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Abstract. Segmentation can degrade a high-quality dose distribution obtained by
fluence map optimisation (FMO). A novel algorithm is proposed for generation of MLC
segments to deliver an FMO plan with step-and-shoot IMRT while minimising quality
loss.  All beams are considered simultaneously while generating MLC segments for
reproducing the 3-dimensional FMO dose distribution. Segment generation is only
steered by the 3D FMO dose distribution, i.e. underlying FMO fluence profiles are
not considered. The algorithm features prioritised generation of segments, focusing
on accurate reproduction of clinical objectives with the highest priorities. The
performance of the segmentation algorithm was evaluated for 20 prostate patients,
15 head-and-neck patients, and 12 liver patients. FMO dose distributions were
generated by automated multi-criteria treatment planning (Pareto-optimal plans) and
subsequently segmented using the proposed method. Various segmentation strategies
were investigated regarding prioritisation of objectives and limitation of the number
of segments. Segmented plans were dosimetrically similar to FMO plans and for
all patients a clinically acceptable segmented plan could be generated. Substantial
differences between FMO and segmented fluence profiles were observed. Avoidance
of the usual reconstruction of 2D FMO fluence profiles for segment generation, and
instead simultaneously generating segments for all beams to directly reproduce the
3D FMO dose distribution is a likely explanation for the obtained results. For the
strategies of limiting the number of segments large reductions in number of segments
were observed with minimal impact on plan quality.

Keywords: step-and-shoot IMRT, treatment plan optimisation, inverse IMRT planning,
prioritised MLC segmentation, column generation

1. Introduction

In intensity modulated radiation therapy (IMRT) treatment planning, the optimisation
problem may be split into a fluence map optimisation (FMO) phase and a segmentation
phase to convert the optimised fluences into multi-leaf collimator (MLC) segments. An
advantage of this approach is that the FMO problem can be modelled as a convex
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multi-criterial optimisation problem (Breedveld et al., 2019) with a guaranteed globally
optimal solution in optimisation. As treatment machine limitations (e.g. limitations of
the MLC) are not fully accounted for in FMO, the deliverable plan resulting from the
segmentation phase may have a quality loss compared to the FMO plan. Additionally,
decisions on multi-criterial trade-offs, as made during FMO, are generally not explicitly
taken into account in the segmentation phase (Salari and Unkelbach, 2013).

One approach for segmentation in static step-and-shoot IMRT is to separately
segment the beam fluence profiles for the involved beams into sets of deliverable segments
by stratifying fluences into discrete intensity levels and subsequently generate feasible
segments for each beam that match the optimised fluence profile (Xia and Verhey, 1998,
Siiss et al., 2007). In general, the more segments are included the better the fluence
profile can be replicated. To restrict the treatment delivery time, pre-defined trade-offs
between plan quality and treatment time can be used to restrict the number of intensity
levels and number of segments (Craft et al., 2007). To the best of our knowledge,
published MLC segmentation approaches for static step-and-shoot IMRT plans are all
based on independent segmentation of the 2-dimensional fluence profiles of all beams
(Long et al., 2016, Goren and Taskin, 2015, Luan et al., 2006, Siiss et al., 2007, Sun
and Xia, 2004). Sequencing the fluences for each beam separately excludes mutual
dosimetric compensation of imperfect segmentations of the 2-dimensional beam fluence
profiles to optimally reproduce the initial 3-dimensional FMO dose distribution.

Extensive research has been done to improve MLC segmentation with non-
discretised intensity levels and leaf positions (Long et al., 2016), to investigate
segmentation efficiency under various MLC constraints (Goren and Tagkin, 2015), to
explore regularization in the dose domain before segmentation (Nguyen et al., 2015) and
to minimise beam-on-time (Crooks et al. 2002, Boland et al. 2004, Ahuja and Hamacher
2005). However, none of the published methods explicitly account for differences in
objective priorities during segmentation. Consequently, discrepancies between FMO
fluence and sequenced fluence may potentially lead to dose deviations in the PTV
and OARs with uncontrolled balances, i.e. without explicitly considering the clinical
priorities.

In contrast to FMO followed by segmentation, Direct Aperture Optimisation (DAO)
has been proposed to directly generate MLC segments (Shepard et al., 2002, Romeijn
et al., 2005, Men et al., 2007). DAO operates under the “What you see is what you
get” principle, meaning that at every stage of the optimisation process the treatment
plan is directly feasible for delivery and no segmentation phase (with possible loss in
plan quality) is needed. However, including the non-convex modelling of the (physical)
constraints of the collimator and treatment device leads to a non-convex optimisation
problem. The column generation (CG) approach has been proposed as heuristic in
the field of DAO to solve the optimisation problem in radiotherapy (Men et al., 2007,
Carlsson, 2008, Cassioli and Unkelbach, 2013). Research on CG approaches for DAO
includes investigations on convergence (Carlsson and Forsgren, 2014), generation of
segments under various MLC constraints (Men et al., 2007) and inclusion of pre-defined
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multi-criterial trade-offs (Salari and Unkelbach, 2013).

In our centre we have given preference to plan optimisation using FMO followed
by segmentation, because of the guaranteed Pareto and global optimality of the FMO
plans that we generate with Erasmus-iCycle, an algorithm for automated a priori Multi-
Criterial treatment plan Optimisation (MCO) (Breedveld et al., 2012). For each patient,
a single Pareto-optimal FMO plan is generated with clinically favourable trade-offs,
considering all treatment objectives with explicitly assigned priorities. This differs from
a posteriori MCO (e.g. Craft and Richter 2013, Bokrantz and Miettinen 2015) in which,
for each patient, a set of Pareto-optimal plans is generated with automated planning,
while selection of a clinically favourable plan is performed by a user.

