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Summary
Certain muscular disorders, such as Duchenne muscular dystrophy, dramatically and progressively
lower the amount of muscle mass within the human body. This is detrimental to the quality of everyday
life of the patient, as common actions can become challenging at a certain point. To alleviate part of this
problem, an exoskeleton can be used that supports the weight of the arms. As a result, the remaining
muscle strength is free to be used for motion directly, without having to overcome gravity first.

In an attempt to improve the current exoskeleton technology, specifically of the shoulder joint, this
thesis presents the design of a quasicompliant spherical joint which is neutrally stable in two degrees
of freedom and has a remote center of rotation. The foundation of this paper lies in previous work that
has succeeded in designing a compliant spherical joint with a remote center of rotation, but without
neutral stability. Therefore, the existing joint is adapted in order to achieve neutral stability, while also
maintaining its other properties.

A model is made with ANSYS that allows rotation of the joint to be simulated in any desired direction
from its neutral position. From this model, an energy field is acquired by simulating rotation of the end
effector to every location in its range of motion and measuring the energy within the joint. Neutral
stability is achieved when the energy field is constant in the specified range of motion. As a first step
to neutral stability, the joint is optimized for axisymmetry in its energy field. A spring is then introduced
that has a reversed energy field relative to the joint. It is optimized such that the combined energy field
of both spring and joint, is as constant as possible within the range of motion, thereby achieving neutral
stability.

The optimized results reveal that both axisymmetry of the energy field and near neutral stability can
be achieved by the joint. In order to verify the validity of the simulations, a prototype is constructed.
Experimental validation of the simulation has been achieved through this prototype. Neutral stability,
measured as the percentual moment reduction, is improved by 83.69% in the prototype compared to
89.71% predicted by the simulations.
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1
Introduction

Muscular disorders that dramatically lower the body’s strength can be detrimental to a patient’s quality
of everyday life. Perhaps the most known example of such a muscular disorder is Duchenne muscular
dystrophy. It is a genetic disorder that is predominantly found in males and causes progressive loss
of muscle mass starting at the moment of birth [1]. At a certain age, the muscles that power general
body movement degenerate to a point where it is no longer possible to support the body’s own weight.
A partial solution to this problem exists in the form of a wearable exoskeleton that compensates the
weight of the body, specifically of the arms. This allows the remaining muscle strength to be used
for motion directly, without the need to overcome gravity. Such an exoskeleton currently exists and is
commercially available [2]. However, improvements can still be made to the exoskeleton, for example
in the external shoulder joint. Like any conventional joint, friction is present that resists motion to some
degree. Because of the limited muscle force that is available, any friction within the joint is detrimental
and should be avoided. Moreover, the overall size of the joint could be reduced, which would be an
improvement in terms of ergonomic and aesthetic aspects. Therefore, an improved external shoulder
joint could be made that experiences no friction and fits around the body more compactly.

To achieve this, the external shoulder joint can be made as a compliant mechanism. In contrast to
the motion of the more conventional rigid body joints, compliant joints achieve motion through elastic
deformation [3]. This gives compliant joints a number of advantages, such as the ability to displace
without friction or backlash. Moreover, compliant joints have the additional advantage of requiring
less parts to function and can be designed to be more compact as a result. These properties make
compliancy an appealing aspect to be used in joint applications. However, while a compliant joint does
not experience friction, it does still encounter unwanted resistance to the applied elastic deformation.
This can be mitigated by designing it to be neutrally stable. Neutral stability is defined as a constant
energy within the system for any configuration in the specified range of motion [4]. In practice this
means that, ideally, no external work is required to displace the joint [5]. The human shoulder joint has
three rotational degrees of freedom. To perfectly allow for the natural range of motion, the external
shoulder joint would need three neutrally stable degrees of freedom as well. As a first leap towards this
goal, neutral stability in two rotational degrees of freedom will be the target. Additionally, the center of
rotation of the external joint must coincide with that of the human shoulder joint to avoid forces induced
by a center mismatch. Thus, the external joint must rotate around a remote center that is not part of
the mechanism.

The goal of this thesis is to design a compliant spherical joint which can achieve neutral stability
in two rotational degrees of freedom and has a remote center of rotation. This aim is directly inspired
and motivated by the hope to advance the effectiveness of exoskeleton technologies that alleviate the
negative impact of degenerative muscular disorders. Moreover, the novel joint design presented in this
thesis can perhaps be of interest in other fields as well.

1





2
Paper

The main contribution of the thesis is presented in the form of this paper. It covers the design of
a joint with the aforementioned properties that could be implemented as an improved exoskeleton
shoulder joint. While the thesis as a whole has the specific field of exoskeleton technology in mind, this
paper approaches the subject from a broader perspective and aims for a generalpurpose joint with the
aforementioned properties. As a result, a wider range of relevant applications may be able to use this
joint.
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A Neutrally Stable Quasi-Compliant Spherical Joint
With a Remote Center of Rotation

Dion Hogervorst, Giuseppe Radaelli and Just Herder

Abstract—This paper presents the design of a compliant
spherical joint which is neutrally stable in two DoF and has a
remote center of rotation. Such a joint can be used, for example,
as an exoskeleton’s shoulder joint. The foundation of this paper
lies in previous work that has succeeded in designing a compliant
spherical joint with a remote center of rotation, but without
neutral stability. The existing joint is simulated and its energy
properties are analysed. Thereafter it is adapted and optimized
for an axi-symmetrical energy field. A spring is introduced to the
joint and optimized such that the combined energy field of both
spring and joint, is neutrally stable. Experimental verification of
the simulation was achieved with a prototype for which a moment
reduction of 83.69% was achieved through the addition of the
spring.

I. INTRODUCTION

In contrast to the motion of the more conventional rigid
body joints, compliant joints achieve motion through elastic
deformation [1]. This gives compliant joints a number of
advantages, such as the ability to displace without friction
or backlash. Moreover, compliant joints have the additional
advantage of requiring less parts to function and can be
designed to be more compact as a result. These properties
make compliancy an appealing aspect to be used in joint appli-
cations. However, while a compliant joint does not experience
friction, it does still encounter resistance to the applied elastic
deformation, which is often unwanted when used as a joint.
This can be mitigated by designing it to be neutrally stable,
also known as static balancing. Neutral stability is defined
as a constant energy within the system for any configuration
in the specified range of motion [2]. In practice this means
that, ideally, no external work is required to displace the joint
[3]. If the range of neutral stability can be extended to two
rotational degrees of freedom, a joint is acquired that is stable
in any configuration of its spherical range of motion. When
it also rotates about a center of rotation that is not located
within the physical joint, it is said to have a remote center
of rotation. Combining the properties of compliancy, neutral
stability, spherical motion and a remote center of rotation
into a single joint could be useful in certain applications. For
example, in the field of exoskeletons as an external shoulder
joint.

Compliant joints have been developed that contain some
of these properties. Spherical compliant joints with a remote
center of rotation, for instance, have been developed in decent
numbers. A spherical chain consisting of two spherical flexures
that allow two dimensional rotation about a remote center of
rotation has been developed by Parvari Rad et al. [4]. The same

Fig. 1: The spherical joint ’Tetra I’. Retrieved from Rommers
et al. [6].

principle has been applied in a three dimensional spherical
joint where another chain of spherical flexures is nested
in parallel that increases spherical performance and off-axis
stiffness [5]. However, this parallel nesting also surrounds the
remote center of rotation with joint components. A different
design by Rommers et al. employs tetrahedra in series to
construct a spherical joint with a remote center of rotation
and high off-axis stiffness [6]. Another design is based on
a spherical four-bar linkage with large rigid sections and
small lumped compliance flexures that provide the relative
motion between the links [7]. Rarely, research has been done
on a compliant joint which combines a remote center of
rotation and neutral stability for a single degree of freedom.
Chandrasekaran et al. have achieved this with a linkage that
displaces the center of rotation to a remote location. It is
connected by compliant cruciform flexures and is statically
balanced by a pretensioned serpentine flexure [8]. Hampali et
al. created a tunable joint made out of open section shells of
which the rotation is constrained by a guideway. Depending
on the guideway and the amount of open section shells, the
rotation can be forced around a remote center of rotation and
made neutrally stable [9]. As of yet, a spherical compliant
joint with neutral stability has been attempted only once [10].
The design is based on a number of pretensioned cables
that are attached to an otherwise free-floating end-effector
that lies in the center of rotation. By tuning the pretension
in the cables, local zero stiffness behaviour was found for
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small deflection angles. This design does not have a remote
center of rotation however. A compliant joint which contains
all previously mentioned properties combined, has not been
reported as of yet.

This paper presents the design of a compliant spherical joint
which can achieve neutral stability in two rotational degrees
of freedom and has a remote center of rotation. The existing
compliant joint made by Rommers et al., called the Tetra
I, shows excellent properties in terms of remote center of
rotation, the range of spherical motion and off-axis stiffness
(Fig. 1) [6]. Because of this, the novel joint presented in this
paper uses the design principles of the Tetra I as its foundation
and aims to create a neutrally stable version of it.

The paper is structured as follows: First, section II elabo-
rates on the principles behind the Tetra I and the methods used
in the simulated model, solution strategy, optimizations and
experimental validation. The results of the optimizations and
experimental validation are shown in section III and discussed
in section IV. Finally, section V summarises and concludes the
paper.

II. METHOD

In this section, the Tetra I concept is first described in its
original form as designed by Rommers et al. [6]. From there,
a model is made to obtain and visualize its energy properties
and a solution strategy is devised. Using the same model, an
optimization is carried out to find the best result for the chosen
solution strategy. Finally, a prototype is built to experimentally
verify the concept and evaluate its effectiveness compared to
the simulated model.

Fig. 2: A single tetraderon and its DoF, consisting of three
blade flexure sides. Adapted from Rommers et al. [6].

A. Initial Tetra I design

The Tetra I joint (Fig. 1) was first designed by Rommers et
al. as a high precision alternative to the more traditional ball-
and-socket joint [6]. It is designed to achieve reliable spherical
rotation about a practically constant remote center of rotation.
This joint consists of two approximately semi-circular arms
which are angled relative to each other, built from a number
of tetrahedron elements. Each tetrahedron has two rotational
degrees of freedom and consists of three blade flexure parts
(Fig. 2), one of which is directly a part of the joint arm. To
free the rotational DoF needed for spherical motion, the two
joint arms must be angled relative to each other. All tetrahedra
of both arms have their blade flexure constraint lines coincide
in the same remote center of rotation (P). This configuration
constrains all translations and allows all rotations about the
remote center of rotation.

Fig. 3: Visualization of the spherical coordinate system, in-
cluding examples of data points (red) to which the end-effector
can be rotated.

B. Simulated model

The Tetra I joint is modelled using ANSYS APDL. Its arms
are constructed as shell elements (SHELL181) with a gener-
ated mesh of approximately 4 nodes per square cm of shell
surface. Since the simulated deflections are relatively large,
geometric non-linearity is included in the model. Throughout
this paper, titanium alloy (Ti6Al4V) will be used as material
for the joint. The weight of the joint is not included in the
initial simulation. A rigid link connects the end-effector (e) of
the joint to its center of rotation (P), as can be seen in Fig. 3.

The model allows the end-effector to be rotated around P
in any direction from the neutral position. Every location it
can reach therefore lies on a spherical surface. Any location
on this spherical surface is reached through a forced rotation
θ, of which the direction is defined by the angle φ. The forced
rotation is applied in the center of rotation and directly trans-
mitted to the end-effector via the rigid link, while rotation of
the end-effector around the rigid link is left free. The location
of the end-effector on the spherical surface is defined by a
spherical coordinate system. It is a fixed coordinate system
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with two axes, Y and Z. Both axes have their origin in the
neutral position of the joint. For every forced rotation toward a
desired location on the spherical surface, the end-effector starts
in the neutral position. Thereafter, it is rotated directly to the
desired location, with a magnitude and direction corresponding
to that specific location. Any other rotation that would prevent
the end-effector from reaching the desired location on the
spherical surface is constrained. All translational degrees of
freedom are left free and are only constrained by the geometry
of the joint itself. This is because the center of rotation might
shift slightly and should not be assumed as constant. At each
location on the spherical surface the end-effector is rotated to,
the elastic energy within the entire joint is measured. The data
is stored and processed as a square data matrix, where each
data point represents a single location on the spherical surface
to which the end-effector is rotated to. When rotation to all
locations on the spherical surface is simulated within the range
of motion, an energy field can be acquired that visualizes the
energy of the entire joint across its range of motion (Fig. 4).
This offers valuable insight, as this is the energy field that
needs to be made neutrally stable.

Fig. 4: The energy field of the original Tetra I joint. Top:
Isometric perspective. Bottom: 2D perspective including data
points (red).

TABLE I: The global and local parameters of the joint and
the corresponding initial values.

According to the design principles used in the Tetra I, spher-
ical motion about a remote center of rotation is maintained
as long as the arms are built out of tetrahedra that virtually
coincide in the same point. And, to obtain the required degrees
of freedom, the two arms must have an angle between them.
Using these principles, the parameters that can be used without
losing the initial properties are devised. Two sets of parameters
are chosen, one ’global’ set which affects the entire joint and
one ’local’ set that affects only the second arm of the joint
(Table I). By having this distinction between parameter sets,
the parameter effects on the joint that are purely based on
the proportion between the two arms can be identified. The
local parameters overrule the global parameters if applied to
the same section in unison. In that case, the global parameters
only affect the first arm, while the local parameters apply to
the second arm. A visualization of the global parameters can
be seen in Fig. 5.

Fig. 5: Visualization of the global parameters.

C. Mathematical derivation

In order to make the joint neutrally stable, its energy field
must be constant for the entire range of motion. The first
step in achieving this, is to acquire further understanding of
the general energy field shape of the joint. The aim of this
evaluation is not to calculate an exact value of the joint energy,
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but to find its general relation with the rotation angle. For
this reason, the joint energy is expressed as a function of the
rotation angle, without elaborating extensively on the variables
that are independent of the rotation angle. The energy in the
joint is a direct result of the work that is put into rotation of
the end-effector, therefore the energy in the joint is defined
by:

Ej =

∫
Mdθ (1)

Here θ is again defined as the rotation angle of the end-
effector, starting from the neutral position of the joint in an
arbitrary direction of the spherical surface defined by φ. To
rotate the end-effector by θ, a total moment M is required.
The joint is in essence a series connection of curved flexures
that are angled relative to each other and are stiff in torsion
because of the tetrahedra. The rotation angle θ of the end-
effector is facilitated by deformation of the flexures it consists
of. For any location in the spherical surface the end-effector is
rotated to, it is assumed that bending is the only loading mode
that can achieve flexure deformation, because of a significantly
lower stiffness relative to other loading modes [6]. According
to [11], the nonlinear moment equation for bending of flexures
with large deflection is defined as:

M = kj(φ)sin(θ), 0 ≤ θ ≤ 90 [deg] (2)

The joint stiffness kj is a function of the Young’s modulus,
the second moment of area and the total flexure length that
is in a bending mode. Since the flexures are curved in this
analysis, not the entirety of a flexure has to be in a bending
mode, an example of this can be seen in Fig. 6. Therefore,
it is assumed that the curved flexures can be divided into
an equivalent flexure length that is considered to be in a
bending mode, which is valid to be used in kj of eq. 2, and
an equivalent flexure length that is not loaded in bending.
The total rotation stiffness of the joint is thus dependent on
the equivalent bending flexure length, which can vary with
the rotation direction and its corresponding loading modes.
Therefore in the general case, kj varies with φ. The nonlinear
strain energy in the joint can be found by substituting eq. 2
in eq. 1 and integrating over θ, resulting in:

Ej = C − kj(φ)cos(θ), 0 ≤ θ ≤ 90 [deg] (3)

The constant C arises a result of integration and can be
found with the help of boundary conditions. It is known that
there is no deflection and therefore zero stored energy at θ =
0, i.e. Ej(0) = 0. This is true when C = kj , hence eq. 3
becomes:

Ej = kj(φ)(1 − cos(θ)), 0 ≤ θ ≤ 90 [deg] (4)

Thus, the general behaviour of the energy field in a single
direction can be described by eq. 4.

Fig. 6: Example of a gradual transfer from bending to torsion
in a curved flexure as a result of an applied moment.

D. Central spring

To make the joint neutrally stable, the energy of the joint
that is of the form as described by eq. 4 needs to be compen-
sated by another element, such that their combined energy field
is constant over the range of motion. A solution to this is the
addition of a ’central spring’. This is a spring that is attached
to the end-effector of the joint at one end, while its other end
is attached somewhere on the line that goes through the center
of rotation and the end-effector in its neutral position (Fig. 7).
This spring can be either a tension spring or a compression
spring. A tension spring has the advantage of intrinsic stability
and ease of attachment. However, the disadvantage is that it
coincides with the center of rotation, meaning that a tension
spring prevents the joint from having a true remote center
of rotation. A compression spring on the other hand, does
not coincide with the center of rotation. If a tension spring
is used, the end of the spring must be attached on the other
side of the center of rotation, furthest from the end-effector.
Alternatively, if a compression spring is used, the end of the
spring must be attached on the side of the center of rotation
that is closest to the end-effector, including locations that are
further out than the end-effector itself. In both cases, the spring
deflection is maximum when the joint is in its neutral position
and decreases when the joint rotates away from its neutral
position, resulting in a decreasing energy field of the spring
as a function of θ. The parameters used to define the central
spring are as follows:
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• x0: The attachment location of the spring along the line
between the end-effector in the neutral position and the
center of rotation. It is defined as zero in the center of
rotation and its positive direction is towards the end-
effector.

• L0: The free length of the spring at which it does not
exert a force.

• ks: The stiffness of the spring.

Fig. 7: The central spring solution concept.

