Low-Thrust Interplanetary Trajectory
Optimization Using Pre-Trained =
Artificial Neural Network Surrogates

Master Thesis ‘
Veronica Saz UIibarrena

Technische Universiteit Delft

]
TUDelft

Low-Thrust Interplanetary Trajectory
Optimization Using Pre-Trained
Artificial Neural Network Surrogates

Master Thesis

by

Veronica Saz Ulibarrena

to obtain the degree of Master of Science
at the Delft University of Technology.
to be defended publicly on Friday April 9, 2021 at 10 AM.

Student number: 4867491
Project duration: June 15, 2020 — March 8, 2021

Thesis committee: ir. K.J. Cowan MBA, TU Delft, supervisor
prof. dr. ir. PN.A.M. Visser, TU Delft
dr. A. Menicucci, TU Delft

This thesis is confidential and cannot be made public until April 9, 2023.

An electronic version of this thesis is available at http: //repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Contents

List of Figures v
List of Tables vii
List of Acronyms ix
List of Symbols xi
1 Introduction 1
1.1 Researchobjective L e e e e e e 2

1.2 ReportStructure e e e e e e e e e e e e 3

2 Paper)
2.1 Introduction e e e e e e e e e e 6

2.2 Low-Thrust Trajectory Optimization o vt v v 8
2.2.1 Dynamicsoftheproblem o 8

2.2.2 PropagationModel. 9

2.2.3 Optimization Problem Formulation 10

2.2.4 OptimizationAlgorithm L L 11

2.3 Machine Learning Surrogate Lol e e e e e e 12
2.3.1 DatabaseAnalysis 13

2.3.2 Hyperparameters and training parameters. Lo 15

2.4 Results L e e e e e 16
2.4.1 Trained Neural Networks. 17

2.4.2 Optimizationresults. e e e 21

25 Conclusion L e e e e e e 21

2.6 References e e e e e e 23

3 Low Thrust Trajectories 25
3.1 Propulsionmodel. e e e e e e e e 25

3.2 Dynamicmodel. e e 25
3.2.1 Keplerian propagation. Lo e e e e e e e 25

3.2.2 Applicationofimpulses e e e 25

3.2.3 Validation and verification. 26

4 Optimization process 29
4.1 Descriptionoftheproblem e 29

4.2 Optimization Algorithm. L e 29
4.2.1 MonotonicBasinHopping. o o 29

4.2.2 Local Optimization o v v it i e e e e e e e e e 30

4.2.3 Validation and Verification. 30

4.2.4 Optimization parameters o oo e e e e 31

4.3 Inclusion of the Machine Learning surrogate 33

5 Machine Learning surrogate 35
5.1 Database Analysis. e e e e 35
5.1.1 Databasecreationmethods 35

5.1.2 Inputselection. e e e e e e e e e e 35

5.1.3 Normalization and Standardization 37

iii

iv

Contents

52 Methodselection L L Lo
5.3 Model architecture and training process
5.3.1 Optimization algorithm
5.3.2 Activation function and weight initialization.
533 Lossfunction

5.3.4 Comparison of architectures and training parameters

5.3.5 Additional hyperparameters.
5.3.6 Number of trainingsamples
54 Modelvalidation L L L L
5.5 Transferlearning Lo

6 Conclusions

6.1 Researchobjective
6.2 Futurework.

List of References

List of Figures

2.1 Schematic of the use of the Machine Learning surrogate in the optimization. 8
2.2 Sims-Flanagan transcriptionmethod. L L 10
2.3 Monotonic Basin Hopping process. i e 12
2.4 Distribution of the inputs forthenetwork. 13
2.5 Correlation matrix for the evaluationdataset. 14
2.6 Correlation matrix for the local-optimization dataset. 15
2.7 Study of the loss for different number of samples. L. 16
2.8 Training history for different datasets of the evaluationnetwork. 17
2.9 Real vs predicted value of the test data for the fitnessnetwork. 18
2.10 Real against predicted value for inputs outside the limits. 19
2.11 Real against predicted value for inputs for different missions. 19
2.12 Training history for the local-optimization network for different pre-trained cases. 20
2.13 Real against predicted value of the network with pre-training. 21
2.14 Monotonic Basin Hopping convergenceplot. 22
2.15 3D plot and impulse distribution of the optimum trajectory. 22
2.16 Impulse magnitude againsttime. L L e 23
3.1 Relationship between anomalies. e 26
3.2 Applicationof animpulse. e e e e e 26
3.3 Trajectory obtained with pykep.sims_flanagan. 28
3.4 Trajectory obtained with self-implemented Sims-Flanagan method. 28
4.1 Optimization convergence with the number of iterations. 31
4.2 3D optimal trajectory found after optimization. L L oL 32
4.3 Mismatch in position and velocity for different objective functions. 32
4.4 Itinerary for the optimal main-belt rendezvous mission. 33
5.1 Latin Hypercube. e 35
5.2 Comparisonofthetypeofinputs. 36
5.3 Loss value for different hyperparameters during the Evolutionary Algorithm optimization. . .. 40
5.4 Training history for the referencemodel. 41
5.5 Testdata prediction for thereferencemodel. 41
5.6 Training history for the modelcreated. 41
5.7 Test data performance for the createdmodel. 41

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3

List of Tables

Propulsion system of Dawn mission. 17
Cartesian to keplerian elements. e e e 27
Values of the propagation with Hohmann transfer. 27
Propagation with Lambert transfervalues. 27
Comparison of the mismatch at themiddlepoint. 28
Validation of optimization methods. e 31
Settings of the optimization problem. 33
Limits of the decisionvector. e 33

vii

DE
DNN
EDA

E-ANN
GPU
LO-ANN
MAE
MBH
ML
MLP
MSE
ReLu
SA
SGD
SLSQP
TL

Artificial Neural Network
Differential Evolution

Deep Neural Network
Exploratory Data Analysis
Evolutionary Algorithm

n Evaluation Neural Network
Graphic Processing Unit
Local-optimization Neural Network
Mean Absolute Error
Monotonic Basin Hopping
Machine Learning
Multilayer Perceptron

Mean Square Error

Rectified Linear Unit
Simulated Annealing
Stochastic Gradient Descent

Sequential Least Squares Programming

Transfer Learning

List of Acronyms

~oR o I8
=

I X

mg
Nimp

R T

S

<

~ o ow

semi-major axis AV
eccentric anomaly £p
eccentricity &y
gravitational acceleration 0
specific impulse Q
inclination angle)
mean anomaly 7

mass
initial mass of the spacecraft
mass of fuel

number of impulses
position vector

velocity vector

thrust

time

launch epoch

transfer time

velocity vector

decision vector

set of features

output of the neuron

List of symbols

impulse

mismatch in position

mismatch in velocity

true anomaly

right ascension of the ascending node
argument of the periapsis

standard gravitational parameter

Introduction

As space exploration keeps advancing, new methods need to be developed to allow spacecraft to get to places
that were not possible before. The use of low-thrust propulsion requires new research to be carried out to use
it for future missions. This includes the creation of new methods to model the trajectories performed with
this type of propulsion.

Although chemical propulsion systems are well established for their use in spacecraft engines, electric sys-
tems are currently replacing them for the cases in which their different characteristics represent an advantage
for the mission to be developed. An example of this is the energy required for the control of the attitude of
satellites or to maintain them in an orbit. In these cases, electric propulsion represents an advantage with re-
spect to chemical methods because the efficiency of electric systems is higher. Nowadays, although different
types of electric propulsion systems are being used in a variety of missions, interplanetary trajectories may
be one of the disciplines where electric propulsion can present the most significant advantages, for example,
by reducing the total mission life-cycle costs and the time a mission may take >, In contrast to chemical
propulsion in which thrust is applied for a short duration of time (which in comparison with the total du-
ration of the mission can be considered negligible), electric systems are based on continuous thrust and,
therefore, the methods to model the interplanetary orbits that the spacecraft will follow have to take that into
account.

The challenging part of finding a trajectory to travel from the Earth to Mars with electric propulsion lies in
finding a solution that minimizes a chosen variable, such as the mass of fuel or the time of transfer while ad-
hering to some given constraints. In order to achieve this task, the method developed by Jon A. Sims and Steve
N. Flanagan 22! will be used to get a preliminary design of interplanetary trajectories minimizing the amount
of fuel needed. Although electric propulsion is characterized for continuously producing thrust throughout
the orbit, this method uses a discrete approximation with a number of impulses determined beforehand and
connected using conic arcs with the Sun as the focus of the ellipse.

As in the case of high-thrust trajectories, it is important to find the parameters that lead to the best mission.
In most cases, this involves maximizing the mass of fuel that the spacecraft will have left at the end of the
transfer and minimizing the time of transfer needed to reach the target. The latter one is especially relevant
in the case of low-thrust propulsion as some trajectories can take longer times than is desirable. In addition
to this, every mission has some constraints that must be taken into consideration. These can be derived from
the feasibility of the trajectory or also from the scientific return expected from the mission. This means that
an optimization procedure must be included when designing the mission in order to make a choice of the
best parameters of the trajectory to be followed by the spacecraft 4. In this study, the optimization of the
trajectory will be carried out with the objective of minimizing the mass of fuel, while adhering to a set of con-
straints including the feasibility of the trajectory.

Although many optimization algorithms make use of initial guesses to speed-up the search for feasible tra-
jectories (as in the case of Safipour ['9), this study performs a preliminary trajectory design without initial
guesses, which makes the optimization problem more challenging but allows to find solutions that are not

2 1. Introduction

possible when an initial guess is used. The reason why this happens is that initial guesses such as shaping
methods or Lambert’s method limit the solutions within the search space that can be found. When an initial
guess is not available, finding feasible trajectories becomes a real challenge. This means that the optimization
cannot only search for the optimum mass of fuel but needs to be configured to lead to a feasible trajectory
and this results in an increase in the computational cost of the optimization process.

The increase in complexity of the optimization problem makes it ideal for the inclusion of ML as a surro-
gate that supports this optimization problem. The method chosen for the surrogate was an Artificial Neu-
ral Network (ANN) that predicts the objective function of the local-optimum, which substitutes the most
computationally-expensive part of the optimization. It is common to use inline training, in which the model
is trained during the optimization. Even though this method allows for the use of fewer training samples, it
also implies that the first predictions will be worse than the latter ones, which is not beneficial for this type
of optimization method. Therefore, a database is created to train the model using supervised learning before
the optimization process begins.

Training this model is also computationally expensive, meaning that other techniques like Transfer Learning
(TL) can be extremely useful to accelerate the training process and improve the performance by using pre-
trained models as starting points for the training. Therefore, in this problem, pre-training has been studied
using different models to study the performance improvement. In addition to that, the extrapolation abilities
of the network have also been analyzed.

To find a feasible trajectory that allows the best value of a variable, the algorithm chosen was the Monotonic
Basin Hopping (MBH), which is commonly used for these types of problems (Yam et al.?®'). The algorithm
was implemented by the author to avoid the problems that the basinhopping method of scipy . optimize?!l
suffers from. In addition to that, it is easier to modify every necessary aspect to fully adapt it to perform best
for the given problem. An additional challenge of the problem was adapting the optimization method (which
is in nature sequential), to include the ML surrogate (which operates by evaluating different inputs in paral-
lel).

In addition to that, the process to create and train the neural network is studied, beginning with the creation
of the database to perform batch training, and taking into consideration aspects like the type of inputs, the
hyperparameters, and the number of samples that have to be used for the training. Regarding the trained
network, in contrast to most studies of Machine Learning surrogates for low-thrust trajectories'??9, the net-
work implemented will not only predict the value of the mass of fuel, but also the values of the mismatch in
position and velocity that define the feasibility of a trajectory when using the Sims-Flanagan transcription
method, which has not been done in any other previous study.

1.1. Research objective

The goal of the proposed work is to study the use of Artificial Neural Networks to improve the efficiency of
an optimization problem that deals with interplanetary trajectories for a spacecraft that is propelled using
low-thrust. Therefore, the goal is creating a method that constitutes an improvement over the current ones.

With that objective in mind, the research questions can be formulated:

e How can the Artificial Neural Network be set up so that it is able to predict the different terms that form
the objective function that is derived from the Sims-Flanagan transcription?
The objective function has a term for the variable to optimize and two penalty terms to define the fea-
sibility of the transfer. Aspects such as the type of inputs, the architecture, and other hyperparameters
determine the quality of the prediction of the outputs. Therefore, those will be studied. Several sub-
questions can be formulated:

— How many samples are needed to obtain the required accuracy?
— What is the best type of inputs for this study?

— What is the size of the network that best fits the data?

1.2. Report Structure 3

— What other hyperparameters need to be modified?

— What is the accuracy that can be achieved in the prediction of the different outputs of the Artificial
Neural Network?

* What is the effect of using a trained Artificial Neural Network as a pre-trained model for another one?
Once a network has been trained to predict the value of the objective function of a set of inputs, it will
be studied how it can be used to improve the training process of another Artificial Neural Network.

— What are the extrapolation capabilities of the trained network?

— Does the quality of the pre-trained model affect the improvement in the performance of the net-
work?

* Can a trained surrogate be used to improve the efficiency of the optimization by substituting the local
optimization part of the global optimization algorithm?
An Artificial Neural Network that predicts the terms of the objective function of the local optimum will
be used in the optimization and the results will be compared to those obtained with the computation
of the local optimization.

1.2. Report Structure

The report is divided into two main parts, Chapter 2 will be the paper manuscript with the main content of
the problem. Chapter 3 deals with further information about the trajectory design, along with the validation
and verification of the methods used for the modeling of the trajectory. Similarly, Chapter 4 presents further
information about the optimization algorithms, their settings, and validation and verification of the imple-
mented algorithms. Chapter 5 refers to the details about different aspects of the Machine Learning surrogate,
such as the dataset, choice of the model settings, and validation of the used model. Finally, the conclusions
are presented in Chapter 6 along with recommendations for future work.

Paper

This chapter contains the paper manuscript with the main description of the problem and the results. The
paper has been written with the format of the AAS/AIAA Astrodynamics Specialist Conference .