In this study, a prioritised dose-based MLC segment generation method is proposed
which minimises 3-dimensional plan quality loss compared to the FMO plan by placing
extra consideration on high priority clinical objectives. To reconstruct the 3-dimensional
FMO dose, a CG approach was implemented that simultaneously optimises the beam
segments for all treatment beams, rather than replicating the 2-dimensional fluences
separately as is done in other published MLC segmentation methods. Segment
generation was only steered by the 3D FMO dose distribution, i.e. underlying FMO
fluence profiles were not considered. In this sense, the term segmentation as applied
in this paper has a slightly different meaning from that in the literature. The CG
approach was chosen because of its intuitive mechanism of generating segments and
proven effectiveness in IMRT treatment planning (Carlsson, 2008, Romeijn et al., 2005,
Salari and Unkelbach, 2013).

The overall goal was to achieve high quality radiotherapy treatment plans by
combining global optimality of the FMO plan with a fast prioritised “DAO-like”
segmentation. The segmentation was tailored to individual patients by using the
prioritised approach in combination with personalised clinical objectives obtained from
the FMO plan. The proposed technique was developed in the context of CyberKnife
robotic radiotherapy, but can be applied for segmentation of any static step-and-shoot
IMRT or stereotactic body radiation therapy (SBRT) plan. Possibilities for keeping
calculation and delivery times low were included in the investigations. The segmentation
performance was evaluated for prostate, head-and-neck and liver tumours.

2. Materials & Methods

This section starts with briefly describing the applied FMO (section 2.1). Next, CG
is introduced in section 2.2, while the proposed segmentation with CG is described in
section 2.3. Prioritised steering on personalised objectives is described in section 2.4,
which includes approaches to minimise the number of segments. Finally, plan evaluation
criteria and details on our computational study are presented in sections 2.5 and 2.6,
respectively.
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Table 1. Overview of the clinical cases and FMO plans.

Treatment site  Cases Treatment unit Beams Prescribed dose (Gy) Fractions
Prostate 20 CyberKnife 25 non-coplanar 38 4
Head-and-neck 15 Conventional linac 9 coplanar 46 23
Liver 12 CyberKnife 25 non-coplanar 60 3

2.1. Patients, FMO treatment plans and dose calculation model

An overview of the clinical cases and FMO plans used to evaluate the performance of the
MLC segmentation is presented in table 1. All FMO plans were generated with fully
automated multi-criterial optimisation as implemented in Erasmus-iCycle (Breedveld
et al., 2012, 2017). A pencil-beam approach was used to describe dose delivered to
the patient, i.e. d = Az with d the vector containing the patient’s voxel doses, A
the dose deposition matrix, and x the pencil beam weights (see also Breedveld et al.,
2006, 2017, Nguyen et al., 2015, Zhu et al., 2012). For CyberKnife plans the beamlet
and segmentation resolutions were defined at 800 mm from the source, while this was
1000 mm for conventional linac plans. For all plans a beam energy of 6 MV was used.
For the prostate treatments, FMO was performed using pencil beams with a 5 x 5
mm? beamlet resolution, while a 5 x 10 mm? beamlet resolution was used for liver and
head-and-neck cancer. These FMO resolutions have shown to provide a good balance
between plan quality and computational efficiency. Since MLC segmentation of a FMO
dose distribution can result in degradation of plan quality, segmentation on a higher
resolution than the FMO resolution can compensate for potential degradation in plan
quality. We modelled the CyberKnife InCise2 MLC and performed all segmentations
(including the conventional linac plans) for this MLC, which has 2 banks of 26 leaves
with a leaf thickness of 3.85 mm defined at 800 mm SAD. Since our dose engine is limited
to integer values of resolution only, the segmentation was performed on a resolution of

a1l x4 mm?.

2.2. Column generation

CG is generally used to solve large-scale problems. The large-scale optimisation problem
is denoted as the Master Problem (MP). Instead of solving the MP directly, the MP is
solved by iteratively solving a restricted version of the problem denoted as the Restricted
Master Problem (RMP). The RMP only includes a subset of the original decision-
variables (i.e. the beamlet intensities z). During each iteration of the CG method,
the RMP is solved and the solution is projected onto the MP. The projection on the MP
can be used to identify the next promising subset of decision variables, which will be
added to the RMP in the subsequent CG iteration. This identification step is called the
Pricing Problem (PP). If no new decision-variables can be identified, the MP is solved
to optimality. For a detailed description of CG in RT, see Romeijn et al., 2005, Men
et al., 2007, Carlsson and Forsgren, 2014.
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Figure 1. Schematic representation of the column generation (CG) approach for

MLC segment
rejection (2.3.4)

28
i

prioritised MLC segmentation as a combination of the grey and red workflows. The
numbers between brackets refer to corresponding paragraphs.

2.3. Problem definition and segment generation

The CG workflow, as introduced by Romeijn et al. (2005) for DAO in radiotherapy,
was in this study used to segment FMO dose distributions by iteratively identifying
promising MLC segments, see figure 1. The CG workflow is denoted in grey, while the
proposed prioritised workflow consists of the grey workflow, followed by red.

The MP for plan segmentation is formulated in section 2.3.1. In each iteration the
most promising segment is identified by solving the PP (section 2.3.2) and then added
to the RMP (section 2.3.3). The RMP only contains the segments identified so far and
it is solved to optimality to determine the intensities of the segments. At the end of each
iteration, segments for which the intensity falls below the minimum required Monitor
Units (MU) are removed (section 2.3.4). Then, in the next iteration the PP is again
solved to identify the next promising segment.