To illustrate that the central spring is a suitable candidate to
counteract the energy of the joint, a mathematical derivation
of the spring energy is provided. The energy in the spring is
defined by:

Es =
1

2
ks(L− L0)2 (5)

The total spring length L can be described as a function of
the joint rotation angle θ with the help of Pythagoras’ theorem:

L =
√

(Rinsin(θ))2 + (Rincos(θ) − x0)2 (6)

After processing the quadratic terms, eq. 6 is reduced to:

L =
√
R2

in + x2
0 − 2Rinx0cos(θ) (7)

To acquire the spring energy as a function of θ, eq. 7 is
substituted in eq. 5, which results in:

Es =
1

2
ks(

√
R2

in + x2
0 − 2Rinx0cos(θ) − L0)2 (8)

Eq. 8 approximates the negative of the joint energy equation
(eq. 4) for certain values of Rin, x0, L0 and ks. In the ideal
case, L0 is reduced to zero and becomes a zero length spring.
If that were the case, the ideal spring equation would simplify
to:

Es,ideal =
1

2
ks(R

2
in + x2

0 − 2Rinx0cos(θ)) (9)

However, in practice L0 will have an effect on the solution
and is therefore not neglected in the optimization that is used
for the spring design. Still, it will be shown in later chapters
that non-zero realistic values of L0 have an insignificant effect
on neutral stability relative to the ideal case (Table IV). The
result from eq. 9 is a function of θ with a constant offset that,
for the correct parameter values, can equal the negative of eq.
4. Thus, the central spring has the potential to compensate
the energy field of the joint in order to make it neutrally
stable. However, the energy of the spring is independent of
the rotation direction φ and thus has an energy field that is
symmetrical around a single axis. The joint does not originally
have an axi-symmetrical energy field which, if left unadjusted,
can not be accurately compensated by the spring for certain
rotation directions on the spherical surface. Therefore, the joint
is first optimized for an axi-symmetrical energy field.

E. Joint optimization

1) Objective function: The joint is optimized for axi-
symmetry in its energy field for a fixed range of motion of
30 degrees in each direction from the neutral position. The
objective function to minimize uses a metric that calculates
the total normalized RMS error between the current energy
field and a completely axi-symmetrical energy field, which is
expressed as:

fsymmetry =

∑m
p=1

√∑N

i=1
(Ē−E(i))2

N

Ētotal
(10)

First, the average energy value of a subset of N data points
that are equidistant from the axis of symmetry is calculated.
For this subset, the RMSE of each data point E(i) compared
to the average of the subset Ē is calculated. This is done
for all data points, resulting in m subsets of equidistant data
points from the axis of symmetry. The total RMSE can then be
found by the sum of the subsets. Additionally, the RMSE is
normalized by the average total energy of the entire energy
field Ētotal. The expected outcome of this optimization is
a increasing energy field in all directions as defined by eq.
4. However, note that the optimization does not specifically
optimize for that function, only for an axi-symmetrical energy
field. This optimization makes use of the simplex search
method [12].
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2) Sensitivity analysis: The joint optimization is compu-
tationally expensive because it needs to complete one entire
simulation for every data point. A single energy field requires
many data points, dependent on the resolution, and only
produces one objective function value. In an effort to reduce
the computation time, the number of optimization variables
must be reduced to only the relevant ones. A sensitivity
analysis is performed to determine the change of the objective
function with respect to a change in each individual parameter.
It shows that there are many parameters that do not have any
effect on the objective function and can thus excluded from
the optimization variables. These parameters will maintain
their original values as given by Table I in this optimization.
The most influential parameters, those that are included in the
optimization variables, are α, γ, α2 and d2. The effect on the
metric of these parameters is shown in Fig. 8. It should be
noted that the sensitivity analysis is performed one parameter
at a time, while all other parameters maintain their original
value. Therefore, the effect of a combination with non-initial
value parameters is not considered.

Fig. 8: Sensitivity analysis of the parameters α, α2, γ and d2,
which shows the effect on fsymmetry as a result of parametric
variations.

F. Spring optimization

1) Objective function: The spring is optimized to create an
energy field such that the combined energy field of both spring
and joint, when added together, is as constant as possible in
its range of motion. The objective function used for this is
given by:

fbalanced =

√∑N
i=1 (Ēcom − Ecom(i))2

N
(11)

First the average of the current combined energy field Ēcom

of both spring and joint is calculated. Then the RMSE of
each individual data point Ecom(i) relative to the average is
calculated and used as the objective function to minimize. The

parameters used in this optimization are x0, L0 and ks. For this
optimization, the interior point method is used and repeated
with 500 different sets of initial values [13].

2) Constraint equations: This optimization is carried out
for a number of relevant scenarios. Initially the theoretical
optimum is found with the only constraints being a positive
spring stiffness and positive free spring length. Furthermore,
two scenarios are optimized where the spring has parameter
boundaries and constraint equations to remain within realisti-
cally feasible parameter values for a compression and tension
spring separately. An overview of all parameter boundaries
imposed on the parameters for the different scenarios and
their respective constraint equations can be found in Table
II. To fully define the constraints, ks must be subdivided into
a number of temporary optimization parameters. These are
the spring wire diameter d, spring coil diameter D and the
number of coil windings n. Together, these parameters link the
spring stiffness ks to the constraint functions and are related
according to [14]:

ks =
d4G

8nD3
(12)

The relation between the shear modulus G and the Young’s
modulus E is given as G = E

2.6 and E has a value of 190 GPa,
the Young’s modulus of titanium alloy. A constraint function
that applies to both a compression and tension spring, is based
on the fatigue lifetime. In order to ensure a decent fatigue
lifetime for repeated loading, the stress limit can generally
be taken as approximately half the ultimate strength [15].
Therefore, this constraint equation is given as:

τmax < 0.5σult (13)

The maximum stress τmax of a helical spring in eq. 13 is
given by [15]:

τmax =
8FspringD

πd3
+

4Fspring

πd2
(14)

Similar to before, the fatigue lifetime of the joint itself must
also be taken into account. This is again done by setting the
stress limit to half the ultimate strength, but for the joint this
time. Multiple stress simulations have been performed for the
joint with the spring attached to find the maximum spring force
for which the joint does not exceed the stress limit in any
configuration. This leads to the following constraint equation:

Fspring < Ffatigue (15)

For the compression spring, a constraint is needed that
prevents the spring from buckling. This is given as [15]:
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∆L

L0
< 0.812(1 −

√
1 − 6.87(

D

L0
)2) (16)

When the compression spring coil windings are all pressed
together to the point of contact, the spring cannot compress
further. Therefore a limit to the minimum compression spring
length Lmin must be set as:

nd < Lmin (17)

For a tension spring, a limit must be given to the value of
L0 to prevent it from converging to the unpractical expected
value of zero. To do this, the mildly exaggerated assumption
is made that no pretension can be given to the spring. Then,
when all windings are in contact, the minimum value of L0

is reached.

nd < L0 (18)

TABLE II: The boundaries and constraint equations imposed
on the optimization for the different scenarios.

G. Experimental validation

1) Prototype: The prototype has minor adaptations relative
to the optimized model. The number of tetrahedra has been
increased on the first arm, such that the number of tetrahedra
per arm length is equal on both arms. To reduce material usage,
the prototype has been scaled down to an Rin of 5e-2 m and
∆R of 2e-2 m. According to the sensitivity analysis, these
changes do not have an effect on the axi-symmetry of the joint
energy field. Furthermore, the second arm has been reinforced
in bending by placing thin walls on the outer edges of the
arm in the spaces between the tetrahedra. This has been done
after considering that the thickness of the second arm was
optimized to 1.7e-3 m (Table III), while the first arm has a
thickness of 5e-4 m (Table I). This large difference in thickness
and the fact that bending stiffness scales with thickness to the

Fig. 9: The prototype joint with spring attached.

power of three, leads to the assumption that the second arm
can be considered as rigid. An interface has been placed on
the base of the joint in order to be able to attach it to the
setup. At the end-effector, another interface has been attached
that can connect to the spring and to the setup through a
hook bolt. The hook bolt reduces the attachment radius of the
spring by a non-negligible amount of 2.6e-2 m. Therefore, the
spring optimization has been redone for the new configuration,
following the identical optimization procedure as described
previously. A tension spring is chosen that closely resembles
these new optimization parameter values, but is not identical
because of spring availability. To mitigate this difference, x0

is again optimized with the now known tension spring and its
fixed values of ks and L0. The spring has a ks of 4.954e2
N/m, L0 of 2.94e-2 m and x0 of -8.16e-2 m. The prototype
joint with attached spring can be seen in Fig. 9

2) Setup: The setup consists of a rigid structure with three
translational stages which are perpendicular to each other and
two rotational stages which are also perpendicular (Fig. 10).
A 6 DoF sensor with a moment resolution of 0.002 Nm is
placed in the structure to measure the moments and forces,
which are displayed in real time. An attachment slot for the
joint is located on the fixed frame of the setup, such that when
the joint is attached, the initial center of rotation of the joint
coincides with the axes of rotation of the rotational stages. On
the other end of the setup, there is an interface that can connect
to the end-effector with the help of the hook bolt and screws.
These screws have been pretensioned with the intend to allow
rotation around the end-effector with minimal friction, while
still having negligible play between the parts.
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3) Measurement procedure: Before the end-effector is at-
tached to the setup, the setup segment that connects to the end-
effector is rotated to its most vertical position. All forces and
moments are calibrated to zero at this instance. Next, the end-
effector is attached to the setup. Each location on the spherical
surface can be reached through a combined rotation of the two
rotational stages. Every time the end-effector is rotated to a
new location, the rotational stages are fixed in place with the
help of an integrated rotation lock. After that, the reaction
forces are observed. The reaction forces that are tangential
to the rotation of the end-effector are directly correlated to
the measured moment, according to M = FL. Any deviation
from this relation is caused by a center shift of the joint that is
being constrained by the setup. Moreover, the force normal to
the rotation of the end-effector should be zero when the end-
effector is rotating around the center of rotation. Any deviation
from a normal force of zero is again caused by a center shift
that is being constrained by the setup. Thus, to compensate for
this, the three translational stages are manually adjusted until
the observed reaction forces indicate no deviation from the
center of rotation. When that is done, the measured moment
is saved for that location. This procedure is repeated until the
same locations on the spherical surface are reached as in the
simulations, creating a moment field. An unwanted side-effect
is that the moment caused by the weight of the setup segment
that connects to the end-effector is also measured. This is
accounted for by performing a separate measurement without
the joint attached and is therefore purely a measurement of
the moment caused by the weight of the setup segment itself.
The resulting moment field is subsequently subtracted from the
original measurement to obtain the true moment field of the
joint. Two different experiments are performed: one without a
spring to validate the axi-symmetrical moment field and one
with a spring to validate the neutral stability performance.

III. RESULTS

In this section, the results of the joint and spring optimiza-
tion are shown, followed by the results of the experimental
validation.

A. Optimization results

The results of the joint optimization for an axi-symmetrical
energy field can be seen in Fig. 11. Its corresponding opti-
mized parameters and the percentual improvement in objective
function value can be found in Table III, where ∆fsymmetry

is relative to the original joint. To compare the simulation
and prototype, of which the latter is directly measured in
moments, the neutral stability performance of both is given as
the percentual moment reduction. This gives the difference in
RMSE between the axi-symmetrical joint and neutrally stable
joint as a percentage, relative to a constant zero moment field:

Mred = 100(1 −
∑N

i=1Mcom(i)∑N
i=1M(i)

) (19)

Fig. 10: The experimental setup with the prototype joint.

TABLE III: The optimized parameters of the joint.

The optimized spring parameters and its percentual moment
reduction can be found in Table IV. The table displays the
three different scenarios that have been optimized as described
before. From left to right respectively, these are: the theoretical
best result, the constrained result for a realistic compression
spring and the constrained result for a realistic tension spring.
For the theoretical best result, the combined energy field of
both spring and joint, which forms the neutrally stable joint,
can be found in Fig. 12.

TABLE IV: The optimized parameters of the spring.
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Fig. 11: The optimized axi-symmetrical energy field of the
joint. Top: Isometric perspective. Bottom: 2D perspective
including data points (red) and range of motion (black) up
to which it is optimized for.

B. Experimental validation results

The results of the experimental validation are given in Fig.
13 for both the physical prototype and its simulation. For the
prototype measurements, an average uncertainty of ±0.0191
Nm is estimated. Multiple cross-sections of the moment field
are displayed for a value of θ from 0 to 30 degrees. Each cross-
section represents a single direction in the moment field given
by φ. For every moment field, eight directions are viewed,
each with a 45 degree difference of φ relative to the previous
direction. Comparisons can be made in both axi-symmetry and
neutral stability. For the latter, a percentual moment reduction
of 83.69% was achieved by the prototype, compared to 89.71%
in the simulation.

IV. DISCUSSION

The axial symmetry of the optimized energy field in Fig.
11 shows roughly the desired result. As can be seen from
Table III, an improvement of 92.51% in the axi-symmetrical
objective function is achieved. The resulting parameters of the

Fig. 12: The energy field of the theoretically best neutrally
stable joint. Top: Isometric perspective. Bottom: 2D perspec-
tive including data points (red) and range of motion (black)
up to which it is optimized for.

spring optimization can be seen in Table IV. The theoreti-
cal best optimization result achieves a moment reduction of
92.92%. Its negative value of x0 indiciates a preference for a
tension spring. Furthermore, L0 is optimized to a value of zero,
which was predicted from eq. 8. Both the scenarios that are
constrained to a realistic compression or tension spring have a
non-zero value of L0, smaller absolute value of x0 and larger
value of ks relative to the theoretical best result. Even though
the parameter differences are significant, the difference in the
percentual moment reduction is small. This suggests that there
is a widespread range of parameter combinations that produce
a local minimum of the objective function, which are near
equal in performance. The magnitude of the combined energy
field has no inherent limit in the optimization. This can be
seen in Fig. 12, where the magnitude of the combined energy
field of both spring and joint is significantly larger than the
energy field of the joint alone (Fig. 11). Even though this
will result in the best neutral stability, an energy field that
is too large in magnitude might pose a twofold of problems
in reality. First, the forces created by such a large constant
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Fig. 13: Comparison between the simulation and prototype.
Given as the moment as a function of θ for multiple directions
in the moment field defined by φ.

energy in the system might decrease the fatigue lifetime of the
mechanism. This is taken into account as a constraint function
in the realistic compression and tension spring optimization.
Secondly, the center of rotation is likely to shift more with
increased spring force.

The results of the experimental validation show a clear
similarity between the axi-symmetry of the simulation and
the prototype, with only minor deviation (Fig. 13). The neu-
tral stability performance shows some variation, while still
maintaining general similarity in shape and magnitude. The
slight decrease in neutral stability of the prototype has to be a
result of the addition of the spring, since the variation in axi-
symmetry of the joint moment field is too minor to explain
the decrease. It is possible that the center shift is larger with
the spring attached than predicted by the simulation, causing
disturbances in the resulting moment field.

Finally, some additional effects on the aspects of the
final design have been observed. Even though the central
spring solution performs as expected, it also has a number
of disadvantages. The spring has two attachment points: at
the end-effector and the setup frame. These points allow a
small amount of rotation that is strictly not compliant. Thus,
while the joint and the spring themselves are compliant,
the connection between the two is not, making the overall
mechanism quasi-compliant. Moreover, the version of the joint
that incorporates a tension spring does not have a center
of rotation that is truly remote, because the tension spring
coincides with the center of rotation. The version of the joint
that uses a compression spring does have a true remote center
of rotation. A side-effect of the final design is a constraint on
the third rotational degree of freedom around the end-effector.
This degree of freedom was originally largely provided by
bending of the second arm, but since the second arm is now
effectively rigid, the third degree of freedom is constrained as

well. However, it is not constant, but still has minor rotations
as a result of bending deformation in the first arm.

V. CONCLUSION

This paper presents the design of a quasi-compliant spher-
ical joint which can achieve neutral stability in two rotational
degrees of freedom and has a remote center of rotation.
This is achieved by creating a neutrally stable version of the
existing Tetra I joint [6]. The initial joint was simulated and
its energy properties as a result of rotation on the spherical
surface were visualized and described mathematically. For
best performance, the joint was first optimized for an axi-
symmetrical energy field in a range of motion of 30 degrees
in all directions from the neutral position. To achieve neutral
stability, a spring was added and optimized to minimize the
energy deviation of the combined energy field. The optimized
parameters were incorporated in a prototype to experimentally
validate the theoretical results. For this, a setup was made that
measures the moments and forces as a result of the rotation
of the joint. Neutral stability, measured as the percentual
moment reduction, was improved by 83.69% in the prototype,
compared to 89.71% predicted by the simulations.
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3
Discussion

In this chapter, the results from the paper will be discussed in relation to the application of an exoskele
ton shoulder joint. Furthermore, a number of research directions are proposed for future work.

3.1. Feasibility as exoskeleton shoulder joint
The joint that has been designed and optimized in the paper shows a moment reduction of 83.69%
as a result of static balancing with the spring. This is promising for the application of an exoskeleton
shoulder joint, as it has greatly reduced resistance to rotation. While it is a significant improvement
in relative terms, there still remains an approximate maximum moment of 0.1 Nm to overcome for the
exoskeleton’s wearer. An additional source of potential resistance lies in the attachment point of the
spring. It is attached to the endeffector and to the setup frame. These points allow a small amount of
rotation that is strictly not compliant. Thus, while the joint and the spring themselves are compliant, the
connection between the two is not, making the overall mechanism quasicompliant. A way to decrease
the required moment further is by changing the material, and therefore also the stiffness, of the joint.
In the entire paper, titanium alloy is used as the material with a relatively high Young’s modulus of 190
GPa. Choosing a material with reduced Young’s modulus will lower the residual moments. However,
this could have adverse effects on the offaxis stiffness of the joint, which should be kept into account.

Another point of interest lies in the degrees of freedom that have been made neutrally stable. The
full rotational capability of the human shoulder joint is provided by three degrees of freedom. The
external joint on the other hand, has been designed for two rotational degrees of freedom that are
neutrally stable. Therefore, the current joint can accommodate only two rotations, whereas the third
rotation around the endeffector would have to be facilitated by a conventional rigid body hinge at the
moment.

