\mu },k_1}||_2}{||\varepsilon _i^{\pmb {\mu }}||_2},\\ &\mathcal {L}_{2,i}^{A,k_2} = \frac {||\varepsilon _i^{\pmb {\mu }}-\varepsilon _i^{\pmb {\mu },i}||_2}{||\varepsilon _i^{\pmb {\mu }}||_2}, \end {aligned} \right . \label {eq:L2-loss}\end {align}

T

A

$\mathcal {L}_{2,i}^{T,k_1}$

$\varepsilon _{i}^{\pmb {\mu }}$

$\varepsilon _{i}^{\pmb {\mu },k_1}$

$\pi _\theta $

$\varepsilon _{i-k_1}^{\pmb {\mu }}$

$s_r(\mathbf {x},t_{i-k_1}|\pmb {\mu })$

k_1

s^0_r

$\varphi _\theta $

$\varepsilon _0^{\pmb {\mu }}$

$\varepsilon _0^{\pmb {\mu }}$

$\pi _\theta $

$\pmb {\mu }$

$\Delta t_{i+i,i}$

$\psi _\theta $

$\varepsilon _{i}^{\pmb {\mu },i}$

$\tilde {s}_r(\mathbf {x},t_i|\pmb {\mu })$

$\varphi _\theta $

s_r^0

$\lambda $

$\lambda $

$\varepsilon $

$\pi _\theta $

$\pi _\theta $

$\varepsilon _0^{\pmb {\mu }}$

$\mathcal {L}^{T,k_1}_{2,i}$

$k_1= F$

$\mathcal {L}^{A,k_2}_{2,i}$

$\varepsilon _{i}^{\pmb {\mu }}$

$\varepsilon _i^{\pmb {\mu },i} = \pi _\theta (\cdot ,\pmb {\mu },\Delta t_{i,i-1})\circ \ldots \circ \pi _\theta (\varepsilon _{0}^{\pmb {\mu }},\pmb {\mu },\Delta t_{1,0})$

$\pi _\theta $

s_r^0

k_2

t_i

s_r^0

$\pi _\theta $

i

t_{i-k_2}

t_i

$\mathcal {L}^{T,k_1}_{2,i}$

$\mathcal {L}^{A,k_2}_{2,i}$

$k_1=k_2= F$

t_{i-k}

$\tilde {s}_r(\mathbf {x},t_i|\pmb {\mu }) = \psi _\theta \circ \pi _\theta (\cdot ,\pmb {\mu },\Delta t_{i,i-1})\circ \ldots \circ \pi _\theta (\cdot ,\pmb {\mu },\Delta t_{1,0})\circ \varphi _\theta (s^0_r)$

$\mathcal {L}^{T,1}_{2,i}$

$\mathcal {L}^{A,k_2}_{2,i}$

k_2

$k_2>1$

k_2

$k_1>1$

$\mathcal {L}^{T,k_1}_{2,i}$

t_{i-k}

$\mathcal {L}_{2,i}=\beta \mathcal {L}^{T,k_1}_{2,i}+\gamma \mathcal {L}^{A,k_2}_{2,i}$

$\beta $

$\gamma $

$\beta =1$

$\gamma =0$

$k_1=1$

$\beta =1$

$\gamma =1$

$k_1=1$

k_2

$k_2 = 1$

1

2

$\mathcal {L}_{1,i}$

$\mathcal {L}^{T,1}_{2,i}$

$\mathcal {L}^{A,1}_{2,i}$

k_2

$\pi _\theta $

$\varepsilon (t|\pmb {\mu })$

$\Delta t_{i+1,1}$

$\Delta t_{i+1,1}/\alpha $

$\alpha \in [1,\infty)$

$s_r(\mathbf {x},t_i|\pmb {\mu })$

$i\in \{0,F\}$

$\varphi _\theta $

$\varepsilon _i^{\pmb {\mu }}$

$\psi _\theta $

$\tilde {s}_r(\mathbf {x},t_i|\pmb {\mu })$

$\mathcal {L}_1$

$\pi _\theta $

$\varepsilon _i^{\pmb {\mu }}$

$i\in \{0,F-1\}$

$\varepsilon _{i}^{\pmb {\mu },1}$

$i\in \{1,F\}$

$\mathcal {L}_2^{T,1}$

T

$\varepsilon _i^{\pmb {\mu }}$

$\varepsilon _{i}^{\pmb {\mu },1}$

$\pi _\theta $

$\varepsilon _0^{\pmb {\mu }}$

$\varepsilon _{i}^{\pmb {\mu },i}$

$i\in \{1,F\}$

$\mathcal {L}_2^{A,k_2}$

A

$\varepsilon _i^{\pmb {\mu }}$

$\varepsilon _{i}^{\pmb {\mu },i}$

$\pi _\theta $

$\varepsilon _i^{\pmb {\mu }}$

$i\in \{0,F-1\}$

$\varepsilon _i^{\pmb {\mu }}$

$\varepsilon ^{\pmb {\mu },1}_{m}$

$\Delta t_{m,i-1}$

$[0,\Delta t_{i,i-1}]$

$\pi _\theta $

$\varepsilon ^{\pmb {\mu },1}_{m}$

$\Delta t_{i,i-1}-\Delta t_{m,i}$

$\tilde {\varepsilon }_{i}^{\pmb {\mu }}$

$\mathcal {L}_3$

$\varepsilon _i^{\pmb {\mu }}$

$\tilde {\varepsilon }_{i}^{\pmb {\mu }}$

$\pmb {\mu }$

$\pmb {\mu }$

t

Δt

$\Delta t = 0.05$

$\Delta t = 0.02$

t

Δt

$\zeta $

$\nu =0.001,0.01$

$\nu $

$\zeta = 0.1,1.0,7.0$

$\nu =0.1,1.0,4.0$

\begin {align}\label {eq:L3} \left \{ \begin {aligned} &\mathcal {L}_{3,i} =\frac {||\varepsilon _i^{\pmb {\mu }}-\tilde {\varepsilon }_{i}^{\pmb {\mu }}||_2}{||\varepsilon _i^{\pmb {\mu }}||_2}\ \\ &\tilde {\varepsilon }_{i}^{\pmb {\mu }} = \pi _\theta (\cdot ,(\Delta t_{i,i-1}-\Delta t_{m,i}))\circ \pi _\theta (\varepsilon _{i-1}^{\pmb {\mu }},\pmb {\mu },\Delta t_{m,i-1}), \end {aligned} \right .\end {align}

$\Delta t_{m,i-1}\in [0,\Delta t_{i,i-1}]$

$i-1<m<i$

$\mathcal {L}_{3,i}$

$\mathcal {L}_{rg}$

$\mathcal {L}_{rg} = \lambda _{rg}\sum _{i=0}^F ||\varepsilon _i^{\pmb {\mu }}||_1/\lambda $

$\lambda _{rg}\in \mathbb {R}^+$

$s_r^0(\mathbf {x},\pmb {\mu })$

\begin {align}\begin {aligned} \mathcal {L}_{tr} &= \frac {1}{F}\sum _{i=0}^F \alpha \mathcal {L}_{1,i}+\frac {1}{F}\sum _{i=1}^{F}\left [\beta \mathcal {L}_{2,i}^{T,k_1}+\gamma \mathcal {L}_{2,i}^{A,k_2}+\delta \mathcal {L}_{3,i}\right]+ \mathcal {L}_{rg} \\ & = \alpha \mathcal {L}_{1}+\beta \mathcal {L}_{2}^{T,k_1}+\gamma \mathcal {L}_{2}^{A,k_2}+\delta \mathcal {L}_{3} + \mathcal {L}_{rg}, \end {aligned} \label {Xeqn15-15}\end {align}

k_1

k_2

$\alpha $

$\beta $

$\gamma $

$\delta $

$\mathcal {L}_{tr}$

$\mathcal {L}_{vl}$

\begin {align}\mathcal {L}_{vl} = \mathcal {L}_{tr} + \sum _{i=1}^{F} \frac {||s_r(\mathbf {x},t_i|\pmb {\mu }) - \tilde {s}_r(\mathbf {x},t_i|\pmb {\mu })||_2}{||s_r(\mathbf {x},t_i|\pmb {\mu })||_2}. \label {Xeqn16-16}\end {align}

$\pmb {\mu }$

t

$\pmb {\mu }$

$\pmb {\mu }$

\begin {align}\text {nRMSE} &=\frac {1}{N_u\,N_{\pmb {\mu }}F}\,\sum _{i=1}^{N_u}\sum _{p=1}^{N_{\pmb {\mu }}}\sum _{j=1}^F \frac {||s_r(\mathbf {x},t_j|\pmb {\mu }_p,s_{r,i}^0)-\tilde {s}_r(\mathbf {x},t_j|\pmb {\mu }_p,s_{r,i}^0))||_2}{||s_r(\mathbf {x},t_j|\pmb {\mu }_p,s_{r,i}^0)||_2},\label {eq:nRMSE}\\ \text {nRMSE}(\pmb {\mu }) &=\frac {1}{N_u\,F}\,\sum _{i=1}^{N_u}\sum _{j=1}^F \frac {||s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)-\tilde {s}_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0))||_2}{||s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)||_2},\label {eq:mu-nRMSE}\\ \text {NODE-nRMSE}(\pmb {\mu }) &=\frac {1}{N_u\,F}\,\sum _{i=1}^{N_u}\sum _{j=1}^F \frac {||\varphi _\theta \circ s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)-\tilde {\varepsilon }(t_j|\pmb {\mu },s_{r,i}^0))||_2}{||\varphi _\theta \circ s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)||_2},\label {eq:NODE-nRMSE}\\ \text {AE-nRMSE}(\pmb {\mu }) &=\frac {1}{N_u\,F}\,\sum _{i=1}^{N_u}\sum _{j=1}^F \frac {||s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)-\psi _\theta \circ \varphi _\theta \circ s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)||_2}{||s_r(\mathbf {x},t_j|\pmb {\mu },s_{r,i}^0)||_2},\label {eq:AE-nRMSE}\\ \text {nRMSE}(t) &=\frac {1}{N_u\,N_{\pmb {\mu }}}\,\sum _{i=1}^{N_u}\sum _{p=1}^{N_{\pmb {\mu }}}\frac {||s_r(\mathbf {x},t|\pmb {\mu }_p,s_{r,i}^0)-\tilde {s}_r(\mathbf {x},t|\pmb {\mu }_p,s_{r,i}^0))||_2}{||s_r(\mathbf {x},t|\pmb {\mu }_p,s_{r,i}^0)||_2},\label {eq:t-nRMSE}\end {align}

\begin {align}\label {eq:advection} \left \{ \begin {aligned} &\partial _t s(\mathbf {x},t|\pmb {\mu })+\zeta \partial _x s(\mathbf {x},t|\pmb {\mu })= 0,\quad x\in (0,1),\, t\in (0,2]\\ & s(\mathbf {x},0|\pmb {\mu }) = s^0(\mathbf {x},\pmb {\mu }),\, x\in (0,1). \end {aligned} \right .\end {align}

$\zeta =0.1$

\begin {align}\label {eq:burger} \left \{ \begin {aligned} &\partial _t s(\mathbf {x},t|\pmb {\mu })+\partial _x(s^2(\mathbf {x},t|\pmb {\mu })/2)-\nu /\pi \partial _{xx}s(\mathbf {x},t|\pmb {\mu })\quad x\in (0,1),\, t\in (0,2]\\ & s(\mathbf {x},0|\pmb {\mu }) = s^0(\mathbf {x},\pmb {\mu }),\, x\in (0,1), \end {aligned} \right .\end {align}

$\nu =0.001$

\begin {align}\label {eq:sw} \begin {aligned} &\partial _t h+\partial _x h u + \partial _y h v = 0, \\ &\partial _t h u +\partial _x \left (u^2~h + \frac {1}{2} g_r h^2 \right)+\partial _y u v h = -g_r h\partial _x b, \\ & \partial _t h v +\partial _x \left (v^2~h + \frac {1}{2} g_r h^2 \right)+\partial _y u v h = -g_r h\partial _y b, \end {aligned}\end {align}

$\pmb {\mu }$

s^0

$\dagger $

Δt

$\star $

Δt

$\pmb {\mu }$

s^0

$\dagger $

Δt

$\star $

Δt

$\Delta t = 0.05$

$\Delta t = 0.01$

3

$\Delta t=0.05$

$\Delta t = 0.01$

$\pmb {\mu }$

s^0

$\Delta t = 0.01$

$\Delta t = 0.05$

$\Delta t = 0.01$

$\Delta t = 0.01$

$\star $

$\dagger $

1

$\mathcal {L}_{2,i}^{T,1}$

3

\begin {align}\label {eq:molenkamp} \begin {aligned} &\partial _t q(x,y,t)+u\partial _x q(x,y,t) + v\partial _y q(x,y,t)+\lambda _3 q(x,y,t) = 0 \\ &q(x,y,0) = \lambda _1\,0.01^{\lambda _2 h(x,y,0)^2},\quad h(x,y,0)=\sqrt {(x-\lambda _4+\frac {1}{2})^2+(y-\lambda _5)^2}, \end {aligned}\end {align}

2

$\mathcal {L}_{2,i}^{T,1}$

$\mathcal {L}_{tr}$

$\mathcal {L}_{vl}$

$k_2 =1$

1

30

$p(k_2)$

k_2

$\gamma \,\mathcal {L}_{2,i}^{A,k_2}$

$\gamma = \gamma _0<1$

$\gamma _0$

$\gamma =1$

$\zeta $

0.1

7.0

1.0

$f_\theta $

0.7

2.0

$\nu $

$\nu =1.0$

$\nu =4.0$

$\nu =0.001$

$\nu =0.01$

$\Delta t = 0.05$

$\Delta t = 0.02$

$\lambda = 5$

$\pmb {\mu }$

$\pmb {\mu }$

$\zeta $

$\nu \geq 0.1$

0.1

$\nu =0.001$

$\nu =4.0$

$\nu =4.0$

2.0

$\nu =0.001$

0.001

$\nu =0.01$

$\nu =1.0$

5

$f_\theta $

$\zeta = 0.1, 1.0,7.0$

5

$\zeta = 0.1,1.0,7.0$

$\pmb {\mu }$

$\pmb {\mu }$

$\pmb {\mu }$

$(\pmb {\mu })$

$0.5/\zeta $

$\zeta = 0.1$

$\zeta = 4.0$

$\mathcal {L}_{3,i}$

$\gamma _0$

$p(k_2)$

$\mathcal {E}$

$\nu =0.001$

100

$\zeta =0.01$

$\zeta $

$\mathcal {E}$

$f_\theta $

$\mathcal {E}$

$f_\theta $

$t_i\in \mathbf {T}$

\begin {align}\label {eq:rungekutta-reduced} \varepsilon (t_{i+1}|\pmb {\mu }) = \varepsilon (t_{i}|\pmb {\mu }) + \Delta t_{i+1,i}\sum _{j=1}^q h_j b_j,\end {align}

q

$\Delta t_{i+1,i} = t_{i+1}-t_i$

\begin {align*}b_1 = &f(\varepsilon (t_{i}|\pmb {\mu }),t_{i},\pmb {\mu }),\\ b_2 = &f(\varepsilon (t_{i}|\pmb {\mu })+(a_{2,1}b_1)\Delta t_{i+1,i},t_i+c_2\Delta t_{i+1,i},\pmb {\mu }),\\ & \vdots \\ b_k = & f(\varepsilon (t_{i}|\pmb {\mu })+\sum _{l=1}^{k-1}a_{k,l}b_l\Delta t_{i+1,i}, t_i+c_k\Delta t_{i+1,i},\pmb {\mu }).\end {align*}

a_{ij}

h_j

c_j

i

$i+1$

$\Delta t_{i+1,i}$

$\pi _\theta $

$\Delta t_{i+1,i}$

$\pi _\theta $

$\varepsilon (t|\pmb {\mu })$

$\pmb {\mu }$

\begin {align}\varepsilon (t_{i+1}) = \varepsilon (t_{i})+\Delta t_{i+1,i}\,f_\theta (\varepsilon (t_{i})), \label {Xeqn18-A.2}\end {align}

t_m

$t_i<t_m<t_{i+1}$

$f_\theta $

\begin {align}\left \{ \begin {aligned} &\varepsilon (t_{i+1}) = \varepsilon (t_{i})+\Delta t_{i+1,i}\,f_\theta (\varepsilon (t_{i})), \\ &\varepsilon (t_{i+1}) = \varepsilon (t_{m}) + (\Delta t_{i+1,i}-\Delta t_{m,i})\, f_\theta (\varepsilon (t_{m}))), \end {aligned} \right . \label {eq:two-generalization}\end {align}

$\varepsilon (t_{m}) = \varepsilon (t_{i})+\Delta t_{m,i}\,f_\theta (\varepsilon (t_{i}))$

\begin {align}f_\theta (\varepsilon (t_{i})) = f_\theta (\varepsilon (t_{m})), \label {Xeqn20-A.4}\end {align}

$f_\theta $

$\pi _\theta $

$\Delta t_{i+1,i}$

$f_\theta $

$\varepsilon (t)$

$\mathcal {E}$

\begin {align}\varepsilon (t_{i+1}) = \varepsilon (t_{i})+\Delta t_{i+1,i}f_\theta \left (\varepsilon (t_{i})+\frac {1}{2}\Delta t_{i+1,i}\,f_\theta (\varepsilon (t_{i}))\right), \label {Xeqn21-A.5}\end {align}

