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Abstract 

This work reports on experiments that were performed with a freely vibrating cylinder exposed to currents 

and placed near a plane boundary parallel to the cylinder axis. It is observed that the proximity of the boundary 

affects the vertical response of the cylinder in two ways: (i) for gaps between 0.75 and 2 diameters (D), the 

amplitude of oscillation is reduced; (ii) for gaps smaller than 0.75D, the cylinder impacts the boundary, resulting 

in an increase of amplitudes and frequencies of oscillations as the flow is accelerated. The in-line force acting on 

the cylinder is also examined, and the dependency of its harmonic components on the flow velocity and distance 

to the boundary is evaluated. Besides the typical amplification of the mean component inside the lock-in region, 

it is also observed that as the cylinder is placed closer to the boundary, the harmonic component with the 

frequency of the vertical oscillations increases, while the component with twice that frequency decreases in 

similar amount. 

Based on the experimental observations, an existing wake-oscillator model for vortex-induced vibrations is 

enhanced in order to account for the effect of the boundary. The proposed model introduces an effective damper 

that is activated when the cylinder reaches a certain distance from the boundary, and a damper/spring set 

representing the rigidity of the boundary and the dissipation of energy due to impact. 

Keywords: vortex-induced vibrations; fluid-structure interaction; wake-oscillator 

1. Introduction

As a fluid flows past a stationary cylindrical body, vortices are shed alternately from its upper and lower parts.

The cylinder is consequently subjected to cross-flow (lift) forces at the vortex shedding frequency, and in-line 

forces that are characterized by a mean and a harmonic component at twice the shedding frequency. If the 

cylinder is free to move, amplifications of its response may occur when the shedding frequency approaches and 

subsequently locks onto the cylinder’s natural frequency. This amplification of the vortex-induced vibrations 

(VIV) has been investigated since the second half of the 20th century, and reports on several experimental works

can be found in literature [1-10]. Based on the presented results, some simple models for the prediction of the

flow-induced response of cylinders have been constructed.

A great number of the experiments on VIV deal with a rigid cylinder submerged in water and subjected to a 

steady flow. These types of experiments can be divided into three distinct groups: (i) stationary experiments, in 

which the cylinder is fixed and the acting forces are measured [1]; (ii) forced vibration experiments, in which an 

immersed cylinder is forced to move with a given amplitude and frequency, and the fluid forces are registered 

[2,3]; and (iii) free vibration experiments, in which a cylinder can vibrate freely in the flow, and its motion is 

recorded [3-10]. 

The first type of experiment aims at characterizing the fluid forces acting on very stiff structures, such as 

bridge piers. Knowing these forces, the stability of the supports can be assessed. 

The goal of the second type of experiment is to quantify the components of the fluid forces that are in phase 

with the velocity (resulting in an added damping) and in phase with the acceleration (resulting in an added mass), 

for a wide range of amplitudes and frequencies of the cylinder’s motion. The steady-state response of a general 

cylindrical structure can thereafter be estimated by finding the amplitude-frequency pair whose corresponding 
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force components (added mass and added damping) satisfy the structural equation of motion. The assumption of 

single frequency response is however inadequate for flexible structures, where travelling waves with different 

frequencies can co-exist. 

During the third type of experiments, namely free vibration experiments, the amplitudes and frequencies of 

the cylinder’s motion are recorded and subsequently used to tune empirical models that simulate the fluid-

structure interaction, such as the wake-oscillator model [11,12]. No assumptions are made about the frequency of 

the response, but the characteristics of the measured vibrations are dependent on parameters such as the mass of 

the cylinder and the damping in the supports. Hence, the usability of a given set of results is limited to conditions 

similar to those in the experimental scenario. 

Important observations from the mentioned experiments are: 

 For stationary cylinders, the vortex shedding frequency 
sf  is proportional to the flow velocity V  

and inversely proportional to the diameter of the cylinder D . The relation between these variables is 

 Sts

V
f

D
  (1) 

where St  is the Strouhal number (in the subcritical flow regime, St 0.2 ). 

 For freely vibrating cylinders, there is a range of flow velocities where the vortex shedding 

frequency remains close to the natural frequency of the cylinder 
nf . In this range of velocities, 

termed the lock-in region, the oscillation amplitude is increased. Lock-in is, in most cases, limited to 

r4 10V  , where 
rV  is the reduced flow velocity, defined as 

 r

n

V
V

f D
 . (2) 

 The lock-in region can be divided into two parts, one where the amplitude of oscillation is about 

1.2D  (for 
r4 6V  ), and one where the oscillation amplitudes are about 0.6D  (for 

r 6V  ). The 

mentioned limits are approximate. Outside the lock-in region, the vortex shedding frequency is 

approximately the same as the shedding frequency for stationary cylinders 
sf , defined in eq. (1). 

 For the forced vibration experiments, there are some frequency-amplitude combinations for which 

the fluid forces in phase with the cylinder velocity are in the same direction as the cylinder’s motion: 

the so-called negative added damping. This means that the flow transfers energy to the cylinder 

instead of damping its motion. These frequency-amplitude combinations correspond to the lock-in 

ranges observed in the free vibrations. 

In all of the above-mentioned experiments, the cylinders are placed at a sufficiently large distance from the 

bottom of the testing flume (or wind tunnel), so that the boundary does not influence the observed phenomena. If 

the cylinder is placed sufficiently close to the boundary, the fluid-cylinder interaction starts to be affected by the 

boundary in two ways: firstly, the flow pattern is altered because the fluid finds resistance when going through 

the gap between the cylinder and the boundary; secondly, the possible collision of the cylinder with the bottom 

changes the natural frequency of the system and introduces impact forces. 

There are a number of publications on experiments aimed at studying the effect of a boundary on the fluid-

structure interaction forces for the case of stationary cylinders [13-18]. Important conclusions of these studies are 

that vortex shedding is suppressed for gaps smaller than one third of the cylinder’s diameter, and that there is a 

mean cross-flow force that pushes the cylinder away from the boundary. Experiments that consider free or forced 

vibrations of a cylinder near a plane wall are more rare [19-20]. Nevertheless, an important conclusion is that 

also for small gaps (even smaller than 0.3D ), VIV can occur. This conclusion implies that the motion of the 

cylinder stimulates vortex shedding, a phenomenon that is suppressed in cases where the cylinder is fixed. 

In this contribution, the results obtained during stationary and free vibration experiments for assessing the 

influence of a near boundary are reported. The motivation for the experiments was the scarcity of reports on 

freely vibrating cylinders near a plane wall. The obtained dataset provides further insight in the behaviour of 

cylindrical structures located near a boundary, such as pipelines or power cables on the seabed, thus allowing for 

more accurate predictions of the dynamic behaviour of such systems. Based on the experimental results, an 

extended wake-oscillator model [11,12] capable of representing the boundary effects is proposed. Section 2 

describes the experimental setup, section 3 reports on the results from the stationary experiments, section 4 on 



the results from the free vibration experiments, and section 5 describes how the observed dynamics can be 

incorporated into the wake-oscillator model (based on the Van der Pol equation). Conclusions are summarized in 

section 6. 

