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Preface

In the Netherlands gas exploration of the NAM induces earthquakes
which causes damaged to buildings in Groningen. This master’s thesis
is about the numerical calculation of the resistance of unreinforced
masonry walls loaded in out-of-plane bending.

This report consists of the following parts:

1. Thesis report This part discusses the main research goal, analysis
methods, results, conclusions and recommendations. It is written
in a scientific paper format to keep the report concise and improve
readability.

2. Literature review The second part consists of background informa-
tion about earthquakes, masonry behaviour, experimental research,
time-integration methods and methods for structural analysis of URM
walls. For these methods a comparison is made and the two most
suitable methods for out-of-plane bending are used for modelling the
URM walls.

3. Modelling report The last part discusses the models used for
calculation of capacity of URM walls. It gives a detailed overview
of used geometry, elements, material models, loads, convergence
criteria and results and draws conclusions from this. Also some extra
background information is provided wherever side steps are taken to
investigate some phenomenon.

All parts have there own page numbers and tables of contents.
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Summary: This study investigates four numerical models to approximate the static and dynamic
resistance of an Unreinforced Masonry (URM) wall loaded in one-way out-of-plane bending. From
validation with experimental data it was found that for the combination of shell and interface
elements with discrete cracking the static and dynamic behaviour of URM walls for out-of-plane
bending is dependent on the interface stiffness. Due to Euler-Bernouilli’s hypothesis, on which
these elements are based, the deformation over the thickness remains straight, while in reality the
wall deforms non-linearly over the thickness. A reduction of the interface stiffness is proposed to
mimic crack opening with a linear deformation and obtain realistic results. The validated model
is used for comparison with the analytical calculation of NPR 9998. This shows that the boundary
condition assumptions can be made differently to increase the resistance of out-of-plane walls.
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1 Introduction

Induced earthquakes, caused by gas extraction by the
Nederlandse Aardolie Maatschappij (NAM), damages
the typical masonry buildings in Groningen. The goal
of this study is to validate different Finite Element
(FE) models that are able to find the capacity of URM
structures loaded in out-of-plane bending in an efficient
and accurate way. The models are accurate if the test
results do not show significant with Doherty [2000] and
if deformations and failure modes are similar to the
experimentally found ones. The efficiency of the models
is validated by comparing the computing costs of the
models, generally more nodes means more computing
time.

One-way bending of unreinforced masonry walls has
experimentally been studied by Doherty [2000]. Both
quasi-static and dynamic tests have been performed for
different width/height ratio’s with different amounts of
overburden. The FE models developed in this study were
validated against the results of this experiment.
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The validation of different FE methods for
determination of the capacity of unreinforced masonry
structures in out-of-plane bending is part of a broader
research program carried out by ARUP, EUCentre and
TU Delft. One of the objectives of this program is to
increase the accuracy of numerical analysis by using
cross-validation, based on six different experimental
studies, between the FE implementations used by the
institutes. TU Delft uses the FE package DIANA.

This study tries to validate four different numerical
models. These are selected from a literature survey, since
they use a micro-modelling approach. The accuracy and
efficiency of these models is investigated. A summary
of the literature survey is presented in Sec. 2. For the
full literature review the reader is referred to Literature
Review [2015].

The first numerical model uses plane strain elements
placed orthogonal to the plane of the wall. These
elements are used to represent three dimensional brick
elements. Since in this study only out-of-plane bending
is investigated, the wall’s longitudinal dimension is of no
interest and thus this simplification is made. A smeared
cracking material model is used to model the cracks in
the wall.

The second model also uses plane strain element but
with line interface elements at mid-height. Instead of a
smeared cracking approach discrete cracking is used in
these interface elements.

The third model consists of curved shell elements
placed in the longitudinal direction of the wall. These
elements reduce the wall’s thickness to one node and are
therefore more efficient to use in full structures than three
dimensional brick elements. A smeared crack material
model is applied to these elements as well.

The last model is similar to the third except for a line
interface at mid-height with discrete cracking. The shell
elements behave elastic in this model.

These models are subjected to static and dynamic
loads and are compared to the experimental results of
Doherty for validation. For full details on these and
other less complex models the reader is referred to the
Modelling Report [2015].

To show an application of the validated FE model it is
compared with the NPR 9998, which is the first guideline
for NEN-EN 1998-1 specific for the Netherlands. This
guideline proposes two methods to find the out-of-plane
resistance of URM buildings loaded by earthquakes.
The first method uses time history analysis, the second
an equivalent static load with verification according to
NEN-EN 1996-1-1, for which an example calculation is
provided. This calculation is step by step compared with
the validated FE model.

2 Literature Survey

From literature six methods where compared to model
the behaviour of URM masonry in out-of-plane bending,
see Fig. 2.1 for an overview of all methods.

The Yield-Line Theory approximates the capacity
of the wall by using the cracking moment analogous
to the plastic yield moment for determination of the
capacity of a steel plate, see Fig. 2.2. Although Brinker
[1984] states that tensile and compressive strength do
not influence the capacity, this is highly questionable
since the cracking moment increases for greater strength
properties. Doherty [2000] states that the wall can have
more resistance after cracking. He defines this as the
semi-rigid threshold. Lourenço [2000] states that a
yield-line analysis is not suited for masonry structures
since a typical yield-line pattern can only be observed
at the ultimate failure, while at peak load a distributed
crack pattern is visible.

Shibata and Sozen [1976] originally proposed the
Linearized Displacement Based Analysis (LDBA), which
uses a substitute single degree of freedom model to
approximate the structure as a whole, see Fig 2.3.
Doherty et al. [2002] proposed a simplified method to
find the parameters of an appropriate substitute-structure
from a tri-linear load-displacement diagram. According
to Doherty the difference of the LDBA compared with a
time history analysis is in the order of 50%, however it
out-performs a force based quasi-static analysis especially
for high frequencies.

Equivalent Frame MethodYield Line Theory

Rigid Elements Method

Anisotropic Continuum ModelMultisurface Interface Model

Linearised Displacement Based 
Analysis

Figure 2.1: Schematic representation of methods for modelling
URM structures found in literature
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Roca et al. [2005] give a detailed explanation of
the Equivalent Frame Method, which uses beam
elements to simplify walls, piers and spandrels of
URM structures, see Fig. 2.4. In principle this
method can model out-of-plane deformations, but as
explained by Lagomarsino et al. [2013] in the TREMURI
FE implementation this degree of freedom has been
removed.

Casolo [2000] has developed a model suitable for
dynamic analysis specifically for walls which are
governed by out-of-plane behaviour. Rigid quadrilateral
elements are used to model a wall. These elements are
connected by rotational springs at the mid-side nodes
of the quadrilateral elements (Fig. 2.5). These springs
are subjected to bending and twisting between the two
elements. The elastic and plastic behaviour are defined
by a non-linear moment-curvature relation.

The Multisurface Interface Model proposed by
Lourenco and Rots [1997] gives a micromodelling
approach to the URM problem. Brick elements or
quadrilateral elements are modelled elastically and are
seperated by line interface elements in which all the
material properties are lumped, see Fig. 2.6. The model
is able to capture all failure modes and is therefore more
realistic. The number of interfaces and elements require
more degrees of freedom than the other methods. This
drastically increases the computation costs especially
when an implicit time-integration method is used, since
this requires the solution of the system as a whole. This
reduces the scalability of this method.

The Anisotropic Continuum Model proposed by
Lourenço [2000] uses two dimensional plane elements
and a smeared crack approach. This means that a crack
in the wall is smeared over an element as a plastic
deformation, see Fig. 2.7. Since local deformation due to
cracks are not modelled, the results are only of interest
when the structure as a whole is observed. The advantage
of this method is the reduction of degrees of freedom.
Furthermore there is no need to predefine nodes when
the wall cracks. This method is of particular interest if
a large structure is observed or if the cracks are widely
spread over the structure.

The last two methods are of interest for the goal
of this study, of which the continuum model is the
most interesting. There is no record in literature
about the validation of these methods with the use
of shell elements for out-of-plane bending statically
or dynamically. Therefore this study will verify these
methods using the experiments of Doherty [2000].

Figure 2.2: Laterally loaded masonry wall with oblique and
horizontal yield-lines, [Brinker, 1984]

Figure 2.3: Characteristic linear substitute-structure stiffness for
displacement analysis, [Doherty et al., 2002]

Figure 2.4: Idealisation from facade components to 1D elements,
[Lagomarsino et al., 2013]

Figure 2.5: Rigid quadrilateral elements connected with
rotational springs, [Casolo, 2000]

Figure 2.6: Discrete modelling of masonry. Bricks as elastic
elements and mortar and potential brick crack lines as interface
elements, [Lourenco and Rots, 1997].

Figure 2.7: Cracked elements, from course CIE5148 (Hendriks
and Rots 2012).
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3 Doherty’s Experiment

Geometry The validation of the numerical models will
be perfomed with experimental data from Doherty [2000].
Walls of 1.5× 0.95× 0.11 m (h × b × t, Fig. 3.1) are placed
on a shake table inside a steel frame (Fig. 3.2).

Boundary Conditions The wall is supported by the steel
frame at the top in horizontal direction with the use of
two angle cleats (Fig. 3.3). The overburden rig consists
of a steel plate that remains horizontal and is pressed
on the wall with a translational spring. At the bottom
the wall is placed on a damp proof course loose on the
table. Since the wall is not rigidly supported at the top
and bottom it is able to rotate/rock around it’s edges.

Material The material properties are obtained from
standardised tests on samples made with the same
mortar and bricks as well as on the tested wall specimen
themselves. In Table 2.1 material properties for specimen
8, 12, 13 and 14 (of which experimental data is available)
are given in addition with the mean and standard
deviation of the material properties.

Loads The tests on the specimens are applied in a
specific order. For example, first an uncracked static push
test at mid-height of the wall is performed on specimen
12, afterwards a series of five transient excitation tests is
executed with increasing acceleration amplitudes. This
causes all tests with historical earthquake acceleration
signals to be on pre-cracked specimen. The most accurate
results are found for the Nahanni (NH) 100% acceleration
signal on specimen 12. The input accelerations of this
signal measured by the instruments at the top (TA) and
bottom (TTA) (Fig. 3.2) are depicted in Fig. 3.4 This is
also the first dynamic test on this specimen, making it
likely that the wall has a small amount of damage. Since
the damage is not reported clearly by Doherty it is hard
to approximate the experimental results of more severely
damaged specimen accurately.

For further reading on Doherty’s experiment on
out-of-plane bending the reader is referred to Chapter
1 of the Modelling Report, Chapter 5 of the Literature
Review and Doherty [2000].

h = 1.5 m

t = 0.11 m

b = 0.95 m

Figure 3.1: Typical dimensions of walls tested by Doherty

Figure 3.2: Experimental Setup for Out-of-plane testing of URM
wall with instruments for measurement of displacements and
accelerations [Doherty, 2000]

Figure 3.3: Details of supports experiment Doherty (left: top
support, right: bottom support) [Doherty, 2000]
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Frame acc.

Figure 3.4: Accelerations over time of the Nahanni 100% signal
applied on specimen 12 as recorded by the frame (TA) and table
(TTA) accelerometers

Specimen Mass Density Youngs Modulus
Masonry Compr.

Strength
Mortar Compr.

Strength
Flexural Tensile

Strength

ρ
[
kg/m3] Em [MPa] fc [MPa] fc [MPa] ft [MPa]

8 1800 5,400 9.7 - 0.45

12 1800 11,600 15.7 - 0.30

Mean - 9,400 / 8,250 * 13.4 / 26.5 * 5.17 0.49

Stan. dev. - 5,322 / 2,192 * 1.64 / 0.28 * - 0.15

Table 2.1: Material properties of specimen tested by Doherty. (* The mean values for
walls of 110 mm and 50 mm are presented separately.)
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4 Finite Element Models

From literature four discretizations were selected. The
models are discussed below.

Discretizations

Plane Strain Model smeared cracking The first model uses
plane strain elements (Fig. 4.1) which are used as a
substitute for three dimensional brick elements. Since for
one way bending the length of the wall is not important
this dimension is considered of as infinite with the help
of the plane strain condition. At the top and bottom
line interface elements are used to enforce the boundary
conditions.

Plane Strain Model discrete cracking The second model
is similar to the first, but has an extra line interface at
mid-height, see Fig. 4.1.

Curved Shell Model smeared cracking The third model
uses shell elements (Fig. 4.2), for which the thickness
direction is reduced to one node. The shells are
connected to interface elements via three translational
and one rotational degree of freedom. The rotation ϕx
and the vertical translation uy determine the relative
displacement ∆u in the integration points over the
thickness. In these integration points a constitutive t-∆u
relationship is prescribed.

Curved Shell Model discrete cracking The last model is
similar to the third, but has an extra line interface at
mid-height, see Fig. 4.2.

Material models

Smeared cracking For the discretization without interface
elements at mid-height of the wall the Total Strain
Rotating Crack material model is applied to the
quadrilateral elements. When the strength of the material
is reached the crack width is smeared over the element
as a strain. The σ - ε relationship is defined by the
strength, fracture energy and shape of the softening
curve. In tension an exponential softening curve is used,
in compression this curve has the shape of a parabola,
see Fig. 4.3

Discrete cracking For the discretization with interface
elements at mid-height of the wall the Discrete Cracking
Model us applied to these line interface elements. The
other elements in the wall behave elastically. The
material model for the interfaces is defined using a tn-∆u
relationship as displayed in Fig. 4.4.

No-tension For the line interface elements at the
supports the no-tension material model is applied. The
model has a non-linear stiffness diagram with a very
small stiffness for relative deformations larger than zero,
see Fig. 4.5. The shear resistance is also reduced to zero
when an integration point is in tension. The friction
failure mode of the bottom support is not modelled.

y

xz

y

xz

a u

a

u

Smeared Cracking

Elastic

Discrete Cracking

Figure 4.1: Discretization of Plane Strain Model with smeared
cracking (left) and Plane Strain Model with discrete cracking
(right).

a u

a

u

y

zx

y

zx

Smeared Cracking

Elastic

Discrete Cracking

Figure 4.2: Discretization of Curved Shell Model with smeared
cracking (left) and Curved Shell Model with discrete cracking
(right).