$f_\theta $

$\Delta t_{i+1,i}/2$

$f_\theta $

\begin {align}\left \{ \begin {aligned} &\varepsilon (t_{i+1}|\pmb {\mu }) = \varepsilon (t_{i}|\pmb {\mu }) + \Delta t_{i+1,i}f_\theta (\varepsilon (t^{i+1}_i|\pmb {\mu })), \\ &\varepsilon (t_{i+1}|\pmb {\mu })= \varepsilon (t_{i}|\pmb {\mu })+\Delta t_{m,i} f_\theta (\varepsilon (t^m_i|\pmb {\mu }))+ (\Delta t_{i+1,i}-\Delta t_m)f_\theta (\varepsilon (t^{i+1}_m|\pmb {\mu })), \end {aligned} \right . \label {eq:two-generalization-RK-2}\end {align}

$t_i<t_m<t_{i+1}$

$t^{j}_k = \frac {t_j+t_k}{2}$

$\varepsilon (t^{j}_k|\pmb {\mu }) =\varepsilon (t_{k}|\pmb {\mu })+\frac { \Delta t_{j,k}}{2}f_\theta (\varepsilon (t_{k}|\pmb {\mu }))$

\begin {align}\Delta t_{i+1,i}f_\theta (\varepsilon (t^{i+1}_i|\pmb {\mu })) = \Delta t_{m,i} f_\theta (\varepsilon (t^m_i|\pmb {\mu }))+ (\Delta t_{i+1,i}-\Delta t_m)f_\theta (\varepsilon (t^{i+1}_m|\pmb {\mu })), \label {Xeqn23-A.7}\end {align}

\begin {align}\begin {aligned} &\Delta t_{i+1,i}f_\theta \left [\varepsilon (t_{i}|\pmb {\mu })+\frac { \Delta t_{i+1,i}}{2}f_\theta (\varepsilon (t_{i}|\pmb {\mu }))\right]= \Delta t_{m,i} f_\theta \left [\varepsilon (t_{i}|\pmb {\mu })+\frac { \Delta t_{m,i}}{2}f_\theta (\varepsilon (t_{i}|\pmb {\mu }))\right]+ \\ &+(\Delta t_{i+1,i}-\Delta t_m)f_\theta \left [\varepsilon (t_{i}|\pmb {\mu })+\frac { \Delta t_{m,i}}{2}f_\theta (\varepsilon (t_{i}|\pmb {\mu }))+\frac { \Delta t_{i+1,m}}{2}f_\theta \left [\varepsilon (t_{i}|\pmb {\mu })+\frac { \Delta t_{m,i}}{2}f_\theta (\varepsilon (t_{i}|\pmb {\mu }))\right]\right], \end {aligned} \label {Xeqn24-A.8}\end {align}

$\varepsilon (t_{i}|\pmb {\mu })+\frac { \Delta t_{m,i}}{2}f_\theta (\varepsilon (t_{i}|\pmb {\mu })) = \varepsilon (t_m|\pmb {\mu })$

$f_\theta $

$f_\theta $

$\mathcal {E}$

$\mathcal {S}$

$f_\theta $

$\Delta t_{i+1,i}$

$f_\theta $

$\mathcal {E}$

$\varphi _\theta $

$\pi _\theta $

$\psi _\theta $

$\varphi _\theta $

$\varphi _\theta $

m

$s(\mathbf {x},t|\pmb {\mu })$

N

x

y

$Fe = [Fe_1,\ldots ,Fe_{L-2}]$

$Ke = [Ke_1,\ldots ,Ke_{L-2}]$

$j\in \{2,L-2\}$

$\lambda $

1

2

$\pi _\theta $

$f_\theta $

f

$f_\theta (\varepsilon (t|\pmb {\mu }),\pmb {\mu })$

$\varepsilon (t|\pmb {\mu })$

$\pmb {\mu }$

$\pmb {\mu }$

$\varepsilon (t|\pmb {\mu })$

$f_\theta :\mathbb {R}^{\lambda +z}\rightarrow \mathbb {R}^{\lambda }$

z

$\pmb {\mu }$

$\lambda $

$\varepsilon (t|\pmb {\mu })$

$\pmb {\mu }$

$\alpha :\mathbb {R}^z\rightarrow \mathbb {R}^{\lambda }$

$\tau :\mathbb {R}^z\rightarrow \mathbb {R}^{\lambda }$

$f_\theta $

$\alpha (\pmb {\mu })\odot \varepsilon (t|\pmb {\mu })$

$\tau (\pmb {\mu })$

$\odot $

$\alpha $

$\tau $

$f_\theta $

$\psi _\theta $

$\psi _\theta $

x

y

$L-1$

$=1$

m

s

$Fd = [Fd_1,\ldots ,Fd_{L-2}]$

$Ke = [Kd_1,\ldots ,Kd_{L-2}]$

$j\in \{3,L-1\}$

s

$\pmb {\mu }$

$\Delta t_{i+1,i}$

y

$y\rightarrow \frac {y-min(D_y)}{max(D_y)-min(D_y)}$

$max(D_y)$

$min(D_y)$

D_y

y

s

$(max(D_s),min(D_s))$

$\pmb {\mu }$

$\mu _i$

z

$(max(D_{\mu _i}),min(D_{\mu _i}))$

$i\in \{1,z\}$

200

$\gamma _{lr}$

5000

$q=4$

$\mathcal {L}_{tr}$

$\mathcal {L}_{vl}$

\begin {align}\mathcal {L}_{vl} = \mathcal {L}_{tr} + \sum _{i=1}^{F} \frac {||s_r\rb {\mathbf {x},t_i|\pmb {\mu }} - \tilde {s}_r\rb {\mathbf {x},t_i|\pmb {\mu }}||_2}{||s_r\rb {\mathbf {x},t_i|\pmb {\mu }}||_2}, \label {Xeqn25-C.1}\end {align}

$s_r\rb {\mathbf {x},t_i|\pmb {\mu }}$

t_i

$\pmb {\mu }$

$\lambda _{rg}$

0

$f_\theta $

$1e-6$

$f_\theta $

$s(\mathbf {x},t|\zeta)$

$T_\zeta = \frac {0.5}{\zeta }$

$\pmb {\mu }=\zeta $

$f_\theta $

$\sqb {\sin \rb {\frac {2\pi }{0.5/\zeta }t}, \cos \rb {\frac {2\pi }{0.5/\zeta }t}}$

$f_\theta $

$\zeta \in \cb { 0.05,1.05,7.05}$

$\zeta $

8000

1000

$\zeta \in \sqb {0.5, 7.05}$

$\zeta \in \cb {0.1,1.0,7.0}$

$\zeta $

$\zeta $

$\nu \in \cb {0.11,1.1,4.1}$

$\nu $

8000

1000

$\mathcal {L}_{2}^{T,k_1}$

$\mathcal {L}_{2}^{A,k_2}$

$\mathcal {L}_{2,i}^{T}$

$\mathcal {L}_{2,i}^{A}$

$\varphi _\theta $

$\pi _\theta $

$\mathcal {L}_{2,i}^{T,k_1}$

$\mathcal {L}_{2,i}^{A,k_2}$

$\beta $

$\gamma $

$\mathcal {E}$

$\nu =0.001$

1325

$\SI {13.5}{\hour }$

200

500

$\SI {24.4}{\hour }$

0.003

0.0001

$\SI {176}{\second }$

4336

$\SI {6.1}{\second }$

$\SI {7.3}{\hour }$

$\SI {18}{\second }$

500

$\SI {2.5}{\hour }$

500

20

1724

$\SI {10}{\second }$

$\SI {4.8}{\hour }$

500

20

1330

$\SI {25.1}{\hour }$

500

20

1607

$\SI {48}{\hour }$

500

20

1366

$\SI {3.3}{\hour }$

0.003

0.0001

1000

40

96

1

8

6

$\mathcal {L}_3$

t

q

$\mathcal {L}_3$

q

q

Δt

$\Delta t = 0.01)$

$\mathcal {L}_3$

q

$\nu =0.001$

q

t

$\Delta t = 0.05$

$\Delta t = 0.01$

q

t

$q=3$

$q=4$

$\Delta t =0.05$

$\Delta t =0.01$

$q=4$

$q=1$

$\Delta t=0.05$

$\Delta t=0.01$

q

Δt

t

$\nu =0.001$

$\mathcal {L}_{tr}$

$\mathcal {L}_3$

$\delta =0$

$\Delta t =0.05$

$\Delta t =0.01$

$\mathcal {L}_3$

$\gamma _0$

$p(k_2)$

$\gamma \,\mathcal {L}_{2,i}^{A,k_2}$

$\gamma $

$\gamma = \gamma _0<1$

$\gamma _0$

$\gamma =1$

$\gamma _0$

$\gamma _0=0$

$\gamma _0$

0

0.002

$\gamma _0 = 0.01,0.1,1$

$\gamma _0$

$p(k_2)$

$p(k_2)$

$p(k_2)$

k_2

1

$\varphi _\theta $

$\psi _\theta $

$f_\theta $

$\mathcal {E}$

$f_\theta $

$\mathcal {E}$

$f_\theta $

$\varepsilon (t|\pmb {\mu })$

$\zeta $

$\nu $

30

$\varepsilon $

$\varepsilon (t|\pmb {\mu })$

$\zeta $

$\nu $

$\pmb {\mu }$

$\pmb {\mu }$

$\pmb {\mu }$

$\pmb {\mu }$

3

$\zeta $

$s\rb {0,t|\pmb {\mu }}=s\rb {1,t|\pmb {\mu }}$

\begin {align}s^0(\mathbf {x},\pmb {\mu }) = \sum _{i=1,\ldots ,N}A_i \sin (k_i x+\phi _i), \label {Xeqn27-F.2}\end {align}

$k_i = 2\pi \,{n_i}/L_x$

n_1

L_x

A_i

$[0,1]$

$\phi _i$

$(0,2\pi)$

x

$[0,1]$

$[0,2]$

$\nu $

$[0,1]$

$[0,2]$

u,v

h

b

g_r

128×128

$\rb {x,y}$

$[-1,1]\times [-1,1]$

$[0,1]$

$[0,1]$

$u=-2\pi y$

$v = 2\pi x$

$(x,y)\in [-1,1]$

\begin {align}\begin {aligned} &q(x,y,t) = \lambda _1 0.01^{\lambda _2 h(x,y,t)^2}\exp ^{-\lambda _3 t},\\ &h(x,y,t) = \sqrt {(x-\lambda _4+\frac {1}{2}\cos (2\pi t))^2+(y-\lambda _5-\frac {1}{2}\sin (2\pi t))^2}. \end {aligned} \label {Xeqn31-F.6}\end {align}

5

$\lambda _1,\ldots ,\lambda _5$

$\lambda _1\in [1,20]$

$\lambda _2\in [2,4]$

$\lambda _3\in [1,5]$

$\lambda _4\in [-0.1,0.1]$

$\lambda _5\in [-0.1,0.1]$

128×128

$\rb {x,y}$

$[-1,1]\times [-1,1]$

$[0,1]$

N_u

$N_{\pmb {\mu }}$

F

$s^0_{r,i}$

i

$\tilde {\varepsilon }(t_j|\pmb {\mu }_p,s_{r,i}^0))=\pi _\theta (\cdot ,\pmb {\mu }_p,\Delta t_{j,j-1})\circ \ldots \circ \pi _\theta (\cdot ,\pmb {\mu }_p,\Delta t_{1,0})\circ \varphi _\theta (s^0_{r,i})$

t_j

$\pmb {\mu }$

$\pmb {\mu }$

$(\pmb {\mu })$

$\pmb {\mu }$

$(\pmb {\mu })$

$\pmb {\mu }$

t

t

$e_r\rb {\mathbf {x},t}$

$\tilde {s}_r(\mathbf {x},t|\pmb {\mu })$

$s_r(\mathbf {x},t|\pmb {\mu })$

\begin {align}\label {eq:relative-error} e_r\rb {\mathbf {x},t} = \frac {|s_r(\mathbf {x},t|\pmb {\mu })-\tilde {s}_r(\mathbf {x},t|\pmb {\mu })|}{||s_r(\mathbf {x},t|\pmb {\mu })||_2},\end {align}

$\tilde {s}_r(\mathbf {x},t|\pmb {\mu })$

$s_r(\mathbf {x},t|\pmb {\mu })$

$s_r(\mathbf {x},t|\pmb {\mu })$

4

$\pmb {\mu }_1$

$\pmb {\mu }_2$

$\pmb {\mu }_3$

$\pmb {\mu }_4$

$s_r(\mathbf {x},t|\pmb {\mu })$

$\tilde {s}_r(\mathbf {x},t|\pmb {\mu })$

e_r

4

$\pmb {\mu }$

4

$s^0_{r,1}$

$s^0_{r,2}$

$s^0_{r,3}$

$s^0_{r,4}$

$\tilde {s}_r(\mathbf {x},t|\pmb {\mu })$

$s_r(\mathbf {x},t|\pmb {\mu })$

e_r

4

$s^0_{r,1}$

$s^0_{r,2}$

$s^0_{r,3}$

$s^0_{r,4}$

2

4

$\zeta =0.4$

$\zeta =0.7$

$\zeta =2.0$

$\zeta =4.0$

t

x

$\tilde {s}_r(\mathbf {x},t|\pmb {\mu })$

$s_r(\mathbf {x},t|\pmb {\mu })$

e_r

2

4

$\zeta =0.4$

$\zeta =0.7$

$\zeta =2.0$

$\zeta =4.0$

$\nu =0.001$

$\nu =0.001$

mailto:a.longhi@tudelft.nl
https://doi.org/10.1016/j.cma.2025.118394
https://doi.org/10.1016/j.cma.2025.118394
http://creativecommons.org/licenses/by/4.0/

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

proceeding, under the name of reduce basis methods, is by assuming that the solution field s(x,?) of a PDE can be approximated as:
s(x, 1) ~ ZLl a,(1)V,(x) with a,(r) being time-dependent coefficients and V,(x) being independent variable x dependent functions,
the latter constituting an orthonormal basis (the reduced basis). Once the optimal basis is found the system is completely described
by the n coefficients a,(r). The same concept of Dimensionality Reduction (DR) is known in the Deep Learning (DL) field under the
name of manifold hypothesis [6-9], analogously stating that high-dimensional data typically lie in low dimensional manifolds (due to
correlations, symmetries, noise in data, etc.). In DL jargon, this reduced space is usually named latent space.

Several recent works explore the potential of DL for surrogate modeling, both following the ideas of traditional ROM approaches
and proposing new paradigms. A non exhaustive list of methods that integrate DL techniques with ROM concepts is provided in Fresca
and Manzoni [10], Bhattacharya et al. [11], Lee and Carlberg[12], Solera-Rico et al. [13], Li et al. [14]. Among these works, DL is
used to approximate the mapping between full space and reduced space, to determine the coefficients of the reduced basis and/or to
map initial states of the PDE into the PDE solution s(x,). Lusch et al. [15] implements concepts from Koopman Operator theory [16]
for dynamical models, where the linearity of the Koopman Operator is exploited to advance in time the dynamical fields in a reduced
space. The Sparse Identification of Nonlinear Dynamics (SINDy) is proposed in Brunton et al. [17], where the reduced vectors are
assumed to follow a dynamics governed by a library of functions determined a priori.

Recently, Neural Operators (NO) [18,19], i.e., DL models whose objective is the approximation of operators instead of functions -
contrary to what is typical in DL - have found applications in surrogate modeling tasks. As in the case of PDEs we deal with a mapping
between infinite-dimensional functional spaces (from the space of initial and boundary conditions to the solution space of the PDE),
the approximated operator is called the solution operator of the PDE. The (chronologically) first works on Neural Operators are the
DeepONets [20] and the Fourier Neural Operator [21]. Since these publications, the literature on NO has flourished, with many
theoretical and empirical studies [18,22-28]. In some related works Graph Deep Learning has been used for surrogate modeling to
generalize to different geometries [29-32]. Beside DR, our model also leverages Neurjl}ll(())DEs [33] (NODEs), which are a class of

!

Neural Networks (NNs) where the state of the system h(f) € R? behaves according to = fo(h(0),1), with f, being parametrized

by a NN. NODE:s present the advantage of modeling the dynamics of () continuously in time.
1.1. Related works

Among the large literature on Neural Operators and methods at the intersection between DL and ROM, there are four sets of
papers closest to our work:

1. papers that use AutoEncoders to map the PDE solution space into a reduced space but do not model the latent dynamics continu-
ously (as we do by using a Neural ODE), like [34-36];

2. papers that use AutoEncoders to map the PDE solution space into a reduced space and model the latent dynamics through a Neural
ODE like [37,38,38-41];

3. papers based on the Latent Space Dynamics Identification framework, such as He et al. [42], Bonneville et al. [43], Park et al. [44],
Anderson et al. [45];

4. papers that build surrogate models of parametric and time-dependent PDEs using architectures with no use of dimensionality
reduction and Neural ODEs like [46,47]. In these works the different methodologies are built on Neural Fields, Transformers,
Neural Operators and/or Graph Neural Networks.

1.2. Contributions

In this work we propose an autoregressive DL-based method for solving parametrized, time-dependent and (typically) nonlinear
PDEs exploiting dimensionality reduction and Neural ODEs. Our novel contributions, especially compared to the papers in set 2 of
Section 1.1, are the following:

e We construct a model that allows for the variation of both the PDE’s parameters and initial conditions. We do so by defining
two mappings parametrized by 2 NNs: a close-to bijective mapping between the full (high-fidelity) PDE solution space and the
latent (low-fidelity) space via an AutoEncoder (AE) and a mapping from the latent vector at time 7; to the next latent vector at
time 7, ; modeled by a (latent) NODE.

e Training on a given At we show that our model can generalize at testing time to finer time steps A’ < At. To this regard we
also study the connection between the order of the Runge-Kutta solver used to solve the NODE in latent space and the time
generalization capabilities of the model. Additionally, in Section 2.6, we introduce a term of the loss function which enhance time
generalization.