For optimal performance, the center of rotation of the human shoulder joint and the external joint
should coincide. The design incorporates a spring that could either be a tension spring or compression
spring. In the case of a tension spring, it goes through the center of rotation and would therefore also
need to go through the human shoulder. The tension spring variant is thus not feasible for exoskeleton
applications. However, the compression spring variant can be used as an exoskeleton shoulder joint,
since it does not coincide with the center of rotation. With a compression spring, the joint can fit rea
sonably compact around the human shoulder due to its semicircular form. Only a relatively modest
space between the skin and external joint would be required to fit the compression spring.

The joint is optimized for a range of motion of 30 degrees in all directions from the neutral position.
In other words, each degree of freedom has a total range of motion of 60 degrees. Ideally, the human
shoulder joint needs a larger range of motion to perform activities of daily living. A maximum of 167
degrees range of motion is needed to perform all activities for daily living, this is for flexion/extension and
less for the other rotations [6]. Although the joint is optimized for a total range of motion of 60 degrees,
rotations that are larger are possible, but are less neutrally stable. Furthermore, the stresses in the
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16 3. Discussion

joint will eventually reach a point where plastic deformation occurs. To further investigate the effect of
a larger range of motion on neutral stability, an additional analysis has been performed (Appendix B.4).

3.2. Future work
There are a number of aspects that could be further explored in future work. Research can be done in
making the joint truly compliant. This could be achieved by replacing the spring attachment points with
compliant connections for example. Furthermore, a way could be devised to allow the use of tension
springs while not compromising the remote center of rotation. This can be done by, for instance, having
a virtual resulting force created by multiple spring elements in the place of the single physical spring.
Throughout this thesis, gravity has been a negligible aspect of the joint, largely because the residual
moment of the stiff and light titanium prototype is more dominant. If a version of a less stiff or more
dense material would be made, gravity might become prominent. Therefore, a version could be created
that is unaffected by gravity, either in a static or dynamic configuration. For further integration in an
exoskeleton, and likely other applications, the third rotational degree of freedom can be made neutrally
stable as well.



4
Conclusion

The goal of this thesis is to design a compliant spherical joint which can achieve neutral stability in
two rotational degrees of freedom and has a remote center of rotation. This has been achieved with
a solution based on the addition of two reversed energy fields. When combined, the resulting energy
field is near constant and therefore neutrally stable.

Using the foundations of an existing compliant spherical joint with a remote center of rotation, a
model has been created with ANSYS. Simulated rotation of the joint’s endeffector to any location in
its spherical range of motion is made possible by this model to obtain the energy field of the joint. In
order to make the joint neutrally stable, two subsequential optimizations are performed. The joint is
first optimized for an axisymmetrical energy field. A spring is then added to the joint and optimized to
minimize the energy deviation of the combined energy field.

In order to verify the performance of the final design and its correspondence to the simulations, a
prototype is made and experimentally validated. Neutral stability, measured as the percentual moment
reduction, was improved by 83.69% in the prototype, compared to 89.71% predicted by the simulations.
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A
Literature report

Before the main thesis project, a literature review was performed in order to obtain more knowledge
about existing zero stiffness compliant rotary joints. The findings were classified and compared to
create a clear overview of the state of the art. The literature report can be found in this section.
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Classification and comparison of zero stiffness
compliant rotary joints

Dion Hogervorst

Abstract—Many advantages can be attributed to compliant
mechanisms for joint applications. A downside however, is that
energy is required to rotate because of its elastic deformation.
Designing a compliant joint that is neutrally stable removes this
disadvantage. Neutral stability is part of the overarching term
of zero stiffness, with largely the same working principles. To
give insight in the diversity and performance of zero stiffness
compliant rotary joints, this paper aims to provide a classification
and performance comparison of existing designs. The classifica-
tion is based on a combination of the working principle of zero
stiffness and the type of compliant rotary joint. It shows that a
significant part of designs make use of leaf springs and opposed
torque curves, where zero stiffness is achieved by counteracting
the torque curve of one element with an equal and opposite
torque curve of another element. Examples of the categorised
mechanisms are given as well. The performance comparison
shows the qualitative and quantitative criteria, based on the
amount of available data. Large differences between designs can
be seen both outside of, and within, the defined categories.

I. INTRODUCTION

Compliant mechanisms have a number of advantages
over their traditional rigid-body counterparts. By achieving
motion through elastic deformation rather than sliding or
rolling contact, friction and the wear that accompanies it, is
non-existent [18, 19]. This removes the need for lubrication
and reduces backlash as well, resulting in higher precision.
Manufacturing costs are low due to a relatively small amount
of components and reduced assembly. Furthermore, compliant
mechanisms are relatively lightweight and have high potential
for applications that require miniaturized mechanisms.
All these aspects make compliant mechanisms attractive
candidates for use as rotary joints. However, compliant
mechanisms have disadvantages as well. For joints especially,
one disadvantage is the fact that it requires energy to rotate
in the desired direction due to its elastic deformation. This
disadvantage can be counteracted by designing the compliant
joint to be neutrally stable. If a mechanism is neutrally stable,
its total potential energy remains constant for its desired
range of motion [43]. This means that the mechanism has
no preferred position and that no energy needs to be added
to change it. Zero stiffness is often used as a synonym
for neutral stability. Even though, strictly speaking, neutral
stability implies constant energy and therefore zero torque,
while zero stiffness refers to both constant torque and zero
torque. In practice, the working principles for both constant
and zero torque mechanisms are largely the same, therefore
the scope of this paper is not limited to neutral stability, but
encompasses zero stiffness as well. So far, work has been
done to classify compliant joints in multiple ways [32, 41].

Methods for achieving zero stiffness have been reviewed
as well [10, 22, 43]. However, no effort has been made to
classify and compare joints that are both compliant and zero
stiffness. Such a work could give valuable insight into the
diversity and performance of the extraordinary joints that are
both compliant and zero stiffness.

This paper aims to provide a classification of zero stiffness
compliant rotary joints, based on the working principles for
achieving zero stiffness and the type of compliant rotary joint
that is used in the design. Furthermore, an effort is made
to compare the different designs using performance criteria
deemed relevant for zero stiffness joint applications. This pa-
per is structured as follows. Section II explains the method for
the literature search, classification and performance criteria.
Section III shows the corresponding results in detail, which
is discussed in section IV. Finally, section V summarises and
concludes this paper.

II. METHOD

A. Literature search
In order to find relevant literature in a systematic way, a

search string that encompasses synonyms of ’zero stiffness’,
’compliant’ and ’rotational’ has been made. In the last column,
words that can insinuate a rotational degree of freedom have
been included as well. Some terms are allowed to contain one
word in between the others and still be relevant, for example:
’zero bending stiffness’, this property is shown with ’PRE/1’.
Terms with an asterisk contain any words that can be made
with the preceding word part. For a higher relevance, a limit
of 30 words has been set between the different groups (Fig.
1). Three databases have been used for this search: Scopus,
Web of Science and IEEE.

Fig. 1. Search string used to find relevant literature.
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For a paper to be included in this review, it needs to
suffice in three conditions: compliant motion, zero stiffness
and a rotational degree of freedom. A design is considered
compliant if the rotation is facilitated by elastic deformation
of an element. It is zero stiffness when the torque approaches
either a constant or zero for a certain range of motion. Finally,
it must have at least one rotational degree of freedom that is
linked to compliancy and zero stiffness.

B. Classification

The classification will be done in two separate main cate-
gories. First, the working principle of zero stiffness and second,
the type of compliant rotary joint, which are visualized on the
top and left of Fig. 5 respectively. Each design is identified
by a subcategory of both.

1) Working principle of zero stiffness: This main category
can be split in two branches: internal stresses and opposed
torque curves. The branches are partly inspired by Kok ([22])
and Tarnai ([45]). The branch of internal stresses contains all
principles for approximating zero stiffness that rely on a single
compliant element. The designs that fall under this category
can still contain multiple elements, as long as they are individ-
ually designed to achieve zero stiffness. Controlled deflection
is a subcategory of this branch. This contains single element
designs that approach zero stiffness by carefully designed
geometry without local continuity, in contrast to the category
of geometric continuity, which will be introduced later in this
chapter. The branch of opposed torque curves captures the
principles that rely on multiple compliant elements, where a
torque curve and an equal and opposite torque curve cancel
each other out, either is produced by a different element or
group of elements (Fig. 2). The lowest branches of these
categories are the final subcategories where the designs are
classified in and are therefore individually defined below.

a) Negative stiffness state: This category is characterized
by an increasing torque curve that is created by a positive
stiffness element and a decreasing torque curve created by an
element in a negative stiffness state. Here, a negative stiffness
state is defined as local negative stiffness behaviour as a result
of stresses in the element, potentially in combination with
a transmission. An example of this is buckling of a flexure.
The respective elements do not individually transition between
positive and negative stiffness across the zero stiffness range
of motion.

b) Reversed stiffness state: When the elements that cre-
ate the opposed torque curves cannot be distinguished between
a continuously positive and continuously negative stiffness
element, it falls in this category. The elements are constantly
in a state of reversed stiffness relative to each other, be it
positive or negative stiffness. Both elements must be pre-
stressed and strain energy is redistributed between the elements
during rotation. A transmission is usually in place that creates
the desired reversed stiffness states and its non-linear torque

Fig. 2. Examples of torque vs angle for the branches opposed torque curves
(top) and internal stresses (bottom). It can be seen that the branch of opposed
torque curves relies on multiple elements, while the branch of internal stresses
approximates zero stiffness with a single element.

curve, such that both elements cancel each other out. Often
identical elements are used in these joints and high levels of
symmetry can be observed.

c) Elastic controlled deflection: A single element that
is in a state of elastic deformation. It is designed as such
that when it deflects, it does so in a way that approximates
zero stiffness behaviour. In reality the stiffness curve will
fluctuate around a constant equilibrium. Often an optimization
procedure is carried out to minimize this fluctuation.

d) Pseudo-elastic controlled deflection: Pseudo-elasticity
is a phenomenon seen in shape memory alloys. With increas-
ing stress, the material does not only elongate like any other, it
also undergoes a structural phase transition that is reversible
[13]. Because of this, a region of near constant stress and
thereby also zero stiffness is created, see Fig. 3.

e) Geometric continuity: In this category, zero stiffness
is maintained by ensuring that the designed geometry is
locally continuous during deflection. This means that the local
deflection does not change in anything but location. Since
the reaction torque is produced by the local deflection, and
the local deflection remains constant, the reaction torque is
constant as well.
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Fig. 3. General pseudo-elastic behaviour. Adapted from [13].

2) Type of compliant rotary joint: The branches of this
main category are based on lumped compliance and distributed
compliance. Lumped compliance refers to localised bending
in a concentrated low stiffness region of the joint [1, 11].
Distributed compliance refers to joints that use a wider region
of intended bending (Fig. 4). The following subcategories are
largely inspired by Machekposhti et al. ([32]) and Sataloff et
al. ([42]).

a) Notch joint: Any joint that is intended to bend locally
as described earlier in the definition of lumped compliance,
falls in this category. This is usually achieved by an area
with thinner geometry, creating lower stiffness. Origami based
designs are included in this category, since those rely on local
crease-lines with lower stiffness to bend.

b) Wire spring: A wire spring is a thin, long and origi-
nally straight wire shaped spring that is axisymmetrical. It has
low stiffness in all of its rotational degrees of freedom.

c) Leaf spring: Leaf springs are defined as shaped like a
rectangle where the thickness is many times smaller than the
width, which in turn is many times smaller than the length.

d) Curved spring: When a spring is not straight in its
undeformed position, it is defined as a curved spring. A
common example of this is a helical spring.

e) Tape spring: Any spring that has a transverse curva-
ture and is straight in longitudinal direction, is considered a
tape spring [21]. A well known example of a tape spring is a
measuring tape.

f) Contact based: Contact based joints make use of direct
contact between parts of the joint that are not physically
attached to one another. This imposes boundary conditions
on the motion of the joint. Note that while this category still

represents compliant motion, the physical contact can result
in small amounts of friction.

Fig. 4. Lumped compliance on the left and distributed compliance on the
right. Retrieved from [1].

C. Performance criteria
Each found design will be compared using performance

criteria that are deemed relevant for functioning as a zero
stiffness compliant rotary joint, some of these criteria have
been identified before by Trease et al. [47]. All performance
criteria are described below.

a) Range of motion: The angle of rotation that can be
achieved in the zero stiffness region is called the range of
motion. This criterion is important when a minimum amount
of rotation must be made with zero stiffness behaviour.

b) Zero stiffness error: Represents how close the design
is to actual zero stiffness. Defined as the average absolute
stiffness value across the range of motion.

c) Scaled zero stiffness error: Each design is tested using
a specific material. Since stiffness scales linearly with the
Young’s Modulus, the zero stiffness error is highly dependent
on material choice. Therefore, the scaled zero stiffness error
is a representation of the zero stiffness error in a hypothetical
situation where each design has equal Young’s Modulus. The
chosen value for this is 100 GPa. A more objective comparison
of the designs can be given with this criterion.

d) Volume: The size of a joint is relevant, as each
application requires specific sized joints. Furthermore, the size,
just as material, has impact on the stiffness. However, each
design has vastly different geometry and working principle and
it is therefore not trivial to scale objectively to equal size. For
this reason as well, the volume of the joint is useful to provide
context for the values of the (scaled) zero stiffness error. This
criterion is given as the smallest volume that encompasses the
joint.

e) Development stage: Practice and theory can yield
vastly different results. Therefore, the development stage of
each design is stated. Three levels of development are recog-
nised: analytical, simulation and prototype. Analytical repre-
sents a design where its performance is based on mathematical

22



Fig. 5. The derivation of categories for both the type of compliant rotary joint and the working principle of zero stiffness. The amount of designs found in
each combination of categories is shown as well.

formulation only. Simulation includes any physics simulation
software, usually FEM. Prototype status is given when a
physical model is fabricated and tested.

f) Off-axis stiffness: Defined as the stiffness in the other
directions than the one that is meant to be zero. For many
joint applications it is necessary to maintain a minimum off-
axial stiffness for proper functioning. In essence, five degrees
of freedom can be identified as off-axis. However, since
orientation of the joint is adjustable, this can be reduced
to three: rotational, perpendicular translational and parallel
translational. Rotational is defined as the weakest of the
two off-axis rotational stiffnesses. Perpendicular translational
is the weakest of the two translational stiffnesses that act
perpendicular to the intended zero stiffness axis of rotation.
Parallel translational is the translational stiffness parallel to
the intended zero stiffness axis of rotation.

g) Axis drift: When compliant joints deflect, it is some-
times accompanied by a shift in the center of rotation, known
as axis drift. It is usually undesired for joint applications. A
higher degree of symmetry leads to a decrease in the axis drift
severity [15].

III. RESULTS

A. Classification

The amount of designs that were found in each cross-
category can be seen Fig. 5. Large differences can be seen
in the representation of different cross-categories. Each rep-
resented cross-category will be described with an example
below, sorted by working principles of zero stiffness. The
corresponding papers are given as well in numerical order after
the name of the cross-category.

a) Negative stiffness state & Notch joint [24, 39]: An
example design consists of a positive stiffness notch joint that
is extrapolated in a helical pattern and a hyperelastic tensioned
element to provide the counteracting negative stiffness (Fig.
6) [39]. During rotation, the force created by the negative
stiffness element changes in magnitude, direction and moment
arm. All these aspects affect the produced torque. The total
torque of the system is balanced at zero, creating a neutrally
stable mechanism.
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Fig. 6. Negative stiffness state & notch joint example. Left shows the central
notch joint extrapolated in a helical pattern. Right schematically shows the
entire joint, including negative stiffness element. Adapted from [39].

b) Negative stiffness state & Leaf spring [2, 3, 4, 6, 7,
23, 24, 25, 29, 31, 33, 34, 48, 50]: A clear example of this
common cross-category is designed by Bilancia et al. [4]. It
consists of an inner ring and outer ring that are connected by
two general positive stiffness elements and by two negative
stiffness elements in the form of pre-buckled leaf springs
(Fig. 7). As the inner ring rotates relative to the outer ring,
the positive and negative torque effectively cancel each other,
resulting in zero stiffness behaviour.

Fig. 7. Negative stiffness state & leaf spring example. Positive and negative
stiffnesses cancel each other. The negative stiffness elements are given in blue
and the positive stiffness elements in red. Retrieved from [4].

c) Negative stiffness state & Curved spring [4, 29, 33]:
An example design is made using crossed leaf springs as the
positive stiffness element and a curved spring in the form of a
helical spring as the negative stiffness element, see Fig. 8 [33].
The helical spring is in a state of tension and counteracts the
torque created by the leaf springs during rotation. It should be

noted that the force created by the helical spring has changing
magnitude, direction and moment arm during rotation, all of
which affect the torque it provides.

Fig. 8. Negative stiffness state & curved spring example. The helical spring
is in a state of tension and counteracts the torque created by the leaf springs
during rotation. Retrieved from [33].

d) Reversed stiffness state & Notch joint [30]: A notch
joint design in the form of origami in a kresling pattern [30].
Two kresling modules are placed on top of each other in a
mirrored fashion (Fig. 9). The height and rotation are coupled
for both kresling modules. As one decreases its rotation
angle, the other increases instead. Strain energy is redistributed
between the kresling modules during rotation, resulting in a
region of quasi zero stiffness.

Fig. 9. Reversed stiffness state & notch joint example. Based on stacked
kresling modules that rotate in reversed direction. Retrieved from [30].

e) Reversed stiffness state & Leaf spring [5, 9, 28, 35,
36, 46, 52]: In this design example, two sets of leaf springs
have been applied to statically balance a cross-axis flexural
pivot (Fig. 10) [36]. As the mechanism rotates, one set of
leaf springs deflects further and the other set deflects less,
redistributing the strain energy within the system, including the
cross-axis flexural pivot. The two sets of leaf springs represent
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a close approximation of zero length springs. Together with
the cross-axis pivot, they create a resultant force vector that
goes through the center of rotation, creating a zero torque
motion. Although the cross-axis flexural pivot does create a
torque on its own, the working principle here is mainly based
on reversed stiffness states between sets of leaf springs. This
is elegantly shown by Herder, where a similar design works
without a central torque-producing element as well [16].