Figure 4.3: Parabolic hardening/softening and exponential
softening for Total Strain Model. [TNO DIANA BV, 2014]

Figure 4.4: Non-linear softening accord. to Hordijk et al. for
Discrete Cracking Material Model. [TNO DIANA BV, 2014]

Figure 4.5: No-tension Material Model applied to top and
bottom line interface elements as well as cracked line interface
elements.
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Boundary Conditions

From the physical support conditions explained in Sec. 3,
the boundary conditions for the numerical discretizations
are derived.

Plane Strain Models The rocking effect is modelled with
a line interface in the orthogonal direction of the wall for
the Plane Strain Model (Fig. 4.1). This interface has the
no-tension material model applied to it, which enables
it to rock around the two edges of the wall. At the top
of the wall the middle node is supported in horizontal
direction to resemble the angle cleats. The overburden rig
is modelled with a line interface that behaves identical
to the bottom element. The vertical translation of the
interface’s top nodes are tied with a translational spring.
When the spring is loaded by imposing a prescribed
displacement ū of the supported node effectively a stress
is applied on the wall.

Curved Shell Models The Curved Shell Model uses line
interface elements in the longitudinal direction of the
wall to mimic the rocking behaviour (Fig. 4.2). It uses the
rotation ϕx and the integration points over the thickness
to simulate the rocking behaviour. Since the bottom
nodes are supported and the no-tension material model
is applied the wall can rock around the outer edges of
the wall. The overburden rig is modelled in a similar
manner as for the Plane Strain Models. The vertical
edges of the shell elements are constraint for translations
in the in-plane direction and rotations around the vertical
axis. This is to suppress spurious modes during dynamic
analysis.

5 Validation of FE models

The finite element models discussed in Sec. 4 are
executed using DIANA. The results are compared with
experimental data from Doherty (Sec. 3).

Static analysis

The static analysis performed is both geometrically as
well as physically non-linear. A displacement is imposed
at mid-height of the wall with load steps in the order
of 0.01 mm. To find convergence of the iteration steps
the Newton Raphson method is used, with a relative
convergence norm for load, displacement and energy
convergence criteria of 1.0 × 10−4.

In Fig. 5.1 the results from the static push-over
test are presented. The initial resistance of the wall is
overestimated and the post-peak resistance is slightly
underestimated compared to the experiment. After the
initial peak the wall is fully cracked and the remaining
resistance is totally due to the geometrical stability of the

wall. The generated overburden force thus has a high
influence on this part.

The overestimation of the physical resistance of the
wall is probably the effect of imperfections which are
not taken into account by the material tests. Only the
Curved Shell Model with discrete cracking drastically
overestimates the initial peak. This overestimation
is caused by Euler-Bernoulli’s hypothesis on which
the shell model is based. This is explained in more
detail for dynamic analysis. In Fig. 5.2 the results
of sensitivity analysis into the interface stiffness are
shown. The interface stiffness, expressed as an equivalent
URM column height which has similar axial stiffness, is
increased for the Plane Strain and Curved Shell Model
with discrete cracking. It can be clearly observed that for
an increasing stiffness (and thus decreasing equivalent
URM column height) the Plane Strain Model with
discrete cracking approximates the maximum capacity of
the models with smeared cracking, whereas the Curved
Shell Model with discrete cracking seems to have no limit
for it’s capacity.

The post-peak underestimation could be an effect of
increasing overburden due to vertical deformation of
the wall. The difference between smeared and discrete
cracking models is due to the fact that the smeared
cracking models have a distributed cracking pattern. This
results in a more curved wall resulting in less vertical
displacement and thus less overburden.
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Plane Strain Model smeared cracking
Plane Strain Model discrete cracking
Curved Shell Model smeared cracking
Curved Shell Model discrete cracking
Doherty

Figure 5.1: Load-displacement diagram for all four discretization
compared with the experimental data from Doherty [2000].
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Figure 5.2: Variation of interface stiffness for Curved Shell Model
with discrete cracking
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Curved Shell Model smeared cracking

 

Curved Shell Model discrete cracking

 

Plane Strain Model smeared cracking

 

Plane Strain Model discrete cracking

Figure 5.3: Stress (top) and crack/relative deformation plots (bottom) of all four
discretizations for pre- and post peak situations.

In Fig. 5.3 the deformation of the wall is shown
for pre-peak and post-peak situations. In the pre-peak
situations it can be observed that for the models
without interface elements at mid-height the cracks are
distributed over a certain height. For the Plane Strain
and Curved Shell Model with smeared cracking this
zone has approximately the same height. However in
the Plane Strain Model the number of cracks continues
to develop even after a crack at mid-height has formed
with a great crack width. The models with mid-height
interface elements show more concentrated stress plots,
except for the Curved Shell Model pre-peak. This was
caused by the high compressive interface stiffness as
shown earlier. The relative deformation plots of these
models show that the main deformation in the interfaces
is tensile deformation, which confirms the rocking effect.

The efficiency of the methods is compared by
comparing the average computing time. Since the
computing time is a combination of number of iterations
and time per iteration it is dependent on the convergence
as well as the number of nodes. The discrete cracking
models both converge easily and therefore have an
average computing time of 2 min. The Plane Strain
and Curved Shell Model with smeared cracking have
an average computing time of 20 and 7 min.

Dynamic Analysis

The dynamic analysis performed is both geometrically
as well as physically non-linear. The Backward Euler
time integration scheme is used with time steps of 0.002s.
To find convergence of the iteration steps the Newton
Raphson method is used, with a relative convergence
norm for load, displacement and energy convergence
criteria of 1.0 × 10−4.

For the dynamic analysis, models without interface
elements at mid-height were found to be unsuitable.
Since the experiments were on cracked walls a phased
analysis was performed in which the wall was first
cracked with a static analysis as explained above
whereafter it was excited by imposed accelerations at
the bottom and top support. This however resulted in
early divergence which could not be solved by smaller
time steps. Directly imposing the acceleration signals on
uncracked walls did not generate a sufficient amount of
cracks to start the wall to rock.

The models with interface elements did result in
suitable results. For both the Plane Strain and the Curved
Shell Model with discrete cracking, rocking behaviour
similar to experimental data was found, see Fig. 5.4.
From a Fast Fourier Transform the amplitude spectra
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were obtained. The governing frequency, which is the
frequency with the biggest amplitude, corresponds to
the rocking frequency, see Fig. 5.5. This frequency is
especially well approximated by the Curved Shell Model
with discrete cracking.

Two important parameters were optimized to find
these results; the thickness of the wall at the mid-height
of the wall and the compressive stiffness of the interface
elements. The thickness can be reduced if mortar drops
out of the joints. The rotation of the wall is then no
longer around the outer edges of the wall causing the
geometric resistance to be smaller and thus the reaction
to accelerations to be bigger.

The compressive stiffness of the line interface material
model was found to be of the most significant influence
for the Curved Shell Model with discrete cracking.
Normally, the compressive stress of interface elements
should be set in such a way that compressive deformation
is observed mainly in the structural elements and not
in the line interface. This is achieved by choosing a
relative high dummy stiffness k for the line interface,
using e.g. a factor thousand, k = E

helem
· 103, where E is

the Modulus of Elasticity and helem the typical length
of the neighbouring elements. However this validation
shows that the stiffness should be chosen much lower.
If the stiffness is chosen too high no effect is found
for the out-of-plane direction. This would thus lead
to an overestimation of the capacity, which can lead to
dangerious situations where buildings are validated to be
safe, but in reality will fail due to out-of-plane bending.

The reason for the lower interface stiffness to give a
correct response is found from studying the deformation
of the wall during opening of the crack. From the Plane
Strain Model with discrete cracking it can be found that
during opening of the crack the deformation is non-linear
over the thickness (Fig. 5.6 top). Small deformations are
found in the compressive zone, whereas big deformations
are found where the crack has opened. In the Curved
Shell Model with discrete cracking these deformations
are not possible since the interface elements are based
upon Euler-Bernoulli’s hypothesis: plane section remain
plane (Fig. 5.6 bottom). When a high dummy stiffness
is used, only very small compressive deformations are
allowed which causes the point of rotation to be on the
very edge of the cross-section. This greater distance to
the point of rotation causes the wall to have a greater
resistance against deformations which will thus remain
small.

When only shell elements are used with smeared
cracking this problem does not occur since there is no
high dummy stiffness. Instead the Modulus of Elasticity
E is used to calculate the stresses over the thickness of
the wall. Since this stiffness is equal to that of the plane
strain elements a similar compressive zone can be formed

and thus correct static peak resistance can be found, see
Fig. 5.1.

The solution to this problem lies in reducing the
stiffness in such a way that the plane section can remain
plane but the point of rotation follows the crack tip
during the opening of the crack similar to the Plane
Strain Model with discrete cracking.
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Figure 5.4: Time-displacement diagram for Curved Shell and
Plane Strain Model with discrete cracking.
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The appropriate reduction for static analysis can be
obtained from comparison of the peak capacity with
other models, see Fig. 5.2. For dynamic analysis this
is obtained from comparison the experimental data of
Doherty [2000]. In Fig. 5.7 and 5.8 the results of a
sensitivity analysis are given for the governing frequency
and maximum amplitude. The appropriate stiffness is in
the order of 0.1 mm which is similar to the results found
from the static sensitivity analysis.
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Figure 5.7: Maximum amplitude for variation of interface
stiffness for the Curved Shell Model with discrete cracking
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Figure 5.8: Governing frequency for variation of interface
stiffness for the Curved Shell Model with discrete cracking

In Fig. 5.9 and 5.10 results from an investigation on the
influence of the Youngs Modulus and the wall thickness
on the reduced interface stiffness is presented. This is
done using the static comparison approach from Fig. 5.2.
From the first figure it can be concluded that there is no
influence of the Youngs Modulus on the reduced stiffness.
From the second figure it is concluded that the thickness
of the wall does influence the stiffness reduction.
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is insignificant.
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6 Comparison with analytical calculation
NPR 9998

The validated numerical model can be used for
comparison with the new guideline for earthquake
resistant constructing in the Netherlands, the NPR 9998.
It serves as an informative National Annex to NEN-EN
1998-1 and gives clarification where needed.

For resistance of unreinforced masonry walls
NEN-EN 1998-1 recommends the restriction of geometric
properties to be specified in the National Annex. NPR
9998 has a different approach. It requires that URM
walls should be able to resist earthquakes in out-of-plane
direction (NPR 9998, 9.1.1, note for NEN-EN 1998-1,
9.5.1(5) ). This can be checked by using a non-linear
time history analysis or by using a check of the capacity
according to NEN-EN 1996-1-1 with an equivalent
horizontal loading in the out-of-plane direction.

The analytical method with equivalent loading is
described in the report [Wijte, 2014] and schematically
depicted in Fig. 6.1. In this approach Wijte lumps
the mass of the wall in three points. The horizontal
load is distributed as point loads over the three point
masses proportional to the horizontal displacement of
the wall. These forces are equivalent to the Peak
Ground Acceleration (PGA) of an earthquake. The
relation between the accelerations and the point loads
is formed by the multiplication of the mass and
acceleration with the Dynamic Amplification Factor
(DAF). This DAF is obtained from a design spectrum.
The characteristic period T and the behavioural factor q
on which the design spectrum is based are obtained from
the load-displacement relationship of the wall during
imposed horizontal loading.

direct dynamic structural analysis

static load-displacement check static structural analysis check

c1 u c1 F

c2 F

c3 F

c2 u

c3 u

NN

F-u diagram

+

design spectrum DAF

Figure 6.1: Schematic representation of calculation steps of Wijte
(green arrows) and numerical checks (blue arrows)
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From the assumed boundary conditions the
eccentricity of this axial force can be found, see Fig.
6.2. The applied external forces lead to a moment
distribution along the height h of the wall. With this
moment distribution and the axial load the wall capacity
NRd is checked according to NEN-EN 1996-1-1. This
check is based on the axial compressive strength of the
cross-section reduced by a factor which is dependent
on the slenderness, eccentricity and loading of the wall.
These three effects are all expressed as an eccentricity
e and the reduction factor is a linear function from 1
for e = 0 to 0 for e = 1

2 t at the top and bottom. At
mid-height the eccentricity due to horizontal loading is
high and the reduction factor, which is a exponential
function given in appendix G of NEN-EN 1996-1-1,
reduces the capacity for axial loading significantly.

This equivalent loading method is compared with the
validated numerical models explained in Section 5. Three
comparisons are performed to check different aspects of
the analytical calculation. These are indicated in Fig. 6.1
to give an overview of the analytical calculation and the
checks performed.

First a static analysis is used to verify the structural
integrity check according to NEN-EN 1996-1-1. In Fig. 6.3
the static capacity of the four validated numerical models
is shown for increasing overburden ratio’s. Although
some of the models show some divergent results, the
capacity trends towards an increase for low overburden
ratio’s and a decrease when the overburden increase to
full axial strength. In the first stage the compressive force
has a beneficial effect while is the second stage the wall
fails early due to crushing.

These results are obtained with boundary conditions
similar to the ones assumed by Doherty. If these
boundary conditions are used to verify the wall according
to NEN-EN 1996-1-1 the results of Fig. 6.4 are obtained.
The difference between the numerical and the analytical
resistance is explained by the fact that NEN-EN 1996-1-1
does not take tensile strength into account and does not
allow high axial loads due to stability considerations.
This is not taken into account by the plane strain model,
since this should be doen with a separate stability
analysis in DIANA.