* We show a simple but effective strategy to train this model combining a Teacher Forcing type of training with an approach which
takes into account the Autoregressive nature of this model at testing time.

e We achieve computational speed up compared to standard numerical PDE solvers thanks to 3 factors: doing inference at a At
higher than what is usually required by standard numerical solvers, solving an ODE instead of a PDE and advancing in time in a
low dimensional space instead of the full original space.

e We test our methodology on a series of PDE benchmarks (using [48] among others) and show that thanks to DR, our model is (at
least 2 times) lighter and (at least 2 times) faster than current Deep Learning based State of the Art (SOTA) methods.

The distinction of our work compared to the papers in set 3 of Section 1.1 is as follows:

2

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Greater flexibility in modeling latent dynamics: [42—-44] model the low dimensional dynamics through an ODE by using variants of the
SINDy [17] algorithm, which needs an a priori selected library of candidate functions to construct the source the ODE (right-hand
side function f (6) later). We instead use a NN to approximate f, requiring no a priori knowledge about the functional form of the
source and allowing for greater flexibility. Anderson et al. [45] also uses a NN to approximate f, but uses only Teacher-Forcing
losses in training. As we explain 2.5 however, adding Autoregressive loss terms to the training can greatly improve performance.
Better handling of parameter variations: our model allows for the (simultaneous) variation of both the initial condition of the PDE
and of general parameters (like boundary condition and PDE parameters) by delegating the treatment of the initial condition
directly to the AutoEncoder and the treatment of the parameters to the NODE (as input to the source function f allowing learned
non-linear dependencies). In contrast, in He et al. [42], Bonneville et al. [43], Park et al. [44] a different f; is obtained for each
parameter instance i, necessitating interpolation of the different f; values at inference time and limiting the dependency of f on
the parameters to the complexity of the prescribed interpolation scheme. Only in Anderson et al. [45] are the parameters an input
to f, similar to our work.

Proven simultaneous generalization to initial conditions and parameters: our extensive experiments demonstrates how our method can
achieve generalization when initial conditions and the PDE parameters are simultaneously varied, contrary to all works of He
et al.[42], Bonneville et al. [43], Park et al. [44], Anderson et al. [45], which never vary them at the same time. In addition, we
also compare our model to several recently published methods featuring Neural Fields, Transformers, Neural Operators and Graph
Neural Networks, which are not considered in He et al. [42], Bonneville et al. [43], Park et al. [44], Anderson et al. [45];

Detailed study of time generalization: we perform several experiments to study our methods ability to generalize in time, contrary
to all the papers of He et al. [42], Bonneville et al. [43], Park et al. [44], Anderson et al. [45].

2. Methodology
2.1. Mathematical background

Let V, S and S be the functional spaces of the boundary condition functions, PDE solution functions and the initial condition
functions of a given PDE, respectively. These functions are required to satisfy some properties, such that:

V= {v|v:dD,xD, » R";|lv;|l, <oVi€[l,...,m] ;v € C?},
S={s|s : DyxD, = R";||s;l, < 0 Vi €[1,...,m] ;5 € C?}, ¢h)
SOc 8" = {s(x.,t =T|w)|s(x,t =Tlu) : Dy > R", Vi€ D, u € D,},

where S’ is the set of all possible states, D, C R” is the domain of independent variables x, D, C R* is the temporal domain and
0D, C R" the boundary of D, and D, C R* is a domain for the vector u = (uy, 4y, ..., y,), containing information about the PDE
parameters, the geometry of the problem and whatever quantity defines the physical system. We are interested in solving general
PDE:s of the form of:

N (s(x, t1u), X, 1, 4) = g(X, 1,)
sX, tlp) = vX, 1, @) (2)
s(x,t = 0[p) = s°(x, p),

where N (s(x,t|u), x, 1, u) is a (typically) nonlinear integro-differential operator, g(x,7, u) is the forcing term, s € S is the PDE solution,
v eV and s° € S are the boundary and initial conditions, x € Dy, u € D,,X€0Dy, 1 ED,. The different elements of the system of
Eq. (2) have either an explicit dependency on u, signaled by (-, u), or an implicit dependency, signaled by (-|u). Although (2) describes
a very general PDE system and our method description addresses this fully general case, in the experiments shown in Section 3 we
fix v(X, t, p), i.e., it is not an input to the NN, we choose g(x, t, #) = 0 and N = J(f(s(x, t|pu), x, u), i.e., without explicit + dependence.

In the context of surrogate modeling for parametric PDEs, one usually approximates by means of a NN either the Solution Operator
S (global approach) or the Evolution Operator H (autoregressive approach), where

$:8"xD,;xD, > S and H:S'xDyxD,— S, 3

with D,, € R*. When approximating $, the NN is given as input (s°, 7, u) to output s(x, t|u), while when approximating A, the NN is
given as input (s(x,t = 7|u), At, p) to output s(x,7 + At|u). While the former can approximate the solution s at any point in time 7 with
just one call of the solver, the latter requires advancing iteratively in time by predicting the solution at the next time step from the
solution at the previous time step as input, starting from s. Although the global approach has a (potential) advantage in terms of
computational speed, we propose an autoregressive method for the following reasons:

* Most PDEs represent causal physical phenomena, hence their solution evolution at time ¢ only depends on the system state at 7.
Therefore, as it is done in classical numerical solvers, only the solution s at time ¢ is necessary for the prediction of s at time 7 + Az.
This fact is not respected by global approaches.

¢ Global approaches require in general a high number of NN weights, as a mapping for arbitrary ¢ is required, contrary to autore-
gressive methods, as the state s(f) carries more information than s° to predict s(r + Af).

3

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

While the two approaches are clearly different from a theoretical perspective, from a purely architectural point of view they are very
similar, as an architecture conceived as global can always be used autoregressively and vice-versa. It is primarily the training strategy
that determines whether a global or autoregressive logic is followed.

In what follows we show how to approximate with a NN the (latent) Evolution Operator that governs the dynamics of the reduced
space to which the full space S is mapped.

2.2. Discretization

In order to work with solution functions s computationally it is necessary to discretize the independent variable (typically spatial
at least), temporal and parametric domains. We thus define: X = {x;|x; € D,,x; = (x}(, ,xZ), k=0,..., N,} as the set of points inside
the domain of independent variables; 0X = {X,|X; € 0Dy, X, = (Sc}(, ,)?Z), k=0,...,Ng} as the set of points on the boundary of the
independent variables of the domain Dy; X = XU X, M = {u € D, u = (4o, 4y, --- » 4)} as the set of parameter points p; T = {t|t €
D,,t = (ty. 1}, ..., tp)} as the set of discrete points in time. We also define the solution and the initial condition sets, as the sets of functions
living in S and S° discretized on & and T: S, = {5,(x,t|p)[x € X, € T,y € M} C RI¥>x>m and Sf) = {s?(x,u)lx eX,ueM}cs,
where r is a subscript that indicates a discretized representation of s. Obviously, s,(x,7,|u) = s?(x,u). We will signal the implicit
parameter dependency of s, using the notation s,(x, f|u). In principle we have s,(x, |u, s°), but for notational ease we will drop the
implicit dependence on s°. Although we are using a finite difference approach for discretization, our methodology is fully general to
other discretization schemes too (finite volumes, finite elements, etc.)

2.3. Reduced space and (latent) neural ODEs

We want to build a method that at inference time maps the initial condition s° into its reduced representation and then evolves
it in time (according to the PDE parameters) autoregressively. The first building block of our methodology is the mapping between
the full and the reduced space by an AutoEncoder. Let £ be the reduced (latent) set

£ = (elt|w)etp) = (e, ().e,(tlw).1 € D, € D,} CRY, 4

with 4 < |X| - nm being the dimension of the latent space. Each time-dependent vector £(t|u) € £ has a one-to-one correspondence
with a given solution function s € S (implicitly depending on the parameter u), so that by computing the dynamics of £(t|u) we can
reconstruct the original trajectory of s(x,¢|u). Each dimension ¢,(¢) is an intrinsic representation of the corresponding function s and
embodies the correlations, symmetries and fundamental information about the original object s (for a deeper understanding of the
nature and the desiderata of a latent representation, see Eastwood and Williams [49], Higgins et al. [50]). Although we will work with
discretized functions belonging to S,, each vector £(¢|u) is in principle associated with the original continuous function belonging to
S (i.e., &(t|u) should be independent of the discretization of S).
The mathematical operators mapping S to £ and viceversa are the Encoder ¢ and the Decoder y, such that:

9:S—>& and y:E- S, (5)

with goy = yop = 1, together forming the AutoEncoder. We approximate ¢ and y by two NNs, respectively ¢, : S, - € and y, :
& — S,. The second building block concerns the dynamics of the vectors ¢ belonging to the reduced set £. We assume that the
temporal dynamics of £ follows an ODE:

Lty = e, fEFEXD, &, ©)

where y € M is the vector of PDE parameters. f does not depend explicitly on ¢ since the PDEs we work with do not have explicit time
dependence, making the dynamics of £ an autonomous system. If instead N or g(x,, p) had an explicit dependence on ¢, we would
have f = f(e(t|u), u, 1) and would treat ¢ in the model simply as an additional dimension of u. We can now define the Processor

7 EXF XDy XDy = E, @)

as the mathematical operator that advances the latent vector e(f|u) in time according to Eq. (6):
lit1
w(e(t;|\W), fom, Aty) = €@t) +/ f(etip), p)dt, (8)
4

with At;,,; =1, —t; and the u dependency being controlled by f. Clearly, z(¢(t;|n), f, u, At;11 ;) = €(t;1;|). In summary, ¢ and y
describe the mapping between the full order and reduced order representation of the system, while z describes the dynamics of the
system. For notational convenience, we will drop the dependence of 7 on f.

We now define f, as a NN which approximates f and 7z, as the discrete approximation of = which advances in time the vectors
belonging to £ by solving the integral of Eq. (8), using known integration schemes (see in Appendix A):

(et W), Aty) = ODESolve(e(t; 1), u, At), ©)

as it is done in Neural ODEs (NODEs) [33,51]. Hence, by approximating f,, we approximate the time derivative of £(z|u) and not
£(t|u) itself. For example, in the case of the explicit Euler scheme [52]:

wo(e(t;|1), u, Aty ;) = e(t;) + Aty fo(e(t;), p). (10)

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

The Processor z is the equivalent of the Evolution Operator 7 of Eq. (3) but acting on the reduced space £ of discrete intrinsic
representations: as such z does not need to be equipped with the notion of (spatial) discretization invariance as in the case of Neural
Operators.

2.4. Training of the model

The model we defined in Section 2.3 requires the optimization of two training processes which we consider coupled: the training
of the AE which regulates the mappings between S, and € and the training of z, which regulates the latent dynamics described by
Eq. (6). The latter can be approached by combining a Teacher Forcing (TF) and an Autoregressive (AR) strategy. We thus define:

[1s,(%,2;|) — woope(s, (X, 1; W) |5

L. = an
b [ls, . 13111
as the term which governs the AE training. By introducing
e = @p(s(x, 1;|w)),
ik u 12)
g =mg(Al 1o ... omg(e, o M ALy i)
we define the two terms which govern the latent dynamics:
k
£T-k1 _ ||5{‘ _Ef l||2
2. H
ler 1
i 13)
Aky ||5 —&; ”
! 1l

where T identifies the TF approach and A the AR one. The term E o (TF), penalizes the difference between the expected latent

vector £/ and the predicted latent vector ef‘ ! obtained by applying autoregresswely 7y to ef‘_ «.» which comes from encoding the true
field s,.(x,t;_ |u) (hence the name Teacher-Forcing, as the true input k, steps earlier, is fed into the NN). Using TF when training
autoregressive models is known to cause potential distribution shift [29], representing a problem at inference time: as depicted in
Fig. 1, at testing time the input of 7z, is the previous output of z, starting from 5’6 , contrary to what E,Z"ik‘ penalizes (unless k| = F,
i.e., the full length of the time series). To avoid this mismatch between training and inference, we introduced E;’[_kz (AR), which
penalizes the difference between the expected latent vector £ and the predicted latent vector ef‘“ =7my(- . At;;_1)o ... omy (eg 1, Aty o)
obtained by repeated application of z, starting from the encoded representation of the initial condition s°, as it is done at testing time.
k, denotes the number of steps in time from which the gradients of the backpropagation algorithm flow, i.e., the predicted latent
vector at time ¢, is obtained by encoding the initial condition s° and fully evolving it autoregressively (by applying =, i times), but the

gradients of the backpropagation algorithm flow only from the predicted latent vector at time #,_,, up to #;. It follows that £T’.k‘ and

E; *2 are computed in the same way only if k; = k, = F. By truncating the gradients flow at time #,_,, we are implementing a form
of Truncated Backpropagation Through Time (TBPTT) as it is usually done for gradients stability purposes when training Recurrent

5, (x,) 8(x, t|p) §:(x, tplp)

0 1 K
©0o(s,) (o (51) Yy (5F)
'y
20 | @ 20 20
oo mo(eh, s Aty) gp,,l 1o W@(Elf’1>ll,Af2,1) 9(5’#F1 ! M Atp o) E,u,F 1o
0 « —> 1 — cee —_— F :
00 0.0 00

Fig. 1. Workings of our proposed method at testing time. The initial condition s is mapped trough the Encoder ¢, into its latent representation &.
Subsequently the vector &/ is advanced in time autoregressively by repeated evaluation of the processor z,, conditioned to the vector of parameters
u and to the size of the temporal jump At,,,,. The Decoder vy, is used to map back each predicted latent vector £/’ into the corresponding field
§,(x,1;|u). Notice that ¢, is applied only to the initial condition s°. The colored dots represent the 4 different values of the i-dimensional vector &
for a given moment in time.

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Neural Networks (RNNs) [53]. Fig. 1 shows a summary of the method at testing time, where the predicted solution is computed as
5,5, 1, 11) = wgomy (o, Aty ;_y)o ... omg(-, u, Aty o)o@y(s0).

2.5. Combining teacher forcing with autoregressive

How do we combine AR and TF strategies in practice? We start by considering the loss £§’il, the simplest form of TF strategy
with the advantage of being computationally efficient and stable, but at the cost of making the training agnostic to the autoregressive
nature of the model at testing time and not addressing the accumulation of errors which is typical of autoregressive models. Ei ’ikz
instead, regardless of the chosen k,, already reflects during training the autoregressive modality used at testing; it has however
the disadvantage of being computationally more demanding (for k, > 1) and more difficult to train the larger k, is. If k; > 1, K;,}kl
introduces a certain degree of autoregressiveness’ as well, although the latent vector at time 7;_ f is still provided by the true solution.
Among the several possible training strategies, here we list the two we used, with £,; = pelty yﬁz’l_kz, where f and y weigh the

importance of the terms:

2,i

1. set =1,y =0and k; = 1, using only the TF term.
2. set f=1,y =1, k; =1 and dynamically increase k, during the training, starting with k, = 1. This strategy has the advantage of
taking into account the AR term gradually during the training.

Our experiments have shown that although for some systems strategy 1 is enough, more complex datasets require using strategy 2,
mainly due to two separate behaviors in our observations. First, that in the early stages of the training, £, £;,}l and E;;' play the
important role of building a latent space whose dynamics is described by Eq. (6); and second, that in the later stages of the training,
with k, becoming larger (and the computed gradients more complex), the autoregressive nature of the model is increasingly taken
into account, with z, becoming more robust to the accumulation of errors.

2.6. Generalization in the time domain

As shown in Fig. A.10 we expect our models to be trained on a given set of time-steps, but we want them to generalize to time-steps
not seen during the training phase (such as intermediate times). For this reason, we introduce a last term of the loss function as:

et — &1,
ekl (14)
& =7y, (At — Atm,,‘))oﬂg(ff_l,ll, Aty o),

3=

where At ;| €[0,At;;_,] is a randomly sampled intermediate time step and i — 1 < m < i. In Appendix A.1 we further detail £;,.
In some cases we also found it beneficial to add a regularization term L, to the latent vectors, such as £,, = 4,, Zf; o l1E¥ 111/ 4, with
Ag € RY.

Thus, during model training for a given s%(x, u), the gradients are computed based on the final loss function of:

F F
1 1 Tk Ay
L=+ 20 aLy+ 5 Z} [ﬂﬁz’i L+ 5c3,,.] +L,, as)
1=\ i=

=al, +pLy" +yLy w8+ L,
where k; and k, depend on the chosen strategy of Section 2.5 and «, f, y and § weigh the importance of each term. We use L, for
training and £, for validation:

F

Z [Is,(x,1;|u) = 5,.(x,1;| W]
A Y CRA IS

Ly=L,+ (16)

Fig. 2 visualizes our training methodology.
3. Results

In this section we compare our method with a series of SOTA methods from Hagnberger et al. [46] and [48]. The datasets we use
for comparison are taken from Takamoto et al. [48]. A complete description of the PDEs can be found Appendix F. In Appendix C we
list all the training and hyperparameter details and in Appendix D the methods used for comparison. We use as metrics the total error
nRMSE, the parametetric total error nRMSE(u), the temporal total error nRMSE(?), the parametric neural ODE error NODE-nRMSE(u)
and the parametric AutoEncoder error AE-nRMSE(u) defined in Egs. (F.7), (F.8), (F.11), (F.9) and (F.10).

3.1. PDEs with fixed parameter

In this Section we are going to apply our method to the 1D Advection Eq. (F.1) ({ = 0.1), to the 1D Burgers’ Eq. (F.3) (v = 0.001)
and to the 2D Shallow-Water (SW) Eq. (F.4). In Tables 1 and 3 we compare our results to the ones obtained (on the same dataset), in
Takamoto et al. [48] and Hagnberger et al. [46]. In Table 1 we show that our proposed model achieves a lower nRMSE compared to

6

A. Longhi et al.

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

2 = (-, (Aligy = Aly)) 0 Tl 1oty Abuni 1) |

Time

.

