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Abstract

Synthetic lethality (SL) is a relationship between two genes, exploited for targeted anti-cancer therapy, whereby functional
loss of both genes induces cell death, but the functional loss of either gene alone is non-lethal. Computational prediction
of SL gene pairs is sought after because it is expensive to do lab screening for SL. Existing SL labeled pairs from wet-
lab experiments often focus on specific genes or pathways, resulting in notable selection bias. Current SL prediction
methods ignore this bias when training on available SL labels, and fail to generalize if test sets follow a different selection
bias. One way to mitigate bias is to incorporate unlabeled pairs during model learning. However, conventional semi-
supervised methods such as self-training can reinforce bias by adding confidently pseudolabeled pairs, which tend to
be most similar to previously included samples. We present DBST, a self-training strategy that addresses the issue by
promoting diversity in the selection of pseudolabeled samples. This is achieved using metric learning to find a class-
contrastive representation of the feature space, based on which DBST selects diverse (or dissimilar) pseudolabeled pairs.
In results for five cancer types, semi-supervised models, including DBST, delivered improved SL prediction performance
over the supervised model. Additionally, DBST successfully incorporated unlabeled samples that were more dissimilar
among them compared to standard self-training. In experiments with differing biases between train and test sets, DBST
showed a slight improvement in performance compared to the supervised model.

Introduction

Synthetic lethality (SL) is a relationship between two genes

where the functional loss of either gene alone is not harmful

to the cells, but the functional loss of both genes causes the

cells to die. It is an active area of research in the quest to find

targeted cancer treatment. Specific gene functions are disrupted

in tumor cells due to direct deleterious mutation or indirect

alterations. Targeted drug therapies can target synthetic lethal

genes so that the mutual inhibition of both genes in cancer

cells causes cell death while healthy cells remain viable (1; 2).

The most prominent example is the SL interaction between

the PARP and BRCA genes. Specific PARP-inhibitor therapy

for cancers with deleterious mutations in the breast cancer

susceptibility genes BRCA1 and BRCA2 was created (3; 4),

tested in clinical trials (5), and later approved by the FDA

and EMA (6). Since then, many more targeted therapies that

leverage SL interactions have been researched with applications

in different cancer types (7).

Finding robust SL gene pairs is an extensive process, as

humans have between 20.000 to 25.000 protein-coding genes

(8), making the number of possible gene pairs extremely large.

Besides that, it is believed that only a small number of all

possible gene pairs have a synthetic lethal interaction. As

testing every gene combination for SL in wet-lab experiments

is nearly impossible, computational approaches are being

developed to find potentially interesting gene pairs for

experimental screening.

There are various methods to predict new synthetic lethal

interactions. These methods include statistical-based methods,

network-based methods, and classic feature-based machine

learning methods (9).

Statistical-based methods form hypotheses on gene pairs

having statistical properties of being synthetic lethal. One

example is the DAISY method (10), which forms three

statistical tests based on the assumptions that SL gene pairs are

not coinactivated, individual genes in SL pairs are important,

and SL gene pairs are often coexpressed. The advantage is that

statistical-based methods do not need pre-existing SL data to

form predictions, and the models are more comprehensible to

biologists (9). However, statistical-based methods often lack

predictive power.

Network-based models exploit various biological networks,

such as PPI networks, signaling networks, metabolic networks,

and existing SL networks, to find a structure indicating

synthetic lethality. A disadvantage, however, is that these

networks are largely incomplete, making these models less

effective. Another disadvantage is that existing SL labels

contain selection bias (11; 12), and network-based models

usually exploit and follow the bias present in the data. Wet-

lab experiments often focus on a subset of genes, which causes

the available SL data to lean towards specific genes rather

than the data being uniformly sampled and representing the

true distribution. This selection in what data point we have

labels for is called selection bias (13). It has been shown that

especially network-based models are sensitive to this selection

bias (11).

Machine learning methods typically include supervised

learning methods where models are trained based on pre-

existing SL data as labels and other biological data as features.

Examples of this are an SVM-based model that uses PPI

networks to predict SL (14) and random forest-based models

DiscoverSL, SBSL, and ELISL that predict SL interaction based

on multiomics cancer data (15; 11; 12). However, many more
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gene pairs are available without their respective SL label, which

cannot be used in a supervised setting.

We can notably leverage unlabeled gene pairs in the training

process by using semi-supervised learning (16). The unlabeled

samples allow us to learn the underlying distribution over the

entire space besides the known SL data that carries the selection

bias. There are already SL prediction models that make use of

semi-supervised learning. One example is Exp2SL (17), which

can use cell-line-specific gene expression profiles where it can

use a loss function that not only measures the error for labeled

gene pairs but also tries to increase the margin between labeled

and unlabeled samples.

A common framework for semi-supervised learning is self-

training: a model is progressively built using supervised

learning, initially based only on labeled samples; this model

is then subsequently retrained or refined by pseudolabeling (or

predicting) unlabeled samples, some of which are selected and

incorporated into further training based on the confidence of

pseudolabeling by the model (16; 18). However, self-training

can follow and even reinforce the bias already present in

the data (19) because self-training suffers from confirmation

bias (20). In selecting the highest confident samples self-

training is more likely to select samples similar to those already

present in the training data, which causes self-training to lean

more towards the biased data. To use self-training without

reinforcing the bias, one must more carefully consider how

pseudosamples are selected to prevent the selection of similar

samples as the samples in the training data (20; 21).

To mitigate selection bias, many ideas have been proposed.

One example of these ideas is aligning the predicted unlabeled

distribution to the labeled distribution (22). Here they assume

that the true distribution can be extrapolated from the

labeled samples, a problem they do not address further.

Another method is to try and reconstruct the missing data by

introducing artificial data points (23). By comparing where the

artificial data points are created, you can measure if your data

suffers from bias and use the artificial points as a complete

dataset. The downside of this method is the use of synthetic

data which might not exist of follow a different bias. A third

method combines active learning with semi-supervised learning

(24). They try to mitigate the bias by leveraging active learning

to find informative unlabeled samples and then pseudolabel

those informative samples in an SSL approach. The downside

is that informative unlabeled samples might not be predicted

well by the SSL method.

