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Scatterometry is an important nonimaging and noncontact method for optical metrology. In scatterometry cer-
tain parameters of interest are determined by solving an inverse problem. This is done by minimizing a cost
functional that quantifies the discrepancy among measured data and model evaluation. Solving the inverse prob-
lem is mathematically challenging owing to the instability of the inversion and to the presence of several local
minima that are caused by correlation among parameters. This is a relevant issue, particularly when the inverse
problem to be solved requires the retrieval of a high number of parameters. In such cases, methods to reduce the
complexity of the problem are to be sought. In this work, we propose an algorithm suitable to automatically
determine which subset of the parameters is mostly relevant in the model, and we apply it to the reconstruction
of 2D and 3D scatterers. We compare the results with local sensitivity analysis and with the screening method
proposed by Morris. © 2019 Optical Society of America

https://doi.org/10.1364/AO.58.005916

1. INTRODUCTION

Extreme ultraviolet (EUV) lithography is the most promising
technology for the patterning of future technology nodes. One
of the challenges to be tackled for its successful implementation
lies in the development of actinic mask metrology tools suitable
to control and monitor the lithographic process. Scanning elec-
tron microscopy (SEM) provides high lateral resolution and can
be employed for critical dimension (CD) metrology, but it has
low sensitivity to 3D structure height and sidewall angle (SWA)
[1]. Atomic force microscopy (AFM) could be employed for
CD metrology purposes, but it suffers from low throughput
as it requires scanning a probe over the entire measurement area
[2]. Scatterometry is a nonimaging, noncontact method for
CD and overlay metrology that has been widely employed
for process control in lithography [3–7]. The usual target in
scatterometry is a grating. The interaction of light–target is
mathematically modeled via rigorous electromagnetic solvers
[8–10], and the reconstruction of the grating proceeds either
by solving an inverse problem or by assembling a multidimen-
sional library of simulations for different possible geometries
[11]. The quality of the final reconstruction depends on the
quality of the measured signal and also on the measurement
configuration [12]. Different sensitivity analysis methods have
provided the means to find suitable sets of measurement con-
figurations, or diffraction orders to be measured, that improve
the precision of the estimation [12–14].

A relevant mathematical challenge in scatterometry lies in
the development of robust algorithms for the solution of the

inverse problem [15,16]. Ill-defined solutions can arise and
the optimization landscape is characterized by the presence of
local minima [15]. These difficulties are linked to parameter
correlation, and they can be allayed by means of regularization
methods [17]. Even though proper regularization can stabilize
the inversion and prevent trapping in local minima, the opti-
mization time and the overall complexity of the problem de-
pend on the number of unknowns to be retrieved. When this
is a concern, methods to reduce the complexity of the problem
are to be sought. A possible approach to this challenge lies in
the development of methods suitable to identify which input
parameters, among the many, are the most important, and to
formulate the model so as to treat only those as uncertain [18].
In this paper we present an algorithm for automatic feature se-
lection that is a nonlinear extension of the elastic net regression
[19]. Its aim is to simplify the model by removing unnecessary
degrees of freedom. We apply the method to 2D targets at first,
and then to 3D scatterers. For the 2D case we compare the
results with the screening exercise proposed by Morris [20].

2. METHODS

We are concerned with the retrieval of certain unknown param-
eters of an object from measured data and with the under-
standing of which of these unknowns are mostly relevant for
an appropriate description of the object. The purpose is to sim-
plify the model, leaving only its most important parameters
as unknowns.
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One could tackle the problem using sensitivity analysismeth-
ods that “allow to study how the uncertainty in the output of a
model can be apportioned to different sources of uncertainty in
the model input or may be used to determine the most contrib-
uting input variables to an output behavior, or to ascertain some
interaction effects within the model” [21]. However, for certain
applications, particularly for industrial ones, it may be preferable
to make this sort of modeling decision automatic, as one often
wishes to keep the user from performing any kind of mathemati-
cal operation on a certain system. In 1996, Tibshirani intro-
duced a penalized regression, the lasso [22], which is able to
automatically select the most important inputs in a model by
shrinking the regression coefficients of the least relevant ones
to exactly zero. Further research has demonstrated that combin-
ing the l2 and l1 norm penalties in the regression can help to
overcome some limitations of the lasso [19]. Even though these
algorithms have been developed to solve linear regression prob-
lems, their use can be extended to the nonlinear case. In non-
linear regression the aim is to minimize the cost functional:

χ2�p� � jjyδ − F �p�jj2
2σ2

: (1)

In Eq. (1), k · k denotes the Euclidean norm, yδ represents the
noisy data, F �p� is the model evaluation given the parameter
vector p, and σ is the vector containing the uncertainties about
the measured data. We assume for the variance of the measured
value [5]

σ�λ�2 � �a · E��λ��2 � b2g , (2)

where E� are the negative or positive diffraction efficiencies, λ
denotes the wavelength, a is a constant assumed to be equal to
0.05, and bg is the background noise of the detector, assumed to
be equal to 1e-5. Nonlinear least squares problems such as
Eq. (1) are commonly minimized using dedicated routines
rather than general optimization methods [23]. One such
method is the Gauß–Newton routine. The Gauß–Newton
method can be derived by computing a first-order Taylor series
expansion of F�p� in Eq. (1) in the neighborhood of the current
iterate. At the nth iteration, given the current estimate pn of the
parameters, the improved ones are found by moving towards a
decrease direction, which is identified when solving a linear sys-
tem of equations:

Δpn�argmin
Δpn

kyδ−F �pn�−ΔpTn J nk2

pn�1�pn�Δpn, (3)

where J n is the Jacobian of F �pn� evaluated at the current iterate
and pn is the current estimate. In a case in which a sufficiently
accurate prior, p0, is available, it is possible to replace pn in
Eq. (3) with p0; alternatively, p0 can be used as a first
guess. When J n is full rank, one can solve the linear equations
in Eq. (3) via the ordinary least squares estimator Δpn �
�J Tn J n�−1J Tn ΔF . Prior knowledge can further be enforced by
adding a Tikhonov term to penalize large deviation from the
known best estimate [24].

In those cases in which a large number of parameters are
to be optimized, one can penalize the incremental vector
Δpn in Eq. (3) with a penalty term that encourages a sparse
reconstruction:

pn�1 � pn � arg min
Δpn

kΔF − ΔpTn Jk � γPα�Δpn�, (4)

where

Pα�Δpn� � �1 − α� 1
2
kΔpnk22 � αkΔpnk1: (5)

In Eq. (4), ΔF � yδ − F �pn�, γ is the regularization parameter
to be determined by seeking a balance among the data fitting
term and the regularization term, k · kp, with p � 1, 2, is the l1

or l2 norm, and α ∈ �0, 1� is a parameter that determines the
relative strength among the l2 and the l1 norm. In all that
follows we have chosen α � 1∕2. The penalized regression in
Eq. (4), known in the literature as the “elastic net” [19], pro-
duces a more parsimonious model via a variable selection pro-
cess. The output, Δpn, of the regression in Eq. (4) will be a
vector with some entries that can be equal to zero. By adding
a zero offset to some of the entries of pn, some of the parameters
will be fixed to a certain value, resulting in a reduced number
of unknowns to be retrieved by the estimation routine.

A further important aspect to be considered while solving
Eq. (4) lies in the appropriate selection of the regularization
parameter. In this work we have applied the L–curve criterion
at each iteration. As the value of γ given by the L-curve can
change at each iteration, this can result in an oscillatory trend.
An heuristic formula that deals with this problem is [17,25]

γn �
�
ϵγn−1 � �1 − ϵ�γ if γ < γn−1
γn−1 otherwise

: (6)

The algorithm described above is applicable to those determin-
istic inverse problems for which prior information is available
and for which it is possible to compute the gradient of the func-
tion to be optimized. We stop iterating when jχ2�pn�1� −
χ2�pn�j < 1e − 3 [26].