-
.
N
Autoregressive @
SUPTE) I A
5‘1‘ 52“ gl;_ /, AR
.

.¢'~ ’
. Yeuae Y

o Aty iy €[0,At;;]

Time

Time

Fig. 2. A representation of the training procedure. a) The time series of fields s,(x,;|u), with i € {0, F}, is processed by the Encoder ¢, and the
corresponding latent vectors £/ are obtained; these are subsequently mapped back to the full space by means of the Decoder y, which generates the
time series of reconstructed fields 5,(x,#;|u), allowing for the computation of £,. b) The Processor r, receives as input the sequence of latent vectors
¥ with i € {0, F — 1} and predicts the latent vectors ef"l with i € {1, F}. £;1, where T stands for Teacher-Forcing, is thus computed with inputs &/

and sf"'. ¢) The Processor 7, is applied autoregressively to the initial latent vector &/ and the whole time series of vectors ef"[is reconstructed with

e(l,F}; E;‘ %2 where A stands for Autoregressive, is thus computed with inputs £/ and ef“i.

vectors ” with i € {0, F — 1} and outputs for each £ an intermediate vector %' with a time-step At,,,_
advances in time each £*"'

with a time-step of At;;_

d) The Processor r, takes as input the sequence of latent
| randomly sampled from [0, Az, ,]. Last, 7,
&¥; L, is thus computed with inputs £ and &¥.

| — At,,; to get the predicted vectors

Table 1

nRMSE on test dataset for fixed u and varying s° for the 1D Advection and
Burgers datasets. The column with } refers to testing with the At of the
training, while the one with * with a smaller Ar. Cells are empty when
comparison was not found in literature.

PDE Model 7 nRMSE, At =0.05s * nRMSE, A7 =0.01s
(Ours) 0.0066 0.0066
FNO 0.0190 0.0258
MP-PDE 0.0195
UNet 0.0079

1D Advection =~ CORAL 0.0198 0.9656
Galerkin 0.0621
OFormer 0.0118
VCNeF 0.0165 0.0165
VCNeF-R 0.0113
(Ours) 0.0373 0.0399
FNO 0.0987 0.1154
MP-PDE 0.3046
UNet 0.0566

1D Burgers CORAL 0.2221 0.6186
Galerkin 0.1651
OFormer 0.1035
VCNeF 0.0824 0.0831
VCNeF-R 0.0784

Table 2

The total error nRMSE on test dataset
for fixed u and varying s° for the 2D
Shallow-Water dataset.

PDE Model nRMSE, At =0.01s
(Ours) 0.0025
FNO 0.0044

2D SW U-Net 0.0830
PINN 0.0170

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Table 3

nRMSE on test dataset for fixed 4 and varying s° for the 2D Shallow-Water dataset.
The columns with 1 refer to testing with the At of the training, while the one with x
with a smaller A¢. Our model is trained on At = 0.05 s, while the others on Az = 0.01s.

PDE Model + nRMSE, At =0.05s + nRMSE,Ar = 0.01s * nRMSE,At = 0.01s
(Ours) 0.0028 0.0032
FNO 0.0044

2DSW U-Net 0.0830
PINN 0.0170

Error Distribution on Test Set of 1D Advection

10°
104_
103_

102_

-

101_

100-‘

NRMSE(p)

107 bail A 4T 44l o) 1 94
N 2/ SN BN n
/ |

0.1 0.2 0.4 0.7 1.0 2.0 4.0 7.0
PDE Parameter

cOFormer| Ours

Fig. 3. Distribution of the nRMSE(u) across the test sample for the parametric 1D Advection. Regular font on the x axes refers to training parameter
values, while bold ones to testing parameters (but in both cases testing initial conditions). We compare our methodology (yellow) with other
published methods (taken from Hagnberger et al. [46]). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

a series of common methods used in Scientific Machine Learning for the 3 cases. Furthermore, we observe that our model achieves a
better generalization in time than the other methods in the Burgers’ and Advection cases, meaning that we got little to none increase
of the nRMSE when going from testing on the training At = 0.05s to testing on a smaller A7 = 0.01s. For the SW dataset, in Table 2
we show how are model performs when trained and tested on Ar = 0.01s. In addition, in Table 3 we show that even if our model is
trained with Ar = 0.05 s while the others with A7 = 0.01 s, we still get a lower nRMSE when testing on A7 = 0.01 s (thus the comparison
on the same number of time-steps is only between our method in the column with x and the other methods in the columns with).
For the experiments in this section we used Strategy 1 of Section 2.5, as using E;’il alone was sufficient to reach acceptable results.

3.2. PDEs with varying parameters

In this section we experiment with 3 datasets where we both vary the initial conditions and the PDE parameters: 1D Advection
Eq. (F.1), the 1D Burgers’ Eq. (F.3) and the 2D Molenkamp Test (F.5). In all three cases we use Strategy 2 of Section 2.5, since only
using EZ}I optimized correctly £,. but resulted in a larger value of £,,. We start with k, = 1 and we increase it by 1 every 30 epochs
until the maximum length of the time series is reached. We thus define p(k,) as the number of epochs needed to increase k, by 1. To
make the training more stable, we introduce gradually the y Ez;kz term by starting with a y = y, < 1 and increasing it every epoch by

an amount of y, until y = 1. In Figs. 3 and 4 we show a comparison of our methodology (yellow) with the cFNO, cOFormer and VCNeF

8

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Error Distribution on Test Set of 1D Burgers

10°
104,
103,
102,
=
o 10%4
s
o 100,
C
1071 (i
10*2,
1073,
0.001 0.002 0.004 0.01 002 004 0.1 02 04 1.0 20 4.0
PDE Parameter v
Ours VCNeF cOFormer

Fig. 4. Distribution of the nRMSE(u) across the test sample for the parametric 1D Burgers’. Regular font on x axes refers to training parameters,
while bold ones to testing parameters (but in both cases testing initial conditions). We compare our methodology (yellow) with other published

methods (taken from Hagnberger et al. [46]). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

10° - * -
*, S s [-+ =
ok ’H__k\ :.\\ o Fok, o a A s et A et Ours, At = 0.05 (Fralnlng At)
N Yo ¥ ’:' YT X 7 Vo] ,,' ¥ \ -—+- Ours, At = 0.02 (inference At)
\ \ \ VT ! \ \ \ Vi \ o
107 ST R R 1 A 1 A AN 11 ANV i | VCNeF, At = 0.05 (training At)
| | \ .
I b Vi A VY v ¥ ¥ 4 -~+- VCNeF, At = 0.02 (inference At)
= Vi \r i \ v v v
= 1y \r [A \r ' ¥
i} v [Y 1 ¥ ¥ .
0o i ¥ 4 t
s 1077 ++T1
it +——+— T A S S +
E‘é +. ++++++++++’*—4—+—+ =T 1 T 1 | 1 :
T e e e e ¥ T 1 . .
1073
1074

0.050.100.150.200.250.30 0.350.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
t

Fig. 5. Comparison of the temporal error nRMSE(r) between our model (red) and the VCNeF (green) for the test dataset of the Molenkamp ap-
plication. We study the difference between applying at inference the same At as used for the training (A7 = 0.05s) and a smaller one At = 0.02s.
The nRMSE(?) of our model only slightly increases when decreasing the Ar, while VCNeF struggles with inference at intermediate time-steps. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Parametric Advection
Error coming from the NODE Error coming from the AE

100 . 1.4x1072 5
1.3x1072

=101
o 10 ' 212x107

_ e B .
210 * £1.1x10 2
< 4
&10°3 &5 1072 1
e e

-4 9x1073

10 s . 1 .
. 1
0.1 0.2 0.4 0.7 1.0 2.0 4.0 7.0 0.1 0.2 0.4 0.7 1.0
PDE Parameter ¢

2.0

4.0

7.0

PDE Parameter ¢

Fig. 6. Comparison of the parametric Neural ODE error and the parametric AutoEncoder error for the parametric Advection problem. Left figure:
the NODE-nRMSE on the latent vectors predicted by the NODE is computed on the test set. The error is larger on the testing parameters (bold ones),
signaling a struggle of the NODE to correctly reconstruct the dynamics of unseen parameters, both in interpolation and in extrapolation. Right

figure: the AE-nRMSE on the solution fields is computed by applying consecutively the Encoder and the Decoder on the test set. While the error is
increasing with increasing velocity ¢, the AutoEncoder does not struggle with testing parameters.

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Parametric Burgers

Error coming from the NODE Error coming from the AE

1071 107t
e 3 2
I I
g g J
z ! = 102 .
[' H *
g1 E: T i
= * . . . * . .

! ! ! I | 1 ? ! b i -3
0.001 0.002 0.004 0.01 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10 0.001 0.002 0.004 0.01 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0
PDE Parameter v PDE Parameter v

Fig. 7. Comparison of the parametric Neural ODE error and the parametric AutoEncoder error for the parametric Burgers’ problem. Left figure:
the NODE-nRMSE on the latent vectors predicted by the NODE is computed on the test set. The error is larger on the testing parameters (bold ones)
for larger parameters. For smaller testing parameters like v = 0.001,0.01 there is no noticeable increase in error. Right figure: the AE-nRMSE on the
solution fields is computed by applying consecutively the Encoder and the Decoder on the test set. There is no correlation between the error and v
being used or not in the training.

Comparison of strategies to improve generalization

10%1 B Baseline
1044 [Latent regularization
103 Hl Weight decay of f
[Information about solution period
102+ I Data-points closer to test points
;5- 1011 I Uniform parameter sampling
[92)
DE:: 100_
10—1,
10—2_
10—3,

0.1 0.2 0.4 0.7 1.0 2.0 4.0 7.0
PDE Parameter ¢

Fig. 8. Performance comparison of 5 training strategies to the 'Baseline’ of Fig. 3 to overcome poor parameter generalization (in interpolation and
extrapolation) of the NODE for the parametric Advection dataset. Only strategies that use more data during the training close to ¢ = 0.1,1.0,7.0
(’Data-points closer to test points’ and "Uniform parameter sampling’) improve the prediction at test point (bold characters).

from Hagnberger et al. [46]. In both cases, we show the distribution across the test samples of training (regular font) and testing (bold
font) parameters when using testing initial conditions. From Fig. 3, we see that our model has a lower median than the compared
methods on the training velocities ¢, while it struggles with testing parameters, similar to cFNO, cOFormer and VCNeF too. This is
likely a dataset issue yielding insufficient generalization, with 0.1 and 7.0 both being outside the training range and 1.0 possessing a
dynamic not easily interpolated by f,, with the information coming from the points 0.7 and 2.0. Similarly for the Burgers’ case in Fig. 4,
the median of the nRMSE given by our model is lower than the compared methods for all parameters v except v = 1.0 and v = 4.0.
In this case our model - similar to the ones used for comparison - is able to generalize better than in the Advection example to test
parameters, as in the case of v = 0.001 and v = 0.01. Given the discrepancy in the ability of the models to generalize to different testing
parameters, more accurate strategies for adaptively selecting parameter points for training should be researched. In Figs. 3 and 4,
although we show also training parameters, the corresponding initial conditions belong to the testing set, thus we are extrapolating
on the initial conditions even when the parameters are the ones used during training. In Fig. 5 we compare our method with VCNeF
on the Molenkamp test when testing on Az = 0.05s (same as the one in training) and when A7 = 0.02 s: our method achieves a lower
nRMSE and is able to generalize to intermediate time points better than VCNeF. Noticeably, with the Molenkamp test we use a latent
space of dimension 4 = 5, which is equal to the actual number of degrees of freedom of the PDE solution (Eq. (F.5)). In Appendix C.4,
we compare the number of parameters and the inference speed of the methods used and we show that our proposed method is lighter
and faster at inference.

3.3. Discussion

Although in Tables 1-3 and Figs. 3-5 we have shown that our method achieves a comparable or lower nRMSE when compared
to other methods, there are noticeable issues that must be addressed. In particular, Figs. 3 and 4 signal problems in generalization
to unseen parameters both in interpolation (within training range) and extrapolation (outside training range). In order to properly
analyze such model failures we first need to decouple two error sources: the error coming from the AE and the error coming

10

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

10 Generalization improvement

Il Baseline

4]
10 Il Data-points closer to test points

1034
102_

101_

SO

0. 001 0. 002 0. 004 0. 01 0. 02 0. 04 . . 1.0 2.0 4'.0
PDE Parameter v

nRMSE(p)
o

N

Fig. 9. Adding more training data-points closer to v = 0.1, 1.0,4.0 at training improves the generalization to test parameters (bold characters) for
the parametric Burgers dataset of Fig. 4.

from the NODE. In Fig. 6 we show on the left the parametric Neural ODE error NODE-nRMSE(x) (Eq. (F.9)) at inference computed
between the latent vectors predicted by the NODE and the ones computed by the Encoder on the testing set: the error is larger on
the testing parameters (bold characters). Conversely, on the right of Fig. 6 we show the AE-nRMSE(u) (Eq. (F.10)) computed when
applying the Encoder and then the Decoder on the test set: the error is not larger for testing parameters, while there is a correlation
with the magnitude of the velocity {. We conduct an analogous study on the parametric Burgers’ case in Fig. 7: again, the error on
unseen parameters is coming from a poor prediction of the NODE. Interestingly, in the left plot of Fig. 7 we see that the error on the
unseen parameters is considerably larger for values of v > 0.1: because for values smaller than 0.1 the sampling is finer, this suggests
that a finer sampling of the parameter would improve the generalization. From this decoupling experiment we conclude that the
generalization issues (both in extrapolation and interpolation) of our model are coming from a low generalization power of the
NODE. Furthermore, generalization in interpolation and extrapolation are equally affected by the sampling: in Fig. 4 our model can
extrapolate at v = 0.001 but fails to do so at v = 4.0. However, the distance from the point v = 4.0 to the closest point included in
the training set is 2.0, while the distance of the closest point to v = 0.001 belonging to the training set is 0.001. Similarly, the point
v =0.01 is well interpolated, while v = 1.0 is not (but again, they are at different distances from their closest point belonging to the
training set.)

Focusing firstly on the parametric Advection dataset, we test 5 approaches to overcome the generalization issue: latent regulariza-
tion, weight decay of the latent space evolution ODE source term f,, information about solution period of the Advection equation through
positional encoding of time and data-points closer to test points ¢ = 0.1,1.0,7.0 (more details are given in Appendix C.1) and uniform
parameter sampling. In Fig. 8, we compare the 5 approaches: only using training data closer to ¢ = 0.1, 1.0, 7.0 reduces the test error,
although we see that for ’'Data-points closer to test points’, there is still a significant gap in the nRMSE(u) between testing parameters
and training parameters. Interestingly, when ’Uniform parameter sampling is used’, we notice a stabilization of the nRMSE(u) across
parameters at the expense of the nRMSE(u) for training parameters which increases: this signals a potential overfitting regime in the
baseline, where the model is hyper-optimized for the training parameters.

In Fig. 9 we perform a sampling closer to the test points for the parametric Burgers’ case as well (more details are provided in
Appendix C.1). For this dataset we see that adding training points closer to the test points reduces the nRMSE(u) on test parameters
much more than in the Advection case.

In conclusion, the experiments performed in this Section highlighted two elements: the generalization error (both in interpolation
and extrapolation) is caused by the NODE and intelligent data sampling must be adopted in order to overcome this issue. Furthermore,
we see that generalization is much easier for the Burgers’ case rather than the Advection case: this may signal a struggle of our method
to generalize well in the case of transport-like phenomena, potentially due to the spectral bias phenomena addressed in Anderson
et al. [45], i.e., the tendency of NN architectures to approximate better low frequency signals. We see from the right plot of Fig. 6 that
the AutoEncoder indeed approximates better low frequency signals (the period of the solution is given by 0.5/¢); however we do not
see such phenomenon on the left plot of Fig. 6, where the error at ¢ = 0.1 is much larger than the error at { = 4.0. Such observations,
together with the findings of Fig. 8, indicate that the sampling is more of an issue than the spectral bias.

3.4. Ablation studies

In Appendix E.1 we conduct ablation studies regarding how the choice of the ODE solver and £;; impact the capabilities of the
method and the generalization in time. In Appendix E.2 we show sensitivity studies concerning y, and p(k,) for the Autoregressive
training. In Appendix E.3 we experiment with decoupling the AE from the NODE during training.

11

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

4. Conclusions

In this work we showed how Dimensionality Reduction and Neural ODEs can be coupled to construct a surrogate model of time-
dependent and parametric PDEs. Our model inherits from these two paradigms two important features which are desiderata when
building DL models that substitute standard numerical solvers, i.e., fast computational inference and continuity in time. The
former is achieved thanks to the low dimensionality of the reduced space &, while the latter by the definition of the latent dynamics
through the ODE of Eq. (6). In Section 3 we showed that our methodology surpasses in accuracy several state of the art methods on
different benchmarks used in the Scientific Machine Learning field. In addition, our model requires significantly less NN’s weights
(thus less memory) and is computationally faster at inference compared to other published methodologies (Tables C.8 and C.9);
for these reasons relying on dimensionality reduction as opposed to large and overparametrized architectures is going to be key in the
future for building fast and memory efficient surrogate models of complex physical systems.

