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Reconstruction of an informative railway
wheel defect signal from wheel-rail
contact signals measured by multiple
wayside sensors

Alireza Alemi' ®, Francesco Corman?, Yusong Pang' and
Gabriel Lodewijks®

Abstract

Wheel impact load detectors are widespread railway systems used for measuring the wheel-rail contact force.
They usually measure the rail strain and convert it to force in order to detect high impact forces and corresponding
detrimental wheels. The measured strain signal can also be used to identify the defect type and its severity. The strain
sensors have a limited effective zone that leads to partial observation from the wheels. Therefore, wheel impact load
detectors exploit multiple sensors to collect samples from different portions of the wheels. The discrete measurement
by multiple sensors provides the magnitude of the force; however, it does not provide the much richer variation pattern
of the contact force signal. Therefore, this paper proposes a fusion method to associate the collected samples to their
positions over the wheel circumferential coordinate. This process reconstructs an informative signal from the discrete
samples collected by multiple sensors. To validate the proposed method, the multiple sensors have been simulated by an
ad hoc multibody dynamic software (VI-Rail), and the outputs have been fed to the fusion model. The reconstructed
signal represents the contact force and consequently the wheel defect. The obtained results demonstrate considerable
similarity between the contact force and the reconstructed defect signal that can be used for further defect identification.
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implementation, and maintenance. For this reason,

Introduction : )
track-side measurement has been given more atten-

Railway wheels are critical components and their main-
tenance is therefore a vital task. From the safety point
of view, the defects of wheelsets are the main reasons
for train accidents." Wheel defects change the wheel-
rail contact feature and sometimes generate a high
impact force that is detrimental to the track and
train. Unexpected wheel failures also reduce the avail-
ability of trains and cause delay in the transport ser-
vices that reduces the reliability of the railway system.
To make an effective and efficient maintenance plan,
the condition of the wheels should be accurately mea-
sured or estimated. Hence, wheel condition monitoring
has been and still is the subject of many studies.”

A wheel defect produces a contact force that is
transferred to the track and vehicle. Therefore, the
wheel condition can be indirectly estimated by
measuring the wheel and rail responses such as
strain, vibration, and acoustic. Installing sensors on
every wheel is challenging due to the expense,

tion to measure the rail responses.

Wheel impact load detectors (WILDs) are common
wayside wheel monitoring systems. The first gener-
ation of WILDs was introduced in 1983° and then
rapidly became a widespread commercial system.*
They measure the rail response such as strain® and
vibration,® by a sensor or a set of sensors to estimate
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the condition of the in-service wheels. Different stu-
dies have attempted to interpret and use the data mea-
sured by WILDs to estimate the wheel condition.

Some wheel defects such as flats generate high-
frequency components in the signals measured by sen-
sors. Therefore, the defect can be detected by looking
at high-pass filtered signal.” This method just detects
the defect without any further information about its
type and severity and can be used only if the defects
generate signals containing high-frequency compo-
nents. Therefore, long-wave defects such as periodic
out of roundness (OOR) cannot be detected and iden-
tified using this method.

Another common criterion to quantify the wheel
condition is the magnitude of the data acquired by a
WILD. Stone et al.® and Nielsen and Johansson’ inves-
tigated the wheel defects using the peak value criterion.
They used the peak acceleration and the peak force
collected by acceleration- and strain-based WILDs.
The results showed a considerable fluctuation in the
acceleration and force peaks especially when the
trains had higher velocity and the wheels had more
severe defects. Later,'® Johansson and Nielsen investi-
gated the effect of train velocity, the axle load, and the
defect types on the peak forces measured. Their results
presented an extreme variation even when the train
velocity, the axle load, and the defects were kept con-
stant in the repeated tests.

Partington® excluded the effect of axle load by
means of two methods and defined two other criteria.
First, force ratio that is calculated by dividing the
peak force by the average force collected by multiple
sensors. Second, dynamic force that is calculated by
subtracting the peak force and the average force. In
spite of excluding the effect of axle load, the train
velocity is an out-of-control parameter that causes
variation in the magnitude of the peak force, the
force ratio, and the dynamic force. Johansson and
Nielsen'® related the fluctuation to the variation in
track properties and to the random position of the
defect with respect to the sensors. To measure more
reliable data and to avoid this fluctuation, the track
properties can be maintained similarly over the meas-
urement station. Besides, WILDs can exploit multiple
sensors to cover the whole wheel circumference.
Asplund et al.'! investigated the peak force, dynamic
force, and force ratio criteria and finally concluded
that they only detect the severe defects that greatly
contribute to the contact force.