Fig. 10. Reversed stiffness state & leaf spring example. Two sets of leaf
spring deflect in reversed direction while rotating. Together with the central
pivot, this creates a statically balanced joint. Retrieved from [36].

f) Reversed stiffness state & curved spring [20]: An
example design of this group is made out of a single curved
spring shaped in a way where it acts like two separate torque
producing elements [20]. A number of constraints are in place
that are enforced by rigid-body contact in reality. Initially, the
design is put in a stressed position, as can be seen in Fig. 11.
During rotation, energy is transferred from one torsion bar to
the other. This results in a near zero stiffness range of motion.

Fig. 11. Reversed stiffness state & Curved spring example. The curved spring
is shaped to behave as two separate torque producing bars. During rotation,
energy is transferred from one bar to the other, keeping the overall energy
constant. Retrieved from [20].

g) Elastic controlled deflection & Notch joint [40]: An
adaptable design based on origami is an example of this group.
It consists of a folded sheet with a number of crease lines with
localised low stiffness, see Fig. 12 [40]. During deflection, the
internal reaction torque approaches a constant. This is created

by the combined reaction torque of the individual crease lines.
Three different versions of this design are given by Rommers
et al., all are zero stiffness. One is a constant moment joint, the
other a gravity compensating joint and the last a zero torque
joint.

Fig. 12. Elastic controlled deflection & notch joint example. While rotating,
the combined reaction torques of the crease lines approaches a constant.
Retrieved from [40].

h) Elastic controlled deflection & Leaf spring [12, 26,
49]: Consisting of a inner and outer ring connected by leaf
springs, this design is an example of multiple elements where
each element has individual zero stiffness (Fig. 13) [49].
When a leaf spring buckles, a local negative stiffness region is
created. In this case, the leaf springs are optimized such that
when it buckles it closely resembles zero stiffness behaviour
in a finite range of motion. The leaf springs are not buckled in
the initial configuration and thus require an applied pre-stress
before it can function as a zero stiffness joint.

Fig. 13. Elastic controlled deflection & leaf spring example. Each individual
leaf spring buckles such that it approaches zero stiffness within the range of
motion. Retrieved from [49].
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i) Elastic controlled deflection & Curved spring [17, 27,
37, 38]: Similar to the previous example, this design consists
of an inner and outer ring connected by three curved springs
[37]. Each individual curved spring has been optimized to be
as near to constant torque as possible during deflection. The
outcome can be seen in Fig. 14.

Fig. 14. Elastic controlled deflection & curved spring example. Curved
springs are used that deflect in a way that approaches zero stiffness. Retrieved
from [37].

j) Elastic controlled deflection & Tape spring [8, 14]:
This design uses two tape springs to create a variety of stiffness
behaviours, among them is zero stiffness (Fig. 15) [14]. The
way the deflection is controlled is rather unique: a guideway
profile is carefully designed that leads the deflection of the
tape springs along a desired path. The design of the guideway
determines the stiffness behaviour. Because two tape springs
are used, there is a remote center of rotation.

Fig. 15. Elastic controlled deflection & tape spring example. Two tape
springs follow a guideway to create specific stiffness behaviour, including
zero stiffness. Retrieved from [14].

k) Pseudo-elastic controlled deflection & Leaf spring
[44]: The only design found in this category uses the previ-
ously explained pseudo-elastic behaviour to approximate zero
stiffness (Fig. 3). A pseudo-elastic leaf spring is used with
braced and unbraced parts, to better control the deformations
and focus bending in the unbraced areas (Fig. 16) [44].

Fig. 16. Pseudo-elastic controlled deflection & leaf spring example. Pseudo-
elastic material is used to create zero stiffness. Bending is focused in the
unbraced parts of the leaf spring. Retrieved from [44].

l) Geometric continuity & Tape spring [51]: This ex-
ample consists of a classic tape spring, similar to a common
measuring tape. When in unbend configuration, it has non-zero
stiffness [51]. Resistance is met during initial bending, until
a certain point is reached where it suddenly snaps through,
creating a flat localised fold (Fig. 17). This localised fold
contains virtually all strain energy in the tape spring. The edges
of this fold expand outward during bending and do not change
in geometry, resulting in a constant reaction torque.

Fig. 17. Geometric continuity & tape spring example. After a certain amount
of bending, a fold is created with continuous geometry that has zero stiffness.
Retrieved from [51].

B. Performance comparison

Not all of the performance criteria have been measured
or even mentioned in all of the papers. Because of this,
a division has been made between quantitative performance
criteria and qualitative performance criteria. The qualitative
performance criteria are either not given numerically or are
barely mentioned in all papers. Corresponding criteria are
’development stage’, ’off-axis stiffness’ and ’axis drift’. Off-
axis stiffness is separated into three stiffnesses as discussed
before: rotational stiffness (KR), perpendicular translational
stiffness (KT⊥) and parallel translational stiffness (KT‖). The
qualitative performance is given as ’+ +’, ’+’, ’-’ and ’- -’,
from best to worst respectively and is based on an evaluation
of the data that is still available in the papers. The development
stage is given here as well in the three previously described
levels: analytical (A), simulation (S) and prototype (P), see
Fig. 18. The quantitative performance criteria contain factual
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Fig. 18. Comparison of the designs according to the qualitative performance criteria.

Fig. 19. Comparison of the designs according to the quantitative performance criteria, using a logarithmic scale.
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values that are derived from the papers. Some values are
given directly and are confidently correct, these are given
in green. Other values are found indirectly, for example by
differentiating data from a figure, these values are given in
orange (Fig. 19). To distinguish between a value of zero and
no data, the name of the design is removed in the criteria
where no data is present. The individual designs are named as
follows: the first letter represents the category for the working
principle of zero stiffness, the second letter represents the type
of compliant rotary joint and the number after that equals the
corresponding paper reference. The letters of the categories for
working principle of zero stiffness are: negative stiffness state
(N), reversed stiffness state (R), elastic controlled deflection
(E), pseudo-elastic controlled deflection (P) and geometric
continuity (G). For the type of compliant rotary joint, the
categories and letters are: notch joint (N), leaf spring (L),
curved spring (C) and tape spring (T). Rarely, a design falls
into multiple categories of compliant rotary joints. When that
is the case, multiple letters are given for the type of compliant
rotary joint. Some papers contain multiple designs, these are
labelled with an extra letter at the end to distinguish between
them. For clarity, those designs are briefly described here.
Thanaki et al. created two designs, R L 46a is the design
made out of 2 beams, while R L 46b is the one made
out of 3 beams [46]. Rommers et al. created three designs,
E N 40a is the constant moment joint, E N 40b is the gravity
compensating joint and E N 40c is the zero moment joint
[40].

IV. DISCUSSION

From the categorisation in Fig. 5, it can be concluded that
the vast majority of designs is based on leaf springs and the
branch of opposed torque curves. A possible explanation for
this occurrence, is that leaf springs are commonly used in
general purpose compliant mechanisms and are one of the
less complex building blocks, making it an attractive option.
Moreover, the branch of opposed torque curves is arguably
more intuitive and known to be used as a working principle
of zero stiffness. The wire spring is not used once, this can
be explained by the fact that wire springs are the three-
dimensional equivalent of leaf springs in terms of degrees of
freedom and most designs are based on a two-dimensional
configuration. The off-plane stiffness that a leaf spring pro-
vides would then make leaf springs the better option. The
underrepresentation of tape springs in the opposed torque
curves branch is to be expected, since tape springs have an
inherent tendency to have zero stiffness properties as a single
element and thus do not necessarily require multiple elements
[21]. The possibility of friction in contact based designs could
explain the lack of designs in that category. This is because
friction is a non-conservative force and converts kinetic energy
to thermal energy. This excludes a constant energy level in a
passive mechanism, making neutral stability impossible. Still,
contact based designs can be made frictionless if there are
no sliding or rollings contacts and should therefore not be

prematurely discarded as a viable option. Indeed, if properly
designed, contact based joints have the potential to provide
an elegant solution for achieving zero stiffness in designs that
would otherwise require more complex compliant elements.
The working principles of pseudo-elasticity and geometric
continuity are both only represented by a single design without
any apparent explanation and therefore have potential for novel
designs in future research as well.

The qualitative and quantitative performance criteria (Fig.
18 and 19) both show that within each category for working
principle of zero stiffness and type of compliant rotary joint,
there are vast differences in performance. This was to be
expected, as the same working principle can yield a myriad
of design solutions. Still, some trends can be found in the
data. The N L group for example, has relatively high scaled
and unscaled zero stiffness error on average, as well as large
volume. It should be noted that this group has an develop-
ment stage consisting almost exclusively of prototypes and is
therefore more likely to have worse performance compared to
more theoretical stages.

Another interesting correlation must be highlighted that is
not readily visible in the data. The range of motion of a design
is largely based on what the authors themselves consider the
zero stiffness range. However, the joint is usually able to rotate
further than that, at the cost of a larger zero stiffness error.
Thus, the range of motion and the (scaled) zero stiffness error
are inversely related.

V. CONCLUSION

The goals of this paper are to provide a classification of
existing zero stiffness compliant rotary joints and to give a
comparison between the designs using performance criteria. A
classification has been made based on the working principle
of zero stiffness and the type of compliant rotary joint. Both
categories have been branched out in their underlying subcat-
egories and each design was attributed to one subcategory of
both branches. Example designs are given of the represented
cross-categories. Furthermore, research gaps are identified in
the combinations of categories that are not represented without
logical reason. Qualitative and quantitative performance crite-
ria are used to compare the designs, based on the data that is
available in the found literature. Together, these criteria give
an impression of the designs and how well they perform as a
zero stiffness compliant rotary joint.

Future research can be done in designing a joint that
uses pseudo-elasticity or geometrical continuity as working
principles to achieve zero stiffness. These working principles
are not well explored for this application and therefore have
potential for novel designs in future research. Furthermore,
contact based designs can be further explored, since no zero
stiffness design has been made using this type of compliant
joint.
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B
Additional analyses

A number of additional analyses have been performed that were either used in the design of the joint
or used for better prediction and understanding of its performance. These analyses can be found in
this appendix.

B.1. Parametric sweep
In this section, the performed parametric sweeps are shown. For each figure, the top and bottom rows
show a 2D perspective and isometric perspective respectively. The left column shows the energy field
for a 50% smaller parameter value, the middle column is the original value and the right column shows
the energy field for a 50% larger parameter value. The material used for the simulated joint in the
parametric sweep is PLA, which affects the height of the energy field.

Figure B.1: Parametric sweep of parameter 𝛾
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Figure B.2: Parametric sweep of parameter 𝛼

Figure B.3: Parametric sweep of parameter 𝛽
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Figure B.4: Parametric sweep of parameter 𝑇

Figure B.5: Parametric sweep of parameter 𝑑
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Figure B.6: Parametric sweep of parameter Δ𝑅

Figure B.7: Parametric sweep of parameter 𝑅𝑖𝑛
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Figure B.8: Parametric sweep of parameter 𝛼2

Figure B.9: Parametric sweep of parameter 𝛽2
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Figure B.10: Parametric sweep of parameter 𝑇2

Figure B.11: Parametric sweep of parameter 𝑑2
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B.2. Complete sensitivity analysis
This section contains all sensitivity analyses, including the influential ones that have been used as
optimization variables. Each figure shows the normalized RMS error of an axisymmetrical energy field
for a parameter variation of ±50%.

Figure B.12: Sensitivity of parameter 𝛾 Figure B.13: Sensitivity of parameter 𝛼

Figure B.14: Sensitivity of parameter 𝛽 Figure B.15: Sensitivity of parameter 𝑇
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Figure B.16: Sensitivity of parameter 𝑑 Figure B.17: Sensitivity of parameter Δ𝑅

Figure B.18: Sensitivity of parameter 𝑅𝑖𝑛 Figure B.19: Sensitivity of parameter 𝛼2

Figure B.20: Sensitivity of parameter 𝛽2 Figure B.21: Sensitivity of parameter 𝑇2
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Figure B.22: Sensitivity of parameter 𝑑2
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B.3. Free spring length analysis
The effect of the free spring length 𝐿0 on the desired energy field of the central spring, is analysed
in this section. From the spring energy equation (eq. 8 in the paper), the error caused by 𝐿0 might
seem significant for values that are not close to zero. Without optimization of variables, this is indeed
the case. However, after optimization of the spring stiffness 𝑘𝑠 and spring attachment location 𝑥0, it is
possible to minimize and predict the error.

Figure B.23: Effect of 𝐿0 on 𝐸𝑠, for 𝑥0 = −𝑅𝑖𝑛 Figure B.24: Effect of 𝐿0 on 𝐸𝑠, for 𝑥0 = 0.5𝑅𝑖𝑛

Figure B.25: Effect of 𝐿0 on 𝐸𝑠, for 𝑥0 = 0

First, to gain understanding of the situation, a number of configurations are discussed that show the
effect of 𝐿0 without optimized values. The figures in this section show the relation between the spring
energy 𝐸𝑠 and the rotation angle 𝜃 for various values of 𝐿0 and spring attachment point 𝑥0. The spring
stiffness 𝑘𝑠 is set at an arbitrary realistic value of 100 N/m in this analysis. Because the function shape
is affected only by relative values, 𝐿0 and 𝑥0 are given as a function of inner joint radius 𝑅𝑖𝑛. A constant
value of 0.067 m is attributed to 𝑅𝑖𝑛.

For negative values of 𝑥0 (Fig. B.23), the spring becomes shorter with increasing angle and thus
should be a tension spring to display a decreasing energy function. The graph corresponding to 𝐿0 = 0
shows the ideal energy function without error. It can be seen that larger values of 𝐿0 result in a lower
and less steep energy function that deviates further from the desired shape. At a certain point, the
function becomes increasing instead of decreasing. This is the point where 𝐿0 becomes equal or larger
than the spring length 𝐿. In that case, the spring behaves as a compression spring that becomes more
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compressed with increasing angle, resulting in increasing energy. For positive values of 𝑥0 (Fig. B.24),
the spring elongates with increasing angle and should therefore be a compression spring to display
a decreasing energy function. In this situation, a certain value of 𝐿0 is required in order to let the
spring behave as a compression spring. For too small values of 𝐿0 the function is increasing instead of
decreasing. This occurs at the point where 𝐿 = 𝐿0 and thus where the energy is zero. After that point,
the spring continues to elongate while it is no longer in a loading mode of compression, but tension.
For sufficiently high values of 𝐿0, the point where the switch occurs is far enough outside of the range of
motion such that the desired energy function can be approximated. The functions created from 𝑥0 = 0
reveal that this is a special case where the energy is constant for every value of 𝐿0 (Fig. B.25). This
can be understood when considering that this value of 𝑥0 coincides with the center of rotation. Thus,
for any rotation, the spring will maintain the same length and therefore also constant energy.

When the parameters 𝑥0 and 𝑘 are optimized, the error is significantly smaller. Fig. B.26 displays
the optimized error of both a compression and tension spring as the average deviation from the desired
energy function in a range of motion of 30 degrees, expressed as a percentage. The error is relative
to the energy function corresponding to the theoretical best optimized spring parameters from Table IV
in the paper. Moreover, the functions are normalized before the error calculation, as to only calculate
the error in function shape and not in function magnitude. As can be seen in Fig. B.26 below, the error
in a compression spring is large for values of 𝐿0/𝑅𝑖𝑛 below 1. This can be understood when looking at
the function shape for low values of 𝐿0/𝑅𝑖𝑛 in Fig. B.24, where it is increasing instead of decreasing.
This analysis has shown that the error caused by 𝐿0 can be negligible after optimization

Figure B.26: The error of a tension and compression spring function relative to the desired shape, as a function
of 𝐿0/𝑅𝑖𝑛.
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B.4. Range of motion and neutral stability
The effect of the range of motion on the neutral stability of the optimized joint is analysed in this section.
A measure of neutral stability is given in terms of energy reduction. This is calculated by dividing
the RMSE of the neutrally stable energy field, by the reference energy field and converting that to a
percentual difference. Here, the reference energy field is the optimized axisymmetrical energy field of
the joint. The RMSE is relative to a constant energy field over the range of motion. For each selected
range of motion, a separate optimization has been carried out for the spring. No constraints were set
on the spring optimization for this analysis, therefore practical considerations such as stress limits were
not considered. The results can be seen in Fig. B.27, each red dot corresponds to a data point. The
range of motion is given in terms of singlesided rotation. In other words, as the rotation in any direction
from the neutral position.

Figure B.27: Energy reduction vs range of motion of the joint
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B.5. Simplified axisymmetrical energy field analysis
This appendix is a more detailed attempt to understand the working principle behind the axisymmetry
of the energy field. A simplified version of the optimized joint is visualized in Fig. B.28 with the intention
to achieve intuitive understanding of the working principle. The first arm is discretized into multiple
sections of rigid parts with infinitesimal dimensions (red) and flexible parts (blue). The flexible parts
have a relatively high torsional stiffness compared to the bending stiffness, just as in the real joint.
In this illustration, let us look at the extreme case in which torsional stiffness is infinite. Each flexure
has the same dimensions and is made out of the same material and therefore all flexures have equal
stiffness 𝑘. Flexures 1 and 2 are angled 90 degrees relative to each other, just as flexures 3 and 4.
The second arm of the joint is considered as rigid in this simplification, since the optimization resulted
in a shell thickness of more than three times the shell thickness of the first arm. Furthermore, the arms
are constrained by the tetrahedra to only move around the center of rotation (P), which must be taken
into account in this simplified model. This is done by having the requirement that the green surfaces A,
B and C must be tangential to the spherical path around P. These surfaces belong to the intermediate
rigid body between flexures 2 and 3, the fixed joint support and the joint tip respectively.