5. Limitations and future research directions

The main limitation of our method is the use of CNNs for Encoding and Decoding, which hinders its applicability to non-uniform
meshes and makes it necessary to re-train models if inference needs to be done on grid points not used at training: future research
will explore using Neural Operators for the construction of the Encoder and the Decoder. Another aspect which should be improved
concerns the definition of an efficient sampling strategy as done in He et al.[42], Bonneville et al. [43] to determine which PDE
parameters should be used during training in order to be able to overcome the poor generalization to new ones for some datasets, as
evident from 3.2 and 3.3. Finally, while leaving the construction of £ and definition of the function f, general gives flexibility to the
fitting of the training dataset, researching into the interpretability of both £ and f, can at the same time improve our understanding of
NNs and build more accurate surrogate models: for example in Cha and Thiyagalingam [54] a method is proposed to disentangle the
latent space dimensions in order to obtain the true generative factors of the high-dimensional images (in the surrogate modeling case
those would be the generative factors of the PDE solution); especially interesting would be combining interpretability with physical
constraints, as it is done in Park et al. [44], where the latent dynamics is forced to respect the first and second laws of thermodynamics.

Source code

Source code is available at https://github.com/Aleartulon/AE_NODE.

CRediT authorship contribution statement

Alessandro Longhi: Writing — original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization; Danny Lathouwers: Supervision, Resources, Project administration, Methodology, Funding ac-
quisition, Formal analysis, Conceptualization; Zoltan Perké: Conceptualization, Methodology, Formal analysis, Resources, Writing —
review & editing, Supervision, Project administration, Funding acquisition.

Data availability

Most data used are publicly available (links are given in the paper). The ones not available can be made so upon request.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests:

Alessandro Longhi reports financial support was provided by European Union. If there are other authors, they declare that they
have no known competing financial interests or personal relationships that could have appeared to influence the work reported in
this paper.

Acknowledgments

Funded by the European Union under the grant agreement no. 101059682. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or the European Commission-Euratom. Neither the
European Union nor the granting authority can be held responsible for them. This work has been developed within ASSAS (Artificial
intelligence for Simulation of Severe AccidentS), a Horizon Europe funded project targeting the development of nuclear severe accident
simulators.

12

https://github.com/Aleartulon/AE_NODE

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Appendix A. Runge-Kutta schemes

Runge-Kutta methods [52] are a family of numerical methods for the solution of Ordinary Differential Equations (ODEs). They
belong to the category of one-step methods, as such they do not use any information from previous time steps. Given r; € T, a standard
explicit Runge-Kutta method would solve Eq. (6) as:

q
ety lu) = ;1) + Aty z h;b;, (A1)
j=1
where ¢ is called the stage of the Runge-Kutta approximation, At;,,; = t;,; —t; and:
by =f(e(t;). t;, W),
by =f(e(t;|p) + (ay 1 b)AL 1 + ALy 4, W),

k-1

b =f(e(t;|w) + z b Aty ot + ALy o H).
=

The matrix composed by a;; is known as Runge-Kutta matrix, /; are the weights and c; are the nodes, with their values given by the
Butcher tableau [55].

= = = Correct dynamics

@ Initial Condition

@ Prediction with Time-Step used in Training At;+1,; = At
@ Prediction with Time-Step not usedin Training At/c

A ﬁ”(': ;At)
o0 /_?4 Y

~ /‘
:-’) _:;.\A(;j
¢ D&\C\ ﬂek'ﬁ"bt

o

>

t

Fig. A.10. Time evolution of a one dimensional £(t|u) is shown (dot line). The red points indicate the steps in time used during the training, at
intervals of A, ,, and the green points show the points in time that can be predicted at testing time at distance of At,,, , /@, where « € [1,). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

A.1. The effect of the stage of RK on time generalization

In this work we use a fixed Runge-Kutta time stepper, and to go from the state i to the state i + 1 we do not step trough intermediate
states. We defined the Processor of Eq. (7) with a At;,, ; dependency as we want to perform inference even at temporal discretizations
finer than the one used at training. Although this task may look trivial as z, directly takes Az, ; as input, it raises the following issue
when solving the ODE. Let us consider a processor r, which evolves in time the latent vector (f|u) using an Euler integration scheme
(from here on we omit the 4 dependency for ease of reading):

e(tiygr) = €(t) + Aty ; fo(e()), (A.2)

and let us define a moment in time 7,, such that 1, < ¢, <1, ;. We want f, to satisfy the following conditions:

e(tiy) = e(t;) + Aty ; fo(e(@), (A3)
(i) = €(ty) + Dty = Btyy) fo(E(t,), '
where (t,,) = £(t;) + At,,; fo(e(t;)). By taking the difference of the two Equations of (A.3) we get that
SFo(e@) = fole(ty,)), (A.4)

13

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

i.e., when we use the Euler scheme f, must be a constant if we want 7z, to be coherent with its predictions at the variation of Az, ;.
Notice that a constant f, would imply a linear time dependence of &(¢) (the dotline of Fig. A.10 would be a line), meaning that the
construction of £ would be subjected to a strong constraint, thus limiting the expressiveness of the AE. For a RK method of order 2
instead:

1
i31) = €00) + Bty fo(£00) + 5 Aty fo(e))). (45)
where f), is evaluated at Ar;,,;/2. We want f, to respect the following system:

{e(zm) = et 1) + Aty i fo(e@ W),

et |0) = e(t; 1) + Aty fo(e() + (Atyy) — AL, fo(e(dH | 0)), (e
where 1; <1, <t;,, ti = 'f:[" and e(till‘) = ety |p) + %f‘,(e(zkly)). By taking the difference of System (A.6) we get:
Atiyy i foleG) = Aty fo(e] W) + Aty ; = At,) fo(el 1)), (A7)
which, by going back to full notation, results in the following Equation:
N [e(r,.m) + At"z* - fg(e(r,-m))] = At fo [8(t,-|u) + %me(rilu»b
(A.8)

Atmi
+ (At — A1) fy [E(ti|ll)+ ng(f(’i|ﬂ))+ 2

AI‘H—] m Al‘mi
—Jfo [e(t,-|[4)+ T’fg(e(tilu))H,

where e(t;|p) + % Sfo(e(t;|w)) = €(t,,|p). The constraint to which f, is now subjected allows for a more complex form of f, which in

turns results in a reduced space £ more capable of adapting to the complexity of the original space S. It follows that, if we require
f to generalize to a variable At,,; ;, the higher the stage of the Runge-Kutta scheme used, the more complex f, can be and the more
complex the reduced space £ can be.

Appendix B. Architecture details

As detailed in Section 2.3, our model is made up of three components: an Encoder ¢, a Processor r, and a Decoder y.

Table B.4

The structure of the Encoder ¢, layer by layer, for a 2D case. m is the dimension of the so-
lution field s(x,#|u), N is the size of the spatial discretization of the field in the x and in the
yaxis, Fe = [Fe,,..., Fe;_,] is the vector of convolutional filters, Ke = [Ke,, ..., Ke;] is
the vector of kernels, j € {2, L — 2} and A is the latent dimension. The Flat layer takes all
the features coming from the last Convolutional layer and flattens them in a 1D vector.
This example is easily reduced to the 1D case.

Layer Number Input size Output size Filters Kernel Stride
1 (Convolutional) [m,N,N] [Fe;, N,N] Fe, [Ke,,Ke,] [1,1]
2 (Convolutional) [Fe;, N, N] [Fe,, 3. 21 Fe, [Key,Key] [2,2]
Jj (Convolutional) [Fe,_;, 55, 551 [Fej, 55, 551 Fe; [Ke; Ke;] [2,2]

L — 1 (Flat layer)
L (Linear) [Fepo X = x 1 [4]

203 X 203

Encoder. We build ¢, as a series of Convolutional layers [56] followed by a final Linear layer as in the 2D example of Table B.4.

The first layer has stride 1 to do a preprocessing of the fields and the subsequent layers up to the Flat layer halve each spatial
dimension by 2. We use as activation function after each Convolutional layer the GELU function [57] and we do not use any activation
function after the final Linear layer to not constrain the values of the latent space. We experimented with Batch Normalization [58]
and Layer Normalization layers [59] between the Convolutional layers and the GELU function but we did not notice any improvements
in the results. The weights of all the layers are initialized with the Kaiming (uniform) initialization [60]. Notice that we are not using
any Pooling layer [61] to reduce the dimensionality but only strided Convolutions, as Pooling layers would enforce translational
invariance which is not always a desired property.

Processor. Inside the Processor z,, in practice only the function f, which approximates f of Eq. (6) is parametrized by a NN with
fo(e(t|u),) being a function of both &(f|u) and u. We experimented with the parameter dependency in two ways:

e yu is simply concatenated to the reduced vector e(f|u). In this case f, : R*** — R*, where z is the dimensionality of y and 4 the
latent dimension.

14

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Table B.5

The structure of the Decoder y, layer by layer, for a 2D case. 'T.’ stands for "Transposed’.
Layer Number Input size Output size Filters Kernel Stride
1 (Linear) [A] |Fd|><2%xzﬁz]
2 (Reshape layer)
J (T. Convolutional) [Fd_y 55,5051 [Fd_y, 50, 5551 Fd, [Kd_,Kd_,] [2,2]
L -1 (T. Convolutional) [Fd,_,, g %] [Fd;_,,N,N] Fd,_, [Kd, 5,Kd, 5] 1[2,2]
L (T. Convolutional) [Fd;_,,N,N] [m,N,N] [m] [Kd,_,,Kd;_,] [1,1]

e The vector (t|u) is conditioned to u through a FiLM layer [62]. This means defining the function « : R* - R* and the function
7 : R » R*. The input to f, will thus be a(u) © £(t|u) + 7(u), where © is the Hadamard product. « and are chosen to be simple
Linear layers.

In both cases f, is built as a sequence of Linear layers followed by the GELU activation function. Importantly the activation function
is not used after the last Linear layer as this is a regression problem.

Decoder. We build y, as a Linear layer followed by a series of Transposed Convolutional layers [56] as shown in Table B.5. The initial
Linear layer and the last Transposed Convolutional layer are not followed by an activation function while the other Transposed
Convolutional layers are followed by a GELU function. We do not use any activation function for the Linear layer for symmetry
with the Encoder, while for the last layer of the Decoder because this is a regression task. After the Reshape layer each Transposed
(T.) Convolutional layer doubles the dimensionality in both x and y dimensions until the layer number L — 1. The last layer does
not increase the dimensionality of the input (stride = 1) and is just used to go to the final dimensionality m of the solution field s.
Fd =[Fd,, ..., Fd;_,] is the vector of convolutional filters, Ke = [Kd|, ..., Kd; _,] is the vector of kernels, j € {3,L — 1}.

B.1. Normalization of the inputs

In order to facilitate the training process we normalize the inputs, as standard Deep Learning practice. We use a max-min nor-
malization both for the input fields s and for the parameters u. We do not normalize At;,; ;. By max-min normalization, we mean the
—min(D,)
training datasets D), to which y belongs. In our experiments s is a scalar field so we only compute one tuple (max(D;), min(Dy)). In the
case of u instead, since each parameter y; can belong to a different scale, we compute z tuples (max(D,,), min(D,,)) with i € {1,z}.
We normalize accordingly the parameters for all the datasets while the input fields for all the datasets but the Burgers’ Equation and

the parametric Advection.

following: given an input y, we transform it accordingly to y — where max(D,) and min(D,) are computed over the

Appendix C. Training and hyperparameter details

In all the experiments we use the Adam optimizer [63] and we stop the training if the validation loss has not decreased for 200
epochs. We use an Exponential Learning Rate Scheduler, with a decay parameter y,.. We set 5000 as the maximum number of epochs.
In all the experiments, unless otherwise specified, we used ¢ = 4 as the stage of the RK algorithm. We use £,, for training and £, for
validation, defined as

a St —5.(x,t;
Ly=£,+3 s, (x.1i1) = 5, (x.1;1) 11

P s, (x.2;1u) 1

(C.1)

with s, (x,1;|u) being the ground truth solution at time 7, and parameters u.
In Table C.6 we detail the training-validation-test splits and the hyperparameters of our model for the experiments of Section 3.1.
In Table C.7 we detail the training-validation-test splits and the hyperparameters of our model for the experiments of Section 3.2.

C.1. Strategies for the improvement of parameter generalization

In Section 3.3 we experiment with possible methods to improve the generalization abilities of our model to testing parameters.
Fig. 8 compares the performance of the following five strategies to that of the baseline in Fig. 3 for the parametric Advection dataset:

1. Latent regularization: we increase the value of Arg (set to 0 in the baseline) to check whether the generalization benefits from
suppressing unimportant degrees of freedom of the latent space.

2. Weight decay of latent space evolution ODE source term f,: we set the 'weight decay’ parameter of the Adam optimizer to le — 6
(lower would largely increase the nRMSE) for the NN weights of f, to prevent overfitting it to the training data.

3. Information about solution period: we exploit the knowledge that the PDE solution s(x, #|{) has a period T, = %3 by augmenting the

vector of parameters g = ¢ that is given as input to f, with the vector [sin (01%’)’“)5 (ozsﬁt)]’ informing f, with the explicit

periodicity of the solution.

15

A. Longhi et al.

Table C.6

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Training and hyperparameter details for the PDEs with fixed parameters. Training, valida-
tion and test rows signal which time series are taken from the datasets, i.e., 1-8000 means
between the 1%t and the 8000™ series were taken. Initial learning rate (LR) and architecture
details are included, together with regularization details.

Parameter 1D Advection 1D Burgers 2D Shallow-Water
Training 1-8000 1-8000 1-800
Validation 8001-9000 8001-9000 801-900
Test 9001-10000 9001-10000 901-1000
Initial LR 0.001 0.0014 0.001
Y 0.997 0.999 0.999
Batch Size 16 32 16
F, [8,16,32,64,64,64,64] [8,16,32,32,32,32,32] [8,32,32,32,32,32,32]
F, [64,64,64,64,32,16,1] [32,32,32,32,32,16,1,1] [32,32,32,32,32,16,1,1]
K, [5,5,5,5,5,5,5] [5,5,3,3,3,3,3] [5,5,3,3,3,3,3]
K, [6,6,6,6,6,6,5] [4,4,4,4,4,4,3,3] [4,4,4,4,4,4,3,3]
[layer no. 2 4 2
[, neuron no. 50 200 50
A 30 30 20
Arg 0.0 0.001 0.001
Table C.7

Training and hyperparameter details for the PDEs with varying parameters. Train and Test
parameter (par.) rows signal which PDE parameter values were selected. Train, Validation
(Val.) and Test data rows show which time series are taken from the datasets, i.e., 1-8000
means between the 15t and the 8000 series were taken, while for Molenkamp the number
of uniformly sampled parameter values are given. Initial learning rate (LR) and architecture
details are included, together with regularization details. The Molenkamp problem had GELU
activation functions in the last layer of the Encoder and the first layer of the Decoder.

Parameter

1D Advection

1D Burgers

2D Molenkamp

PDE par.
Train par.
Test par.
Train data
Val. data
Test data
LR

Yir

Batch Size
F(’

Fy

K,
Ky

fy Layers
i

Arg

Yo

¢

0.2,04,0.7,2.0,4.0
0.1,1.0,7.0

1-8000/¢
8000-9000/¢
9000-10000/¢
0.0018

0.995

64
[8,16,32,32,32,32,32]
[32,32,32,32,32,16,1]
[5,5,3,3,3,3,3]
[4,4,4,4,4,4,3]
4x200

30

0.0

1/500

\Z
0.002,0.004,0.02,0.04,0.2,0.4,2.0
0.001,0.01,0.1,1.0,4.0
1-8000

8000-9000
9000-10000

0.0018

0.995

124
[8,32,32,32,32,32,32]
[32,32,32,32,32,16,1,1]
[5,5,3,3,3,3,3]
[4,4,4,4,4,4,3,3]
4x200

30

0.0

1/1000

Aisenes As
Uniform sampling
Uniform sampling

5000

200

100

0.0015

0.995

16
[8,16,32,32,32,32,32]
[32,32,32,32,32,16,1,1]
[5,5,3,3,3,3,3]
[4,4,4,4,4,4,3,3]
2x100

5

0.0

1/500

4. Data-points closer to test points: we add points ¢ € {0.05,1.05,7.05} to the training data set. Each added ¢ has the same 8000 initial
conditions for training and 1000 conditions for validation as the baseline, as explained in Appendix C.

5. Uniform parameter sampling: we use ¢ € [0.5,7.05] values sampled uniformly with steps of 0.05 as training values. We exclude from
the training set ¢ € {0.1, 1.0,7.0}. The training initial conditions (per parameter ¢) are the first initial conditions from the 15t to the
250t used by the baseline and the initial conditions for validation are the ones from the 250t to the 300%™ used by the baseline
(Appendix C). So we use less initial conditions per ¢ compared to the baseline case.

Fig. 9 compares the performance the "Data-points closer to test points’ strategy to that of the baseline in Fig. 4) for the Burgers’
case. We add points v € {0.11, 1.1,4.1} to the training data set. Each added v has the same 8000 initial conditions for training and 1000
conditions for validation as the baseline, as explained in Appendix C.

C.2. Training instabilities

£;’k‘ and especially £?’k2 can involve complex gradients. During the training, this can sometimes lead the NN to be stuck in the
trivial minimum for £7 and £4 which consists in ¢, and 7, returning a constant output. Based on our experiments some datasets

2, 2,i

are particularly sensitive to this problem, while others are not affected by it, and the following measures help avoiding the trivial

solution:

16

A. Longhi et al.

Table C.8

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Comparison of the inference time. The dataset used
is the Burger’s one with v =0.001. We do not con-
sider the time spent for sending the batches from
the CPU to the GPU; the time measured is the time
taken to do inference on the whole testing dataset
of 1000 initial conditions with a batchsize of 64.
Inference time shows the mean and standard devi-
ation, which we computed for our model by doing
inference 100 times. Values of models used for com-
parisons are taken from Hagnberger et al. [46].