For the proposed prioritised MLC segmentation, the CG workflow is incorporated
into an adaptive framework (section 2.4). If a segmented solution converges to a dose
distribution that does not comply with one or more of the DV criteria, segmentation is
re-started with extra emphasis on high priority objectives.

2.3.1. Master Problem With x denoting the fluence vector, our MP is formulated by:
minimise f(x) + wp(x) (MP) (1)
subject to z >0
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x > 0 ensures non-negative fluences and f(x) and p(z) are given by:

f@) =" |In'*(Az — df)|3 (2)
veV
1 Nprv (A;5—DF)
x) = e T 3
p() D (3)

The quadratic term f(z) is the main driving force of the MP, similar to objective
functions commonly used in treatment planning (Breedveld et al., 2006, Carlsson and
Forsgren, 2014). The vector 7, contains voxel-dependent weight factors for each volume
v € V, which play a key role in the MP adaptation part of the algorithm described
in section 2.4. df defines the FMO dose distribution. f(x) can be rewritten in the
canonical form to increase computational efficiency (Breedveld et al., 2006).

The term p(x) with weight w in equation (1) puts extra emphasis on attaining
an adequate PTV coverage by penalising under-dosage of the PTV, for which the
Logarithmic Tumour Control Probability (LTCP) is used (equation (3), as proposed
by Alber and Reemtsen (2007)). D” denotes the prescribed dose for the PTV, Npry
the number of sampled PTV voxels, and A;z the dose delivered to PTV voxel j. «
is a constant related to cell survival (Alber and Reemtsen, 2007), which was tuned to
achieve adequate coverage. An « equal to 0.90, 0.82 and 0.40 was used for prostate,
head-and-neck and liver respectively.

2.3.2. Pricing problem and feasible segment generation For the identification of the
most promising feasible segment, an approach similar to Romeijn et al. 2005 has been
implemented, in which the gradient from the MP is projected onto the beamlet grid
for each of the beams. Beamlets with a negative gradient are favourable for inclusion
into the next segment, as these indicate the most effective descent direction for the
MP. These individual beamlets are grouped together into feasible MLC segments by
constructing a layered graph (per beam direction) for possible combinations of adjacent
negative beamlets. Mechanical restrictions of the MLC device are taken into account
during construction of the graph. The following segment restrictions, similar to the
restrictions of the CyberKnife InCise2 MLC, were enforced: the MLC segment contains
only one contiguous opening, a minimum number of 2 leaf pairs open per segment (7.7
mm in total), a minimum opening size of 7.6 mm in the direction of the leaves, and
interdigitation is allowed. Given that our dose engine operates on integer values of
resolution, a field size restriction of two leaf pairs open per segment (8 mm in total) and
a minimum opening size of 8 mm in the direction of the leaves were used instead. The
graph is subsequently solved using a shortest path algorithm. The pricing problem
was implemented in C++ using Boost Graph Libraries (v1.58) and solved using a
Bellman-Ford shortest path algorithm. A post-processing step was implemented to
guarantee feasible segments. Feasible segments are generated for all beam directions in
parallel, but only the most promising segment (the one with the largest sum of negative
contributions) is selected and added to the RMP.
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2.3.3. Restricted Master Problem The restricted version of the Master Problem is
formulated in equation (4), where the quadratic (2) and LTCP (3) terms are now given
by equations (5) and (6). Variable z, denotes segment intensities. In each iteration,
a promising segment is identified and added to the RMP; a new column is added to
the optimisation problem. The RMP is subsequently solved to optimality to determine
the intensities z, for included MLC segments. For this we use our in-house developed
solver (Breedveld et al., 2017), specifically designed and tuned for solving radiotherapy
optimisation problems, but any non-linear solver could in principle be used.

minimise fr(x,) + wpr(z,) (RMP)  (4)
subject to z, >0

Where the quadratic and LTCP terms are now given by:

fo@y) =3 (I P (Ave, — )3 (5)
veV
1 Nprv p
pr<xr) _ Z e—OL(Arjl'r—D ) (6)
Npry =

2.8.4. Segment rejection For treatment delivery a minimum MU /segment is imposed
because dose delivery for MU below this threshold may be inaccurate. Also, segments
added to the RMP in an early stage of the segmentation process can decline in relevance
due to addition of newer segments. We have chosen not to enforce the minimum
MU /segment constraint while solving the RMP, in order to maintain the ability to
identify and remove segments for which the contribution to the solution diminishes.
When the intensity of a segment drops below the minimum the segment is removed
from the RMP. Additionally, after segment removal, the intensities of the remaining
segments are re-optimised and it is again verified whether they fulfil the minimum
MU constraint. Discarding redundant columns (segments) from the RMP reduces the
size of the problem which improves the computational efficiency of solving the RMP.
For the hypo-fractionated SBRT plans (prostate and liver) in this study a minimum
MU /segment per fraction of 5 was used and for the conventionally fractionated plans
the minimum MU /segment per fraction was 3.

2.4. Prioritised MLC segmentation

The performance regarding the posed (personalised) objectives is tracked during
segmentation (section 2.4.1). If a segmented solution converges towards a solution that
does not comply with one or more of the objectives, the MP is updated in an attempt
to better reflect the requested trade-offs (section 2.4.2), taking into account the clinical
priorities.
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2.4.1. Prioritised objectives for segmentation For the three investigated tumour sites,
the tumour and OAR objectives with assigned priorities as used for the segmentation
of FMO plans are presented in table 2a. They are in line with the clinical treatment
planning protocols at Erasmus MC. For each patient, the personalised goal values for
the OAR objectives are obtained from the Pareto-optimal FMO plan generated with
Erasmus-iCycle to obtain trade-offs in OAR sparing during the segmentation like they
were made during the automated multi-criterial FMO. During segmentation there is no
need to obtain a PTV coverage higher than requested in the clinical protocol, even if
it is obtained during FMO. Therefore, to generate maximum space for OAR sparing
during segmentation, the tumour objectives are enforced as provided in the treatment
protocol.

