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Direct numerical simulations up to Reλ= 1445 show that the scaling exponents for the
enstrophy and the dissipation rate extrema are different and depend on the Reynolds
number. A similar Reynolds number dependence of the scaling exponents is observed
for the moments of the dissipation rate, but not for the moments of the enstrophy.
Significant changes in the exponents occur at approximately Reλ≈ 250, where Reλ is the
Taylor based Reynolds number, which coincides with structural changes in the flow, in
particular the development of large-scale shear layers. A model for the probability density
functions (PDFs) of the enstrophy and dissipate rate is presented, which is an extension
of our existing model (Proc. R. Soc. A, vol. 476, 2020, p. 20200591) and is based on
the mentioned development of large-scale layer regions within the flow. This model is
able to capture the observed Reynolds number dependencies of the scaling exponents,
in contrast to the existing theories which yield constant exponents. Moreover, the model
reconciles the scaling at finite Reynolds number with the theoretical limit, where the
enstrophy and dissipation rate scale identically at infinite Reynolds number. It suggests
that the large-scale shear layers are vital for understanding the scaling of the extrema.
Furthermore, to reach the theoretical limit, the scaling exponents must remain Reynolds
number dependent beyond the present Reλ range.
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G.E. Elsinga, T. Ishihara and J.C.R. Hunt

Figure 1. Intense enstrophy (red) and intense dissipation (blue) are associated with different small-scale
structures, which tend to cluster within the same large-scale layer structure. The plot shows a 0.73L × 0.60L
plane from the DNS data of homogenous isotropic turbulence at Reλ= 1131 by Ishihara et al. (2007). The
colour scales range from zero to 20 % of the maximum of each quantity within the plane.

1. Introduction

The small scales in homogenous isotropic turbulence are typically quantified by means
of the dissipation rate, ε = 2νSijSij, and the enstrophy, Ω = ω2, which characterize the
local energy loss and rotation rate, respectively. Here, Sij is the strain rate tensor, ω
is the vorticity vector and ν is the kinematic viscosity. As a matter of convenience,
ε will simply be referred to as dissipation throughout the paper. It is well known that
the instantaneous dissipation and enstrophy structures are different with distinct physical
implications (e.g. Chacin & Cantwell 2000; Moisy & Jiménez 2004; Ganapathisubramani,
Lakshminarasimhan & Clemens 2008; Elsinga et al. 2017, and figure 1). The instantaneous
small-scale structure of intense enstrophy is typically tube-like and linked to strong lateral
accelerations which repel heavy particles and attract light particles or bubbles (Mathai,
Lohse & Sun 2020), while intense dissipation, or strain, has a sheet-like structure and
is associated with particle clustering (Squires & Eaton 1991), droplet/particle collisions
(Perrin & Jonker 2016), droplet deformation and breakup (Vela-Martín & Avila 2021)
and the production of intense scalar gradients (Elsinga & da Silva 2019). However, these
different small-scale enstrophy and dissipation structures tend to cluster within the same
large-scale shear layers (e.g. Ishihara, Kaneda & Hunt 2013; Elsinga et al. 2017 and
figure 1).

A statistical description of the enstrophy and dissipation intensities is provided by their
moments and maxima, whose Reynolds number dependencies are an outstanding issue.
The issue is of considerable practical interest, since much of our understanding of the
aforementioned physical processes relies on data obtained at relatively low Reynolds
numbers, while industrial and environmental applications are typically at much higher
Reynolds numbers.

Results from direct numerical simulations (DNSs) have shown that enstrophy is more
intermittent than dissipation resulting in a wider probability density function (PDF)
(Kerr 1985; Chen, Sreenivasan & Nelkin 1997; Donzis, Yeung & Sreenivasan 2008;
Yeung, Donzis & Sreenivasan 2012), which is probably related to the fact that enstrophy
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Intermittency across Reynolds numbers

is tube-like and dissipation is sheet-like. Furthermore, the second-order moments of
the dissipation, 〈ε2〉, and enstrophy, 〈Ω2〉, scale differently at low Reynolds numbers
(Reλ< 83, Kerr 1985). Here, 〈· · · 〉 indicates averaging and Reλ is the Reynolds number
based on the Taylor scale. Specifically, the Reynolds number scaling exponent for 〈Ω2〉
is larger than for 〈ε2〉. However, in the limit of infinite Reynolds number, dissipation and
enstrophy are expected to scale the same based on certain theoretical considerations, which
involve the finiteness of the pressure fluctuations (Nelkin 1999) or the structures inducing
enstrophy and dissipation being localized (He et al. 1998). In that case, the ratio of the
nth-order moments, νn〈Ωn〉/〈εn〉, remains finite and approaches a constant at infinite
Reynolds number. At relatively high Reynolds numbers, i.e. 140 < Reλ< 1000, the ratio
of the second-order moments of enstrophy and dissipation normalized by their respective
means is still not exactly constant, but may be seen to slowly approach a value close to
2 (Ishihara et al. 2007; Yeung et al. 2012). This suggests that the PDF widths remain
different even if dissipation and enstrophy eventually scale the same. The ratios of higher
order moments have not been conclusively shown to approach to a constant. Furthermore,
recent results up to Reλ= 1300 have suggested that enstrophy and dissipation may scale
together when averaged over inertial range scales, but not when considering small scales
(Yeung & Ravikumar 2020). If the theory is correct, then the Reynolds number scaling
exponent needs to depend on Reλ, at least for one of these quantities, to match the scaling
differences observed at finite Reλ with the scaling similarity at infinite Reλ. Indeed, the
present observations support this conjecture (§ 3).

Some further evidence for a developing scaling exponent comes from the flatness
factor of the longitudinal velocity gradient. In homogeneous isotropic turbulence, the
second-order dissipation moment is proportional to the flatness factor of the longitudinal
velocity derivative, i.e. 〈(∂u/∂x)4〉/〈(∂u/∂x)2〉2 = 15

7 〈ε2〉/〈ε〉2 (Betchov 1956; Davidson
2015), which means that their Reynolds number dependencies are identical. Van Atta &
Antonia (1980) compiled experimental data for the flatness factor over a wide Reynolds
number range covering approximately 10 < Reλ < 104. The results in their figure 2
strongly suggest that the Reynolds number scaling exponent is not constant and gradually
increases over this range. The dataset was expanded further in several papers (e.g.
Sreenivasan & Antonia 1997; Ishihara et al. 2007; Elsinga, Ishihara & Hunt 2020)
providing additional support for a non-constant scaling exponent.

In contrast to the above expectations, existing theories for the dissipation moments
have either assumed or predicted a power law with a constant Reynolds number scaling
exponent (e.g. Yakhot 2006; Schumacher, Sreenivasan & Yakhot 2007; Sreenivasan
& Yakhot 2021; Luo, Shi & Meneveau 2022). The same applies to classical and
multifractal theories for the moments of the velocity gradients, which can be related to the
dissipation moments in homogeneous isotropic turbulence (e.g. Van Atta & Antonia 1980;
Meneveau & Sreenivasan 1987; Nelkin 1990; Kaneda et al. 2021; Dubrulle & Gibbon
2022). Furthermore, the multifractal theories typically present the case where viscosity
approaches zero, which means that they only strictly apply in the infinite Reynolds number
limit (Dubrulle 2019; Dubrulle & Gibbon 2022). In particular, the models of Yakhot
(2006), Schumacher et al. (2007) and Sreenivasan & Yakhot (2021) for the dissipation
moments find strong support from DNSs up to Reλ≈ 100. However, as argued above,
changes in the scaling exponents are anticipated at higher Reynolds numbers. Therefore,
it is unclear if these models remain valid at higher Reλ.

Presently, a model for the enstrophy moments at low Reλ appears to be lacking. In
principle, the model of Luo et al. (2022) is capable of evaluating these moments, but
results have not been presented so far. Note that in the infinite Reynolds number limit,
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a separate enstrophy model is not necessary, since it is expected that enstrophy scales
according to the dissipation.

The scaling of the dissipation and enstrophy extremes was considered by Buaria et al.
(2019) using DNS covering 140 ≤ Reλ≤ 650. They assumed the scaling exponents to be
constant and did not make a distinction between the enstrophy and dissipation exponents.
The exponents were shown to be quite different from those predicted by Kolmogorov and
multifractal theories with a minimum Hölder exponent of hmin = 0. These discrepancies
were later confirmed by the present authors (Elsinga et al. 2020) using DNS in the range
Reλ= 90–1100. Additionally, we showed that the scaling exponent for extreme dissipation
gradually increases with the Reynolds number over the considered range, which had
not been noticed before. Furthermore, a dissipation model based on large-scale shear
layers was introduced, which could explain the observed development of the scaling
exponent (Elsinga et al. 2020, see also § 2.1). The higher order moments and extreme
enstrophy were not considered in our previous paper. Recently, Buaria & Pumir (2022)
also observed non-constant scaling exponents for extreme dissipation and enstrophy in the
range Reλ= 140–1300. However, at a given Reλ, the scaling exponents for the dissipation
and enstrophy were considered to be the same, which is in contrast to expectations and
the present observations. Generally, the higher order statistics, including the extremes,
do not converge to the limit case before the lower order statistics do. In other words,
we expect the third- and fourth-order moments to approach identical scaling before the
extremes. No explanation was provided as to why scaling differences observed at low
Reynolds numbers (e.g. Kerr 1985) should fully disappear already at Reλ≈ 140. It should,
however, be pointed out that their analysis was based on fits of the far tails of the dissipation
and enstrophy PDFs, whereas the present analysis uses different metrics to assess the
extremes, which are introduced in § 3.1. Our reservations regarding the use of the far tails
are also discussed there. Additionally, the Reλ dependence of the scaling exponents for the
extreme dissipation and enstrophy could be related to another, empirical, Reλ dependent
exponent using a Burgers type vortex model (Buaria & Pumir 2022). This reconfirms that
the Burgers vortex is a suitable model for small scales, but leaves the Reynolds number
dependence of the exponent to be explained. We suggest that the intermittency associated
with large-scale shear layers can provide such an explanation.