Time resolution ~ Model Inference time [ms]
Ours 466.73%68-38
FNO 917.77+251
41 VCNeF 2244042665
Galerkin 2415.99+3456
VCNeFs. 4853.17+752
OFormer 6025.75%1275
Ours 032.43136588
FNO 1912.19%%603
81 VCNeF 4422 65+411
Galerkin ~ 4940.80=%4
VCNeFs. 9701.80%8448
OFormer 12081.98%19-39
Ours 1440.67£25029
FNO 2808.048222
121 VCNeF 6606.41+30
Galerkin 7908.18+%0-2
VCNEeF s. 14577.00%!12:83
OFormer 17965.47%14.19
Ours 1846.729+270.72
FNO 3733.106294
161 VCNeF 6084.04+°37
Galerkin 10295.78!16:50
VCNEeF s. 19449.80%113.73
OFormer 24108.24%64
Ours 2389.07386.02
FNO 4614.21%9752
201 VCNeF 7584.48%1.86
Galerkin 13151.47%9393
VCNEF s. 24252.38%10141
OFormer 29986.81%633
Ours 2773.019%0031
FNO 5572.0710923
240 VCNeF 8935.28+7.08
Galerkin 15600.60+26251
VCNeFs. 29063.89+79-58
OFormer 35900.51%67!

Removing the biases from the Encoder.

e Warm up of the learning rate.

e Turning off the more complex [i;’_k‘ and £‘24’l_k2 terms for the initial epochs (e.g., during the warm up of the learning rate) by
setting # and y to zero, if the instabilities come mostly from these terms. This allows for an initial construction of & with simpler

constraints.

C.3. Hardware details

For training we use either an NVIDIA A40 40 GB or an NVIDIA A100 80GB PCle depending on availabilities.

C.4. Model size and inference speed

In Table C.9 we show the number of NNs weights associated with our model and the models used for comparison from Hagnberger
et al. [46]. In Table C.8 we report the inference time for the Burgers’ dataset with v = 0.001. We do not consider the time spent for
sending the batches from the CPU to the GPU; the time measured is the time taken to do inference on the whole testing dataset of

17

Using (Batch/Layer) Normalization layers in the Encoder (not necessarily after each convolution).
e Careful tuning of the learning rate (lowering the learning rate or increasing the batch size).

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Table C.9

Model size of the different architectures. In the first line of
the 1D Advection case we show the number of weights of
our model for ¢ = 0.01/¢ varying.

Model size (# NNs weights)

Model Advection Burgers’ Molenkamp
Ours 188,549 / 214,461 216,657 166,825
Galerkin T. 530,305 530,305 -

FNO 549,569 549,569 -

U-Net 557,137 557,137 -

MP-PDE 614,929 614,929 -

OFormer 660,814 660,814 -

VCNeF 793,825 793,825 1,594,005

1000 initial conditions with a batchsize of 64. We use an NVIDIA A100 80GB PCle to conduct the inference test. Inference time of
other methods is from Hagnberger et al. [46] where they use an NVIDIA A100-SXM4 80GB GPU.

C.5. Training budget

This section summarizes the available information about the training budgets for both our method and the ones used for compar-
ison. For the Molenkamp test we trained the method of comparison ourselves. For all other experiments, the information we have
about the trainings of comparison methods comes from Hagnberger et al. [46] as we directly compare to the results within.

C.5.0.1. Molenkamp test. Our method was trained for 1325 epochs in a total time of 13.5 h, and training stopped because the validation
loss had not decreased for 200 epochs. The comparison VCNeF method of Hagnberger et al. [46] was trained for 500 epochs for a total
time of 24.4 h, using the ’One Cycle Scheduler’ [64], with maximum learning rate of 0.2, initial and final division factors of 0.003 and
0.0001, respectively, with each epoch taking approximately 176s. Both trainings used the same GPU (NVIDIA A100 80GB PCle).

Not parametric-1D Burgers. Our model has been trained for 4336 epochs, each of which taking approximately 6.1 s on a single NVIDIA
A100 80GB PCle, for a total of 7.3 h. The comparison VCNeF training took 18 s per epoch and was trained for 500 epochs in parallel
on 4 NVIDIA A100-SXM4 80GB GPUs, for a total of 2.5h. Appendix E.3 of Hagnberger et al. [46] gives no additional information
about training times; only stating that all methods have been trained for 500 epochs, except for MP-PDE using 20 epochs.

Not parametric-1D advection. Our model has been trained for 1724 epochs, each taking approximately 10s on a single NVIDIA A100
80GB PCle, for a total of 4.8 h. Comparison methods have been trained for 500 epochs, except for MP-PDE using 20 epochs, without
any additional information available.

Parametric 1D Burgers. Our model has been trained for 1330 epochs on a single NVIDIA A100 80GB PCle, for a total of 25.1h.
Comparison methods have been trained for 500 epochs, except for MP-PDE using 20 epochs, without any additional information
available.

Parametric 1D advection. Our model has been trained for 1607 epochs on a single NVIDIA A100 80GB PCle, for a total of 48h.
Comparison methods have been trained for 500 epochs, except for MP-PDE using 20 epochs, without any additional information
available.

Shallow water equations. Our model has been trained for 1366 epochs on a single NVIDIA A100 80GB PCle, for a total of 3.3h.
Appendix D. Methods used for comparison

In Section 3 we compare our model to the following methods:
Fourier neural operator (FNO). Li et al.[21]: it is a particular case of a Neural Operator, i.e., a class of models which approximate
operators and that can thus perform mapping from infinite-dimensional spaces to infinite-dimensional spaces. The name comes from
the assumption that the Kernel of the operator layer is a convolution of two functions, which makes it possible to exploit the Fast
Fourier Transform under particular circumstances.
cFNO. Takamoto et al. [47]: it is an adaptation of the FNO methodology which allows to add the PDE parameters as input.
Message passing neural PDE solver (MP-PDE). Brandstetter et al. [29]: it leverages Graph Neural Networks (GNNs) for building sur-

rogate models of PDEs. All the components are based on neural message passing which representationally contain classical methods
such as finite volumes, Weighted Essentially Non-Oscillatory (WENO) schemes and finite differences.

18

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

U-Net. Ronneberger et al. [65]: it is a method based on an Encoder-Decoder architecture with skip connections between the down-
sampling and upsampling procedures. Originally it emerged for image segmentation tasks and but has since been applied to the field
of PDE solving as well [27].

Coordinate-based model for operator learning (CORAL). Serrano et al. [66]: it is a method which leverages Neural Fields [67] for the
solution of PDEs on general geometries and general time discretizations.

Galerkin transformer (Galerkin). Cao[68]: it is a Neural Operator based on the self-attention mechanism from Transformers with a
novel layer normalization scheme mimicking the Petrov—Galerkin projection.

Operator transformer (OFormer). Li et al. [69]: it is a Neural Operator which leverages the fact that the self-attention layer of Trans-
formers is a special case of an Operator Layer (as shown in Kovachki et al. [18]) to build a PDE solver.

cOFormer. 1t is an adaptation of the OFormer architecture which allows for the query of PDE parameters as inputs, following what
is done in Takamoto et al. [48].

Vectorized conditional neural fields (VCNeF). Hagnberger et al. [46]: it is a transformer based model which leverages neural fields to
represent the solution of a PDE at any spatial point continuously in time. For the Molenkamp test we implemented the VCNeF method
from the Git-Hub repository of Hagnberger et al. [46], using the same "One Cycle Scheduler’ [64] with maximum learning rate at 0.2,
initial division factor 0.003 and final division factor 0.0001 for training. We employ 1000 epochs, a batch size of 40, an embedding
size of 96, 1 transformer layer with 8 heads and 6 modulation blocks.

Physics-informed neural networks (PINN). Raissi et al. [70]: it is a class of methods which uses the physical knowledge of the system
(in this case the PDE) to improve the approximate solution of the PDE by the NN (via e.g., penalizing the PDE residual too in the
loss).

The above methods have been implemented in Hagnberger et al. [46] (for the 1D Advection and 1D Burgers results) and [48] (for
the 2D Shallow Water results) and we used the reported values to compare our results to in Section 3.

Appendix E. Ablation studies
E.1. The role of the ODE solver and of L5 in time generalization

In Fig. E.11a we show the effect of the stage ¢ of the RK algorithm used to solve Eq. (6) for the Burgers’ dataset with v = 0.001.
We see that by increasing ¢ not only the nRMSE(#) (from Eq. (F.11)) is lowered, but also the gap between the trajectory of At = 0.05
(used during training) and Ar = 0.01 is decreased, i.e., the larger the q the better the generalization in time during inference. This is
particularly clear when looking at the nRMSE(?) of ¢ = 3 and ¢ = 4, since for At = 0.05 they are almost the same, while for Az = 0.01
it is noticeably lower when ¢ = 4. In Fig. E.11b we do the same experiment with the Advection dataset: here only for ¢ = 1 there is a
big gap between the prediction at At = 0.05 and A7 = 0.01.

In Fig. E.11c once again we show the same pattern for the Molenkamp dataset: increasing the value of g results in a better capability
of the model to generalize in time during inference by taking a smaller Ar.

In Fig. E.11d we show a comparison of the nRMSE(#) on the Burgers’ dataset with v = 0.001 between using the full loss £, and
switching off £; by setting § = 0: while for Ar = 0.05 (the one used at training) the two curves are comparable, for A7 = 0.01 a huge
gap is present. This result is in line with the reasoning that £; helps the model to generalize in time, as explained Section 2.6.

E.2. Impact of y, and p(k,) in the autoregressive strategy

The autoregressive term y Eg’l_kz during the training is multiplied by a scalar y, where initially y = y, < 1 and is increased every
epoch by an amount of y, until y = 1. In Fig. E.12 we vary the value of y, from 0 (Teacher Forcing) to 0.002. We also experimented
with higher values (y, = 0.01,0.1, 1) but resulted in NaN errors in the training. We see a trend where the higher the value of y, the
lower the error; however it comes with a more unstable training process which may require careful hyperparameters tuning.

Furthermore, in Fig. E.13 we experiment with varying the value of p(k,) on the parametric Burgers dataset, where p(k,) is the
amount of epochs needed for k, to be increased by 1: no significant difference is present in the three experiments.

E.3. Coupling of AE and NODE

In Section 2 we stated that the training of the AutoEncoder was coupled with the training of the Neural ODE. This choice was
rooted in the assumption that training the encoder ¢, and the decoder y, together with f, pushes the NNs’s weights towards a
minimum such that the latent space £ allows for an easier modeling of the latent dynamics through f,, since € and f, are built at
the same time. In this section we give some empirical results backing up such decision.

Firstly, how different is the latent space found when the training is coupled from when it is not coupled? In Fig. E.14 we show the
Time evolution for a given initial condition and for a given parameter instance from the test set of the corresponding latent vector &,

19

A. Longhi et al.

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

0.16
+ g=1,At=0.05
0.14 -~ g=1,At=0.01
012 + g=2,At=0.05
. i -+- g=2,At=0.01
S
9_”0.10 i + g=3,At=0.05
s f -—- g=3,At=0.01
x 0.08 i
c ; + g=4,At=0.05
0061 N S S S S S S SR S -+- g=4,At=0.01
0.04 i
FEoF o4 % £ % 2 4
0.0 0.1 0.2 03 04 05 06 0.7 08 09 10 1.1 1.2 1.3 14 15 16 1.7 1.8 19 2.0
t
(a) Burgers’ dataset with v = 0.001.
+ g=1,At=0.05
0.10
-—+- g=1,At=0.01
=2,At=0.
0.08 + q 0.05
_ -+~ g=2,At=0.01
=
= 0.06 + g=3,At=0.05
= -+- g=3,At=0.01
CO.04 + q=4,At=0.05
-+- q=4,At=0.01
dovrdionil +
0.02 ++++++++++++r‘*"’"‘ T
Toeo+o o ot
0.0 0.1 0.2 03 04 05 06 0.7 08 09 1.0 1.1 1.2 1.3 14 15 16 1.7 1.8 1.9 2.0
t
(b) Advection dataset with £ = 0.1.
et . _ _
+—-+—+»+—+-+—+_+-+_,_,._+-+—v—»——»—-¢——o-—.-—-+-o——v—4"”4 - q 1, At=0.05
1071 - aantl = _+_+_+-,_,,_P-»——'——*—*-**-‘-**‘**’*—*‘* -- qil,Atio.Ol
*_‘_*_,_4,4—* 4‘_‘__‘__‘,_',_.‘.;_.*_.._+.’-+-+ ¥ it + q=2,At=0.05
= el el S ---- g=2,At=0.01
k=) e - -t — —
] o JI | + g=3,At=0.05
= e ********** -+- q=3,At=0.01
< e T A4 + g=4,At=0.05
10-2 , e g -+- g=4,At=0.01
a f,.;—" _+_+4+_+_,.-+—+-1--¢-~»—;P"’¢ $ q ' .
Flpopt I s aie et RPN, L g t I + + +
r*t*“"i"’”; 1 ; i ; ¥ I + i H I +
L S T
™
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t
(c) Molenkamp dataset.
0.09 Fy + Full loss, At=0.05
J"M\M‘” -~ Full loss, At =0.01
0.08 f M + 6=0,At=0.05
0.07 proe N -~ §=0,At=0.01
2 Lot
% 0.05 f}f M% T e | I
i Tt 1
0.04 i S S R
f ++*‘++++++ *+++++++++++
0.03

Fig. E.11. nRMSE(r) when varying the stage ¢ of the RK algorithm to solve the ODE of Eq. (6) for the Burgers’ (a), Advection (b) and Molenkamp
datasets (c) and when using £; in the training (d). In (a)-(c) the same ¢ is used at training and inference. Increasing ¢ improves the predictions
when using the same Ar as during training (A¢ = 0.01) and also yields better generalization in time. In (d) the presence of £, at training (red curves)
improves the generalization in time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

(d) Burgers’ dataset (v = 0.001), with and without (§ = 0) £L3. Training time-step is At = 0.05.

0.0 01 02 03 04 05 06 0.7 0.8 09 1.0 1.1 1.2 13 1.4 15 16 1.7 1.8 1.9 2.0

t

20

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

A. Longhi et al.
I Teacher Forcing
0 y,=0.0005
1014 N y,=0.001
[y,=0.002
— 10°
=
o]
2102
2 10
C
1072
1073

0.001 0.002 0.004 0.01 0.02 0.04 0.1 02 04 1.0 20 4.0
PDE Parameter v

Fig. E.12. We show the impact of the scheduling chosen for the autoregressive term with the variation of y,. Teacher Forcing is equivalent to y, = 0.

mm p(k,) =10
== p(k2)=20
1014 (k) = 60
0 |
3 10
g
2 101
p 10
c
1072
1073

0.001 0.002 0.004 0.01 0.02 004 0.1 02 04 1.0 20 4.0
PDE Parameter v

Fig. E.13. We show the impact of varying the term p(k,). No noticeable difference is present at its variation.

both for the parametric Advection and Burgers case. In both cases the most evident difference between coupling and not is the scale
of the variation of each latent dimension: it is larger for the not coupled models and very small for the coupled one, as shown in
Fig. E.15. Finally, in Fig. E.17 we compare the nRMSE(u) distribution of both the parametric Advection and parametric Burgers case
when the system is trained coupled and when not: the error is smaller when the training is performed coupled.

We thus observed 3 phenomena:

o the error of the AutoEncoder is smaller when the training is not coupled (Fig. E.16);

« the shape of the latent space is not dramatically different in the two cases (Figs. E.14 and E.15). The main distinction is observed
in the scale of the variation of each dimension of the latent vectors over time, which is considerably smaller in the coupled case;

o the approximation error of the PDE solution is smaller when the training is coupled (Fig. E.17).

It is difficult by looking at Fig. E.14 to justify why it is true that the latent space found in the coupled case is more easily approximated
by the NODE, we only report what we observed experimentally. We conclude by reporting that training the two processes decoupled
results in a much more stable training process, which did not require the use of the tricks documented in Appendix C.2 as in the
coupled case.

21

A. Longhi et al.

Parametric Advection

e(tlm)

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Not coupled Coupled
2 e T T e e T I SR R R R R R SRS
4
6
2 a4
2
3 3
£° g0
-2
-2
-4
—a -6
00 01 02 03 04 05 06 07 08 09 1.0 1.1 12 13 14 15 1.6 17 1.8 19 2.0 -8 00 01 02 03 04 05 06 07 08 09 1.0 1.1 12 13 14 15 1.6 17 1.8 19 2.0
t t
Parametric Burgers
200
30
0 H 20
10
-200
3 o Hiied i EREERR
£ i i IR E!
~400 Y10
—600 =20
PO N G A AR R NP A N PR SR R G P W N | R N PR A
BT T T 1.1 L T T T T T 1T T T T T 1 | bedeboetosoebotobobolbos
-40

Fig. E.14. Time evolution of the latent vector &(t|u) for a given initial condition and parameter instance ({ for Advection and v for Burgers). Each
color corresponds to a different dimension of the latent vector, 30 in total. We compare the time evolution for both the parametric Advection (top)
and the parametric Burgers (bottom) cases, between the two training strategies: the Autoencoder training coupled to the latent space dynamics

00 01 02 03 04 05 06 07 08 09 10 11 1.2 13 14 15 16 17 18 19 2.0
t

optimization (right) and not (left).