The second comparison is made between the
load-displacement diagram used to find the design
spectra and DAF values. In Fig. 6.5 the
load-displacement diagram according to Wijte and from
the Plane Strain Model with smeared cracking are
presented. Wijte uses a derived moment-curvature
relationship (Fig. 6.6) were the tensile strength is not
taken into account. The derivation is performed with
MATLAB both with and without tensile strength, similar

ag ag
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excitation of top and groundexcitation of ground only

Topview

Sideview

Figure 6.2: Static capacity of numerical models for increasing
overburden.

Overburden ratio (-)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ea

k 
re

si
st

an
ce

 (
N

)

×104

0

2

4

6

8

10
Variation of overburden for static analysis

Plane Strain Model smeared cracking
Plane Strain Model discrete cracking
Curved Shell Model smeared cracking
Curved Shell Model discrete cracking

Figure 6.3: Static capacity of numerical models for increasing
overburden.

Overburden ratio (-)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
om

en
t d

ue
 to

 h
or

. l
oa

d 
(N

m
m

)

×107

0

0.5

1

1.5

2

No moment capacity due to zero tensile strength

Reduction for slenderness and initial deformation

Moment due to horizontal load - Overburden diagram

Plane Strain Model smeared cracking
NEN-EN 1996-1-1

Figure 6.4: Moment capacity for horizontal loading for
increasing overburden compared with NEN-EN 1996-1-1.

Displacement (m)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Lo
ad

 (
kN

)

0

5

10

15
Variation of interface stiffness for static analysis

Plane Strain Model smeared cracking
Wijte tussenwand mod u-050
Wijte tussenwand mod elasto-plastisch

Figure 6.5: Comparison of load-displacement diagram

Curvature (m-1)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
om

en
t (

kN
m

)

0

1

2

3

4
Max = 3.36 kN

Max = 3.34 kN

Max = 4.2 kN

Moment-curvature diagram of a URM wall

M-κ accord. to Wijte
M-κ without tensile capacity
M-κ with tensile capacity

Figure 6.6: Relationship between moment due to horizontal
loading and axial force.
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results are found. The difference in the load displacement
diagram of Fig. 6.5. Could be due to several effects. In
the moment-curvature derivation the normal force is
assumed to be applied at the centre of the cross-section.
However the eccentricity of the normal force varies over
the height and is dependent on deformations. These
effects are taken into account by the Plane Strain Model
with smeared cracking. The difference has an effect on
the parameters T and q on which the design spectrum is
based.

It should also be noted that for this derivation the
horizontal boundary condition at the top of the wall is
assumed to be fully constraint. This is different from the
assumption made as sketched in Fig. 6.2.

The final comparison with the analytical calculation
is made with the dynamic analysis. For this goal an
harmonic acceleration signal with increasing amplitude
is imposed on the numerical Plane Strain Model with
smeared cracking. The acceleration for which the first
crack develops is given in Fig. 6.7. It can be observed
that the difference is very big.

This difference can be explained by the various
assumed boundary conditions. In Wijte’s analytical
check according to NEN-EN 1996-1-1 the wall check
is dependent on the resistance at mid-height, which is
heavily reduced due to the moment in that cross-section.
There is no balancing moment from the axial load since
the eccentricity of the axial load is zero due to the
assumed boundary conditions, see Fig. 6.2. If the
boundary conditions of Doherty are used the balancing
moment increases and thus the resistance of the wall.

The assumption of the boundary conditions depends
on the stiffness of the structure as a whole. If the
structure has stiff walls orthogonal to the walls verified
for out-of-plane resistance that are well connected to the
upper floor it can be assumed that these walls and the
upper floor will start vibrating with similar excitations
as the ground. This phenomenon is described by Priestly
[1985], see Fig. 6.8. This will cause the wall to be excited
both on the top as well as on the bottom boundaries. This
justifies the assumptions of Doherty.
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Figure 6.7: Peak ground accelerations of first crack for endwalls
show big differences with results from Wijte due to difference
in BC assumptions as indicated in Fig. 6.2.

Figure 6.8: Acceleration signal is transferred via the shear walls
to upper floors [Priestly, 1985]

7 Conclusion

Four numerical models of a URM wall subjected to
out-of-plane excitations have been developed. From
validation of the Plane Strain and Curved Shell Model
for discrete and smeared crack material model with
the experimental results of Doherty the following
conclusions can be drawn.

For static analysis all models are able to give an
accurate approximation of the physical and geometrical
resistance in comparison with the experimental results.
However, when the Curved Shell Model with discrete
cracking is used the line interface stiffness should be
reduced. This study has shown that it is likely that the
reduction is dependent on at least the thickness of the
wall and is similar for both static and dynamic analysis.
Although it is not yet possible to give an estimate of
the stiffness reduction a priori, it is possible to give an
estimate of the reduction by comparing the results of a
sensitivity analysis with the Plane Strain Model.

For dynamic analysis accurate results for models with
smeared cracking were not found. Also the out-of-plane
resistance for the Curved Shell Model with discrete
cracking is overestimated when the interface stiffness
is not sufficiently reduced. It should also be noted that
the crack pattern should be known a priori, although this
can be accurately found from a static analysis with shell
elements and smeared cracking.

The efficiency of the numerical models depends on
the number of nodes in the model and the material
model that is applied. This was found from average
computing times of the models. The Curved Shell Model
with discrete cracking is the most efficient for modelling
out-of-plane bending of URM walls, whereas the Plane
Strain Model with smeared cracking is the least efficient.
However if the reduced interface stiffness cannot be
obtained directly a sensitivity analysis is needed making
this approach less favourable.
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The goal of this study was to validate different FE
models that are able to model the out-of-plane bending
of URM walls in an accurate and efficient way. This
study has shown that all four models are able to find
accurate results. The efficiency of the models depends
on the knowledge about the stiffness reduction a priori.
It is therefore case dependent which Finite Element (FE)
model is best to use.

As an application of the validated numerical model
a comparison is made with the analytical calculation of
URM walls loaded in out-of-plane bending according
to NPR 9998. The comparison has shown that
the assumption on the boundary condition are most
important since these influence the points of application
of the overburden force and the reaction force at the
bottom support which determines the resistance statically
as well as dynamically. Furthermore the analytical
approach does not take into account tensile strength
making it conservative for low overburden ratio’s. This
also results in a lower elastic stiffness of the equivalent
elasto-plastic load-displacement curve, which in turn
influences the design spectrum and DAF for determining
the peak ground acceleration.

8 Recommendations

To improve the knowledge and guidelines considering
out-of-plane bending for URM walls more investigation
is needed into the reduction of interface stiffness. Since
shell elements are far more efficient for big structures
these are the preferred elements for analysis. As
made plausible in this study there seems to be a
relation between the thickness of a URM wall and the
reduced stiffness. This should be further investigated
with more experimental data and more numerical
tests. Furthermore the influence of other properties
like the dimensions of neighbouring elements should
be investigated.

Apart from the reduction itself also it’s influence on
in-plane behaviour should be examined. For out-of-plane
behaviour it is important to reduce the stiffness but for
in-plane behaviour this could lead to lower resistance.
For three dimensional modelling both situations are
important and should give safe estimations of the
capacity.

More investigation into the effects of the boundary
conditions on the out-of-plane resistance for the NPR
9998 is required. If some eccentricity of the normal force
at the mid-height cross-section of the wall is allowed this
would increase the capacity of the wall significantly. A
better explanation of the assumptions could clarify it’s
effects and thus leave room for other assumptions which
can be used for strengthening purposes.
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List of symbols

ε Strain. 5

ϕ Rotation of node. 5

σ Stress. 5

∆u Relative deformation. 5

b Width of the URM wall. 4

E Modulus of Elasticity. 8

e Eccentricity. 10

NRd Axial design capacity of the URM wall according
to NEN-EN 1996-1-1 reduced for imperfections and
horizontal load. 10

k Dummy interface stiffness. 8

T Period of a vibration of a one-mass-spring system. 11

h Height of the URM wall. 4, 10

q Behavioural factor of a one-mass-spring system. 11

t Thickness of the URM wall. 4, 9

tn Traction normal to the interface. 5

u Imposed displacement at mid-height of the URM wall.
5

ū Prescribed displacement of spring to impose
overburden stress. 6

Nomenclature

cross-validation Validation in which results from different
FE implementations are compared to obtain better
results. 2

discrete cracking Modelling approach in which the
discrete deformation of a crack is represented by a
relative displacement between two nodes. 2

equivalent URM column height Stiffness of an interface
element expressed as the axial stiffness of an
equivalent URM column of a certain height. 6

FE implementation Computer program which can be
used for numerical calculations using finite elements.
2

interface elements Elements with zero thickness in which
a relation is described between the traction and the
relative displacement over sets of nodes. 2

interface stiffness The compressive dummy stiffness of
an interface element which is used to keep the
deformation in the interface to a minimum when
non-tensile loads are applied. 1

load-displacement diagram Relation between the
horizontally applied load and the horizontal
displacement at the same position. 2

micro-modelling Modelling of materials using the stress
properties of the wall to model deformations and
failure in integration points. 1

numerical validation Comparison of a numerical model
with experimental data to check it’s validity. 1

one-way bending Situation in which a walls spans in one
direction either from top to bottom or left to right. 1

out-of-plane bending Bending of a wall around an axis
which intersect with the plane of the wall, for example
around the length or height of the wall. 1

overburden The load that is applied on top of the wall
and applies a compressive axial force on the wall. 1

plane strain elements Two dimensional finite elements in
which the strain out-of-plane is equal to zero.. 2

quasi-static Load procedure in which the load is slowly
increased to reduce inertia effects. 1

shell elements Two dimensional finite elements which
represent structures of which one dimension is small
in comparison with the other two.. 1

smeared cracking Modelling approach in which the
discrete deformation of a crack is represented as a
smeared strain over an element. 2

time history analysis Analysis over time in which an
historical acceleration signal of an earthquake can
be applied. 2

Acronyms

DAF Dynamic Amplification Factor. 9, 10, 12

FE Finite Element. 1–3, 12

LDBA Linearized Displacement Based Analysis. 2

NAM Nederlandse Aardolie Maatschappij. 1

NPR Nederlandse Praktijkrichtlijn. 1, 2, 9, 12

PGA Peak Ground Acceleration. 9

URM Unreinforced Masonry. 1
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Introduction

Masonry is one of the most used buildings materials worldwide. It
performs very well in resisting gravity loads, is available anywhere
and is relatively cheap and easy to work with. However, it does not
preform well when loaded in a lateral direction, for instance due to
earthquakes. unreinforced masonry (URM) buildings are relatively
weak against earthquakes when compared to reinforced concrete,
steel and wood. This low resistance to lateral forces derives from the
low tensile strength as well as from the brittle nature of the materials.
Bruneau (1994) had the following to say about this phenomenon:

"The potential out-of-plane failure of URM elements (...) during earth-
quakes constitutes the most serious life-safety harzard for this type of
construction."

This report is a literature review about the behaviour of URM loaded
in the out-of-plane direction by earthquakes. The report constitutes
part of my master’s thesis and is part of a research program relat-
ing to induced earthquakes in Groningen, as explained in Chapter
1. The next things to discuss are the characteristics of earthquakes
(Chapter 2) and unreinforced masonry (Chapter 3). To translate the
masonry structure into a realistic model some information about the
use of masonry in buildings is given in Chapter 4. The experimen-
tal research which will be used as data for experimental validation
and for the cross validation of methods is presented in Chapter 5.
Time-integration methods are briefly discussed in Chapter 6. Chapter
7 discusses the most important methodologies for analysing out-of-
plane loaded URM walls, and will conclude with a comparison of
the methods. Finally, the overall conclusions are given (Chapter 8) in
which the research questions of the remaining part of this thesis are
presented.





1
Earthquakes in Groningen

Gas extraction in Groningen causes earthquakes. The first extractions
from the Groningen gas field commenced in 1963. On December 26

1986 the first earthquake was recorded near Assen. Until December
2013 about 1000 earthquakes had been reported (KNMI, 2013). The
strongest earthquake was found to have a magnitude of 3.6 on the
Richter scale.

While in the early years the earthquakes were mild and in-
frequent, in recent years they have become more severe. Houses
have suffered greater damage and some farms have even collapsed
(RTV Noord, 2014). The earthquake in Huizinge on August 16 2012,
which was experienced as being too severe, was the reason for the
government to act.

The Minister of Economic Affairs opened a research program
which led to a change in the NAM’s "winningsplan". This plan has
once again become valid until 2016, when the NAM has to present
a new version. As a part of this plan, the NAM has to make a
deformation model, about the ground response to the gas extraction, as
well as an exposure model, about the buildings’ response to the ground.

For the exposure model the NAM has asked TU Delft, ARUP and
EUCENTRE to take part in a joint research program. In this program,
physical tests and cross validation modelling will be performed. The
cross validation modelling comprises benchmarks and typologies.

This master’s thesis is about one of the benchmarks, the experi-
mental study carried out by Doherty (2000). He studied the dynamic
behaviour of unreinforced masonry walls subjected to one-way out-
of-plane bending, this will be further discussed in Chapter 5.





2
Load Characteristics

2.1 Earthquakes

An earthquake is a sudden release of stress in the earth due to shifting
of different soil layers. This shifting causes seismic waves travelling
through the earth causing the earth to shake with a certain frequency
and amplitude. This wave travels from the epicentre in three direc-
tions. Therefore the shaking of the earth is in horizontal as well as
vertical direction. Most earthquakes originate from tectonic faults
which can be 700 km deep. A depth of less than 70 km qualifies as
shallow.

The earthquakes in Groningen are induced earthquakes which
means that they are the effect of human action. The gas is extracted
from a permeable stone layer at three kilometres depth. The layer is
covered with a non-permeable stone layer to store the gas. If the gas
is extracted the permeable stone layer has three kilometres of rock
to carry without the gas pressure. This is not possible so the soil
subsides. This can go slowly or in shocks. (KNMI, 2013)

The acceleration of an earthquake is mostly characterized
by a short period of increasing amplitude followed by a period of
constant strong ground motion and a longer period of degrading
ground motion.