Another limitation is that these criteria fail to dis-
tinguish between the defect types. They classify the
wheel into healthy and defective classes. The rate
and mechanism of the wheel degradation are influ-
enced by the defect type. Therefore, estimating the
defect type is significant to provide a comprehensive
estimate of the wheel condition. These criteria some-
how show the existence of a defect but are unable to
identify the defect type. In addition, a severe defect
dominates the other defects of a wheel. Furthermore,

the dynamic force and the force ratio of a wheel with
multiple defects including a severe defect can be smal-
ler than a wheel with a similar severe defect, because
the average of the contact force for the first wheel is
higher than the second one. Therefore, these criteria
can lead to false interpretation. Another weakness of
the current criteria is difficulty in detecting the minor
defects such as spalling, periodic OOR, and small
shelling at an early stage. As a result, developing
an effective and reliable method for detecting and
identifying the wheel defects is still an open issue.

The aim of this paper is to propose a method that
can provide more information from the wheel defects
to use for defect detection and identification. This
paper presents the theoretical models of a data
fusion process to reconstruct the defect signal from
the discrete samples measured by multiple sensors
such as WILDs. To achieve this purpose, the samples
collected by multiple sensors are mapped over the
circumferential coordinate to reconstruct a new
informative signal. The reconstructed signal provides
a pattern representing the wheel defect. As a result,
the features of the reconstructed signal can be used for
defect detection and identification.

The paper is organized as follows. The next section
explains the configuration of the sensors and the cor-
responding issue of the partial observation. The space
between the sensors causes a specific time lag between
the signals measured. When the sensors have the same
reference time, the time lag between the signals and
the space lag between the sensors can be related to
each other. Therefore, the “Lag estimation between
signals” section estimates the time lags to determine
the space relation between the collected data. Then,
the “Sampling methods™ section develops the sam-
pling methods to determine the samples that should
be selected from each signal as the output of each
sensor. In the “Data fusion and signal reconstruc-
tion” section, the fusion method is developed to
reconstruct a signal over the circumferential coordin-
ate using the collected samples. Consequently, the
“Train velocity estimation” section estimates the
train velocity to define the sampling frequency
of the collected data in the space domain. Finally,
the last section validates the proposed method by
reconstructing the informative signals from the data
simulated by VI-Rail."?

Configuration of sensors and partial
observation problem

A wheel-rail contact force represents the geometric
pattern of the wheel. The generated contact force is
transferred to the track and vehicle and can be mea-
sured on both sides by installing a sensor on the rail
and wheel. When a sensor is installed on the wheel,
it can move with the wheel to continuously measure
the wheel response to the contact force. The sensor
installed on the rail has three measurement zones with
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respect to the wheel. First, the inactive zone in which
the wheel is away from the sensor, producing a zero
output. Second, the transient zone in which the wheel
approaches or leaves the sensor, with increasing or
decreasing in the sensor output. Third, the effective
zone in which the wheel is on top of the sensor. The
sensors collect data in these measurement zones but
only the data from the effective zone are used here.
When the effective zone is smaller than the wheel cir-
cumference, the sensor makes a partial observation
and only senses a limited portion of the wheel. The
position of the defect with respect to the effective zone
of the sensor is out of control. Therefore, multiple
sensors are commonly used to cover the wheel
circumference.’

The outputs of the multiple sensors are usable
when they sample in identical situations to have an
identical transfer function. Therefore, the sensors
should be mounted on a uniform track with a con-
tinuous structure. A schematic view of the sensors
and the uniform track structure are illustrated in
Figure 1(a). This structure consists of a continuous
sleeper that provides identical transfer function for
the sensors. Integration of the discrete samples col-
lected by sensors gives the required contact signal
over the circumferential coordinate.

Tracks with continuous sleepers are not common.
In addition, creating a uniform track structure
needs a dramatic change in the rail and sleeper
structure. Therefore, a typical rail-sleeper structure
is considered. The typical rail-sleeper structure
(Figure 1(b)) causes dissimilar rail responses in differ-
ent points along the rail. In this case, the outputs of

the sensors have to be calibrated with respect to the
sensor position in the longitudinal direction. To avoid
this complexity, a symmetric structure of the sensors
can be used. To configure this structure, the sensors
should be mounted on the positions with an identical
situation as displayed in Figure 1(c) and (d). By
assuming a healthy track without any irregularities,
this configuration assures that every measurement
refers to a comparable rail and sleeper condition,
and the only variable is the wheel condition.