2. Experimental setup 

The stationary and free vibration experiments were conducted at the Water Lab of TU Delft, in the 

Kantelgoot 1 flume. The flume is 14.5m long, 0.40m wide, the maximum water depth is 0.45m, and the 

maximum allowed discharge is 85l/s. During the experiments, the water depth was kept constant at 0.40d  m. 

The section chosen for the experiment was 8m downstream from the inlet, where it was expected that the flow 

had already stabilized. 

Figure 1a-c shows the assembled setup and its schematization for the stationary and free vibrations layouts. 

An outer frame, composed of two vertical poles and one horizontal beam, is fixed to the sides of the flume. 

Then, an aluminium inner frame, composed of two vertical beams, one top beam and a lower cylinder, is 

connected to the outer frame. The horizontal connection is established through “frictionless” rollers (which allow 

the vertical motion of the inner frame) and load cells (used to measure the in-line forces: for the stationary 

experiments, one load cell is used on each side, while for the free vibration experiments, two load cells are used 

on each side). The vertical connection is achieved through two load cells that measure in-line and cross-flow 

forces (stationary experiments) or through springs sets (free vibration experiments). The position of the upper 

beam can be adjusted so that the gap between the bottom of the flume and the cylinder can assume different 

values. 

The outer frame is made rigid and serves as support for the inner frame, which is the one being monitored. 

Figure 1d,e show the schematization of the inner frame and the forces that are measured for the stationary and 

free-vibration experiments, respectively. 

The loads cells used in the experiment are a product of the company SCAIME [21]. Load cells with a 

maximum capacity of 10kg (AL10C3SH5E) were used to measure the in-line forces, while one load cell of 30kg 

maximum capacity (AL30C3SH10E) was used to measure the cross-flow forces.  

For the side rollers, two NKL 3.230-KS frictionless tables from the company SCHNEEBERGER [22] were 

used. The maximum stroke of these slide tables is 0.155m, which is more than sufficient to accommodate the 

expected maximum oscillations. To further reduce the initial friction on the bearings (which was hindering the 

VIV), the slide tables were opened and the bolts were loosened. Ultimately, a friction for of approximately 

0.10N on each bearing remained, which allowed VIV to occur. The friction force was estimated by matching the 

predicted response of a single degree of freedom system with the measured free decay of the inner frame (free-

vibration layout; dry conditions) when displaced from its resting position. 

A MICRO-EPSILON optic laser ILD1302-200 [23] was fixed to the upper beam in the free-vibration tests to 

measure the relative displacement between the inner and outer frames. The laser can record distances from 

0.06m to 0.26m, whereby a maximum oscillation amplitude of 0.10m is measurable. 

Both the inner and the outer frames were designed such that their natural frequencies were higher than the 

expected shedding frequency. After assembling the structure, and with the inner frame fixed to the outer frame 

(stationary layout, Figure 1c), the responses to some low intensity impacts at random locations in the inner and 

outer frames were measured. The following fundamental natural frequencies were observed: 13Hz for the inner 

frame; 8 Hz for the outer frame. The expected vortex shedding frequency at the largest flow velocity is 

approximately 2.5Hz. 

The diameter of the cylinder is 0.04D  m, and the length is 0.375l  m, corresponding to the aspect ratio of 

9.375. The total mass of the inner frame (accounting for the slide tables) is 2.550m  kg. The corresponding 

mass ratio, calculated as the ratio between the mass of the structure and the mass of the displaced volume of fluid 

(also termed potential added mass — am ), is  24 5.5a wm m m m lD     , where w  is the density of 

water, here assumed to be 1000 kg/m3.  

For the free vibration tests (Figure 1d), two sets of springs were used. The softer set consisted of four springs, 

each with a stiffness of 50N/m (SODEMAAN [24], reference E05000375000M), whereas the stiffer set 

consisted of two springs, each with a stiffness of 170N/m (SODEMAAN, reference E05000494500S). The 



measured natural frequencies of the system submerged in water, with the cylinder placed 20cm from the bottom, 

were 1.3 Hz for the softer springs and 1.7Hz for the stiffer springs. 

a) 

 

b) 

 

c) 

 
     d)                                                                      e) 

                   
Figure 1. a) apparatus; b) schematic of stationary setup; c) schematic of free vibration setup; d) mechanical 

idealization of stationary experiments; e) mechanical idealization of free vibration experiments. In b) and c): 

grey = frames; blue = flume; yellow = load cells; green = springs; orange = bearings; red = rigid connectors 

 

Prior to the installation of the frame, the flow profile was measured with an electromagnetic flow meter 

(EMS) at the longitudinal position where the structure was to be installed. The pump was turned on at discharges 

of Q = 40l/s and Q = 60l/s, and the fluid velocities were measured from the bottom of the flume up to the depth 

0.275m, with increments of 0.025m. The time-averaged velocities V (normalized by the velocity at the top 

position V27.5) are shown in Figure 2. The velocity profile resembles the logarithm profiles that are expected near 

boundaries. The standard deviation (in time) of the measured velocities was about 5% of V27.5. 

For the evaluation of the reduced velocity defined in eq. (2), the value V27.5 is used for V. For each test, the 

value V27.5  was measured 3m upstream of the test section. 
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Figure 2.  Velocity profile at test section  

3. Stationary experiments 

3.1. General procedure, measured forces and dimensionless force coefficients 

The procedure for the stationary experiments is as follows: with the cylinder (frame) placed at a desired 

position and the fluid still, the output voltage of each load cell is shifted to zero; subsequently, the flow is started, 

and for each specified flow velocity, the forces are recorded by the four load cells during 3 to 4 minutes, at a 

sampling rate of 100Hz. Afterwards, the forces are passed through a simple low-pass filter (rectangular window 

removing the content above 6Hz) so that the contribution of noise and natural frequencies of the frames are 

removed. The tested gap G to diameter D ratios are  0,0.1,0.2,0.3,0.4,0.5,0.75,1,1.5,2,3,4G D  , and for 

each gap, the discharge assumes values from 30 l/s to 60 l/s, with increments of 10 l/s. This corresponds to 

Reynolds numbers of 7250, 10000, 12500 and 15500).  

The forces measured by the horizontal load cells (R1, R2, R3) are composed of the fluid forces acting on the 

cylinder (
xF ) and the fluid forces acting on the frame (

FrameF ). In order to isolate the in-line forces acting on the 

cylinder, 
FrameF  must be removed from the total force, i.e.,  

 1 2 3 FramexF R R R F     (3) 

The frame forces 
FrameF  were quantified by removing the cylinder from the frame, and subsequently placing it 

in water, subjecting it to the same flow velocity as the full frame, and measuring the forces. With this layout, 

FrameF  corresponds to the forces measured by the three load cells, i.e., 
Frame 1 2 3F R R R   . 