1http ://www.univelt.com/FAQ.html#SUBMISSION, online accessed on 2021-02-18

http://www.univelt.com/FAQ.html#SUBMISSION

(Preprint) AAS XX-XXX

LOW-THRUST INTERPLANETARY TRAJECTORY OPTIMIZATION
USING PRE-TRAINED ARTIFICIAL NEURAL NETWORK
SURROGATES

Veronica Saz Ulibarrena; and Kevin Cowan’

The use of low-thrust propulsion for interplanetary missions requires the implementation of
new methods for the preliminary design of their trajectories. This paper proposes a method
using the Monotonic Basin Hopping global optimization algorithm to find feasible trajecto-
ries with optimum use of the mass of fuel for the case in which the trajectory is modeled using
the Sims-Flanagan transcription method. The large computational time required to find the
global optimum implies that a Machine Learning technique, such as Artificial Neural Net-
works, may be beneficial to predict the objective function of the local minimum. Artificial
Neural Networks predict a value instead of calculating it, leading to a significant improve-
ment of the computation time at the expense of loss in accuracy. In this paper, the procedure
to set-up a working regression Artificial Neural Network is studied. The use of a surrogate
for the computation of the value of the objective function implies that the optimization al-
gorithm needs to be adapted for this new implementation, allowing to evaluate samples in
parallel instead of sequentially. In addition to this, the transferability of the trained network
is studied by using it to predict values outside the trained limits and for different missions.
Finally, the use of pre-training is analyzed to improve the performance of the network with-
out increasing the size of the training database. The results show that the neural network
is not good at extrapolating when the input values are far from those the network has been
trained with. However, the results regarding the use of pre-trained models are extremely
promising, as their use allows for a reduction in both the training and validation loss, being
this improvement larger as a more refined pre-trained model is used for the same architec-
ture. It is therefore shown that a network trained with a dataset consisting of 60,000 samples
is improved when pre-trained with a network that performs a different task and makes use of
a larger dataset (200,000 samples). The trained network is then used as a surrogate for the
optimization, reducing the computation time of the process without increasing the minimum
obtained. At the same time, it is observed that by increasing the individuals, or the number of
samples that are optimized in parallel, from 20 to 1,000 the optimization algorithm achieves
an even larger improvement in both computation time and optimum value.

INTRODUCTION

As humans keep advancing in their research of space, it becomes more important to develop methods
that allow spacecraft to carry out missions of increased complexity. With the use of low-thrust propulsion,
a new window of opportunity has been opened to allow spacecraft to perform transfers that consume less
fuel, therefore improving the scientific return of the mission. This propulsion type has already been used in
missions such as BepiColombo!, Hayabusa2?, and Dawn>. At the same time, this propulsion method requires
creating new tools to model its trajectory in a way that is efficient for a further optimization process.

Many optimization approaches have been applied to the design and optimization of low-thrust propulsion
trajectories using simplified models for the path followed. Some of those include shaping methods*, the Sims-
Flanagan approach, or optimal control algorithms®. However, in order to achieve an accurate representation

*M.Sc. Student, Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands, veron-
ica.saz.ulibarrena@gmail.com.

fEducation fellow and Lecturer, Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands,
k.j.cowan@tudelft.nl.

of reality, finding an optimum trajectory becomes computationally expensive, which can make the problem
of finding an optimum harder.

It is therefore useful to test the application of Machine Learning (ML), or more specifically Artificial Neu-
ral Networks (ANNs), to these cases to help the optimization to find an optimal solution with a reduced
computational cost, improving the efficiency of the optimization algorithm. In order to do that, a network
is trained to perform a certain task. Building surrogate models that replace computationally expensive algo-
rithms is interesting for the optimization problem as the calculation of the objective function requires a high
degree of computational resources®. Such study has been previously performed for example to approximate
the objective function landscape in evolutionary optimization to speed up the optimization process as seen
in Ampatzis and Izzo, 20097. Although they conclude that the results are promising, this was not applied to
low-thrust propulsion. In Casey, 20193, Machine Learning is used to predict the optimal transfer between
two bodies. This example was applied to the case of sequence optimization for asteroids in the Asteroid Belt
of the Solar System. Zhu and Luo, 2019° also used Deep Neural Networks (DNNs) to estimate the optimal
fuel consumption. The previous studies showing promising results are encouraging to use these techniques
for different scenarios. Therefore, the goal of this study will be to apply some of those ideas to the case of
interplanetary preliminary trajectory design.

Despite the positive results obtained in these studies, the learning process that is necessary to train a
network to perform a certain task can be slow, computationally expensive, and can suffer from a reduced
number of training samples. Therefore, the use of Transfer Learning (TL) has become relevant in many fields
such as image recognition’ and natural language processing to take advantage of previously trained networks
and existing databases to train a new network, speeding up the process and improving the efficiency of those
algorithms. Results show that even with dissimilar tasks, using a pre-trained network is better than a random
initialization'?. It is therefore also the goal of this study to get a better understanding of the effects of TL and
its possible advantages.

In this study, the Monotonic Basin Hopping (MBH) optimization algorithm has been used together with
the Sims-Flanagan transcription method to find feasible trajectories with a minimized mass of fuel consumed.
The MBH algorithm has been adapted to include a trained surrogate to speed up the calculation of the objec-
tive function. In contrast to most studies, which are limited to predicting the mass of fuel®’, the optimization
in this paper is carried out without initial guesses and predicts the feasibility of a trajectory as part of its ob-
jective. This constitutes an innovative approach to optimization using Machine Learning, as the complexity
is increased by the new terms that have to be predicted.

In order to create a working ANN, different aspects such as the types of inputs, the creation of the database,
and the hyperparameters of the network have also been studied. Once the network is created, its ability to
extrapolate is evaluated, together with the application of TL techniques. TL is applied by training the ANN
that substitutes the local optimization using the weights of a different trained ANN that has a larger database
available for training, therefore allowing for the study of the effects of pre-training.

The methodology is further explained in Figure 1. The optimization problem starts by creating a decision
vector. When used without the ML surrogate, the decision vector is populated with an initial guess for
the local optimization that is performed as part of the MBH algorithm, which uses the trajectory model to
compute the function to minimize. Then, the objective function is calculated. When using a ML surrogate,
the local optimization step is skipped. Instead, the decision vector is converted to the inputs of the network,
which has been previously trained using a database with supervised learning. After the objective function is
calculated, the optimization will continue to the next iteration by jumping to a new point or return the final
solution if the maximum number of iterations is reached *.

*All computations have been performed using Python on a Lenovo Yoga 720-13 laptop with the following hardware: Intel Core
i5-8250U CPU (1.6GHz) and 8 GB DDR4 2133 MHz RAM.

Database: Inputs/ Outputs

Global
Optimization V
Algorithm Initial Decision Vector With ML surrogate)
I, Train Network
Vo Vi to ty mo AV
Without ML surrogate
Artificial
Neural
Y Network V
Local Optimization Inputs of the ANN
Jump to new point (V
Objective function < Predict outputs -
f=cmg+ (cogp + c3e0)
Next iteration

Y

Solution

Figure 1. Schematic of the methodology used for the problem. Starting from the
decision vector, the objective function is calculated either using local optimization and
the trajectory model (on the left) or the machine learning surrogate (on the right).
After that, the optimization problem continues by jumping to a new point until the
maximum number of iterations is reached.

The first section of this paper deals with the trajectory optimization problem, including the dynamics of
the spacecraft, the propagation model used, and the description of the optimization model and algorithms.
The second section talks about the creation of a trajectory database and the training process of the Machine
Learning surrogate. Finally, the results and analysis of the study are shown in the third section, including the
trained networks with and without pre-training and the optimization results using the MBH algorithm.

LOW-THRUST TRAJECTORY OPTIMIZATION

Optimization is used in trajectory design for different purposes such as reducing the mass of fuel used or
decreasing the time required for a certain transfer. In this paper, only the first one will be an object of study.
In addition to this, optimization is used in many cases to ensure that a set of parameters leads to a feasible
trajectory that adheres to the given constraints of the mission. Therefore, this section defines the optimization
problem including the Sims-Flanagan propagation model.

Dynamics of the problem

Assuming a spacecraft that performs a transfer between two given bodies, it is assumed that the only
external forces acting on the spacecraft are the gravitational force of the center body, which in the case of this

paper will be the Sun, and the thrust of the propulsion system. This means that perturbing forces such as solar-
radiation pressure or the gravitational perturbations of the origin and target bodies are ignored. Therefore,
the dynamics can be classified as a two-body problem.

The acceleration of the spacecraft is defined in Equation (1). The first term accounts for the gravitational
acceleration of the main body, where 7’is the position of the spacecraft at an arbitrary time ¢. The second term
represents the continuous acceleration of the spacecraft due to its propulsion system. As time progresses, the
spacecraft mass (m) decreases following the second relation of Eq. (1).

d2F [
&or__pn IO e T
dt? r3 m Ispg(]

D

with T being the thrust of the spacecraft, i the gravitational parameter of the Sun with a value of 1.327178 x
1020 m? 52, I, the specific impulse of the spacecraft (as seen in Table 1), and g the standard gravitational
acceleration with a value of 9.80665 m s2.

Propagation Model

Modeling this problem theoretically is extremely computationally expensive. Therefore, there are many
methods that can be used to model continuous thrust in an approximate manner. Some of those include
shape-based methods, which is a simplified model of the trajectory that imitates the shape of a low-thrust
trajectory with a function'!, such as the exponential sinusoid. However, although these are useful to find
an initial guess for a problem, they have been demonstrated not to be precise enough for trajectory design®.
In addition to shape-based methods, indirect methods formulate the problem as an optimal control problem.
Examples of these include collocation methods'2. On the other hand, direct transcription methods are based
on transcribing the set of differential equations that govern the motion of the spacecraft into a finite set
of equality constraints!®>. For this problem, direct methods are preferred as indirect methods have been
found to be inefficient to find a solution when a good set of initial conditions is unknown. Among the
direct methods, the Sims-Flanagan transcription method can represent an increase in accuracy with respect to
shaping methods, without incurring in the problems that indirect methods suffer from.

The idea behind the Sims-Flanagan method is to perform a discretization of the continuous thrust. Each
leg of the trajectory is divided into different arcs, a leg being the fragment of trajectory that begins and
ends with a planet (control point). Then, those arcs are modeled as sequences of impulsive maneuvers (AV
maneuvers) connected by conic arcs,'* which can be modeled as Keplerian orbits, therefore allowing for the
use of two-body problem relations. This approach is represented in Figure 2.

The impulses are a discretization of the continuous thrust that would be applied in the corresponding
interval. Therefore, the magnitude of each impulse can be calculated knowing that the trajectory is divided
into arcs of equal duration as

Tt
av, = It 2
O @
where ¢, is the total transfer time of the leg and Njy, is the number of impulses into which the continuous
thrust has been discretized.

At each leg, the trajectory is propagated forward and backward to a match point that is normally located
halfway in time through the leg. If a random set of parameters is chosen to define the trajectory, in most
cases a mismatch in the state of the spacecraft will be found at this match point and calculated as expressed in
Equation (3). If that value is different from zero, the spacecraft is not reaching its target, or it is not doing it
with the desired velocity. Therefore, in order to achieve a feasible trajectory (i.e. one in which the mismatch
in position and velocity is zero), it is necessary to choose a specific combination of parameters that define
that trajectory. Consequently, optimization algorithms can be used to find that set of parameters that make
the trajectory feasible, at the same time as other variables are optimized.

e = [|Z — Z]l- 3)

o Control Node
7 AA Match Point
yd ®— |mpulse
| Segment Boundary

-

Figure 2. Representation of the Sims-Flanagan transcription method. Source: Yam et al.1*

Zy and Ty are the state of the spacecraft at the middle point for the forward and the backward propagation
respectively and ¢ is the mismatch.

Optimization Problem Formulation

Function to minimize The goal of optimizing a trajectory is normally finding the parameters that allow
for low fuel consumption, low time of transfer, efc.. In the case of the problem considered in this work, the
goal will be to minimize the mass of fuel used for the transfer.

Constraints and bounds The objective function will be subjected to the equality constraints of the mis-
match at the match point. Instead of equality constraints, the feasibility can be defined as inequality con-
straints, forcing the mismatch in position and velocity to be below a certain limit, where the mismatch can be
considered negligible. Instead of constrained optimization, the problem can be formulated as unconstrained
if the mismatch conditions are converted to penalty terms in the objective function. The advantage of the
latter option is that the optimization will work towards achieving a feasible trajectory. The reason for that is
that finding feasible trajectories from randomly-initialized input parameters instead of using a method that
provides an initial guess is extremely challenging and time-consuming. Therefore, by including the feasibil-
ity terms in the objective function, the need for an initial guess is overcome. The objective function will then
take the form

m
J = c1—1 + (cagp + Cs2y).)
Mdry

The mismatches in position and velocity (¢, and €,,) are expressed in Astronomical Units and Astronomical
Units per year respectively, to ensure that both are in similar orders of magnitude. The coefficients ¢y, c2, and
c3 are included to ensure that the three terms are properly weighted. Those weights for the penalty methods
are extremely relevant as a low penalty factor will yield inaccurate results, and a high penalty factor will
cause ill-conditioning or slow convergence.

Therefore, the only constraints of the problem are the inequality constraints that bound the decision vector
(Z) as

I < T < Ty, ®)

with L and U being the lower and upper bounds respectively. Those limits are chosen according to the mission
to be carried out.

10

Decision Vector The decision vector is the set of variables that are used as inputs to the optimization and
will be modified to allow the objective function to be minimized while achieving the constraints. Those
inputs fully define the trajectory. First of all, the launch epoch (¢y) will define the position of the origin and
target planets using ephemeris data. For the position of the target planet, the transfer time is needed to know
the state of this planet at the moment of arrival. Therefore, the transfer time (¢;) will be the second item of
the decision vector. In order to know the state of the spacecraft at departure and arrival, its velocity relative
to the corresponding body, or hyperbolic excess velocities (¢jp and ¥y), will be included in the inputs of the
optimization. Finally, the magnitude (JA%;|) and direction (6; and ;) of each of the impulses will also be
modified during the optimization process. The sub-index (¢) refers to the corresponding impulse. The vectors
are written in spherical coordinates to simplify the application of the constrained bounds. The decision vector
is then written as follows:

T = [to, ts, Vo, Ur, |AUl, o, Y0, [01], 01, Y1, oo [UNimp s ONips VN - (6)

Optimization Algorithm

The optimization problem described in the previous section is non-linear, which means that many local
optima can be found. This implies that the optimization algorithm needs to perform a global search. In
addition to this, the derivative of the objective function is not known, which will determine the choice of
method.