When during a segmentation all objective functions have converged and one or
more of the objective functions have not reached the goal value, an update of the MP is
performed, i.e. the MP is modified to put more emphasis on the objective function with
an unattained goal with the highest priority (table 2a) in a subsequent segmentation
run. When multiple objectives with equal priority are not fulfilled, the structure with
the largest deviation from the desired objective value is selected.

2.4.2. Updates of the MP during segmentation Two mechanisms are used
simultaneously for updates of the MP. The first approach is adjustment of the individual
voxel weights 7, within the quadratic objective function (equation 2). Increasing the
weight will magnify the difference between the attained dose in the segmented solution
and the reference dose for that voxel, as obtained in the FMO plan. This will put more
emphasis on that particular voxel for attaining its reference dose. The second option is
to adjust the reference dose df” within the quadratic objective function. By adjusting
the reference dose for a voxel the difference in dose will be increased, thereby increasing
the contribution to the MP objective function, but this option also favours deviations
from the original FMO plan.

For each update, only the voxels in the selected structure that do not comply with
the criteria contribute to adjustment of the MP cost function. A maximum of three MP
updates was enforced to limit calculation time and to remain close to the FMO solution.
The values of w, 7, and d% with the updates are presented in section 3.1. If the update
of the objective function yields a plan of inferior plan quality than before the update
the segmentation falls back on the previous plan.

Segmentations are eventually terminated when the MP objective function has
converged with all clinical objectives (table 2a) met, or if the maximum number of
MP resets (three) has been reached. The convergence criterion was defined as the
objective value being within 10% of its current value over the last 10 iterations for
segment additions. This criterion was relaxed to 12.5% when all clinical objectives were
met. As a result, fewer segments were included when an adequate plan has already been
achieved.
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Table 2. Personalised objectives for prioritised segmentation of a prostate, head-
and-neck or liver FMO plan with assigned priorities (Pr.); for each patient, the goal
values for the OAR objectives were the plan parameters in the corresponding FMO
dose distributions, while the tumour objectives were always enforced as stated in the

treatment planning protocol (a) and hard constraints to evaluate clinical acceptability

of plans (b).

(a)

Prostate Head-and-neck Liver
Tumour objective Pr. Tumour objectives Pr. Tumour objectives Pr.
PTV VD>38Gy > 95% 1 PTV VD>43.7Gy > 98% 1 PTV VD>60Gy > 95% 1

Dice < 49.2 Gy

Die. <T5Gy 2

Personalised objectives Pr. Personalised objectives Pr. Personalised objectives Pr.

Rectum Dice 2 Spinal cord Dice 3 Liver - GTV Vbs1say 3

Bladder Dice 3 Brainstem Dice 3 Duodenum Dice 4

Urethra Dsy 4 Parotid L/R Dean 4 Small bowel Dice 4

Urethra D1y, 4 SMG L/R Dean 4 Stomach Ds... 4

Urethra Dso, 4 Larynx Dnean 5 Spinal cord Dice 5
Cochlea L/R Dean 6 Oesophagus Dice 5
Oesophagus Drean 6 Kidney L/R Vbs1say 6
Oral cavity Dean 6

(b)

Prostate Head-and-neck Liver

Clinical constraints

Clinical constraints

Clinical constraints

PTV VD>38Gy > 95%
Rectum Di.. < 32.3 Gy
Bladder Dj.. < 38 Gy

PTV VD>43.7Gy > 98%
Dice < 49.2 Gy

Spinal cord D, <50 Gy

Brainstem Dice < 60 Gy

PTV VD>6OGy > 95%
Dice <75 Gy
Liver - GTV VD<15Gy > 700 cc
Duodenum  Di.. < 30 Gy
Small bowel D1 < 30 Gy
Stomach Ds... <225 Gy
Spinal cord D1 < 18 Gy
Oesophagus D1, <27 Gy
Kidney L/R  Vpsisay < 33%

2.4.83. Segment reduction An important contributor to treatment delivery time is the

number of segments. To investigate possibilities for active steering on the number

of segments, we have implemented and evaluated six segmentation approaches: three

prioritised segmentation (PS) methods and three non-prioritised (noPS) methods:

(1) PS_full: Full prioritised segmentation as described in sections 2.4.1 and 2.4.2.

(ii) PS_remove: PS_full, followed by stepwise removal of segments. For every removal

step, the segments are ranked based on their relative contribution to the PTV

mean dose. Subsequently, the segment with the lowest contribution is removed and
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the intensities x, of the remaining segments (equation (4)) are re-optimised. This
process is continued until a tumour objective is violated.

(iii) PS_terminate: Start prioritised segmentation like in PS_full, but terminate as soon
as all tumour objectives are met after the last update of the MP.

(iv) moPS_full: Start segmentation like in PS_full, but do not update the MP, i.e. the
prioritised list of personalised objectives is not used during segmentation.

(v) noPS_remove: noPS_full, followed by stepwise removal of segments (see ii for
details).

(vi) noPS_terminate: Start segmentation like in noPS_full, but terminate as soon as all
tumour objectives are met.

2.5. Plan evaluation criteria

Plans segmented with the various approaches were mutually compared and compared
with FMO. The analyses focused on clinical acceptability, dosimetric quality, number of
segments, MU and segmentation time. Criteria for clinical acceptability are summarised
in table 2b. Dose-volume parameters and the Conformation Number (CN) as proposed
by van 't Riet et al. (1997) were used to quantify dosimetric quality. Additionally, visual
inspections of the dose distributions were performed.