The behaviour of the scaling exponents can be linked to developments in the turbulent
flow structure. Particularly relevant is the change in the small-scale structure observed at
Reλ≈ 250 (Elsinga et al. 2017; Das & Girimaji 2019; Ghira, Elsinga & da Silva 2022).
This change is briefly explained as follows (full details and supporting evidence are
given by Elsinga et al. 2017). The characteristic coherence length for a fully developed
small-scale structure is 120η, where η is the Kolmogorov length scale. This relatively
large size is understood from the spatial organization of the vortices and the dissipation
sheets in small-scale layers. The vorticity in the small-scale structure is maintained by
the stretching provided by background straining motions, whose typical size is 4λT . Here,
λT is the Taylor length scale. The background straining motions are, furthermore, related
to large-scale shear layers, whose thicknesses are 4λT on average. Below Reλ≈ 250, the
background straining motions are too small to support a full small-scale structure, since,
in that case, 120η > 4λT . Indeed, the length of the intense vorticity structures scales
with the background straining motions, i.e. λT , below Reλ≈ 250, while it scales with η

above (Ghira et al. 2022). Therefore, the small-scale structure cannot be fully developed
when Reλ <∼ 250, which is expected to have implications for the scaling of enstrophy and
dissipation.

Other transitions in flow structure and dissipation scaling have been reported at Reλ≈ 9
(Sreenivasan & Yakhot 2021; Gotoh & Yang 2022) and Reλ≈ 45 (Elsinga et al. 2017).
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Intermittency across Reynolds numbers

The latter was explained by the small-scale structure size, i.e. 120η, being larger than the
expected large-scale structure size below Reλ≈ 45. The former may also be understood
from a structural point of view. Below Reλ≈ 9, the linear core size of the vorticity and
dissipation structures, ∼10η (Jiménez et al. 1993; Elsinga et al. 2017), is larger than the
typical size of the large-scale motions. In the present paper, we restrict the discussion to
Reλ> 50, such that the expected large-scale motions are indeed larger than the expected
small-scale structure.

Further transitions in the turbulence may be anticipated at Reynolds numbers exceeding
1500 (e.g. Elsinga et al. 2020). This expectation is based on the idea that, over sizable
regions of space, the local Reynolds number increases to very large values and that
these regions develop a local turbulence, which undergoes transition (similar to the
global transitions discussed above). While this scenario needs confirmation, it is worth
considering the implications for scaling laws.

In summary, there is evidence to suggest that the scaling exponents for the dissipation
and the enstrophy are Reynolds number dependent and that this is accompanied by changes
in the turbulent flow structure. These developments cannot be captured by existing theories
and models, which have assumed constant exponents or represent an infinite Reynolds
number limit case. Furthermore, recent theory seems to focus on the dissipation moments
and an equivalent for the enstrophy moments appears to be lacking.

Here, we consider the second-, third- and fourth-order moments, the histogram width
and the maximum for the dissipation and enstrophy. Presently, the width and maximum
are defined using a probability threshold as explained in § 3.1. As such, the maximum is
a proxy and not the absolute maximum, i.e. higher values can occur (though rarely so).
Results obtained by DNS reveal significant changes in the scaling exponents when Reλ
increases beyond approximately 250 (§ 3). Furthermore, the exponents are compared with
existing theories and our dissipation model based on large-scale shear layers, which is
importantly extended to enstrophy in § 2.2. This allows us to assess the large-scale shear
layers’ contribution to the dissipation and enstrophy scaling. Further extensions of the
model to squared velocity gradients are discussed in Appendix A. As mentioned above,
our model predicts Reynolds-number-dependent exponents, which is essentially different
from other models or theories. The present goal is twofold. First, we aim to provide further
insight in Reynolds number developments of the various moments and maxima, which
is vital for the translation of laboratory and DNS results to actual applications at high
Reynolds numbers. Second, using our model, we explore how dissipation and enstrophy
may approach the same scaling in the limit of infinite Reynolds number. This analysis
allows to predict the Reynolds number threshold required for observing asymptotic scaling
behaviour, which is still an open question (Yeung et al. 2012).

2. Dissipation and enstrophy PDF models

2.1. Summary of the original dissipation model
Here, a brief description of the dissipation model is given before it is extended to enstrophy
in § 2.2 and compared with DNS data in §§ 2.4 and 3. The model predicts the PDF, which
is used in § 3 to evaluate the various moments and the extrema. For full details, as well as
for an elaborate motivation of the modelling assumptions, we refer to Elsinga et al. (2020).

The dissipation model is inspired by the observation of large-scale shear layers, also
referred to as significant shear layers, in which intense small-scale dissipation and
enstrophy structures tend to cluster (figure 1). Consequently, these large-scale layers
contain significant dissipation and enstrophy. As shown by Ishihara et al. (2013), the local
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average dissipation and enstrophy is approximately 6–7 times higher inside the layer as
compared to outside the layer at Reλ≈ 1100. Furthermore, a statistical analysis revealed
that the thickness of these layer scales is approximately four Taylor length scales, 4λT ,
which allows the small-scale structures contained within the layer to be fully developed
when Reλ exceeds 250 (Elsinga et al. 2017). However, underdeveloped large-scale shear
layers have been observed at lower Reynolds numbers (e.g. Reλ≈ 150, Elsinga & Marusic
2010). The length of these layers is of the order of the integral length scale, L.

Based on these observations, the turbulent flow is decomposed in large-scale
background regions and layer regions. The volume fraction occupied by the latter, V*,
scales according to V∗/V = α−1Re−1

λ , where α is a constant and V is the overall volume.
This scaling is consistent with the significant shear layers being ∼λT thick and ∼L long
in the other directions. Furthermore, a low-level background dissipation rate, εbg = b〈ε〉,
is defined, which is constant throughout the entire volume. Here, 〈ε〉 is the global average
dissipation rate and b is a constant. Outside the layers, the average dissipation rate is equal
to εbg, while the remaining dissipation is confined to the layers. It follows that the local
average dissipation rate within the layer regions, ε∗, is

ε∗ = 〈ε〉[b + (1 − b)αReλ]. (2.1)

Furthermore, the turbulence inside the layer regions is characterized by a local Reynolds
number, which is inferred from the local length scales within the layer regions. The local
Kolmogorov length scale is defined based on the local average dissipation rate ε∗, while
the local integral length scale is based on the layer thickness, ∼λT . Then the ratio of
these local scales defines a local Reynolds number Re∗

λ using standard definitions for the
Reynolds number and the turbulent length scales. It follows that Re∗

λ is related to the global
Reynolds number, Reλ, according to

Re∗
λ = 152/3D−2/3Re1/3

λ [b + (1 − b)αReλ]1/6, (2.2)

where D ≈ 0.5 is the normalized mean dissipation rate. When Re∗
λ is sufficiently large (i.e.

Re∗
λ > 150, corresponding to Reλ >∼ 1560), sublayers are hypothesized to develop within

the large-scale shear layer. The idea is that the local turbulence is sufficiently intense
over a sizable region of space, such that it can develop its own substructures in a process
analogous to the development of the significant shear layers within the full flow. The local
average dissipation rate within these sublayers is obtained using a similar expression as
shown in (2.1), where the global average 〈ε〉 and Reλ are replaced by the local average
dissipation rate and the local Reynolds number within the significant shear layer, ε∗ and
Re∗
λ, respectively. Eventually, this process repeats and sub-sublayers develop within the

sublayers at very high Reynolds numbers (Reλ >∼ 1.8 × 105). The existence of sublayers
remains to be confirmed by DNS. However, it is reasonable to assume that some new
structures develop as the local Reynolds number increases and that this process is similar
to what has been observed on the full scale at moderate Reλ. Moreover, there is some
evidence for sublayers from observations in molecular clouds (as discussed by Elsinga
et al. 2020). Note that for the large-scale background regions, the large scales and the
local average dissipation, i.e. εbg, are independent of the Reynolds number in our model.
Therefore, we do not anticipate the development of substructures in those regions.

Within each region (i.e. background, layer, sublayer and sub-sublayer), the dissipation
is assumed to be lognormally distributed according to

P(ε/〈ε〉) = 〈ε〉
ε
√

2πσ
exp

(
−(ln(ε/〈ε〉) − μ)2

2σ 2

)
, (2.3)
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Intermittency across Reynolds numbers

where the mean, exp(μ + σ 2/2), is equal to the local mean dissipation of the particular
region, as determined above. Therefore, the only unknown parameter is σ , which is a
measure for the width of the distribution on a log scale. It is assumed that σ does not
depend on the flow region considered, which is supported by the observation that the PDFs
of enstrophy inside and outside the significant shear layer appear to have a similar width
on a log scale (Ishihara et al. 2013). The resulting regional PDFs are weighted according
to the corresponding volume fractions and summed to produce the overall PDF of the
dissipation rate. Subsequently, the maximum dissipation and the different order moments
can be determined from the overall PDF (see § 3). The values of the model parameters α,
b and σ are discussed in § 2.3. Then, a validation of the model PDF is presented in § 2.4.

2.2. Extension to enstrophy
Intense enstrophy is observed alongside intense dissipation within the significant shear
layers (Ishihara et al. 2013 and figure 1, see also figure 14 of Elsinga et al. (2017) for
a schematic diagram). This is consistent with the expectation that strong small-scale
fluctuations in the velocity, which lead to intense dissipation, are induced by strong
vortices and the fact that the induced flow weakens with the distance from the vortices
(see also He et al. 1998). It is, therefore, natural to use the same large-scale layer structure
for both the dissipation and the enstrophy modelling. Furthermore, the global average
quantities are related as 〈ε〉 = ν〈Ω〉 in homogenous flow (e.g. Davidson 2015, p. 243).
Here, we assume that the same relation holds for the local averages over the layer and the
background regions, i.e. ε∗ = νΩ∗ and εbg = νΩbg. This assumption is motivated by the
fact that these local averages are taken over substantial regions of space, which are nearly
homogeneous as far as the small scales are concerned. It is equivalent to assuming that the
Laplacian of pressure is zero when averaged over these regions (e.g. Nelkin 1999; Yeung
et al. 2012).