It is interesting to compare the results given by the algo-
rithm presented above with the ones given by input screening
methods. Input screening is “a simplified form of sensitivity
analysis that allows the user to identify the most important in-
put quantities and potentially to reformulate the model so that
only the most important input quantities are treated as uncer-
tain” [18]. In the Morris method [20], a particularly robust
screening method, one aims to classify the inputs into three
different categories:

• inputs having negligible effect on the output,
• inputs having significant linear effects on the output, and
• inputs having significant nonlinear and/or cross-coupling

effects.

The method proceeds by discretizing the input space spanned
by the parameters of interest. One explores such space by select-
ing a base point in the discretization grid and perturbing succes-
sively each of the inputs by a certain incremental step to define a
certain trajectory. This is done in order to compute, for each
input, an incremental ratio, named the “elementary effect”:

E �j�
i � F�p�j�1 , p�j�2 ,…, p�j�i � Δp�j�i ,…, p�j�n � − F �p�j��

Δp�j�i
, (7)

where E �j�
i is the elementary effect associated to the ith input and

to the jth trajectory. This procedure is repeated a total of R times,
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with R usually equal to 10–20, for R independently generated
trajectories. One synthesizes the statistics of the distributions of
the elementary effects using the same estimators that would be
used with independent random samples:

μ	i � 1

R

XR
j�1

jE �j�
i j (8a)

σi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

XR
j�1

 
E �j�
i −

1

R

XR
j�1

E �j�
i

!
2

vuut : (8b)

The absolute value in Eq. (8a) is used in order to keep close-
valued elements of opposite sign from canceling each other
out [27]. A high mean value, μ	i , implies an high overall effect
of the ith input over the output, and a high spread, σi, about the
mean implies that the elementary effects relative to this factor are
significantly different from each other. Hence, the value of an
elementary effect is strongly affected by the choice of the point
in the input space at which it is computed. This indicates an
input with a nonlinear effect on the output, or an input involved
in interactions with other inputs. A plot of μ	 against σ allows
one to examine the computed values relative to each other and to
evaluate the importance of inputs in the model. If a given input
has both low μ	 and low σ values, then it has low impact on the
output and it is not involved in significant nonlinear interactions.
Hence, it can be dropped from the model by fixing it to a certain
value within its uncertainty bounds.

There are important differences among the methods de-
scribed above. This is first because they explore the input space
differently. Even though the Morris design is based on the com-
putation of small steps from one point to the other, it can be
considered a “global” sensitivity analysis method as it explores
the entire input space. Conversely, the regression in Eq. (4)
could be thought of as a “local” method, in the sense that it is
looking for a solution in the neighborhood of pn. Another dif-
ference lies in the criteria of importance. In the Morris design, a
certain input is considered important when its perturbation sig-
nificantly affects the output and/or when it is involved in non-
linear effects. On the other hand, the elastic net tries to remove

unimportant inputs by solving a regularized regression prob-
lem. The metric of the variable selection algorithm is deter-
mined by a trade-off among goodness of fit and complexity
of the model. Oversimplistic models fail to accurately describe
the data and lead to biased solutions, while overcomplicated
ones are difficult to interpret and “overfit,” in the sense that
they are too sensitive to the noise in the data, leading to poor
generalizability and applicability over future datasets [28,29].
The lasso and elastic net are regression methods able to select
a simple model, starting from a complicated one, by shrinking
some of the regressors to exactly zero. These methods seek to
find a simple model, selected from among many, that best cap-
tures the data. A way to further understand this is by studying
the algorithms that solve the minimization problem in Eq. (4).
Examples include coordinate-descent algorithms, in which the
update rule, besides a scaling factor, is [30]

Δpj �

8>><
>>:
PN

i�1 rij � αγ if
PN

i�1 rij < −αγ

0 if − αγ <
PN

i�1 rij < αγPN
i�1 rij − αγ if

PN
i�1 rij > αγ

: (9)

In Eq. (9),
P

rij represents the sum over the residuals of the
linear regression, each weighted by a certain coefficient, ob-
tained while fitting when excluding from the model the jth in-
put. According to Eq. (9), a certain input is excluded from the
model if its presence does not improve significantly the fitting.