A commonly used method to solve a continuous, non-linear, constrained optimization problem for the
Sims-Flanagan approach is the Monotonic Basin Hopping (MBH)'> !°. Alternative methods that can be used
for this type of problem are Differential Evolution (DE) or Simulated Annealing (SA) as seen in Yam et al.,'”.
Those can also achieve results with high convergence rates. For that reason, Evolutionary Algorithms (EA)
have often been used for these types of problems, as they do not need an initial guess and tend to converge
quickly. At the same time, the fact that there is a set of individuals created and evaluated simultaneously
allows for an easy integration of the surrogate for the prediction of the objective function since Artificial
Neural Networks work most efficiently when the inputs are provided in a matrix instead of sequentially.
However, there are some characteristics of MBH that make it more suitable for this problem. Firstly, local
optimization is the best contributor to the finding of a feasible trajectory. Since this local search is not a part
of the Evolutionary Algorithm by default, it was observed during ad hoc testing that the results obtained are
worse than those using local optimization. Secondly, Evolutionary Algorithms tend to get stuck after a certain
number of iterations as the values of the decision vector are mostly limited to those in the initial population.
Those problems are overcome by the use of MBH, which in turn requires enough iterations to cover the full
search space, becoming more expensive as the size of the decision vector increases.

Taking into account the previous reasoning, MBH has been chosen as the optimization algorithm, using
the Sequential Least-Squares Programming (SLSQP) from scipy.optimize.minimize for the local
optimization. This method starts from a random point and performs local optimization, generating a new
point only when no further improvement is achieved. A graphic explanation can be found in Figure 3. It
exploits the idea that local minima can normally be found close to each other'>. The jump magnitude is the
determining factor for its performance and has to be chosen for the different variables of the decision vector
as those are not in the same order of magnitude. For this problem, the algorithm has been implemented to
perform two types of jump: a small one from one iteration to the other to exploit areas with local optima, and
a bigger one which moves the decision vector to a completely new location of the search space after a certain
number of iterations performing the close-by search have been unsuccessful.

This algorithm is in essence sequential, which means it is not suited for the use of a Machine Learning
surrogate, as those work in parallel. For this reason, the algorithm has been modified to have multiple initial
decision vectors. This implies that the previously-explained procedure is applied to a number of “individuals”
for each iteration. Another important modification that has been performed to adapt the algorithm to the use
of the surrogate consists of verifying the result predicted with the surrogate (three main terms in Equation 4)
if a value better than the current optimum is found. This way it is not possible to finish the optimization with

11

Local minimum
Perturbed condition

Local minimization

v y0O

Perturbation of initial conditions

Not accepted

New minimum

Figure 3. Representation of the Monotonic Basin Hopping process.

a value of the objective function that does not correspond to the decision vector due to errors in the prediction
done by the network.

MACHINE LEARNING SURROGATE

Machine Learning is an application of Artificial Intelligence that allows systems to learn and improve from
experience without being explicitly programmed. The idea is to allow computers to learn automatically with-
out human intervention'®. Therefore, they can learn to predict values that would otherwise require complex
calculations. This section deals with the configuration of one of those algorithms to help the optimization
process described above.

There are many different Machine Learning methods that can be used for the creation of a surrogate in
the optimization problem previously described, such as Linear Regression, Support Vector Machines, and
Gradient Boosting algorithms among others, but Artificial Neural Networks present many advantages over
those!'”. On the one hand, they can be used for any problem that can be made numeric. In addition to this,
they are good with nonlinear data with a large number of inputs, which makes them ideal for the purpose
of trajectory optimization. On the other hand, training the networks is a computationally expensive problem
when done with consumer-grade CPUs. A common type of ANN is the Multi-Layer Perceptron (MLP),
which consists of layers of perceptron, or basic operational units of Artificial Neural Networks, combined
to form a multilayer architecture. Given a set of features (X) defined by X = (x1,22,...) and a label Y,
a Multi-Layer Perceptron can learn the relationship between the features and the labels for classification or
regression.

An Artificial Neural Network can be trained to predict the objective function of a trajectory given the
inputs. However, it is even more interesting to train it to predict the objective value of the local minimum.
In the first case, the time saved during the optimization is the time to evaluate the objective, whereas the
most computationally expensive problem, which is the local optimization, still needs to be computed. As
both options are interesting for the problem, they will be from now on referred to as the evaluation network
(E-ANN) and the local-optimization network (LO-ANN), respectively. Once the E-ANN is trained, it will be
further used as a pre-trained model for the LO-ANN, to study the effects of TL in the training process and
evaluate whether the reduced number of training data can be compensated with an educated initial choice of
weights.

Lastly, it has to be taken into consideration that each of the two Artificial Neural Networks will be config-
ured for supervised learning, using a preexisting database with training and testing data. Therefore, the two
different databases need to be created before starting the configuration of the network. Next section deals with
the creation of the database and the processing of the training data. After that, the choice of hyperparameters
will be discussed, taking into consideration that it needs to allow for transfer learning.

12

Database Analysis

In this section, the data used to train the networks is analyzed in order to have a better understanding of
the problem. First of all, to create the training database, a set of random decision vector samples needs to be
chosen and evaluated. The inputs to the neural network are a set of eight variables derived from the decision
vector. The reason why the components of the decision vector are not used as direct input to the ANN is that
its large size would increase the complexity of the network, requiring a much larger database. Therefore, for
a single leg of the Sims-Flanagan algorithm, the chosen inputs are the transfer time (¢;), the initial mass of
the spacecraft (my), the absolute value of the difference in semi-major axis of the initial and final states of the
spacecraft at the Control Nodes (|Aal), the absolute value of the difference in eccentricity (|Ae|), the cosine
of the difference in inclinations (cos(Az1)), the difference in right ascension of the ascending node (A?), the
difference in argument of the periapsis (Aw), and the difference in true anomaly (A#8).

A generalized method to ensure that the set of inputs for the database are uniformly distributed in the
search space is using a Latin Hypercube?. It is important to note that since the Latin Hypercube is applied
to the decision vector and not to the inputs of the neural network to allow for the choice of limits of each
variable, it cannot be assumed that those inputs also follow that uniform distribution. It is therefore useful to
plot their distribution as in Figure 4 for the mission from Earth to Mars described in the Results section. The
goal is to verify that those are well distributed within their limits. First of all, the transfer time is distributed
uniformly as this variable is taken directly from the decision vector. The next variables are distributed with a
mode around a certain value that depends on the geometry of the orbits of the origin and target planets, with
the frequency decreasing progressively around that value. This type of distribution is favorable for its use in
the ANN, which means that it is not necessary to apply any further normalization to the data.

Distribution of inputs

1400 - 1600
1200 4 1400 | 2000 |
1000 1200 -|
1000 4 1500 -
g 0] £ 00 g g
8 6004 8 8 1000 - 8
600
400
400 4 500 4
200 200
o - 0 0- B
0.5 1.0 800 900 1000 0.0 0.5 1.0 0.00 025 050 0.75
3 leg@ mo |aal lel2 |ae|
1600 -|
14000 4 1400 | 1750
1400 -
12000 - 1200 4 1500 7
1200 -
10000 - 1000 -| 1250
1000 -
8000 800 q 1000

Count
Count
Count
Count

800

6000 600 4 750

600

\
4000 - 400 400 - 500
/ \
2000 200 4 “ h 200 H 250 4
0 - o4 I|| I} o4 ‘| 0
0.94 096 098 100 -5 0 5 -5 0 5
cos(Af) Jile} Aw

Figure 4. Distribution of the inputs of the network.

13

Once the inputs are selected, the labels of the database need to be generated as the problem deals with
supervised training. For the evaluation network, the outputs are the mass of fuel and the mismatch in position
and mismatch in velocity of the trajectory corresponding to those inputs. For the local-optimization network,
the outputs are the same as for the E-ANN, but corresponding to the local optimum obtained after using
the given input as the initial guess of the local optimization. These labels are generated using the same
methodology as for the optimization process described in the previous section. It is important to note that the
creation of the database in the first case is less computationally expensive than the second one, as the local
optimization process is slow. Each local optimization takes a different time depending on how quickly the
required tolerance is achieved, so it is not possible to generalize regarding the time for the creation of the
database, but as an approximation, the creation of 5,000 samples for the LO-ANN requires about 18 hours,
whereas for the E-ANN database it is a matter of minutes. The final database for the LO-ANN consists of
60,000 samples, whereas for the E-ANN different databases were created with a variable number of samples,
as it will be seen in Figure 7.

One method to study the relationship between inputs and outputs to ensure that the ANN will be able to
learn is through the correlation matrix. Figure 5 shows the correlation between inputs and outputs for the E-
ANN database whereas Figure 6 shows those for the local-optimization network database. It is not beneficial
to have inputs that are largely correlated with each other but, in this case, the correlations are low for most of
the inputs except for the semi-major axis and eccentricity, with a correlation that is still far from 1. Looking
at the correlation between inputs and outputs, it can be said that the database is suitable to train the network,
but it will suffer from the low correlation values of most inputs to the outputs.

mf
\

- 0.1

ep

- 0.023
8 - 0.3

o 0.12 0.028
-0.2

0.1 0.023

mo
.

-01

--0.0082 0.017 -0.0094 -0.0082

Inal

- 0.0
--0.0026 = 0.21 0.032 -0.0016 -0.0026

|ne]

--0.0043 0.005 -0.017 -0.003 -0.0043 0.052 0.019

A cos(ai)

- 0.024 -0.0098 -0.0074 0.028 0.024 -0.011 -0.012 0.014

-0.0062 0.023 0.0021 0.0089 0.0062 0.028 0.009 -0.018 -0.12

Aw

--0.035 -0.028 -0.0058 -0.039 -0.03> 0.0023 0.00068 -0.012 -0.0021 | -0.2

it:)

\ \ ! . ' \ . \ . ' .
mf ep ev te my laal |ae| cos(ai) AQ Aw it}

Figure 5. Correlation between inputs and outputs of the evaluation database.

Once the database is created, it needs to be processed before being used in the training of the network. An
important step is the scaling of the data, especially due to the difference in scale of the different inputs and
outputs. There are many methods that can be used depending on the study case, such as normalization and
standardization. However, before applying this modification to the outputs, they were also corrected to im-
prove the performance of the network. Firstly, the mass of fuel was divided by the dry mass of the spacecraft.
Then, the mismatches in position and velocity were converted to Astronomical Units and Astronomical Units
per year respectively to reduce their order of magnitude so that both of them have equivalent weight. Lastly,
a logarithm in base 10 is applied to both mismatches to ensure that each value of the mismatch has the same

14

- 0.3

-0.0
--0.0076 -0.026 0.14 -0.0056 -0.0076

|aal

--0.1
- 0.0023 -0.087 -0.004 0.0023

|ne]

--0.2

--0.0071 0.1 -0.0047 -0.0071 0.038 0.018
- -0.3

--0.0031 0.016 -0.024 -0.0051 -0.0031 -0.0075 -0.01 0.0064

AO coslhi)

3 —0.00037 -0.031 0.066 0.0039 -0.00037 0.032 0.0084 -0.013 -0.11
|

g - -0.023 0.03 -0.033 -0.023 -0.023 -0.0079 0.0031 -0.00023 -0.013 | -0.21

. ! ! ‘ .] .
mf ep ev t mo |aa| lae] cos(an AQ Aw 28

Figure 6. Correlation between inputs and outputs of the local-optimization database.

weight in the learning process. The outputs then become:

my

Mfinal = Ep,final = loglo(gp,AU) Ev final = loglo(gp,AU/year)- (7)

Mdry

Once those modifications are applied to the outputs, both inputs and outputs are scaled to be between zero
and one. For that, sklearn.preprocessing.MinMaxScaler?! has been used for both the inputs and
the outputs.

Hyperparameters and training parameters

Once the database is created, the next step is finding the best parameters to train the network.

First of all, the performance of the network will depend mostly on the number of training samples. As it
was said in the Database Analysis section, it is faster to generate a database for the evaluation network than
for the local-optimization one. Therefore, the second one will contain fewer samples than the first one. It is
important for the problem to use the same architecture for both of them, as otherwise the weights cannot be
transferred for pre-training. Therefore, the study of the architecture will be done on the local-optimization
network, as its number of samples will be the limiting factor, and then that architecture will be applied to the
E-ANN.

Configuring the network implies choosing its architecture, activation functions, and optimization algorithm
among others. The network will be optimized using backpropagation and Adam optimizer since other meth-
ods like Stochastic Gradient Descent (SGD)?? or RMSprop?? were not as fast at achieving the same value
of the loss function as with Adam and in many cases they were not even able to achieve that value. The
loss function selected is the Mean Squared Error (MSE). In addition to that, the network has been trained
using mini-batch training with a batch size of 500 samples, which represents a compromise between the low
computation time achieved with full-batch training and the improved generalization performance and smaller
memory footprint achieved with small-batch training?*. In order to choose the activation function, many as-
pects have to be taken into consideration!®. First of all, it needs to be differential for the backpropagation,
fast and simple in processing, and it should not be zero centered. The most commonly used function is the
sigmoid, although it presents some disadvantages: the computations are time-consuming and complex, it is
slow in convergence and it causes gradients to vanish, among others. In order to overcome those drawbacks,

15

Mean Squared Error for different number of samples Mean Squared Error for different number of samples

A Train loss A Train loss
Validation loss Validation loss

Loss (MSE)
>
Loss (MSE)
>
>

Bl I

1000 5000 10000 50000 100000 1000 5000 10000 50000 100000
Samples Samples

Figure 7. Mean and standard deviation of the five repetitions of the training and
validation loss for different number of samples. On the left: For 3 hidden layers, 200
neurons per layer and 500 epochs. On the right: For 5 hidden layers, 350 neurons per
layer and 500 epochs.

the Rectified Linear Unit (ReLU) function is used as it is simple and faster to process. This function is used
for hidden layers, whereas for the output layer a linear function is used since it needs to predict a continuous
value. The weight initialization has been chosen accordingly, using He normal weight initialization, as it is
shown that it is the best fit for ReLU activation®.

After studying the architecture of the network using an Evolutionary Algorithm for different hyperparam-
eters, the final network is formed by 5 hidden layers, 350 neurons per hidden layer, and a learning rate of
6x10°. Another important hyperparameter is the learning rate decay, which in this case is a simple linear
decay, as reducing the learning rate avoids oscillatory behaviors as the loss is reduced. Therefore, a value of
1x10-3 was used, based on a trial-and-error study.