Because the large-scale layer structures are identical to those in the dissipation model
and because ε∗/〈ε〉 = Ω∗/〈Ω〉, we can use (2.1) and (2.2) also for enstrophy when
replacing ε by Ω in (2.1). Moreover, the values of the model parameters α and b remain
unchanged, because they relate to layer properties. Consequently, the local Reynolds
number in the layer is not affected (2.2). However, the enstrophy PDF was found to be
wider than the dissipation PDF (see § 1). Therefore, the parameter σ in the lognormal
distribution ((2.3) where ε is replaced by Ω) has to be adjusted for enstrophy. This takes
into account that enstrophy and dissipation are associated with different small-scale flow
structures. Based on the above considerations, the only required change with respect to the
dissipation PDF model concerns the value of σ . The value of σ may be estimated by fitting
a lognormal to the tail of the PDF, which has been obtained by a DNS at low Reynolds
number (Reλ∼ 100) just before significant shear layers start to affect the tail of the PDF
(see below).

2.3. Model parameters
The model parameters are taken as α = 0.011 and b = 0.67 for both dissipation and
enstrophy. For the dissipation PDF, σ = 1.03 is used, whereas σ = 1.28 is used for the
enstrophy PDF. Note that the parameters α and σ for the dissipation PDF are slightly
different from those used previously (i.e. α = 0.010 and σ = 1.00 used by Elsinga et al.
2020). The present values were seen to improve the correspondence between the model
PDF and the DNS, especially at higher Reynolds numbers. However, the differences
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between the present and the former values are small and can be considered as indicative
of the uncertainties associated with these parameters.

The above parameter values seem reasonable when compared with observations. The
present α results in volume ratios that are consistent with 4λT thick layers bounding L wide
large-scale regions as expected for significant shear layers (Ishihara et al. 2013; Elsinga
et al. 2017). Additionally, these parameter values yield ε∗/εbg = 6.9 at Reλ= 1100, which
is consistent with the observed ratio of the local average dissipation inside and outside
a significant shear layer (Ishihara et al. 2013). The values for σ were estimated from the
dissipation and enstrophy PDFs obtained by DNS at low Reynolds number, where the
contribution from large-scale shear layers is negligible and the width of the overall PDF is
dominated by σ . The fact that σ is higher for enstrophy than for dissipation is consistent
with earlier observations (e.g. Kerr 1985; Chen et al. 1997; Donzis et al. 2008) as well
as modelling predictions by Luo et al. (2022). As kindly suggested by a reviewer, the
difference in σ may be understood qualitatively from the wider low magnitude tail of the
enstrophy PDF (a property explained by Shtilman, Spector & Tsinober 1993 and Gotoh &
Yang 2022) requiring a wider high-magnitude tail such that the normalized mean remains
at one, which increases the overall width of the PDF.

A crucial point is that these parameters do not appear in the exponents of our model,
which can be inferred from (2.1) and (2.2). This is quite different from some of the
existing models, which have introduced empirical parameters in the exponents, such as
an intermittency exponent or a fractal dimension (§ 1). However, in the present case,
the parameter values do influence the Reynolds number range where a particular scaling
exponent is attained as well as the magnitude of the moments and the maxima.

2.4. Validation of the model PDFs
A validation of the dissipation and enstrophy model is performed by comparing the
predicted PDFs with those obtained from DNS of homogenous isotropic turbulence. The
DNS dataset consists of the cases used in our earlier paper (Elsinga et al. 2020), which
cover a Reynolds number range from Reλ= 94 to 1100, and a new case at Reλ= 1445.
The latter is an extension of run 6144-1 (Reλ= 1423) from Ishihara et al. (2016) with
increased spatial resolution and increased integration time. The total integration time was
approximately 1.8T and the integration time after increasing the spatial resolution without
changing viscosity was approximately 0.1T, where T is the large-scale eddy turnover time.
The number of grid points was 12 288 in each direction. The other simulations were
originally performed by Ishihara et al. (2007, 2016) and, in some cases, extended to higher
resolution and longer integration time as explained by Elsinga et al. (2020). The resolution
in all simulations was kmaxη = 2, where kmax is the maximum wavenumber retained in the
DNS and η is the Kolmogorov length scale. The PDFs of enstrophy and dissipation were
calculated from a single snapshot at a statistically steady state using 201 bins distributed
uniformly on a logarithmic scale between the minimum and maximum values. This yielded
between 14 and 37 bins per decade depending on the Reynolds number.

The spatial resolution was shown to be sufficient when defining the dissipation extrema
based on a suitable PDF threshold (Elsinga et al. 2020). This point is reiterated in
figure 2(g,h) for the case Reλ= 730. These plots compare the DNS results at kmaxη = 2
(red lines) with those obtained at higher spatial resolution (kmaxη = 4, green dotted lines,
source: Elsinga et al. 2020). The PDFs are virtually on top of each other. However, some
differences were noted in the dissipation PDFs at high magnitude and very low probability
(<10−11), but not in the enstrophy PDFs. These differences reflect the sensitivity of the
far tails to convergence issues and numerical details, which is why we avoid them in our
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analysis (see also § 3.1). Note that the plots in figure 2 cover the probability range used to
determine the scaling of the extrema (at Reλ= 730, the histogram width is determined at
a probability of 10−8, while the proxy for the maximum is taken at approximately 10−10

probability, see § 3 for the details). As a critical test of the resolution, the fourth-order
moment of enstrophy is considered, which is determined by the most extreme events and
the lowest probabilities when compared with the other (lower order) moments and the
dissipation moments (§ 3.2). It is found that 〈Ω4〉1/4 is 3 % lower for the higher resolution
case (kmaxη = 4). This is opposite to the expected effect of limited spatial resolution,
which would cause 〈Ω4〉1/4 to increase with increasing kmaxη. Also note that the 〈Ω4〉1/4

data point at Reλ= 730 (kmaxη = 2) is above the trend line in figure 7(b), which indicates
over-prediction at kmaxη = 2 consistent with the above. The present result suggests that the
uncertainties on the moments are dominated by statistical convergence, and not by spatial
resolution. The present uncertainty of 3 % on 〈Ω4〉1/4 is comparable with the statistical
uncertainty reported by Donzis et al. (2008). Moreover, the present moments are in line
with other data at comparable and higher spatial resolution (§ 3.4, figure 7). The local
Kolmogorov length scale within the significant shear layers, which is a measure for the
size of the intense small-scale structures, does not change by more than 15 % of the global
η when increasing Reλ from 730 to 1445 (see figure 10 of Elsinga et al. 2020). So, it is
reasonable to assume that the highest Reynolds number case is also resolved. Therefore,
we conclude that kmaxη = 2 is sufficient for the present purpose.

The comparison of the model dissipation and the enstrophy PDFs with the DNS is
presented in figure 2. While the dissipation model PDF has been validated previously, it is
shown again (using the updated parameter values) to facilitate a direct comparison with the
enstrophy. The present model PDFs (black solid lines) accurately capture the development
of both the high-dissipation and the high-enstrophy tail with increasing Reynolds number
as observed in the DNS data (red solid lines). This development is marked by an increasing
deviation from the basic lognormal distribution (grey dashed lines), which represents the
increasing contribution from the significant shear layers in the model. The onset of this
deviation occurs simultaneously for the dissipation and the enstrophy at approximately
Reλ≈ 250 (figure 2c,d). The agreement between the model and the DNS data suggests
that the development of extreme dissipation and extreme enstrophy are related and can be
understood from the large-scale shear layers.

Within the high-magnitude tails, the largest difference between the model PDFs and
the DNS is seen in the dissipation PDF at Reλ= 1445 (figure 2k). Near ε/〈ε〉 = 60, the
model overestimates the probability density by approximately 70 %. On the scale of the
plot, which spans more than ten decades, this can be considered as a minor difference.
Furthermore, the model PDF seems to reveal a slight oscillation around the DNS result in
figure 2(k) for ε/〈ε〉 > 1. This is attributed to the fact that all large-scale shear layers
are assumed to have the same local average dissipation, ε∗. The implications of this
assumption at higher Reλ are discussed further in § 3.2. The enstrophy PDF is much wider
and less sensitive to the constant ε∗ assumption (figure 2l). The comparison between the
model and the DNS is extended to the moments and the maxima in § 3.

On the low-magnitude end of the PDFs, the agreement with the DNS is poor (figure 2).
The lognormal distribution appears to be unsuitable in that range. Shtilman et al. (1993)
and Gotoh & Yang (2022) showed that the low-magnitude tail is well predicted by a
Gaussian random field and that the slope of this tail is determined by the number of
velocity gradient terms included in the equations for dissipation and enstrophy. This
provides a simple framework to understand the differences in the low-magnitude tails of
the dissipation and enstrophy PDFs. However, our main interest is in the high-magnitude
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Figure 2. For caption see next page.

tail, which determines the higher order moments and the maximum. For this purpose, the
model is considered suitable based on the results shown in figure 2 (and shown later in
§ 3).

3. Extreme enstrophy and dissipation scaling

This section presents DNS data for the extrema (§ 3.3) as well as for the second-, third-
and fourth-order moments of the dissipation and the enstrophy (§ 3.4) over a wide range of
Reynolds numbers. These results are compared with those obtained by different modelling
approaches, including our layer model (§ 2). However, first, the width of the histogram
and a proxy for the maximum are defined in § 3.1, which are used in the subsequent
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Figure 2 (cntd). (a–l) PDFs of dissipation (left column) and enstrophy (right column), comparing the model
prediction (black solid line) with a lognormal distribution (grey dashed line) and the DNS data at the
corresponding Reynolds number (red solid line). The green dotted lines in panels (g) and (h) present DNS
data at higher resolution (kmaxη = 4).

scaling analysis. Furthermore, some qualitative observations resulting from our model are
presented in § 3.2, which benefit the discussion of the Reynolds number scaling of the
maxima and moments in §§ 3.3 and 3.4.