Figure B.28: The simplified model of the joint.
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Now to illustrate the axisymmetrical energy field of the model, a static analysis is performed for
multiple deformation modes. Let us first consider a forced rotation 𝜃 purely in the spherical Z axis
direction as illustrated in fig. B.29. This rotation will cause flexures 1 and 4 to bend by an angle 𝜙.
Because flexures 1 and 4 accomodate a single forced rotation and are equal flexures in series, they
deflect by the same angle. In the deformed configuration, a straight line can be drawn from the base
to tip of the flexure. This line is defined as 𝐿∗ and will have a small deviation from the true undeformed
length of the flexure 𝐿. The bending angle is also not constant over the length of the flexure, therefore
an angle 𝛼 is defined between the undeflected flexure and 𝐿∗. Flexures 2 and 3 will experience a
bending moment as well and rotate by angle 𝜓 and have an angle 𝛽 between the undeflected flexure
and 𝐿∗. Since surface A must remain in the spherical surface around P, it is forced to displace by a
distance 𝛿 such that it is again aligned with the spherical surface.

Figure B.29: The deformation caused by the loading mode where a rotation is forced in the spherical Z axis.
Left: top view, right: front view.

Angles 𝛼 and 𝛽 can be related to the maximum bending angle by considering its nonlinear trigono
metric relationship. First, the nonlinear deflection in both longitudinal and normal axis of an arbitrary
flexure under a moment load are given by equations B.1 and B.2 [7]. Here 𝜉 represents the tip bending
angle of the flexure.

𝛿𝑦(𝜉) =
𝐿
2𝜉 (B.1)

𝛿𝑥(𝜉) =
𝐿
2(1 −

𝜉
𝑡𝑎𝑛(𝜉)) (B.2)

By using trigonometric relations and equations B.1 and B.2 for a range of motion of 30 degrees in
either direction, the following can be formulated:
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𝛼 = 𝑡𝑎𝑛−1(
𝛿𝑦(𝜙)

𝐿 − 𝛿𝑥(𝜙)
) ≈ 𝜙

2 (B.3)

𝛽 = 𝑡𝑎𝑛−1(
𝛿𝑦(𝜓)

𝐿 − 𝛿𝑥(𝜓)
) ≈ 𝜓

2 (B.4)

From the trigonometric relations in Fig. B.29, the angles 𝛼 and 𝛽 can be related to each other (eq.
B.5 & B.6).

𝑠𝑖𝑛( 𝛿𝐿∗ ) = 𝜙 − 𝛼 (B.5)

𝑠𝑖𝑛( 𝛿𝐿∗ ) = 𝛽 (B.6)

From equations B.3, B.4, B.5 and B.6 it is clear that 𝜙 = 𝜓 on approximation. Only flexures 1 and
4 can bend in the plane of the forced rotation 𝜃 and therefore the sum of their rotations must result in
the total rotation. Because these flexures deflect by the same angle 𝜙 and because it is known that
𝜙 = 𝜓, the relation between the angles can be derived (eq. B.7).

𝜓 = 𝜙 = 𝜃
2 (B.7)

From here the total nonlinear strain energy stored in the flexures can be defined by eq. B.8.

𝐸𝑍 =
𝑁

∑
𝑖=1
𝑘(1 − 𝑐𝑜𝑠(Θ(𝑖))) = 2(𝑘(1 − 𝑐𝑜𝑠(𝜙)) + 2(𝑘(1 − 𝑐𝑜𝑠(𝜓)) = 𝑘(4 − 4𝑐𝑜𝑠(𝜃2)) (B.8)

Secondly, let us consider a pure rotation of 𝜃 along the spherical Y axis (Fig. B.30). This would
result in a bending of flexures 2 and 3 by angle 𝜙. The rotation causes a translational misalignment of
surface A by 𝛿 with the spherical surface. To align surface A with the spherical surface again, it can
either shift back with a translation or make a rotation. Simulations show that the latter happens. This
rotation is facilitated by bending of flexure 1 and 4 by angle 𝜓, as seen from the top perspective. The
same logic as before can be applied to the new configuration. Equations B.3, B.4, B.5 and B.6 still
hold true and describe some of the angular relationships for the new configuration. Flexure 2 and 3
facilitate the total forced rotation 𝜃. However, these flexures are rotated out of its undeformed plane by
the angle 𝜓, while still being forced to rotate by 𝜃 in its original plane. Therefore, the absolute value of
the rotation angle for these flexures is defined in eq. B.9.

𝛾 = 𝜃
𝑐𝑜𝑠(𝜓) (B.9)

Then, by following the same argumentation as in eq. B.7, eq. B.10 can be formulated

𝜓 = 𝜙 = 𝛾
2 (B.10)

To keep the rigid arm aligned to its original plane, flexure 1 needs to rotate by an angle 𝜓 as seen
from the top view. However, since the flexure is rotated out of plane by an angle 𝛾, the absolute rotation
magnitude of flexure 1 (𝜁) is larger, as seen in eq. B.11.

𝜁 = 𝜓
𝑐𝑜𝑠(𝛾) (B.11)



48 B. Additional analyses

Figure B.30: The deformation caused by the loading mode where a rotation is forced in the spherical Y axis.
Left: front view, right: top view.

Because flexures 1 and 4 are originally of equal length and are angled by 𝜓 relative to the rigid arm
and fixed world, the rigid arm is kinematically forced to rotate as well. This rotation is not in the same
plane as 𝜓, since that would violate a pure rotation in Ydirection, but around the axis perpendicular to
the joint tip (Surface C). This effect is lessened because flexure 1 has a larger rotation angle, and thus
smaller effective length, relative to flexure 4. Thus, the length difference that has to be accomodated
by the rigid arm through its rotation, is smaller. The total strain energy stored in the flexures can be
described by eq. B.12.

𝐸𝑌 =
𝑁

∑
𝑖=1
𝑘(1 − 𝑐𝑜𝑠(Θ(𝑖))) = 2(𝑘(1 − 𝑐𝑜𝑠(𝜙)) + 𝑘(1 − 𝑐𝑜𝑠(𝜓)) + 𝑘(1 − 𝑐𝑜𝑠(𝜁)) (B.12)

Substituting equations B.10 and B.11 and rewriting as a function of 𝜙 leads to eq. B.13.

𝐸𝑌 = 𝑘(4 − 3𝑐𝑜𝑠(𝜙) − 𝑐𝑜𝑠(
𝜙

𝑐𝑜𝑠(2𝜙))) (B.13)

When comparing the strain energy of both load cases, it can be seen that the two scale dependent
on 𝜙 and 𝜃 (eq. B.14). The exact value of 𝜙 can be found by substituting eq. B.9 in eq. B.10 and
solving the resulting equation.

𝐸𝑌
𝐸𝑍
=
1 − 3

4𝑐𝑜𝑠(𝜙) −
1
4𝑐𝑜𝑠(

𝜙
𝑐𝑜𝑠(2𝜙))

1 − 𝑐𝑜𝑠(𝜃2 )
(B.14)
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Thus, according to eq. B.14 the deviation in axial symmetry between the two perpendicular di
rections is zero at a rotation angle of zero degrees and builds up to a maximum of 14.9% at a 30
degrees angle. Meaning that the energy in Ydirection at 30 degrees is 14.9% larger than the energy
in Zdirection at 30 degrees. In the simulation this difference is 8.25% maximum. The simplified model
does not account for a shift in the center of rotation or the bending energy of the tetrahedra. It is possi
ble that these simplifications are the cause for the discrepancy in results. Interestingly, if the value of 𝜙
were to be taken as 𝜃

2 just as in the Zdirection loading mode, eq. B.14 would give a value of 8.27%.





C
Concept generation

The design progress and the concepts that were generated are shown in this appendix. Initially, a
number of concepts were designed that are not based on the foundations of the Tetra I joint. These were
not further developed than the basic working principle, concept sketch and the occasional prototype.
Nevertheless, they are briefly described here as well. The concepts after that are based on the Tetra I
joint and are more closely related to the final design. These will be elaborated upon in more detail.

C.1. Design progression
In this section a visualization of the concept generation is shown in the form of a design tree (Fig. C.1).
It shows all design branches that were considered before choosing the final solution path. Furthermore,
it is in approximately chronological order of the designs that were considered.
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Figure C.1: Design tree that shows the considered design branches.
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C.2. Concept A, B and C
These concepts were created before the concepts based on the existing Tetra I joint. A short description
and early concept sketches can be found in Fig. C.1. All of these work in theory, but doubts arose about
the implementation in practice and how well they would perform. A prototype was created to test the
working principle for concept A, with partially successful results, but also many added difficulties that
were unforeseen before the prototype. When the already well functioning Tetra I joint was found with
the properties of compliant spherical motion and a remote center of rotation, the decision was made to
attempt new concept designs based on that.

C.3. Concept D
Neutral stability can be achieved by compensating the energy field of the existing Tetra I joint with an
added element. The joint originally has an asymmetrical energy field, therefore the element would need
to have an asymmetrical energy field that is mirrored relative to that of the Tetra I. Such an element
could be created by using a helical spring that is attached to the endeffector on one side, and to a
dynamic attachment point on the other side. Because the attached point is not fixed, it influences the
amount of spring elongation and thus the energy in the spring. The dynamic attachment point would
have to displace differently with each rotation direction, in order to create an asymetrical energy field.
This is visualized in Fig. C.2. The dynamic displacement can be achieved by a compliant element with
directiondependent stiffness. The element itself also requires energy to deform and thus affects the
energy field. An example of such a specific compliant element with directiondependent stiffness is a
wire flexure with an oval crosssection. This concept was not pursued further, because the final design
of the central spring has a similar working principle, but easier implementation.

Figure C.2: 2D simplified view of concept D. The spring is attached at the red dots and the semicircles show the path of the
endeffector and compliant element (blue). A few example rotations are given to show the difference in displacement of the
compliant element and its attachment point.
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C.4. Concept E
By prestressing the endeffector of the original Tetra I in its stiff direction, it should be possible to lower
or remove the stiffness in the other directions. The stiffest direction of motion in the joint is towards,
or away from, the center of rotation. An attempt was made to show this behaviour with a version
of the Tetra I that is adapted for 3D printing (Fig. C.3). While attempting to apply sufficient force,
the prototype broke quickly however. After this, an attempt was made to simulate the behaviour with
ANSYS. A force was applied in the direction toward the center of rotation, after which the rotation of
the joint was simulated. Multiple magnitudes of the force and reversed directions were attempted as
well. For lower forces, minor changes could be seen to the energy field, most notably an unwanted
shift in the neutral position, but no major flattening of the energy field. Higher applied forces caused
immediate convergence issues and stresses in the joint that were higher than the yield stress, as well
as significant center shifts. Because of the low feasibility and lack of promising results, this concept
was not further explored.

Figure C.3: Tetra I adapted for 3D printing. Tested as concept E with an applied force along the red line.

C.5. Concept F
This concept is based on acquiring a local linear energy field of the joint. If that is achieved, two of
those identical joints can be attached to each other at the endeffector in order to add their energy
fields. With proper initial deformation before attachment, the reversed linear parts of the energy fields
overlap, creating local neutral stability (Fig. C.4). Although promising in theory, no immediate method
was found to create a joint with a locally linear energy field, especially in two rotational directions.
Therefore, the development of this concept was put on hold indefinitely.
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Figure C.4: 2D view of the overlapping energy fields of concept F. The combined part in the center is neutrally
stable.





D
Programming and code

In this appendix, all code that has been used during the thesis is provided. Moreover, a brief description
of the programming is provided at the start of each section for context and explanations.

D.1. ANSYS APDL model
This section of code is used to simulate the joint and its rotation. It is highly versatile and free to
parametric input in a wide range. Multiple simulation options are included for different goals: a single
rotation can be simulated, all rotations in an energy field can be simulated as well and simulations for
the energy fields of multiple parametric variations are included too. More options include the addition
of the spring and the effect of gravity.
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1   ! Dion Hogervorst
2   
3   !!!! GENERAL INFO
4   
5   *DIM, Dir_Log, STRING, 200
6   *DIM, Dir_Data, STRING, 200
7   *DIM, Dir_Input, STRING, 200
8   Dir_Log(1) = JOIN(Dir(1), 'Logs')
9   Dir_Data(1) = JOIN(Dir(1), 'ANSYS_DATA')

10   Dir_Input(1) = JOIN(Dir(1), 'ANSYS_INPUT')
11   
12   /CWD, Dir_Log(1)
13   
14   FINISH
15   
16   /title, Spherical_model
17   /FILNAME, Spherical_model, 1
18   /CONFIG, NRES, 1000000
19   /units, SI
20   
21   !!!! PARAMETERS
22   
23   Pi = ACOS(-1) !pi, 3.14...
24   
25   !Material parameters
26   !Performance grade Titanium alloy (Ti6Al4V)
27   Density = 4390
28   Emodulus = 110e9
29   
30   !Geometry parameters first arm
31   Alpha = 169.3797 !Total angle/length of single arm around point 

of rotation (Original = ~75)
32   Beta = 18 !Angle between arm and peak of 

tetrahedra (Original = ~18)
33   Gamma = 89.0442 !Angle between the two 

arms (Original = ~70)
34   T = 4 !Number of tetrahedra per 

arm (Original = 4)
35   d = 0.0005 !Shell 

thickness (Original = 0.0005)
36   Delta_R = 0.035 !Difference between inner and outer 

radius (Original = 0.035)
37   R_in = 0.067 !inner radius around point of 

rotation (Original = 0.067)
38   R_out = R_in + Delta_R !Outer radius around point of rotation
39   
40   !Geometry parameters second arm
41   Alpha_2 = 91.2225 !Total angle/length of single arm 

around point of rotation (Original = ~75)
42   Beta_2 = Beta !Angle between arm and peak of 

tetrahedra (Original = ~18)
43   T_2 = T/2 !Number of tetrahedra per 

arm (Original = 4)
44   d_2 = 0.0017 !Shell 

thickness (Original = 0.0005)
45   !The 3 parameters below should currently not be changed, it displaces 

keypoints and prevents the arms from merging into 1 structure
46   Delta_R_2 = Delta_R !Difference between inner and outer 

radius (Original = 0.035)
47   R_in_2 = R_in !inner radius around point of 
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rotation (Original = 0.067)
48   R_out_2 = R_in_2 + Delta_R_2 !Outer radius around point of rotation
49   
50   
51   !Spring parameters
52   k = 105.9 !spring stiffness
53   L0 = 0.000000000001 !force free length of the spring
54   x0 = -0.3738 !attachment location of the spring 
55   
56   !Simulation parameters
57   Sim_type = 0 !If 0, it does not loop. If 1, it only loops the 

rotation to reach all locations. If 2, it loops the parameter variation 
as well.

58   Gravity = 0 !If 0, gravity is nonexistent. If 1, gravity is on.
59   Spring = 0 !If 0, spring is not included. If 1, it is included.
60   Disp_angle = 30 !Total one-sided displacement angle
61   Disp_step = 10 !Displacement step (=< Disp_angle & 

Disp_angle/Disp_step = integer)
62   
63   !Sim_type 0 only
64   ROTATE_Z = 0 !Z Rotation in deg (Sim_type 0 only)
65   ROTATE_Y = 30 !Y Rotation in deg (Sim_type 0 only)
66   
67   !Data storage parameters
68   Array_length = 2*Disp_angle/Disp_step+1
69   *DIM, Energy_curve, ARRAY, Array_length, Array_length !Creates table 

to store final energy data in
70   *DIM, M_Z_plane, ARRAY, Array_length, Array_length
71   
72   !!!! START
73   
74   *get,twallbefore,active,,time,wall !saves the wall time before solution
75   
76   Variation = 1
77   Par_name = 'test'
78   
79   /PREP7
80   
81   !!!! GEOMETRY
82   
83   CSYS, 2 !Activates spherical coordinates (Radius, Rot_Z_deg, 

Rot_Y_deg)
84   
85   !FIRST ARM
86   
87   !Tetrahedron keypoints
88   K, 1, R_in + Delta_R, 0, 0
89   K, 2, R_in + Delta_R, Alpha/(T), 0
90   K, 3, R_in + Delta_R, 1/2*Alpha/(T), Beta
91   K, 4, R_in, Alpha/(T), 0
92   K, 5, R_in, 0, 0
93   K, 6, R_in, 1/2*Alpha/(T), Beta
94   
95   !Surfaces of a single tetrahedron
96   A, 1, 5, 6, 3
97   A, 2, 4, 6, 3
98   A, 1, 2, 4, 5
99   