Note: 
FrameF  was measured only for the frame at the position corresponding to G/D=5. For the remaining 

positions, the forces are estimated assuming that drag is uniformly distributed along the frame, i.e.,  

  Frame Frame 5
2 0.2

G D

G
F F

D


 
  
 

 (4) 

The cross-flow force corresponds to the force measured by the vertical load cell, i.e., Fz = R4. 

Figure 3 depicts 50s of the time trace of the in-line (not corrected for FrameF ) and cross-flow forces and their 

frequency spectra for a discharge of 50 l/s (Re = 12500) and a gap ratio of 4G D   ( 0.16G  m). This 

example is representative of the forces measured during the stationary experiments, and is chosen to exemplify 

how the forces are characterized. A positive in-line force represents a force in the direction of the flow, and a 

positive cross-flow force represents a downward force. In this graph, forces FrameF  have not been subtracted. 

0 0.2 0.4 0.6 0.8 1 1.2 
0 

5 

10 

15 

20 

25 

30 

V/V27.5 

D
ep

th
 (

cm
) 

(c
m

) 

Q = 40l/s (V27.5 = 0.27m/s) 

Q = 60l/s (V27.5 = 0.44m/s) 



 
 

  
Figure 3.  a) time trace of in -line force; b) frequency spectrum of in -line force; c) time trace of cross -

flow forces, d) frequency spectrum of cross -flow force. G/D  = 4.  

A clear peak can be observed in the frequency spectrum of the cross-flow force. This peak corresponds to the 

vortex shedding frequency. According to the literature, the in-line force spectrum should contain a similar peak, 

though with smaller amplitude, at twice the vortex shedding frequency. Such a peak is, however, not observed in 

Figure 3, nor in the results reported in the remaining parts of this contribution. The reason for this is thought to 

be the noise, which conceals the oscillating component (literature suggests an oscillating drag coefficient around 

0.0215 [2], which in this case corresponds to an oscillating force of approximately 0.02N, whereas the precision 

of each load cell is 0.017N). For this reason, no conclusion can be drawn regarding the oscillating part of the in-

line force. 

Other features observed in Figure 3 are non-zero mean values of the in-line and cross-flow forces. The mean 

in-line force corresponds to the drag induced by the flow. The mean cross-flow force, though of much smaller 

amplitude, was expected to be zero, since the cylinder is far from the boundary and thus the flow was expected 

to be symmetric. However, the force measured by the load cell does not correspond solely to the lift induced by 

the fluid: part of it corresponds to the friction at the bearings, which may act both upwards and downwards. Note 

that the mean cross-flow force is of the same order of magnitude as the friction in the bearings, which is 0.10 N 

per bearing (for the dry scenario). As will be shown later, the mean cross-flow force assumes values that exceed 

the friction force when the cylinder is placed closer to the bottom of the flume. In these scenarios, the mean lift is 

justified by the increase of the fluid pressure at the lower edge of the cylinder. 

Regarding the oscillating component of the cross-flow force, even though one dominant frequency can be 

observed, the amplitude of oscillations is not constant in time (Figure 3c). In order to characterize the amplitude 

of oscillations, the root mean square (RMS) of the time trace (shifted by the mean value of each recorded signal) 

is used. 
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It is common practice to scale the fluid forces (mean values or oscillating amplitudes) by the diameter D, the 

length of the cylinder l, and the flow velocity V. The resulting dimensionless coefficients can thereafter be used 

to estimate forces on cylinders with different dimensions and/or exposed to flows with different velocities. The 

dimensionless force coefficients are calculated as 

 
,

, 21
2

x z

x z

w

F
C

lDV
  (5) 

where 
w  is the density of the fluid. 

Similarly, the oscillating frequency of the forces (and namely of the lift force) is scaled by the flow velocity 

and the diameter, obtaining in this way the already mentioned Strouhal number (St), expressed as (cf. eq. (1)) 

 St s

D
f

V
  (6) 

In what follows, it is studied how these coefficients change with the distance to the boundary. 

3.2. Gap dependency and influence of the boundary 

The mean in-line coefficient Cx(mean), the mean cross-flow coefficient Cz(mean), the oscillating cross-flow 

coefficient Cz(osc), and the Strouhal number St are shown in Figure 4 as functions of the gap to diameter ratio 

G D . Triangles represent the results obtained in the present work, solid lines correspond to the average of the 

coefficients over the different Reynolds numbers, and dashed and dashed-dotted lines represent results obtained 

by other authors.  

Starting with the analysis of the mean in-line coefficients (Figure 4a), it can be observed that the force 

coefficient decreases slightly as the gap ratio is reduced, which is in accordance with previous works. One also 

observes a dependency on the Reynolds number, with the coefficient tending to decrease as the Reynolds 

number increases. When compared with the results obtained by Kiya and by Roshko et al. (Figure 2.21 of [25], 

shown in Figure 4a with a dotted line and a dash-dotted line, respectively), who considered Reynolds numbers 

between 10000 and 40000, one observes that the average coefficients (solid black line) obtained in the current 

work are slightly smaller, with the difference being around 10%. These differences may be due to the different 

Reynolds numbers. 

Regarding the mean cross-flow coefficient (Figure 4b), its variation with the Reynolds number is the same as 

reported for the mean in-line coefficients, i.e., the coefficient decreases as the Reynolds number increases. 

Regardless of the Reynolds number, the coefficient tends to decrease as the gap ratio increases, which can be 

expected since the effect of the boundary becomes less pronounced as the cylinder is placed further away from it. 

At the gap ratios G/D = 1 and G/D = 4 the coefficients present drops which are not expected. These drops 

correspond, however, to forces of approximately 0.1 N, which is in the order of magnitude of the frictional 

forces at the bearing. As a matter of fact, for gap ratios above 0.5, the measured mean cross-flow force is always 

below 0.15 N, and thus the results for these positions may have been affected by the friction, and can be 

considered unreliable. For gap ratios below 0.5 the measured forces are larger than the friction force in the 

bearings, and in these cases, the average mean lift coefficient (solid black line) corresponds well with the results 

reported in figure 2.27 of reference [25] (represented in Figure 4b with a dotted line; a negative coefficient 

means that the force is directed away from the boundary). 

The oscillating cross-flow coefficients and the Strouhal number (Figure 4c-d) will be analysed together. 