Since the architecture is chosen to be optimal for the LO-ANN, it is interesting to perform a study of the
effect of the number of samples on the loss function for two different architectures to understand how the E-
ANN performs depending on the size of the database. For a different number of samples, an E-ANN has been
trained five times (to reduce the difference in results obtained due to the random initialization of weights),
obtaining the training and validation loss (Figure 7). As the architecture of the E-ANN is only chosen to be
the same as the one for the LO-ANN, this study will be performed for the common architecture and a different
one to observe if the effect varies with the size of the network. First of all, it can be observed that the behavior
is analogous for the two different architectures. Secondly, as the number of samples is increased, the training
and validation loss are closer, which is an indication of lower overfitting. Therefore, the two main aspects
to check to know the quality of the network are the value of the validation loss and the difference between
training and validation loss. It is seen that the quality increases with the number of samples. However,
the plots also show that there is an asymptotic behavior in the validation loss, which means that increasing
the number of samples does not produce an equal improvement in the loss. This is easily seen in the step
from 50,000 samples to 100,000, where the improvement is negligible whereas the computation time for the
training is largely increased as it depends on the database size.

RESULTS

In this section, the results of the training of the networks and their application to the optimization problem
are explained. The study case is a mission from the Earth to Mars using Dawn’s mission from NASA as a
reference. The spacecraft’s main propulsion characteristics can be seen in Table 1.

Other important choices made are the number of impulses (/Vjy,) for the Sims-Flanagan method, which
were chosen to 11, as a larger number increases the dimensions of the problem, making it more expensive to
compute the values of the objective function.

16

Table 1. Propulsion system characteristics of the spacecraft used for NASA’s Dawn mission>.

Type Electrostatic ion thruster
Fuel Xenon
Number of engines 3 (one at a time used)
Thrust (mN) 90
Isp (s) 3100

Trained Neural Networks

Evaluation network The architecture was chosen for the local-optimization network to work best for the
number of training samples that was generated (60,000). However, this means that it is not clear what the
best number of samples is for the evaluation network, as it is possible to have a larger database. In Figure 8,
an example of the training history is displayed for different training databases, showing that increasing the
number of samples is beneficial to improve the value of the loss function and reduce overfitting. This plot also
shows that it could be beneficial for the largest databases to increase the capacity of the network. However,
this has not been done as this architecture represents a good compromise for both types of networks studied
in this problem.

Model loss for different database sizes

i —— Train loss, 5 x 10° samples
| —-— Validation loss, 5 x 103 samples

—— Train loss, 1 x 10 samples

—-—- Validation loss, 1 x 10* samples
—— Train loss, 5 x 10* samples
—-—- Validation loss, 5 x 10* samples
—— Train loss, 1 x 10° samples
——- Validation loss, 1 x 10° samples
Train loss, 2 x 10° samples
Validation loss, 2 x 10° samples

~ - .
s NV NI SV SR NN NI NN oY) VRSP

A

e T
LN

o 25 50 75 100 125 150 175 200
epoch

Figure 8. Training history for different sizes of the training database.

Now, with those results, the network is tested using the test data, and presented in Figure 9, showing the
real value (the label) against the predicted one for the samples in the test database. Ideally, the samples (black
dots) would be located along the 45° line. The first plot shows that the prediction of the mass of fuel is
accurate, as the maximum error is in the order of 10! kg, whereas the error in prediction in the last two plots
is still large in many cases (even two orders of magnitude). However, since this network is not directly used
in the optimization process, but only as a pre-trained example for the LO-ANN, the network’s accuracy is not
a concern.

The training database is created with the inputs constrained between certain limits. It is therefore interesting
to study the performance of this trained network on inputs that are outside of those limits to understand the

17

400 —— Reference
12

€ 300 F g0 >
s
5 S o
g y g

>
2 2001 2 =
© 1011 4. ©
g g 10 >
© -
3 2 g
£ 100/ i3] o
=] = g
g 0 1014 o
o [« o

o0l
9
~100 4 ‘ ‘ ‘ 10 | | ‘ ‘ ‘ ‘
0 100 200 300 1010 101 1012 103 104 10°
Real value of mf Real value of ep Real value of ev

Figure 9. Real value of the mass of fuel, mismatch in position and mismatch in veloc-
ity against the predicted one for the fitness network trained with 100,000 samples.

extrapolation capabilities of the trained network. Taking for example the database of 100,000 samples (as it
is less computationally expensive than the one with 200,000 samples), 100 random inputs have been created
violating one of the limits at a time. It is observed in Figure 10 that the network is able to extrapolate to those
cases relatively well (using the reference black dots) for all the cases except for above the transfer time limits.
The reason behind this behavior is that neural networks are in general not good at extrapolating, especially
as the network is better fitted, which means that the furthest the inputs are from those the network has been
trained with, the worse the performance will get. In the case with the upper transfer time limits, if the largest
allowed value is not far from the previous limit, the network will perform as in the other cases displayed.
However, the upper limit has been chosen to be much larger than the one the network has been trained with.
In addition to that, it is important to note that those limits are applied to the decision vector, and not to the
inputs of the network, implying that points that are outside the bounds for the decision vector might not be for
the inputs of the neural network. However, this is not the case of the transfer time as that variable is directly
used for the inputs without any transformation.

Similarly, it can be studied how well the network will perform if used for different missions: from the Earth
to Mars, which is the reference mission, from the Earth to Jupiter, Earth to Venus, and Mars to the Earth. The
network is still able to achieve similar performance on all the missions except for the one to Jupiter. The
reason for this is the same as explained previously for the limits: a mission to Jupiter requires modifying the
limits of the input values significantly, which implies that the inputs are further from those the network has
been trained for. Those results can be seen in Figure 11.

Local-optimization network For the LO-ANN, an example of the training history is shown in Figure 12.
Focusing first on the not pre-trained case, the value of the loss obtained corresponds to prediction errors that
are still large, to the detriment of its use in the optimization. The solution is increasing the number of samples,
but it has been shown how much the size of the database needs to increase to achieve a relevant improvement,
which is not possible within the limitations of this work due to the large computational cost of creating the
database.

Since increasing the size of this database is not an efficient solution, it is necessary to find other techniques
that allow the creation of usable network. That is the reason why pre-training has been analyzed. Transfer
Learning consists of applying knowledge achieved with one problem to another one. Although TL includes
many sophisticated techniques, it is beyond the scope of this work to study those in depth. The most simple
case of TL consists of using the weights of a previously-trained network as the initial weights for the new
network, or pre-training. Up to this point, two networks have been used, the evaluation network and the local-

18

—— Reference
e Within trained limits
x Below trained limits transfer time
a Above trained limits transfer time
+ Above trained limits initial velocity

1013,
A A
1051 &
1500 N
U— o >
£ N (1
Y A u— 12 | Y=
S 1000 a c 10 ©
v aa'le 9] U 1044
2 i 3 3
> 500 | ap > >
° A ° o]
] 4 L 1011]
— 4 +—
g / g K
ke i o T 103+
o ° o e
[[o
10204 at
—500 1 a
A
0 500 1000 o1 1012 10° 105
Real value of mf Real value of ep Real value of ev

Figure 10. Real value of the mass of fuel, mismatch in position, and mismatch in
velocity against the predicted one for four different cases: within the trained limits,
below the lower limit of the transfer time, above the higher limit of the transfer time
(maximum 4 times larger than the previous maximum), and above the trained limit
for the initial velocity (maximum 3 times larger than the previous maximum).

—— Reference
e Earth-Mars (trained network)
x Earth-Jupiter
a Earth-Venus
+ Mars-Earth
x 108 4
1200 10 “x
u— 1000 - a *x >
E p: 0 107 x!xx L1074
4 x
‘5 8001 el G o P G
3] [0} x, " 0}
E 600 4 ¥ ﬂ’g 3]_014, 3
3 © © 6
2 w S > 10
o 4004 x T 10134 5 o]
7] 0 . "’% 7]
T 2004 8] o
= —_ X = 5 |
he] o 10124 i ox o 10
v 04 g " g
o o [
—200 - 1 A
10 :‘ g‘s 104 4
—400 1 LA
0 500 1000 1011 1013 103 104 10°
Real value of mf Real value of ep Real value of ev

Figure 11. Real value of the mass of fuel, mismatch in position and mismatch in
velocity against the predicted one for four different cases: the baseline mission Earth-
Mars, Earth-Jupiter, Earth-Venus, Mars-Earth.

optimization network. The definition of the first one allows for the fast creation of a database, in contrast to
the second one.

The E-ANN and the LO-ANN created not only have the same inputs and outputs, but the underlying

19

Model loss

1021 Begt,

MSE

Train loss, not pretrained
—-— Validation loss, not pretrained

—— Train loss, Pretrainedl x 104 samples

—-— Validation loss, Pretrainedl x 10% samples
—— Train loss, Pretrained 1 x 105 samples

—-— Validation loss, Pretrained 1 x 10% samples
—— Train loss, Pretrained 2 x 105 samples

—-— Validation loss, Pretrained 2 x 10° samples
1073 Train loss, Pretrained 1 x 10° samples

Validation loss, Pretrained 1 x 10°% samples

0 50 100 150 200 250 300
epoch

Figure 12. Training history for the local-optimization network for different pre-trained cases.

problem is analogous, meaning that the different tasks to perform are close to each other, which is one of the
premises for efficient TL to work efficiently. Then, the question to answer is if the second network can make
use of a more-refined pre-trained model to avoid the need for more samples to improve it.

Some of the resulting trained networks in Figure 8 have been used as pre-trained networks to substitute
for the He weight initialization that has been used to train the previous cases. The results are displayed
in Figure 12, showing that pre-training is indeed beneficial for this case. Compared with the not pre-trained
model, it can be seen that the training loss is reduced faster as the pre-trained model is more refined. However,
for the validation loss, this improvement is not as significant, and it can be observed that the green line (pre-
trained 200,000 samples) is overfitting from epoch 150. This can be associated with the choice of network
architectures. However, it can also be due to the fact that this pre-trained model was trained to perform a
different task for which it is better fitted than the other pre-trained models. Although the improvement in loss
is already favorable for the problem, this behavior should be further studied.

This result is extremely encouraging, as it implies that the network can be improved without consuming
extremely large computational resources. From this point onward, the ANN used will be the one pre-trained
with 200,000 samples as it obtains the best values of the loss.

Figure 13 shows the real against the predicted values for the three outputs. Although most of the points do
not fit the 45° line for the last two plots, and some of them have large prediction errors (many of them one
or two orders of magnitude different), those errors have been largely reduced by the use of pre-training. It
would be beneficial for the optimization performance to decrease the value of the loss to reduce those errors,
but, as seen in Figure 7, reducing the loss requires an increasingly larger database, and this study lacked the
computational resources to do that.

20

400 1 1014 1 106 5
—— Reference
« 300 o 1012 >
£ o)
s s ‘s
8 200 8 1om0] g
© © ©
> > >
o o ©
s B s
G 100 5 109/ ©
S b= B
g v g
o o o
01 106
| ! | ‘ ! ‘ 10! Lo ‘ ‘ ‘
0 100 200 300 107 10° 101t 10? 10° 10* 10°
Real value of mf Real value of ep Real value of ev

Figure 13. Real value of the mass of fuel, mismatch in position and mismatch in
velocity against the predicted one for the local-optimization network with the 200,000
samples evaluation network as the pre-trained model.

Optimization results

In the previous section, different ANNs are obtained with the use of pre-training or without it. In order
to start the optimization process, the best of those (LO-ANN pre-trained with the 200,000 samples case) is
chosen as a surrogate model.

The MBH optimization has been run for 20 individuals and 100 iterations, using a tolerance for the ob-
jective function of the local optimization of 0.01. Additionally, an example with 1,000 individuals for the
surrogate is tested. The final convergence plots are shown with and without the use of Machine Learning
in Figure 14. It is important to realize that this process is random-based, which means that different runs
can only be directly compared when a seed is set for the initial guess and the values of the jumps of the
MBH algorithm. Because of the way the optimization method is implemented, if the surrogate predicts a
value lower than the current best, the value is verified using the local optimization algorithm (which is oth-
erwise substituted by the surrogate). It is seen that even with a low number of iterations and individuals,
the surrogate represents an advantage over the case without the ML surrogate as it achieves a similar result
(8.7% difference) with reduced computation time (cases with 20 individuals). When increasing the number
of individuals for the surrogate, this improvement is even enlarged, both in computation time and value of the
objective function.

The final trajectory obtained with the optimization with the surrogate with 20 individuals is shown in
Figure 15, displaying the final values of the mismatch in position and velocity (8.83x107 m and 7.39x10° m/s
respectively), consuming a mass of fuel of 190 kg. A visualization of the magnitude of the impulses along
the trajectory can be seen in Figure 16, showing that the result has a transfer time of 1200 days. Although the
results are not easy to validate with similar missions, Englander et al.'> obtains a mass of fuel of 122.7 kg
and a transfer time of about two years and a half. However, his work optimized the mission to the main belt,
which means that Mars is not the target planet but an unpowered flyby. Also, differences in the assumptions
of the problem can be relevant for the difference in results.

CONCLUSION

In this paper, the design of a method for preliminary trajectory design using low-thrust propulsion has
been discussed. In order to find a feasible trajectory with low mass of fuel consumption, the Monotonic
Basin Hopping method has been used together with the Sims-Flanagan transcription method. Due to the
large computation time needed for the optimization to find a solution, the use of Artificial Neural Networks to
substitute the calculation of the objective function is studied, from the creation of the database and the choice

21

Current Minimum (J)

Computation time (s)

Monotonic Basin Hopping
Convergence plot

103
—e— Without ML surrogate
—=— With ML surrogate (20 ind)
102 { T 8.906E+01 —— With ML surrogate (1000 ind)
I 8.906E+01
L 1.333E+01
101 4
3.454E-01 - 3.454E-01 - 3.454E-01 - 3.4504E-01
1004 F 3.424E-01 - 3.424E-01 | 3.424E-01 | 3.4244E-01
2.933E-01
| 2.177€-01 | 2.177€-01 | 2.1797E-01
1071 . . ! | !)
0 20 40 60 80 100
Iteration
2000 | M
2000
M e -
0 1 T T T T T T
0 20 40 60 80 100
Iteration

Figure 14. Monotonic Basin Hopping convergence plot with and without the Machine
Learning surrogate.