100   !Generating tetrahedra
101   AGEN, T, 1, 3, , 0, Alpha/T, 0

59



102   
103   *GET, Max_area_arm_1, AREA, , NUM, MAX !Maximum areanumber in 

first arm
104   
105   !SECOND ARM
106   
107   CLOCAL, 11, 2, 0, 0, 0, Alpha, Gamma, 0
108   
109   !Tetrahedron keypoints
110   K, 101, R_in_2 + Delta_R_2, 0, 0
111   K, 102, R_in_2 + Delta_R_2, -Alpha_2/(T_2), 0
112   K, 103, R_in_2 + Delta_R_2, -1/2*Alpha_2/(T_2), -Beta_2
113   K, 104, R_in_2, -Alpha_2/(T_2), 0
114   K, 105, R_in_2, 0, 0
115   K, 106, R_in_2, -1/2*Alpha_2/(T_2), -Beta_2
116   
117   !Surfaces of a single tetrahedron
118   ASEL, NONE !Deselecting previous area for area 

generation below
119   
120   A, 101, 105, 106, 103
121   A, 102, 104, 106, 103
122   A, 101, 102, 104, 105
123   
124   !Generating tetrahedra
125   AGEN, T_2, ALL, , , 0, -Alpha_2/T_2, 0
126   
127   *GET, Max_area_arm_2, AREA, , NUM, MAX !Maximum areanumber in 

second arm (and thus total joint)
128   
129   ASEL, ALL
130   
131   *GET, Max_Lines, LINE, 0, count !Shows total number 

of lines
132   
133   !Coordinate systems
134   CSYS, 0
135   CLOCAL, 14, 0, 0, 0, 0, Alpha, Gamma, 0
136   CLOCAL, 15, 2, 0, 0, 0, -ALpha_2, 0, 0 !Aligned with 

undeformed end point of joint (Spherical)
137   CLOCAL, 16, 0, 0, 0, 0, 0, 0, 0 !Aligned with 

undeformed end point of joint (Cartesian)
138   
139   LSEL, ALL
140   KSEL, ALL
141   ASEL, ALL
142   
143   NUMMRG, ALL !Attach all geometry
144   
145   !!!! ELEMENTS & MESHING
146   
147   !SHELL ARM 1
148   ET, 1, SHELL181 !Shell element type for entire real joint
149   MP, DENS, 1, Density !Defines a linear material property as a 

constant or a function of temperature.
150   MP, EX, 1, Emodulus
151   MP, NUXY, 1, Poisson
152   SECTYPE, 1, SHELL !Section definition to shell
153   SECDATA, d, 1, 0, 3 !Shell specs
154   
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155   ASEL, S, AREA, , 1, Max_area_arm_1
156   AATT, 1, , 1, 16, 1 !Linking material to areas, NOTE: Pay 

attention to the associated coordinate system
157   AMESH, ALL !Meshing all selected areas
158   
159   !SHELL ARM 2
160   ET, 4, SHELL181 !Shell element type for entire real joint
161   MP, DENS, 4, Density !Defines a linear material property as a 

constant or a function of temperature.
162   MP, EX, 4, Emodulus
163   MP, NUXY, 4, Poisson
164   SECTYPE, 4, SHELL !Section definition to shell
165   SECDATA, d_2, 4, 0, 3 !Shell specs
166   
167   ASEL, S, AREA, , Max_area_arm_1+1, Max_area_arm_2
168   AATT, 4, , 4, 16, 4 !Linking material to areas, NOTE: Pay 

attention to the associated coordinate system
169   AMESH, ALL !Meshing all selected areas
170   
171   ASEL, ALL
172   
173   !REVOLUTE DOF OF END-EFFECTOR
174   ET, 5, MPC184, 6, , , 0 !Rigid constraint element
175   MP, DENS, 5, 0 !Defines a linear material property as a 

constant or a function of temperature.
176   ESYS, 16
177   MAT, 5
178   TYPE, 5
179   SECNUM, 5
180   SECTYPE, 5, JOINT, REVO
181   SECJOINT, LSYS, 16, 16
182   
183   LSEL, S, LINE, , Max_Lines-4, , , 1 !Select relevant 

line and its nodes etc. for endpoint nodes
184   *VGET, N_tip, NODE, NoNodes , NLIST, ,,, 4 !Shows selected 

endpoint node numbers
185   *GET, Max_N_tip, NODE, 0, COUNT !Shows the maximum 

number of endpoint nodes 
186   
187   N, 5000, R_in, 0, 0, 0, 0, 0
188   N, 5001, R_in + Delta_R, 0, 0, 0, 0, 0
189   E, N_tip(2), 5000
190   E, N_tip(1), 5001
191   
192   !RIGID BEAMS CONSTRAINT
193   ET, 3, MPC184, 1, 1 !Rigid constraint element
194   MP, DENS, 3, 0 !Defines a linear material property as a 

constant or a function of temperature.
195   ESYS, 16
196   MAT, 3
197   TYPE, 3
198   
199   N, 10000, 0, 0, 0, 0, 0 ,0 !CoR node
200   N_CoR = 10000
201   
202   E, N_CoR, 5000
203   E, N_CoR, 5001
204   
205   *GET, Rigid_elems_max, ELEM, 0, NUM, MAX !Shows the maximum number 

of endpoint nodes 
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206   Rigid_elem1 = Rigid_elems_max - 3
207   Rigid_elem2 = Rigid_elems_max - 2
208   Rigid_elem3 = Rigid_elems_max - 1
209   Rigid_elem4 = Rigid_elems_max
210   
211   *IF, Spring, EQ, 1, THEN
212   !SPRING
213   ET, 2, COMBIN14, , , 0
214   MP, DENS, 2, 0 !Defines a linear material property as a 

constant or a function of temperature.
215   R, 2, k, 0, 0, , , L0,
216   REAL, 2
217   MAT, 2
218   TYPE, 2
219   
220   N, 10001, x0, 0, 0, 0, 0, 0
221   N_spring = 10001
222   
223   E, N_spring, N_tip(2)
224   *ENDIF
225   
226   *GET, Max_Elements, ELEM, 0, NUM, MAXD !Shows 

total number of lines
227   
228   CSYS, 16
229   NSEL, ALL
230   NROTAT, ALL !Rotates nodal 

coordinate system to align with active coordinate system
231   
232   LSEL, S, LINE, , 1, , ,1 !Select relevant 

line and its nodes etc. for support nodes, used later
233   *VGET, N_support, NODE, NoNodes , NLIST, ,,, 4 !Shows selected 

support node numbers
234   *GET, Max_N_support, NODE, 0, COUNT !Shows the maximum 

number of support nodes
235   
236   LSEL, ALL
237   ESEL, ALL
238   KSEL, ALL
239   NSEL, ALL
240   
241   !!!! SET ROTATION VARIABLES
242   
243   ROT_abs = sqrt(ROTATE_Z**2 + ROTATE_Y**2) !Absolute value of the 

rotation step
244   
245   *IF, ROTATE_Y, NE, 0, THEN !Defines rotation angle 

around X from which to actuate the rotation step, accurate in most cases 
246   ROT_angle = atan(ROTATE_Z/ROTATE_Y)*180/Pi
247   *ELSEIF, ROTATE_Y, EQ, 0, AND, ROTATE_Z, GT, 0, THEN !Special case 

where rotate_z is not different if positive or negative, this adjusts 
for that

248   ROT_angle = 90
249   *ELSEIF, ROTATE_Y, EQ, 0, AND, ROTATE_Z, LT, 0, THEN !Special case 

where rotate_z is not different if positive or negative, this adjusts 
for that

250   ROT_angle = -90
251   *ENDIF
252   
253   *IF, ROTATE_Y, LT, 0, THEN !Due to the above 
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definitions, negative values for Y are mirrored onto positive plane. 
Here it is mirrored back to achieve deformation in negative y direction

254   ROT_angle = ROT_angle + 180
255   *ENDIF
256   
257   CSYS, 16
258   CLOCAL, 17, 0, 0, 0, 0, 0, ROT_angle, 0 !Rotate by the rotation 

angle
259   NROTAT, ALL !Change nodal CS as 

well
260   
261   FINISH
262   
263   /SOLU
264   
265   antype, STATIC, NEW !static analysis
266   autots,ON
267   nlgeom,ON
268   pstres,ON
269   arclen,OFF
270   PRED,ON
271   
272   OUTRES,ALL,ALL
273   
274   NSUBST, 15, 20, 10 !Manually set substep numbers if convergence 

problems arise
275   
276   !!!! CONSTRAINTS & DISPLACEMENT
277   
278   !Apply constraints on the support nodes and spring node
279   D, N_support(1), UX, , , N_support(Max_N_support), , UY, UZ, ROTX,

ROTY, ROTZ
280   
281   *IF, Spring, EQ, 1, THEN
282   D, N_spring, UX, , , , , UY, UZ
283   *ENDIf
284   
285   !Apply gravity
286   *IF, Gravity, EQ, 1, THEN
287   ACEL, 0, 0, -9.81 !In global frame, because that is the only 

option 
288   *ENDIF
289   
290   *IF, Sim_type, EQ, 0, THEN
291   
292   ESEL, ALL
293   
294   !Apply constraints on the CoR node
295   D, N_CoR, ROTY, , , , , ROTX !This prevents the N_CoR node from 

rotating in unwanted directions.
296   
297   !Apply displacement to the CoR node
298   D, N_CoR, ROTZ, ROT_abs*Pi/180
299   
300   SOLVE
301   
302   /POST1
303   
304   !Retrieve total energy data
305   ESEL, U, ELEM, , Rigid_elem1, Rigid_elem4
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306   SET, LAST !Sets the database from which it pulls 
data

307   ETABLE, SENE, SENE !Retrieve strain energy per element
308   SSUM !Sum strain energy from ETABLE
309   *GET, Energy_point, SSUM, 0 , ITEM, SENE !Gets energy data 
310   
311   !Exporting sim 0 data
312   /CWD, Dir_Data(1) !Change 

directory to Data
313   *CFOPEN, Energy_point_%ROTATE_Z%_%ROTATE_Y%, csv !Sets the 

vwrite output file from here on
314   *VWRITE, Energy_point
315   %G
316   *CFCLOS
317   /CWD, Dir_Log(1)
318   
319   /POST26
320   
321   /CWD, Dir_Data(1) !Change directory 

to Data
322   
323   *CFOPEN, M&F_point, csv !Sets the vwrite output file from here on
324   
325   /CWD, Dir_Log(1) !Change directory 

to Data
326   
327   RFORCE, 2, N_CoR, M, X
328   RFORCE, 3, N_CoR, M, Y
329   RFORCE, 4, N_CoR, M, Z
330   RFORCE, 5, N_CoR, F, X
331   RFORCE, 6, N_CoR, F, Y
332   RFORCE, 7, N_CoR, F, Z
333   
334   STORE, MERGE
335   
336   VGET, M_X, 2
337   VGET, M_Y, 3
338   VGET, M_Z, 4
339   VGET, F_X, 5
340   VGET, F_Y, 6
341   VGET, F_Z, 7
342   
343   *GET, M_Size, PARM, M_Z, DIM, X
344   
345   *VWRITE, M_X(M_Size,1), M_Y(M_Size,1), M_Z(M_Size,1),

F_X(M_Size,1), F_Y(M_Size,1), F_Z(M_Size,1)
346   %G, %G, %G, %G, %G, %G
347   
348   *CFCLOS
349   
350   FINISH
351   
352   *ELSEIF, Sim_type, NE, 0, THEN
353   
354   j = 1
355   *DO, ROTATE_Z, -Disp_angle, Disp_angle, Disp_step !Loop that 

rotates in Z direction to multiple distances
356   *DO, ROTATE_Y, -Disp_angle, Disp_angle, Disp_step !Loop that 

rotates in Y direction to multiple distances
357   
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358   ESEL, ALL
359   
360   /PREP7 !Needs to go 

back to PREP7 commands
361   
362   ROT_abs = sqrt(ROTATE_Z**2 + ROTATE_Y**2) !Absolute value 

of the rotation step
363   
364   *IF, ROTATE_Y, NE, 0, THEN !Defines 

rotation angle around X from which to actuate the rotation 
step, accurate in most cases 

365   ROT_angle = atan(ROTATE_Z/ROTATE_Y)*180/Pi
366   *ELSEIF, ROTATE_Y, EQ, 0, AND, ROTATE_Z, GT, 0, THEN

!Special case where rotate_z is not different if positive or 
negative, this adjusts for that

367   ROT_angle = 90
368   *ELSEIF, ROTATE_Y, EQ, 0, AND, ROTATE_Z, LT, 0, THEN

!Special case where rotate_z is not different if positive or 
negative, this adjusts for that

369   ROT_angle = -90
370   *ENDIF
371   
372   *IF, ROTATE_Y, LT, 0, THEN !Due to the 

above definitions, negative values for Y are mirrored onto 
positive plane. Here it is mirrored back to achieve deformation 
in negative y direction

373   ROT_angle = ROT_angle + 180
374   *ENDIF
375   
376   CSYS, 16
377   CLOCAL, 17, 0, 0, 0, 0, 0, ROT_angle, 0 !Rotate by the 

rotation angle
378   NROTAT, ALL !Change nodal 

CS as well
379   
380   /SOLU !Because it 

needs to go back to solution commands here
381   
382   !Apply constraints on the CoR node
383   D, N_CoR, ROTY, , , , , ROTX !This prevents 

the N_CoR node from rotating in unwanted directions.
384   
385   !Apply displacement to the CoR node
386   D, N_CoR, ROTZ, ROT_abs*Pi/180
387   
388   SOLVE
389   
390   /POST1
391   
392   !Retrieve total energy data
393   ESEL, U, ELEM, , Rigid_elem1, Rigid_elem4
394   SET, LAST !Sets the database from which it 

pulls data
395   ETABLE, SENE, SENE !Retrieve strain energy per element
396   SSUM !Sum strain energy from ETABLE
397   *GET, Energy_curve((-ROTATE_Y+Disp_angle)/Disp_step+1,

(ROTATE_Z+Disp_angle)/Disp_step+1), SSUM, 0 , ITEM, SENE
!Gets energy data and stores it in 'Energy_curve' at the right 
location (Top and right taken as positive)

398   
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399   /POST26
400   
401   RFORCE, 4, N_CoR, M, Z
402   
403   STORE, MERGE
404   
405   VGET, M_Z_%j%, 4
406   
407   *GET, M_Size, PARM, M_Z_%j%, DIM, X
408   
409   M_Z_plane((-ROTATE_Y+Disp_angle)/Disp_step+1,

(ROTATE_Z+Disp_angle)/Disp_step+1) = M_Z_%j%(M_Size,1)
410   
411   *IF, ROTATE_Z, EQ, -Disp_angle, AND, ROTATE_Y, EQ, -Disp_angle,

THEN !Saves an image only in this specific configuration for 
visual confirmation (best view)

412   
413   /POST1
414   !View settings
415   *Get, View_X, NODE, N_tip(1), LOC, X
416   *Get, View_Y, NODE, N_tip(1), LOC, Y
417   *Get, View_Z, NODE, N_tip(1), LOC, Z
418   /VIEW, All, View_X, View_Y, View_Z
419   /DIST, ALL, 0.15, 1
420   /DSCALE, ALL ,1.0
421   /ESHAPE, 1
422   DSYS, 16
423   
424   /CWD, Dir_Input(1)
425   *USE, Def_path
426   
427   /CWD, Dir_Data(1)
428   /IMAGE, SAVE, Energy_%Par_name%_%Variation% !Saves an 

image
429   /CWD, Dir_Log(1)
430   
431   *ENDIF
432   j = j + 1
433   *ENDDO
434   *ENDDO
435   
436   
437   !!!! SAVING RESULT
438   
439   !Save to file
440   /CWD, Dir_Data(1) !Change directory to 

Data
441   *CFOPEN, Energy_%Par_name%_%Variation%, csv !Sets the vwrite output 

file from here on
442   
443   !Simply exporting the energy data...
444   *IF, Array_length, EQ, 3, THEN
445   *VWRITE, Energy_curve(1,1), Energy_curve(1,2), Energy_curve(1,3)
446   %G, %G, %G
447   *ELSEIF, Array_length, EQ, 5, THEN
448   *VWRITE, Energy_curve(1,1), Energy_curve(1,2), Energy_curve(1,3),

Energy_curve(1,4), Energy_curve(1,5)
449   %G, %G, %G, %G, %G
450   *ELSEIF, Array_length, EQ, 7, THEN
451   *VWRITE, Energy_curve(1,1), Energy_curve(1,2), Energy_curve(1,3),
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Energy_curve(1,4), Energy_curve(1,5), Energy_curve(1,6),
Energy_curve(1,7)

452   %G, %G, %G, %G, %G, %G, %G
453   *ELSEIF, Array_length, EQ, 9, THEN
454   *VWRITE, Energy_curve(1,1), Energy_curve(1,2), Energy_curve(1,3),

Energy_curve(1,4), Energy_curve(1,5), Energy_curve(1,6),
Energy_curve(1,7), Energy_curve(1,8), Energy_curve(1,9)

455   %G, %G, %G, %G, %G, %G, %G, %G, %G,
456   *ELSEIF, Array_length, EQ, 11, THEN
457   *VWRITE, Energy_curve(1,1), Energy_curve(1,2), Energy_curve(1,3),

Energy_curve(1,4), Energy_curve(1,5), Energy_curve(1,6),
Energy_curve(1,7), Energy_curve(1,8), Energy_curve(1,9),
Energy_curve(1,10), Energy_curve(1,11)

458   %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G
459   *ELSEIF, Array_length, EQ, 13, THEN
460   *VWRITE, Energy_curve(1,1), Energy_curve(1,2), Energy_curve(1,3),

Energy_curve(1,4), Energy_curve(1,5), Energy_curve(1,6),
Energy_curve(1,7), Energy_curve(1,8), Energy_curve(1,9),
Energy_curve(1,10), Energy_curve(1,11), Energy_curve(1,12),
Energy_curve(1,13)

461   %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G
462   *ENDIF
463   
464   *CFCLOS
465   
466   *CFOPEN, M_Z_plane, csv !Sets the vwrite output file from here on
467   
468   *IF, Array_length, EQ, 3, THEN
469   *VWRITE, M_Z_plane(1,1), M_Z_plane(1,2), M_Z_plane(1,3)
470   %G, %G, %G
471   *ELSEIF, Array_length, EQ, 5, THEN
472   *VWRITE, M_Z_plane(1,1), M_Z_plane(1,2), M_Z_plane(1,3),

M_Z_plane(1,4), M_Z_plane(1,5)
473   %G, %G, %G, %G, %G
474   *ELSEIF, Array_length, EQ, 7, THEN
475   *VWRITE, M_Z_plane(1,1), M_Z_plane(1,2), M_Z_plane(1,3),

M_Z_plane(1,4), M_Z_plane(1,5), M_Z_plane(1,6), M_Z_plane(1,7)
476   %G, %G, %G, %G, %G, %G, %G
477   *ELSEIF, Array_length, EQ, 9, THEN
478   *VWRITE, M_Z_plane(1,1), M_Z_plane(1,2), M_Z_plane(1,3),

M_Z_plane(1,4), M_Z_plane(1,5), M_Z_plane(1,6), M_Z_plane(1,7),
M_Z_plane(1,8), M_Z_plane(1,9)