2.6. Computation times

Segmentations were performed on a dual CPU system, consisting of 2 octocore Intel
Xeon E5-2690 CPUs, running at 2.90 GHz and with 128 GB of memory. For the various
segmentation approaches, calculation times were recorded.

3. Results

Segmentation parameters found to be suitable for prioritised segmentation are presented
in section 3.1. Prior to presenting the overall performance results for the segmentation
approaches in section 3.3, one head-and-neck case is discussed in detail in section 3.2.

3.1. Prioritised segmentation parameters

A weight w of 10? for the LTCP term of the objective function (1) was found to work
adequately for all tumour sites and was kept fixed throughout the investigations. As
mentioned in section 2.3.1, the contribution of the LTCP term diminished when an
adequate PTV coverage was attained. The value of 10® provided an appropriate trade-
off between steering on sufficient PTV coverage (when necessary) and reconstruction of
the FMO dose distribution provided. The voxel weights 7, of the quadratic part of the
objective function (2) were all set to 1 at the start of the segmentation. For updates
of the MP cost function, the weights for selected voxels were increased from 1 to 5, to
10 and to 15 for subsequent updates. For OAR objectives, the voxel reference doses
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d¥ | initially obtained from the FMO dose distribution were decreased by 0.33 Gy at the
same time.

3.2. Segmentation performance - example patient

Figure 2 shows for an example patient axial and sagittal slices through the PTV for
the FMO plan (a) and the segmented PS_full plan (b). FMO and segmented dose
distributions were similar, though small deviations were noticeable. As required by
the clinical protocol (table 2b), in both plans more than 98% of the PTV was covered
by at least 95% of the prescribed dose (yellow isodose line in figure 2, 43.7 Gy=95%).
Isodose lines of the segmented plan were somewhat smoother, which can be explained
by the difference in fluence modulation. In FMO, the fluence is modulated per beamlet,
although some form of regularisation (smoothing) is applied. In segmented plans,
collections of connecting beamlets are irradiated with equal intensity, which generally
results in smoother fluence profiles. In principle, the higher modulation in FMO could
have resulted in a more conformal plan. However, in this case a minor increase in CN
was observed in the segmented plan; CN=0.77 for FMO and 0.79 for the segmented
plan. FMO and segmented fluence profiles for all beams are shown in figure 3. Even
though FMO and segmented dose distributions were similar, substantial differences in
fluence profiles per beam were observed.

DVHs for the FMO plan and all segmented plans are presented in figure 4. For all
three PS methods the goal values for both PTV objectives were attained (table 2), with
PTV coverages of 98.9%, 98.8% and 98.8% and PTV Dy, of 49.0 Gy, 49.1 Gy and 49.2
Gy for PS_full, PS_remove and PS_terminate respectively. In comparison, in none of the
noPS plans the PTV D;.. goal was achieved (PTV Dy, of 50.1 Gy). Since the PTV
D1 was already violated for noPS_full, no segments could be removed without violating
one of the tumour objectives in the reduction step and therefore all noPS plans were
equal. Figure 5 shows for the example HN case the PTV objective functions (Vpsas.ray
and Vpsa92acy) as a function of iteration number during the segmentation process. In
order to meet for both functions the goal values three MP updates for the PTV were
necessary, to place more emphasis on crucial voxels that contributed to PTV overdose.

3.3. Segmentation performance - all patients

Figures 6, 7 and 8 show population mean DVHs for the three patient groups. DVHs
per individual patient can be found in the supplementary materials. For prostate and
liver the mean DVHs for the six segmentation approaches were very close to those of the
FMO plans. For the OARs this also held for head-and-neck cancer, but for the three
noPS segmentation approaches the mean Vpsa492a, for the PTV exceeded the clinical
dose constraint (table 2b), see inset of figure 7. Figure 9 shows the number of clinically
acceptable plans, which for head-and-neck indeed shows that for each of the three noPS
approaches only 1 out of 15 plans was clinically acceptable.
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Figure 2. Similar FMO (a) and PS_full segmented (b) dose distributions for the
example HN patient discussed in section 3.2. Depicted structures: PTV (red), spinal
cord (green), brainstem (blue), parotid L/R (cyan/purple), oesophagus (yellow) and

oral cavity (light blue).
Segmented fluence proflles

Figure 3. Fluence profiles to realise the FMO and segmented plans for the example
patient discussed in section 3.2, plotted per beam. FEven though the FMO and
segmented dose distributions are similar (figure 2), substantial differences between
FMO and segmented fluence profiles per beam were observed.

FMO fluence profiles
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Figure 4. DVHs for FMO and segmented plans for the example head-and-neck case
presented in section 3.2. Tumour objectives are denoted with red triangles. Inset:
close-up of the DVHs around maximum dose. All three PS plans met both tumour
objectives compared to none of the noPS plans (none of them fulfilled the PTV D,
objective).

Head-and-neck - iterative optimisation of PTV objectives

,,,,,,,, —— — ] —T—— —=== 500
<1400
——PTV Coverage
——PTV Vol >49.2Gy |- 300
— — —Goal value I
o
-200
<100
1.5cc 0.3cc
| \ | L \ O
50 100 150 200 250 300

Iteration (#)

Figure 5. For the example head-and-neck patient discussed in section 3.2, tumour
objective functions’ values during the PS_full prioritised segmentation plotted against
iteration number. In order to meet the goal values (table 2a), three updates of
the objective function were necessary. Updates were performed at iteration 85 (PTV
Vbsa9.2ay = 12.9 cc), at iteration 162 (PTV Vpsag.agy = 3.2 cc) and at iteration 233
(PTV Vpsagaay = 1.5 cc). At the end of PS_full, PTV Vpsa9.2ay = 0.3 cc, which is
within the goal value (< 1 cc, table 2a).
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Figure 6. Average DVHs for the prostate cases (N=20) for the FMO plans (thick
solid lines) and the segmented plans (dashed). The PTV coverage objective is denoted
with a red triangle.