2.2 Loading methods

Calvi and Kingsley (1996) give a good explanation of ways to simulate
seismic motion. In this report a fourth category is added which is
static pushover.

Figure 2.1: Static, pseudo-dynamic and
dynamic tests of MDOF, (Calvi and
Kingsley, 1996).

Static Pushover is used in many studies to find the load-displacement
relationship as well as the maximum load. Although this method
does not represent the seismic load in a realistic way it does give
insight into the behaviour of the structure as well as a possible fail-
ure mechanism. Mendes and Lourenço (2009) describes an adaptive
pushover technique to push in proportion to higher eigenmodes.
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Quasi-static testing is applying a displacement or a force as input
over a number of cycles. This method can be used to find geometri-
cal or material influences in the loading and unloading process. It
does not take into account the inertial forces neither higher natural
frequency modes of the structure. Therefore this method does not
represent the dynamic characteristics of an earthquake response.

Pseudo-dynamic testing is a method to take into account the inertial
forces. It is a computer controlled method where numerically the
equations of motions are solved. The displacements are applied on
the system and the reaction forces are put back in the equations of
motion to find the next displacement. Advantage of this method is
that it is displacement controlled which makes it possible to find the
post-peak behaviour of a structure.

Dynamic testing is simply applying an acceleration at the supports
of a structure. This gives a realistic representation of the earthquake.
It is however harder to find the post-peak behaviour since the dis-
placement of the structure is not controlled.

Calvi and Kingsley (1996) state that especially in MDOF systems
quasi-static load input is not realistic since this only loads the first
eigenmode. Therefore a dynamic or pseudo-dynamic method should
be applied.

Mendes and Lourenço (2009) find from an experimental case
study on "Gaioleiro" buildings that static pushover results in another
failure mode than dynamic excitation. This is because static pushover
pushes the structure in its first eigenmode. For these buildings this is
however not governing. Adaptive pushover analysis can account for
this problem.

Figure 2.2: Load path of the imposed
earthquakes through the stiff parts of
the construction, from (Priestly, 1985).

Figure 2.3: Resulting accelerations per
floor, from (Priestly, 1985).

2.3 Dynamic filtering and Phase difference

Since masonry walls in buildings are connected to other walls dy-
namic filtering can change the earthquake acceleration applied to
the laterally loaded wall. Priestly (1985) suggests that the dynamic
excitation of the boundaries of a out-of-plane wall are affected by
dynamic filtering. In other words the excitation of the top boundary
of the lateral wall is the response of the in-plane walls and floor to the
excitation. A visualization of this effect is given in Fig. 2.2 and 2.3.

The phase difference in input of the accelerations at the top and
bottom of the wall have an effect on the displacement and deformation
of the wall. However, ABK (1984) found that the critical case is no
phase difference and thus an in-phase excitation of both top and
bottom is used in experiments and numerical simulations.
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2.4 Types of input

If earthquakes are simulated in experiments or numerically by im-
posed accelerations a few different types of input can be used.

Recorded earthquakes, or natural accelerograms, can be used to
give a realistic view of the response of the structure to an earthquake.
The results however do not give decisive answers. Every earthquake
has a completely different signature, both frequency, duration and
peak ground acceleration can be different. The question if an earth-
quake is destructive depends also on the natural frequency of the
structure. A big draw back of these accelerograms is the limited
availability, which requires scaling to get a higher diversity of input.

Figure 2.4: Natural accelerations and
spectral acceleration, (Calvi and Kings-
ley, 1996).

Figure 2.5: Artificial accelerations and
spectral acceleration, (Calvi and Kings-
ley, 1996).

Artificial accelerograms can produce more earthquakes, which
reduces the disadvantage of recorded earthquakes. An artificial ac-
celerogram should be compatible with a design response spectrum
defined by a local code or the Eurocode. However according to Penna
et al. (2013) these are not preferable over recorded earthquakes, since
natural accelerograms have all the aspects which influence earth-
quakes like source, path and site as wells as the relation between
vertical and horizontal acceleration. Calvi and Kingsley (1996) give
an example of two natural accelerograms and spectral accelerations
to compare these, see Fig. 2.5 and 2.4. As can be seen the artificial
earthquake clearly has a different character having a far longer pe-
riod of high peaks. Also the spectral accelerations show an other
composition, the artificial acceleration has more high frequency and
less low frequency accelerations. Therefore Calvi and Kingsley (1996)
conclude that an artificial accelerogram is not a good representation
of a real earthquake.

Harmonic accelerograms with increasing amplitude can be used
to find the influence of different frequencies on the response, as well
as the ultimate acceleration before instability for a given frequency.

Impulse and free vibration tests are to observe the free vibration
of the wall from which the natural frequency can be found, as well as
damping characteristics.

To conclude, recorded earthquakes are preferable and should be
used for experimental research. For the validation of numerical
models these same accelerations should than be used. To generate
more results for a sensitivity analysis artifical accelerograms can be
used. Harmonic and impulse vibrations can be used, however, the
validity of these results is questionable since these are very different
from realistic vibrations.





3
Unreinforced Masonry Behaviour

Masonry has a complex behaviour due to its orthotropic geometry
and its material properties. When URM walls are loaded in a cyclic
manner complex failure mechanisms can develop and unloading
paths with recovery of stiffness occur which make the modelling
of masonry a challenging task. In this chapter the behaviour of
unreinforced masonry is discussed.

(a) (b)

(c) (d)

Figure 3.1: Fundamental rules of bond-
ing patterns to avoid superimposed ver-
tical joints, (Guillaud et al., 1995).

3.1 Orthotropic Geometry

The stacking of masonry can be made in different ways. The number
of wythes (bricks in the lateral direction of the wall) can vary as well
as the length/width ratio of the bricks which determines the stacking.
Some forms of stacking are depicted in Fig. 3.1 different patterns are
shown of which (a) is one-wythe and (b), (c) and (d) are two-wythe
patterns.

The vertical joints between the bricks are called the head joints
and the horizontal joints are called the bed joints. Since bed joints
form a continuous connection over the width of a wall and head joints
are interrupted by bricks, the effective properties over a cross-section
in the total wall in vertical direction is different from the horizontal
direction.

3.2 Material properties

The material properties of the bricks and the mortar are different but
comparable. Both behave as a brittle material in tension where a clear
cracking point can be observed followed by exponential softening. In
compression hardening behaviour is found after some initial crushing
after which a parabolic softening relation is found. Typically the
connection between the mortar and the bricks is the weakest link. This
causes a typical stepped diagonal cracking pattern. The constitutive
relation can be applied to the model in different ways according
to the method used, more can be found in Chapter 7. Combined
with the orthotropic geometry effective material properties in the two
directions can be derived.
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3.3 Global Failure Mechanisms

URM buildings loaded by earthquakes can fail in different ways de-
pending on geometry, material and loading pattern factors. Bruneau
(1994) gives a good summary of the possible global failure modes
observed by researchers between 1984 and 1991. The out-of-plane
failure is described in more detail since this is the main focus of this
thesis.

Figure 3.2: Failure of anchorage and slip
of floor inside the building, (Bruneau,
1994).

Figure 3.3: In-plane cracking of pier due
to shear stresses, (Bruneau, 1994).

Figure 3.4: Out-of-plane failure over two
levels due to flexible floor, (Bruneau,
1994).

Failure or lack of anchorage. A good connection between
floors or roof and URM walls is of great importance for earthquake
resistance. Since normally these connections are only loaded in verti-
cal direction or by wind loads the horizontal resistance due to friction
may not be sufficient for earthquake loading. In cavity walls a good
connection between the outer and inner wall is needed, if not the
outer walls can behave as cantilever walls over the total height of the
building. If anchorage is present, most of the time this is not designed
specifically for earthquake resistance and failure can still occur. This
can be rupture of the steel anchorage or failure of the wall around the
connection point where high forces are introduced in the wall. The
resulting failure is slip of the floor or roof from the wall, as depicted
in Fig. 3.2, this may result in life threatening situations.

In-plane failures. When walls are loaded in-plane by earthquakes
shear cracking of the wall can occur. Diagonal cracks can occur,
especially in piers where forces are brought down through a small
high masonry element, see Fig. 3.3, . Other possible failure types are
horizontal shear at the bottom or top of a pier resulting in slipping and
toe-crushing of a pier resulting in excessive rotation. In-plane failure
does not automatically lead to the global collapse of the structure.

Out-of-plane failure. Out-of-plane failure occurs when the wall
bends in the lateral direction, which is the weakest direction due to its
small thickness. A pattern of vertical, horizontal and diagonal cracks
develops depending on boundary conditions and material properties.

When one-way bending is examined in the vertical direction cracks
parallel to the bed joints will be found. These cracks are caused by
the low tensile strength of the bond or the bricks. Micro-cracks in the
material cause the softening effects observed in load-displacement
curves. It is also possible that the wall fails due to unit crushing
when high axial stresses are applied, this is discussed in more detail
in Section 3.7. For one-way bending in the horizontal direction two
failure modes can occur, a toothed or zigzag pattern over the joints
and a straight crack through units and/or joints.
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After cracking, the wall can be found in a phase of, what ABK
(1984) called, "dynamic stability". Doherty (2000) described this phe-
nomenon as rocking behaviour. He distinguished two semi-rigid
bodies after cracking. The bodies can rotate from one extreme fibre to
the other. The load on the wall exerts a negative moment around the
rotation point at the bottom. The self-weight as well as the vertically
applied force exert a positive moment around the point. As long
as the negative moment does not push the work-line of the vertical
forces over the point of rotation the system is stable and will not fail.
Since the load is of a dynamic nature it will switch sign, thus it is not
inevitable that the load will push the wall until it becomes unstable.
So in the cracked phase a dynamic stable system can be found. As
has already been discussed, the stability is dependent on the amount
of deformation of the system. Thus this is a geometric non-linear
problem.

When floors do not provide a sufficient constraint in lateral direc-
tion the height over which the wall can bend will be larger resulting
in a lower resistance, such an effect can be observed in Fig.3.4. Out-
of-plane behaviour results in a loss of load-bearing capacity and thus
in the collapse of (part of) the building. These situations can be life
threatening.

Combined in-plane and out-of-plane effects. Earthquakes
are not loads which impose only loads in in-plane or out-of-plane
direction, but are bidirectional. This can result in combined failure
modes where the wall is first weakened by in-plane shear cracks
which reduce the out-of-plane bending resistance. Dolatshahi et al.
(2014) showed with numerical analysis that the out-of-plane strength
can be reduced by 60% due to in-plane damage.

3.4 Local Failure Modes

Global failure mechanisms are a result of local failure of the masonry.
Masonry can fail in several ways due to its orthotropic nature. In
Fig.3.5 from Lourenco and Rots (1997) the possible local failure modes
are depicted, as follows:

(a) Joint tension cracking
(b) Joint slip

(c) Unit direction tension crack

(d) Unit diagonal tension crack

(e) Masonry crushing

Figure 3.5: Local failure modes of ma-
sonry, (Lourenco and Rots, 1997).

(a) Joint tension cracking

(b) Joint slip

(c) Unit direction tension crack

(d) Unit diagonal tension crack

(e) Masonry crushing

Local masonry failure also changes its properties. When cracks
occur masonry cross-sectional area changes and so does the stiffness
of the total wall. This changes the eigenfrequency of the wall and thus
also the response to a dynamic load of a certain frequency. This was
originally found by Bariola et al. (1990) from experimental research.
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3.5 Hysteresis

Figure 3.6: Load-displacement curve
from experimental testing of a quasi-
static cyclic loaded wall, from (Griffith
et al., 2007).

Figure 3.7: Hysteresis effects character-
istics, from (Paulay and Priestly, 1992).

The hysteresis effects can be observed from the way in which a
masonry structure responds to cyclic loads. Hysteresis behaviour
is the dependence of the output to the input as well as the history
of the element. The result is degradation of sectional stiffness and
strength due to plastic deformation in previous loading cycles. This
can be observed from the stress-strain or load-displacement curves,
as depicted in Fig.3.6. Some of the important characteristics in the
behaviour of masonry, which can be found in hysteresis effects, are
the reduced unloading stiffness and the recovery of stiffness due to
the closing of cracks.

Paulay and Priestly (1992) described the inelastic behaviour

of a single degree of freedom system and the corresponding hystere-
sis relations. In Fig. 3.7 a few different possible hysteresis patterns
are given. Curve (d) shows a resemblance with the results found
by Griffith et al. (2007). According to Paulay and Priestly (1992) it
is especially the area which is inside a loop that is of importance
since this is equal to the amount of energy which is dissipated. In
the ideal elastoplastic case this can be clearly observed. The area is
purely created by the plastic strain, the horizontal line. Although the
structure finds its original elastic deformation at the end of the loop,
energy has been dissipated through plastic deformation in positive
and negative directions. A correct unloading and reloading stiffness
is required to correctly model the amount of dissipated energy.

The unloading of URM walls loaded out-of-plane can have a
different stiffness if cracks have already formed. When the wall is
totally unloaded it is not unnecessary that for cracks to be closed,
some plastic deformation may still be present. If one assumes that
the stiffness is secant as is done in DIANA, it is therefore not correct,
see Fig. 3.8.

Figure 3.8: Constitutive relation with
unloading and reloading behaviour as
implemented in DIANA, from (Mendes
and Lourenço, 2009).

The recovery of stiffness due to closing of the cracks is important
for the reloading phase of cyclic loading. A tensile crack can if closed
transfer compressive stresses. If in the tensile part of the reloaded
cross-section, which was previously loaded in compression, no cracks
are formed, than it has the same stiffness as the original cross-section.