Besides the fact that both are almost not affected by the Reynolds number (at least within the range considered), 

the first feature to be noted is the very small force coefficient and the null Strouhal number observed for 

0.3G D  . This is justified by the suppression of vortex shedding, which was confirmed during the experiments 

by means of flow visualization. For bigger gap ratios, vortex shedding takes place (also confirmed via flow 

visualization) and the Strouhal number assumes values around 0.2 (the mean value is 0.195). Previous reports 

showed a small increase of the Strouhal number as the cylinder is placed closer to the bottom (10 to 15%, [17]), 

but such increase is not observed in this work. 

In terms of the magnitude of the oscillating cross-flow coefficient, its value tends to decrease with the 

increase of the gap ratio, stabilizing at the value of 0.1. The values herein obtained are considerably smaller than 

the ones presented by Lei et al. [16], represented with a dotted line in Figure 4c. The reason for the difference 



may be attributed to the friction at the bearing and to the experimental conditions (Lei et al. performed 

experiments in a wind tunnel). 

The results presented here showed that the setup is capable of reproducing the main features of VIV of 

stationary cylinders, namely the suppression of vortex shedding for 0.3G D   and the mean cross-flow force 

that tends to vanish as the gap ratio increases. Also the vortex shedding frequency and the magnitude of the in-

line forces show a good correspondence. On the contrary, the amplitude of the oscillating cross-flow force did 

not show a good correspondence with previous works. The reason for the latter is attributed to different test 

conditions and to friction at the bearings. In any case, the cross-flow force on stationary cylinder is of 

insignificant relevance for the main purpose of this work, which is addressed in the following sections. 

  

  
Figure 4.  a) mean in-line force coefficient  (Solid line = average; dotted line = Kiya [25]; dash -dotted 

line Roshko et al.  [25]) ; b) mean cross-flow force coefficient  (Solid line = average;  dotted line = 

reference [25]); c) oscillating (RMS) cross-flow force coefficient  (Solid line = average; dotted line = 

Lei et.  al [16]);  d) Strouhal number (Solid line = average) . Re = 7250 (black), 10000 (green), 12500 

(blue) and 15500 (red). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.)  

 

4. Free vibration experiments 

4.1. General procedure and measured deflections and forces 

With the flume filled with still water, the cylinder is placed at a desired position and the output voltages of the 

load cells and of the laser are set to zero. With the cylinder at rest, the flow is started at the discharge of 25l/s, 

and then increased slowly up to the maximum discharge 80l/s (Re = 6500 to 20000). For each small discharge 
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increment, the forces on the four AL10 load cells and the displacements given by the optic laser are recorded for 

at least 3 minutes, at a sampling frequency of 100Hz. The total in-line force corresponds to the summation of the 

forces measured by the four load cells minus the force on the frame, as in eq. (3). 

The tested gap to diameter ratios are  0,0.25,0.5,0.75,1,1.5,2,3,4,5G D  . The gap ratios are divided into 

three groups, according to the response of the cylinder: a group comprising the large gaps, such that the 

influence of the boundary is very small; a group in which the boundary influences the response of the cylinder, 

but no contact between the cylinder and the bottom occurs; and a group comprising the small gap ratios, where 

the cylinder touches the bottom of the flume when excited by the flow.  

Figure 5 shows two time traces of the displacements (divided by the diameter, uz/D) and the in-line forces (by 

means of the force coefficient Cx) when the reduced flow velocity, as defined in eq. (2), is 6.3rV   and 12rV   

(the gap ratio is 4G D  , and the soft spring set is used). These time traces are representative of the response of 

the cylinder inside and outside the lock-in region, respectively. The in-line forces are not corrected for FFrame. 

For the reduced flow velocity 6.3rV  , the deflections of the cylinder (Figure 5a) show a clear harmonic 

behaviour with an amplitude of one diameter. In turn, the in-line forces (Figure 5c) also show a considerable 

dynamic component, but with less constant amplitude in time (the dominant frequency of the in-line force is 

twice the dominant frequency of the displacements). These two time traces are typical for the lock-in regime, 

where (as seen later) the maximum deflections reach values between 1D  (at the beginning of lock-in) and 0.6D  

(at the end). 

At the reduced flow velocity 12rV  , the deflections of the cylinder are very small (Figure 5b), and so are the 

oscillations of the in-line force (Figure 5d). No clear oscillation frequency can be discerned from the time traces. 

These time traces are typical outside of the lock-in region, where very small oscillations are expected. 

To characterize the displacements of the cylinder, in this work the amplitude of oscillation A  (taken as the 

average of all local maxima through the time series) and the corresponding frequency cylf  (taken as the 

dominant frequency observed in the frequency spectra of the displacements) are used. The in-line force is 

characterized based on the expression 

      1 Cyl 1 2 Cyl 2sin 2 sin 4x x x xF t F F f t F f t         (7) 

where xF  is the mean value, 
1xF  and 

2xF  are the variation amplitudes associated with frequencies cylf  and 

cyl2 f , respectively, and 
1  and 

2  are phase angles associated with the same frequencies. 

Because outside of the lock-in regime the oscillation of the cylinder do not show regular patterns, the 

amplitudes 
1xF  and 

2xF  and the phases 
1  and 

2  are calculated only for the cases in which the vertical 

oscillation of the cylinder is above 0.1D. These values are found by minimizing the errors (with the least square 

procedure) between the measured forces and the forces returned by eq. (7) for each vertical cycle of the cylinder, 

and subsequently averaging the set of values obtained for all complete cycles available in the time record. The 

values xF , 
1xF  and 

2xF  can be normalized according to eq. (5), thus obtaining the in-line force coefficients xC , 

1xC  and 
2xC . 



 
 

 
 

Figure 5.  Time traces of normalized vertical displacements (u z/D) for  V r = 6.3 (a) and V r = 12 (b), 

and of in-line force coefficients (C x) for V r = 6.3 (c) and V r = 12 (d). G/D  = 4. Soft  spring set  

4.2. Large gap ratios 

The gap ratios  2,3,4,5G D   are included in this group. Figure 6 shows the obtained oscillation amplitude 

A  and oscillation frequency Cylf  as functions of the reduced flow velocity 
rV . The obtained values are 

accompanied by the results of Blevins et al. [10] (mass ratio = 6.4; damping = 2%). 

Analysing the amplitudes of oscillations (Figure 6a), it can be observed that there is a range of flow velocities 

where the oscillations are negligible ( 4rV  ), then a narrow interval where there is a sudden increase of the 

amplitude of oscillations (initial branch, 4 5rV  ), a zone where the oscillations are in the order of one 

diameter (upper branch, 5 7rV  ), a zone where the oscillations tend to decrease but are still greater than 

0.5 D (lower branch, 7 9rV  ) and, finally, a sudden drop of the oscillation amplitude and a region where the 

oscillations are again negligible ( 9rV  ). These features are also present in the results obtained by Blevins et al. 