Figures 10, 11 and 12 show details on the performance of the six segmentation
approaches for the three investigated tumour sites. The subfigure “PTV Dlcc” of
figure 11 shows that acceptability issues with noPS plans for head-and-neck cancer were
indeed indeed related to too large PTV volumes receiving high dose. Among the three
PS approaches, differences between achieved dosimetric parameters for head-and-neck
were clinically irrelevant (figure 11). Overall the best segmentation approach for this
group seems PS_terminate as it has the lowest # segments (median: 75), the lowest
# iterations (median: 334) and the lowest MU (median per fraction: 979 MU). Also for
prostate and liver cancer, PS_terminate is often a good choice, mainly because of the
relatively low # segments, low # iterations and low total MU.

Another interesting observation are the differences in deviation observed per
segmentation method over various objectives with different priorities (table 2a). For
example, for prostate cancer the smallest deviations were observed for the most
important OAR (i.e. rectum). With decreasing importance (increasing priority number)
the deviations in dose from the FMO plan increased (compare objective subplots in
figure 10). No similar trend was observed for the noPS approaches, which indicates that
the proposed extension of the segmentation technique is able to reduce dose deviations
in a prioritised manner.
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Figure 7. Average DVHs for the head-and-neck cases (N=15) for the FMO plans
(thick solid lines) and the segmented plans (dashed). Inset: close-up of the DVHs
around maximum dose. PTV objectives are denoted with red triangles.
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Figure 8. Average DVHs for the liver cases (N=12) for the FMO plans (thick

solid lines) and the segmented plans (dashed). PTV objectives are denoted with red
triangles.
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Figure 9. Percentage of clinically acceptable plans. A plan was considered acceptable
if for all constraints the obtained values were within 0.25 Gy or 0.25% of imposed
values (table 2b). Plans segmented using the prioritised methods (PS) outperformed
the non-prioritised methods (noPS). Especially for head-and-neck where more emphasis
was needed on crucial voxels, in 14 out of the 15 cases, in order to meet the PTV Dy,
constraint.

4. Discussion

MLC segmentation approaches were investigated that aim at accurate reconstruction
of optimised FMO distributions, while complying with the mechanical limitations of
the treatment device. To reconstruct 3-dimensional FMO dose distributions, a column
generation approach was implemented that simultaneously optimised the beam segments
for all treatment beams, while ignoring the underlying FMO fluence profiles.

For OARs the proposed segmentation method uses a convex quadratic objective
function to minimise the voxel-wise differences between the intended FMO dose and the
segmented dose. During prioritised segmentation, this objective function may iteratively
be adapted to maximally reproduce OAR dose parameters, while considering the clinical
priorities. In initial attempts, we tried to also use for the PTV only a quadratic cost
function, similar to the OARs. However, achieving clinically acceptable PTV coverages
and maximum doses often failed. Therefore, the quadratic function was supplemented
with an LTCP term. Also for FMO plan generation, the LTCP cost function is often
used for obtaining adequate PTV dose (Alber and Reemtsen, 2007, Breedveld et al.,
2012, 2017).

In our study, segmented plans were in good agreement with the FMO plans
(section 3.3), and the number of segments and MU of the generated plans are in line with
our clinical experience. Quantitative comparison with published segmentation methods
is difficult due to large variations in clinical cases and plans, and in applied segmentation
objectives, parameters and quality measures. Also, in published studies the number of
evaluated cases is generally relatively low (typically 2 to 10 compared to 47 in this study).
However, qualitative comparisons indicate a superior FMO plan reproduction with the
proposed approach. Explanations for this could be i) the direct reconstruction of the 3D
FMO dose distribution with total ignorance of obtained FMO fluences, and simultaneous



M~
—

Automated prioritised 3D dose-based MLC' segment generation

"(3s03 yuey

pousig

UOXOO[IM ) OINA 03 poreduwiod 90UeILPIP (GO'( > d) 1UROYIUSIS © SOJ0Uap () FSLPISe UR ‘IoqUNN UOIJRULIOJUO) = N{) ‘HU[) IOJUOIN =
NIN "senfea pesodul JO 9467 () 10 A9) GZ"() UIYIIM OI0M SON[RA POUIRI(O 9} SJUTRIISUOD [[e 10 JT o[qridaooe paropsuod sem ue[d y -qg o[qe)
Ul POSLIRWIWINS S€ SJUTRIISUOD [ROIUI[D 9)0USP SOUI] POYSEP POl [RJUOZLIOH ‘OUI[ [RIUOZLIOY © YIM Pa3otdop onfes UeIpoW oY) )M oFuel
o[ueorad 94¢)-GZ 9U) SIeq PAINO[Od Y} PUR SON[RA POAIOSO WINWIXRUI PUR WNWIUIW 9T ‘“@jep 9} JO oSurl oY) 9j0uap sjo[dxoq oy} ut
SIONSTYM O[T, "Ieourd 9je)sord 10] seyoeordde uorejuswsss XIs o) pur O\ 10] sorjstajoereyd we[d jusurjear) Jo uostreduwo)) QT 9In31 g