22

00 01 02 03 04 05 06 0.7 08 09 1.0 11 12 13 14 15 16 17 18 19 20
t

A. Longhi et al.

-0.614

-0.616

-0.618

£1(t|w)

—0.620

-0.622

-0.624

-4.70

-4.75

—4.80

£1(tjp)

—4.85

-4.90

-4.95

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Coupled parametric Advection

0.0

0.1

0.2

03 04 05 06 07 08 09 10 11 12 13 14 15 16 1.7 18 19 20

Coupled parametric Burgers

0.0

0.1

0.2

03 04 05 06 07 08 09 10 1.1 12 13 14 15 16 1.7 18 19 20
t

Fig. E.15. Time evolution of a chosen latent variable from the latent vector e(¢t|u) for a given initial condition and parameter instance ({ for
Advection and v for Burgers). Although at smaller scales than in the coupled case, the latent variables show similar variations in time.

23

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

A. Longhi et al.
Parametric Advection
1.4 x 1072
e Coupled i
+ Not Coupled .
E ° +
E‘I; ° . * b T
=
x +
c
W
< 6x 1073 -
il +
+ + +
4x1073
0.1 0.2 0.4 0.7 1.0 2.0 4.0 7.0
PDE Parameter ¢
Parametric Burgers
L]
e Coupled
! + Not Coupled
51072 ?
E []
wn
z ; ’
i 1 1 .
<
+ ° ° ° L4
T + ? : + + +
1073 y T T T ; ; T T T T ;
0.001 0.002 0.004 o0.01 0.02 0.04 0.1 0.2 0.4 1.0 2.0 4.0

PDE Parameter v

Fig. E.16. Comparison of the AE-nRMSE(u) when encoding and decoding the test set, both for the parametric Advection (top) and the parametric
Burgers datasets (bottom). In both cases, the AE-nRMSE() is lower when the AutoEncoder is trained independently from learning the latent space

dynamics.

24

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Parametric Advection

Comparison of strategies to improve generalization

10°
. Il Not coupled
1044 I Coupled

103_

102 1

100 i

T

NRMSE(u)

0.1 0 7.0

PDE Parameter ¢

Parametric Burgers

I Not coupled
I Coupled
10%4

=)

107+

[

1074

NRMSE(u)

N

10744

w

10734

1.0 20

Fig. E.17. Comparison of the nRMSE(u) with (red) and without (blue) coupling the training of the AutoEncoder and the Neural ODE, both for the
parametric Advection (top) and the Burgers advection datasets (bottom). Bold characters signal testing parameter values not included in the training
set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

0.001 0.002 0.004 0.01 0.02 0.04 0.1 02 0.4 4.0
PDE Parameter v

Appendix F. Datasets

Unless stated otherwise, the solutions of the PDEs described in this section used in our model training come from Takamoto
et al. [48].

FE.1. 1D advection equation

The 1D Advection Equation is a linear PDE which transports the initial condition with a constant velocity ¢:

(F.1)

0,5(X, t|u) + {0, 5(x,tlu) =0, x € (0,1), 1€ (0,2]
s(x,0[u) = s°(x, p), x € (0, 1).

25

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

Periodic boundary conditions are considered (i.e., s(0,¢|u) = s(1,7|u)) and as initial condition a super-position of sinusoidal waves is
used:

sSOx, p) = Z A, sin(k;x + ¢;), (F.2)

i=1,...,.N

where k; =2z n;/L, with n; being random integers, L, is the domain size, A; are random numbers from the interval [0, 1] and ¢,
are the phases chosen randomly in (0,27z). We use 256 equidistant spatial points x in the interval [0, 1] and for training 41 uniform
timesteps in the interval [0, 2].

F.2. 1D Burgers’ equation

The Burgers’s equation is a non-linear PDE used in various modeling tasks such as fluid dynamics and traffic flows:

0,5, t|p) + 0, (s (X, t|p)/2) — v/ s(x.tlu) x € (0,1), t € (0,2] 3
s(x,01p) = s°x,), x € (0, 1), '

where v is the diffusion coefficient. The initial conditions and the boundary conditions are the same as in Section F.1. We use 256
equidistant spatial points in the interval [0, 1] and for training 41 uniform timesteps in the interval [0, 2].

F.3. 2D shallow water equations

The 2D Shallow Water Equations are a system of hyperbolic PDEs derived from the Navier Stokes equations and describe the
flow of fluids, primarily water, in situations where the horizontal dimensions (length and width) are much larger than the vertical
dimension (depth):

dh + 9 hu + 9 ,hv = 0,
1

0,hu + 0, (u2 h+ Eg,hz) + dyuvh = —g,ho, b, (F.4)
1

0w+ 0, (% h+ S8.h*) +0,uvh = —g.ho,b,

where u, v are the horizontal and vertical velocities, & is the water depth and b is a spatially varying bathymetry. g, is the gravitational
acceleration. We use 128 x 128 equidistant spatial points (x, y) in the interval [—1, 1] x [—1, 1] and for training 21 uniform timesteps in
the interval [0, 1], while the compared methods use 101 uniform timesteps in the interval [0, 1].

F.4. 2D molenkamp test

The Molenkamp test is a two dimensional advection problem, whose exact solution is given by a Gaussian function which is
transported trough a circular path without modifying its shape. Here we add a reaction term which makes the Gaussian shape decay
over time:

0,q(x, p,1) + udq(x, y,1) + 00,q(x, y, 1) + A3q(x, y,1) = 0

2 1 (F.5)
q(x,y,0) = 4; 0.012"207 1 p(x, y,0) = \/(x — A P+ (= AP
with u = =27y and v = 2zx and (x, y) € [-1, 1]. For this problem an exact solution exists:
q(x, v, 1) = /110.01’12'1(’””’)2 exp 73!
1] (F.6)
h(x,y,t) = \/(x — A+ 3 cos(2xt))? + (y — A5 — 7 sin(2x1))2.
The PDE depends on 5 parameters 4,, ..., 45, which control the magnitude of the initial Gaussian, the size of the cloud, the speed of

decay, and the initial coordinates x and y. The ranges of the parameters are taken from Alsayyari et al. [71]: 4, € [1,20], 4, € [2,4],
A3 € 1,51, 44 € [-0.1,0.1], 45 € [-0.1,0.1]. We use 128 x 128 equidistant spatial points (x, y) in the interval [-1, 1] x [-1, 1] and for
training 21 uniform timesteps in the interval [0, 1].

FE.5. Test error metrics

We use as testing metrics the Normalized-Root-Mean-Squared-Error, defined in different ways according to which quantities are
averaged over:

N, N

RMSE — y 3 ||sr(x,r-|u,,,s9,,.>—§r(x,z-|up,s9,,.))||2’)
N.NF 544 [15,0%, ;10 911>
ARMSEGH) — Ny i [, (.11, s0,) = 5,(x, tjlﬂ,s‘,{l.))llz’ (F.8)
NuF == [RECR AP

26

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

NODENRMSEGH) = X 3 lloves b o) = €l 5y Dl 9
NuF i=1 j=1 ||C09°Sr(X,t‘|Il,S(,)’,-)||2
AERRMSEGH) = N i Is, (.15 1. 5%) = wyopg0s,(x.1; 1. 0 F10)
F po s, 1; . 52)1
DRMSE() — — L ¥ NZ s, 6t 57,) = 5,651y 5 Dl E11)
NN, = = |15, 1l 5911

where N, N, and F are the number of initial conditions, parameter instances and time steps used at testing, respectively, and

stands for the ith initial condition. &(;|u,, sr,)) = 7o(-, . Al j_1)0 ... 0mp (-, i)y, Atlyo)oq)g(s?,.) is the latent vector predicted by the
NODE at time #; during inference. Thus:

* nRMSE is the total error;

o nRMSE(u) is the parametric total error, i.e., total error for any parameter instance u;

o NODE-nRMSE(u) is the parametric Neural ODE error, i.e., the total error for any parameter instance y coming from the NODE
prediction;

AE-nRMSE(u) is the parametric AutoEncoder error, i.e., the total error per for any parameter instance y coming purely from the
autoencoder;

e nRMSE(?) is the temporal total error, i.e., the total error for any time step ¢.

We also define the relative error e,(x,t) as a more spatially meaningful error measure between the predicted field 5,(x, t|#) and the

ground truth field s,.(x, t|p):

s (%, 1]p) = 3,(x, 1|)|
s, (x. 11wl

where the numerator is the point-wise absolute value of the difference between 3,(x, 7|u) and s,(x,7|u) (hence it has the same dimen-
sionality as s,(x, t|u)), while the denominator is a scalar.

er(Xs t) =

(F.12)

Appendix G. Additional images

Fig. G.18 shows our model’s performance in the Molenkamp test for 4 different parameter values u listed in Table G. 10 Fig. G.19
displays the predictions of our model on the Shallow-Water test case for 4 different initial conditions s° 1 s°2, 50 3 and s 4 Fig. G.20
shows our model’s performance on the 1D Advection test case for 2 different initial conditions and 4 dlfferent Velocltles =04,
¢=0.7, ¢ =20 and ¢ =4.0. Finally, Fig. G.21 displays the prediction for the Burgers case with v = 0.001 for two different initial
conditions.

Table G.10
The 4 different parameter vectors used in the
Molenkamp test.

Hy Hy H3 Hy

A 2.452 19.8578 11.7423 16.8555
Ay 2.373 2.5791 3.9285 3.4449
A3 2.791 1.9388 2.5638 2.6506
Ay 0.053 0.0959 0.0384 0.0502
As 0.0125 -0.0857 0.0200 0.0423

27

A. Longhi et

M1

K2

H4

al.

Time [s]:
Prediction §,

Ground Truth s,
Relative error e,

Prediction 3,

Ground Truth s,
Relative error e,

Prediction s,

Relative error e,

Prediction s,

Ground Truth s,

0.0000

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

v

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

EEEENENENEEEEENEEEEE
ENEEEEEEEEEEEEEEEEEN
N 5 D D G
OSSN EEEEEEEEEEEEEN
OSSN EEEEEEEEEEEEEE
N O S Y G
SESEEEEEEEEEEEEEEEEE
ps coma T, [NN NN EEEE
o 5 S I Y I D o
SN EEEEEEENEEEEEE
OSSN EEEEEEEEEEEEEE
relaive error e [[| H NN NN EEEEEEENE

0.0001

0.0002

0.0003
Relative error e,

0.0004

0.0005

=
@
175 <
=
£
=
15.0
e
@]
125 2
=]
<
oy
100
75 3
—
&
2
5.0 =
=
=}
25 2
19}
0.0

Fig. G.18. Model predictions over time on the Molenkamp test dataset for 4 different parameter combinations u,, u,, u; and p,. The vertical
colorbar refers to the prediction s,(x, f|4) and ground truth 3,(x, 7|u) fields (top and middle rows for each parameter vector), while the horizontal one
to the relative error e, of Eq. (F.12) (bottom rows for each parameter vector). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Time [s]:
Prediction s,

Ground Truth s,

Relative error e,

Prediction §,

Ground Truth s,

| Relative error e,

Prediction s,

Ground Truth s,

Relative error e,

Prediction §,

Ground Truth s,

Relative error e,

0.0000

v

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

2.0

1.8

1.6

.
1.4

1.2

1.0

0.8

0.6

Solution Value (Prediction §, and Ground Truth s,)

0.0001

0.0002

0.0003

0.0004
Relative error e,

0.0005

0.0006

0.0007

Fig. G.19. Model predictions over time on the Shallow-Water test dataset for 4 different initial conditions s° o soz, 3
refers to the prediction 3,(x, 7|u) and ground truth s,(x,¢|u) fields (top and middle rows for each initial condltlon), whlle the horizontal one to the
relative error e, of Eq. (F.12) (bottom rows for each initial condition). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

28

]
0.0008

and s

4 The vertical colorbar

A. Longhi et al.

Relative error

Prediction s,

Ground Truth s, x

(=04 (=04 ¢=07

X

€r x

0.000

=
— /4

- E— -

0.002

— ——
-

O

0.004 0.006
Relative error e,

Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

0.008

0.010

0.012

t
e ——— ——_——_—— e ——

0.014

2.0
15 o
2
10 &
05 ©
g
iy
0.0 <
—0.55
g
-1.0:5
-1.57%
wn

Fig. G.20. Predictions of our model on the parametric Advection dataset for 2 different initial conditions (odd and even columns) and 4 different
velocities: { = 0.4, ¢ = 0.7, { = 2.0 and ¢ = 4.0. Each plot is a heat map with time 7 on the horizontal axis and space x on the vertical axis. The vertical
colorbar refers to the prediction §,(x, t|u) (top) and the ground truth s,(x, 7|u) (middle) fields, while the horizontal one refers to the relative error
e, of Eq. (F.12) (bottom row). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

t=0.0s t=0.25s t=0.5s t=0.75s t=1.0s t=1.25s t=15s t=175s t=20s
0.6
1) 0.4
=
Q 02
o
@ 0.0
2
-0.2
-0.4
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 o 100 200 0 100 200 0 100 200
X X X X X
t=0.0s t=0.25s t=05s t=0.75s t=1.0s t=1.25s t=15s t=1.75s t=2.0s
0.7
0.6
@ 0.5
3
’g 0.4
DBos3
K]
L o2
0.1
0.0 — ~
] 100 200] 100 200 0 100 200 0 100 200] 100 200 0 100 200 0 100 200 0 100 200] 100 200
X X X X X X
Prediction Ground Truth

Fig. G.21. Predictions of our model on the Burgers’ dataset with v = 0.001. The two rows correspond to two different initial conditions.

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

References

[1]
[2]

[31

[4]

(5]

(el

[71

(8]

91
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
371
[38]

[39]
[40]

[41]

[42]

A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics (Texts in Applied Mathematics), Springer-Verlag, Berlin, Heidelberg, 2006.

R. Iman, J. Helton, An investigation of uncertainty and sensitivity analysis techniques for computer-models, Risk Anal. 8 (2006) 71-90. https://doi.org/10.
1111/5.1539-6924.1988.tb01155.x

Z. Perké, L. Gilli, D. Lathouwers, J.L. Kloosterman, Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis, J. Comput.
Phys. 260 (2014) 54-84. https://doi.org/10.1016/j.jcp.2013.12.025

A. Quarteroni, G. Rozza, Reduced Order Methods for Modeling and Computational Reduction, Springer International Publishing, 2014. https://doi.org/10.1007/
978-3-319-02090-7

J.L. Lumley, The structure of inhomogeneous turbulent flows, Atmos. Turbul. Wave Propag. (1967) 166-178. https://cir.nii.ac.jp/crid/1573387449825294592.
C. Fefferman, S. Mitter, H. Narayanan, Testing the manifold hypothesis, J. Am. Math. Soc. 29 (4) (2016) 983-1049. https://doi.org/10.1090/jams/852

S. Goldt, M. Mézard, F. Krzakala, L. Zdeborova, Modeling the influence of data structure on learning in neural networks: the hidden manifold model, Phys. Rev.
X 10 (4) (2020) 041044.

T. Cohen, M. Welling, Learning the irreducible representations of commutative lie groups, in: International Conference on Machine Learning, PMLR, 2014, pp.
1755-1763.

1. Higgins, D. Amos, D. Pfau, S. Racaniere, L. Matthey, D. Rezende, A. Lerchner, Towards a definition of disentangled representations, arXiv preprint
arXiv:1812.02230 (2018).

S. Fresca, A. Manzoni, POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition,
Comput. Methods Appl. Mech. Eng. 388 (2022) 114181. https://www.sciencedirect.com/science/article/pii/S0045782521005120. https://doi.org/https://doi.
org/10.1016/j.cma.2021.114181

K. Bhattacharya, B. Hosseini, N.B. Kovachki, A.M. Stuart, Model reduction and neural networks for parametric PDEs, SMAI J. Comput. Math. 7 (2021) 121-157.
K. Lee, K.T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys. 404 (2020)
108973. https://doi.org/10.1016/j.jcp.2019.108973

A. Solera-Rico, C. Sanmiguel Vila, M. Gémez-Lopez, Y. Wang, A. Almashjary, S.T.M. Dawson, R. Vinuesa, Variational autoencoders and transformers for reduced-
order modelling of fluid flows, Nat. Commun. 15 (1) (2024). https://doi.org/10.1038/541467-024-45578-4

Z. Li, S. Patil, F. Ogoke, D. Shu, W. Zhen, M. Schneier, J.R. Buchanan, A. Barati Farimani, Latent neural PDE solver: a reduced-order modeling framework for
partial differential equations, J. Comput. Phys. 524 (2025) 113705. https://doi.org/10.1016/j.jcp.2024.113705

B. Lusch, J.N. Kutz, S.L. Brunton, Deep learning for universal linear embeddings of nonlinear dynamics, Nat. Commun. 9 (1) (2018). https://doi.org/10.1038/
$41467-018-07210-0

J. Nathan Kutz, J.L. Proctor, S.L. Brunton, Applied Koopman theory for partial differential equations and data-driven modeling of spatio-temporal systems,
Complexity 2018 (1) (2018). https://doi.org/10.1155/2018/6010634

S.L. Brunton, J.L. Proctor, J.N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci.
113 (15) (2016) 3932-3937. https://doi.org/10.1073/pnas.1517384113

N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: learning maps between function spaces with appli-
cations to PDEs, J. Mach. Learn. Res. 24 (89) (2023) 1-97. http://jmlr.org/papers/v24/21-1524.html.

F. Bartolucci, E. de Bezenac, B. Raonic, R. Molinaro, S. Mishra, R. Alaifari, Representation equivalent neural operators: a framework for alias-free operator
learning, in: Thirty-seventh Conference on Neural Information Processing Systems, 2023. https://openreview.net/forum?id = 7LSEKVEGCM.

L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nat.
Mach. Intell. 3 (3) (2021) 218-229. https://doi.org/10.1038/542256-021-00302-5

Z. Li, N.B. Kovachki, K. Azizzadenesheli, B. liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural operator for parametric partial differential equations,
in: International Conference on Learning Representations, 2021. https://openreview.net/forum?id = c8P9NQVtmnO.