[10], but in their case the lock-in region is slight narrower, the amplitudes of oscillations are a bit lower, and the 

drop of the amplitude is less sharp. These differences are due to the different test conditions. While in Blevins et 

al. the damping is viscous (2% of the critical) and the mass ratio is 6.4, in the current experiments the damping 

source is frictional and the mass ratio is 5.5. In their report, Blevins et al. also present the results for different 

damping values and different mass ratios, and conclude that by decreasing the damping the amplitude of 

oscillations increases and that by decreasing the mass ratio the lock-in region widens. These conclusions are 

consistent with the differences verified between this report and reference [10]. 
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Figure 6.  a) amplitude of oscillations; b) frequency of oscillations. Gap ratio ( G D ) = 5 (blue), 4 

(red), 3 (black), and 2 (green). Stars = soft springs; triangles  = stiff springs; black dots = Blevins et al.  

[10]; black dashed line = Strouhal frequency (St = 0.195)  .  (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of thi s art icle.)  

Regarding the oscillation frequency cylf , the observed values follow very closely the results reported in [10]. 

Inside the lock-in region ( 5 9rV  ) the oscillation frequency is close to the natural frequency 
nf  of the 

immersed cylinder (1.3 Hz for the soft spring set and 1.7 Hz for the stiff spring set), which is also in accordance 

with the conclusions of previous works. Outside of the lock-in region, the frequency cylf  tends to follow the 

Strouhal frequency, which in Figure 6b is denoted with a black dotted line (St = 0.195). 

Figure 7 shows the in-line coefficients xC , 
1xC  and 

2xC , and the phase angles 
1  and 

2  as functions of the 

reduced velocity 
rV  for the four gap ratios considered in this group. The mean in-line coefficients are 

accompanied by the results reported in reference [10]. Both the mean (Figure 7a) and the oscillating (Figures 

7b,d) coefficients assume the maximum value at the reduced velocity 5rV  , which also corresponds to the 

onset of the lock-in region. The coefficients then become smaller with the increase of the flow velocity, reaching 

their minimum at the end of the lock-in region. Outside of the lock-in region the oscillating coefficients and 

corresponding phases are not shown because in these cases the oscillations of the cylinder are very small (under 

0.1D) and, as observed in Figure 5d, the forces do not show a regular harmonic time trace. The mean coefficient 

stabilizes between 1.0 and 1.2, which is in correspondence with the in-line coefficient for stationary cylinders. 

The evolution of the mean in-line coefficient xC  is in accordance with the results presented in reference [10], but 

its values are slightly larger and the amplification region is a bit wider. Like for the oscillations, these differences 

can be justified by the different damping mechanisms and different mass ratios. The evolution of the oscillating 

components 
1xC  and 

2xC  is also in accordance with the results presented by Khalak and Williamson [6], who 

compared the maximum in-line force coefficient and the corresponding mean value and show that the difference 

between these two values presents a peak around 5rV   and decreases to almost zero as the flow velocity is 

increased (Figure 3 of reference [6]). 

By comparing the amplitudes of the oscillating in-line coefficients, one observes that the coefficient 
2xC  is 

about four times bigger than the coefficient 1xC , which supports the conclusion that the dominant frequency is 

indeed twice the oscillating frequency of the cylinder. 

As for the phase angles, no clear tendency seem to exist in the behaviour of 
1  (the phase angle has a large 

scatter). The phase angle 
2 , on the contrary, reveals a clear trend inside the lock-in region. It starts with the 

value of 3 , and then increases to approximately 2 3 . 
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Figure 7.  a) mean in-line force coefficient ; b) oscillat ing in-line force coefficient with frequency  

fc y l;  c) Phase 
1 ;  d) oscillating in-line force coefficient with frequency  2 fc y l;  e) Phase 

2 .  Gap ratio 

(G/D) = 5 (blue), 4 (red), 3  (black), and 2 (green). Stars = soft springs; triangles  = stiff springs; b lack 

dots = Blevins et al.  [10] . (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.)  

Most of the empirical models based on free vibrations are constructed with the purpose of matching the 

measured vertical motion of the cylinder [11]. These models can be improved if, in addition to the vertical 

motion, the in-line force is also matched, in terms of its mean value, oscillation amplitude, and phase angle with 

respect to the vertical oscillations. In that sense, the information provided in this work can be useful, since a 
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clear dependence of the amplitude and phase of the in-line force on the reduced velocity has been observed. To 

the best of the authors’ knowledge, no previous work has shown such a dependence. The improvement 

associated with matching the in-line force may allow for more accurate predictions of the response of cylindrical 

structures that are not constrained in the in-line direction. 

In general, there is a very good correspondence of the results associated with different gap ratios, showing 

that for gaps greater than two diameters the bottom does not have significant influence on the response of the 

cylinder, and that the stiffness of the spring also does not play a significant role. There is however a small scatter 

of the mean in-line force for reduced velocities smaller than 5 (before the lock-in region).  

4.3. Medium gap ratios 

This group includes the gap ratios of  1.5,1,0.75G D  . During the experiments no impact with the bottom 

was registered, and the motion of the cylinder revealed to be symmetric with respect to the equilibrium position, 

i.e., the upward and downward deflections showed roughly the same value (the downward motion was not 

smaller than 90% of the upward motion). Figure 8 depicts the maximum amplitudes and frequencies of 

oscillation as functions of the reduced velocity, while Figure 9 shows the in-line force coefficients and phase 

angles also as functions of the reduced velocity. 

  

Figure 8.  a) amplitude of oscillations; b) frequency of oscillations. Gap ratio ( G D ) = 1.5 (blue), 

1.0 (red), and 0.75 (black). Stars = soft springs; triangles  = stiff springs; black dashed line = Strouhal 

frequency (St = 0.195) . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web vers ion of this article.)  

It is evident from Figure 8a that as the cylinder is placed closer to the bottom, the maximum amplitude of 

oscillation decreases. The explanation for this decrease can be found in the vertical force that acts on cylinders 

near a plane boundary (an upward force has been registered in the stationary experiments, suggesting the 

existence of a similar force when a freely vibrating cylinder approaches the boundary). The upward directed 

vertical force opposes the downward motion of the cylinder, thus extracting energy from the cylinder and 

reducing the amplitude of vibrations. By lowering the equilibrium position of the cylinder, the force is activated 

earlier, resulting in a more pronounced attenuation of the oscillations. 

The stiffness of the springs (or similarly, the Reynolds number) also plays a role in the response of the 

cylinder, with the deflections being about 10% larger when the stiff springs are used (the triangles tend to be 

above the corresponding stars; for the same reduced velocity, the Reynolds number for the stiff springs is about 

30% higher than for the soft springs). The oscillation frequencies follow the same trend as in the case of the 

previous group, being close to the natural frequency of the cylinder during lock-in and close to the Strouhal 

frequency (demarked with black dotted line in Figure 8b) outside of this region. 
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Figure 9.  a) mean in-line force coefficient; b) oscillat ing in -line force coefficient with frequency  

Cylf ;  c) Phase 
1 ;  d) oscillating in-line force coefficient with frequency Cyl2 f ;  e) Phase 

2 .  Gap ratio (

G D ) = 1.5 (blue), 1.0 (red), and 0.75  (black). (For interpretation of th e references to colour in this 

figure legend, the reader is referred to the web version of this article.)  