Lo | AT T ° ¥ °
SRS AN A TR C 05 | *T ooz %%
Uge 0oy (540 m m 0 |llg gm I 0ot s 2
L TF 4w 1080 Wﬂl ,m% cz ‘,m 00T hm_m @% >
] gseo |° T ' “ — 009 i
L L Om - i 1+
ND NW |e1ol 01X sjuawbas # 0st suonesay| # awn -a|ed ot
T : +19€ T | T i | T T 1 T Hevy
11 T 7o " —r - mm m (47 7T 1 | |
JLELL ol
I [0) Beco mm RERNCLL L A
91eUlWID]} Sdou (IA)[ ] i W*fm 4 Wmfmﬁ N A R oy
w>OEw\_Im&OC A>V_H_ M il (0)7 - 9y *oﬁ * e L=
INS"Sdou (A %0Sd edyiain %0Ta edyiain %Sd eyiain
SjeulwIa} sd (N[ |
Showl sd - (INE] LIy 111 1 [TT 111 ¢ §% erg 1°%
W4 m- o Tl l0Eo e | 6’56
T ee T e W = - ‘ m °
+ ! | .
o GE 096

251 J9ppe|g

35T wn}day

abelsanod Ald




(3899 ey pousig uoxodIN) ONA 0
paredwiod 9ouLISPIP (GO0 > d) YUROYIUSIS ® S9J0UAP () YSLI9ISE UR ‘I9qUUIN UOIIRULIOJUO) = N{) ‘HU() JOMUON = NN "senfea pesodul
JO 9%Gg°0 10 £9) Gg'() UIYIIM SIOM SOT[RA POUIRICO OY) SHUTRIISUOD [[R I0] JT o[qeideooe poropisuod sem ueid y (g o[(R) Ul PISLIBWIWNS SR
STUTRIISUOD [ROTUI[D DJOUSP SOUI[ POYSRP PAI [RIUOZIIOH "OUI] [RIUOZLIOY ® [1Im Paoldop onfea urIpow oy} Yim dduet oaruedrod 9¢)-G7
9} SIeq POINO[0d O} PUR SON[RA POAISSJO WINWIXRUW PUR WNWIUIWL ‘9T ‘@Jep oY) JO d8Uel o} 2j0uUep sjo[dxoq oY) Ul SIONSIYM Y],
“I00URD JDOU-puUR-PeY I10J soyorordde uorjejuowdes XIs o) pue OJNA I10J sorsuejoererd ue[d juemrjeary jo uostredwo)) 1 oan3rg

ee]
i

- 91U} Sdou (IN)[_]

T 1177 T T i FfE 11 10 aAoWRI Sdou (AT
e G0l U ! b1, |08 TEE oEw | -
S Em_ :mm mho”: LD oz [T Ll “ 002 ' = lIN Sdou (Al
i teieen L) TP e T 025 | areuway s ()|
S = ERE T ey Rl gmm , : anowas sd (N[
S 1 s80 R i oot 11T | oov Lit oy Ny sd W

01X sjusawba suoinjesa =) ole ;

- ND NN 18301 ¢ juswbas # suonessy #  BwR “Ije) OWA[ ]
m \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
SO o ﬁo O Ty 15 T qot [ i flon
o SETES . R . ] ST .
S O R L %5 1S o S o Maliit 1 1%aiil 1 %
M AE“:EE < | . < < < H— = HOE| 1 o HoeE<
< AR LA AL S L (R L Sl T gy 1 oy
S (LD I 0Ol dld o SN U oc 228 920 877 |pgp 0eo @
£ fne) Jeag snbeydosag ™ Y eajylod 1 eajyl’0)H Xuhlie H DS 1 OIS
N T e mrrrne Bie ii g° (177 177 1 7 8v L6
= R R Joo rdk sts goe | L o
S L Hgzalttl i oz o O, 1 _.sa_ _|6F I °
.2 O O 2 R RIS ov= |11 fes QL. ik Jes ©
: e oo 1 <000 000 | s i W
2 f oy PR TIT Yop oo 09 bo-oooooooo 0s 00T
g H pnoJed 1 pryoied wajsulelg p10> 2OTAd ALd 9beianod Ald
kS
IS
g
S
S
<



D
i

Automated prioritised 3D dose-based MLC' segment generation

(1809 ey pousiy
UOXOO[IM ) OINA 03 poreduwiod 90UeILPIP (GO'( > d) 1UROYIUSIS © SOJ0Uap () FSLPISe UR ‘IoqUNN UOIJRULIOJUO) = N{) ‘HU[) IOJUOIN =
NIN "sonyea pasodwil Jo 946z () 10 A5 Gg'() UTYIIM 9IoM SONTRA POUTRICO O} SJUTRIISUOD [[@ I0] JT o[qe)deooe paIopisuod sem weld ¥ qg o[qe)}
Ul POSLIBWIWINS SB SJUreI}SUOD [BIIUI[D 9)OUSP SOUI[ POYSep Pal [RJUOZLIO] ‘OUI [BJUOZIIOY & [iIm pajordop onfea UeIpow oY)} [jm o5uel
oruadIad 94G/-Gg O} SIBq POINO[OD 9} PUER SON[RA PIAISSCO WNWIXRU PUR WNWIUIW 9T ‘ejep oY) Jo o3uel oY) 9jousp sjodxoq o1} ul
SIONSIYM 9T, ‘Iooued ISAI] I0] soyoeoidde uoryejuewides XIs o} pue O)JNJ I0J sorjsizejoereydp ueld jusurjesrd jo uostreduwo)) g1 9anSiq