In this paper, we propose a model that combines metric

learning with a known semi-supervised learning method

called self-training to promote diversity in the selection of

pseudosamples. Semi-supervised approaches often focus on

adding high-confidence pseudosamples and are, therefore, likely

to select similar samples. This results in models reinforcing

the selection bias present in the data. We propose DBST, a

method that can select diverse pseudosamples that are less

similar to labeled SL samples. The aim is that the selected

diverse samples allow the model to generalize better over the

actual distribution and not follow the bias present in labeled

SL data. This is achieved using metric learning to find a class-

contrastive representation of the feature space, based on which

DBST selects pseudolabeled samples.

Methods

Our aim is to learn a model that can use unlabeled data in SL

prediction to mitigate sample selection bias by selecting diverse

samples.

Concept
To protect the class balance and prevent following further

bias, we use metric learning in combination with self-training

while protecting the class balance and adding diverse confident

samples. Metric learning allows us to learn an embedding space

where the distance between samples indicates their dissimilarity

(25). This embedding space creates the opportunity to find

diverse samples based on the distances between them.

Definitions

We define the input matrix of featurized representations of gene

pairs as X ∈ Rn×m, where n is the number of samples (or gene

pairs) and m is the number of features. We define a vector

containing the SL labels of all samples (gene pairs) as y ∈
{0, 1}n, where 1 indicates a synthetic lethal relation between

genes of the pair and 0 indicates no synthetic lethal relation. We

further define the embedding matrix as Z ∈ [0, 1]n×q, where q

is the dimension of each sample embedding vector.

Problem formulation

We aim to learn a model that can predict SL labels y for gene

pairs in X while incorporating both labeled and unlabeled data,

and where included unlabeled samples are chosen to be diverse

among each other. For this purpose, we would like to learn a

non-linear transformation fθ : X → Z , where θ represents the

model weights, such that samples with identical SL class label

are closer to each other in the embedding space while samples

with distinct SL class labels are further apart. Once this model

is learned, it can be used to (i) predict the SL label ŷ for an

unknown sample based on the proximity to known samples in

the latent space, and (ii) use a distance metric in the embedding

space to inform the selection of diverse unlabeled samples to

incorporate in the semi-supervised self-training process, with

the goal of mitigating the effect of selection bias.

Solution
The overview of our model can be found in Figure 1. The

first step is to train a transformation fθ based on the labeled

samples XL and their SL labels yL using metric learning with a

neural network. This trained model provides the transformation

fθ from the original feature matrix XL to its embedding

matrix ZL with corresponding labels yL, where samples from

the same class are closer together in the embedding space,

and samples from different classes are farther apart. The

same transformation model fθ trained on the labeled samples

is used to transform the unlabeled samples XU into their

corresponding embeddings ZU . For each unlabeled sample, a

(pseudo)label is predicted by looking at the labels of its k

nearest neighbors in the latent space from the labeled set.

After pseudolabeling, a final selection is made to choose which

pseudolabeled samples to add to the labeled set for a subsequent

iteration of the training procedure.

Metric learning

To learn the transformation fθ, we use metric learning. Metric

learning is a method where the prediction task is not optimized

directly. Instead, we learn a transformation into an embedding
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(ZU)
Transform XU → ZU

Train model Transform XL → ZL

Fig. 1. Overview of our proposed method

space based on the classes of samples and the distances between

them. The idea is that in the embedding space, samples from

the same class are close to one another, while samples from

different classes have greater distances between them. In other

words, metric learning is learning an embedding function such

that we can say something about the dissimilarity of the

samples based on the Euclidean distance between those samples

in the resulting embedding space (26). Metric learning relies on

three parts: informative input samples, an underlying neural

network architecture, and a loss function (25). All three can

impact the discriminating power and convergence of the model.

The neural network used for metric learning to transform

the original feature representations into class-contrastive

embeddings is a feedforward neural network with one 8-node

hidden layer and a 2-node output layer. After each layer, a

sigmoid activation function is used, which makes the neural

network a non-linear transformation. The network is trained in

batches with an Adam optimizer to guide the learning rate.

As for the loss function, we opted for the contrastive loss

because it is easier to understand and because this is a binary

classification problem (either SL or non-SL). The contrastive

loss increases when samples of the same class are not within a

positive margin mpos or when the distance between different

classes is not greater than a negative margin mneg. This

comparison is made between all possible combinations of two

samples within a batch. The losses for each batch are then

accumulated, considering each batch’s size. The final loss value

is then used to update the model weights. The contrastive loss

is defined as per Eq. 1:

Lcontrastive =
∑

(i,j)∈P

1yi=yj
[di,j − mpos]+

+1yi ̸=yj
[mneg − di,j ]+, (1)

where i and j are samples, P is the set with all selected samples,

which in our case is every combination between samples in the

same batch. Additionally, 1condition is an indicator function

which equals 1 if the condition is true and 0 if the condition is

false, and mpos and mneg are the positive margin and negative

margin, respectively. Moreover, di,j denotes the distance

between samples i and j, which is shorthand for d(zi, zj) and

corresponds to the Euclidean distance between samples i and j

in the embedding space.

Predicting the label (and pseudolabeling)

To infer the class label of each unlabeled sample, we can utilize

the k nearest neighbors (kNN) training samples of the unlabeled

samples in the learnt latent space Z . This is done by taking an

unlabeled sample i, transforming its original representation xi

into its embedding vector zi, and then using the labeled samples

as a reference to find the k (10) labeled samples that are closest

to sample i in the embedding space. Based on the labels of those

nearest neighbors, a class label is predicted for an unlabeled

sample i. To reward the proximity of the k nearest neighbors to

sample i and penalize distance, a weighted kNN model is used

where the contribution of the label of each nearest neighbor k

is inversely proportional to the distance between the unlabeled

sample i and the nearest neighbor. The weighted average over

the k nearest neighbors forms an SL score as per Eq. 2:

SLscore(i) =

∑
k yk × (1 − di,k) + (1 − yk) × di,k

|k|
. (2)

This SL score is in the interval [0, 1]. The closer the score

is to 1, the more confidence that the sample is positive and,

therefore, synthetic lethal. The closer the score is to 0, the

more confidence that the sample is negative and not synthetic

lethal. If the SL score is at 0.5, we are indifferent to whether

the sample is synthetic lethal. To come to a final classification

ŷ, we use 0.5 as a threshold as per Eq. 3:

ŷi =

1, if SLscore(i) > 0.5

0, otherwise
(3)

Since the confidence of a sample depends on how close the SL

score is to either 0 or 1 we define the confidence of a sample as

follows: a sample i has a confidence of at least c if SLscore(i) ≥
c or SLscore(i) ≤ 1 − c.
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Selection of pseudolabeled samples

After the pseudolabeling of unlabeled samples, a selection is

made of which pseudolabeled samples to include for the next

training iteration. For a given training iteration t, we first train

the model on the labeled set Lt. At the end of iteration t,

we select a subset of pseudosamples Uts ∈ Ut to add to the

labeled set for the next iteration Lt+1 = Lt ∪Uts. The selected

pseudosamples Uts are then also removed from the unlabeled

set Ut for the next iteration such that Ut+1 = Ut \ Uts. At

every iteration t, we add a total of p pseudosamples using one of

three different strategies: standard self-training (ST), balanced

self-training (BST) and diverse balanced self-training (DBST).

Standard self-training

The ST approach is a semi-supervised method of incorporating

unlabeled samples into the model learning and prediction task

(18). To select the pseudosamples, all unlabeled samples are

ranked based on their confidence. The p highest confident

samples are then selected as pseudosamples in each iteration.

This selection is independent of the class label, so after the first

iteration, there is no longer a guarantee on the class balance in

the labeled set.

Balanced self-training

The BST strategy works similarly to ST but considers the

prediction probability of the pseudosamples. The unlabeled

samples are therefore not ranked based on their confidence

but instead based on SLscore. Half of the pseudosamples

p/2 come from the highest-scoring samples, and the other

p/2 pseudosamples come from the lowest-scoring samples.

This method makes it more likely that the class balance is

maintained throughout all training iterations, as the upper and

lower halves are more likely populated by predicted positives

and negatives, respectively.

Diverse and balanced self-training

The DBST strategy is fundamentally different from the ST

and BST approaches described above in that it uses the metric

learning embeddings for the selection of pseudolabeled samples.

The idea is to pick random pseudosamples in the embedding

space that are above a certain confidence threshold µ. By

picking random samples, the goal is to select samples that are

different from each other and do not follow the same inherent

bias in the SL labels. In order to select a random pseudosample,

we generate a random real number between 0 and 1 for each

dimension or coordinate of the embedding space. This vector

of random coordinates represents a random data point in the

embedding space. Using the Euclidean distance, we find the

closest unlabeled sample from this random data point in the

same embedding space. The closest unlabeled sample is our

candidate c. If the pseudolabeling confidence of candidate c

exceeds the confidence threshold µ, it is selected to be included

as a pseudolabeled sample for the next iteration. Finding

samples is done until we have selected p/2 positives and p/2

negatives or if a given maximum number of iterations (50×p) is

reached. If the selection procedure is stopped prematurely, the

already found pseudosamples are balanced by undersampling

the majority class to ensure the same number of positives and

negatives in the labeled set.

Data
To evaluate the proposed self-training framework and its ST,

BST, and DBST variants, we used both SL labeled and

Table 1. Numbers of synthetic lethality labeled and unlabeled

samples or gene pairs per cancer type.

Cancer Total Positives Negatives Unlabeled

BRCA 2453 1443 1010 151888

OV 805 253 552 151972

CESC 4900 144 4756 150964

SKCM 18407 107 18300 151545

LUAD 6103 594 5509 150944

unlabeled sets of gene pairs, together with their feature vector

representations, for multiple cancer types.

Synthetic lethality labels and gene pairs

In the context of the prediction task, each sample corresponds

to a gene pair with a label denoting if the pair is synthetic

lethal or not. We used a set of SL labeled gene pairs combining

data from four studies: Exp2SL (17), DiscoverSL (dSL) (15),

Lu et al. (27), and ISLE (28). The SL labels were aggregated

per cancer type, removing gene pairs with different labels in

2 or more studies. We opted to use data for five different

cancer types: breast (BRCA), ovarian (OV), cervix (CESC),

skin (SKCM), and lung (LUAD). BRCA was selected because

it contains a lot of labeled samples and is the most complete.

OV was selected for its heavy selection bias. CESC was used

because it does not have many samples in general. SKCM was

interesting because it has few samples and a heavy selection

bias. And finally, LUAD was selected because it also has many

labeled samples. The numbers of labeled samples or gene pairs

per cancer type can be found in Table 1.

Besides the SL labeled gene pairs, we also made use of a set

of unlabeled samples made available by Tepeli et al. (12). The

pairs were obtained by generating all pairwise combinations of

572 genes present in cancer and DNA repair pathways from

KEGG, Reactome, and PID. From these pairwise combinations,

pairs present in the labeled set were removed. The final numbers

of unlabeled samples per cancer type can be found in Table 1

Features of gene pairs

For each gene pair, we obtained a sequence-based embedding

considering the amino acid sequences of the corresponding

proteins as a proxy for functional relatedness (12). For each

gene, the amino acid sequence context was first encoded using

the SeqVec method (29) to create an embedding of 1024

dimensions. Principal component analysis was then applied to

reduce the embedding dimension to the 128 most impactful

principal components. To create the final feature vector, the

embeddings of the individual genes were combined by taking

the absolute value of the element-wise difference. This resulted

in a feature of 128 dimensions for each gene pair.

Experimental setup
To evaluate the proposed self-training framework and its

variants, we performed three different experiments. The first

experiment investigated the ability of the proposed models to

predict SL. The final two experiments examined the ability of

the proposed models to mitigate selection bias in training data.

All three experiments were performed for ten runs. At the

start of each run, the train, validation and test sets were

balanced by random undersampling of the majority class. The

model was trained on the train set until the validation loss did

not decrease for five consecutive rounds. The final performance
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was measured on the test set. How the train, validation and test

sets were constructed differs between the three experiments.

Randomized split

In the first experiment, the data was split randomly into test,

train, and validation sets. This data partitioning resulted in

a standard experiment where the test and training sets came

from the same distribution and therefore had the same bias.