Regarding the in-line forces induced by the flow, and starting by analysing the mean component, it can be 

concluded that during lock-in the mean in-line force slightly decreases as the gap ratio is made smaller (Figure 

9a). Outside the lock-in region, no significant differences in the mean force are observed for the different gap 

ratios. Note that before the lock-in region (Vr < 5) the in-line coefficients are bigger than after the region (Vr > 9), 
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which is consistent with the reduction of the coefficient with increasing Reynolds number, as reported in 

Figure 5a. 

Concerning the oscillating components of the in-line force, the component 
1xC  increases with a decreasing 

gap ratio, while the component 
2xC  follows the opposite trend. Interestingly, the sum of the amplitudes 

1xC  and 

2xC  yields the same resultant for the three gap ratios, which is also the same as the value obtained for the gaps 

considered in the previous group. The reason for the increase of 
1xC  and the decrease of 

2xC  is, presumably, the 

stronger vortices being shed from the upper part of the cylinder when compared to those being shed from the 

lower part. This difference in strength of the vortices is caused by the presence of the boundary, which interrupts 

the vortex formation (recall that for the stationary cylinder, when the gap ratio is smaller than 0.3, vortices are 

suppressed). 

The phase angle 
1  lies between 2 3  and 2 , while the phase angle 

2  lies between 3  and 2 3 . 

4.4. Small gap ratios 

In this group, the gap ratios of  0.5,0.25,0G D   are included (for the gap ratio 0, the cylinder is almost 

touching the boundary). For these three positions, the cylinder touched the bottom repeatedly during the 

experiments, and its motion was consequently not symmetric. Figure 10 illustrates five seconds of the time traces 

of the displacement of the cylinder and of the in-line forces (by means of the corresponding force coefficients), 

for the gap ratio 0.25G D   and reduced velocity 7.8rV  , using the softer spring set. Both plots depict 

unfiltered results. 

  
Figure 10.  Time traces of: a) vertical displacements ( u z); b) In-line force. V r = 7.8. G/D  = 0.25. Soft 

springs set.  

The impact of the cylinder against the bottom of the flume is very clear in the left plot: note the discontinuity 

of the velocities every time that the cylinder reaches its lowest position. The highest upward deflection is quite 

constant over time, and well exceeds the downward deflection. 

Concerning the in-line force, a peak can be distinguished every time an impact occurs (in some cases, the 

force reaches 7 times its mean value). These in-line peaks are associated with the reaction of the flume on the 

cylinder, which is not purely vertical. Furthermore, the force signal shows a high frequency content, which is a 

consequence of the structural vibrations originated by the impact. After being passed through the low-pass filter, 

the in-line force still revealed a peak every time that an impact occurred. For this reason, the in-line forces are 

considered unreliable (in the sense that they are not induced by the flow) and therefore will not be analysed for 

these small gap ratios. 

The maximum upward deflection ( A ) and the dominant frequency of the motion of the cylinder are depicted 

in Figure 11 as functions of the reduced velocity. 
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Figure 11.  a) upward deflection; b) frequency of oscillations. Gap  ratio = 0.5 (blue), 0.25 (red), and 

0 (black). Stars = soft springs; t riangles = stiff springs ;  dots = eq. (8); black dashed line = Strouhal 

frequency (St = 0.195) . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.)  

In contrast to the previous scenarios in which the amplitude of oscillation was found to reach a maximum 

around the reduced velocity of 6rV  , the deflection increases with increasing flow velocity in the case of small 

gap ratios. Also, the frequency of oscillation increases linearly with the flow velocity, and it does not follow the 

natural frequency of the structure nor the Strouhal frequency. Instead, the oscillation frequency follows 

approximately the expression 

 
 

cyl 1cos

nff
G A


 




 (8) 

which corresponds to the natural frequency of the spring-mass system that is displaced upwards by A+ (as in 

Figure 11a) and whose downwards displacement cannot exceed G (the gap) due to a rigid constraint, assuming 

that the impact is perfectly elastic. These frequencies, as estimated through eq. (8), are represented in Figure 11b 

by means of dots (for the calculation of the frequencies for the case in which the cylinder is touching the bottom, 

a very small gap G = 0.0015 m was assumed). 

The increase of the frequency was evident during the experiments, since the impact noise was heard at higher 

frequencies every time the flow velocity was increased. 

For the gap ratio of 0.5G D  , the oscillations die out above the reduced velocity 8rV  . For the remaining 

gap ratios, and within the tested reduced velocities, the deflection keeps on increasing, reaching a maximum 

amplitude of 0.9A D  , which is comparable to the amplitudes of oscillation when the cylinder is sufficiently 

far from the boundary. 

The results presented in this work are not in accordance with the results presented by Fredsoe et al 

(Figure 11a from [19]). In their work, there is a gap-dependent reduced velocity above which the amplitude of 

the deflections starts to decrease slowly (e.g., 6rV   for 0.5G D   and 8rV   for 0.14G D  ), which is not 

observed in our experiments. Also, the maximum deflections reported in [19] are considerably larger than the 

ones depicted in Figures 11a (in Fredsoe et al, the maximum deflections are between 1D  and 1.6D , while we 

observed a maximum deflection of less than 0.9D ). The reason for the different behaviour may be the different 

test conditions, namely the mass ratio, since in [19] the mass ratio is 1 while in this work it is 5.5.  

4.5. Relevance of observed results for the analysis of tubular structures on the seabed 

In the previous sections it is concluded that the bottom has no influence on the response of a cylinder placed 

two diameters (or more) above that boundary. It is also observed that for smaller gaps, and as long as the 

cylinder does not hit the bottom, the amplitude of oscillations tend to decrease with the boundary proximity. 

However, when the equilibrium position of the cylinder is too close to the boundary (or even touching it), the 
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impact at the bottom will change considerably the behaviour of the fluid-structure system, widening the range of 

flow velocities for which amplifications are observed, and making oscillations stronger in terms of amplitude 

and frequency as the flow velocity is increased. Note that this feature could not be inferred from the stationary 

experiments, in which suppression of vortex shedding was observed when the gap was too small (below one 

third of the diameter). 