The damage plasticity model of Lubliner et al. (1989), later
adapted to three dimensions by Lee and Fenves (1998) takes these
effects into account. In Fig. 3.9 a possible load path, as proposed
by this model, can be found. First tension is applied and the linear
regime is entered until cracking begins at a stress σt0. Then softening
sets in until the point at which the unloading starts. The unloading
stiffness is dependent on the amount of damage due to tension in
the cross-section. When compression returns to the cross-section the
stiffness is recovered and the section behaves as if it were uncracked.
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The compressive regime is different from the tensile regime and has
no clear cracking point. First it is linear, then some crushing occurs
but the stress continues to increasing. Finally softening gradually
reduces the stress to zero with a lot of deformation. If unloading
starts the stiffness is reduced due to the crushing damage. When the
cycle is completed a new cycle resumes with tension, the stiffness is
reduced due to both the tensile and the compressive damage.

Figure 3.9: Stress-strain relation of ma-
sonry applied in Abaqus, from (Dassault
Systèmes, 2013).

3.6 Directional response

As briefly described in Section 3.3 earthquakes are bi-directional by
nature, because the direction is never totally in-plane or out-of-plane.
Dolatshahi et al. (2014) used discrete bricks combined with damage
plasticity model to assess the behaviour of URM walls when subjected
to pushover analysis from different angles to the wall.

One of the results of this study indicated that the displacements
were not in the direction of the applied force but more in the in-plane
direction. Since this direction is stiffer it takes more load than the
out-of-plane direction.

It was also found that no cracks due to out-of-plane bending
developed if the force was introduced at an angle smaller than 85◦

to the wall. This indicates that almost always combined behaviour is
appropriate.

3.7 Applied Overburden Force

Figure 3.10: Moment-curvature dia-
grams different axial compression, from
(Lourenço, 2000).

On a URM wall a vertical in-plane force can be applied. This could,
for instance, be the self-weight of floors and walls, or variable loads
applied to the floors. This force has an effect on the stresses in the wall,
it is comparable to pre-compression. (Lourenço, 2000) investigated
the effect of axial compression on the bending strength and found that
initially the effect is positive, because a higher bending strength was
found for moderate axial compression. However, this effect decreased
for high compressive forces. Compressive stresses due to bending
added to the axial stress then caused crushing. For the ductility the
same effect was found, see Fig. 3.10.

Doherty (2000) describes the difference between high and low
applied overburden in a qualitative way. A wall which has a low
applied overburden stress will generally fail when the cross-section is
cracked, since the semi-rigid resistance threshold in the post-cracked
stage is lower than the elastic resistance, see Fig. 3.11. When a high
overburden stress is applied the elastic resistance is lower than the
semi-rigid resistance threshold and the wall has a reserve capacity to
rock, as described in Section 3.3.

Figure 3.11: Force-displacement dia-
gram for a wall with low applied over-
burden, from (Doherty, 2000).
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3.8 Geometrical non-linear effects

When the wall deforms the applied overburden as wall as the workline
of the self-weight changes. These effects are geometrical non-linear
effects, since they are dependent on the geometry.

Doherty (2000) has examined this effect for one-way out-of-plane
bending. When the wall deforms in the lateral direction it can (depen-
dent on the boundary conditions) rotate around the edges of it’s base
and top support. This causes a shift in the workline of the self-weight
and overburden. However, for as long as the deformation is not too
big (the workline does not shift pass the point of rotation) these forces
generate a stabilising moment. Therefore, it is possible that the wall
has some extra resistance capacity after cracking. Doherty (2000)
defines this as the semi-rigid resistance threshold.



4
Use of Masonry in Buildings

To model the behaviour of a URM wall or building in a representative
way some knowledge of the building details is needed. Especially
the connections are of importance since these determine how the
boundary conditions should be modelled.

Doherty (2000) described some typical URM masonry connections
which are common practise in Australia.

A partition wall can be found in Fig. 4.1. The wall is connected to
the ceiling using timber or plaster cornices. Between the ceiling and
the floor no vertical forces can be transferred. The timber pieces can
keep the wall at it’s place, it therefore acts as a horizontal support.
The connection has no moment capacity and has some freedom to
rotate thanks to the open space between the wall and the ceiling.

A cavity wall can be constructed with the inner or the outer wall
as load-bearing, Fig. 4.2 and 4.3. The non-load-bearing wall has less
resistance due to the absence of an overburden force as described
in Section 3.7. It is therefore connected to the load-bearing wall by
anchors. These anchors should for a reliable connection and should
be resistant against corrosion. If the anchors fail the non-load-bearing
wall has little resistance against lateral loading and can easily ’peel
off’ of the load-bearing wall. This type of failure has been reported
frequently after the Newcastle Earthquake, Australia. On top of the
load-bearing wall a wooden plank or steel truss can be placed which
is connected to the roof using nails or anchors and provide shear
resistance. Uplift of the roof is resisted using anchors (see Fig. 4.3).

Typical floor connections are depicted in Fig. 4.4 and 4.5. A
vertical component is placed to prevent the wall to translate in hori-
zontal direction, however this component is not applied everywhere.
Between the URM wall and the floor a Damp Proof Course (DPC)
is added which prevents water damp from entering the wall. This
has some friction resistance with the floor. Beyond the mortar the
connection provides no extra moment resistance.
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Figure 4.1: Internal partition wall ceiling
connection detail

Figure 4.2: Cavity wall roof connection
with inner wall as load-bearing

Figure 4.3: Cavity wall roof connection
with outer wall as load-bearing

Figure 4.4: Connection wall with inter
story floor

Figure 4.5: Connection wall with ground
floor



5
Experimental Research

Unreinforced masonry is a very old building material. As such is
has been used over the centuries and building guidelines developed
by trial and error. When research was preformed on URM walls it
was mostly statically loaded. Since quasi-static response can differ
quite a bit from dynamic response also dynamic tests have been
performed. The first being ABK (1984) which indeed proved the
difference between quasi-static and dynamic loaded walls. Bariola
et al. (1990) found that after cracking the stiffness of a wall degraded
resulting in a different dynamic response. Main result of all the
experimental studies is that dynamic loaded URM walls have a greater
capacity than what is found from quasi-static experiments.

The two tests that will be discussed in this chapter are test on one
and two-way bending. Both are well documented and thus will serve
good for experimental validation.
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5.1 Doherty tests, Dynamic One-way Bending

The goal of the tests performed by Doherty (2000) is "physical under-
standing underlying one-way dynamic bending". Shaking table tests
have been performed at the University of Adelaide. From this point
these test will be referred to as the Doherty tests.

Figure 5.1: Dimensions of a standard
brick in Doherty tests, from (Doherty,
2000).

Fourteen URM walls are tested in this experimental program.
Eleven had dimensions of 1500 x 110 mm (height x thickness) and
three a thickness of 50 mm to get a more realistic slenderness ratio of
30. The width is not specified, but since one-way spanning walls are
examined this is not relevant. The specific weight of both types of
walls have been determined at 1800 and 2600 kg/m3 respectively.

The bricks used have dimensions 230 x 110 x 76 mm (width x
thickness x height) and have three holes with a diameter of 45 mm,
see fig. 5.1. In the thinner walls bricks of 230 x 50 x 33 mm are used.
The mortar used is made up of a mix 1:1:6 (cement : limestone : sand).

The material parameters are determined from several two-brick,
five-brick prisms and 100 x 100 x 100 mm cubes which were con-
structed during fabrication of the walls. From bond wrench and
compressive tests the material parameters as presented in Table 5.1
are determined.

Material parameter Symbol Mean value St. dev.

(in MPa) (in MPa)

Flexural tensile strength masonry fm;t 0.49 0.15

Youngs modulus masonry (110 mm) Em 9,400 5,322

Youngs modulus masonry (50 mm) Em 8,250 2,192

Compressive strength masonry (110 mm) fm;c 13.4 1.64

Compressive strength masonry (50 mm) fm;c 26.5 0.28

Compressive strength mortar fmor;c 5.17 -

Table 5.1: Material properties of Doherty
tests, (Doherty, 2000)

Using a shaking table accelerations are imposed at the base of the
wall. A steel frame was made to mimic the effect of the shear walls
and floors and their dynamic filtering effect, as explained in Section
2.3. This results in an in-phase excitation at the top and the bottom of
the URM wall.

The wall is simply supported at both top and bottom. In Fig. 5.2
the top support in sketched. It can be seen that the two steel angles
with small rubber strips indeed allow rotation and small vertical
displacements but prevent significant horizontal displacements.

Figure 5.2: Top support with axial force
imposed by springs, (Doherty, 2000).

The axial force at the top of the wall is applied with six springs.
Since the top can rotate a small vertical displacement can also occur.
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This causes an increase in the force in the spring. Doherty (2000)
explains that a significant increase in the vertical imposed force is
overcome by selecting springs accordingly. This can mean two things,
either springs with a non-linear force-displacement relationship have
been selected or the increase of force per mm is very small. For the
50 mm wall this indeed resulted in a acceptable change of the vertical
force of ± 5%. For the 110 mm wall the vertical elevation is bigger
and so is the vertical force, which makes the increase only acceptable
up to 20% displacement at mid-height of the wall.

As can be seen in Fig. 5.2 with rotation the vertical force also is
shifting towards the compressive part of the cross-section. This is in
line with the real situation.

Measurements are recorded using acceleration and displacement
instruments. These are placed at specific points on the test rig, see
Fig. 5.3. LVD and LVDT are instruments to measure displacements,
ACCEL instruments measure accelerations.

Figure 5.3: Test rig Doherty tests with
instrumentation, (Doherty, 2000).

Harmonic, pulse and transient excitations are performed to
find physical and dynamic behaviour of the URM walls. Also static
pushover and free vibration tests are undertaken for more data on the
walls, as well as to compare the results with other experimental data.
The results are presented in tables and figures by Doherty (2000).

ARUP analysed the results of Doherty and concluded from the
Nahanni earthquake data that the acceleration are inconsistent with
the displacements and therefore cannot be used. (This is checked in
the main part of this master’s thesis and found to be wrong.)

In Fig. 5.4 results for specimen 12 with 66% El Centro excita-
tions are presented. These results seem most reliable and should be
modelled first.
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Figure 5.4: Results of transient excitation
test - 66% El Centro, (Doherty, 2000).
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5.2 Griffith tests, Quasi-static Two-way Bending

The Griffith tests aim to "provide a basis for the development of a non-
linear inelastic hysteresis model for masonry in two-way bending"
and are well presented by Griffith et al. (2007).

Figure 5.5: Dimensions of a standard
brick in Griffith tests, from (Griffith
et al., 2007).

Eight unreinforced masonry walls were subjected to cyclic
static face loads. The walls were supported at all edges, this way
the walls bend in both horizontal and vertical direction, which is a
representation of a wall in a building supported by two shear walls
and a top floor. The walls are full scale and have different dimensions
with window openings.

The bricks used have dimensions 230 x 110 x 76 mm (width x
thickness x height) and have ten small holes, see Fig. 5.5. The mortar
used is made up of a mix 1:2:9 (cement : limestone : sand).

The material parameters are determined from small-scale ma-
sonry specimen and are presented in Table 5.2.

Material parameter Symbol Mean value CoV

(in MPa)

Lateral modulus of rupture brick fb;ut 3.55 0.27

Youngs modulus brick Eb;m 52,700 0.35

Flexural tensile strength masonry fm;t 0.614 0.19

Youngs modulus masonry Em 3,540 0.41

Compressive strength masonry fm;c 16.0 0.14

Table 5.2: Material properties of Griffith
tests, (Doherty, 2000)

Figure 5.6: Test rig Griffith tests with
instrumentation, from (Griffith et al.,
2007).

Using airbags a face pressure is imposed over the full area of the
wall. The airbags are placed on both sides to simulate the cyclic
loading through inflation and deflation.

Most walls are supported with a simple support at both top and
bottom and with fixed support on the sides. The simple supports are
constructed of steel angles to make rotation possible. Less attention is
paid to the influence of the vertical applied force during big rotations.
At the bottom steel members provide lateral support. The sides are
fixated by two shear walls which give not a rigid moment support
but moments can be transferred.

Figure 5.7: Top support Griffith Tests,
from (Griffith et al., 2007).

Measurements are recorded using one displacement tool which
is most of the time located at the middle of the wall. Since at the
position of the instrument no load can be applied, less measurements
give more realistic results.

Cyclic static loads with an increasing character have been ap-
plied after an initial static strength test was applied. This static test
displaced the wall until 20 to 30 mm, which was enough to form a
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failure mechanism. The load application is displacement based. Two
different patterns are applied to see if one gives a better insight into
the hysteresis effects than the other.

Figure 5.8: Crack pattern wall 5 (outside
face), from (Griffith et al., 2007).

Griffith et al. (2007) report clear plots of the load-displacement
curves for all eight walls. Clear big hysteresis loops are found which
indicates a high dissipation of energy. Griffith et al. (2007) also report
that from these loops the equivalent viscous damping ratios were
derived and found to be between 13 and 18%.

Figure 5.9: Results of quasi-static cyclic
load test wall 3, (Griffith et al., 2007).

Figure 5.10: Results of quasi-static cyclic
load test wall 5, (Griffith et al., 2007).



6
Time-integration

6.1 Equations of Motion

A problem is defined by the equations of motion which can be derived
as explained in Section 7.4.

M q̈ + C q̇ + K q = f(t) (6.1)

This system of equations can be solved using an explicit or an implicit
time integration method. Most methods first rewrite the second order
differential equations into a set of first order differential equations.
This is the most robust method since any higher order problem can be
reduced to a first order problem and solved by simple time-integration
methods.

6.2 Explicit integration

In explicit methods the solution of the next time step is only a function
of the previous time steps. To find the solution at the next time step an
algebraic function needs to be solved. An example of such a method
is the Forward Euler method.

wn+1 = wn + (tn+1 − tn) f (wn, tn) (6.2)

Where the function f is the derivative of y, and w is the approximation
of y. Other examples of explicit methods are Modified Euler, Runge-
Kutta and Central Difference method. The latter is implemented in
the LS Dyna software which is used by ARUP.