3.1. Defining the histogram width and a proxy for the maximum
The absolute maximum is ill-defined for highly intermittent quantities like enstrophy and
dissipation, because their maximum value within DNS snapshots fluctuates significantly
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over time (Yeung, Sreenivasan & Pope 2018) and it is quite likely that even larger values
exist beyond the simulated time. Therefore, we need to rely on a representative statistical
measure for the maximum, which necessarily introduces some level of arbitrariness.
However, this does not preclude generating insight in the development of the extrema with
the Reynolds number. Moreover, using statistics, an objective comparison can be made
between the DNS and the model, as long as the same measure is used.

In this section, two statistical measures are introduced to represent the extrema. The
first measure is referred to as the histogram width and is consistent with measures used
in the literature (Buaria et al. 2019; Elsinga et al. 2020). The second measure follows
approximately the maxima observed in the present DNS. However, it contains more noise
as compared with the histogram width. Therefore, it is considered to be a proxy for the
maximum deduced from the tail of the PDF.

The width of the histogram is defined as the value corresponding to N3PDF = 100,
where N = 5L/3η and L/η ≈ 15−3/4DRe3/2

λ . The PDF can be obtained from DNS or
from the model presented in § 2. The multiplication by N3 is introduced to account for
the fact that a given flow domain includes more small-scale structure as the Reynolds
number increases. As such, N3PDF can be interpreted as the histogram for a (5L)3 flow
domain sampled at 3η intervals in each direction and using a bin size of 〈Ω〉 or 〈ε〉
depending on the considered quantity. Note that the prefactors for the domain size and
the sampling interval are not fundamentally important and that they could have been
incorporated into the probability threshold for N3PDF. However, they are included here,
because they represent a typical DNS domain size and a characteristic measure for the
core of a small-scale structure or the grid resolution. Therefore, the present probability
threshold can be loosely understood as occurring, on average, 100 times within a typical
DNS of homogeneous isotropic turbulence.

To demonstrate that the width of the histogram is suitable for examining the Reynolds
number scaling of the extrema, we show in figure 3 the far tails of the enstrophy and
dissipation PDFs obtained from the DNS. The data are the same as used in § 2.4. When
enstrophy and dissipation are normalized by their respective global averages, the tails
broaden as the Reynolds number increases (figure 3a). Furthermore, at a given Reynolds
number, the tails of the enstrophy and dissipation PDFs do not overlap for extreme values.
Earlier simulations had suggested they overlap (e.g. Donzis et al. 2008). However, it was
later recognized that overlap is an artefact introduced by insufficient temporal resolution
(Yeung et al. 2018). The present simulations do not appear to be affected by such issues.
When rescaling the PDF, and normalizing enstrophy and dissipation by their widths,
as presently defined, an approximate collapse of the tail is observed (figure 3b). This
implies that the result is not very sensitive to the selected threshold level. Some scatter
in the data is observed beyond the defined width. However, there does not appear to be a
Reynolds number trend within this scatter, which suggests that the scatter is mainly due to
convergence issues. Therefore, we conclude that the defined width is representative for the
tail region, and hence for the extrema. However, the maximum may still develop along the
tail as the Reynolds number increases.

Further note that Buaria et al. (2019) have multiplied their PDFs of enstrophy and
dissipation by Reδ

λ to collapse their tails, where δ ≈ 4.0. This is similar to our approach,
which yields a multiplication by Re4.5

λ .
The proxy for the maximum is based on a threshold set on the rescaled histogram,√
log(Reλ)XN3PDF, where X indicates ε/〈ε〉 or Ω/〈Ω〉 depending on the considered

quantity. The selected threshold is 1000. This criterion was kindly suggested to us by C.
Meneveau and takes into account that the histogram is evaluated on a logarithmic scale.
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Figure 3. (a) PDFs of dissipation (blue) and enstrophy (red) from our DNS at Reλ≈ 94 (×), 170 (∇), 270
(+), 440 (o), 730 (
), 1100 (square) and 1445 (*), where dissipation and enstrophy are on a linear scale to
emphasize the tail region. Panel (b) shows the corresponding histograms, i.e. PDFs multiplied by N3, while
panel (c) shows the histograms scaled by (log(Reλ))1/2X, where X indicates ε/〈ε〉 or Ω/〈Ω〉 depending on
the considered quantity. The black horizontal lines in panels (b) and (c) indicate the threshold levels used
to determine the histogram width and the maximum, respectively (see § 3.1). (d) End points of the enstrophy
PDFs, Ωend , which are based on the largest value observed in the present DNS, normalized by Ωwidth and Ωmax.
The result for the latter normalization is approximately independent of the Reynolds number, which suggests
that Ωmax is representative for the actual maximum. Similar results were obtained for εmax (not shown).

That is, XN3PDF multiplied by the logarithmic bin size represents the contribution to the
histogram and the prefactor

√
log(Reλ) is due to normalization of the PDF (Meneveau &

Sreenivasan 1989). The rescaled histograms are shown in figure 3(c). The endpoints of
the histograms are based on the highest dissipation and enstrophy values observed in the
DNS. It is seen that the rescaled probability associated with the endpoints is approximately
Reynolds number independent (figure 3c). Moreover, the ratio of the endpoint and the
proxy for the maximum is approximately constant, which suggests that the present proxy
is indeed representative for the maximum. This is shown in figure 3(d) for the enstrophy.
However, the same was observed for the dissipation (not shown). In § 3.3, the proxy is used
for a scaling analysis rather than the observed maximum, because it is better converged,
but we should keep in mind that higher values can be encountered within the turbulent
flow (figure 3).

Figure 3(d) shows that the above proxy is a better marker for the observed maximum as
compared with the histogram width. However, the latter is better converged and, therefore,
contains less uncertainty, which is beneficial in a scaling analysis. Moreover, the observed
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maximum value in a simulation (and the far tail of the PDF) may be sensitive to the
numerical details, since the maximum is associated with velocity differences exceeding U
over a distance corresponding to a single grid step. Here, U is the root-mean-square of the
velocity fluctuations. Therefore, the grid step may play an important role in determining
the highest velocity gradient that is captured, as may do the time step, the number of
samples and the precision (our simulations use double precision). For this reason, any
DNS result in this far tail region of the PDF remains to be validated by further experiments.
Additionally, there have been some concerns raised about the validity of the Navier–Stokes
equations at length scales below η (e.g. Bandak et al. 2022), which lengths are associated
with the most extreme events. The histogram width is less prone to these potential issues.
Therefore, both measures for the extrema have merit and are considered in § 3.3.

3.2. Model predictions
This section focusses on some qualitative predictions obtained from the model and
highlights some limitations, which need to be understood before proceeding to the
quantitative comparisons in §§ 3.3 and 3.4. The scaled model PDFs of enstrophy and
dissipation, i.e. N3PDF, are shown in figure 4 for a broad range of Reynolds numbers
(black solid lines). The comparison with lognormal distributions (grey dashed lines), i.e.
a model without significant shear layers, highlights the profound effect of these layers on
the tails of the PDFs, and hence on the evolution of the extrema as well as the higher
order moments. This is clearly visible for the histogram widths, which are given by the
intersections with N3PDF = 100. At Reλ = 103, the width of the enstrophy histogram is
increased twofold due to the presence of significant shear layers, whereas at Reλ = 107, the
width is increased by four orders of magnitude due to the significant shear layers, sublayers
and sub-sublayers (comparing the model with a lognormal distribution). The increase in
dissipation extrema is similar, but there are some quantitative differences as discussed in
§ 3.3.

The coloured circles in figure 4 mark the location of the peak contributions to the
second-, third- and fourth-order moments. These points are in the tails of the PDFs,
which means that the Reynolds number evolution of the moments is largely determined
by the development of the significant shear layers (and eventually by the sublayers and
sub-sublayers when they appear at very high Reynolds numbers). This is because the tail
of the overall PDF is dominated by the regional PDF associated with the layers with the
highest local average enstrophy and dissipation.

Another important observation concerns the peak contributions to the second-, third-
and fourth-order moments relative to the histogram width. At low Reynolds number
(Reλ ≈ 102), the fourth-order moment of the dissipation and the third- and fourth-order
moments of the enstrophy receive their dominant contributions from the far tails of the
PDFs beyond the histogram widths (figure 4). As commented in § 3.1, these far tails can
be affected by the numerical details in a DNS and are subject to considerable uncertainty
due to slow convergence (see figure 3). Consequently, the uncertainty on the fourth-order
moment of the enstrophy is typically higher than that of the corresponding dissipation
moment (see for example table II of Donzis et al. 2008), since the former is determined
by values farther beyond the histogram width. Also, the far tails in the DNS are more
accurately described by a stretched exponential (e.g. Donzis et al. 2008; Buaria et al.
2019) as compared with a lognormal, which is used in our model. Due to the different
tail shapes, we do not expect a good match between the DNS and the present model in
these cases where the moments are determined by values beyond the histogram width.
In § 3.4, we make a simplistic attempt to improve the model for the prediction of the
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Figure 4. Model PDFs of (a) dissipation and (b) enstrophy multiplied by N3 (black lines). Lognormal
distributions at the corresponding Reynolds numbers are included for reference (grey dashed lines). Symbols
(circles) mark the points corresponding to the peak contribution to the second- (red), third- (green) and fourth-
(blue) order moments of each quantity. The probability threshold N3PDF = 100 is indicated by a thin horizontal
line. Its intersection with the model PDF marks the histogram width as defined in the present study.

moments at low Reynolds number by truncating the model PDF. This has a similar effect as
introducing a stretched exponential tail. However, these issues disappear as the Reynolds
number increases. Beyond Reλ ≈ 103, the fourth-order dissipation moment (figure 4a)
and the third-order enstrophy moment (figure 4b) are determined predominantly by values
below the histogram width, which is expected to yield a reliable prediction. And finally,
the peak contribution to the fourth-order enstrophy moment drops below the histogram
width when the Reynolds number is increased beyond Reλ ≈ 104 (figure 4b).