In what follows we have used the following Matlab pack-
ages: regtools for the L-curve regularization [31] and “Morris
SU sampling,” implemented by Khare and Muñoz–Carpena at
the University of Florida [32]. Rigorous electromagnetic solu-
tions of the forward problem are computed using the finite
element method solver JCMsuite [33].

3. RESULTS

A. Application to EUV Gratings
We apply the algorithm described above to the problem of fea-
ture selection for EUV gratings. Figure 1(a) presents the cross
section of a grating profile. The grating is parameterized with
six parameters that correspond to the X and Y coordinates of

Fig. 1. (a) Grating with parameterized profile. The independent degrees of freedom are the X and Y coordinates of the yellow points. The
materials are given in Table 1. (b) Diffracted efficiencies in percentage. For the given geometry and wavelengths, only a subset of the diffraction
orders can be detected.
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the respective layers. The grating is assumed to be symmetric.
The EUV radiation illuminates a Mo/Si multilayer coated re-
flective mask, with a patterned absorber profile on top of it.
The angle of incidence is 6°, for which the multilayer is in res-
onance, giving a reflectance of 60%–70%. The material prop-
erties are listed in Table 1 [34]. The SWA of the SiO2 layer is
assumed to be equal to the SWA of the TaN layer above. The
period of the grating is 420 nm, and its nominal width is
140 nm, for a line to space ratio of 1:2. For such configuration,
only the diffracted orders from −6 to �11 are detectable with
sufficient intensity [5]. Figure 1(b) reports the recorded dif-
fracted intensities for the aforementioned settings and for three
different wavelengths of the incoming s-polarized light field [5]:
λ1 � 13.398 nm, λ2 � 13.664 nm, and λ3 � 13.931 nm.

We choose our starting point for the regression, p0, by
sampling a uniform prior distribution within the following
intervals [18]: X BL � 70� 7 nm, Y BL � 21� 5 nm, X AL �
67� 7 nm, Y AL � 77� 5 nm, X ARC � 65� 7 nm, and
Y ARC � 89� 5 nm.

In Figs. 2–4 we report the results of the presented algorithm
for different starting prior vectors and different noise levels.
In particular we plot:

(a) the elastic net coefficients against the strength of the regu-
larization parameter, and
(b) the normalized local sensitivities, defined as

P
p

��� ∂Ip∂pi
· piI p

���,
where I is the computed intensity, pi is the parameter of inter-
est, and the summation is over the p diffraction efficiencies.
They are a measure of the overall perturbation of the output
due to the slight perturbation of a certain parameter.

The algorithm converges fast and, once converged, it suc-
cessfully shrinks some of the entries of Δp to zero. However,
these entries change depending on the noise level in the data
and on the starting point of the optimization. In Fig. 2, the
parameters that were shrunk to exactly zero were X AL and Y AL;
in Fig. 3, the selected ones were X BL and Y ARC, while in Fig. 4
only Y BL was exactly equal to zero. We also notice a change in
the local sensitivities in Figs. 2(b), 3(b), and 4(b). Further,
a comparison among Figs. 2, 3(a), and 3(b) reveals that the
parameters that get fixed are not necessarily the ones for
which the local sensitivity is the lowest. In other words, the
parameters that locally perturb the output the most may not
be the ones that the elastic net locally identifies as important
for proper fitting of the data. Also, the l1 norm strongly biases
toward the prior, and hence the algorithm should be used only
in a start-up phase with many features, and not to carry out the
estimation itself. Once the inputs are selected, the free ones can
be estimated. This can be done employing the same algorithm,
but retaining only the l2 norm penalty in Eq. (5). An example
of such estimation, evaluated using the free parameters in
Fig. 2(a), is given in Table 2, where we have approximated the
covariance matrix as �JT · J�−1σ2 [26].In what follows, we re-
port our findings for the application of the Morris design to
gratings. The input space is discretized in a 12 level grid. We
have generated 1000 trajectories and have retained the 30 of
them that grant the highest “spread” in the input space [27],
for a total of R · �p� 1� � 210 model evaluations. As the
model produces 54 outputs—18 diffraction efficiencies per
wavelength—we analyze them separately. One can then reason
that if a subset of the parameters is unimportant for all of the