479   %G, %G, %G, %G, %G, %G, %G, %G, %G,
480   *ELSEIF, Array_length, EQ, 11, THEN
481   *VWRITE, M_Z_plane(1,1), M_Z_plane(1,2), M_Z_plane(1,3),

M_Z_plane(1,4), M_Z_plane(1,5), M_Z_plane(1,6), M_Z_plane(1,7),
M_Z_plane(1,8), M_Z_plane(1,9), M_Z_plane(1,10), M_Z_plane(1,11)

482   %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G
483   *ELSEIF, Array_length, EQ, 13, THEN
484   *VWRITE, M_Z_plane(1,1), M_Z_plane(1,2), M_Z_plane(1,3),

M_Z_plane(1,4), M_Z_plane(1,5), M_Z_plane(1,6), M_Z_plane(1,7),
M_Z_plane(1,8), M_Z_plane(1,9), M_Z_plane(1,10), M_Z_plane(1,11),
M_Z_plane(1,12), M_Z_plane(1,13)

485   %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G
486   *ENDIF
487   
488   *CFCLOS
489   
490   *ENDIF
491   
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492   /CWD, Dir_Log(1) !Change directory back to log
493   
494   !Defines an abbreviation, makes them appear in the tool box bar
495   *Abbr, Keypoints, kplot ! Displays keypoints
496   *Abbr, Nodes, nplot ! Displays nodes
497   *Abbr, Lines, lplot ! Displays lines
498   *Abbr, Elements, eplot ! Displays elements
499   *Abbr, Deformed, PLDISP, 2 ! Displays the displaced structure
500   *Abbr, Strain_energy, PLNSOL, SEND, ELASTIC
501   *Abbr, Stress, PLNSOL, S, EQV
502   *Abbr, Csys_global, DSYS, 0 ! Displays global cartesian coordinate 

system 
503   *Abbr, Csys_actuation, DSYS, 17 ! Displays global spherical coordinate 

system
504   *Abbr, Csys_endpoint, DSYS, 16 ! Displays coordinate system aligned 

with undeformed endpoint of the joint
505   
506   *get,twallafter,active,,time,wall !saves the wall time after 

solution
507   Sim_time_h = (twallafter-twallbefore) !Simulation time in seconds
508   
509   *IF, Sim_time_h, GT, 1, THEN !Loop that determines if 

simulation time is shown in seconds, minutes or hours
510   Sim_time = Sim_time_h
511   Time_unit = 'hours'
512   *ELSEIF, Sim_time_h, LT, 1, AND, Sim_time_h, GT, 1/60, THEN
513   Sim_time = Sim_time_h*60
514   Time_unit = 'minutes'
515   *ELSEIF, Sim_time_h, LT, 1/60, THEN
516   Sim_time = Sim_time_h*3600
517   Time_unit = 'seconds'
518   *ENDIF
519   
520   *MSG, UI, %Sim_time%, Time_unit !Displays the final simulation 

time
521   Simulation time = %G %C
522   
523   FINISH
524   
525   /POST1
526   !View settings
527   *Get, View_X, NODE, N_tip(1), LOC, X
528   *Get, View_Y, NODE, N_tip(1), LOC, Y
529   *Get, View_Z, NODE, N_tip(1), LOC, Z
530   /VIEW, All, View_X, View_Y, View_Z
531   /DIST, ALL, 0.15, 1
532   /DSCALE, ALL ,1.0
533   /ESHAPE, 1
534   DSYS, 16
535   PLDISP, 2
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D.2. Joint optimization code 69

D.2. Joint optimization code
This section contains all files that are needed to perform the joint optimization. Before each file, a short
description is given about the important principles used in the code.

D.2.1. Main optimization
The main Matlab code used in the joint optimization is shown here. Before calling the optimization, it
removes a number of log and startup files, if they exist. After that, they are recreated as empty folders.
This action is performed in order to prevent ANSYS run errors during the optimization. The objective
function is called with a 𝑓𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ command.



1   clear all
2   close all
3   clc
4   %% Info
5   
6   % REQUIRED MANUAL ACTIONS
7   %1. OPEN MATLAB AS ADMINISTRATOR?
8   %2. CONNECT TO TU DELFT VPN
9   %3. SET DESIRED DISP_ANGLE AND DISP_STEP IN THE ANSYS INPUT FILE

10   %4. SELECT DESIRED X0 AND MATCH NUMBER OF VARIABLES IN THE OBJ.M FILE
11   
12   % Fundamental steps of this optimization
13   %1. Run ANSYS with specific parameters
14   %2. Import ANSYS iteration results to this matlab script
15   %3. Analyze ANSYS data and adjust for next optimization iteration
16   %4. Send new parameters to ANSYS
17   %5. Repeat until optimization has completed
18   
19   %% Clean up the folders from earlier runs
20   
21   if exist('Logs')
22   rmdir('Logs', 's');
23   mkdir('Logs')
24   end
25   
26   if exist('Startup')
27   rmdir('Startup', 's');
28   mkdir('Startup')
29   end
30   
31   copyfile run_ansys.bat Startup
32   
33   %% Optimization
34   
35   %Starting parameters
36   x0 = [0.7*75; 0.9*70; 0.9*75; 0.0005*1.5]; %[Alpha; Gamma; Alpha_2; 

d_2] approximate best location according to initial correlation figures
37   
38   options = optimset('Display','iter');
39   
40   tic
41   [x,fval] = fminsearch(@obj, x0, options);
42   toc
43   
44   %% Result display
45   
46   disp("Starting parameters: ")
47   disp(x0')
48   
49   disp("Optimized parameters: ")
50   disp(x')
51   
52   disp("fval = " + fval)
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D.2.2. Objective function
After being called by the main optimization code, the file starts by setting the optimization variables to
those of the current iteration, determined by 𝑓𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ. With these values, an ANSYS input file is
created that delivers the new parameter values to ANSYS. Furthermore, a messenger file is created
just before ANSYS is called. ANSYS can use this messenger file to communicate to Matlab that it has
completed its run. The file that actually calls ANSYS in batch mode is ran after which the code waits.
This file contains the following:

SET ANS_CONSEC=YES
SET ANSYS_LOCK=OFF
SET KMP_STACKSIZE=2048k
”C:\Program Files\ANSYS Inc\v212\ANSYS\bin\winx64\MAPDL.exe” b i ”C:\Users\
Desktop\Thesis\ANSYS_APDL\Optimization\Spherical_model_optimization.ans” o
”C:\Users\Desktop\Thesis\ANSYS_APDL\Optimization\Startup\file.out”

When ANSYS has completed this run, the messenger file is deleted and Matlab is signaled to
continue the optimization. Finally, the new energy field file of the latest run is retrieved and analysed
according to the axisymmetrical energy field metric that forms the new objective function value.



1   function f = obj(x)
2   
3   %% Export parameters to ANSYS
4   
5   % MANUALLY MATCH PARAMS BELOW TO THE OPTIMIZATION PARAMETERS
6   % Geometry parameters
7   PARAM.Alpha = x(1); %Sets the geometry parameters to match parameters 

chosen by fminsearch for next iteration
8   PARAM.Gamma = x(2);
9   PARAM.Alpha_2 = x(3);

10   PARAM.d_2 = x(4);
11   
12   %Export new params to matlab
13   
14   fid = fopen('ANSYS_input.txt','wt');

%Create ansys parameter input file
15   fprintf(fid, 'Alpha = %d \n', PARAM.Alpha );
16   fprintf(fid, 'Gamma = %d \n', PARAM.Gamma );
17   fprintf(fid, 'Alpha_2 = %d \n', PARAM.Alpha_2 );
18   fprintf(fid, 'd_2 = %d \n', PARAM.d_2 );
19   fclose(fid);
20   
21   % Create a file that ansys deletes once it is done running
22   fid2 = fopen('Matlab_ready.txt','wt');
23   fprintf(fid2, 'Matlab_ready = 0');
24   fclose(fid2);
25   
26   %% Start Ansys run
27   ! run_ansys.bat > NUL
28   
29   %% Waiting for ANSYS to finish run
30   
31   %While the matlab_ready file exists, wait. ANSYS deletes the file when done 

with iteration.
32   count = 0;
33   
34   while isfile('Matlab_ready.txt')
35   pause(1)
36   count = 1 + count;
37   
38   %If the counter reaches a certain timespan, it is likely something went 

wrong. If it is a temporary license connection error, a second request 
to run ansys will continue the loop

39   if count == 300
40   cd 'C:\Users\Dion-\Desktop\Thesis\ANSYS_APDL\Optimization\Startup'
41   ! run_ansys.bat > NUL
42   disp("Backup ANSYS run requested")
43   count = 0;
44   end
45   end
46   
47   %% Processing new iteration data into metric scalar data
48   
49   Energy = readmatrix("Energy_file.csv"); %Read energy field of 

current run
50   E_loc_all = [1, sqrt(2), 2, sqrt(5), sqrt(8), 3]; %All E_loc possibilities 

within manageable range (- & + 3 data points) 
51   Neut_pos = length(Energy)/2 + 0.5; %Neutral position of the joint, 

selected in the datamatrix
52   
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53   for m = 1:(Neut_pos-1)*(Neut_pos)/2
54   
55   E_loc = E_loc_all(m); %Matrix distance of selected datapoints 

from neutral position. Calculated by pythagoras theorem, so can 
be integer or a square root

56   clear("E_point") %Removes E_point from previous loop
57   l = 1; %Loop variable, is reset here
58   
59   for j = [-length(Energy)/2 + 0.5: length(Energy)/2 - 0.5]

%Loop that selects every datapoint of 1 axis
60   for k = [-length(Energy)/2 + 0.5: length(Energy)/2 - 0.5]

%Loop that selects every datapoint of the other axis
61   if sqrt(k^2 + j^2) == E_loc %Checks if the selected 

points correspond to selected location
62   
63   E_point(l) = Energy(Neut_pos + j, Neut_pos + k);

%Saves energy of that point
64   l = l + 1; %updates location in E_point
65   
66   end
67   end
68   end
69   
70   E_average = sum(E_point)/length(E_point); %Averages the 

energy of selected points 
71   E_RMS(m) = sqrt(sum((E_average - E_point).^2)/length(E_point));

%RMS error of the points relative to the average per E_loc
72   
73   end
74   
75   E_RMS_total = sum(E_RMS); %Sum of all E_loc RMS errors for the specific 

variation
76   E_RMS_scaled = E_RMS_total/(sum(sum(Energy))/length(Energy)^2); %Scaled 

version of RMS by average total energy to account for magnitude differences 
without shape differences

77   
78   f = E_RMS_scaled;
79   
80   end
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74 D. Programming and code

D.2.3. ANSYS APDL optimization
The ANSYS APDL optimization file is similar to the ANSYS APDL model that has been shown pre
viously. Since this file is only used in the optimization, all nonessential code sections have been
removed. Moreover, parameter values of the optimization variables are imported from matlab before
each run. Furthermore, an adaptation has been made that uses the messenger file to signal Matlab
that it has completed its run.



1   ! Dion Hogervorst
2   
3   !!!! GENERAL INFO
4   
5   /CLEAR, NOSTART
6   
7   *DIM, Dir_Log, STRING, 200
8   *DIM, Dir_Data, STRING, 200
9   *DIM, Dir_Input, STRING, 200

10   
11   Dir_Log(1) = JOIN(Dir(1), 'Logs')
12   Dir_Data(1) = JOIN(Dir(1), 'ANSYS_DATA')
13   Dir_Input(1) = JOIN(Dir(1), 'ANSYS_INPUT')
14   
15   /CWD, Dir_Log(1)
16   
17   FINISH
18   
19   /title, Spherical_model_optimization
20   /FILNAME, Spherical_model_optimization, 1
21   /CONFIG, NRES, 1000000
22   /units, SI
23   
24   !!!! PARAMETERS
25   
26   Pi = ACOS(-1) !pi, 3.14...
27   
28   !Material parameters
29   !Performance grade Titanium alloy (Ti6Al4V)
30   Density = 4390
31   Emodulus = 110e9
32   
33   !Geometry parameters first arm
34   Alpha = 75 !Total angle/length of single arm around point 

of rotation (Original = ~75)
35   Beta = 18 !Angle between arm and peak of 

tetrahedra (Original = ~18)
36   Gamma = 70 !Angle between the two 

arms (Original = ~70)
37   T = 4 !Number of tetrahedra per 

arm (Original = 4)
38   d = 0.0005 !Shell 

thickness (Original = 0.0005)
39   Delta_R = 0.035 !Difference between inner and outer 

radius (Original = 0.035)
40   R_in = 0.067 !inner radius around point of 

rotation (Original = 0.067)
41   R_out = R_in + Delta_R !Outer radius around point of rotation
42   
43   !Geometry parameters second arm
44   Alpha_2 = Alpha !Total angle/length of single arm 

around point of rotation (Original = ~75)
45   Beta_2 = Beta !Angle between arm and peak of 

tetrahedra (Original = ~18)
46   T_2 = T !Number of tetrahedra per 

arm (Original = 4)
47   d_2 = d !Shell 

thickness (Original = 0.0005)
48   !The 3 parameters below should currently not be changed, it displaces 

keypoints and prevents the arms from merging into 1 structure
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49   Delta_R_2 = Delta_R !Difference between inner and outer 
radius (Original = 0.035)

50   R_in_2 = R_in !inner radius around point of 
rotation (Original = 0.067)

51   R_out_2 = R_in_2 + Delta_R_2 !Outer radius around point of rotation
52   
53   !Simulation parameters
54   Disp_angle = 30 !Total one-sided displacement angle
55   Disp_step = 10 !Displacement step (=< Disp_angle & 

Disp_angle/Disp_step = integer)
56   
57   !Data storage parameters
58   Array_length = 2*Disp_angle/Disp_step+1
59   *DIM, Energy_curve, ARRAY, Array_length, Array_length !Creates table 

to store final energy data in
60   
61   !Overwrite by external variables
62   /INPUT,'ANSYS_input','txt', Dir_Input(1)
63   
64   !!!! START
65   
66   /PREP7
67   
68   !!!! GEOMETRY
69   
70   CSYS, 2 !Activates spherical coordinates (Radius, Rot_Z_deg, 

Rot_Y_deg)
71   
72   !FIRST ARM
73   
74   !Tetrahedron keypoints
75   K, 1, R_in + Delta_R, 0, 0
76   K, 2, R_in + Delta_R, Alpha/(T), 0
77   K, 3, R_in + Delta_R, 1/2*Alpha/(T), Beta
78   K, 4, R_in, Alpha/(T), 0
79   K, 5, R_in, 0, 0
80   K, 6, R_in, 1/2*Alpha/(T), Beta
81   
82   !Surfaces of a single tetrahedron
83   A, 1, 5, 6, 3
84   A, 2, 4, 6, 3
85   A, 1, 2, 4, 5
86   
87   !Generating tetrahedra
88   AGEN, T, 1, 3, , 0, Alpha/T, 0
89   
90   *GET, Max_area_arm_1, AREA, , NUM, MAX !Maximum areanumber in 

first arm
91   
92   !SECOND ARM
93   
94   CLOCAL, 11, 2, 0, 0, 0, Alpha, Gamma, 0
95   
96   !Tetrahedron keypoints
97   K, 101, R_in_2 + Delta_R_2, 0, 0
98   K, 102, R_in_2 + Delta_R_2, -Alpha_2/(T_2), 0
99   K, 103, R_in_2 + Delta_R_2, -1/2*Alpha_2/(T_2), -Beta_2

100   K, 104, R_in_2, -Alpha_2/(T_2), 0
101   K, 105, R_in_2, 0, 0
102   K, 106, R_in_2, -1/2*Alpha_2/(T_2), -Beta_2
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103   
104   !Surfaces of a single tetrahedron
105   ASEL, NONE !Deselecting previous area for area 

generation below
106   
107   A, 101, 105, 106, 103
108   A, 102, 104, 106, 103
109   A, 101, 102, 104, 105
110   
111   !Generating tetrahedra
112   AGEN, T_2, ALL, , , 0, -Alpha_2/T_2, 0
113   
114   *GET, Max_area_arm_2, AREA, , NUM, MAX !Maximum areanumber in 

second arm (and thus total joint)
115   
116   ASEL, ALL
117   
118   *GET, Max_Lines, LINE, 0, count !Shows total number 

of lines
119   
120   !Coordinate systems
121   CSYS, 0
122   CLOCAL, 14, 0, 0, 0, 0, Alpha, Gamma, 0
123   CLOCAL, 15, 2, 0, 0, 0, -ALpha_2, 0, 0 !Aligned with 

undeformed end point of joint (Spherical)
124   CLOCAL, 16, 0, 0, 0, 0, 0, 0, 0 !Aligned with 

undeformed end point of joint (Cartesian)
125   
126   LSEL, ALL
127   KSEL, ALL
128   ASEL, ALL
129   
130   NUMMRG, ALL !Attach all geometry
131   
132   !!!! ELEMENTS & MESHING
133   
134   !SHELL ARM 1
135   ET, 1, SHELL181 !Shell element type for entire real joint
136   MP, DENS, 1, Density !Defines a linear material property as a 

constant or a function of temperature.
137   MP, EX, 1, Emodulus
138   MP, NUXY, 1, Poisson
139   SECTYPE, 1, SHELL !Section definition to shell
140   SECDATA, d, 1, 0, 3 !Shell specs
141   
142   ASEL, S, AREA, , 1, Max_area_arm_1
143   AATT, 1, , 1, 16, 1 !Linking material to areas, NOTE: Pay 

attention to the associated coordinate system
144   AMESH, ALL !Meshing all selected areas
145   
146   !SHELL ARM 2
147   ET, 4, SHELL181 !Shell element type for entire real joint
148   MP, DENS, 4, Density !Defines a linear material property as a 

constant or a function of temperature.
149   MP, EX, 4, Emodulus
150   MP, NUXY, 4, Poisson
151   SECTYPE, 4, SHELL !Section definition to shell
152   SECDATA, d_2, 4, 0, 3 !Shell specs
153   
154   ASEL, S, AREA, , Max_area_arm_1+1, Max_area_arm_2
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155   AATT, 4, , 4, 16, 4 !Linking material to areas, NOTE: Pay 
attention to the associated coordinate system