At very high Reynolds number, Reλ >∼ 104, the model PDFs reveal local dips and bumps
(figure 4). It remains uncertain whether these features are real or not, because reliable data

974 A17-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

79
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.799


G.E. Elsinga, T. Ishihara and J.C.R. Hunt

are not yet available for the dissipation and enstrophy PDFs at Reλ >∼ 104. Any expectation
regarding the smoothness of the PDF would typically be based on an extrapolation from
low-Reynolds-number results, and extrapolation is also subject to uncertainty. The bumps
appear due to the assumption that all significant shear layers within the flow have exactly
the same local average dissipation ε∗ (and hence the same local average enstrophy). Likely,
these dips and bumps will broaden and reduce in amplitude when assuming a distribution
of the local average dissipation rates ε∗. However, the distribution of ε∗ is unknown
presently and requires further study. Furthermore, the dip appears less pronounced in the
enstrophy PDF as compared with the dissipation PDF, which is explained by the wider
regional PDFs. This increases the overlap between the regional PDFs for the background
and the significant shear layers, thereby reducing the dip. We emphasize that these local
dips in the model PDF occur at relatively low magnitude, much lower than the peak
contributions to the second-, third- and fourth-order moments (figure 4). Therefore, the
impact of these features on the magnitude of the high-order moments is small, as was
already established for the second-order dissipation moment by Elsinga et al. (2020).
Furthermore, in Appendix C, we present a model without dips by assuming a distribution
of ε∗ and confirm that this does not fundamentally alter the results as presented in §§ 3.3
and 3.4. Since the conclusions do not seem to be affected and, presently, there is little
justification for the assumed distribution of ε∗, we show below the results from the basic
model, i.e. assuming that ε∗ is the same for all significant shear layers.

3.3. Scaling of the extrema
The Reynolds number dependencies of the histogram widths are presented in figure 5.
The DNS results reveal that Ωwidth/〈Ω〉 > εwidth/〈ε〉, as expected since the enstrophy
PDF is wider. However, the ratio of these normalized histogram widths is not constant
and increases from approximately 1.5 at Reλ= 90 to 1.8 at Reλ= 1445 (see inset in
figure 5a). Note that ratios are noisy quantities, because the uncertainties in the numerator
and the denominator combine. The observed gradual increase of the ratio is related to a
different Reynolds number scaling exponent for the enstrophy extrema as compared with
the dissipation extrema, which is discussed below.

The DNS data show that the Reynolds number scaling exponent, i.e. the slope
in figure 5(a), gradually increases with Reλ and is different for each quantity. The
Reynolds number scaling exponent for the histogram width of enstrophy increases slightly
from approximately 1.33 to 1.40 over the present range of Reynolds numbers, i.e.
Reλ= 90–1445, while the scaling exponent for the histogram width of dissipation increases
from approximately 1.13 to 1.33 over the same range. Clearly, the scaling exponent for
extreme dissipation is more sensitive to the Reynolds number. The uncertainty on these
exponents is estimated at 0.02, which implies an uncertainty of 0.03 for the difference
between the scaling exponents. The scaling exponents predicted by our model agree to
within 0.05, which is consistent with the good agreement observed between the DNS
and model PDFs (figure 2). At low Reynolds number (Reλ< 200), the model is found
to overpredict the histogram width by approximately 10 % (see also figure 2a).

The results for the proxies of the maximum enstrophy and dissipation (figure 6a) are
qualitatively consistent with those for the histogram widths (figure 5a), in that: (i) the ratio
of the normalized maxima increases with Reλ; (ii) the Reynolds number scaling exponents
for enstrophy and dissipation maxima are different and larger for the enstrophy and (iii)
the scaling exponent for the maximum dissipation increases with increasing Reλ over the
present range, which is captured by our model to within 0.05. Hence, the histogram width
and the proxy of the maximum convey a similar picture, which demonstrates that the main
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Figure 5. (a) Histogram width for enstrophy (red circles) and dissipation rate (blue squares) obtained from
our DNS data of homogenous isotropic turbulence at seven different Reynolds numbers. The black and grey
solid lines show the present model predictions for the enstrophy and dissipation, while the grey dotted line
shows the prediction from the model of Luo et al. (2022) for the dissipation (exponent 1.2). The red dotted and
dashed lines represent power laws with exponents 1.33 and 1.40, respectively, and the blue dotted and dashed
lines represent power laws with exponents 1.13 and 1.33, respectively. These dotted lines correspond to the
observed scaling at Reλ∼ 100, while the dashed lines present the observed scaling at Reλ∼ 1000. The inset
shows the ratio (Ωwidth〈ε〉)/(εwidth〈Ω〉) versus Reλ for our DNS. Panel (b) presents the same data and model
predictions over an extended Reynolds number range. Power laws with exponents 1.3, 3/2 and 7/4 are indicated
for reference.

conclusions on the scaling of the enstrophy and dissipation extrema are robust with respect
to the definition used.

However, there are slight quantitative differences between the exponents for the
histogram width and those for the proxy of the maximum. The latter are larger by
approximately 0.3, which is easily explained by the fact that the maxima are more
extreme than the histogram widths (compare figures 5 and 6). This also explains why
the uncertainty on the maxima obtained from the DNS is larger, because the PDFs are less
converged for the more extreme values. Consequently, a larger scatter around the fitted
power laws is observed for the maxima, and hence their fitted exponents are subject to
a greater uncertainty. The scatter in the data prevents a firm conclusion on the Reynolds
number dependence of the scaling exponent for the maximum enstrophy over the range
considered in figure 6(a).

The traditional Kolmogorov and multifractal predictions of the scaling exponents for
the extrema are clearly different from the observations at finite Reynolds number, as noted
before (Buaria et al. 2019; Elsinga et al. 2020). In these predictions, it is assumed that the
extreme velocity gradients scale with the largest velocity scale, i.e. U, and the smallest
length scale in the flow. Indeed, the velocity of the most intense vortical structures was
found to scale with U (e.g. Jiménez & Wray 1998; Ghira et al. 2022). The smallest
length scale is given by the Kolmogorov length scale (in Kolmogorov theory) or, in the
case of multifractal theory, by ηhmin ∼ LRe−2/(1+hmin)

λ (Paladin & Vulpiani 1987; Dubrulle
2019). Here, the minimum Hölder exponent is considered to be hmin = 0 (Paladin &
Vulpiani 1987), which is consistent with the strongest velocity gradients scaling with
U. This leads to Ωmax/〈Ω〉 ∼ εmax/〈ε〉 ∼ Re1

λ for Kolmogorov theory and Ωmax/〈Ω〉 ∼
εmax/〈ε〉 ∼ Re2

λ for multifractal theory. Note that the scaling exponents are constant and
that there is no distinction between dissipation and enstrophy, both scale according to
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Figure 6. Maxima for enstrophy and dissipation. The meaning of the symbols and lines is identical to figure 5.
However, the magnitude of the power law exponents is different. The red dotted and dashed lines represent
power laws with exponents 1.63 and 1.70, respectively, while the blue dotted and dashed lines represent power
laws with exponents 1.35 and 1.63, respectively. The prediction from the model by Luo et al. (2022) (grey
dotted line) yields an exponent of 1.5 for the dissipation maximum. The inset in panel (a) shows the ratio
(Ωmax〈ε〉)/(εmax〈Ω〉) versus Reλ for our DNS.

the velocity gradients squared. A similar theory by Yakhot and Sreenivasan (Yakhot &
Sreenivasan 2005; Yakhot 2006; Sreenivasan & Yakhot 2021) also predicts Re2

λ scaling
for the maximum dissipation, as does the hierarchy of self-stretched vortex instabilities
described by Jiménez & Wray (1998) for the maximum enstrophy. The Reynolds number
scaling exponents of 1 and 2 are inconsistent with the present data at finite Reλ (figures 5a
and 6a).

An important caveat related to the above comparison is that the theory is developed
for the absolute maximum, whereas the observations concern a proxy of the maximum
based on a threshold of the scaled histogram. As argued in § 3.1, the present proxy for
the maximum seems to follow the maximum observed in the DNS, which suggests it
represents the development of the absolute maximum, if it exists. However, for a more
faithful comparison, it would be of interest to extend the above theoretical predictions to
observables such as the present threshold of the scaled histogram.

Currently there are two known models that accurately predict scaling exponents for
extreme dissipation over the range Reλ≈ 100–1000. The first is our layer-based model
(Elsinga et al. 2020), which is extended here to enstrophy (solid lines in figures 5a and 6a).
The second is the multifractal intermittency model by Luo et al. (2022), which predicts
constant scaling exponents (grey dotted lines in figures 5(a) and 6(a), see captions for
the corresponding numerical values). These exponents were inferred from the dissipation
PDFs presented in their figure 4(b). However, constant exponents do not capture the
developments with the Reynolds number as observed in the DNS data. The results here
and in § 3.4 suggest that the multifractal intermittency model yields the approximate
average exponent over the range Reλ≈ 100–1000. Furthermore, constant exponents cannot
reconcile identical scaling of enstrophy and dissipation in the limit of infinite Reynolds
number with the scaling differences observed at finite Reynolds number (see also below).
In contrast, the present model captures the Reλ dependence of the scaling exponents,
which, moreover, is different for dissipation and enstrophy. Other theories and models
have not yet been able to explain this difference and its Reynolds number dependence.
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Intermittency across Reynolds numbers

It suggests that significant shear layers are key to advancing the prediction of extreme
dissipation and enstrophy.

Given its successful predictions at finite Reynolds numbers, we use the present model to
examine how the significant shear layers and their (sub-) sublayers may affect the approach
of an infinite Reynolds number limit. At low to moderate Reynolds numbers where DNS
is available, we observe a difference in the scaling exponents for the enstrophy and
dissipation extrema as discussed above. This applies to both the histogram widths and the
maxima. The difference between the exponents for the enstrophy and dissipation extrema
decreases between Reλ= 90 and 1445, which suggests that these quantities ultimately
scale the same at infinite Reynolds number in accordance with the theoretical arguments
presented by He et al. (1998) and Nelkin (1999). The present model illustrates how this
state may be approached. Indeed, the difference between the predicted scaling exponents
for the enstrophy and dissipation extrema reduces as Reλ increases. In figures 5(b) and
6(b), this results in nearly parallel lines at very large Reynolds numbers. At Reλ ∼ 105,
the difference between the predicted scaling exponents for the histogram widths is only
0.05, while the difference is approximately 0.1 for the maxima. The maxima thus converge
slower to an identical scaling, as is expected. Identical scaling implies that the scaling
exponent is no longer affected by the regional PDF width of a particular quantity, i.e. σ ,
which is different for dissipation and enstrophy. It means that, at these very large Reynolds
numbers, the scaling exponents are determined by the (sub-) sublayer properties. However,
at low to moderate Reynolds numbers, σ is important (yielding non-parallel lines in
figures 5a and 6a). Furthermore, in the limit of infinite Reynolds number, the Reλ scaling
exponents of the extrema are approximately equal to the exponent returned by multifractal
theory (i.e. 2). This is consistent with the multifractal theory being strictly valid in the
infinite Reynolds number limit (Dubrulle 2019; Dubrulle & Gibbon 2022). Hence, the
present model is able to reconcile the identical scaling behaviour at infinite Reynolds
number with the scaling differences observed at low to moderate Reynolds number.
Furthermore, it suggests that the scaling at infinite Reynolds number is determined by
the layer properties and is not affected by the specifics of the considered quantity, which
have been incorporated in the parameter σ .