This meant that this experiment was not informative for the

question about mitigating the bias. However, this partitioning

did allow us to evaluate the performance of the proposed models

on predicting SL without yet setting additional constraints.

The test set was created by taking a split of 20% stratified

by the SL class label. At the start of each run, the remaining

data was split further, with the validation set as a stratified

split of 20% and the remaining 80% as the train set.

Double holdout

To assess the performance of the proposed methods when the

train and test set follow different biases, we performed an

experiment where the gene pairs in the train and test sets did

not have any genes in common. By decoupling the genes in

the train set from the test set, we constructed an experiment

where the two sets do not originate from the same distribution

and do not follow the same sample selection bias. In this

experiment, we could evaluate the ability of the methods to

transfer knowledge learned on one distribution to data with a

different bias. We divided the set of all individual genes into two

sets, a test and a train set. Then all pairwise combinations of

genes were generated within each set, and finally, we kept only

the pairs for which we had labels in each set. This separation

ensured that there was no overlap between the two sets of gene

pairs.

To divide the data, we iteratively selected a random gene

and added this gene to either the train or test set, depending

on the number of labeled samples in each set. If there were

more than four times as many labeled gene pairs in the train

set, the randomly selected gene was added to the test set, and

if there were less than four times as many labeled gene pairs in

the train set, the randomly selected gene was added to the train

set. In the end, we tested whether the resulting train and test

set contained enough labeled samples according to a threshold

(BRCA: 280, 100; OV: 85, 20; CESC: 55, 12; LUAD: 200, 50,

the sizes of train and test set per cancer, respectively). We

continued this process until we had ten different partitions for

each cancer.

The SKCM dataset was particularly challenging to split, as

most available samples or gene pairs contained the gene MYC.

This gene was so dominant that only 60 samples did not contain

the gene. Therefore, we split the data for this cancer type

differently: we took the 60 samples that did not contain the

gene MYC as one set and removed all samples from the other

set that had any gene overlap with these 60 samples.

Multiple SL label sources

To further investigate the performance of our proposed methods

when the train and test set do not follow the same bias,

we performed a second experiment. In this experiment, we

constructed the train set from the SL labels of one study and

the test set based on the SL labels of another study. By using

two different datasets as the train and test set, the idea is that

we are more accurately measuring the capabilities of the models

to mitigate selection bias. The two datasets will likely have a

different selection bias, so this experiment is less strict than the

double holdout.

For this experiment, we used three different partitions,

namely:

1. The ISLE dataset and the dSL dataset on BRCA cancer.

2. The ISLE dataset and the dSL dataset on LUAD cancer.

3. The dSL dataset and the Exp2SL dataset on LUAD cancer.

For each combination of studies, the experiment was performed

twice, with one of the datasets as the train set and the other as

the test set and vice-versa, resulting in six experiments overall.

For each experiment, it was possible that the datasets from

the two studies shared gene pairs between them. To guarantee

an independent test set, we excluded the shared gene pairs from

the test set.

Evaluation

To evaluate the models, we measured their performance over

ten runs on the test set using the area under the precision-

recall curve (AUPRC), calculated as the average precision. The

confidences for the test samples were calculated as stated in the

section Predicting the label by using the training samples as a

reference (including pseudolabeled samples), and treating the

test samples as the unlabeled samples. With the confidence of

the test samples as well as their actual labels, we calculated the

AUPRC.

To assess the significance of the results, we used the non-

parametric two-sided Wilcoxon signed ranked test with a p-

value threshold of 0.05. We tested for the significance of the

change in performance between each semi-supervised method

and a supervised learning baseline. To account for model

variation in these comparisons, we ran all experiments for ten

runs with differently undersampled train, validation, and test

sets. If the p-value is lower than the 0.05 threshold, we consider

that the results of the two models show a different distribution,

which can either mean an increase or decrease in performance.

If the p-value is at least 0.05, we can not conclusively determine

if it is a significant performance difference.

Hyperparameter selection

To select the hyperparameters p (number of pseudosamples

each iteration) and µ (confidence threshold), we performed a

grid search for each experiment and dataset. The settings with

the lowest validation loss were selected for the model. The used

parameters are described in the Supplementary Figures 2, 3,

4. For the other model parameters, we initially tested different

configurations, but as they are described above is what seemed

to work best for this problem. These parameters include the

size of the neural network, the number of output dimensions,

and the positive and negative margins.

Results and discussion

To evaluate the proposed model, we focus on two main

questions. The first question is, ”What is the effect of

incorporating unlabeled samples in metric learning for synthetic

lethality prediction?”. This question focuses mainly on the

performance of the metric learning model and whether metric

learning as a concept is suitable for SL prediction. The second

question is, ”How does metric learning perform to mitigate

bias?”. This question focuses on whether our proposed DBST

method can mitigate bias in SL prediction.
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Fig. 2. Performance of the random split experiment across ten iterations.

The experiments include five different cancer types (BRCA, OV, CESC,

SKCM, LUAD) and are highlighted according to the four different

methods (supervised, ST, BST and DBST). The dots represent the

AUPRC of an individual run.

What is the effect of incorporating unlabeled samples
in metric learning for synthetic lethality prediction
We performed the randomized split experiment described in

the methods to quantify the effect of incorporating unlabeled

samples in metric learning. We first trained a supervised model

using only labeled samples. Then we also experimented with

the three semi-supervised methods ST, BST and DBST, each

incorporating unlabeled samples differently (see Methods).

We compared the supervised and semi-supervised methods

on five different cancer types. The median performance of the

baseline supervised model for the BRCA and LUAD cancer

types was relatively high (0.854 and 0.837, respectively). The

three semi-supervised methods using different pseudosample

selection approaches did not improve performance over the

baseline (median AUPRC BRCA ST 0.859, BST 0.854, DBST

0.852; and LUAD ST 0.843, BST 0.842, DBST 0.851)

significantly (p-values BRCA ST 0.375, BST 0.233, DBST

0.557; and LUAD ST 0.770, BST 0.557, DBST 0.160) (Fig. 2).