B. Raonic, R. Molinaro, T. De Ryck, T. Rohner, F. Bartolucci, R. Alaifari, S. Mishra, E. de Bézenac, Convolutional neural operators for robust and accurate learning
of PDEs, Adv. Neural Inf. Process. Syst. 36 (2023) 77187-77200.

L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, G.E. Karniadakis, A comprehensive and fair comparison of two neural operators (with practical extensions)
based on FAIR data, Comput. Methods Appl. Mech. Eng. 393 (2022) 114778. https://doi.org/10.1016/j.cma.2022.114778

Z. Hao, Z. Wang, H. Su, C. Ying, Y. Dong, S. Liu, Z. Cheng, J. Song, J. Zhu, Gnot: a general neural operator transformer for operator learning, in: International
Conference on Machine Learning, PMLR, 2023, pp. 12556-12569.

G. Kissas, J.H. Seidman, L.F. Guilhoto, V.M. Preciado, G.J. Pappas, P. Perdikaris, Learning operators with coupled attention, J. Mach. Learn. Res. 23 (215) (2022)
1-63.

Z. Li, N. Kovachki, C. Choy, B. Li, J. Kossaifi, S. Otta, M.A. Nabian, M. Stadler, C. Hundt, K. Azizzadenesheli, et al., Geometry-informed neural operator for
large-scale 3d pdes, Adv. Neural Inf. Process. Syst. 36 (2024).

J.K. Gupta, J. Brandstetter, Towards multi-spatiotemporal-scale generalized pde modeling, arXiv preprint arXiv:2209.15616 (2022).

P. Jin, S. Meng, L. Lu, MIONet: Learning multiple-input operators via tensor product, SIAM J. Sci. Comput. 44 (6) (2022) A3490-A3514.

J. Brandstetter, D.E. Worrall, M. Welling, Message passing neural PDE solvers, in: International Conference on Learning Representations, 2022. https:
//openreview.net/forum?id = vSix3HPYKSU.

F. Pichi, B. Moya, J.S. Hesthaven, A graph convolutional autoencoder approach to model order reduction for parametrized PDEs, J. Comput. Phys. 501 (2024)
112762. https://doi.org/10.1016/j.jcp.2024.112762

N.R. Franco, S. Fresca, F. Tombari, A. Manzoni, Deep learning-based surrogate models for parametrized PDEs: handling geometric variability through graph
neural networks, Chaos 33 (12) (2023). https://doi.org/10.1063/5.0170101

L. Equer, T.K. Rusch, S. Mishra, Multi-scale message passing neural pde solvers, arXiv preprint arXiv:2302.03580 (2023).

R.T.Q. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural ordinary differential equations, Adv. Neural Inf. Process. Syst. 31 (2018).

S. Wiewel, M. Becher, N. Thuerey, Latent space physics: towards learning the temporal evolution of fluid flow, Comput. Graph. Forum 38 (2) (2019) 71-82.
https://doi.org/10.1111/cgf.13620

P.Y. Chen, J. Xiang, D.H. Cho, Y. Chang, G.A. Pershing, H.T. Maia, M.M. Chiaramonte, K. Carlberg, E. Grinspun, CROM: continuous reduced-order modeling of
PDESs using implicit neural representations, International Conference on Learning Representations (2023).

T. Wang, C. Wang, Latent neural operator for solving forward and inverse PDE problems, in: The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. https://openreview.net/forum?id = VLw8ZyKfcm.

D.M. Knigge, D. Wessels, R. Valperga, S. Papa, J.-J. Sonke, E.J. Bekkers, S. Gavves, Space-time continuous PDE forecasting using equivariant neural fields, in:
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. https://openreview.net/forum?id = wN5AgPODJO.

Y. Yin, M. Kirchmeyer, J.-Y. Franceschi, A. Rakotomamonjy, p. gallinari, Continuous PDE dynamics forecasting with implicit neural representations, in: The
Eleventh International Conference on Learning Representations, 2023. https://openreview.net/forum?id = B73niNjbPs.

X. Xie, S. Mowlavi, M. Benosman, Smooth and Sparse Latent Dynamics in Operator Learning with Jerk Regularization, arXiv preprint arXiv:2402.15636 (2024).
Q. Zhuang, J.M. Lorenzi, H.-J. Bungartz, D. Hartmann, Model order reduction based on Runge-Kutta neural networks, Data-Centric Eng. 2 (2021). https:
//doi.org/10.1017 /dce.2021.15

T. Wen, K. Lee, Y. Choi, Reduced-order modeling for parameterized PDEs via implicit neural representations, NeurIPS 2023 Workshop: Machine Learning and
the Physical Sciences (2023).

X. He, Y. Choi, W.D. Fries, J.L. Belof, J.-S. Chen, gLaSDI: parametric physics-informed greedy latent space dynamics identification, J. Comput. Phys. 489 (2023)
112267. https://doi.org/10.1016/j.jcp.2023.112267

30

http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0001
https://doi.org/10.1111/j.1539-6924.1988.tb01155.x
https://doi.org/10.1111/j.1539-6924.1988.tb01155.x
https://doi.org/10.1111/j.1539-6924.1988.tb01155.x
https://doi.org/10.1111/j.1539-6924.1988.tb01155.x
https://doi.org/10.1016/j.jcp.2013.12.025
https://doi.org/10.1016/j.jcp.2013.12.025
https://doi.org/10.1007/978-3-319-02090-7
https://doi.org/10.1007/978-3-319-02090-7
https://doi.org/10.1007/978-3-319-02090-7
https://doi.org/10.1007/978-3-319-02090-7
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0005
https://cir.nii.ac.jp/crid/1573387449825294592
https://doi.org/10.1090/jams/852
https://doi.org/10.1090/jams/852
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0007
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0007
http://arxiv.org/abs/1812.02230
http://arxiv.org/abs/1812.02230
https://www.sciencedirect.com/science/article/pii/S0045782521005120
https://doi.org/https://doi.org/10.1016/j.cma.2021.114181
https://doi.org/https://doi.org/10.1016/j.cma.2021.114181
https://doi.org/https://doi.org/10.1016/j.cma.2021.114181
https://doi.org/https://doi.org/10.1016/j.cma.2021.114181
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0010
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1038/s41467-024-45578-4
https://doi.org/10.1038/s41467-024-45578-4
https://doi.org/10.1016/j.jcp.2024.113705
https://doi.org/10.1016/j.jcp.2024.113705
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1155/2018/6010634
https://doi.org/10.1155/2018/6010634
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0017
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0017
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0018
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0018
https://openreview.net/forum?id=7LSEkvEGCM
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0020
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0020
https://openreview.net/forum?id=c8P9NQVtmnO
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0021
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0021
https://doi.org/10.1016/j.cma.2022.114778
https://doi.org/10.1016/j.cma.2022.114778
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0023
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0023
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0024
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0024
http://arxiv.org/abs/2209.15616
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0026
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0027
https://openreview.net/forum?id=vSix3HPYKSU
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0027
https://openreview.net/forum?id=vSix3HPYKSU
https://doi.org/10.1016/j.jcp.2024.112762
https://doi.org/10.1016/j.jcp.2024.112762
https://doi.org/10.1063/5.0170101
https://doi.org/10.1063/5.0170101
http://arxiv.org/abs/2302.03580
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0030
https://doi.org/10.1111/cgf.13620
https://doi.org/10.1111/cgf.13620
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0032
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0032
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0033
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0033
https://openreview.net/forum?id=VLw8ZyKfcm
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0034
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0034
https://openreview.net/forum?id=wN5AgP0DJ0
https://openreview.net/forum?id=B73niNjbPs
http://arxiv.org/abs/2402.15636
https://doi.org/10.1017/dce.2021.15
https://doi.org/10.1017/dce.2021.15
https://doi.org/10.1017/dce.2021.15
https://doi.org/10.1017/dce.2021.15
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0037
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0037
https://doi.org/10.1016/j.jcp.2023.112267
https://doi.org/10.1016/j.jcp.2023.112267

A. Longhi et al. Computer Methods in Applied Mechanics and Engineering 448 (2026) 118394

[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]

[51]
[52]

[53]

[54]

[55]
[56]

[57]
[58]

[59]
[60]

[61]
[62]

[63]
[64]

[65]
[66]
671
[68]
[69]
[70]

[71]

C. Bonneville, Y. Choi, D. Ghosh, J.L. Belof, GPLaSDI: Gaussian process-based interpretable latent space dynamics identification through deep autoencoder,
Comput. Methods Appl. Mech. Eng. 418 (2024) 116535. https://doi.org/10.1016/j.cma.2023.116535

J.S.R. Park, S.W. Cheung, Y. Choi, Y. Shin, tLaSDI: thermodynamics-informed latent space dynamics identification, Comput. Methods Appl. Mech. Eng. 429
(2024) 117144, https://doi.org/10.1016/j.cma.2024.117144

W. Anderson, K. Chung, Y. Choi, mLaSDI: Multi-stage latent space dynamics identification, arXiv preprint arXiv:2506.09207 (2025).

J. Hagnberger, M. Kalimuthu, D. Musekamp, M. Niepert, Vectorized conditional neural fields: a framework for solving time-dependent parametric partial differ-
ential equations, in: R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, F. Berkenkamp (Eds.), Proceedings of the 41st International Conference
on Machine Learning, 235 of Proceedings of Machine Learning Research, PMLR, 2024, pp. 17189-17223. https://proceedings.mlr.press/v235/hagnberger24a.html.
M. Takamoto, F. Alesiani, M. Niepert, Learning neural pde solvers with parameter-guided channel attention, in: International Conference on Machine Learning,
PMLR, 2023, pp. 33448-33467.

M. Takamoto, T. Praditia, R. Leiteritz, D. MacKinlay, F. Alesiani, D. Pfliiger, M. Niepert, Pdebench: an extensive benchmark for scientific machine learning, Adv.
Neural Inf. Process. Syst. 35 (2022) 1596-1611.

C. Eastwood, C.K.I. Williams, A framework for the quantitative evaluation of disentangled representations, in: International Conference on Learning Represen-
tations, 2018. https://api.semanticscholar.org/CorpusID:19571619.

1. Higgins, D. Amos, D. Pfau, S. Racaniére, L. Matthey, D.J. Rezende, A. Lerchner, Towards a Definition of Disentangled Representations, abs/1812.02230 (2018).
https://api.semanticscholar.org/CorpusID:54447715.

P. Kidger, On Neural Differential Equations, abs/2202.02435 (2022). https://api.semanticscholar.org/CorpusID:246634262.

U.M. Ascher, L.R. Petzold, Computer methods for ordinary differential equations and differential-algebraic equations, 1998. https://api.semanticscholar.org/
CorpusID:32366732.

C. Aicher, N.J. Foti, E.B. Fox, Adaptively truncating backpropagation through time to control gradient bias, in: R.P. Adams, V. Gogate (Eds.), Proceedings of
The 35th Uncertainty in Artificial Intelligence Conference, 115 of Proceedings of Machine Learning Research, PMLR, 2020, pp. 799-808. https://proceedings.mlr.
press/v115/aicher20a.html.

J. Cha, J. Thiyagalingam, Orthogonality-enforced latent space in autoencoders: an approach to learning disentangled representations, in: A. Krause, E. Brunskill,
K. Cho, B. Engelhardt, S. Sabato, J. Scarlett (Eds.), Proceedings of the 40th International Conference on Machine Learning, 202 of Proceedings of Machine Learning
Research, PMLR, 2023, pp. 3913-3948. https://proceedings.mlr.press/v202/cha23b.html.

J.C. Butcher, Coefficients for the study of Runge—Kutta integration processes, J. Aust. Math. Soc. 3 (2) (1963) 185-201. https://doi.org/10.1017/
S$1446788700027932

V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning, 2016, https://arxiv.org/abs/1603.07285. https://doi.org/10.48550/ARXIV.1603.
07285

D. Hendrycks, K. Gimpel, Gaussian error linear units (gelus), arXiv preprint arXiv:1606.08415 (2016).

S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in: Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37, ICML’15, JMLR.org, 2015, p. 448-456.

J.L. Ba, Layer normalization, arXiv preprint arXiv:1607.06450 (2016).

K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026-1034.

H. Gholamalinezhad, H. Khosravi, Pooling methods in deep neural networks, a review, arXiv preprint arXiv:2009.07485 (2020).

E. Perez, F. Strub, H. De Vries, V. Dumoulin, A. Courville, Film: visual reasoning with a general conditioning layer, in: Proceedings of the AAAI Conference on
Artificial Intelligence, 32, 2018.

D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).

L.N. Smith, N. Topin, Super-convergence: very fast training of neural networks using large learning rates, in: Artificial Intelligence and Machine Learning for
Multi-Domain Operations Applications, 11006, SPIE, 2019, pp. 369-386.

O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation, in: Medical Image Computing and Computer-Assisted
Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, Springer, 2015, pp. 234-241.

L. Serrano, L.L. Boudec, A.K. Koupai, T.X. Wang, Y. Yin, J.-N. Vittaut, P. Gallinari, Operator learning with neural fields: tackling PDEs on general geometries,
in: NeurIPS, 2023.

Y. Xie, T. Takikawa, S. Saito, O. Litany, S. Yan, N. Khan, F. Tombari, J. Tompkin, V. Sitzmann, S. Sridhar, Neural fields in visual computing and beyond, in:
Computer Graphics Forum, 41, Wiley Online Library, 2022, pp. 641-676.

S. Cao, Choose a transformer: Fourier or Galerkin, in: A. Beygelzimer, Y. Dauphin, P. Liang, J.W. Vaughan (Eds.), Advances in Neural Information Processing
Systems, 2021. https://openreview.net/forum?id = ssohLcmn4-r.

Z. Li, K. Meidani, A.B. Farimani, Transformer for partial differential equations’ operator learning, Trans. Mach. Learn. Res. (2023). , https://openreview.net/
forum?id = EPPqt3uERT.

M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686-707. https://doi.org/10.1016/j.jcp.2018.10.045

F. Alsayyari, Z. Perkd, M. Tiberga, J.L. Kloosterman, D. Lathouwers, A fully adaptive nonintrusive reduced-order modelling approach for parametrized time-
dependent problems, Comput. Methods Appl. Mech. Eng. 373 (2021) 113483. https://doi.org/10.1016/j.cma.2020.113483

31

https://doi.org/10.1016/j.cma.2023.116535
https://doi.org/10.1016/j.cma.2023.116535
https://doi.org/10.1016/j.cma.2024.117144
https://doi.org/10.1016/j.cma.2024.117144
http://arxiv.org/abs/2506.09207
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0041
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0041
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0041
https://proceedings.mlr.press/v235/hagnberger24a.html
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0042
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0042
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0043
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0043
https://api.semanticscholar.org/CorpusID:19571619
http://arxiv.org/abs/1812.02230
https://api.semanticscholar.org/CorpusID:54447715
http://arxiv.org/abs/2202.02435
https://api.semanticscholar.org/CorpusID:246634262
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0045
https://api.semanticscholar.org/CorpusID:32366732
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0045
https://api.semanticscholar.org/CorpusID:32366732
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0046
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0046
https://proceedings.mlr.press/v115/aicher20a.html
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0046
https://proceedings.mlr.press/v115/aicher20a.html
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0047
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0047
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0047
https://proceedings.mlr.press/v202/cha23b.html
https://doi.org/10.1017/S1446788700027932
https://doi.org/10.1017/S1446788700027932
https://doi.org/10.1017/S1446788700027932
https://doi.org/10.1017/S1446788700027932
https://arxiv.org/abs/1603.07285
https://doi.org/10.48550/ARXIV.1603.07285
https://doi.org/10.48550/ARXIV.1603.07285
https://doi.org/10.48550/ARXIV.1603.07285
https://doi.org/10.48550/ARXIV.1603.07285
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/2009.07485
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0052
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0052
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0053
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0053
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0054
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0054
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0055
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0055
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0056
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0056
https://openreview.net/forum?id=ssohLcmn4-r
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0057
https://openreview.net/forum?id=EPPqt3uERT
http://refhub.elsevier.com/S0045-7825(25)00666-8/sbref0057
https://openreview.net/forum?id=EPPqt3uERT
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.cma.2020.113483
https://doi.org/10.1016/j.cma.2020.113483

	Latent space modeling of parametric and time-dependent PDEs using neural ODEs
	1 Introduction
	1.1 Related works
	1.2 Contributions

	2 Methodology
	2.1 Mathematical background
	2.2 Discretization
	2.3 Reduced space and (latent) neural ODEs
	2.4 Training of the model
	2.5 Combining teacher forcing with autoregressive
	2.6 Generalization in the time domain

	3 Results
	3.1 PDEs with fixed parameter
	3.2 PDEs with varying parameters
	3.3 Discussion
	3.4 Ablation studies

	4 Conclusions
	5 Limitations and future research directions
	A Runge–Kutta schemes
	A.1 The effect of the stage of RK on time generalization

	B Architecture details
	B.1 Normalization of the inputs

	C Training and hyperparameter details
	C.1 Strategies for the improvement of parameter generalization
	C.2 Training instabilities
	C.3 Hardware details
	C.4 Model size and inference speed
	C.5 Training budget

	D Methods used for comparison
	E Ablation studies
	E.1 The role of the ODE solver and of L3 in time generalization
	E.2 Impact of 0 and p(k2) in the autoregressive strategy
	E.3 Coupling of AE and NODE

	F Datasets
	F.1 1D advection equation
	F.2 1D Burgers' equation
	F.3 2D shallow water equations
	F.4 2D molenkamp test
	F.5 Test error metrics

	G Additional images