Error in position: 8.83E+07 m
Error in velocity: 7.39E+03 m/s
Mass of fuel: 190 kg

Sun
Earth
Mars

e

2.0
1.5

lell

1.0
0.5

0.0
-0.5
-1.0
-1.5

z (m)

—2.0
ez M0,
5 0.0

X(m)© 03 44 -1.0

Figure 15. Optimum trajectory obtained with Monotonic Basin Hopping. The blue
trajectory is the segment forward-propagated from the Earth and the red one the
back-propagated from Mars.

22

Epoch vs Delta V

1000

800 A

600

Delta V (m/s)

400 -

200 A

7400 7600 7800 8000 8200 8400
JDO (days)

Figure 16. Av magnitude applied in each impulse and distribution of inputs in time.

of hyperparameters to its integration with the optimization algorithm. Since the creation of the database used
to train the network is also computationally expensive, several studies regarding the extrapolation capabilities
of the network and the effect of pre-training have also been performed.

The studies show that increasing the number of samples of the database is necessary to improve the per-
formance of the network, but the larger the number of training samples, the smaller the improvement in the
loss is. This problem can be mitigated by the use of pre-trained networks, which have been shown to be
extremely useful to reduce the loss without incurring in the larger computational times for the creation of
a larger database. When using different pre-trained models, those that were better fitted to the origin task
represent a larger improvement compared to the network trained without pre-training. Although the final
trained network still has large errors in the prediction of the outputs, it can be seen that even this “poor” net-
work improves significantly the time of computation during the optimization compared to the case without
the surrogate while achieving accurate results thanks to the way the MBH algorithm is implemented to verify
the current minimum in each step. This time difference is observed to get even larger when the number of
individuals is increased, as Artificial Neural Networks can perform computations in parallel extremely fast,
whereas the conventional approach would need to perform the local optimization sequentially. Finally, it
can be concluded that the use of a pre-trained surrogate in the optimization process is beneficial to find an
optimum with decreased computational cost.

REFERENCES

[1] A. Anselmi and G. E. Scoon, “BepiColombo, ESA’s Mercury cornerstone mission,” Planetary and
Space Science, Vol. 49, No. 14-15, 2001, pp. 1409-1420.

[2] S.-i. Watanabe, Y. Tsuda, M. Yoshikawa, S. Tanaka, T. Saiki, and S. Nakazawa, ‘“Hayabusa2 mission
overview,” Space Science Reviews, Vol. 208, No. 1, 2017, pp. 3-16.

[3] M. D. Rayman, T. C. Fraschetti, C. A. Raymond, and C. T. Russell, “Dawn: A mission in development
for exploration of main belt asteroids Vesta and Ceres,” Acta Astronautica, Vol. 58, No. 11, 2006,
pp. 605-616.

[4] B.J. Wall and B. A. Conway, “Shape-based approach to low-thrust rendezvous trajectory design,” Jour-
nal of Guidance, Control, and Dynamics, Vol. 32, No. 1, 2009, pp. 95-101.

[5] Y.-h. Zhu and Y.-z. Luo, “Fast Evaluation of Low-Thrust Transfers via Deep Neural Networks,” arXiv
preprint arXiv:1902.03738, 2019.

[6] D.Izzo, C.I. Sprague, and D. V. Tailor, “Machine learning and evolutionary techniques in interplanetary
trajectory design,” Modeling and Optimization in Space Engineering, pp. 191-210, Springer, 2019.

23

(7]

(8]
(9]

C. Ampatzis and D. Izzo, “Machine learning techniques for approximation of objective functions in
trajectory optimisation,” Proceedings of the ijcai-09 workshop on artificial intelligence in space, 2009,
pp- 1-6.

J. A. Casey, A Methodology for Sequential Low Thrust Trajectory Optimization using Prediction Models
derived from machine learning techniques. PhD thesis, Georgia Institute of Technology, 2019.

H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Transfer learning for time series
classification,” 2018 IEEE International Conference on Big Data (Big Data), IEEE, 2018, pp. 1367-
1376.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural net-
works?,” Advances in neural information processing systems, 2014, pp. 3320-3328.

E. Safipour, “Trajectory optimization for a mission to neptune and triton,” Unpublished master’s thesis,
Delft University of Technology, 2007.

J. Sims, P. Finlayson, E. Rinderle, M. Vavrina, and T. Kowalkowski, “Implementation of a low-thrust
trajectory optimization algorithm for preliminary design,” AIAA/AAS Astrodynamics specialist confer-
ence and exhibit, 2006, p. 6746.

F. Topputo and C. Zhang, “Survey of direct transcription for low-thrust space trajectory optimization
with applications,” Abstract and Applied Analysis, Vol. 2014, Hindawi, 2014.

C. H. Yam, D. Izzo, and F. Biscani, “Towards a high fidelity direct transcription method for optimisation
of low-thrust trajectories,” arXiv preprint arXiv:1004.4539, 2010.

J. Englander, Automated trajectory planning for multiple-flyby interplanetary missions. PhD thesis,
University of Illinois at Urbana-Champaign, 2013.

C. Yam, D. Lorenzo, and D. Izzo, “Low-thrust trajectory design as a constrained global optimization
problem,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engi-
neering, Vol. 225, No. 11, 2011, pp. 1243-1251.

C. H. Yam, FE. Biscani, and D. Izzo, “Global optimization of low-thrust trajectories via impulsive Delta-
V transcription,” 27th International Symposium on Space Technology and Science, 2009.

Expert System, “What is Machine Learning? A definition,” https://expertsystem.com/
machine-learning—definition/. [Online; accessed 2020-04-15].

G. Ciaburro and B. Venkateswaran, Neural Networks with R: Smart models using CNN, RNN, deep
learning, and artificial intelligence principles. Packt Publishing Ltd, 2017.

A. Hoare, D. G. Regan, and D. P. Wilson, “Sampling and sensitivity analyses tools (SaSAT) for compu-
tational modelling,” Theoretical Biology and Medical Modelling, Vol. 5, No. 1, 2008, pp. 1-18.

Scikit Learn, “MinMaxScaler,” https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.MinMaxScaler.html. [Online accessed 2021-02-
13].

L. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization and momentum
in deep learning,” International conference on machine learning, PMLR, 2013, pp. 1139-1147.

G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning,” Coursera, video
lectures, Vol. 264, No. 1, 2012.

D. Masters and C. Luschi, “Revisiting small batch training for deep neural networks,” arXiv preprint
arXiv:1804.07612, 2018.

L. Lu, Y. Shin, Y. Su, and G. E. Karniadakis, “Dying relu and initialization: Theory and numerical
examples,” arXiv preprint arXiv:1903.06733, 2019.

24

Low Thrust Trajectories

This chapter provides further information about the dynamic model and the methods used to program it.

3.1. Propulsion model

The problem deals with low-thrust propulsion. Although there are many types of propulsion that provide
continuous thrust, electric propulsion will be used for this problem. The propulsion parameters are based on
Dawn’s mission from NASA and can be seen in Table 2.1. The goal of the mission is to visit Vesta and Ceres.
It was launched in 2007 and performed a Gravity Assist about Mars before arriving at Vesta. Dawn’s mission
around Vesta was carried out in 2011-2012 and has been orbiting Ceres since 2015 7).

3.2. Dynamic model
The description of the dynamic model using the Sims-Flanagan transcription method can be seen in subsec-
tion 2.2.1. However, some aspects of it will be described in more detail in this section.

An important assumption used for the problem is that the initial mass of the spacecraft is such that all the
fuel is consumed during the transfer. This means that the final mass of the spacecraft is its dry mass.

3.2.1. Keplerian propagation
The arc between two impulses can be propagated as a keplerian trajectory as no perturbations are taken into
account, which means that only the center body’s gravitation is acting on the spacecraft:

2=

% =— r—‘; F (3.1)
This propagation of the state has been done by using the relationship between the true anomaly, the eccentric
anomaly, and the mean anomaly, as seen in Figure 3.1. First of all, the position of the spacecraft within its
orbit is defined by the true anomaly (). Using geometric relationships, the angle with its projection on a
circumference of radius equal to the major axis is calculated, which is referred to as eccentric anomaly (E).
The mean anomaly is located in that same circumference and moves with constant angular velocity around
it. Therefore, the state of the spacecraft can be easily propagated in time using the mean anomaly, then
converting this angle to the eccentric anomaly and later to the true anomaly to find the propagated state of
the spacecraft in its orbit.

3.2.2. Application of impulses
At equal intervals of time, the impulses are applied. Those are added to the current velocity as a vector sum.
A simplified 2D representation can be seen in Figure 3.2.

The number of impulses has been chosen to a value of 11. The larger this value, the closer the approxima-

tion is to continuous thrust. However, for each impulse, the decision vector gets three values, which means
that increasing the number of inputs results in a larger computation time. As the number of elements in the

25

26 3. Low Thrust Trajectories

Figure 3.1: Relationship between true, eccentric and mean anomaly.

Figure 3.2: Application of an impulse.

decision vector increases, the search space also becomes larger, making it harder to find an optimum. Since
the goal of the problem is not to obtain a precise result, but a preliminary trajectory, increasing the number
of impulses is not considered necessary.

The legis divided into Nijmp+1 segments (as it is considered that no impulses are applied at the control nodes).
In order to simplify the problem, an odd number of impulses needs to be chosen to facilitate the comparison
at the middle point, or impulse (Nimp+1)/2.

3.2.3. Validation and verification

Since most of the code is self-implemented, it is necessary to know that the results obtained are correct. How-
ever, this is not a simple task as most papers show results without talking about the specific settings used to
solve the problem. Some tests can be done to verify that the algorithm is doing what is expected. But before
that, some tools that have been used also need validation.

Cartesian elements to Keplerian elements

This step is necessary to convert from the decision vector to the inputs of the neural network. Both the pro-
cedure and the validation are taken from Wertz’s Mission geometry: orbit and constellation design and man-
agement: spacecraft orbit and attitude systems 1*6'. In the following table, an example of cartesian elements to
keplerian is shown, which results match those displayed in the reference. Other examples have been tested,
also performing the contrary transformation (from keplerian to cartesian), which means that the procedure
is validated.

3.2. Dynamic model

27

Table 3.1: Cartesian to keplerian elements.

State

Keplerian elements

x=8751268.4691 m
y=-7041314.6869 m

7 = 4846546.9938 m

xdot =332.2601039 m/s
ydot =-2977.0815768 m/s
zdot = -4869.84622269 m/s

a=1.227308618 x 10’ m
e=5.022166694 x 1073
i=109.8187738°

Q =132.2336978°

w = 105.0667330°

M = 49.5880197°

Spacecraft-state propagation

For the Sims-Flanagan method, the segment between impulses is a keplerian trajectory. A simple verification
of the propagation between impulses can be done by setting the problem as a Hohmann transfer. Then, the
necessary velocity for the transfer at the origin and target planet can be calculated. Knowing the initial and
final state of the spacecraft and the time of flight, the Sims-Flanagan procedure can be applied as seen in sub-
section 3.2.1 by setting the impulses to zero. If the propagation algorithm is working, the difference between
the forward and the backward propagation of the trajectory at the middle point should be zero.

This test was performed, obtaining a difference of position and velocity as seen in Table 3.2.

Table 3.2: Values of the propagation with Hohmann transfer.

Ax (m)
—7.9346 x 1074

Az (m)
1.2398 x 10~°

Av; (m/s)
—5.4285 x 10712

Av, (m/s)
1.0550 x 10710

Ay (m)
-9.3079x 1074

Avy (m/s)
—7.6398 x 10711

These errors are clearly negligible, which is an indication that the propagation algorithm within the Sims-
Flanagan implementation is working.

Another test can be done using Lambert’s method. In this case, it is not a requirement that both planets
form a 180° angle. By obtaining the terminal velocity vectors of a feasible transfer, the propagation can be
performed using the created algorithm. As in the previous case, the errors at the middle point are shown in
Table 3.3. For this case, pykep.lambert_problem has been used and compared with a self-implemented
version of Lambert’s method.

Table 3.3: Propagation with Lambert transfer values.

Ax (m)
4.0436x1073

Az (m)
—-1.0490 x 107°

Av, (m/s)
3.7190 x 1071

Avy (m/s)
—-7.0577 x 10710

Ay (m)
5.5542 x 1073

Avy (m/s)
7.4215x 10710

As it can be observed, the errors are also negligible, implying that the Sims-Flanagan implementation is cor-
rect when the values of the impulses are set to zero.

Testing the implementation including impulses is not straightforward as there are not many examples avail-
able that include the value of those impulses. However, packages as pykep have an implementation of this
problem. By setting up the problem using both pykep.sims_flanagan % and the self-implemented algo-
rithm, the mismatch at the middle point can be compared. For the number of impulses that have been chosen
for the problem (11), the difference between the two methods showed to be large, but when increasing the
number of propagation points to 121, both methods showed a similar mismatch error. This means that the
method can be considered validated, although the results might vary depending on the number of propaga-
tion points chosen for the problem. A study case for a randomly-chosen decision vector is shown in Figures

28

3. Low Thrust Trajectories

3.3 and 3.4, and Table 3.4.

lell

lell

2.0

154

1.0+

0.5

y (m)

0.0 1

~1.04

~1.54

Figure 3.3: Trajectory obtained
pykep.sims_flanagan

—

T
-1 o] 1

sun

@ Earth

@ Mars

lell

with

x (m)

0

2
lell

Figure 3.4: Trajectory obtained with

self-implemented Sims-Flanagan method.

Table 3.4: Comparison of the mismatch at the middle point between the pykep method and the

self-implemented one

Ax (m) Ay (m) Az (m) Avy (m/s) Avy (m/s) Av, (m/s)
pykep 3.6185x 100 | —2.4352x 1010 | —5.1285x 10" | 1.0447 x 10* | 7.0146 x 10® | —1.0572 x 103
self implemented | 3.8552x 1010 | —2.2572x 1010 | -5.3721x10% | 1.0499 x 10* | 7.3841 x 103 | —1.0256 x 10°

Optimization process

In this chapter, further information about the optimization problem is provided.

4.1. Description of the problem

The detailed description of the problem can be seen in chapter 2.

4.2. Optimization Algorithm

The optimization process carried out to find the trajectory parameters for the lowest fuel consumption adher-
ing to the required constraints requires choosing an optimization algorithm that suits the problem definition
as described in 2.2.3. Therefore, different options are evaluated to justify the choice of algorithm.