An explanation for this behaviour might be that the starting

performance of the supervised method was already high and

that it would be difficult to achieve further improvement by

incorporating unlabeled samples. We have possibly reached

the maximum performance that could be obtained based on

the sequence data we used, because BRCA and LUAD were

the two cancer types with the largest datasets. To further

improve prediction, we might need additional features such

as PPI networks, as it has been suggested that pairs of genes

of robust SL interactions tend to be closely connected in PPI

networks (30). By incorporating more different types of data

related to the prediction task, we will be able to increase

the discriminating power of the samples to better differentiate

between SL and non-SL gene pairs.

The AUPRC of the semi-supervised methods on the SKCM

dataset (median AUPRC ST 0.771, BST 0.778, DBST 0.769)

did not improve the predictive performance over the supervised

approach (median AUPRC 0.747) significantly (p-values ST

0.105, BST 0.131, DBST 0.432). The performance on ovarian

cancer (OV) showed an improvement over the supervised

model (median AUPRC 0.701) for the three different methods

of pseudolabel selection (median AUPRC ST 0.765, BST

0.753, DBST 0.772). However, these improvements were not

significant across the ten runs (p-values ST 0.232, BST 0.232,

DBST 0.232). Similarly, the semi-supervised methods (median

AUPRC ST 0.683, BST 0.695, DBST 0.696) performed better

than the supervised model for CESC (median AUPRC 0.587).

Not synthetic lethal Synthetic lethal
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Fig. 3. Euclidean distances in the latent space between synthetic lethal

and between not synthetic lethal pseudosamples added during training.

These are the results from the first iteration of training on the BRCA

dataset in the randomized split experiment.

For ST and BST, the improvement was not significant (p-values

ST 0.131, BST 0.131), but for DBST, the improvement was

significant (p-value 0.014). The labeled sets for these two cancer

types were more limited in size compared to BRCA and LUAD,

especially after balancing the classes. That is why there might

be more room for improvement due to the supervised approach

needing more informative training samples to make an accurate

prediction, which the semi-supervised models provide.

In these experiments, the train and test set follow the same

bias. Therefore, even if the methods mitigate the bias, there

might be no performance improvement. Since the train set has

the same distribution as the test set, it would be sufficient to

learn a model that is predictive of the train set. One thing to

note, however, is that the semi-supervised methods at least do

not perform worse than the supervised model. This indicates

that the semi-supervised models perform as well or better than

the supervised model, and that the expected benefit of the

models in mitigating the bias is not tested.

Another noteworthy observation is that there was no real

performance difference between the diversity approach (DBST)

and the other two semi-supervised methods (ST and BST),

and between the standard self-training (ST) and the balanced

self-training (BST) methods. Balancing the classes in BST

compared to not balancing the classes in ST had no significant

effect. One explanation for this is that metric learning is robust

against class imbalance. Since the contrastive loss compares

samples in pairs, an excess of samples for one class will not lead

the model to prefer that class. That metric learning performs

better on class imbalanced data is also supported in literature

from the contrastive loss (31) to custom loss functions that

perform better on long-tailed class distributions (32; 33), these

findings were reported on multi-class classification. However,

the class imbalance in ST in our experiments was not very large

(BRCA 55% ± 2 for the majority class, Supplementary Table

5). It has also been shown that as the imbalance drastically

increases, the performance of the minority class decreases for

metric learning in binary classification (34).

To examine the differences between the three semi-

supervised methods and see whether the diversity approach

adds diversity to the samples, we plotted the distances between

similarly labeled selected pseudosamples in the final embedding

space (Fig. 3). We grouped all selected pseudosamples that

were added during training based on their pseudolabel (not

synthetic lethal or synthetic lethal). Then we measured the

distance between every pair of sample in the embedding space.

The median distance between non-SL samples and the

median distance between SL samples was higher in the DBST
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1

2

Training Samples

Unlabeled (151888)
Negatives (809)
Positives (1154)

1

2

Self Training

Unlabeled (151708)
Pseudonegative (55)
Pseudopositive (125)

1

2

Balanced ST

Unlabeled (151668)
Pseudonegative (110)
Pseudopositive (110)

1

2

Diverse BST

Unlabeled (151708)
Pseudonegative (90)
Pseudopositive (90)

Fig. 4. UMAP projections of the BRCA dataset. In the top left, the training samples are highlighted. The top right plot shows the pseudosamples

selected during the self-training approach. The bottom left contains pseudosamples selected during the balanced self-training approach. The bottom

right contains pseudosamples selected during the diversity approach. The numbers behind the labels represent the numbers of samples of each class in

the figure. The boxes with number one highlight a cluster dominated by gene pairs containing the gene CDH1. The boxes with number two highlight

gene pairs dominated by the genes COL4A1, COL4A2, COL4A4 and COL4A6

method compared to the ST and BST methods. This increase

was likely caused due to the self-training method selecting

pseudosamples close to the biased samples in the training set,

while we can select more diverse samples in the embedding

space with the diversity approach.

Additionally, the distances of selected pseudosamples in

BST were higher than in ST, with a more drastic increase in the

distances between the non-SL samples. In the ST method, there

were only 55 negative and 125 positive selected pseudosamples,

while in the BST method, there were 110 negative and

110 positive selected pseudosamples. This difference means

that while selecting pseudosamples, BST had to choose more

negatives even if the confidence of those negatives might have

been slightly lower than the confidence of the positives selected

in ST because BST has to select as many positives as negatives.

So when adding these confident negatives, even if they were

not the most confident samples overall, increased the distance

between the pseudosamples.

To further examine the differences between the three

semi-supervised methods, we examined the distribution of
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selected pseudosamples in a UMAP projection of the original

feature space onto two dimensions. For this, we performed

a UMAP projection of the labeled and unlabeled samples,

and highlighted the selected pseudosamples according to their

assigned pseudolabel (Fig. 4). The highlighted gene pairs in the

top left represent the original labeled samples.

The first note that can be made is that there is no clear

separation between the positives and negatives in the training

samples. This scattered distribution shows the complexity

of the problem and that there is no obvious linear decision

boundary. Another note is that many clusters in the UMAP

projection contain no or few training samples. This lack of

representation further illustrates the bias problem in synthetic

lethality, as these clusters are not represented in the train set

and, therefore, can not be considered while training.

During self-training, the distribution of pseudolabels

changed to only 55 negatives added compared to 125 positives.