Figure 2 shows the results of a field measurement'?
presenting the passage of four wheels by variation in
the signals with four peaks. In this example, the third
wheel had a 60mm flat with 1 mm depth, and the
other wheels were healthy. Figure 2(a) shows
the strain signal converted to the contact force. This
signal was measured by the strain sensors mounted on
a sleeper bay. Figure 2(b) shows the rail bending
moment above the sleeper. The variation in this
signal is not as sharp as the signal in Figure 2(a)
but clearly shows the passage of four wheels and the
existence of the flat in the third wheel in 2.98s.
In Figure 2(a) and (b), the third wheel faces the sen-
sors with the flat part. Figure 2(c) shows the same
wheels measured by a sensor mounted above another
sleeper with a distance from the prior sensor used in
Figure 2(b).

The defect of the third wheel obviously influenced
the measured signal and generated a specific pattern
with a downward and an upward deflection in the
defective area. Regardless of the sensor type, the pat-
tern of the defective area of the third wheel can be
seen in both Figure 2(a) and (b). This pattern was also

ap
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SIeeper—»l | | | | | | | | | I_I I_I
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Figure |. The configuration of the wheel, rail, sleepers, and sensors for (a) a uniform track structure with joined sensors, (b) the
typical rail-sleeper structure with joined sensors, (c) the typical structure with discrete sensors on the sleepers, and (d) the typical

structure with discrete sensors between the sleepers.
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Figure 2. (a) The vertical wheel—rail contact forces measured in a sleeper bay, (b) rail bending moment above the sleeper, and (c) rail
bending moment above another sleeper with a distance from the prior sensor.'?

sensed near the second wheel in 2.88s in the
inactive zone due to the previous turn of the wheel.
In Figure 2(c), the defective area of the third wheel
was not sensed by the effective zone and appeared in
the inactive zone in 2.98s, and in the transient zones
in 3.09s. The effective zone in Figure 2(b) reaches
30kNm at the maximum for the third wheel, and
the signal in Figure 2(c) reaches 15 kNm. By selecting
only the magnitude of the signal as the representative
output of the sensor, the pattern of the signal related
to the wheel flat is neglected.

To reconstruct a signal over the circumferential
coordinate, two sampling frequencies should be con-
sidered carefully. First, the sensor sampling frequency
(f) that is defined in the time domain. For example,
10 kHz sampling frequency means the sensor collects
10,000 samples per each second. Second, the space
sampling frequency (f;) that is defined in the space
domain and determines the sampling frequency in
the unit of space. Increasing the train velocity
increases the distance between the collected samples
and decreases the space sampling frequency. For
example, when a wheel is moving with 10 m/s velocity
and a sensor is sampling with 10kHz time domain
frequency, the distance between the samples collected
by the sensor is 1 mm in the space domain and the
space sampling frequency is 1000 samples/m. When
the wheel is moving with 40m/s velocity, the same
sensor with the same sampling frequency will collect
samples with 4 mm distance in the space domain that
means the space sampling frequency is 250 samples/m.
To have a signal over the circumferential coordinate,
the sensors should sample from the wheel to the extent
that the signal can be reconstructed using the data
sampled. In Figure 1(c) and (d), the distance between

the sensors leads to discrete sampling from the wheel
circumference. Therefore, in spite of the sufficient
sensor sampling frequency (f;), it is not possible to
reconstruct a signal from the samples collected in
this way.

According to the Nyquist sampling criterion,
reconstructing the actual signal is perfectly possible
when the sampling frequency (f;) is at least twice the
highest frequency contained in the signal (f,,.4); other-
wise, it leads to aliasing'*

Js > 2max (D

In accordance with the sensor configuration, the
sleeper interval is a determining factor that defines
the sensor intervals. In fact, only a limited number
of samples from the wheel circumference can be col-
lected on every wheel revolution. This sampling
method leads to signal distortion (aliasing). The
space sampling frequency is definitely far from the
Nyquist frequency and therefore presents a new chal-
lenge for the sampling in the space domain.

Lag estimation between signals

The patterns of the rail bending moment signal in
Figure 2(b) and (c) are generally similar except only
having a delay and some variations due to the wheel
defect. The delay can be presented in three different
ways: time delay (1), space delay (p), and sample delay
(8). The time delay indicates the wheel travel time
between two sensors (time dimension, s). The space
delay indicates the spatial turn of the wheel with
respect to the prior sensor, which is equal to the
sensor intervals (space dimension, m). Finally, the
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sample delay shows the number of samples in the
second signal that lagged behind the first signal
(a number without dimension).