For cylindrical structures lying on the seabed (such as pipelines or power cables), the mentioned observations 

suggest that neglecting the proximity of the boundary is not necessarily conservative. On one side, it is a fact that 

when the boundary is not considered, lower flow velocities are needed for the pipeline/cable to oscillate with 

considerable amplitudes. However, on the other hand, when higher flow velocities are reached the pipeline/cable 

will oscillate not only with considerable amplitude, but also at a higher frequency, which may result in the 

reduction of its operational lifetime due to fatigue. Additionally, the impact of the structure on the ground may 

generate waves that propagate towards its extremities, eventually pulling them out of the ground and increasing 

the length of the exposed span. 

5. Numerical model for VIV of a cylinder positioned near a plane boundary 

The results described in the previous two sections can be used to construct empirical models that predict 

quantitatively the response of rigid cylindrical structures subjected to flows. These models can be further 

extended to predict the response of flexible structures, assuming for that matter that fluid forces on a given 

section do not depend on the response of neighbouring sections. 

One popular type of empirical models is the wake oscillator. In this model, a “wake variable” that represents 

the fluid force is described through a non-linear differential equation, which has the forcing term (right hand 

side) dependent on the motion of the cylinder. There are several options for the exact form of the non-linear 

equation to be used, being the Van der Pol equation chosen in this work [11,12]. In what follows, the wake 

oscillator model is briefly described and then adapted to account for the findings of the free vibration 

experiments in the proximity of a boundary. 

5.1. Wake oscillator model 

Consider a cylindrical body, with diameter D and mass per unit length m, that is connected vertically to a 

fixed surface through distributed springs kz and distributed dampers cz, and horizontally through springs kx and 

dampers cx (Figure 12a). The cylinder is exposed to flow with velocity V and angle of attack  , thus being 

subjected to time dependent horizontal Fx and vertical Fz fluid forces (per unit length), which cause the mass to 

respond dynamically with time varying horizontal ux and vertical uz displacements.  

    
  

Figure 12.  a) model of a cylindrical mass exposed to a flow; b) drag and lift directions  

The equations of motion of the cylinder are (overdots represent time derivatives) 

 
x x x x x x

z z z z z z

mu c u k u F

mu c u k u F

  

  
 (9) 

For convenience, the fluid forces are split into two distinct parts, one that corresponds to the inertia force of 

the displaced fluid (
(1)

x a xF m u   and 
(1)

z a zF m u  , with 
2

4a wm D   being the ideal added mass), and a 

second part that corresponds to the rest (
(2)

xF  and 
(2)

zF ). In this way, the equations of motion can be rewritten as 
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 (10) 

Regarding the forces 
(2)

xF  and 
(2)

zF , these can be decomposed into a drag component 
DF  in line with the 

instantaneous flow direction, and a lift component 
LF  perpendicular to the instantaneous flow (see Figure 12b 

for the direction of the drag and lift forces and for angle β): 
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 (11) 

The drag force is assumed to be proportional to the square of the relative velocity U according to 

 2

0

1

2
D w DF D C U  (12) 

where CD0 is a drag coefficient (a possible option is the mean in-line force coefficient obtained in stationary 

experiments). The lift force is defined in a similar manner, but its amplitude is also dependent on a wake variable 

q that simulates the self-exciting behaviour of the vortex street: 

 2

0
4

L w L

q
F D C U  (13) 

The lift coefficient CL0 is usually assumed to be the oscillating cross-flow coefficient obtained from the 

stationary experiments. The time dependent wake variable q is described by the van der Pol equation 

    2 2

St St1 cos sinz x

A
q q q q u u

D
          (14) 

where   and A are tuning parameters (tuned such that, for a wide range of flow velocities, the maximum 

amplitudes of displacements fit the amplitudes obtained in the free vibration tests), and 
St  is the radial Strouhal 

frequency (
St2 f , see equation (1)). The forcing term for the wake variable is the acceleration in the cross-flow 

direction, as suggested by Facchinetti et al. [11]. 

Putting equations (10)-(14) together results in the following system of non-linear differential equations 
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 (15) 

which can be solved for 
xu , 

zu  and q  using a fourth order Runge-Kutta method. 

In what follows, the system of equations (15) is used to replicate the cross-flow displacements that were 

observed during the free vibration experiments. For that, the displacements ux are set to zero, and the following 

values are assumed: m = 6.75 kg/m; ma = 1.25 kg/m; kz = 535 N/m2; cz = 2.4 N.s/m2 (2% of critical damping); 

D = 0.04 m; 
w = 1000 kg/m3; CD0 = 1.2; CL0 = 0.3;  = 0; St = 0.2 (see equation (1)). For this set of values, the 

tuning parameters   and A that fit the points depicted in Figure 9a,b are  = 0.07 and A = 20. A comparison 

between the predicted and observed values for large gap ratios is depicted in Figure 13. 



  
Figure 13.  a) amplitude of oscillations; b) frequency of oscillations. Blue line = system of equations 

(15); red dots = experiments (G  > 2D)  

Differences can be seen between the predicted and observed responses. For example, when compared to the 

experimental results, the wake oscillator model predicts a smaller flow velocity for the beginning of lock-in, and 

a higher flow velocity for the maximum deflection of the cylinder. Additionally, the empirical model predicts a 

more gradual increase of oscillations after the start of lock-in and a quick attenuation of oscillations after the 

maximum deflection is reached, while the experiments reveal an abrupt increase of oscillations shortly after the 

lock-in starts ( 5rV  ) and a smoother decrease of oscillations after the maximum amplitude is reached (lower 

branch). Despite these differences, the main characteristic of the response is captured, namely a lock-in region 

where oscillations are amplified. Also, the amplitude of oscillations are of the same order, and the frequencies 

follow closely the observed ones. 

For this scenario in which the cylinder is constrained to move solely in the vertical direction (ux = 0), the in-

line force is calculated with 

   UuVC
q

VCDF zLDwx 







  sin

2
cos

2

1
00  (16) 

The in-line coefficients xC  and 
2xC  and the phase angle 

2  (cf. section 4) calculated based on the forces 

predicted by equation (16) and calculated based on the forces measured during the free vibration experiments are 

compared in Figure 14. As can be observed, the wake oscillator model suggests an amplification of in-line force 

coefficients during lock-in, but with a different dependence on the reduced velocity (amplitudes and shape of 

curves). 

More accurate dependencies of the in-line coefficients on the reduced velocity can be simulated if different 

tuning parameters are used, but at the expense of deteriorating the fitting of the cross-flow displacements. For 

instance, if the set 04.0  and A = 15 is used, the mean coefficient xC  will assume a maximum value around 3 

and the coefficient 
2xC  will follow the points depicted in Figure 14b very closely. However, for that set of 

tuning parameters, desynchronization (end of lock-in) will happen at Vr = 7.5, and thus the predicted cross-flow 

displacements will not account for the oscillations observed in the lower branch. 