Of these 55 negatives, 29 were in a cluster dominated by the

gene CDH1 (Fig. 4 highlighted in box 1). This cluster contained

507 labeled and unlabeled samples, of which 501 samples

contained the gene CDH1. The fact that the method focused

so heavily on one cluster during self-training demonstrates

the main drawback of using this approach to mitigate the

effect of selection bias. When we examined this cluster in the

BST and DBST approaches, we saw that they added 4 and 6

pseudonegatives from this cluster, respectively. Both of these

methods included more pseudonegatives and yet had fewer

pseudosamples in this cluster, demonstrating that BST and

DBST were better at including less similar samples and did

not strengthening the bias by adding samples from the biased

part of the distribution.

We further examined the UMAP and noticed the cluster

highlighted by the second box (Fig. 4). This cluster contained

1059 gene pairs, all of which containedone of the following

genes: COL4A1, COL4A2, COL4A4 or COL4A6. Using ST and

DBST, only one pseudosample was selected from this cluster,

while BST selected 18 pseudosamples from this cluster. This

illustrates the same drawback as ST in the CDH1 cluster in

that BST selects pseudosamples from high-confidence regions.

By balancing the number of negatives and positives that can be

selected, we limit the number of negatives that can be selected

and force the model to focus on high-confidence positives in

this case.

How does metric learning perform when train and
test set have different biases

Double holdout

The first experiment was the double holdout experiment. As

explained in the methods, for this experiment there was no

overlap in the genes between the test and train sets to ensure

that both sets were forming a different distribution. The

downside of splitting the data in such a strict condition is that

the train set became relatively small. The smallest train set was

CESC, with only around 90 samples.

The AUPRC across all pseudolabeling methods was lower

than in the random split experiment (Fig. 5). This outcome was

expected, as the double holdout experiment is more restrictive

in size and distribution than the randomized experiment. Four

cancer types (BRCA, OV, SKCM, LUAD) did not improve by

adding pseudolabels. For one cancer type, CESC, we did see

an improvement in AUPRC when comparing the supervised

approach (median AUPRC 0.560) with the BST and DBST

methods (median AUPRC BST 0.584, DBST 0.596), where

BRCA OV CESC SKCM LUAD
Cancer

0.4

0.5

0.6

0.7

0.8

AU
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Self Training
Balanced ST
Diverse BST

Fig. 5. Performance of the double holdout experiment across ten

iterations. The experiments include five different cancer types (BRCA,

OV, CESC, SKCM, LUAD) and are highlighted according to the four

different methods (supervised, ST, BST and DBST). The dots represent

the AUPRC of an individual run.

isle-dsl
BRCA

dsl-isle
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isle-dsl
LUAD
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LUAD
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LUAD
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Experiment

0.5
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Fig. 6. Performance of the multiple studies experiment across ten

iterations. The experiments include six combinations of different studies

and cancer types. The first study is the training set, and the second

study is used as the test set. Each is highlighted according to the four

methods (Supervised, ST, BST, DBST). The dots represent the AUPRC

of an individual run.

the DBST was the only experiment that showed a significant

improvement (p-values BST 0.105, DBST 0.010). However, it

is necessary to note that the performance of the pseudolabeling

methods again did not decrease the performance compared to

the supervised approach.

The low performance for the double holdout experiment

has two potential causes. The first potential cause is that the

double holdout experiment is too restrictive. The train and test

sets not only follow different biases, but they also have little

in common. This makes it incredibly difficult for the model

to find an improvement. The second potential cause is that

the train set is very small. The number of samples available

decreased drastically by adding the double holdout constraint.

A combination of the two may have had the effect that the

performance of the baseline supervised method already dropped

significantly (median AUPRC Randomized split BRCA 0.853,

OV 0.701, CESC 0.587, SKCM 0.747, LUAD 0.837; Double

holdout BRCA 0.527, OV 0.558, CESC 0.560, SKCM 0.497,

LUAD 0.517), making it difficult for semi-supervised methods

to improve since these methods use the initial model to find

new samples to add.

Multiple SL label sources

The second experiment to test our proposed model’s ability

to generalize the actual distribution was to train on data
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with SL labels available from one study and test with data

containing SL labels from another study (Fig. 6). This was

done for combinations of three different studies where each

study functioned as either train set or test set, resulting in

six experiments. In future reference, the first study represents

the train set, the second study represents the test set.

We saw similar results to the double holdout experiments.

Five of the six experiments across SL label sources showed a low

AUPRC across all pseudolabeling methods (median AUPRC

dsl-isle BRCA ST 0.604, BST 0.614, DBST 0.616; isle-dsl

LUAD ST 0.484, BST 0.499, DBST 0.510; dsl-isle LUAD ST

0.520, BST 0.528, DBST 0.502; exp2sl-dsl LUAD ST 0.528,

BST 0.522, DBST 0.530; dsl-exp2sl LUAD ST 0.561, BST

0.581, DBST 0.576). This low AUPRC was also likely caused

by the low starting performance of the supervised approach

(median AUPRC dsl-isle BRCA 0.600, isle-dsl LUAD 0.504,

dsl-isle LUAD 0.521, exp2sl-dsl LUAD 0.536, dsl-exp2sl LUAD

0.536). However, we saw a high AUPRC for the model trained

on samples with SL labels from the isle BRCA dataset and

tested on the dSL BRCA dataset. This specific experiment

showed the same behaviour as the random split experiments

on BRCA and LUAD, where the supervised performance

was already between 0.8 and 0.9 (median AUPRC 0.854),

and the semi-supervised approaches did not seem to improve

the AUPRC (median AUPRC ST 0.862, BST 0.861, DBST

0.872)(p-values ST 0.105, BST 0.375, DBST 0.105).

In the experiment where the model was trained on the

LUAD dSL dataset and evaluated on the LUAD Exp2SL

dataset, the AUPRC of the three semi-supervised methods

(median AUPRC ST 0.561, BST 0.581, DBST 0.576) showed

an improvement over the supervised method (median AUPRC

0.536). The performance increase of the models was significant

for this experiment (p-values ST 0.049, BST 0.006, DBST

0.014). This was the only experiment that significantly

improved when trained on one dataset and tested on another.