156   AMESH, ALL !Meshing all selected areas
157   
158   ASEL, ALL
159   
160   !REVOLUTE DOF OF JOINT TIP
161   ET, 5, MPC184, 6, , , 0 !Rigid constraint element
162   MP, DENS, 5, 0 !Defines a linear material property as 

a constant or a function of temperature.
163   ESYS, 16
164   MAT, 5
165   TYPE, 5
166   SECNUM, 5
167   SECTYPE, 5, JOINT, REVO
168   SECJOINT, LSYS, 16, 16
169   
170   LSEL, S, LINE, , Max_Lines-4, , , 1 !Select relevant 

line and its nodes etc. for endpoint nodes
171   *VGET, N_tip, NODE, NoNodes , NLIST, ,,, 4 !Shows selected 

endpoint node numbers
172   *GET, Max_N_tip, NODE, 0, COUNT !Shows the maximum 

number of endpoint nodes 
173   
174   N, 5000, R_in, 0, 0, 0, 0, 0
175   N, 5001, R_in + Delta_R, 0, 0, 0, 0, 0
176   E, N_tip(2), 5000
177   E, N_tip(1), 5001
178   
179   !RIGID BEAMS CONSTRAINT
180   ET, 3, MPC184, 1, 1 !Rigid constraint element
181   MP, DENS, 3, 0 !Defines a linear material property as a 

constant or a function of temperature.
182   ESYS, 16
183   MAT, 3
184   TYPE, 3
185   
186   N, 10000, 0, 0, 0, 0, 0 ,0 !CoR node
187   N_CoR = 10000
188   
189   E, N_CoR, 5000
190   E, N_CoR, 5001
191   
192   *GET, Rigid_elems_max, ELEM, 0, NUM, MAX !Shows the maximum number 

of endpoint nodes 
193   Rigid_elem1 = Rigid_elems_max - 3
194   Rigid_elem2 = Rigid_elems_max - 2
195   Rigid_elem3 = Rigid_elems_max - 1
196   Rigid_elem4 = Rigid_elems_max
197   
198   *GET, Max_Elements, ELEM, 0, NUM, MAXD !Shows total number of lines
199   
200   CSYS, 16
201   NSEL, ALL
202   NROTAT, ALL !Rotates nodal 

coordinate system to align with active coordinate system
203   
204   LSEL, S, LINE, , 1, , ,1 !Select relevant 

line and its nodes etc. for support nodes, used later
205   *VGET, N_support, NODE, NoNodes , NLIST, ,,, 4 !Shows selected 
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support node numbers
206   *GET, Max_N_support, NODE, 0, COUNT !Shows the maximum 

number of support nodes
207   
208   LSEL, ALL
209   ESEL, ALL
210   KSEL, ALL
211   NSEL, ALL
212   
213   FINISH
214   
215   /SOLU
216   
217   antype, STATIC, NEW !static analysis
218   autots,ON
219   nlgeom,ON
220   pstres,ON
221   arclen,OFF
222   PRED,ON
223   
224   OUTRES,ALL,ALL
225   
226   !!!! CONSTRAINTS & DISPLACEMENT
227   
228   !Apply constraints on the support nodes
229   D, N_support(1), UX, , , N_support(Max_N_support), , UY, UZ, ROTX,

ROTY, ROTZ
230   
231   *DO, ROTATE_Z, -Disp_angle, Disp_angle, Disp_step !Loop that 

rotates around Z to multiple distances
232   *DO, ROTATE_Y, -Disp_angle, Disp_angle, Disp_step !Loop that 

rotates around Y to multiple distances
233   
234   /PREP7 !Needs to go 

back to PREP7 commands
235   
236   ROT_abs = sqrt(ROTATE_Z**2 + ROTATE_Y**2) !Absolute value 

of the rotation step
237   
238   *IF, ROTATE_Y, NE, 0, THEN !Defines 

rotation angle around X from which to actuate the rotation 
step, accurate in most cases 

239   ROT_angle = atan(ROTATE_Z/ROTATE_Y)*180/Pi
240   *ELSEIF, ROTATE_Y, EQ, 0, AND, ROTATE_Z, GT, 0, THEN

!Special case where rotate_z is not different if positive or 
negative, this adjusts for that

241   ROT_angle = 90
242   *ELSEIF, ROTATE_Y, EQ, 0, AND, ROTATE_Z, LT, 0, THEN

!Special case where rotate_z is not different if positive or 
negative, this adjusts for that

243   ROT_angle = -90
244   *ENDIF
245   
246   *IF, ROTATE_Y, LT, 0, THEN !Due to the 

above definitions, negative values for Y are mirrored onto 
positive plane. Here it is mirrored back to achieve deformation 
in negative y direction

247   ROT_angle = ROT_angle + 180
248   *ENDIF
249   
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250   CSYS, 16
251   CLOCAL, 17, 0, 0, 0, 0, 0, ROT_angle, 0 !Rotate by the 

rotation angle
252   NROTAT, ALL !Change nodal 

CS as well
253   
254   /SOLU !Because it 

needs to go back to solution commands here
255   
256   !Apply constraints on the CoR node
257   D, N_CoR, ROTY, , , , , ROTX !This prevents 

the N_CoR node from rotating in unwanted directions. It leaves 
end connection between rigid beam and joint tip free since 
MPC184 has 6 DoF at EACH node

258   
259   !Apply displacement to the CoR node
260   D, N_CoR, ROTZ, ROT_abs*Pi/180
261   
262   SOLVE
263   
264   FINISH
265   
266   /POST1
267   
268   !Retrieve total energy data
269   SET, LAST !Sets the database from which it 

pulls data
270   ETABLE, SENE, SENE !Retrieve strain energy per element
271   SSUM !Sum strain energy from ETABLE
272   *GET, Energy_curve((-ROTATE_Y+Disp_angle)/Disp_step+1,

(ROTATE_Z+Disp_angle)/Disp_step+1), SSUM, 0 , ITEM, SENE
!Gets energy data and stores it in 'Energy_curve' at the right 
location (Top and right taken as positive)

273   
274   *ENDDO
275   *ENDDO
276   
277   !!!! SAVING RESULT
278   
279   
280   !Save to file
281   /CWD, Dir_Data(1) !Change directory to 

Data
282   *CFOPEN, Energy_file, csv !Sets the vwrite output file from here on
283   
284   !Simply exporting the energy data...
285   *IF, Array_length, EQ, 3, THEN
286   *VWRITE, Energy_curve(1,1), Energy_curve(1,2), Energy_curve(1,3)
287   %G, %G, %G
288   *ELSEIF, Array_length, EQ, 5, THEN
289   *VWRITE, Energy_curve(1,1), Energy_curve(1,2), Energy_curve(1,3),

Energy_curve(1,4), Energy_curve(1,5)
290   %G, %G, %G, %G, %G
291   *ELSEIF, Array_length, EQ, 7, THEN
292   *VWRITE, Energy_curve(1,1), Energy_curve(1,2), Energy_curve(1,3),

Energy_curve(1,4), Energy_curve(1,5), Energy_curve(1,6),
Energy_curve(1,7)

293   %G, %G, %G, %G, %G, %G, %G
294   *ELSEIF, Array_length, EQ, 9, THEN
295   *VWRITE, Energy_curve(1,1), Energy_curve(1,2), Energy_curve(1,3),
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Energy_curve(1,4), Energy_curve(1,5), Energy_curve(1,6),
Energy_curve(1,7), Energy_curve(1,8), Energy_curve(1,9)

296   %G, %G, %G, %G, %G, %G, %G, %G, %G,
297   *ELSEIF, Array_length, EQ, 11, THEN
298   *VWRITE, Energy_curve(1,1), Energy_curve(1,2), Energy_curve(1,3),

Energy_curve(1,4), Energy_curve(1,5), Energy_curve(1,6),
Energy_curve(1,7), Energy_curve(1,8), Energy_curve(1,9),
Energy_curve(1,10), Energy_curve(1,11)

299   %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G
300   *ELSEIF, Array_length, EQ, 13, THEN
301   *VWRITE, Energy_curve(1,1), Energy_curve(1,2), Energy_curve(1,3),

Energy_curve(1,4), Energy_curve(1,5), Energy_curve(1,6),
Energy_curve(1,7), Energy_curve(1,8), Energy_curve(1,9),
Energy_curve(1,10), Energy_curve(1,11), Energy_curve(1,12),
Energy_curve(1,13)

302   %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G, %G
303   *ENDIF
304   
305   *CFCLOS
306   
307   FINISH
308   
309   !!!! RESTART
310   
311   /DELETE,

'C:\Users\Desktop\Thesis\ANSYS_APDL\Optimization\ANSYS_INPUT\Matlab_ready',
'txt'
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82 D. Programming and code

D.3. Spring optimization code
This section contains all files that are needed to perform the spring optimization. Before each file, a
short description is given about the important principles used in the code.

D.3.1. Main optimization
The main optimization is contained in this file. First, a number of parameters are set that are used
in the optimization. The energy field of the optimized joint is loaded as well. 𝑀𝑢𝑙𝑡𝑖𝑆𝑡𝑎𝑟𝑡 is used to
complete the actual optimization, with the algorithm being 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 − 𝑝𝑜𝑖𝑛𝑡, which is called through
𝑓𝑚𝑖𝑛𝑐𝑜𝑛. Initially, random points where chosen to be used in the 𝑀𝑢𝑙𝑡𝑖𝑆𝑡𝑎𝑟𝑡. However, this had a
downside. The stochastic nature of this method leads to a different result every time, which prevents
repeatability of results. This also indicates that the result is sensitive to the starting point and that
there are many local minima. In the final version, a fixed starting point set is chosen that starts in a
relatively realistic range, but is not bound within it. What is shown here is the version for the theoretical
best optimization result, therefore no constraint equations are called. The main optimization file for
tension and compression springs is largely similar, with the only differences being the bounds, number
of variables and the addition of constraint functions.



1   clear all
2   close all
3   clc
4   
5   %% File wide params
6   
7   %Multistart range
8   ms_min = [-0.3; 0; 0];
9   ms_max = [0.3; 0.3; 1000];

10   
11   %Lower and upper optimization bounds
12   lb = [-inf; 0; 0];%ms_min;
13   ub = [inf; inf; inf];%ms_max;
14   
15   %Other params
16   disp_angle = 30; %Set to match ansys disp_angle
17   disp_step = disp_angle/3; %Set to match ansys disp_step
18   
19   R = 0.067;
20   
21   %% Obtain energy curve to compensate
22   E_joint = readmatrix("Energy_tita_originalsize.csv"); %Original energy 

curve to compensate
23   
24   %% Optimization
25   step = (500)^(1/length(ub)); %Determines stepsize for 500 multistarts
26   
27   n = 1;
28   for x0_1 = ms_min(1):(ms_max(1)-ms_min(1))/step:ms_max(1)
29   for x0_2 = ms_min(2):(ms_max(2)-ms_min(2))/step:ms_max(2)
30   for x0_3 = ms_min(3):(ms_max(3)-ms_min(3))/step:ms_max(3)
31   
32   ptmatrix(n,:) = [x0_1, x0_2, x0_3];
33   
34   n = n + 1;
35   end
36   end
37   end
38   
39   ms = MultiStart;
40   tpoints = CustomStartPointSet(ptmatrix);
41   opts = optimoptions(@fmincon,'Algorithm','interior-point');
42   problem =

createOptimProblem('fmincon','objective',@(x)Spring_obj_new(x,R,E_joint,disp_
angle,disp_step),'x0',[0,0,0],'lb',lb,'ub',ub,'options',opts);

43   [x,fval] = run(ms,problem,tpoints)
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84 D. Programming and code

D.3.2. Objective function
The objective function of the spring is called in the main optimization and requires a number of inputs.
The metric itself is determined by a loop that covers all locations of the energy field. For the points
that are within a 30 degrees range of motion, the energy within the spring is calculated. After that, the
RMSE is calculated and used as the objective function.



1   function f = Spring_obj_new(x, R, E_com, disp_angle, disp_step)
2   %x = optimization parameters
3   %R = attachment radius of spring
4   %E_com = to be compensated energy curve
5   %disp_angle = displacement angle of the simulation
6   %disp_step = displacement step of the simulation
7   
8   %% set params
9   x_0 = x(1); %X coordinate spring origin

10   L0 = x(2); %Neutral spring length
11   k = x(3); %Spring stiffness
12   
13   m = 1; %Loop counter
14   %% Mirrored energy curve metric
15   
16   for n = 1:length(E_com)
17   
18   Z(n) = -disp_angle + (n-1)*disp_step; %Z rotation in equal steps as 

number of datapoints available
19   
20   for i = 1:length(E_com)
21   
22   Y(i) = -disp_angle + (i-1)*disp_step; %Y rotation in equal steps as 

number of datapoints available
23   
24   Rot_abs(n,i) = sqrt(Z(n)^2 + Y(i)^2); %Absolute rotation 

angle, same as defined in ansys
25   
26   % To exclude data outside of the round range of motion
27   if Rot_abs(n,i) <= disp_angle
28   
29   x1(n,i) = cosd(Rot_abs(n,i))*R; %x (vertical height) 

coordinate of the joint tip
30   w1(n,i) = sind(Rot_abs(n,i))*R; %horizontal coordinate of 

the joint tip. Can be either Z or Y, axisymmetricality makes 
them the same, hence it is called w1 

31   L(n,i) = sqrt((x1(n,i) - x_0)^2 + w1(n,i)^2); %Length of 
spring

32   
33   
34   E(n,i) = 0.5*k*(L(n,i) - L0)^2; %Energy of general spring
35   
36   E_total(n,i) = E_com(n,i) + E(n,i);
37   
38   E_relevant(m) = E_total(n,i);
39   m = m + 1;
40   end
41   
42   end
43   end
44   
45   E_relevant_avg = sum(E_relevant)/length(E_relevant);
46   
47   E_relevant_RMS = sqrt(sum((E_relevant -

E_relevant_avg).^2)/length(E_relevant));
48   
49   f = E_relevant_RMS/(sum(sum(E_com))/length(E_com)^2);
50   end
51   
52   
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D.3.3. Compression constraints
This section of code shows the compression spring constraints that were used during the optimization
of a realistic compression spring. The constraints are called in the main optimization file of the com
pression spring optimization. The definition of the constraints themselves have been discussed more
extensively in the paper.



1   function [g, g_eq] = Spring_cons_comp_new(x, R)
2   
3   %Params
4   x_0 = x(1);
5   L0 = x(2);
6   d = x(3);
7   D = x(4);
8   n = x(5);
9   

10   E = 190e9;
11   G = E/2.6;
12   k = (d^4*G)/(64*n*(D/2)^3);
13   
14   %Maximum spring length calc (in neutral position)
15   x1_center = cosd(0)*R; %x (vertical height) coordinate of the joint tip
16   w1_center = sind(0)*R; %horizontal coordinate of the joint tip. Can be 

either Z or Y, axisymmetricality makes them the same, hence it is called w1 
17   L_center = sqrt((x1_center - x_0)^2 + w1_center^2); %Length of spring
18   
19   %Force and stress
20   F = k*(L_center - L0);
21   tau_eqv = 16*abs(F)*(0.5*D)/(pi*d^3) + 4*abs(F)/(pi*d^2);
22   sigma_ultimate = 1720e6;
23   F_ultimate = 308.2;
24   
25   %If eqv stress is larger than half the ultimate stress.
26   g(1) = tau_eqv/(sigma_ultimate/2) - 1;
27   
28   %If the force is larger than 308.2N, the joint itself has the problem of 

exceeding the ultimate tensile stress (900 Mpa for tita)
29   g(2) = abs(F)/(F_ultimate/2) - 1;
30   
31   %If minimum length is smaller (because dl = L0-L) than critical buckling 

length, create barrier
32   g(3) = (-0.812*(1 - sqrt(1 - 6.87*(D/L0)^2))*L0 + L0)/(L_center) - 1;
33   
34   %Prevent the true length from being smaller than the minimum length when 

loops are touching
35   g(4) = d*n/L_center - 1;
36   
37   g_eq = [];
38   
39   end
40   
41   
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D.3.4. Tension constraints
This section of code shows the tension spring constraints that were used during the optimization of a
realistic tension spring. The constraints are called in the main optimization file of the tension spring
optimization. The definition of the constraints themselves have been discussed more extensively in
the paper.



1   function [g, g_eq] = Spring_cons_ten_new(x, R)
2   
3   %Params
4   x_0 = x(1);
5   L0 = x(2);
6   d = x(3);
7   D = x(4);
8   n = x(5);
9   

10   E = 190e9;
11   G = E/2.6;
12   k = (d^4*G)/(64*n*(D/2)^3);
13   
14   %Maximum spring length calc (in neutral position)
15   x1_center = cosd(0)*R; %x (vertical height) coordinate of the joint tip
16   w1_center = sind(0)*R; %horizontal coordinate of the joint tip. Can be 

either Z or Y, axisymmetricality makes them the same, hence it is called w1 
17   L_center = sqrt((x1_center - x_0)^2 + w1_center^2); %Length of spring
18   
19   %Force and stress
20   F = k*(L_center - L0);
21   tau_eqv = 16*abs(F)*(0.5*D)/(pi*d^3) + 4*abs(F)/(pi*d^2);
22   sigma_ultimate = 1720e6;
23   F_ultimate = 308.2;
24   
25   %If eqv stress is larger than half the ultimate stress.
26   g(1) = tau_eqv/(sigma_ultimate/2) - 1;
27   
28   %If the force is larger than 308.2N, the joint itself has the problem of 

exceeding the ultimate tensile stress (900 Mpa for tita)
29   g(2) = abs(F)/(F_ultimate/2) - 1;
30   
31   %If L0 is smaller than smallest L0 (This excludes the possibility for 

further pretension), create barrier
32   g(3) = d*n/L0 - 1;
33   
34   g_eq = [];
35   
36   end
37   
38   
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