Small jumps in the predicted extrema can be seen when sublayers and sub-sublayers
first appear in the model (solid lines in figures 5 and 6). The same is observed for the
predicted moments (§ 3.4). The magnitude of these jumps is approximately 10 %, which
is comparable to the accuracy mentioned above. The jumps arise because fully developed
sublayers and sub-sublayers appear suddenly and we have not included a transition, which
may be expected when the local Reynolds number is low. These transitions are largely
unexplored and require further study. However, transitions only affect the results locally,
close to the points where these sublayers and sub-sublayers first appear. Away from these
points, there is no effect. Therefore, the Reynolds number trends discussed above hold.

3.4. Scaling of the moments
While the extrema are a measure for the full width of the PDF, the higher order moments
provide further detail on the shape of its high-magnitude tail. The Reynolds number
dependence of the dissipation and enstrophy moments is shown in figure 7. The plot
presents DNS data from various sources (Kerr 1985; Schumacher et al. 2007; Donzis
et al. 2008; Yeung et al. 2012, and our DNS discussed in § 2.4). In all cases, the numerical
resolution was kmaxη ≥ 2. Data at lower resolution as well as the third-order moments
from Yeung et al. (2012) were excluded. The latter contained relatively large uncertainties.
Figure 7 shows that the results from our DNS are consistent with the data in the literature at
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Figure 7. Moments of (a) the dissipation and (b) the enstrophy raised to the power 1/n. Symbols show DNS
data from (*) Kerr (1985), (squares) Schumacher et al. (2007), (+) Donzis et al. (2008), (
) Yeung et al.
(2012), (∇) Buaria & Sreenivasan (2022) and (o) present (§ 2.4). Coloured solid lines show results obtained
from the present model (§ 2). Note that this model is not supposed to be accurate for the fourth-order moment
of dissipation and the third- and fourth-order moments of enstrophy at the present Reλ (see discussion in § 3.2).
However, these results are included for completeness. The dotted and dashed lines in panel (a) present power
law fits of the data at low (Reλ< 250) and moderate Reynolds numbers (400 < Reλ< 1500), respectively. The
dotted lines in panel (b) show power law fits over the full Reynolds number range (Reλ< 1500). The fitted
exponents are indicated. Grey solid lines indicate the scaling exponents listed in the last column of table 1,
which represent the minimum of the upper bound obtained from a multifractal model.

higher resolution (e.g. Donzis et al. 2008), which again confirms that the present resolution
is suitable (see also § 2.4). The uncertainties in the present moments are mainly attributed
to convergence. Their magnitudes can be inferred from the data scatter around the fitted
power laws in figure 7. As can be seen from the (model) histograms in figure 4, the number
of samples increases, and hence the level of convergence improves, with decreasing order
of the moment and with increasing Reynolds number. Also, the dissipation moments are
more converged as compared with their enstrophy counterparts.

Please note that in figure 7 and throughout this section, the Reynolds number scaling is
quantified for the nth-order moment raised to the power 1/n, whose dimension is equal to
that of the dissipation or the enstrophy. This is convenient when comparing the different
order moments, because it prevents the highest order moment from dominating the plot.
However, the obtained scaling exponents are trivially converted to those for the moments
by a multiplication with n. Therefore, we do not make a distinction when discussing the
scaling exponents qualitatively.

Three main observations are made from the DNS data. First, the Reynolds number
scaling exponents of the dissipation moments increases beyond approximately Reλ≈ 250
(figure 7a). The power law fits at higher Reλ (dashed lines) clearly deviate from those fitted
at low Reλ (dotted lines in figure 7a). It is another evidence that the scaling exponents for
the dissipation are Reynolds number dependent. Furthermore, this transition coincides
with the reported changes in the small-scale structure of turbulence (Elsinga et al. 2017;
Das & Girimaji 2019; Ghira et al. 2022) and the broadening of the dissipation PDF due to
the significant shear layer contributions (§ 2.4).
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Intermittency across Reynolds numbers

Second, the exponents of the enstrophy moments do not reveal an obvious Reynolds
number dependence up to at least Reλ≈ 1500 (figure 7b). Each enstrophy moment seems
well described by a single power law (dotted lines in figure 7b), despite the fact that the
tail of the enstrophy PDF changes considerably beyond Reλ≈ 250 (§ 2.4).

Third, the enstrophy and dissipation moments do not reveal identical scaling over the
present range of Reynolds numbers, i.e. the scaling exponents for the enstrophy moments
are larger than the scaling exponents for the dissipation moments. The only exception is
given by the second-order moments at large Reynolds number (Reλ >∼ 400), where the
exponents appear to be the same. This is consistent with the nearly constant ratio of the
second-order moments of enstrophy and dissipation normalized by their respective means,
as observed by Yeung et al. (2012) over a similar range of Reλ. Moreover, it is consistent
with the intuitive expectation that the lower order moments approach identical scaling first,
followed by the higher order moments, the histogram widths and eventually the maxima.
It suggests that the maxima present the most critical test for observing identical scaling of
dissipation and enstrophy (see also § 3.3).

Furthermore, the DNS data can be compared with some of the theories for the
dissipation moments. Unfortunately, the theory for the enstrophy moments is less well
developed, and therefore, the discussion is restricted to the dissipation moments. As
already pointed out in § 1, the existing theories have predicted or assumed that the scaling
exponents are constant, which is inconsistent with the present observations (figure 7a).
Nevertheless, the predicted exponents are compared with the data to understand the
Reynolds number ranges where they may apply.

The theories proposed by Yakhot & Sreenivasan (2004), Yakhot (2006) (further
quantified by Schumacher et al. 2007) and Sreenivasan & Yakhot (2021) yield nearly
identical scaling exponents for the dissipation moments (table 1). Their original papers
presented the exponents for the large-scale Reynolds number, ReL. The corresponding
exponents for the Taylor based Reynolds number, Reλ, have been obtained using ReL ∼
Re1.8
λ , which is a fit of their low-Reynolds-number DNS (Reλ <∼ 100, Schumacher et al.

2007). Moreover, their exponents have been divided by the order of each moment, n,
which yields the scaling exponents for the moments raised to the power 1/n as presented
in table 1. When compared with the DNS (figure 7a), it is seen that their predictions are
very accurate at low Reynolds numbers (Reλ <∼ 250). The excellent agreement in this range
has been noted before (Schumacher et al. 2007; Sreenivasan & Yakhot 2021). However, at
higher Reλ, the DNS data deviate and the observed scaling exponents increase well beyond
the predicted values (compare dashed lines in figure 7(a) with table 1).

Several multifractal models have been proposed in the past, which yield slightly
different scaling exponents. It is not our aim to review them here. We only use the
results as they appear in these papers. A multifractal cascade model, also known as
the p-model, was presented by Meneveau & Sreenivasan (1987). Using the suggested
parameter value (p1 = 0.7), their predicted exponents for the velocity increments are
converted to the exponents for the dissipation moments by applying Nelkin’s (1990)
transformation (following Johnson & Meneveau 2017, see also Frisch 1995). The resulting
scaling exponent for 〈ε2〉1/2/〈ε〉 is 0.17. This value is attained in the DNS near Reλ≈ 250.
Alternatively, 0.17 may be seen as the approximate average exponent over the Reynolds
number range considered in figure 7(a). The exponents for the higher order moments
(table 1), especially the fourth, seem accurate at low Reynolds numbers (Reλ <∼ 250). A
multifractal model by Nelkin (1990) also yields a scaling exponent for the second-order
moments (0.19) intermediate between the values identified in the data of figure 7(a). The
exponents predicted by the multifractal intermittency model (Luo et al. 2022) are listed
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Schumacher
et al. (2007)

based on
theory by
Yakhot &

Sreenivasan
(2004) and

Yakhot
(2006)

Theory by
Sreenivasan
& Yakhot

(2021)

p-model by
Meneveau &
Sreenivasan

(1987)

She &
Leveque

(1994) model
with Nelkin’s

(1990)
transformation

Multifractal
intermittency

model by
Luo et al.

(2022)

Minimum of
the upper

bound
determined

from
multifractal
spectrum

provided by
Dubrulle

(2019)

d2 0.14 0.15 0.17 0.18 0.17 0.36
d3 0.29 0.29 0.31 0.33 0.33 0.81
d4 0.42 0.42 0.42 0.46 0.47 1.11

Table 1. Theoretical predictions of the scaling exponents dn of the dissipation moments raised to the power
1/n, i.e. 〈εn〉1/n/〈ε〉 ∝ Redn

λ .

in table 1. They were inferred from the dissipation PDFs presented in their paper. The
exponents are close to those obtained by combining the model of She & Leveque (1994)
with Nelkin’s transformation (table 1). Again, these exponents appear to be an approximate
average over the considered Reynolds number range (similar to the exponents for the
extrema predicted by the multifractal intermittency model, § 3.3).