In fact, by adjusting the tuning parameters, one can approximate certain features of the response better. For 

example, in trying to reproduce the results obtained by Khalak et al. [7] (different damping and different mass), 

Ogink and Metrikine [12] suggested that  = 0.05 and A = 4.0 represent well the upper branch of the lock-in 

region, while  = 0.7 and A = 12.0 represent the lower branch better. Approximating one feature thus results in 

the deterioration of other features, and so a compromise must be reached. In the remainder of this work, the set 

 = 0.07 and A = 20 is used, which, in the authors’ opinion, is the one that better approximates the cross-flow 

displacements measured in the current experiments for a wide range of velocities. 
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Figure 14.  a) mean in-line force coefficient  xC ;  b) in-line force coefficient 
2xC ;  c) Phase 

2 .  

Blue line = system of equations (15); red dots = experiments (G  > 2D)  

5.2. Enhancement of the model 

The free vibration experiments revealed that the presence of a boundary affects the response of the cylindrical 

system in two ways: first, by reducing the amplitude of the oscillations as the cylinder is placed closer to the 

bottom; second, by introducing a maximum value for the downward deflection (impact). These two aspects 

should be incorporated in the empirical model described above if more rigorous predictions are desired for 

structures lying on the seabed. 

The reduction of amplitudes has been explained as a result of a vertical force that opposes the motion of the 

cylinder, i.e., a force which acts upward when the cylinder moves down, and downwards when the cylinder 

moves up. This force BPF  (BP standing for boundary proximity), which acts only when the bottom of the 

cylinder is close enough to the boundary, e.g., for distances shorter than D , can be written as 

  GuDuUDCF zzw   H
2

1
BPBP

  (17) 

where G is the gap between the bottom of cylinder (at rest) and the plane boundary, H(…) is the Heaviside 

function, and BPC  is a dimensionless force coefficient (similar to 0DC  and 0LC ). After adding the force BPF  to 

the right hand side of the second line of the system of equations (15), and setting 0  , one obtains 

        UuVC
q

uGuDCCDukucumm xLzzDwzzzzza 







 

0BP0
2

H
2

1
  (18) 
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The parameter   and the force coefficient BPC  have to be tuned in order to fit the response obtained 

experimentally. Based on the experimental results, where it is observed that for DG 2  there is no influence of 

the bottom and that for these gaps the amplitude of oscillations is around DA 1 , the value 1  appears to be 

a good choice. For 1 , and keeping   and A unchanged, the value of BPC  that provides the best fit of the 

experimental amplitudes is 4.0BP C . The observed and predicted oscillations for the gap ratios 

 1.5,1,0.75G D   are compared in Figure 15. 

  
Figure 15.  a) amplitude of oscillations; b) frequency of oscillations. Gap rat io ( G D ) = 1.5 (blue), 

1.0 (red), and 0.75 (black). Solid lines = predicted values; dots  = experimental results . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.)  

The differences between the predicted and observed responses are the same as shown in Figure 13 (wider 

lock-in region, smoother transition to upper branch, and shaper drop of oscillations). Nevertheless, the maximum 

deflections decrease as the cylinder is placed closer to the bottom (smaller gaps), which verifies that the vertical 

force expressed in equation (17) can indeed reproduce the effect of the proximity of the boundary. 

The second aspect associated with the boundary proximity (the impact of the cylinder on the bottom) can be 

simulated with springs Bk  and dashpots Bc  that are activated only when the cylinder reaches the boundary when 

( 0zu G  ). Equation (18) is therefore rewritten as 
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 (19) 

The term  zu G  represents the penetration of the cylinder in the boundary. 

The springs Bk  must be representative of the rigidity of the boundary, while the dashpots Bc  must be 

representative of the energy that is dissipated during the impact. For the reproduction of the experimental 

conditions, the values zkk 100B   (rigid bottom) and zcc 25B   (best fit) are used. Figure 16 compares the 

predicted and registered upward deflections for the cases in which impact is observed, i.e.,  0.5,0.25,0G D  . 

It can be observed that the main characteristics of the response are captured: higher oscillating frequencies and 

upward deflections for faster flows; desychronization at higher flow velocities for smaller gaps; higher frequency 

for shorter gaps. In general, the predicted amplitudes are higher than the registered ones, and the difference 

increases as the gap decreases. Based on the relatively good match, it is admissible to conclude that the inclusion 

of proper bottom springs Bk  and bottom dashpots Bc  can provide good predictions for the cases in which 

impact occurs.  
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Figure 16.  a) upward deflection; b) frequency of oscillations. Gap ratio ( G D ) = 0.5 (blue), 0.25 

(red), and 0.0 (black). Solid lines = predicted values; dots  = experimental results . (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this arti cle.)  

6. Conclusions 

This work focussed on the response of cylindrical structures exposed to steady currents and located near a plane 

boundary. The problem was investigated experimentally through stationary and free-vibration measurements 

with cylinders placed at varying distances from the bottom of the flume. Based on the observed dynamics, the 

existing wake oscillator model for vortex-induced vibration was extended to incorporate effects related to the 

proximity of a plane boundary. 

The features observed in the stationary experiments are consistent with previously reported results by other 

authors. The results obtained in the free vibration measurements allowed a number of conclusions to be drawn 

about the vertical response of the cylinder and the acting in-line forces. Regarding the vertical response, it was 

observed that inside the lock-in region, the amplitude of oscillation is not affected by the plane boundary if the 

gap between the cylinder and the boundary is larger than two diameters. For gaps between 0.75 and 2 diameters, 

the amplitude of oscillations tend to decrease, but the oscillations remain symmetric with respect to the 

equilibrium position, and no impact with the boundary is observed. For gaps smaller than 0.75 diameters, the 

cylinder will impact the boundary, resulting in a non-symmetric oscillation. Also, the lock-in region widens 

(with respect to the previous two cases), and the upward displacement and the frequency of oscillation tend to 

increase as the flow velocity is increased.  

As for the in-line forces, it is observed that these are amplified inside the lock-in region, and can reach values as 

high as three times the corresponding stationary force. Also, two oscillating components of the in-line force are 

observed, one characterized by the same frequency as the vertical oscillation of the cylinder, and the other by 

twice that frequency. For gaps smaller than two diameters, the magnitude of the first component tends to 

increase with decreasing gap, while the magnitude of the second tends to decrease in the same amount. 

The modifications to the existing wake-oscillator model aimed at incorporating the above mentioned gap-

dependencies, namely the ones related to the vertical response of the cylinder. The first addition is a piecewise 

damper, which accounts for the decrease of amplitudes associated with the cylinder approaching the boundary. 

This damper is activated only when the cylinder reaches a certain distance from the boundary. The second 

addition is a piecewise spring-damper couple, which accounts for the stiffness of the boundary and the energy 

dissipation during impact. Like the first damper, this couple is only activated when the cylinder reaches the 

boundary position. The comparison between the predicted and observed results allowed to conclude that these 

modifications capture very well the alterations in the cylinder response due to the proximity of a boundary. 
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