In this research, the signals presented in Figure 2(b)
and (c) are modeled in the time domain as follows

z1(1) = w(t) + g1(2) + ni (1) (2a)
g1(0) = w(1) - g(1) (2b)
{tlt e RO T}
(3a)
25(1) = w(t — 1) + g2(1) + na(1)
&2(t) = w(t — 1) - g(1) (3b)

{tl e R,O<I<TY

z1(t) and z,(r) are the signals measured by two con-
secutive sensors in the time domain. w(z) is the signal
generated by the wheel movement and contains low-
frequency components, that we call it the wheel signal.
This signal is a function of track and vehicle dynamics
as the fundamental parameters, in addition to the axle
load and the train velocity as the operational param-
eters. Due to the sensor distance, and the wheel move-
ment, the wheel signal w(¢) shifts over time and space.
T is the time delay between the signals z(f) and z»(?),
and the n(¢) and my(¢) are the uncorrelated noises.

zero reference time and 7 that is the measurement
time. The time interval between each sample is
1/f; second and the time delay between two signals
is 7 second.

g(1) is the signal generated by the wheel defect and
is a function of the defect geometry. The defect signal
g(?) 1s a periodic signal that is repeated on every wheel
revolution. The sensors have a limited effective zone;
therefore, they observe a limited portion of the defect
signal. The wheel signal w(¢) operates as a window
function that has almost a zero value outside the
effective zone. Therefore, the product of the wheel
signal w(¢) and the defect signal g(7) generates a partial
view of the defect signal. g() is the partial view of the
defect signal measured by the first sensor. This signal
superimposes on the w(7) and mostly contains high-
frequency components. As a result, gi(z) is also a
function of the wheel signal. g,(¢) is the partial view
of the defect signal measured by the second sensor
and is superimposed on w(¢ — 7). Figure 3 illustrates
a schematic view of the wheel signal w(¢), the defect
signal g(7), the windowed defect signal g;(7), and the
measured signal z;(¢). Bear in mind that, this paper
aims to reconstruct the defect signal g(¢), from the
measured signals z(?).

The measured signals can be also presented in the
space domain as

The signals are defined in the closed interval between z1(x) = w(x) + g1(x) + n1(x) (4a)
(a) Wheel Circumference Defect Signal g(t)
| | | | |
s e ‘IW vW vW uW
(b) Wheel Signal w(t)
(© w(t). g(1) Windowed Defect Signal g (1)

h
vv‘

(d) Ww(t) + g (1)

/f

Measured Signal z (t)

Figure 3. The schematic view of (a) the defect signal g(t), (b) the wheel signal w(t), (c) the windowed defect signal g|(t), and (d) the

measured signal z(t).
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gi1(x) = w(x) - g(x)

(4b)

{xlxe R:0<x<JX}
22(x) = w(x — p) + g2(x) + na(x) (5a)
g2(x) = w(x — p) - g(x) (5b)

{xlxe R: 0<x<X}

Z](X), Zz(X), W(X)a g(X), gl(x)9 gZ(X)a I’l](X), and }’lz(X)
are the signals in the space domain. The signals are
defined in the closed interval between zero reference
place and X that is the length passed by the wheel over
the sensors. The space interval between each sample is
1/f; meter and the space delay between two signals is
p© meter.

The measured signals can be also presented with-
out dimension as

z1(D) = w(@) + g1(0) + m (i) (6)

g1(d) = w() - g(i)

{ilie Zt:0<i<) (6b)
z3(0) = w(i — 8) 4+ g2(i) + na(i) (7a)
g2(0) = w(i — 8) - g(i) o

{ilieZ":0<i<l}

The dimensionless signals are defined in the closed
interval between the first sample and [ that is the
length of signal. In this case, the delay between two
signals is § samples.

The delay between two signals such as z;(i) and
z5(i) displayed in Figure 2 can be estimated by looking
for the maximum cross-correlation between the sig-
nals.'> The cross-correlation function can be calcu-
lated as follows

I=y
szz(y) = ZZ](I“F )/)Zz(i), Y= 0» 1» 2» o (8)
i=1

The cross-correlation between the signals R: ., (y)
involves shifting one of the signals and summing the
multiplication of the two signals. Therefore, the cross-
correlation is a function of the lag between the signals
(y). The lag y that maximizes the cross-correlation
value presents the sample delay 8

§= arg max RZIZZ(y) (9)
14

The space delay (p) is equal to the space distance
between two consecutive sensors that is a known
value, but the time delay (t), which is the time differ-
ence between the signals, should be estimated. The
time delay (t) can be calculated using the time interval

between each sample (1/f;) and the sample delay § as
follows

1
T=—X3§ 10
7 (10)
where 7 is the time delay between two signals, f; is the
sampling frequency of the sensors in the time domain,
and § is the sample delay between two signals.