In line with the comments made by Dubrulle (2019) and Dubrulle & Gibbon (2022),
the exponents predicted from the multifractal spectrum can be seen as infinite Reynolds
number limits, or as the minima of the upper bounds (Gibbon 2023). To estimate these
bounds, we use the measured multifractal spectrum for general velocity increments as
provided by Dubrulle (2019) and assume that enstrophy and dissipation scale identically
in the limit of infinite Reynolds number. Some more details are given in Appendix B.
It is clear that the resulting exponents (last column of table 1) are much larger than those
observed in the data (figures 7a and 7b). If indeed the enstrophy, and hence the dissipation,
is to approach these limits, then the scaling exponents remain Reynolds number dependent
beyond the range shown in figure 7, which is in general agreement with the expectations
derived from our significant shear layer model.

The challenge is to extend the above models such that they are able to capture
the observed Reynolds number dependence of the exponents. This likely requires
introducing Reynolds number dependent model parameters, e.g. Reynolds number
dependent intermittency exponents, fractal dimensions or fractal spectra. The question
remains how to obtain and explain the Reynolds number dependence of the parameters. We
suggest that significant shear layers offer such opportunity, which we illustrate below by
means of our model. Furthermore, our model allows considering dissipation and enstrophy
scaling simultaneously.

Using our model PDFs, the moments are obtained according to

〈εn〉
〈ε〉n =

∫ εwidth/〈ε〉

0

εn

〈ε〉n PDFmodel

(
ε

〈ε〉
)

d
(

ε

〈ε〉
)

, (3.1)

〈Ωn〉
〈Ω〉n =

∫ Ωwidth/〈Ω〉

0

Ωn

〈Ω〉n PDFmodel

(
Ω

〈Ω〉
)

d
(

Ω

〈Ω〉
)

, (3.2)
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where the integration has been truncated at the histogram width for the dissipation and
enstrophy as defined in § 3.1. Truncation has a similar effect as introducing a stretched
exponential tail. The latter has been shown to well represent the far tails of the actual
dissipation and enstrophy PDFs (e.g. Donzis et al. 2008; Buaria et al. 2019). The stretched
exponentials decrease to zero much faster than the lognormal distributions used in the
present model, and hence, they effectively truncate the lognormal distribution. The starting
point of the stretched exponential tail is unknown at present and would need to be assumed.
Therefore, replacing the lognormal far tail with a stretched exponential is equally arbitrary
as defining a truncation point. We have taken the latter approach for its simplicity and
because our initial goal is to get some insight as to the effect of the significant shear layers
at high Reynolds numbers. Note that the histogram width was shown to approximately
collapse the stretched exponential tail region (§ 3.1), and therefore the histogram width
is used to truncate the integral and not the proxy of the maximum. Further note that the
truncation is important only at low Reynolds numbers when the moments are strongly
affected by the far tail of the PDF. At higher Reynolds numbers, the main contributions
occur below the histogram width (see figure 4). Without truncation, the moments would
have become constant at low Reynolds number, since, in that case, the overall model PDF
is given by a single lognormal with a constant width. The results from our model are
presented by the coloured solid lines in figure 7. We emphasize that the moments obtained
from the DNS were computed without truncation, i.e. using the full PDF.

The present model reveals a Reynolds number dependence of the scaling exponents for
the dissipation moments (figure 7a), which is consistent with the DNS data. This suggests
that some relevant phenomenology has been captured and that the large-scale shear
layers can explain the transition occurring at approximately Reλ≈ 250. Furthermore, the
predicted magnitudes of the moments are within 10 % of the DNS, which is consistent with
the tails of the PDFs being well predicted (figure 2). However, the scaling exponents appear
slightly overestimated for Reλ >∼ 700. The inaccuracies may be linked to the assumption
that all significant shear layers have exactly the same local average dissipation ε∗. This
assumption has some effect on the shape of the PDF (§§ 2.4 and 3.2) and possibly on
the moments. However, the general conclusion that significant shear layers provide an
explanation for non-constant scaling exponents seems robust to an assumed distribution of
ε∗ (see Appendix C). Furthermore, the present single-valued ε∗ has been determined using
model parameters, α and b, whose magnitudes have been largely based on the significant
shear layer observed by Ishihara et al. (2013) (§ 2.3). Their observation represents an
example of a particularly strong shear layer, which could explain why the scaling exponents
for the extrema are slightly better predicted (§ 3.3) than those for the moments. The
latter may also receive contributions from weaker shear layers. As remarked in § 3.2, the
distribution of ε∗ requires further study.

The model prediction of the second-order moment of enstrophy shows a nearly constant
scaling exponent in approximate agreement with the data (figure 7b). That is, the changes
in the exponent for the enstrophy are much smaller than those in the exponent for the
dissipation. The third- and fourth-order moments of enstrophy reveal larger differences,
which is explained from the fact that these moments are largely determined by values
exceeding the histogram width for the enstrophy (§ 3.2).

4. Summary and conclusions

DNS data showed that the Reynolds number scaling exponents for the dissipation extrema
and the dissipation moments increase with the Reynolds number. Specifically, a notable
change in the exponents occurs at approximately Reλ≈ 250. The enstrophy histogram
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width reveals a similar, albeit smaller, increase in its scaling exponent. However, the
scaling exponents for the enstrophy moments appear to be constant over the range
considered, i.e. Reλ= 50−1500. Furthermore, the exponents for the enstrophy are larger
than those for the dissipation over this Reλ range. It means that enstrophy and dissipation
scale differently, as has been observed before (e.g. Kerr 1985; Yeung et al. 2012). The
differences decrease with increasing Reynolds number, which is related to the fact that the
scaling exponents for the dissipation increase faster with Reλ than the scaling exponents
for the enstrophy.

These developments near Reλ≈ 250 coincide with the scaling transitions previously
observed for other small-scale turbulence properties and the full development of
large-scale shear layers (Elsinga et al. 2017; Das & Girimaji 2019; Ghira et al. 2022).
Therefore, Reλ≈ 250 marks the onset of significant changes in the turbulent structure
and care should be taken when extrapolating results across this Reynolds number. The
development of large-scale shear layers, also known as significant shear layers, seems
particularly relevant when trying to understand the observed changes in the scaling of
dissipation and enstrophy, because these layers affect intermittency. That is, the most
intense dissipation and enstrophy events tend to cluster inside these layers (Ishihara et al.
2013; Elsinga et al. 2017). We explored the effect of the large-scale shear layers on the
dissipation and enstrophy scaling using the model presented in § 2, which is an extension
of our previous work (Elsinga et al. 2020). The model parameters associated with the
properties of the layer regions, i.e. α and b, were independent of the small-scale quantity
considered. However, the width of the regional enstrophy and dissipation distributions,
i.e. σ in (2.3), depended on the quantity considered. This difference in the value of σ

reflects that intense enstrophy and dissipation are associated with different small-scale flow
structures within the same large-scale shear layer. The resulting model PDFs compared
favourably with available DNS data (§ 2.4).

The dissipation and enstrophy extrema are accurately predicted by our model
(§ 3.3). The scaling exponents agree with the DNS to within 0.05 and, importantly,
the Reynolds number dependence of the exponents is captured over the range
Reλ= 94−1445. This constituted a considerable improvement over the existing
predictions by traditional multifractal and Kolmogorov-type arguments with inertial-range
self-similarity assumptions, which yield a constant exponent. Furthermore, our model
suggests that, as the Reynolds number increases, the scaling exponents for the enstrophy
and dissipation extrema approach each other. In the limit of infinite Reynolds number, the
predicted scaling exponents are identical, and hence the ratio of the maxima tends to a
constant, which is consistent with theoretical arguments (He et al. 1998; Nelkin 1999). It
suggests that the scaling of the maxima is eventually determined by layer properties and
that differences between dissipation and enstrophy, i.e. σ , do not play a role. Moreover, the
scaling exponent at infinite Reynolds number is approximately equal to the multifractal
prediction with hmin = 0. It is remarkable that a simple layer model yields accurate results
for both the maximum dissipation and the maximum enstrophy, which, moreover, connects
the observed scaling behaviours at finite Reynolds number with the expected scaling at
infinite Reynolds number. This can never be achieved by theories/models predicting power
laws with constant exponents. In that case, either the exponents are different for enstrophy
and dissipation as observed at finite Reynolds number, or they are identical as expected for
infinite Reynolds number.

Our model also captures the Reynolds number dependence of the scaling exponents for
the dissipation moments over the considered Reλ range, which existing theories have not
been able to do (§ 3.4), but appears to be essential for enstrophy and dissipation to scale
identically in the infinite Reλ limit. However, the exponents are slightly overestimated at
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large Reynolds number. By comparison, the scaling exponent returned for the second-order
moment of enstrophy is closer to a constant, which is again consistent with DNS
observations. The predictions of the higher order moments of enstrophy are less accurate
for the reasons explained in § 3.2. It seems that the maxima are more accurately predicted
by the present model as compared with the moments. This could be explained by the
fact that the values for the model parameters were estimated using a particularly strong
realization of a significant shear layer (Ishihara et al. 2013). The maxima will not be
affected by weaker significant shear layers, but the moments might be. The issue can be
addressed by considering a distribution of layer strengths within our model. However, this
requires a statistical analysis of the layers, which is not yet available.

Furthermore, the model suggests that the scaling exponents for the moments of
enstrophy become Reynolds number dependent at higher Reλ (when significant shear
layers break down into sublayer, sub-sublayers and so on), which is needed if the
multifractal prediction with hmin = 0 is to be approached in the limit of infinite Reynolds
number. Any other value of the minimum Hölder exponent, hmin, and hence the exponent
predicted by multifractal theory, would require an explanation for why the velocity
scale associated with extreme events is different from U (as has been observed in
numerous studies to date). Presently, observational support for the existence of sublayers
is unavailable, since DNS barely reaches the required Reynolds numbers. Moreover, the
minimum Reynolds number required for sublayers to appear is subject to some uncertainty.
However, the local Reynolds number within the significant shear layer increases with the
global Reynolds number and it seems reasonable to assume that, as the local turbulence
becomes more intense, the significant shear layer turbulence breaks down and develops a
substructure (see also § 2.1).

The present model’s relative success in predicting the Reynolds number dependencies
of the scaling exponents suggests that the large-scale shear layers are key to understanding
extreme dissipation and enstrophy at high Reynolds number. It warrants further study and
quantification of these layers and suggests that they need to be included in some way in
further modelling efforts.