6.3 Implicit integration

In implicit methods the solution of the next time step is also a function
of the next time step. To find the solution a system of equations
needs to be solved. This requires more computations then solving an
algebraic function. However, implicit methods have a better numerical
stability, which makes it possible to choose from a big time steps and
still obtain a convergent result. An example of such a method is the
Backward Euler method.

wn+1 = wn + (tn+1 − tn) f (wn+1, tn+1) (6.3)
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Other examples of implicit methods are the Trapezium method,
the Newmark method and the Hilber-Hughes-Taylor method, which
is a special version of the Newmark method and is implemented in
DIANA.

For both methods it is possible to find the global and local error
as well as the convergence criteria. This determines if a numeri-
cal solution method is stable, in other words converges to the real
solution.



7
Methods for Structural Analysis

An unreinforced masonry wall can be analysed with quite some dif-
ferent analytical and numerical methods. Generally, the numerical
methods can be split in two types, micro and macromodelling. Micro-
modelling is looking at the individual components and really trying
to model the physical properties. Macromodelling is looking from
a more phenomenological point of view were the behaviour of the
masonry as a whole is attempted to be modelled.

In this chapter, six methods are examined which can be of used
for the modelling of unreinforced masonry walls loaded out-of-plane.
At the end of the chapter the methods are compared.

The methods discussed in this chapter are:
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7.1 Yield Line Theory

Figure 7.1: Visualisation of Yield Line
Theory

The yield line theory is an analytical method to determine the upper-
bound ultimate resistance of, in this case, a masonry wall loaded
out-of-plane. An important assumption for the validity of this model
is the ductility needed to let a yield pattern develop. This model
has originally been proposed by Losberg and Johansson (1969). The
method explanation and the prove of ductility explained below are
obtained from Brinker (1984).

Figure 7.2: Laterally loaded masonry
wall with oblique and horinzontal yield-
lines, (Brinker, 1984)

Brinker (1984) experimentally studied the stress-strain relation-
ship and moment capacity of horizontal and oblique yield lines for
different material combination. A pattern of horizontal and oblique
yield lines can be found in Fig. 7.2. It was assumped that the masonry
had no tensile strength. The plastic behavior shown in Fig. 7.3 clearly
shows that masonry has enough ductility to use the yield line theory.

Figure 7.3: Stress-strain relationship s∗1 ,
φ11 and s∗2 , φ21 together with contri-
butions from bending alone, (Brinker,
1984)

The moment capacity of yield lines determine the ultimate lateral
load on the masonry. The horizontal and oblique yield lines are
treated separate, for the oblique lines a further distinction is made
between bending and torsion. For bending over the horizontal and
oblique yield lines, no material dependency was found. The moment
capacity can be calculated using the following formula’s for horizontal
and oblique lines respectively.

M =µ0K M1 =µ1K2 (7.1)

Where µ are friction parameters and K are the axial loads applied.
For the torsion moment over the oblique yield lines the cohesion is of
significant influence and so the moment can be found as,

M2 = c + µ2K2 (7.2)

The friction parameter for bending is not dependent on material
parameters, for torsion it is.

To conclude Brinker (1984) acknowledges that this method is more
of a qualitative use than of a quantitative use. However the ductile
behaviour proves that is is allowed to use the yield line theory to find
an upper-bound value of the moment capacity.
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7.2 Linearised Displacement Based Analysis

Figure 7.4: Visualisation of Linearised
Displacement Based Analysis

Force-based calculations used in practise underestimate the capacity
of URM walls, which do have ductile capacity. Goal of this analysis
method is to develop a linearised substitute structure which is able to
mimic the non-linear behaviour of the URM wall and thus provide a
quick way to account for the ductility. From the substitute-structure
method originally proposed by Shibata and Sozen (1976), Doherty
et al. (2002) proposed a simplified method to find the parameters of an
appropriate substitute-structure from a tri-linear force-displacement
relation.

Figure 7.5: Inertia forces and reactions
on rigid URM walls. Simply-supported
wall at incipient rocking and point of
instability, (Doherty et al., 2002)

Starting with a rigid block assumption the force-displacement
relation can be derived. Two stages are examined, the moment at
which a mechanism is formed and the moment of instability. For the
situation where the wall is simply supported, as pictured in Fig. 7.5.
From these stages the force-displacement relation can be obtained,
see Fig. 7.6.

From this relation the tangential stiffness can be found as well as
the average secant stiffness over a loading cycle. From experimental
Gaussian pulse tests the average secant stiffness is found to be a
good approximation for the average stiffness of the wall. With this
approximate stiffness, the natural frequency can be determined.

Figure 7.6: Force-displacement relation-
ship of deformable URM walls, (Doherty
et al., 2002)

If deformable blocks are assumed, a more realistic model is
obtained. The consequences of this deformability leads to a bending
(displacement) of the wall before cracking and a smeared rotation
area, instead of a infinitely thin rotation line. This results in a smooth
force-displacement relationship, given in Fig. 7.6, which can be
approximated with a tri-linear relationship. Like with the rigid blocks,
the average secant stiffness can be used as an approximation for the
average stiffness and with it the natural frequency can be found.

A substitute-structure is composed to mimic the non-linear
behaviour of the original wall. A good approximation is found when
the same ultimate displacement is found for the same imposed accel-
erations. To reach this effect the constant stiffness of the linearised
substitute-structure is set equal to the average stiffness of the tri-linear
force-displacement relation and the ultimate displacement is defined
as the displacement for which the wall becomes unstable.

[2em]
Figure 7.7: Characteristic linear
substitute-structure stiffness for dis-
placement analysis, (Doherty et al.,
2002)

To verify the model numerical analyses are performed with a non-
linear time history method (THA), a quasi-static method (QS) and the
linearised displacement based method (DB). Although the variation
between THA and DB can be 50% it out performs the force based QS
method, which can have an error an even bigger error especially for
high frequencies.
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7.3 Equivalent Frame Method

Figure 7.8: Visualisation of Equivalent
Frame Method

The equivalent frame method is developed with the objective to reduce
the computational costs and complexity but still obtain accurate and
applicable results. The method uses one dimensional elements to
describe a system of piers and spandrels of which a wall is build up,
see Fig. 7.9.

Figure 7.9: Idealisation from facade com-
ponents to 1D elements, (Lagomarsino
et al., 2013)

Figure 7.10: Example of a full building
modelled with 1D elements, (Roca et al.,
2005)

The finite element implementation is explained in detail by
Roca et al. (2005). In this approach Timoshenko beam elements are
used with two nodes, each six degrees of freedom. Explained is how
the initial stress state and the applied forces over the beam contribute
to the stress vector at a certain cross-section. Through a stiffness
matrix these stresses are related to the strains which determine the
deformation of the beam and finally the displacement of the end
node.

A Timoshenko beam element is used to realistically model the
deformation of wide, low walls where the deformation is primarily
governed by shear.

Three numerical simulations, of which one pictures in Fig. 7.10,
are performed to show the accuracy and applicability of the frame
equivalent method. From the three tests it can be concluded that
the method is able to predict the global failure modes in a good and
accurate way. It can also predict the ultimate capacity of the model
although this is less accurate.

Figure 7.11: Simplification of TREMURI
implementation, (Lagomarsino et al.,
2013)

The TREMURI program implementation of this method explained
by Lagomarsino et al. (2013) shows an even further simplification. In
this program the number of degrees of freedom per node is reduced
to three, two displacements and one rotation in-plane, see Fig. 7.11.
This means that the model can only be used for in-plane simulations.
It is assumed that local out-of-plane failure is prevented by following
conservative design rules given by codes, such as good connections
and minimal slenderness ratios.

This reduces the applicability of the program for a lot of exist-
ing structures since these are not designed by these design rules.
Especially for out-of-plane failure which starts local but can have
significant impact on the global structure.

The accuracy of the equivalent frame method is found to be suf-
ficient in situations where local failure mechanisms are prevented.
The method is able to correctly predict the global failure mechanism.
Lagomarsino et al. (2013) reports from a validation with an experi-
ment that the accuracy is high in the linear regime but the method
overestimates the resistance by approximately 20% in this case.
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7.4 Rigid Element Method

Figure 7.12: Visualisation of Rigid Ele-
ment Methods

Casolo (2000) has developed a model suitable for dynamic analysis
specifically for walls which are governed by out-of-plane behaviour.
The goal of this model is to reduce the number of degrees of freedom
for investigating the effects of varying certain structural parameters.
Since out-of-plane behaviour is governed by stiffness and strength
degradation these effects are described in an orthotropic constitutive
model.

Figure 7.13: Discretization with four
square elements subjected to pure flex-
ural bending (top), and pure twisting
(bottom), (Casolo, 2000)

Figure 7.14: Hysteresis behaviour of the
connection joint, (Casolo, 2000)

Rigid quadrilateral elements are used to describe a wall. These
elements are connected using spherical hinges at the mid-side nodes
of the quadrilateral elements. These hinges are subjected to bending
and twisting between the two elements, see Fig. 7.13. The elastic and
plastic behaviour are defined by a moment-curvature relation which
is enforced in the hinges.

The deformation of each elements can be described using three
parameters with which the lateral displacement of the element is
defined. When the internal compatibility and external constraint
equations are applied the total number of degrees of freedom reduces
to less than the number of elements.

The consititutive relations are obtained from the masonry
behaviour as explained in Chapter 3, with the hysteresis effects as
explained in Section 3.5. Since rotation springs are used between the
elements, the relation has the form of a moment-curvature diagram.
The bending moment out-of-plane has an equal behaviour in both
positive and negative direction, see dotted line (skeleton) in Fig. 7.14.
Until the points E− and E+ the behaviour of the joint will be linear,
after this cracks form and the skeleton of the curve will be followed
until unloading sets in. The unloading is derived as a function of the
maximal and minimal displacements, and a constant. Using smart
algorithms, this relationship is completely enforced and the hysteresis
behaviour is successfully modelled.

The absolute value of the points in this relationship are dependent
on the orientation of the joint (head or bed joint) and the direction of
the moment (twisting or bending).

The dynamic loading is modelled using the Euler-Lagrange equa-
tions of the problem. These are composed by means of the first
variation of virtual work.

Both the degrees of freedom q̈ as well as the imposed accelerations
due to the earthquake g̈ affect the inertia of the structure. The first
variation of the kinetic energy equals (Casolo, 2000),

∂T = −(M q̈ + G g̈)T ∂q (7.3)

The constitutive relations are captured using the stiffness matrix
which is dependent on the history of the curvature as well as the



34 literature review

maximum sectional moment as previously described. Possible initial
moments between the nodes are also considered. The first variation
of the potential elastic energy equals, (Casolo, 2000),

∂Ve = −(f0 + K ∆q)T ∂q (7.4)

Damping is considered to account for the effects of energy dissipa-
tion. A constant viscous damping is assumed which is proportional
to the generalized mass matrix C = a0 M. This is a form of Rayleigh
Damping with a zero parameter for the proportionality to the gener-
alized stiffness matrix. The first variation of the potential damping
energy equals,

∂Vd = −(C q̇)T ∂q (7.5)

Equations 7.3-7.5 are assembled, resulting in,

M q̈ + C q̇ + K ∆q + f0 = −G g̈ (7.6)

With this system of equations expressed in the generalized degrees
of freedom the problem is defined. The implicit method of Newmark
is used to solve the system of equations over time. Newton-Raphson
iterations are applied to solve the system at every time step.

The assembly of the Euler-Lagrange equations is not specific for
this method and is applied on other methods as well.

Figure 7.15: Rigid element discretization
of Church of Transfiguration, Moggio
del Friuli, Italy; 114 elements; position
of point A, (Casolo, 2000).

A numerical verification of the rigid element method compared
with a finite element method on the front faÃğade of a damaged
church is performed. The front faÃğade is modelled using 114 rigid
elements, Fig. 7.15 shows the discretization. The finite element model
uses 1010 elements. The resulting displacement of point A on the
faÃğade are presented in Fig. 7.16. This clearly shows a very good
resemblance. Therefore it can be concluded that the model is suitable
for investigation of parameter influences.

Figure 7.16: Comparison of the lin-
ear elastic response of the rigid ele-
ment model versus the finite element
model. The displacements are evaluated
at point A of Figure 8, (Casolo, 2000).
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7.5 Multisurface Interface Model

Figure 7.17: Visualisation of Multisur-
face Interface Model

Another variant of micromodelling is the Multisurface Interface Model
developed by Lourenco and Rots (1997). In this method all the plastic
deformation occurs in interface elements which are placed between
and within the bricks, see Fig. 7.18. In this way, the numerical model
is simplified and behaves more robust, which makes it possible to
follow the load path after cracking.

Figure 7.18: Discrete modelling of ma-
sonry. Bricks as elastic elements and
mortar and potential brick crack lines as
interface elements, (Lourenco and Rots,
1997).

The interface elements are placed between the bricks and have
zero thickness. They mimic the mortar behaviour and the mortar
brick interaction and therefore, must be able to fail in tension, shear
or compression, failure modes (a), (b) and (e) of Fig. 3.5. With a
two-dimensional Mohr-Coulomb stress criterion with an additional
compression cap this is possible.

This "Interface Cap Model" is presented in Fig. 7.19. As can be
seen from the diagram hardening and softening is possible. Using
return mapping algorithms (backward Euler) the stress at an interface
can be determined and if needed brought back to the yield surface. If
the stress is on the yield surface the interface element yields and the
strain increases.

Figure 7.19: Interface Cap Model,
(Lourenco and Rots, 1997).