The other four experiments did not show the improvement

we expected to see and might be caused due to a limited

training size, also in this experiment. Another possibility is

that our model does not work well to generalize the actual

distribution and that it does not work well to mitigate the effect

of selection bias. However, this is still not a conclusion that can

be made with certainty.

Conclusion

In this paper, we proposed a model that combines both semi-

supervised learning and metric learning to address sample

selection bias in synthetic lethality prediction. We proposed

a novel method to add diverse samples during self-training to

mitigate the bias present in SL labels. This is achieved using

metric learning to find a class-contrastive representation of the

feature space, based on which distances between samples can

be calculated to inform the selection of diverse or dissimilar

samples.

In an experiment where we randomly split the data into train

and test sets, semi-supervised learning with metric learning

improved the performance over supervised metric learning in

specific cases. We were able to improve the performance on

ovarian (OV) and cervical (CESC) cancers. On other cancer

types, the performance of the semi-supervised models was

similar to the supervised performance. Due to the test and train

set following the same bias, this experiment did not answer the

question of mitigating sample selection bias directly. However,

it did show that adding pseudosamples could help in some

cases and that performance did not drop while attempting to

generalize over the true distribution.

We further showed that our DBST method did select

more diverse samples compared to ST and BST. The

distances between selected pseudosamples were higher in DBST

compared to ST and BST. DBST was also less likely to select

similar pseudosamples in the original feature space. ST was

more likely to reinforce the bias by selecting samples from high-

confidence regions that were more similar in the original feature

space. This shows the danger of using self-training directly

without making proper modifications for diversity for biased

problems, where the model is likely to reinforce this bias rather

than mitigate it.

In the cases where the train and test set followed a different

bias, we saw some improvements of our proposed models, but

the experiments might have been too restrictive to conclusively

determine the performance of our proposed models with regard

to mitigating selection bias. By restricting the train and test

set to have no overlap in the genes present in the gene pairs, we

severely limited the number of training samples, which resulted

in a low starting or baseline performance. This also made it

difficult for the subsequent pseudolabeling iterations to find

informative samples.

For future work, DBST does need more testing concerning

the selection bias problem. We need experiments where we can

simultaneously induce a different bias in the test set while

keeping the size of the train set as large as possible. This

will be a more fair comparison as now current experiments

induced a strong bias as well as limited the train set size,

which could both have a significant impact on the results on

their own. Comparing the performance between our proposed

models to the performance of other selection bias mitigation

methods would also be interesting since we only examined

the capabilities of different semi-supervised versions of metric

learning. Also, comparing our method to other SL prediction

models such as EXP2SL (17) could be interesting to measure

the impact of the bias mitigation more accurately.

The model could be further improved by using another form

of hyperparameter optimization. In the current model, grid

search was used for simplicity, but another more advanced

tuning, such as gradient-based optimization or evolutionary

algorithms, could be used. This would also allow for tuning

across more hyperparameters. It could also be interesting to use

other machine learning algorithms to learn a classifier, but keep

metric learning as a method to add diversity in the selection

of pseudosamples. This would allow other classifiers to add

diversity to their selected pseudosamples since most methods

do not create a latent space like metric learning. A limitation

of the current method is the way pseudosamples are selected.

This is based on a random coordinate in the possible embedding

space. However, it is not guaranteed that the samples, including

the unlabeled samples, span the entire space. So a more direct

method where only the possible samples are considered, and

not the space where no samples are projected to, could further

enhance this model.

To conclude, we introduced a new method to mitigate

sample selection bias. We did not conclusively prove its

potential. However, we hope this method gives new insights

into reducing the effects of sample selection bias.
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Table 2. Selected parameters for the randomized split experiments. For µ, the values 0.80, 0.85, 0.90 and 0.95 were tested. For p, the values

10, 20 and 50 were tested.

Cancer µ (confidence threshold) p (number of pseudosamples each iteration)

BRCA 0.90 20

OV 0.85 20

CESC 0.90 10

SKCM 0.90 10

LUAD 0.90 10

Table 3. Selected parameters for the double holdout experiments. For µ, the values 0.70, 0.75, 0.80, 0.85, 0.90 and 0.95 were tested. For p,

the values 6, 10 and 20 were tested.

Cancer µ (confidence threshold) p (number of pseudosamples each iteration)

BRCA 0.85 6

OV 0.80 6

CESC 0.75 6

SKCM 0.75 20

LUAD 0.90 10

Table 4. Selected parameters for the Mulitple SL label sources experiments. For µ, the values 0.75, 0.80, 0.85, 0.90 and 0.95 were tested.

For p, the values 4, 6, 10 and 20 were tested.

Training study Test study Cancer p (number of pseudosamples each iteration) µ (confidence threshold)

ISLE dSL BRCA 6 0.85

dSL ISLE BRCA 4 0.95

ISLE dSL LUAD 10 0.80

dSL ISLE LUAD 10 0.85

EXP2SL dSL LUAD 6 0.85

dSL EXP2SL LUAD 10 0.80

Table 5. Final distribution of classes in ST in the Randomized split experiments. The percentage of final train set that are reported are

averaged over 10 runs.

Cancer Share majority class (%) Share minority class (%)

BRCA 55 ± 2 45 ± 2

OV 69 ± 3 31 ± 3

SKCM 70 ± 5 30 ± 5

CESC 68 ± 6 32 ± 6

LUAD 56 ± 2 44 ± 2

Table 6. Sizes of datasets for the Multiple SL label sources experiments

Training study Test study Cancer training pos neg test pos neg unlabeled

ISLE dSL BRCA 1509 573 935 960 885 75 151882

dSL ISLE BRCA 893 854 39 1575 590 985 151882

ISLE dSL LUAD 4897 168 4729 711 372 339 150944

dSL ISLE LUAD 711 372 339 4897 168 4729 150944

EXP2SL dSL LUAD 2676 307 2369 711 372 339 150944

dSL EXP2SL LUAD 711 372 339 2676 307 2369 150944
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Table 7. Sizes of individual runs for the randomized split experiment after splitting the data and balancing for each set.