¢ Evolutionary algorithms (EA): they are based on Darwin’s idea of evolution and natural selection. It is
based on the creation of a random population which fitness is evaluated. The best individuals "repro-
duce" creating a children population. The idea behind this methodology is that the combination of two
good individuals can yield a better one. Genetic algorithms are a common type of EA.

» Hill climbing: it is a method used for single-objective functions. In this case, the current optimum
solution is used to create a new state that will replace the previous one if it improves the objective.

e Simulated annealing: it is based on the metallurgy problem of annealing. In this case, the transition
between one state and the next one is based on its energy in such a way that lower energy of the new
state with respect to the previous one implies the acceptance of the new state, whereas larger energy
would imply using a probabilistic method 12!,

¢ Monotonic Basin Hopping: a variation of the hill climbing is the Monotonic Basin Hopping method
that has been used in some cases for trajectory optimization and can be used to obtain a solution for a
single objective problem that is subjected to certain constraints.

As seen in subsection 2.2.4, the Monotonic Basin Hopping method has been chosen for the problem.

4.2.1. Monotonic Basin Hopping

The Monotonic Basin Hopping method is based on the perturbation of some initial conditions in order to
obtain the global minimum of a function. The acceptance of the initial conditions depends on the Metropolis
acceptance rule, which compares the function obtained for a certain case with the desired distribution 2],
The method is based on the Monte-Carlo algorithm, which includes a local minimization procedure each
time the initial vector is perturbed. At the end of that minimization, the perturbation is accepted or neglected
depending on the value of the function. If the perturbation is neglected, the algorithm goes back to the
previous point to begin a new search. Since the algorithm is a random search, the solution obtained cannot
be assumed to be a global minimum but only the best solution found.

29

30 4. Optimization process

A more detailed description of the precise implementation is found in subsection 2.2.4. The following pseudo-
code is included to provide a more clear view.

Algorithm 1: Monotonic Basin Hopping

Create random set of initial values

while iteration < max number iterations do
calculate objective function for each individual

locally optimize each individual

if local min outside limits then
| discard value

else
| accept value for next step
end
if local min < best minimum then
if Machine Learning surrogate is used then
| perform local optimization to verify result
else

end

current min becomes best min

current individual becomes the reference for jump

jump = small jump

else

if number iterations without success = limit then
| jump = big jump

else
| number iterations without success += 1

end

end

random jump

check if new point is within limits

end

4.2.2. Local Optimization

After deciding to use the Monotonic Basin Hopping algorithm for Python, the next step is choosing the
method used for the local minimization. The scipy. optimize library contains multiple minimization meth-
ods that can be used. Among them, SLSQP, or "Sequential Least-Squares Programming" is chosen for the
problem as it is able to perform multi-variable, constrained optimization for nonlinear problems. Further
information about the method can be found in pyOpt 1%,

4.2.3. Validation and Verification

Verification
In order to validate the optimization methods used, two commonly-used functions are tested 27,

Booth function:

f, 1) = (x+2y=7%+@2x+y~5%— fomin=f(1,3) =0, (4.1)

Matyas function:

f(x,9) =0.26(x* + ¥*) = 0.48xy — finin = f(0,0)=0 (4.2)

both optimized between -10 and 10.

When using the local optimization and the self-implemented Monotonic Basin Hopping, the results displayed
in Table 4.1 show that the optimization methods reach the real solution. Therefore, the optimization methods
are considered validated.

4.2. Optimization Algorithm 31

Table 4.1: Validation of optimization methods.

Method Settings Booth function Matyas function
Local Optimization tolerance = 0.01 | Real: Real:
scipy.optimize.minimize x0 = (4,5) f(1,3) =0 £(0,0)=0
SLSQP Calculated: Calculated:
(1.0, 3.0) = 7.2925e-17 | f(0.0349,-0.0590)= 0.0022
Monotonic Basin Hopping iterations =5 Real: Real:
Batch version individuals = 2 f(1,3) =0 £(0,0)=0
local optimization settings as above | x0 = ([4,5],[5,3]) | Calculated: Calculated:
f(1.0, 3.0) =9.6873e-17 | (0,0)=1.6772e-09

Validation

A simple validation of the algorithm consists of observing the convergence plot of the optimization and find-
ing if the minimum value is reduced as the number of iterations increases. By testing that the resulting values
of the decision vector produce a good result when being evaluated independently of the optimization, it can
be said that the optimization algorithm is working adequately.

A simple example of optimization has been performed with MBH, 100 individuals and 30 iterations. The tol-
erance of the local optimization is 0.01 and the small and big jump magnitudes are 0.01 and 0.5 respectively.

—e8— Optimization

10°

Current Minimum

10714

T
o] 5 10 15 20 25 30
Iteration

Figure 4.1: Optimization convergence with the number of iterations.

As it can be seen in Figures 4.1 and 4.2, the optimization reduces the value of the objective function and, as
it is expected, it becomes harder to find a new minimum as the value is reduced. In addition to this, the final
trajectory obtained with the outputs of the optimization is observed to be much better than the ones that can
be found with random input values. Therefore, it can be said that the optimization algorithm is working as
expected.

4.2.4. Optimization parameters

It was explained in subsection 2.2.3, the objective function is formed by three terms weighted by coefficients
1, ¢2, and c3. Depending on those coefficients, the optimization will achieve different values. As seen in
Figure 4.3, increasing ¢, implies increasing the weight of the mismatch in position term, which implies that
the optimization will minimize that term before the others. It is necessary to find a balance between those
terms so that the optimization leads to a feasible trajectory (lower-left corner of the plot). The final values
chosen for those coefficients are: ¢; = 0.1, ¢, =100, and c3 = 1.

32 4. Optimization process

Error in position: 3.27E+08 m
Error in velocity: 2.78E+01 m/s

o0
m
)
=
=
=3

lell

Figure 4.2: 3D optimal trajectory found after optimization.

Distribution of errors

105 4

,,_.

o
S
L

103 4

Error in velocity (m/s)

102 4

10! 4

U aWN e o

T T T T
108 107 108 10? 1010 1011
Error in position (m)

Figure 4.3: Results of the mismatch in position and velocity depending on the value of the ¢, with respect to
c1 =1 and c3 = 1. The values of ¢, between 0 and 5 in the plot correspond to 1, 2, 5, 10, 50 and 100
respectively.

Once the objective function has been chosen, the algorithm parameters need to be setup. The most impor-
tant ones are the maximum number of iterations and the number of initial random samples. However, it is
also important to choose the magnitude of the jumps and tolerances of the local and global optimization.

The number of iterations will determine how much of the search space has been explored, implying that a
low number of iterations results in sub-optimal results. However, this problem is mitigated with the imple-
mentation of the algorithm using different individuals that evolve in parallel since those are created to be
uniformly distributed in space using a latin hypercube (explained in subsection 5.1.1), and those study their
local environment before jumping to a new point. Therefore, the number of iterations can be set to a lower
value as long as the number of individuals is large enough.

The jumps are calculated from the current point:
Xj = x; + m-random uniform(lower limit = x; — x;, upper limit = xy — x;) (4.3)

with m being the magnitude of the jump, x; and xy the lower and upper limits respectively for each variable
of the decision vector, and x; and x; the initial and final values of the decision vector respectively. The mag-

4.3. Inclusion of the Machine Learning surrogate 33

nitude of the jump can have two different values that are chosen as part of the settings of the algorithm and
are used for when a small jump is needed and for a large one once the local search has not been successful
(maximum number of iterations without success is reached).

Table 4.2: Settings of the optimization problem.

Maximum number of iterations 100
Number of individuals 20 or 1,000
Number of iterations without success | 10

Local tolerance 0.01

Small jump magnitude 0.01

Big jump magnitude 0.5

In Table 4.3, the limits used for the decision vector are displayed. Those were chosen around the values
achieved by Englander et al. ¥ and shown in Figure 4.4.

Table 4.3: Limits of the decision vector.

Variable Lower bound | Upper bound
| Dol 0m/s 3400 m/s
0y, 0 rad 2mrad
Yo Orad 2m rad
Ii/'fl 0m/s 3400 m/s
0, / Orad 27 rad
Yoy Orad 2m rad
tp (from a chosen starting date) 0JDO 1000 JDO
t; 200 days 1500 days
IAVI (times the maximum value) 0 1
Oav Orad 27 rad
Yav Orad 27 rad
Table 10 Itinerary for the optimal main-belt rendezvous mission
Date Event Location Cs, Flyby Mass,
km?/s? altitude, km kg
16 June 2022 Launch Earth 115 —_— 24814
5 Feb. 2025 Unpowered Mars 18.6 300 2358.7
flyby
9 Aug. 2027 Low-thrust 4 Vesta — — —_— 1946.8
rendezvous
8 Aug. 2028 Departure 4 Vesta — — —_— 1921.8
26 Dec. 2031 Low-thrust 1 Ceres — — —_— 1592.8
rendezvous

Figure 4.4: Itinerary for the optimal main-belt rendezvous mission!®.

4.3. Inclusion of the Machine Learning surrogate

The Monotonic Basin Hopping algorithm is in essence sequential. However, substituting the objective-function
calculation with the Machine Learning algorithm requires parallel evaluation. In order to solve that problem,
multiple initial random samples of the decision vector are chosen instead of one. Those are evaluated in par-
allel and later local optimization is applied to each of those. That local optimization will later be substituted
by the Artificial Neural Network.

In addition to that, once the local optimization has been substituted with the ANN, a verification is applied
when the network predicts a new minimum. This way, it is ensured that the final best value is the one that

34 4. Optimization process

would be obtained with the local optimization and not an incorrect value derived from an error in the pre-
diction of the network.

Machine Learning surrogate

This chapter gives a more in-depth description of some of the topics related to Machine Learning that were
described in section 2.3 and section 2.4.

5.1. Database Analysis

Creating a Machine Learning algorithm that predicts the results with a low error requires analyzing the search
space and creating a database that is well distributed and representative. Therefore, this section deals with
the different experiments that were done around the creation of the database.

5.1.1. Database creation methods
Each of the two networks to train requires a different training database:

* For the calculation of the objective function a decision vector is converted to the inputs of the network
and the value of the objective function is saved to be used as the training labels.

* For the calculation of the objective function of the local optimum: an initialization using a Latin Hy-
percube creates a set of decision vectors that are evaluated to find the objective function. Then, local
optimization is applied (SLSQP tol = 0.01) with the same objective function as the global optimization
process. Therefore, an input is related to the objective function of its local optimum, not itself.

All the databases have been created using a Latin Hypercube to select the input values. It has been used with
the Python package, pyDOE.1hs 4], As said in Hoare et al. [, "In Latin Hypercube sampling, a value is
chosen once and only once from every interval of every parameter (it is efficient and adequately samples the
entire parameter space)". A simple schematic of the random samples obtained is shown in Figure 5.1.

Figure 5.1: Simple representation of Latin Hypercube sample distribution 14!,

5.1.2. Input selection
The outputs of the neural network are those necessary for the optimization problem, but the inputs need to
be selected to achieve the best performing network.

The Sims-Flanagan algorithm takes a decision vector and obtains the values of the objective function as an
output. However, it might be convenient to choose a set of inputs different than the decision vector. The

35

36 5. Machine Learning surrogate

reason for this lies especially in the fact that the decision vector is formed by a large number of elements,
which increases as the number of impulses does. Since it is not beneficial to have a neural network with such
a large input layer, especially due to the limitation in the number of training samples available, a different
representation of the trajectory needs to be found. In addition to this, finding a representation that is valid
independently of the chosen number of impulses allows for further generalization of the use of the network.
Three alternatives have been studied:

* Keplerian elements of the origin and target planets. The inputs of the network are the transfer time, the
initial mass of the spacecraft, the absolute value of the difference in semi-major axis of the trajectories
of the planets, the absolute value of the difference in eccentricity of the trajectories of the planets,
the cosine of the difference in inclinations, the difference in Right Ascension of the Ascending Node
(RAAN), the difference in argument of the periapsis, and the difference in true anomaly.

I=1[t;,mgp,|Aal,|Ae|,cos(Ai),AQ,Aw,A0]

The disadvantage with this set of inputs is that the velocity of the spacecraft at launch and arrival is not
represented in the inputs. Therefore, the results are expected to be worse than if that was represented.

¢ Keplerian elements of the spacecraft at initial and final points. The inputs are the same as in the previ-
ous case, but instead of using the Keplerian elements of the relevant planets, the Keplerian elements of
the spacecraft at the initial and final points are used. This solves the problem previously mentioned of
the velocity of the spacecraft not being represented.

¢ Cartesian differences of the initial and final state of the spacecraft. The inputs are the transfer time, the
initial mass of the spacecraft, and six elements with the difference in position and velocity between the
initial and final state for each of the three dimensions.

I'=[t;,mg,|Ax|,[Ayl, 1Az, |Avy],|Avyl,|Avg]]

The comparison is done by repeating the training of the network three times. A network of 5 hidden layers
and 350 neurons is trained for 300 epochs, the validation and train loss being represented in Figure 5.2. It
is observed that the losses are the lowest when using the difference in Keplerian elements of the spacecraft.
Therefore, those are chosen for the problem.

Mean Squared Error for different types of inputs

4 Train loss
0.012 - Validation loss A

0.011 A

0.010

0.009 -

Loss (MSE)

0.008

0.007 -

0.006 -

0.005 - A

cartesian deltakeplerian deltakeplerian_planet
Figure 5.2: Comparison of the loss for different types of inputs.

The idea when choosing the inputs is that each element of the decision vector is properly represented in the
inputs. This can be seen for example with the second case of the previous list:

* fp: this element of the decision vector is used to determine the position and velocity of the planets
using this epoch. Therefore, the Keplerian elements already contain the information of the position of
the planets.

5.2. Method selection 37

* 1;: the transfer time is directly used in the inputs.

* T and 7;: the velocity of the spacecraft is also included in the inputs in the Keplerian elements of the
spacecraft.

 AV: the decision vector contains information of the magnitude and direction of each impulse. There-
fore, it is hard to find a representation of these elements without adding too many elements. An easy
way to represent it is using the initial mass of the spacecraft my, as it indicates how much mass of fuel
is used.

5.1.3. Normalization and Standardization
Artificial Neural Networks normally perform better when the inputs and outputs have been processed by
using normalization or standardization. It was determined in subsection 2.3.1 that normalization was not
necessary. Therefore, the data was scaled by converting the different values to be within 0 and 1:
X — Xpi
y= min , (5.1)
Xmax — Xmin

where x is the unscaled value and x;,,;,, Xmax are the lower and upper limits, in this case 0 and 1 respectively.
This is done in the problem using sklearn.preprocessing.MinMaxScaler!??,

5.2. Method selection

Depending on the purpose, different Machine Learning algorithms can be used. In the following list, some of
the more relevant for the problem are introduced according to Sunil Ray!'® to provide a background of the
alternatives to ANNSs.