Table 1. Layer Thicknesses and Material Properties
at λ � 13.5 nm

Layer Thickness [nm] n k

ARC TaO 12 0.951 0.003
Absorber TaN 54.9 0.946 0.0326
SiO2 (buffer) 8 0.97352 0.01608
SiO2 (oxidation) 1.246 0.97352 0.01608
Capping layer Si 12.536 0.99846 0.00184
MoSi 0.5 0.96675 0.00446
Mo 2.256 0.91872 0.00672
MoSi 0.5 0.96675 0.00446
Si 3.077 0.99846 0.00184
Substrate 6.35e6 0.97352 0.01608
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Fig. 2. Plots at the last iteration of the automatic variable selection algorithm. 5% Gaussian noise is added to the synthetic data. p0 is [X BL, Y BL,
X AL, Y AL, X ARC, Y ARC] = [66.9, 22.47, 73.41, 81.65, 60.21, 93.7] nm. (a) Elastic net coefficients as a function of regularization parameter strength.
γ0 is the regularization strength selected according to the criteria of Eq. (6). (b) Normalized local sensitivities in percentage.
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diffracted efficiencies, then it can be considered a fixed input
in the model. Plots for an illustrative subset of the diffracted
order at λ � 13.398 nm are shown in Fig. 4; the other two
wavelengths show similar trends.

Some observation can be made about the Morris plots
in Fig. 5.

• The widths of the buffer and of the absorber layers,
X BL and X AL, respectively, which determine the CDs of the
grating, and the thickness of the ARC layer, Y ARC, which de-
termines the amount of incoming power that is transmitted to
the grating, are quite separated from the other inputs for most
of the diffracted orders. This indicates their importance in
the model.

• Y AL, which determines, for a fixed thickness of the buffer
layer, the thickness of the absorber, is very important for the

orders [−3, 4], which are the ones that mostly propagate
through the entire height of the absorber. Its importance de-
creases for orders diffracted at higher angles.

• X ARC and Y BL always appear close the origin of the plot.
This indicates that they are the least important inputs in the
model and can be considered fixed to a certain value within
their uncertainty bounds.

• For all of the diffracted orders, some of the inputs are
involved in nonlinear effects, which causes them to appear close
to the diagonal in Fig. 5. It is also interesting to note that the
degree of nonlinearity or correlation related to a certain input
is captured by certain diffraction efficiencies rather than by
others. For example, examining the plot for the order −6
[Fig. 5(a)], X BL and X AL appear to be involved in strong inter-
actions or nonlinear behavior. This does not appear to be the
case for the orders −1 or 4 in Figs. 5(b) and 5(c).
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Fig. 3. Plots at the last iteration of the automatic variable selection algorithm. 10% Gaussian noise is added to the synthetic data. p0 is [X BL, Y BL,
X AL, Y AL, X ARC, Y ARC] = [74.4, 26.05, 61.78, 81.13, 66.85, 84.97] nm. (a) Elastic net coefficients as a function of regularization parameter
strength. γ0 is the regularization strength selected according to the criteria in Eq. (6). (b) Normalized local sensitivities in percentage.
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Fig. 4. Plots at the last iteration of the automatic variable selection algorithm. 15% Gaussian noise is added to the synthetic data. p0 is [X BL, Y AL,
X AL, Y AL, X ARC, Y ARC] = [68.15, 23.25, 70.92, 72.81, 71, 91.7] nm. (a) Elastic net coefficients as a function of regularization parameter strength.
γ0 is the regularization strength selected according to the criteria in Eq. (6). (b) Normalized local sensitivities in percentage.
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The observations above are consistent with previous mod-
eling work [5], in which the authors have retained in the model
only those parameters that identified top and bottom CDs and
the SWA of the grating. However, according to the Morris de-
sign, Y ARC should be considered as a free degree of freedom
rather than be fixed.