The softening stress strain relations for the shear and tension
modes are according to Van der Pluijm (1997)’s experiments. For both
modes a yield criterion is defined as well as a softening law. Both
modes are coupled for the post peak regime, if softening sets in in
one of the modes, the other mode softens with the same proportion.

The validation of experiments with the Interface Cap Model for
in-plane URM walls show that these a in good agreement for ultimate
strength and behaviour. Lourenco and Rots (1997) also report a very
good convergence both globally and for the return mapping to the
yield surface.

Out-of-plane modelling is possible with the help of this method
if the stress over the thickness of the lateral direction can be computed
using shell elements and seven-point Simpson integration or with
help of three-dimensional elements.

A three-dimensional interface model has been developed by Aref
and Dolatshahi (2013) to attain a better understanding of masonry
behaviour under cyclic loads. Lourenco and Rots (1997)’s cap yield
surface is not applied since in experimental research it has been found
that due to its limited thickness the mortar has high confining stresses
and the mortar is therefore not damaged.

A stiffness degradation model is applied by Aref and Dolatshahi
(2013) where the relation between the plastic and the elastic strain is
kept constant.
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7.6 Anisotropic Continuum Model

Figure 7.20: Visualisation of Anisotropic
Continuum Model

Lourenço (2000) also proposed a continuous way to model masonry
structures. The Anisotropic Continuum Model tries to find a compro-
mise between simplicity (of the material properties and the degrees
of freedom) and accuracy. This is possible since, in practise, the
interaction between bricks and mortar modelled in the Multisurface
Interface Modelling approach is not needed to make an engineering
judgement about the behaviour of the masonry structure as a whole.
Therefore the Anisotropic Continuum Model combines the material
and geometrical properties of the mortar and bricks into effective
material parameters. The effective material properties of the masonry
wall are dependent on the masonry orientation (Sec. 3.1) and the
material properties (Sec. 3.2).

Figure 7.21: Cracked elements, from
course CIE5148 (Hendriks and Rots
2012).

A smeared cracking approach is applied in this model to simplify
the numerical implementation. This means that a crack (or crushing)
is smeared out as if it were a plastic strain a over part of the element.
On the integration points in the element the stress is computed. If the
stress state at the integration point exceeds the yield criterion obtained
from the constitutive relationship part of the element belonging to that
integration point is considered to be cracked. The crack opening is
then smeared out over the element as a plastic strain. The orientation
of the crack is in the direction normal to the principal stress. An
element with a cracked integration point is depicted in Fig. 7.21.

Figure 7.22: Orientation of the stress
state dependent on the masonry orienta-
tion, from (Lourenço et al., 1998).

Lourenço et al. (1997) developed this model for plane stress
elements in which the assumption is made in which σz = 0, where
z is the thickness direction of the wall. For these elements the strain
and strain vectors are,

σ =
[
σx, σy, σz, τxy, τyz, τxz

]T (7.7)

ε =
[
εx, εy, εz, γxy, γyz, γxz

]T (7.8)

Since the orientation of the masonry is of importance, the stress
components are orientated along the primary axes of the masonry,
see Fig. 7.22.

The elements can have different layers over the thickness in which
the stress situation is examined. These layers are created using seven-
point Simpson integration. This is especially important for out-of-
plane bending in which the stress distribution over the element deter-
mines the moment capacity of the wall. In the layers the multi-axial
stress state is considered. Two yield criteria are enforced to model
the behaviour of URM masonry. For tension a Rankine-type criterion
and for compression a Hill-type criterion. These criteria are derived
from the originals to make them dependent on the effective mate-
rial parameters in the two orthogonal directions along the material
orientation.

The Rankine-Type Criterion describes the yield criterion for the
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tensile behaviour. Assumed is that the cracks are only normal to
the middle layer. This means that the shear stresses in the thickness
direction are not used. Diagonal cracks are not possible, but stepped
crack patterns are. After cracking an exponential softening law is
applied for both masonry orientations with independent fracture
energies. The criterion reads,

Figure 7.23: Composite yield crite-
rion with iso-shear stress lines, from
(Lourenço, 2000).f1 =
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where,
σ̄tx(κt), σ̄ty(κt) = yield values

ftx, fty = uni-axial tensile strengths

τu,t = pure shear strength in tension

h = standard equivalent length of elements

G f tx, G f ty = fracture energies

κt = softening factor

The Hill-Type Criterion describes the yield criterion for the com-
pressive behaviour. After the yield criterion is reached first a parabolic
hardening behaviour is applied, after which parabolic/exponential
softening sets in. The criterion reads,

f2 =
σ̄cy(κc)

σ̄cx(κc)
σ2

x + βσxσy +
σ̄cx(κc)

σ̄cy(κc)
σ2

y+

fcx fcy

τ2
u,c

(τ2
xy + τ2

yz + τ2
xz)− σ̄cx(κc)σ̄cy(κc) = 0 (7.12)

where,
σ̄cx(κt), σ̄cy(κt) = yield values

fcx, fcy = uni-axial compressive strengths

τu,c = fictitious pure shear strength in compression

κc = hardening/softening factor

Experimental validation was provided by Lourenço (2000) using
an experiment of Gazzola et al. (1985). In this study five panels, which
are constrained at four edges, are loaded with a face load using air-
bags. No information was available on the load-displacement relation
but the failure load was approximated with an extreme error of 13%.
This was probably due to the fact that parameters which were not
available were estimated.
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7.7 Comparison of methods

The methods described in this chapter are compared along the follow-
ing aspects: number of degrees of freedom (DOF) (estimate for one
wall), accuracy, possibility to model in-plane and out-of-plane failure
mechanisms and possibility to apply the method to a full building.
These aspects form the basis of a comparison with which it should be
possible to form a statement about the modelling of a URM wall in
out-of-plane bending.

The yield-line theory gives an upper-bound estimate of the ca-
pacity of a URM wall. Although Brinker (1984) states that tensile
and compressive strength do not influence the capacity, this is highly
doubtable. Doherty (2000) states that the wall can have more resis-
tance after cracking or ’yielding’. He defines this as the semi-rigid
threshold (Section 3.7). Lourenço (2000) states that a yield-line anal-
ysis is not suited for masonry structures since a typical yield-line
pattern can only be observed at the ultimate failure, while at peak
load a distributed crack pattern is visible.

The linearised displacement based analysis uses a substitute
single degree of freedom structure as an approximate for the total
wall. This method requires the load-displacement curve of the original
structure. which is mostly unknown, and is only applicable to struc-
tures which can be reduced to one degree of freedom. The method
is therefore hard to scale to a full size structure with multiple walls,
floors, windows and piers. This method also gives highly unreliable
results with errors up to 50%. Due to the linear nature of the substi-
tute structure computation costs are low. This method can account
for the geometrical non-linear effect of the applied overburden via
the semi-rigid resistance threshold. The other finite element methods
do not account for this shifting of the overburden.

The equivalent frame method has a better applicability. It can
model structures as a whole and makes cleaver use of knowledge
about the behaviour of URM walls to model the components which
stay together after failure or have a specific failure mode, for instance
piers which can fail in shear, slip or toe crushing. This way failure
mechanisms can realistically be modelled. The TREMURI implemen-
tation adds an extra simplification, it reduces the degrees of freedom
to in-plane displacements, cancelling the lateral displacement and
out-of-plane rotations. A single wall, like in the Doherty tests, can
still be modelled using one-dimensional elements. However, two-way
bending or scaling to a full structure will give problems.

The rigid element method looks like a promising alternative. It
models the wall as a set of elements connected with rotation springs.
It could be seen as a simplification of the multisurface interface model,
with bigger elements and only out-of-plane degrees of freedom. This
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simplification makes the method only applicable for out-of-plane
problems and thus modelling of a full building is not possible. This
method does use damage parameters. It does give results which
are comparable with the finite element method with nine times less
degrees of freedom.

The multisurface interface model gives a micromodelling ap-
proach to the URM problem. The model is able to capture all failure
modes and is therefore more realistic. Unloading and reloading
however is not realistically modelled. The number of interfaces and
elements require a lot of degrees of freedom. This drastically increases
the computation costs especially when an implicit time-integration
method is used, since this requires the solution of the system as a
whole. This reduces the scalability of the method.

The anisotropic continuum model uses continuum elements
and a smeared crack approach. Although locally all failure modes
can occur the smearing of this effect over the element gives a different
local effect than the discrete modelling approach. Therefore the
results are only of interest when the structure as a whole is observed.
For unloading and reloading DIANA uses a secant stiffness, which
is not realistic since it does not account for plastic deformations.
Advantage of this method is the reduction of degrees of freedom and
no need to predefine cracks. This method is of particular interest if a
large structure is observed or the cracks are widely spread over the
structure.

Method DOF’s Accuracy Failure mechanisms Full building model

Yield Line Theory 1 Low OP Not possible

Linearised DB Analysis 1 Low OP / IP Not possible

Equivalent Frame Method 6 Medium OP / IP Possible

Rigid Elements 100 Medium OP Not possible

Multisurface Interface Model 900 Very high IP + OP Possible

Anisotropic Continuum Model 500 High IP + OP Possible

Table 7.1: Ranking of methods in accu-
racy and computational costs, and ap-
plicability for Out-of-plane (OP) and/or
In-plane (IP)

For the modelling of a URM wall with out-of-plane bending
the local effects would be of interest. Especially when the strength of
the current situation is examined an accurate model is wanted. The
anisotropic model would be a good choice however with dynamic
implicit time-integration and a full scale building this method has very
high computational costs. Therefore the continuum model is more
preferable. Two effects can be implemented to give more accurate
results; 1) The geometrical non-linear effect of shifting overburden
force and 2) the use of damage parameters to find the unloading and
reloading stiffness.
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Conclusion

Unreinforced masonry walls loaded to out-of-plane earthquakes are
weak points of URM buildings and provide a real threat to people
when failure commences. However, a relative low number of experi-
mental studies have been performed in this area of seismic design.

For the case of Groningen were earthquakes are becoming
more frequent and more powerfull the need for a reliable and quick
analysis method is growing. The Doherty out-of-plane benchmark
will be analysed as a part of the Groningen research program. This
analysis will be performed by TU Delft, EUCENTER and ARUP and
later cross validation of the methods will be performed. The other two
institutes will use TREMURI, which is an Equivalent Frame Method
and LS-Dyna, which is based on the Multisurface Interface Model
and uses explicit time-integration.

In the present study DIANA is used with the Anisotropic Con-
tinuum Model and implicit time-integration to model a URM wall.
From this literature review it can be concluded that hysteresis loops,
which are dependent on unloading and reloading stiffness and geo-
metric non-linearities relating the applied force and the location of
the support, are important for simulation. The goal of this research
is to model a URM wall in an efficient and accurate manner. The
research questions are:

• Can a URM wall in out-of-plane bending due to earthquake excita-
tion be modelled with the Anisotropic Continuum Model?

• Does the use of damage parameters for the unloading and reload-
ing improve the accuracy of the hysteresis effect for a URM wall in
out-of-plane bending?

• Can shifting of the overburden force due to non-linear effects be
applied to improve the accuracy of the post-peak behaviour for a
URM wall in out-of-plane bending?





Nomenclature

g̈ Imposed accelerations

q̈ Generalized accelerations

q̇ Generalized velocities

C Generalized damping matrix

f0 Generalized forces

G Participation matrix

K Generalized tangential stiffness matrix

M Generalized mass matrix

q Generalized displacements

T Kinetic energy

Vd Potential damping energy

Ve Potential elastic energy

Em Youngs modulus masonry

fm;c Compressive strength masonry

fm;t Flexural tensile strength masonry

fmor;c Compressive strength mortar





Acronyms

DOF degrees of freedom. 38

DPC Damp Proof Course. 19

IP in-plane. 39

OP out-of-plane. 39

URM unreinforced masonry. 5
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Introduction

The behaviour of unreinforced masonry walls can be described
by it’s geometric and physical non-linear behaviour. To come to
a good understanding of both influences a systematic approach
has been chosen in which complexity of the model is gradually
increased. This way the validity of the final model can be proven.
The resulting series of models, the results and the challenges that
came with them are presented in this document.

In the first models the physical behaviour is of main importance.
From a theoretical stress strain relationship the force-displacement
relation is derived. This is validated with the second finite element
method which has a discrete cracking material model applied to it.

The geometric non-linear behaviour of the cracked unreinforced
masonry wall described by Doherty as ’rocking bodies’ is modelled
in the third model. Two bodies can be observed with a cracked
cross-section in between. This is modelled using two rigid beams
connected by a set of elements representing the cracked cross-
section. This set of elements only allows movement of the two rigid
bodies as if they were rocking.

In the final three models the physical and the geometrical be-
haviour are combined and the wall is loaded with accelerations
from Doherty’s experiment. The results are presented and dis-
cussed to finally validate the model and use it for comparison
purposes.
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Overview of models
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Figure 1: Overview of numerical
models investigated in this study.

(a) Physical Non-linear Spring Model

(b) Discrete Crack Model

(c) Geometric Non-linear Spring
Model

(d) Physical and Geometrical Non-
linear Interface Model

(e) Plane Strain Model

(f) Curved Shell Model



1
Experimental Details

In 1998 Kevin Doherty tested 14 unreinforced masonry brick walls
on the out-of-plane bending resistance. He subjected these walls
to quasi-statically imposed horizontal displacement, pulses as
well as transient excitations. The goal of this thesis is to use this
experiment to validate a numerical model made with the finite
element package DIANA from TNO Diana. For this purpose it is
important to have a thorough understanding of the experiment
conducted. The following points are of importance: geometry,
material properties, experimental setup and boundary conditions,
loads, instruments and their resulting data.

Figure 1.1: Out-of-plane wall test setup and instruments.
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1.1 Experimental setup

In Fig. 1.1 the experimental setup is shown. The experiments (quasi-
static push test and transient excitations) were performed on the
wall supported by a steel frame. Doherty reports that the frame
has a significantly higher stiffness and thus also a higher frequency
than the wall. This can also be concluded from the acceleration
and displacement results from the table and the top of the frame
presented in Sec. 1.5. These are comparable and small differences
are insignificant to the excitations of the wall itself.