il 1 Haen H T ST |1, I or |o i ; T
L 98 e g o J; g o9 |g* 111 ooz Tan [
a i dego B i g1 |os N T
By (B sz Y. LB oot J,u |00E B
Emm o0 18 IT oe [ B |oet BT oow ST
11 1 L { ovT ; 00§ g
ND N jerol 0T sjuawbas # suoneld}| # awiy "ojed
wu.mc_c‘_.hw“.|mn_cc A_>V_H_ O 0 TTT TTT T 71T TToT T
anows."Sdou (1)) LI S S A S :
iny Sdou (A) Il S o o 0lg 01.9
1eulway Sd ([ ot~ ot <FrE L <
snowss sd e | N iR er L Ll ] St
Ny sd (N[
o Asupny 1 Asupny snbeydosaQ p40) jeulds
OW4[ ]
T T A,O TTOT TTT 10 mm- Dmm mO TrToT ﬁOGW M ,ﬂ i HO.QN \\\\\\\ _ﬂJWT\,H\\\\OO
or 1 117 oIt 000T~ b B
0TI o O DEE :EE mooﬁa — W m SVL |11, X
<UD TT] Hoz=hib Lh Hoz™=| S B Nl Eﬂmmo
T oz b oroqoort Lt gyt | E-i J
ST S O S B R R o | 0 W44 14J Il goor FEE FE 0°SL ¥« * oot
yoewols |[omog |jews wnuaponqg ALD - J3AI7 20Td AlLd abeaanod Ald



Automated prioritised 3D dose-based MLC' segment generation 20

segment generation for all beam directions, instead of the generally observed focus
on reconstruction of separate fluence profiles, and ii) the prioritised approach with
an explicit drive to avoid plan quality losses for the highest clinical priorities. With
this approach, segmentation is fully focused on maintaining the quality of the FMO
plan with minimal limitations in selecting optimal segments and preservation of the
clinical trade-offs. We have indeed observed substantial differences between FMO- and
segmented fluence profiles for similar dose distributions (see figures 2 and 3 for an
example patient). Possibly, the featured large freedom in beam segment selection has
contributed to the high quality of the reconstructed plans with clinically acceptable
numbers of segments (see figures 10, 11 and 12). Nguyen et al. 2015 investigated
dose domain regularisation for MLC segmentation and observed that the segmented
fluence profiles with and without regularisation could be substantially different. A
direct comparison with published or commercially available segmentation approaches
would be very interesting. For such studies it would be important to eliminate potential
bias, e.g. originating from difference in dose calculation models, segmentation objectives
or evaluation measures.

In this paper, FMO treatment plans were generated with Erasmus-iCycle
(Breedveld et al., 2012), which has been successfully implemented in clinical practice
for fully automated multi-criterial generation of clinically deliverable plans for head-
and-neck, prostate, advanced lung cancer and advanced cervical cancer. For these
tumour sites, Erasmus-iCycle is used for FMO plan generation, while the Monaco TPS
(Elekta AB, Stockholm, Sweden) is effectively used for segmentation (Voet et al., 2013,
2014, Sharfo et al., 2015, Gala et al., 2017, Heijmen et al., 2018). For automated
offline treatment planning calculation time is not crucial, but in other scenarios it could
be. Therefore, we have investigated calculation times for the segmentation approaches.
When plan quality is the most important aspect, the PS_full is most suitable; fully
converged segmentation with the best plan quality. When calculation time is more
important, for example in the case of online-adaptive treatment, the PS_terminate could
be a more suitable option. It provides a reduction in number of segments compared to
the PS_full, with only minimal impact on plan quality. Additionally, the terminate and
remove plans generally have a lower number of MU and so these plans are more efficient
to deliver compared to the fully converged plans. A possible drawback of the terminate
and remove approaches could be that the personalised objectives obtained from the FMO
dose distributions are too challenging to reconstruct under the mechanical limitations.
In that case, a plan would be returned with a high number of segments while fulfilling the
highest feasible objectives. Regarding the terminate approach, since the segmentation
minimises the difference between the FMO dose and segmented dose, terminating the
segmentation when the tumour objectives are met does not necessarily mean that none
of the remaining objectives are met. The segmentation primarily works on all dose
points simultaneously with an extra emphasis on PTV coverage due to the LTCP term,
prior to placing extra emphasis on other prioritised objectives. Investigations on further
reduction of calculation times using GPU are on-going; preliminary results indicate a
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potential reduction in calculation time with a factor of 5.

The prioritised extension of the segmentation has been observed to be effective,
but the impact is patient dependent and it increases calculation time. An option for
clinical practice would be to always perform a full prioritised segmentation and let the
user decide which plan is most appropriate per patient, given that the intermediate
(e.g. PS_terminate, noPS_full, noPS_terminate) plans are also available when PS_full is
performed.

Interesting opportunities for further improving the proposed MLC segmentation
approach would be to integrate published improvements in DAO techniques into this
MLC segmentation method. One interesting approach in particular would be to
integrate the Aperture Shape Optimization (ASO) algorithm as proposed by Cassioli
and Unkelbach (2013), which optimises the shapes of the included segments in between
CG iterations. However, this will also increase computation time. Another useful
improvement might be to integrate a clinical dose engine in order to account for MLC
scatter effects or to include a fuzzy controller to reduce numerical noise on the gradient
maps as proposed by Yang et al. (2018).

5. Conclusions

Novel MLC segmentation approaches have been proposed for accurate reconstruction of
high-quality FMO dose distributions, while complying with the mechanical limitations
of the treatment device. 3-dimensional FMO dose distributions are reconstructed with
total ignorance of underlying FMO fluences, and simultaneous segment generation for
all beam directions. Due to the proposed prioritised approach, plan reconstruction has
an accent on high priority planning objectives. Clinically acceptable segmented dose
distributions could be generated for all cases with a plan quality that was in good
agreement with the FMO plan and clinically acceptable numbers of segments.
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