Sampling methods

The multiple sensors (M sensors) start sampling at the
same time with an identical sampling frequency f;.
Therefore, each sensor measures / = T X f; samples
over T second. As a result, M sensors measure M
signals that have equal length (/ samples). These sig-
nals include the samples from inactive, transient, and
effective zones and generate a dataset as follows

Z1,1 212 Z21,1-1 Z11
22,1 222 T 22,1-1 21
Zm,i =
IM-1,1 ZM-12 IM—-1,0-1 ZM—-1.1
ZMm,1 M2 o IMI-] M,

{ili e Z*,0<i< )
{mim e ZT,0<m< M)

(11)

Figure 4 illustrates a schematic view of the config-
uration of the proposed sensors, to explain the
measurement zones and the required parameters.
Figure 4(a) demonstrates the configuration of the
wheel, rail, and the sensors that measure the rail
response at different places. Figure 4(b) shows a sche-
matic pattern of a defect signal g(¢). Figure 4(c) shows
the inactive, transient, and effective zones of the first
sensor. In Figure 4(d), the multiple sensors measure
the rail response at different places. Each sensor
makes a partial observation. The sensors provide dif-
ferent outputs in their effective zone due to the defect
signal. Every sensor collects multiple samples in the
effective zone that is coming from a specific portion of
the wheel circumference. These samples are the com-
bination of the wheel signal w(z) and the defect signal
g(#). The number of samples collected in the effective
zone is identical in every sensor if the train passes the
sensors with a constant velocity and the sensors
sample with an identical sampling frequency f,.
In Figure 4(d), the sensors collect N samples in their
effective zone.

The effective zone is between the increasing and
decreasing transient zones. In this zone, the first
derivative of the signal is almost zero. The location
of the effective zone can be determined using a low-
pass filtered signal of the measured signal. The local
maximum of the low-pass filtered signal shows the
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Figure 4. (a) The configuration of the wheel, rail, sleepers, and sensors; (b) the defect signal; (c) inactive, transient, and effective
zones of a sensor; and (d) the multiple sensors that collect multiple samples in their effective zone.

middle point of the effective zone. The length of the
effective zone depends on the physical property of
the sensor and the sensor position. By knowing the
middle point and the length of the effective zone, the
beginning point is determined.

The signals have similar patterns but with a § delay.
Therefore, the corresponding points of the signals in
two consecutive sensors have the following relation

21,07 22, (i49) (12)

It means that the sample i in the signal z; measured
by the first sensor maps to sample i + § in the second
signal z,. For example, when the ith sample of the
signal in Figure 2(b) is the representative sample of
the second wheel, the (i + §)th sample will be the cor-
responding sample of the second wheel in Figure 2(c).
In general, when the sensors have equal space delay
(p), and the wheel moves with the constant velocity,
the relation between the corresponding points of
the first signal to any other signal (measured by

the sensor m) will be as follows

Z1i 7> I (i-(m—1)x8) (13)

We use the samples of the effective zone. Therefore,
when the multiple sensors (M sensors) collect multiple
samples (N samples) from the passage of a wheel, we
can generate the following dataset from the collected
samples

S1,1 51,2 S1,N—1 SLN
82,1 8§22 $2,N—1 S$2.N
Sm,n =
SM—1,1 SM—1,.2 SM—1,N-1  SM—-IN
Sm,1 Smp2 SM,N—-1 SM.N

(14)
(nln e Z*,1<n<N)
mmeZ",1<m<M)
Sm,n g Zm,f
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In this dataset, each row presents the samples of
the effective zone collected by each sensor. The space
distance between the samples of each column (dis-
tance between the identical samples collected by two
consecutive sensors, e.g. 511 and s»1) is equal to the
space distance between the sensors (p) that is a known
value. Therefore, the space distance of the sensors
defines the space distance between the samples of
each column.

Data fusion and signal reconstruction

The sensors collect a few samples on every wheel revo-
lution (as presented in Figure 4). The sampling fre-
quency in the space domain f; obviously violates the
Nyquist criterion by subsampling lower than the fun-
damental frequency of the signal in the space domain.
To respond to the Nyquist sampling challenge, the
nature of the defect signal gives a hint. The defect
signal is a periodic signal that is replicated in every
wheel revolution. The distances between the main
peaks indicate the wheel circumference that is the fun-
damental period of the signal. The samples selected
from different sensors can be mapped over the circum-
ferential coordinate using the wheel circumference and
the sensors’ configuration. Figure 5 presents a sche-
matic illustration of the fusion process, in which X,
is the space position of the sensors, L, is the wheel
circumference length, and Y, is the corresponding pos-
ition of the sensors over the circumferential coordinate.