As the Morris design and the elastic net penalty rank the im-
portance of parameters according to different criteria, and as they
cover the input space differently, they lead to dissimilar results.
For instance, in Fig. 2(a) the elastic net penalty shrank to zero the
inputs X AL and Y AL. This, according to the Morris design,
would have deprived the model of two important inputs.

In light of this, a better strategy could be to remove for the
model those parameters that are identified as unimportant by
both the Morris design and the penalized regression in Eq. (4).
For example, for the case in Fig. 4(a), one could fix only Y BL. In
this way one would retain in the model those parameters that
are important for proper fitting of the data and that, at the same
time, have a substantial effect over the output.

B. Application to 3D Scatterers
It is interesting to apply the method developed in Section 2
to the complex case of feature selection for 3D isolated nano-
structures. The model-based approach has been investigated
predominantly for 2D grating profiles and 3D periodic scatter-
ers, but its use for the reconstruction of isolated nanostructures
is still to be discussed. The modeling of a 3D nanostructure is
challenging, and understanding how to parametrize a given
structure and which features to retain in the model is difficult.
In such cases, the tools presented above can be particularly use-
ful. We apply the algorithm described in Section 2 to the scat-
terer in Fig. 6(a), which is parameterized with seven parameters.
We fit the diffuse scattered intensities, displayed in Fig. 6(b).

For the 3D scatterer we use the following data.

Table 2. Reconstruction Results

Parameter
Reconstructed
Value [nm]

Standard
Deviation [nm]

X BL 67.12 0.8
Y BL 23.65 1.8
X ARC 61.67 0.4
Y ARC 87.85 0.3
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Fig. 5. Morris plots for four different diffracted orders at λ � 13.398 nm: (a) order −6, (b) order −1, (c) order 4, and (d) order 9.
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We replace the multilayer with an equivalent substrate
that offers, for the given wavelength and angles of incidence,
approximately the same reflectance. The incoming light field
is a beam with a diameter of about 2 μm and radiating
5e11 photons/s. The detection NA is 0.5. The computational
domain is truncated on all sides by the perfectly matched layers
[35]. The meshing setting is such to have a relative error in the
far-field evaluation of about 1%.

Figure 7 reveals that all of the parameters should be kept
in the model for a proper fitting of the data, even though
the contribution of p6 and p7 is quite limited compared to the
others. A thorough study of the applicability of model-based
reconstruction in 3D aperiodic case, and related modeling
work, is beyond the purpose of this paper.

4. CONCLUSIONS

There are applications in which one is interested in the retrieval
of unknown characteristics of an object that are enclosed within

a measured signal. This is a challenging mathematical problem
that suffers from ill-posedness. The use of prior information
about some of these characteristics allays some difficulties, pro-
viding the means to stabilize the inversion and to look for a
solution that is a deviation about the given prior. Nevertheless,
the complexity of the problem depends upon the number of
unknowns to be retrieved. When this is an issue, methods to
reduce the complexity are to be sought. In this paper we have
proposed an algorithm that is a nonlinear extension of the elas-
tic net regression [19]. Its purpose is to identify which inputs
do not contribute much to improve the fitting and to fix them
to a certain value, reducing the number of unknowns to be
retrieved. The algorithm can be applied to that class of deter-
ministic inverse problems in which one can compute the gra-
dient of the function to be optimized. We have compared the
method with the Morris design [20] and with local sensitivity
analysis. The comparison demonstrates that the two methods,
which discern important parameters according to different
viewpoints and which explore the input space differently,

Fig. 6. (a) Scatterer with parameterized profile. The parameter p7, not indicated in the figure, is the thickness of the anti-reflective layer.
(b) Diffuse scattering given by the structure in (a).
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Fig. 7. (a) Elastic net coefficients as a function of the regularization parameter strength. (b) Normalized local sensitivities in percentage.
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can give different results. In view of those differences, a more
robust approach consists of a joint decision that combines the
results given by the methods. We have shared and discussed our
findings, applying the methods to the inverse problem of EUV
scatterometry.
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Ru (capping layer) 2 0.88586 0.01727
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