Iteration Cancer training pos neg validation pos neg test pos neg

1 BRCA 1294 647 647 324 162 162 402 201 201

2 BRCA 1294 647 647 324 162 162 402 201 201

3 BRCA 1294 647 647 324 162 162 402 201 201

4 BRCA 1294 647 647 324 162 162 402 201 201

5 BRCA 1294 647 647 324 162 162 402 201 201

6 BRCA 1294 647 647 324 162 162 402 201 201

7 BRCA 1294 647 647 324 162 162 402 201 201

8 BRCA 1294 647 647 324 162 162 402 201 201

9 BRCA 1294 647 647 324 162 162 402 201 201

10 BRCA 1294 647 647 324 162 162 402 201 201

1 OV 324 162 162 80 40 40 102 51 51

2 OV 324 162 162 80 40 40 102 51 51

3 OV 324 162 162 80 40 40 102 51 51

4 OV 324 162 162 80 40 40 102 51 51

5 OV 324 162 162 80 40 40 102 51 51

6 OV 324 162 162 80 40 40 102 51 51

7 OV 324 162 162 80 40 40 102 51 51

8 OV 324 162 162 80 40 40 102 51 51

9 OV 324 162 162 80 40 40 102 51 51

10 OV 324 162 162 80 40 40 102 51 51

1 CESC 184 92 92 46 23 23 58 29 29

2 CESC 184 92 92 46 23 23 58 29 29

3 CESC 184 92 92 46 23 23 58 29 29

4 CESC 184 92 92 46 23 23 58 29 29

5 CESC 184 92 92 46 23 23 58 29 29

6 CESC 184 92 92 46 23 23 58 29 29

7 CESC 184 92 92 46 23 23 58 29 29

8 CESC 184 92 92 46 23 23 58 29 29

9 CESC 184 92 92 46 23 23 58 29 29

10 CESC 184 92 92 46 23 23 58 29 29

1 SKCM 138 69 69 34 17 17 42 21 21

2 SKCM 138 69 69 34 17 17 42 21 21

3 SKCM 138 69 69 34 17 17 42 21 21

4 SKCM 138 69 69 34 17 17 42 21 21

5 SKCM 138 69 69 34 17 17 42 21 21

6 SKCM 138 69 69 34 17 17 42 21 21

7 SKCM 138 69 69 34 17 17 42 21 21

8 SKCM 138 69 69 34 17 17 42 21 21

9 SKCM 138 69 69 34 17 17 42 21 21

10 SKCM 138 69 69 34 17 17 42 21 21

1 LUAD 760 380 380 190 95 95 238 119 119

2 LUAD 760 380 380 190 95 95 238 119 119

3 LUAD 760 380 380 190 95 95 238 119 119

4 LUAD 760 380 380 190 95 95 238 119 119

5 LUAD 760 380 380 190 95 95 238 119 119

6 LUAD 760 380 380 190 95 95 238 119 119

7 LUAD 760 380 380 190 95 95 238 119 119

8 LUAD 760 380 380 190 95 95 238 119 119

9 LUAD 760 380 380 190 95 95 238 119 119

10 LUAD 760 380 380 190 95 95 238 119 119
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Table 8. Sizes of individual runs for the double holdout experiments

Iteration Cancer training pos neg validation pos neg test pos neg

1 BRCA 520 260 260 130 65 65 214 107 107

2 BRCA 532 266 266 132 66 66 210 105 105

3 BRCA 460 230 230 114 57 57 216 108 108

4 BRCA 524 262 262 130 65 65 208 104 104

5 BRCA 558 279 279 140 70 70 202 101 101

6 BRCA 494 247 247 124 62 62 202 101 101

7 BRCA 460 230 230 116 58 58 256 128 128

8 BRCA 520 260 260 130 65 65 224 112 112

9 BRCA 534 267 267 134 67 67 202 101 101

10 BRCA 538 269 269 134 67 67 206 103 103

1 OV 142 71 71 36 18 18 42 21 21

2 OV 142 71 71 36 18 18 50 25 25

3 OV 136 68 68 34 17 17 40 20 20

4 OV 144 72 72 36 18 18 44 22 22

5 OV 148 74 74 36 18 18 44 22 22

6 OV 144 72 72 36 18 18 50 25 25

7 OV 136 68 68 34 17 17 46 23 23

8 OV 152 76 76 38 19 19 44 22 22

9 OV 140 70 70 36 18 18 46 23 23

10 OV 140 70 70 34 17 17 44 22 22

1 CESC 90 45 45 22 11 11 28 14 14

2 CESC 90 45 45 22 11 11 30 15 15

3 CESC 90 45 45 22 11 11 28 14 14

4 CESC 92 46 46 22 11 11 30 15 15

5 CESC 90 45 45 22 11 11 28 14 14

6 CESC 88 44 44 22 11 11 30 15 15

7 CESC 92 46 46 22 11 11 30 15 15

8 CESC 88 44 44 22 11 11 28 14 14

9 CESC 92 46 46 22 11 11 28 14 14

10 CESC 90 45 45 22 11 11 24 12 12

1 SKCM 120 60 60 30 15 15 22 11 11

2 SKCM 120 60 60 30 15 15 22 11 11

3 SKCM 120 60 60 30 15 15 22 11 11

4 SKCM 120 60 60 30 15 15 22 11 11

5 SKCM 120 60 60 30 15 15 22 11 11

6 SKCM 120 60 60 30 15 15 22 11 11

7 SKCM 120 60 60 30 15 15 22 11 11

8 SKCM 120 60 60 30 15 15 22 11 11

9 SKCM 120 60 60 30 15 15 22 11 11

10 SKCM 120 60 60 30 15 15 22 11 11

1 LUAD 322 161 161 80 40 40 106 53 53

2 LUAD 334 167 167 84 42 42 104 52 52

3 LUAD 322 161 161 80 40 40 100 50 50

4 LUAD 334 167 167 84 42 42 106 53 53

5 LUAD 334 167 167 84 42 42 104 52 52

6 LUAD 380 190 190 94 47 47 120 60 60

7 LUAD 340 170 170 84 42 42 106 53 53

8 LUAD 348 174 174 86 43 43 108 54 54

9 LUAD 322 161 161 80 40 40 100 50 50

10 LUAD 330 165 165 82 41 41 106 53 53
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