In Figure 5, sensors 1-5 sample from the first revo-
lution, and the sensors 68 sample from the second
revolution. Y,, determines the position of the sensors
6-8 over the wheel circumference. The samples col-
lected by sensors 6-8 fill the gaps between the sensors
1 and 5 and improve the quality of the signal. By
extending the sampling procedure to the other turns,
more samples from different portions of the wheel are
collected to fill the missing data. When the sample/
cycle ratio is not an integer quantity, other replica-
tions of the wheel revolution collect supplementary
samples. Instead, this method will sample multiple
times the same points when the circumference is
3000mm (954.9 mm diameter) with 600 mm sensor
interval. In this case increasing the number of sensors
is not useful for collecting the missing data. By bear-
ing in mind the range of the wheel diameter between
840 and 920 mm,'® and assuming the 600 mm sensor
interval, the number of sampling from the wheel revo-
lution will be 4.39-4.81 times per wheel revolution.
Hence, increasing the number of sensors improves
the signal quality.

Data fusion for single sampling method

In this subsection, only a single sample is used as the
output of each sensor, which is called single sampling
method (SSM). By selecting the sample s;; as the
output of the first sensor for the wheel, the sample
52,1 will be the output of the second sensor for the

@) Mapping
A ..
——, > g ' > g '
Y, =0 Y, Y3: Y4i YS? Y Y Yx:
L, - Ist revolution L, - 2nd revolution
ar Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8
Sleeper —» |_J | | | | | | I_II I_I I_._I
X,=0 X, X, X, X, X X X,
(b) _ >
— § H
Vi Y. Yyl
L, - 2nd revolution I
¥,=0 i v v, v,
L, - st revolution I
Rail m Sensor 6mm mm Sepsor 7mm mm Sensor S sm mm -
Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5
Sleeper . J | | | | | : | |_'_| I_I
X,=0 X, | 1 X, | X, ! X! X} Xl
' S i B i !
> > ) , i !
> »I J

Figure 5. The illustration of the fusion process.
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wheel that measures another point of the wheel with p
distance in the space domain. As a result, a set of
samples as the output of different sensors for the
wheel are acquired as follows

81,1

$2,1

(15)

SM—1,1

L Sm1
(mlme Z*t, 1 <m< M)}

The samples of the subdataset (S,,1) can be fused
over the circumferential coordinate to generate a
signal for the wheel using the following equation

X
YmJ = Xm - <Lw X \‘_J)
L, (16)

{mm e ZT,1<m< M)

where Y, is the corresponding position of the sam-
ples over the circumferential coordinate, X,, is the
space position of the sensors, L,, is the wheel circum-
ference length, and |] is the round operator toward
the nearest integer less than or equal to the element.
The remainder after division of the sensor position by
the circumference length determines the sensor pos-
ition on the circumferential coordinate. A new signal
() is generated using the magnitude (S,,;) and the
position (Y, 1) of the samples as follows

Yy = [Ym.laSm.l] (17)

The signal () reconstructed by SSM has M sam-
ples over the circumferential coordinate.

Data fusion for multiple sampling method (MSM)

In this subsection, MSM uses all the data collected in
the effective zone. To do this the space distance
between the samples of each row (4) should be esti-
mated. For example, the space distance between s |
and s;» is required. When the first sample of a sensor
is positioned over the circumferential coordinate, the
other samples collected by the sensor in the effective
zone have the following positions

Ym,n = Im,l + ((” - 1) X ;“)
{nln € Zt,1<n< N} (18)
mmeZ", 1<m<M)

Then the multiple samples (N samples) measured
by the sensors are positioned using the space distance
between the samples (4). As a result, the reconstructed

signal () is generated using the magnitude (.S,,,) and
the position (Y),,) of the samples

ws = [ Ym,nv Sm,n] (19)

The MSM reconstructs the signal () by M x N
samples. Intuitively, these samples are not uniformly
distributed over the circumferential coordinate.

The sampling frequency of a sensor determines the
time interval between the samples collected by the
sensors. By considering the constant sampling fre-
quency in the time domain, the train velocity deter-
mines the space frequency (space distance) of the
samples collected by the sensor. The space interval
between the samples can be defined using the space
delay p and the samples delay § as follows

. P

A= (20)

This relation can be rewritten based on the train
velocity V" and the sensor sampling frequency f; as the
influential factors as

N
A 7 (21)

The space distance between the samples (1) deter-
mines the space resolution of the measurement in the
space domain. For example, when a sensor is sensing
by 10 kHz sampling frequency, for a train with 10 m/s
velocity, the space distance between the samples is
1 mm. In addition, the sensors have a limited effective
zone. Therefore, the number of samples that can be
used as the outputs of the sensors is determined by the
space distance between the samples (4) and the length
of the effective zone (L,) as presented below

(22)

To determine the space distance between the sam-
ples (1), the space delay (p) and the samples delay (§)
can be directly used as presented in equation (20).
Moreover, the train velocity can be indirectly used
in equation (21) that is estimated in the next section.