» Linear Regression: estimates real values based on continuous variables. It fits a regression line, which
is the best line. It can be of mainly two types: Simple Linear Regression or Multiple Linear Regression
depending on the number of independent variables. In case that the best fitting line is a polynomial or
curve, then the algorithm is called polynomial or curvilinear regression, respectively.

¢ Logistic Regression: classification algorithm used to estimate discrete values based on a given set of
independent variables. It predicts the probability of occurrence of an event by fitting data to a logistic
function. The output is a number between 0 and 1.

* Decision Tree: supervised learning algorithm used mostly for the purpose of classification. It can work
for categorical and continuous dependent variables by splitting the population into two or more ho-
mogeneous sets based on the most significant attributes (independent variables).

» Support Vector Machine: used for regression and classification. By giving the algorithm a set of labeled
training data for each category, the support vector machine outputs the hyperplane that best separates
the categories. The best hyperplane is one that maximizes the distance to the nearest element of each
category 13,

¢ Random Forest: collection of decision trees assembled.

* Gradient Boosting Algorithms: used to make a prediction when plenty of data is available. It combines
multiple weak or average estimators to build a stronger estimator.

* Artificial Neural Networks: they are brain-inspired systems consisting of multiple units organized in
layers. They are used for finding patterns, classification or prediction of datal®!.

Artificial Neural Networks have successfully been used in this kind of problem before. An example is seen
in Casey’s thesis for Low Thrust Trajectory Optimization !, where different Machine Learning methods are
compared, and in Zhu et al. '?® use of Deep Neural Networks. Artificial Neural Networks represent many
advantages that make them suitable for this problem. For example, they store information on the entire
network instead of in a database, they can work with insufficient knowledge, and they can process in parallel,
which speeds up the problem ®.

38 5. Machine Learning surrogate

5.3. Model architecture and training process

In this section, further information about the choice of architecture and training parameters of the network
is provided to complement the basic choices explained in subsection 2.3.2.

5.3.1. Optimization algorithm

For this study, the Adam optimization algorithm has been chosen as it has become a popular method for deep
learning). It is used instead of classical stochastic gradient descent to update the weights of the network dur-
ing the training process. According to its creators (Kingma et al.) '), it is computationally efficient, requires
little memory, and the hyperparameters have intuitive interpretation and require little tuning, among others.

Although a formal study for the comparison of different optimization methods has not been performed, it
was observed that when using other optimization algorithms such as SGD (Stochastic Gradient Descent), the
convergence was extremely slow and likely to get stuck in sub-optimum values.

5.3.2. Activation function and weight initialization

An activation function (f) takes a single number and performs a certain fixed mathematical operation of
it. Its purpose is to introduce non-linearity into the output of a neuron so that they can learn non-linear
behaviors, which are the most common ones in real-world data. There are many activation functions that
can be used for regression problems such as linear function, sigmoidal function, tanh, ReLU... however, as
said in subsection 2.3.2, the ReLU function is chosen for the hidden layers and the linear function for the
output layers. The Rectified Linear Unit (ReLU): takes a real-valued input and thresholds it at zero, which
means that all the negative values are replaced with 0.

y = f(x) = max(0, x) (5.2)
In the linear activation function, the output is the same as the input.
y=fx)=x (5.3)

The weight initialization has to be chosen depending on the activation function. That is the reason why in
subsection 2.3.2, the He weight initialization is chosen. This method is similar to Xavier initialization multi-
plied by 2 [10;

2
owi)=— (5.4)

Sin

with s;,, being the size of the input units in the weight tensor.

5.3.3. Loss function

The loss function is used to evaluate the predicted value with respect to the actual one during the training
process. For regression problems, it is common to use the Mean Absolute Error or the Mean Squared Error.
The last represents the sum of the squared distances between the target variable and the predicted values:

Mean Squared Error: MSE =

L iy (y;_ - (5.5)

N yi=y7)
n

Mean Absolute Error: MAE = (5.6)

where y and yP? represent the real and predicted values and 7 is the number of samples.

The MAE is more robust to outliers, whereas the MSE is easier to solve [©!, This means that the MSE gives more
weight to outliers, which is actually beneficial for this study case. Both of them have been tested showing
analogous behaviors and resulting in trained networks with similar performance, so the MSE has been used
for the training process.

5.4. Model validation 39

5.3.4. Comparison of architectures and training parameters

In order to make this algorithm predict the correct value for the given problem, it is necessary to find the right
values of the different hyperparameters. The two main hyperparameters that define the topology of the net-
work are the number of layers and the number of nodes in each hidden layer. Those and training parameters
such as the number of epochs and the learning rate will determine the quality of the network. The procedure
to optimize the network used here consists of using an Evolutionary Algorithm (EA) adapted to allow inte-
ger values in certain variables. In that optimization, the inputs are the different settings: number of hidden
layers, neurons per layer, epochs, and the learning rate. The objective function is the validation loss at the
last epoch. This is an extremely computationally expensive problem since each fitness calculation implies
training a network. Therefore, the number of individuals and iterations is not as large as it would be ideal but
is good enough to give an initial idea of the performance. In Figure 5.3, an optimum-fitness network has been
input to the EA to evaluate the performance of the network with different hyperparameters. It can be seen
that similar values can be achieved with different combinations of settings. However, this representation is
incomplete, as it does not provide information on the overfitting or training loss of the network. Therefore,
the best combination found with the EA is used as an initial starting point to evaluate the performance of the
network.

From the starting architecture and settings, in order to know if the network is overfitting or underfitting, its
capacity is increased. When doing that, the network is more likely to overfit. Performing a trial and error
search from the initial guess provided by the EA optimization, the final network is formed by 5 hidden layers,
350 neurons per hidden layer, a learning rate of 6x10°%, and 300 epochs.

5.3.5. Additional hyperparameters
Although tools such as dropout, Gaussian noise, and L2 regularization were tested, they did not show an
improvement in the results. Hence, those were not included in the training of the networks.

5.3.6. Number of training samples

The number of training samples determines the performance of the model. As seen in Figure 2.8, the number
of samples for the evaluation network is chosen using Figure 2.8 and the number of samples of the local-
optimum network is set to the total one of the created database.

The network is not trained with the full database but it is divided into test data and train data. The test data
is not involved in the training process, which allows the validation of the final trained network. The test data
is normally set to 20% of the total size of the database. The train data will be subdivided into train data and
validation data, which will be used during the training process to evaluate the fit of the network i.e., if the
network is overfitting or underfitting. This value is also set to 20%.

The process of passing an input to the network and updating the weights is called an epoch or training cycle.
It is a full run of the feed-forward and backpropagation. Full-batch learning consists of calculating the true
gradient by computing the gradient value of each training case independently and then summing the resul-
tant vectors together. Mini-batch descent consists of splitting the training database into batches to calculate
the error of the model and update the weights consequently. The size of the batch affects the training process,
which means that it has to be chosen taking into account the characteristics of the problem. Using full-batch
descent means that the training will be more computationally efficient as fewer model updates have to be
performed. In addition to this, the error gradient is more stable, which can lead to a more stable conver-
gence, although this can also result in premature convergence leading to a sub-optimal set of parameters 9.
Due to this inconvenience, mini-batch training has been chosen since, despite taking a longer time to train,
the risk of ending up with a sub-optimal network is reduced. A trade-off between full-batch training and the
default batch size of 32 is found for the value of 500. This value has been found through trial and error but
allows for faster training while conserving the advantages of mini-batch training.

5.4. Model validation

The code created for the Artificial Neural Network model has to be validated. Since every problem is different,
the best method to validate the model creation and training code is taking an existing database and seeing if
the networks achieve the same results. Since the packages used are standard for Machine Learning in Python,

40

5. Machine Learning surrogate

Optimization
Regression Network

[o
42 %1073 42x1073
4x1073 4x1073
w @
@ @
° °
S 38x10°2 = = S 38x107{ x + n
= "
3 a ® |z b4
)]
7 36%x 107 L Z 36x 107 n
A 7
EN R . ¥ H
x x
3 . 3 o
3.4% 10 - * . 3.4% 10 . * i
m n
T T u T T T T T T T T T
0 500 1000 1500 2000 2 3 4 5 6 7 8
Computation time (s) Hidden layers
L] L]
42x1073 4.2 x1073
4x10°3 4x1073
w 0
@ @
k] k=]
§ 38x1071 x + L] § 38x107] + X @
£ 2 - i ‘
]]
Z 36%10°? L] Z 36x107{ ®
P % " 2 a N
+ 5 +
e ® [}
-3 -3
3.4x10 . ax 3.4x10 » x a
[] []
200 300 400 500 600 700 100 200 300 400 500 600
Neurons per layer Epochs
Hidden layers: 4 L]
42x1073 Neurons per layer: 136
x Epochs: 88
Initial learning rate: 1.15E-03
4x1073
@
L
§ 38x10731 + = x
g . i
]
>
3.6x10731 ®
2 a -
® ° +
-3
3.4x 10 N x R
]
0.002 0.004 0.006 0.008 0.010

Initial learning rate

Figure 5.3: Loss value for different combinations of hyperparameters found using an Evolutionary
Algorithm.

5.5. Transfer learning 41

it is not expected to find major problems, so a simple validation is considered sufficient.

An example is found in TensorFlow for basic regression to predict fuel efficiency ?3!. Downloading the
database and pre-processing it as in the example, it is possible to see if the result obtained with their model is
the same as with the model used for the project. The model has two hidden layers and 64 neurons per layer.
The optimization algorithm used in the reference is RMSprop instead of Adam, but the training result is not
expected to be radically affected by it.

The result of the training (displaying the Mean Squared Error) is shown in Figure 5.4 for the reference model
and in Figure 5.6 for the model created for this project. Similarly, the predicted values with the baseline model
(Figure 5.5) and the created model (Figure 5.7) are also displayed. It can be seen how the results are extremely
similar, which means that the model is considered validated.

—— Train Error
175 Val Error

Mean Square Error [MPG?]
Predictions [MPG]

T T r T T r 0 T T
0 200 400 600 800 1000 0 10 20 30 40
Epoch Tue Values [MPG]

Figure 5.4: TralnlnIgnkcl)l(sitecl)ﬁgS]for the TensorFlow Figure 5.5: Prediction of the test database for the

TensorFlow model 23

Model loss

—— train
validation
20 -
40 4 L) ®
[(]
Train loss = 2.396740e+00
Validation loss = 1.037672e+01 .

15 - o0 oo

T 30 .

2 eo”’

g 2 (2

10 1 s o oo,

E 20 " *e

[
5 .
10 1
0-\ T T T T T
0 200 400 600 800 1000 ° o 10 20 30 20
epoch True Values [MPG]
Figure 5.6: Training history for the model Figure 5.7: Prediction of the test database for the
created. model created.

5.5. Transfer learning

Transfer learning (TL) consists of using the information from a previously trained network, such as the weights
or the biases, for the training process of a new one. When a model is trained on a database, it can be expected
to perform well on a network that performs the same task. The main elements in TL are the following ['8!:

¢ Source: pre-trained model.
¢ Target: new model that aims to use the source information.

¢ Domain (2): where the data comes from. It consists of a feature space (%) and a marginal probability
distribution (P(X)) over &, where X = x1,..., X, € Z. The domain is then described as 9 = {&, P(X)}.

42 5. Machine Learning surrogate

¢ Task (9): objective that the model is aimed to perform. The task consists of a label space (%) and a
conditional probability distribution P(Y|X) that is normally learned from the training data consisting
of pairs x; e Xand y; € Y.

Given a source domain s, a corresponding source task g and a target domain and task (27 and 97 re-
spectively), the objective of transfer learning is to enable the learning of the target conditional probability
distribution P(Y7|X7) in 21 with the information obtained from the source domain and task where 95 # 21
orIs#Ir.

There are many transfer learning techniques that can be used depending on the source and target domain
and task but the most simple case of TL consists of substituting the random weight initialization with the
weights obtained from a previously trained network. This is referred to as pre-training and can improve the
performance of the target network.

Conclusions

After describing the problem and the results obtained, the research objective and the different research ques-
tions presented in section 1.1 will be discussed. Additionally, some recommendations for future work will be
presented.

6.1. Research objective

The goal of the proposed work was to study the use of Artificial Neural Networks to improve the efficiency of an
optimization problem that deals with interplanetary trajectories for a spacecraft that is propelled using low-
thrust. Therefore, the goal was creating a method that constitutes an improvement over the current ones.

In this thesis, a method was created combining the use of the Sims-Flanagan transcription method and the
Monotonic Basin Hopping (MBH) optimization algorithm. This optimization algorithm was adapted for its
use with a Machine Learning (ML) surrogate that helps it without creating fake optimum values. In order to
create that surrogate, two different Artificial Neural Networks (ANNs) were created to predict the value of the
objective function -mass of fuel and feasibility- (E-ANN) and the value of the objective function of the local
optimum (LO-ANN), using the first one to pre-train the second one.

Regarding the different research questions:

¢ How can the Artificial Neural Network be set up so that it is able to predict the different terms that form
the objective function that is derived from the Sims-Flanagan transcription?
In contrast to many similar problems that use a surrogate to predict the mass of fuel consumed, the
Artificial Neural Network was set up to predict both the mass of fuel consumed and the mismatches
in position and velocity at the matching point. It was observed that predicting the mismatches with
low error was more challenging than predicting the mass of fuel consumed, which means that more
training samples would be necessary to achieve an accurate network.

— How many samples are needed to obtain the required accuracy?

For the local-optimization network, it was observed that even with a large number of samples
(60,000) it was not able to accurately predict the values of the mismatches. Similarly, for the eval-
uation network, a study was conducted to compare the performance of the network trained with
databases ranging from 5,000 to 200,000 samples. It was observed that the larger the number of
samples, the better the loss that could be achieved, although this improvement became asymp-
totic with the increase in the size of the database. Therefore, it was concluded that a larger number
of samples than the one used would still be helpful to improve the performance of the ANN.