The present model is applicable also to other small-scale quantities based on squared
velocity gradients, as demonstrated in the Appendix. In those cases, the value of σ can
be obtained from the PDF at low Reynolds number (Reλ∼ 100) before the significant
shear layers develop within the flow. Then the model predicts the PDFs at higher Reynolds
numbers by accounting for the effect of the significant shear layers.

Acknowledgements. We thank P.K. Yeung for interesting discussions during the EUROMECH colloquium
620 ‘Extreme dissipation and intermittency in turbulence’ (May 2021), which motivated us to extend the model
to enstrophy. We are grateful to C. Meneveau for the insightful discussions on the multifractal predictions of
the maxima and for providing the data presented in figure 4(b) of Luo et al. (2022) and to P. Johnson and B.
Dubrulle for the helpful comments.

Funding. This work was supported in part by MEXT as the ‘Program for Promoting Researches on the
Supercomputer Fugaku’ (Structure and Evolution of the Universe Unraveled by Fusion of Simulation and
AI) and used the computational resources of the supercomputer Fugaku provided by the RIKEN Center for
Computational Science (project ID: hp230204). T.I. was supported in part by JSPS KAKENHI (grant no.
JP20H01948).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
G.E. Elsinga https://orcid.org/0000-0001-6717-5284;
T. Ishihara https://orcid.org/0000-0002-4520-6964.

974 A17-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

79
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-6717-5284
https://orcid.org/0000-0001-6717-5284
https://orcid.org/0000-0002-4520-6964
https://orcid.org/0000-0002-4520-6964
https://doi.org/10.1017/jfm.2023.799


G.E. Elsinga, T. Ishihara and J.C.R. Hunt

10–2 100 102

10–5

100

P
D

F

Reλ = 170

10–2 100 102
10–10

10–5

100 Reλ = 1100

(a) (b)

A11A11/〈A11A11〉 A11A11/〈A11A11〉
Figure 8. (a,b) PDFs of the longitudinal velocity gradient squared, comparing the model with σ = 1.28 (black
solid line) with a lognormal distribution (grey dashed line) and the DNS data at the corresponding Reynolds
number (red solid line).

Appendix A. Squared velocity gradients

Here, we explore further extensions of the model by considering several different
combinations of squared velocity gradients. As before, the model parameters linked to
the large-scale shear layers do not change and are fixed at α = 0.011 and b = 0.67. The
width of the log-normal, σ , is adjusted for each combination of the squared gradients.

First, the PDF of the square of the longitudinal velocity gradient, A2
11, is examined,

where Aij is the velocity gradient tensor. Results from DNS indicated that the
high-magnitude tail of the A2

11 PDF overlapped with that of the enstrophy PDF, when
these quantities were normalized using their global averages. Therefore, the same σ is used
for A2

11 and enstrophy, i.e. σ = 1.28. The model PDF is compared with the DNS data in
figure 8. Only two Reynolds numbers are presented given the similarity with enstrophy. It
is seen that the high-magnitude tail is well captured by the model. However, the differences
at low A2

11 magnitude are pronounced. Clearly, the assumed lognormal distribution is a
reasonable approximation for the tail (up to at least the maximum value as defined in § 3.1),
but it cannot capture the full PDF. By comparison, the PDF of the transverse velocity
gradient, A2

12, is wider and better represented by σ = 1.48 (not shown).
Figure 9 presents the PDFs of AijAij, where repeated indices imply summation. In this

case, the model PDF uses σ = 1.12, which is intermediate between the value used for
dissipation and enstrophy. Again, the high-magnitude tail of the PDF is well captured by
the model. At Reλ= 170, the model and the DNS are found to slightly deviate only beyond
the maximum of AijAij as defined by PDF = 100/N3 = 0.7 × 10−5.

Other combinations of squared velocity gradients were investigated also, such as AiiAii
and AijAij with i /= j. The results were quite similar to those already presented. This
suggests that the present model for the high-magnitude tail of the PDF is generally
applicable to quantities involving squared velocity gradients.

Appendix B. Scaling exponents listed in the last column of table 1

The multifractal approach discussed and reviewed by Frisch (1995), Dubrulle (2019),
Dubrulle & Gibbon (2022), Kaneda et al. (2021) and references therein assumes that
there exists a local ‘Kolmogorov’ length scale, ηh, for each local Hölder exponent, h,
which scales with viscosity according to ηh/L ∼ Re−1/(1+h)

L (Paladin & Vulpiani 1987).
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Figure 9. (a,b) PDFs of the squared norm of the velocity gradient tensor, comparing the model with σ = 1.12
(black solid line) with a lognormal distribution (grey dashed line) and the DNS data at the corresponding
Reynolds number (red solid line).

Here, ReL = UL/ν, which scales as ReL ∼ Re2
λ at high Reynolds number. The

corresponding local ‘Kolmogorov’ velocity scale is uηh = U(ηh/L)h. Then, assuming that
the local velocity gradients scale according to uηh/ηh and using 〈ε〉 ∼ U3/L, one finds for
the local dissipation raised to the power n,

εn

〈ε〉n ∼ Re−n
L

(ηh

L

)2n(h−1) ∼ Re−n−2n(h−1)/(1+h)
L . (B1)

In case the intermittency can be described by a multifractal spectrum C(h), we obtain for
the normalized moments (in the limit ν → 0, Dubrulle 2019; Dubrulle & Gibbon 2022):

〈εn〉
〈ε〉n ∼ Reχn

L ∼ Re2χn
λ , (B2)

where

χn = −n − min
h

(
2n(h − 1) + C(h)

1 + h

)
. (B3)

The exponents χn are obtained using the parabolic fit for C(h) provided by Dubrulle (2019),
which is given by

C(h) = 1
2b

(h − a)2, b = 0.045, a = 1
3

+ 3b
2

. (B4)

Note that the empirical intermittency coefficient, b = 0.045, was obtained for general
velocity increments (Dubrulle 2019). However, its value is similar to those observed for
transverse velocity increments and vorticity increments (Kestener & Arneodo 2004). It
can, therefore, be used to estimate the enstrophy moments following essentially the same
approach as outlined above. The enstrophy moments, in the limit of infinite Reynolds
number, are expected to scale identically to the dissipation moment. The predicted
exponents are thus representing infinite Reynolds number limits for the dissipation
moments, which seems consistent with ν → 0 used to obtain (B2). Furthermore, the
minimum value of h is taken as hmin = 0 following Paladin & Vulpiani (1987). The
resulting exponents are presented in the last column of table 1.
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Figure 10. Assumed distribution for the average dissipation ε∗ within the layers.
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Figure 11. Model PDFs of dissipation without dips (black solid lines). Compare with figure 4(a).

Alternatively, inserting the intermittency coefficient commonly associated with
longitudinal velocity increments, b = 0.025 (e.g. Kestener & Arneodo 2004), in (B4)
yields exponents that are closer to those reported for the other models (table 1). However,
it remains unclear how that could be made compatible with identical scaling at infinite
Reynolds number if the predicted enstrophy exponents are so different. It is an open issue,
which we cannot solve here.

Appendix C. A PDF model without dips and bumps

The purpose of this appendix is to show that the dips and bumps in the model PDFs
(figure 4) do not significantly affect the results for the dissipation moments. The focus is on
the dissipation PDF, since the dips appear most pronounced. These features are removed
by introducing a distribution for the average dissipation ε∗ within the layers. Note that
we do not aim to optimize this distribution to obtain an improved correspondence with
the data. It is only introduced as a means to prevent dips appearing in the model PDF
and to examine the effect of the dips on the dissipation moments. The main reason for
not optimizing the ε∗ distribution is that it introduces too many unknown variables (e.g.
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Figure 12. Effect of the dips and bumps in the model PDFs on the dissipation moments. Solid coloured lines
show the original results for the model with discrete ε∗, which resulted in the dips and bumps. Dashed coloured
lines present the results for the distributed ε∗ case, where the dissipation PDFs do not reveal dips and bumps.
Symbols and grey lines show DNS data and data fits, see caption figure 7(a).

range and shape of the distribution), and hence uncertainties, into the model, which is
not helpful when trying to understand the basic effect of significant shear layers on the
dissipation scaling. As mentioned in the main text, the actual ε∗ distribution is unknown
presently and requires further research.

Here, the average dissipation in a layer region is assumed to be continuously distributed
between the background dissipation level, εbg = b〈ε〉, and an upper bound, εup, for the
significant shear layers, sublayers and sub-sublayers. These upper bounds are evaluated
using the same set of equations as for the single-valued ε∗ in the basic version of our
model (§ 2). However, the value for the coefficient α has changed from 0.011 to 0.017,
which causes εup to be slightly larger than the single-valued ε∗ before. This is to account
for the fact that we now consider a distribution around the previous discrete ε∗. The other
parameters, i.e. b and σ , have remained the same. Then we assume a power law distribution
for the average dissipation in a layer with an exponent of −2, as shown in figure 10. This
represents a case where the layers of different ε∗ contribute equally to the global average
dissipation.

Subsequently, the above regional distribution is convoluted with a lognormal using σ to
account for the dissipation variations within each layer (similar to our existing model) and
is properly normalized. Then, the regional PDFs are weighted according to the significant
shear layers’, sublayers’ and sub-sublayers’ contribution to the global average dissipation
and added to the background distribution as before. This yields the overall PDF, which is
presented figure 11. When compared with figure 4(a), it is clear that the dips and bumps
have disappeared.
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The dissipation moments resulting from the PDFs without dips and bumps are presented
in figure 12 (dashed coloured lines). They are qualitatively consistent with those obtained
from the original model (solid coloured lines), which featured the dips and bumps in the
PDFs. Most importantly, the scaling exponents increase with the Reynolds number in both
cases and also the magnitude of the predicted exponents is comparable. However, there
is a difference in the magnitude of the moments. The largest difference is observed for
the second moment at high Reynolds numbers and corresponds to approximately a factor
two, which is consistent with our previous assessment of the dips (Elsinga et al. 2020).
Therefore, the dips and bumps in our model (§ 2) do not affect our main conclusions
regarding the Reynolds number dependence of the scaling exponents and the influence
of the significant shear layers.
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