Estimation of train velocity

1.17 1.18

Filograno et al."* and Tam et al."® estimated the train
velocity using the passage time between two axles. To
find the axle distance, they counted the axle numbers
and compared with the known information of differ-
ent trains to identify the train type and the matching
axle distance. This method uses only one sensor but
relies on the other information about the trains that
should be provided from other sources. Here, we esti-
mate the train velocity using the multiple sensors that
do not require identifying the train type. The velocity
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is the space passed over the unit of time. Accordingly,
the train velocity can be estimated using the space
delay and the time delay as

0

v="5xb, (23)

where p and f; are the known values and the sample
delay (§) is estimated by the cross-correlation in equa-
tions (8) and (9).

Validation test

To assess the fusion model, a validation test is
designed. The purpose of the data fusion process is
to reconstruct the wheel defect signal g(7) from the
measured signals z(7). If the reconstructed signals rep-
resent the features of the wheel defects, the fusion
model has fulfilled its intended purpose. The valid-
ation test contains two steps: data generation and
data fusion.

The general overview of the validation test and the
detailed flowchart of the process are presented in
Figure 6. The data generation step uses VI-Rail to

model the interaction of a rail and defective wheels.
VI-Rail is a commercial multibody dynamics software
that has been built upon MSC Adams. In the first
step, the defect model generates the defect on the
wheel. Then, using the required parameters, VI-Rail
models the wheel-rail interaction and generates some
outputs. The data generated by VI-Rail is exported to
MATLAB as the input of the data fusion process. In
Figure 6(b), the position of the wheel (effective zone of
the sensor) is estimated using a low-pass filter. The
delay between the signals and the train velocity is
used to select the required samples and make the data-
set Sy... In Figure 6(c), the data collected in dataset
are fused to reconstruct a new signal, using the wheel
circumference and the sensor configuration.

VI-Rail models the interaction of the track and
vehicle by considering their subsystems such as car
body, sleepers, rail pads, wheelsets, primary and sec-
ondary suspensions, dampers, and antiroll bars. The
simulations are carried out for a passenger vehicle
based on the Manchester Benchmarks.'” The assem-
bly model consists of a vehicle and a flexible track.
The vehicle is one wagon composed of a car body and
two bogies each having four S1002 wheels.

(@) — Track parameters— Wheel-Rail Interaction Modelling
(VI-Rail)
Number of sleepers
——Train Velocity
leﬁle of 1 N —J Vertical Contact Force
_ Healthy Wheel Defective Wheel in —Y
Wheel Diameter | Defect Model VI-Rail \IVheel—?aul
—_—> > nteraction >
MATLAB .
Features of Defect ( ) (VI-Rail)
A Rail to Sleeper Displacement
——Axle Load J
Sampling Frequency-
Vehicle Parameters——
|
Exporting the Multiple Signals
to the Fusion Model
(b) Delay Estimation Data Sampling

(Cross-correlation) (MATLAB)

Multiple signal
4>{u e Sea Adding Noise

A\ 4

. . N . Dataset
Train Velocity Estimation » Data Sampling

A\ 4

‘Wheel Positioning
(low-pass filtering and finding local maxima)

(©

Signal Reconstruction

Wheel circumference
Dataset Positioning the Samples over the Circumferential Coordinate
(The remainder after division of the sensor position by the wheel
Sensor configuration circumference determines the sample position)

(MATLAB)
New signal

»

Figure 6. The process of the validation test.
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The flexible track contains a straight UIC60 rail. In
this model the rail mass and the inertia properties are
concentrated on each rail sleeper. The detailed explan-
ation of the track and vehicle structure falls outside
the scope of this article.

Nielsen and Johansson® classified and reviewed the
wheel defects and discussed the reasons of their devel-
opment. Wheel flats are the severe defects that cause
high impact forces. According to the Swedish criter-
ion the wheels with 40-60 mm flat length should be
reprofiled as detected during visual inspections.'
Hence, this research considers two flats with 40 and
60 mm length (0.4 and 1 mm depth, respectively). The
flats are on the nominal contact region. Wheel flats
generate defect signals containing high-frequency
components while the wheels with periodic OOR gen-
erate contact force with low frequency variation. The
OOR covers the entire wheel profile and the circum-
ference. Therefore, to model an OOR, the wheel
diameter is varied according to the defect shape.
This research considers a third-order out-of-round
wheel that has three harmonics around the wheel cir-
cumference with 0.3 mm amplitude.