— What is the best type of inputs for this study?
Three different types of inputs were tested: Keplerian elements of the departure and arrival planet,
Keplerian elements of the spacecraft at departure and arrival, and the cartesian elements of the
spacecraft at departure and arrival. Among those, the difference in Keplerian elements of the

43

44

6. Conclusions

spacecraft at the origin and target planet was able to achieve the best values of training and valida-
tion loss. However, all of them showed low correlation between the inputs and the outputs, which
might have been detrimental to the network’s accuracy in the prediction of the mismatches.

— What is the size of the network that best fits the data?
The two networks created (E-ANN and LO-ANN) consist of a different number of training sam-
ples, which means that they would need different architectures to perfectly fit the data. However,
for the purpose of studying pre-training, both of them had to use the same network size.

An Evolutionary Algorithm was used to optimize the choice of four hyperparameters: the num-
ber of hidden layers, the number of neurons per layer, the number of epochs, and the learning
rate. This optimization resulted to be too computationally expensive, which implied using a lower
number of individuals and iterations than it would be necessary for convergence to a good mini-
mum. Therefore, the result of this optimization was used as a starting point for the choice of the
architecture. By studying different combinations of those hyperparameters with a variable num-
ber of training samples, it was concluded that a network with five hidden layers and 350 neurons
trained for 300 epochs represented a good trade-off for both networks.

— What other hyperparameters need to be modified?
Other parameters like the learning rate decay are important to improve the performance of the
network and avoid unwanted behaviors like oscillations. After a trial-and-error comparison, a
value of 10" was chosen. The weight initialization proved to be extremely relevant as it needs to
be chosen depending on the activation function. As the activation function chosen was ReLU,
the best option was the He normal weight initialization. Hyperparameters such as dropout and
Gaussian noise were tested but not considered necessary for the final network.

— What is the accuracy that can be achieved in the prediction of the different outputs of the Artificial
Neural Network?
With the training databases and architectures mentioned above, the error in prediction of the
mass of fuel was accurate in most cases, as the maximum error is in the order of 10! kg, whereas
the error in prediction in the mismatches is large in many cases (two orders of magnitude). These
errors in prediction were lower for the models that were pre-trained.

* What is the effect of using a trained Artificial Neural Network as a pre-trained model for another one?
The E-ANN was used as a pre-trained model for the LO-ANN, as the generation of the number of train-
ing samples is faster for the first one than for the second one. It was observed that using a pre-trained
model, even if it was a poor one (one that has not been completely fitted to the problem) improved the
value of the training and validation loss without the need to increase the number of training samples.

— What are the extrapolation capabilities of the trained network?

In order to test the limits of the trained networks predicting values for problems that are slightly
different than the one they were trained for, two main tests were performed: the first one was
predicting an output using an input that is outside the bounds chosen for the decision vector. It
was observed that the furthest the inputs were from those the network had been trained with, the
worse the predictions obtained were. However, as the network was not completely fitted (the er-
rors in prediction were still large), it was shown that, if the difference between the new case and
the previous one was not large, the difference in accuracy with respect to the basic case was also
not remarkable.

Similarly, the network was tested to predict the objective function of different missions. Since the
network was trained for a transfer from the Earth to Mars, it could predict relatively accurately the
outputs for missions to Venus and from Mars to the Earth. Nevertheless, it performed poorly in a
mission to Jupiter, as it implies using very different bounds for the decision vector, which leads to
inputs that are much different from the ones the network has been trained with.

— Does the quality of the pre-trained model affect the improvement in the performance of the net-
work?
The LO-ANN was pre-trained using an E-ANN that had been trained with different numbers of
samples. It was observed that not only using a pre-trained model improved the performance of

6.2. Future work 45

the network, but also that using a more refined pre-trained model was beneficial. However, as in
the case of the study of the training samples, it was seen that improving the loss requires progres-
sively more effort. In addition to that, it was observed that using a more refined pre-trained model
also meant that overfitting was reached at an earlier iteration.

These results are extremely encouraging as they imply that pre-training using a network that is
easier or faster to train can be used as an alternative to a larger number of samples, being espe-
cially beneficial for this problem set-up.

e Can a trained surrogate be used to improve the efficiency of the optimization by substituting the local
optimization part of the global optimization algorithm?
An Artificial Neural Network was used in the MBH optimization as a surrogate to replace the com-
putation of the local optimum by predicting the three terms that form the objective function. The
optimization process was then performed for three different cases: a baseline without a ML surrogate
with 20 individuals, a case with the ML surrogate with 20 individuals, and a case with ML surrogate
and 1,000 individuals. It is observed that when using the ML surrogate (even with only 20 individuals)
there was a visible reduction in computation time, whereas the final optimum obtained was different
by only an 8.7%. When increasing the number of individuals to 1,000 for the case with the ML surro-
gate, the improvement in computation time is even larger and the optimum found better. Therefore, it
can be concluded that the use of ML surrogates is extremely beneficial for the optimization procedure,
although in order to refine the optimization process (by increasing the number of iterations) it would
be necessary to improve the accuracy of the surrogate.

In summary, the combination of techniques used to solve this problem can be considered successful, as an
improvement in the final optimization process was achieved. By adapting the optimization algorithm to the
use of a surrogate that is compatible with the Sims-Flanagan implementation, the computation time needed
for the optimization was reduced while achieving a similar, or even better, final value.

6.2. Future work

The results obtained, although preliminary in many cases, are encouraging for this type of problem. There-
fore, it is interesting to mention some recommendations for future work.

Computational resources

One of the main limitations of this study was derived from the computational resources available. First of
all, the optimization of the network hyperparameters can be dealt with efficiently using an Evolutionary Al-
gorithm (as it was done here) with enough individuals and iterations, but evaluating the fitness of each indi-
vidual is a long process as it implies training one ANN. Secondly, the creation of the database requires more
computation time as the number of samples is increased, limiting the performance that the networks can
achieve. It was concluded that more samples would be necessary to improve the performance of the ANNS,
which means that improving the computational resources would lead to better results.

A possible solution is the use of parallel computing, as in the case of Graphic Processing Units (GPUs). As
Artificial Neural Networks are already prepared for their use in parallel, it would not be necessary to perform
large changes in the methodology.

Types of inputs to the ANN

In this study, different types of inputs were tested, and the ones with the largest correlation values were cho-
sen to train the network. However, finding a set of inputs that has larger correlation values could be beneficial
to improve the performance of the network, as this might be a reason for the asymptotic behavior observed
for the loss when increasing the number of training samples.

Pre-training
Regarding the study of the pre-training, the results obtained are extremely encouraging to open new stud-
ies surrounding this technique or even more complex transfer learning techniques. It was observed that the

46 6. Conclusions

model improved more with a sophisticated pre-trained model, but also tended to overfit earlier in the train-
ing process. Although this behavior can be partly attributed to the architecture of the network, it would be
interesting to carry out further studies to get a more in-depth understanding of the effects of pre-training on
a network performing a different task.

Mission

The problem deals with is a single transfer from the Earth to Mars. The next step would be including gravity
assists for the optimization of Multi-Gravity Assist Trajectories. The results obtained in this work can be useful
for this problem, as the use of pre-training could be applied for the different legs of the transfer. By studying
the extrapolation capabilities of the network, it was observed that the ANN did not perform well for missions
(or limits) that are far from those it was trained with. However, the positive results obtained with transfer
learning techniques are encouraging to test the effect of pre-training on different missions, which could lead
to a decrease in the requirements for the database size.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

List of References

Jason Brownlee. Gentle introduction to the adam optimization algorithm for deep learning. https:
//machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/. [On-
line accessed 2021-02-12].

John Alexander Casey. A Methodology for Sequential Low Thrust Trajectory Optimization using Prediction
Modlels derived from machine learning techniques. PhD thesis, Georgia Institute of Technology, 2019.

Giuseppe Ciaburro and Balaji Venkateswaran. Neural Networks with R: Smart models using CNN, RNN,
deep learning, and artificial intelligence principles. Packt Publishing Ltd, 2017.

Jacob A Englander and Bruce A Conway. Automated solution of the low-thrust interplanetary trajectory
problem. Journal of Guidance, Control, and Dynamics, 40(1):15-27, 2017.

European Space Agency. The simsflanagan module. https://esa.github.io/pykep/
documentation/simsflanagan.html. [Online; accessed 2021-01-31].

Prince Grover. 5 regression loss functions all machine learners should know. https:
//heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-
know-4£fb140e9d4b0, 2018.

Alexander Hoare, David G Regan, and David P Wilson. Sampling and sensitivity analyses tools (sasat) for
computational modelling. Theoretical Biology and Medical Modelling, 5(1):1-18, 2008.

Muhammad Imran. Advantages of neural networks - benefits of ai and deep learning. https://www.
folio3.ai/blog/advantages-of-neural-networks/. [Online; accessed 2020-05-10].

Brownlee Jason. A gentle introduction to mini-batch gradient descent and how to configure batch
size. https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-
descent-configure-batch-size/, 2017.

Vishnu Kakaraparthi. Xavier and he normal (he-et-al) initialization. https://prateekvishnu.
medium.com/xavier-and-he-normal-he-et-al-initialization-8e3d7a087528. [Online ac-
cessed 2021-02-12].

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Marco Locatelli and Fabio Schoen. Efficient algorithms for large scale global optimization: Lennard-
jones clusters. Computational Optimization and Applications, 26(2):173-190, 2003.

MonkeyLearn. An introduction to support vector machines (svm). https://monkeylearn.com/blog/
introduction-to-support-vector-machines-svm/. [Online; accessed 2020-05-12].

pyDOE. Design of experiments for python, randomized designs. https://pythonhosted. org/pyDOE/
randomized.html. [Online accessed 2021-02-12].

pyOpt. Slsgp - sequential least squares programming. http://www.pyopt.org/reference/
optimizers.slsqgp.html. [Online accessed 2021-02-18].

Sunil Ray. Commonly used machine learning algorithms. https://www.analyticsvidhya.com/
blog/2017/09/common-machine-learning-algorithms/. [Online; accessed 2020-05-12].

Marc D Rayman, Thomas C Fraschetti, Carol A Raymond, and Christopher T Russell. Dawn: A mission in
development for exploration of main belt asteroids vesta and ceres. Acta Astronautica, 58(11):605-616,
2006.

47

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://esa.github.io/pykep/documentation/simsflanagan.html
https://esa.github.io/pykep/documentation/simsflanagan.html
https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
 https://www.folio3.ai/blog/advantages-of-neural-networks/
 https://www.folio3.ai/blog/advantages-of-neural-networks/
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
https://prateekvishnu.medium.com/xavier-and-he-normal-he-et-al-initialization-8e3d7a087528
https://prateekvishnu.medium.com/xavier-and-he-normal-he-et-al-initialization-8e3d7a087528
 https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
 https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
https://pythonhosted.org/pyDOE/randomized.html
https://pythonhosted.org/pyDOE/randomized.html
http://www.pyopt.org/reference/optimizers.slsqp.html
http://www.pyopt.org/reference/optimizers.slsqp.html
 https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/
 https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/

48

List of References

(18]

(19]

(20]

(21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

Sebastian Ruder. Transfer learning - machine learning’s next frontier. https://ruder.io/transfer-
learning/. [Online; accessed 2020-05-30].

Ebrahim Safipour. Trajectory optimization for a mission to neptune and triton. Unpublished master’s
thesis, Delft University of Technology, 2007.

Scikit Learn. Minmaxscaler. https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.MinMaxScaler.html. [Online accessed 2021-02-13].

SciPy.org. scipy.optimize.basinhopping. https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.basinhopping.html. [Online; accessed 2021-2-22].

Jon Sims, Paul Finlayson, Edward Rinderle, Matthew Vavrina, and Theresa Kowalkowski. Implementa-
tion of a low-thrust trajectory optimization algorithm for preliminary design. In AIAA/AAS Astrodynamics
specialist conference and exhibit, page 6746, 2006.

TensorFlow. Regresion basica: Predecir eficiencia de gasolina. https://wuw.tensorflow.org/
tutorials/keras/regression?hl=es-419. [Online accessed 2021-02-11].

Veronica Saz Ulibarrena. Literature study: Low-thrust trajectory optimization using pre-trained neural
networks. Technische Universiteit Delft, 2020.

Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing. In Simulated annealing: Theory and
applications, pages 7-15. Springer, 1987.

James R Wertz. Mission geometry: orbit and constellation design and management: spacecraft orbit and
attitude systems. El Segundo, Calif.: Microcosm Press ; Dordrecht ; London: Kluwer Academic Publish-
ers, 2001. ISBN 0792371488.

Wikipedia. Test functions for optimization. https://en.wikipedia.org/wiki/Test_functions_
for_optimization. [Online; accessed 2021-01-30].

CH Yam, DD Lorenzo, and D Izzo. Low-thrust trajectory design as a constrained global optimization
problem. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineer-
ing, 225(11):1243-1251, 2011.

Yue-he Zhu and Ya-zhong Luo. Fast evaluation of low-thrust transfers via deep neural networks. arXiv
preprint arXiv:1902.03738, 2019.

 https://ruder.io/transfer-learning/
 https://ruder.io/transfer-learning/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html
 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html
https://www.tensorflow.org/tutorials/keras/regression?hl=es-419
https://www.tensorflow.org/tutorials/keras/regression?hl=es-419
https://en.wikipedia.org/wiki/Test_functions_for_optimization
https://en.wikipedia.org/wiki/Test_functions_for_optimization

	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	Introduction
	Research objective
	Report Structure
	Paper
	Introduction
	Low-Thrust Trajectory Optimization
	Dynamics of the problem
	Propagation Model
	Optimization Problem Formulation
	Optimization Algorithm
	Machine Learning Surrogate
	Database Analysis
	Hyperparameters and training parameters
	Results
	Trained Neural Networks
	Optimization results

	Conclusion
	References
	Low Thrust Trajectories
	Propulsion model
	Dynamic model
	Keplerian propagation
	Application of impulses
	Validation and verification
	Optimization process
	Description of the problem
	Optimization Algorithm
	Monotonic Basin Hopping
	Local Optimization
	Validation and Verification
	Optimization parameters
	Inclusion of the Machine Learning surrogate
	Machine Learning surrogate
	Database Analysis
	Database creation methods
	Input selection
	Normalization and Standardization

	Method selection
	Model architecture and training process
	Optimization algorithm
	Activation function and weight initialization
	Loss function
	Comparison of architectures and training parameters
	Additional hyperparameters
	Number of training samples
	Model validation
	Transfer learning
	Conclusions
	Research objective
	Future work
	List of References