Output of the data generation process

VI-Rail provides a range of outputs such as the con-
tact force, rail and sleeper acceleration, and rail and
sleeper displacement. The primary desired output is
the rail strain that is used in practice, but VI-Rail
cannot provide the rail strain signal. By considering
the rail as a transducer, the contact force signal is
transformed into the rail response such as strain,
acceleration, and displacement. In this research due
to lack of strain signal, the vertical rail to sleeper dis-
placement is used as the output of the data generation

process. Every sleeper is considered as a sensor that
measures the rail to sleeper displacement signal. The
sleepers have a discrete and periodic configuration
like the sensors’ configuration.

Figure 7 displays the typical rail to sleeper displace-
ment signals for two consecutive sleepers while the
first wheel has 40 mm flat. In this signal, the peaks
corresponding to the passage of the wheels were
close to each other and generated two big peaks con-
taining two smaller peaks. These signals show the
variation in the vertical rail to sleeper position
sensed in one side of the sleeper. They have four
peaks representing the passage of a wagon with four
wheels in that side of track. The wheel flat produced
the defect signal containing high-frequency compo-
nents. The defect signal is superimposed on the dis-
placement signals. Figure 7(b) shows a delay due to
the distance between the sleepers.

Results of the data fusion process

Figure 8 presents the samples collected by 59 sleepers
(sensors) for a wheel with a 40mm flat using the
MSM. In this figure, the samples represent all samples
measured by the effective zones collected in the data-
set Sy... As is clear from Figure 8, the collected sam-
ples provide a limited piece of information.

Figure 9 makes a comparison between the signals
reconstructed by the SSM and MSM based on equa-
tions (16) and (18). In this example, the samples col-
lected in Figure 8 are fused to reconstruct new
informative signals. Figure 9(a) shows the contact
force that is provided by VI-Rail. The contact force
is transferred to the wheel and rail and makes the
dynamic response of the wheel and rail. In this exam-
ple, the rail to sleeper displacement signal is used as

300 T T T

200 -

100 -

2 2.5 3 3.5 4

300 T T

200 High frequency
components

4 T,

Rail to sleeper displacement [um]
o

Time [s]

Figure 7. (a) The rail to sleeper displacement signal for the passage of four wheels while the first wheel is defective. This signal is
considered as the measured signal z(t) and (b) The rail to sleeper displacement signal for the consecutive sleeper as the second sensor.
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Figure 9. (a) The simulation result of a wheel-rail contact force for a wheel with 40 mm flat and 30 m/s velocity. The signals
reconstructed from the rail to sleeper displacement signal collected by 59 sensors using (b) the SSM and (c) the MSM.

the measured signals z(¢). In Figure 9(b), the SSM
used 59 sensors to collect data and reconstruct a
signal. In Figure 9(c), the MSM used the same sensors
but exploited more samples. In Figure 9(b), the first

downward of the defective area was not sensed com-
pletely, while in Figure 9(c), the MSM overcame this
problem. The reconstructed signals represent the con-
tact force signal that is a function of the wheel defect.
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Figure 10. The signals reconstructed for the wheels with different defects: (a) healthy wheel, (b) 60 mm wheel flat, (c) third-order
out-of-round wheel, and (d) 40 mm wheel flat. The signals have been normalized by subtracting the average of the signals.

Figure 10 presents other examples of the signals
reconstructed by the proposed method for a healthy
wheel, 40 and 60mm flats, and third-order out-
of-round wheel. The difference between the signals is
due to the wheel condition. These signals adequately
represent the features of the wheel defects. For exam-
ple, the reconstructed signal in Figure 10(c) shows a
sinusoidal wave with three periods covering the wheel
circumference that is accurately representing the
third-order out-of-round wheel defect. The defect sig-
nals in Figure 10(b) and (d) have similarity due to the
type of defects and have differences due to their sever-
ity. As a result, defect signals can be reconstructed to
use for defect detection and identification.

Conclusion

The magnitude of the contact force contains a limited
piece of information about the wheel defect.
Therefore, this paper proposed a fusion method to
reconstruct a signal containing the pattern of the con-
tact force that is a function of the wheel defect.
To achieve this purpose, this paper has developed
the required fusion method and described the theor-
etical relations between the samples collected by
multiple sensors such as WILDs. The results of the
validation test showed that the defect signals recon-
structed by the proposed method completely repre-
sented the features of the wheel defects used in the
data generation step. Therefore, the proposed

method opens up the possibility of detecting and iden-
tifying the defects including the minor and long-wave
defects at an early stage.

The fusion process is influenced by several param-
eters such as number of sensors, length of the effective
zone, and wheel circumference as the fundamental
period of the defect signal. The effect of the influential
parameters on the reconstructed signals should be
investigated further.
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