The results of Doherty’s tests where recorded using 9 instru-
ments, which are depicted in Fig 1.1, of which five measure the
acceleration and four the displacement relative to the steel frame or
the rigid surrounding.

1.2 Boundary conditions

Figure 1.2: Top support.

Figure 1.3: Bottom support.

The connections are pictured in Fig. 1.2 and 1.3. At the bottom con-
nection the wall is positioned on a damp proof course (DPC) which
is used to keep damp out of the wall and provides some friction
between in floor and the wall. The top connection is clamped with
two angle cleats and two rubber strips (red in the picture). These
restrict the horizontal movement of the wall but allow some rota-
tion. Since it is unknown how much rotational freedom is allowed,
full rotational freedom is assumed. On top an overburden rig is
attached which can exert a vertical force on the wall and gives some
resistance against vertical deformation of the wall due to rotation
about the cracks. It consists of a horizontal plate which connects to
the wall and a set of springs that connect to the steel frame.

1.3 Geometry

Doherty has tested two sets of walls. Most of the specimen have a
thickness of 110 mm but to get more realistic height over thickness
ratio’s also specimen with a width of 55 mm were tested. The data
set obtained at the start of this thesis consists of results for speci-
men 8, 12, 13 and 14. Their geometrical properties are presented in
Table 1.1.

Specimen Height Width Thickness

- h [m] b [m] t [m]

8 1.5 0.95 0.110

12 1.5 0.95 0.110

13 1.5 0.95 0.110

14 1.5 0.95 0.055

Table 1.1: Dimensions of specimen tested by Doherty.
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1.4 Material properties

Using several material tests Doherty determined most of the ma-
terial properties. For masonry these are sensitive to imperfections
in the wall. Some of the material tests were performed on actual
wall segments, but others on separate samples. This reduces the
accuracy of the data. For the specimen studied in this thesis the
material properties are given in Table 1.2.

Specimen Mass Density Youngs Modulus
Masonry

Compressive
Strength

Mortar
Compressive

Strength

Flexural Tensile
Strength

ρ
[
kg/m3] Em [MPa] fc [MPa] fc [MPa] ft [MPa]

8 1800 5,400 9.7 - 0.45

12 1800 11,600 15.7 - 0.30

13 1800 - 15.7 - 0.29

14 2300 6,700 26.7 - 0.76

Mean - 9,400 / 8,250 * 13.4 / 26.5 * 5.17 0.49

Stan. dev. - 5,322 / 2,192 * 1.64 / 0.28 * - 0.15

Table 1.2: Material properties of specimen tested by Doherty

* The mean values for walls of 110 mm
and 50 mm are presented separately.

1.5 Loads

The specimen are all loaded with different loads. In Table 1.3 the
loads applied on the different specimen are presented. Due to the
order in which the wall is loaded the wall has some damage prior
to the transient analysis. The state of the wall at the beginning of
the transient excitation tests is described by Doherty as new con-
dition (NEW), moderately degraded (MOD) or severely degraded
(SEV). These states are however not very helpful since no accurate
definition of them is provided. 1

1 The MOD condition is defined as
visible crack slightly rounded and the
SEV condition as mortar drop out and
crack significantly rounded.

Construction Lot
Specimen

No.
Overburden
[MPa]

Excitation
Signal

Wall
Condition

Tests Data
available

June98 8 0.15 - - Un-cracked Static Push Test X

September98 12 0 - - Un-cracked Static Push Test

0 100% NH NEW Transient Excitation X

0 200% NH NEW Transient Excitation X

0 300% NH NEW Transient Excitation X

0 400% NH NEW Transient Excitation X

0 66% EL MOD Transient Excitation X

September98 13 0 - - Un-cracked Static Push Test

0 66% PD NEW Transient Excitation X

0 80% PD NEW Transient Excitation X

0 100% PD NEW Transient Excitation X

0 66% EL MOD Transient Excitation X

September98 14 0 - - Cracked Static Push Test

0 100% NH MOD Transient Excitation X

Table 1.3: Loading of different specimen with availability of data, combination of
Tables 6.4.1, 6.4.10-11 from Doherty (2000). Nahanni (NH) and El Centro (EL) are
excitation signals applied as loading.
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Damian Grant from ARUP mentioned that the accelerations and
the displacements of the Nahanni (NH) data reported by Doherty
seem to be inconsistent. He reports that the El Centro (EL) data is
consistent. For the Nahanni data a large baseline shift is reported
which was not possible to remove.

To verify this the base and top accelerations from instruments 5

(TTA) and 6 (TA), see Fig. 2.3 are integrated twice and compared
with the displacements from the instruments 1 (TWD) and 4 (IN-
STRON) both for the El Centro 66% specimen 12 and Nahanni 100%
specimen 12 data sets.

A large baseline shift was indeed found for both input signals.
If these signals are used as input in DIANA and the absolute dis-
placements are outputted. The same baseline shifts are found, see
Fig. 1.4 and 1.8. These baseline shifts occur due to the unknown
integration constant which is again integrated. This is thus a con-
stant velocity and has no effect on the relative behaviour of the wall.
DIANA automatically filters this shift out and normally it thus is
no issue.

When differentiation is used this problem does not exist and ac-
curate results are found when comparing the accelerations with the
displacements, see Fig. 1.5 and 1.6, for frane and table accelerations
of El Centro signal and 1.9 and 1.10 for frane and table accelerations
of Nahanni signal. The Nahanni 100% specimen 12 show some
differences for the table accelerations however from numerical tests
it will be shown that the input results in similar midwall excitations
and thus the signal is consistent.
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El Centro 66% on specimen 12
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Figure 1.4: Integrated acceleration
signal compared with displacement,
with hand calculation and DIANA, for
El Centro 66% acceleration signal.
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Figure 1.5: Check acceleration of
the frame at the top of the wall for
specimen 12 with El Centro 66%
acceleration signal.
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Figure 1.6: Check acceleration of
the frame at the top of the wall for
specimen 12 with El Centro 66%
acceleration signal.
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Nahanni 100% on specimen 12
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Figure 1.8: Integrated acceleration
signal compared with displacement,
with hand calculation and DIANA, for
Nahanni 100% acceleration signal.
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Figure 1.9: Check acceleration of
the frame at the top of the wall for
specimen 12 with Nahanni 100%
acceleration signal.
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Figure 1.10: Check acceleration of
the frame at the top of the wall for
specimen 12 with Nahanni 100%
acceleration signal.

Time (s)
0 2 4 6 8 10 12

D
is

pl
ac

em
en

t (
m

)

×10-3

-6

-4

-2

0

2

4
Comparison Displacements - Specimen 12 - NH100%

Table displ.
Frame displ.
Slip displ.
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2
Physical Non-linear Spring Model

The first and simplest model of the URM wall in out-of-plane
bending consists of two elements and a rotational spring and is
a simplification of the method of Casolo, where the elements are
rigid and all the deformation is lumped in the spring. The model is
depicted in Fig. 2.1. The main goal of this model is to get a better
understanding of the material behaviour of the masonry.

The spring should, with the two connected elements, mimic the
behaviour of a wall in out-of-plane bending. This includes elastic
deformation of the wall as well as deformation due to cracking.
The axial force on the top of the wall does play a big role when
geometric effects are considered since the arm of this force to the
point of rotation is dependent on the deformed state of the wall.
However in this model only the effect of the axial force on the
physical resistance of the wall is considered. In later chapters the
geometric effects are taken into account.

The behaviour is lumped in the rotational spring for which a non-
linear stiffness is derived using a material model based on fracture
energy. The resulting relationship is linearized and implemented in
DIANA using the user-supplied subroutine for springs.

u

Rotational spring (SP2RO) 
User-Supplied Subroutine
Rotation around z-axis

Curved Bending Beam (CL9BE)
Rigid

y

xz

Figure 2.1: One-dimensional model with non-linear spring
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2.1 Discretization

The model consists of two curved beam elements (CL9BE) and a
rotational spring (SP2RO).

Figure 2.2: Curved beam element
(CL9BE) (TNO DIANA BV, 2014)

Figure 2.3: Rotational spring (SP2RO)
(TNO DIANA BV, 2014)

The beam elements have three nodes, with three degrees of free-
dom (ux, uy and φz). Quadratic interpolation of the displacements
can be applied, this causes the strains to vary linearly over the
height.

The rotational spring has two nodes with each one rotational
degree of freedom φz. The z-axis is thus the axis of rotation for the
rotational spring.

The nodes are numbered from the bottom (1) to the top (6) of the
wall.

2.2 Geometry

The typical dimensions are presented in Table 2.1.

Dimension
Beam

Element
(CL9BE)

Rotational
Spring

(SP2RO)

Length l [m] 0.75 0

Area A
[
m2] 0.95 × 0.11 -

Table 2.1: Typical dimensions of the elements in Physical Non-linear Spring Model.

2.3 Boundary Conditions

The wall is simply supported, see Table 2.2. The translational
degrees of freedom of the two beam elements at mid-height of the
wall are connected using tyings.

Set Node ux uy φz

Top node 6 X - -

Bottom node 1 X X -

Table 2.2: Boundary conditions of the Physical Non-linear Spring Model.
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2.4 Material properties

A linear elastic material model is applied to the beam elements. The
general material properties are presented in Table 2.3.

Element Mass Density Youngs Modulus Poisson’s Ratio Stiffness

ρ
[
kg/m3] E

[
N/m2] ν [−] K [Nm/rad]

Beam elements (CL9BE) 1800 5.4 × 1012 0.0 -

Rotational spring (SP2RO) - - - 1.0 × 109 ×

Table 2.3: Material parameters applied in Physical Non-linear Spring Model.

×

Non-linear material
model applied using User-
Supplied Subroutine, see
Fig. 2.5Via a user-supplied subroutine the total physical non-linear

behaviour (Fig. 2.4.a, Table 2.4) of the wall is enforced. To find the
moment-rotation behaviour of the wall after cracking a numerical
derivation is performed for a theoretical approach.

The shear stress over the thickness is assumed to be zero and the
stress normal to the cross-section is evaluated using the constitutive
relation for the stress and the relative deformation. With the normal
force, the vertical equilibrium is iteratively found by adjusting
the point of rotation in the cross-section. The moment is found
by evaluating the equivalent forces of the stress times the arm to
the point of rotation. The resulting moment-normal-force-rotation
relationship is depicted in Fig. 2.4.c. The full derivation is given in
Section 2.A
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Figure 2.4: a. Stress-strain relationship that should be applied to the individual
straws. b. Straw model. c. Moment-Normal force-rotation relationship

Element Tensile strength
Mode-I fracture

energy
Compressive

strength

ft
[
N/m2] G f t

[
J/m2] fc

[
N/m2]

Masonry 0.45 × 106 35 5.17 × 106

Table 2.4: Material parameters of masonry.



18 modelling report

2.A Derivation Moment-rotation Relationship

The moment rotation relationship of a masonry wall cross-section
during cracking is numerically derived. This behaviour is depen-
dent on the strength of the wall as well as the fracture energy
belonging to the failure mode.

The moment rotation relationship can be split into two parts.
Pre-cracking where the behaviour is linear and post-cracking where
it is non-linear. In the following two sections the behaviour will be
discussed and derivation and calculations will be elaborated.

Pre-cracking The cracking resistance can be found from the mo-
ment at which the ultimate tensile strength is reached in one of
the outer fibres. The stress in the outer fibre is dependent on the
normal force and the moment in the cross-section. Until cracking,
the rotational spring should remain closed and the spring should
thus behave very stiff.

The cracking moment is equal to,

Mcr =
2
3

t · ft ·
1
4

t b =
1
6

ft t2 b (2.1)

Before cracking the deformation is purely elastic and due to
bending of the wall. In this model the wall is modelled by two rigid
beam elements and thus the elastic deflection of the wall should be
replicated by the rotational spring,

wel =
1
2

ϕel
h
2

(2.2)

wel =
1

48
F h3

E I
(2.3)

Since the wall is simply supported we know that,

M =
1
4

F h (2.4)

F =
4 M

h
(2.5)

Combining results in,

ϕel =
M h
3 E I

(2.6)

From the relation between the moment and the cracking rotation
we can use this equation to calculate the elastic rotation that corre-
sponds to every moment. If we then sum up the two rotations we
end up with the total rotation of the spring.
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Post-Cracking The post-cracking behaviour is described by the
fracture energy. This reduces the stress for continued deformation
of the cracked tensile fibres. An exponential softening curve is used
to define the stress-strain relationship (depicted in Fig. 2.4.a),

σ(∆u) = ft · e−λ∆u

The exponential decay parameter λ can be found from the fraction
energy,

Gt =

∞∫
0

ft e−λu du =

[
− 1

λ
ft e−λu

]∞

0
= 0 +

ft

λ

λ =
ft

Gt

Equilibrium iterations The rest of the moment-rotation relationship
is obtained by numerical iterations. With an incremental rotation
an attempt is made to find a stress distribution for the current
rotation and the associated elongations of the fibres which makes
equilibrium with the normal force. If needed the point of rotation is
shifted until equilibrium is found.

From the found equilibrium the moment is calculated. The
cross-section is divided into three parts according to the relative
deformation of the fibres, a compressive area, a linear elastic tensile
area and a cracked tensile area. The stresses are integrated over the
area to obtain the equivalent forces and the moment arm,

Figure 2.5:

Ft;1 =
1
2

ft tt1 b

Ft;2 = b
∫ t−tt1−tc

0
ft e−λu(x) dx

u(x) =
ut − ucr

t − tc − tt1
· x

= b
[
− ft

λ
· t − tc − tt1

ut − ucr
· e−λu(x)

]t−tt1−tc

0

Fc =
1
2

ft

tt1
t2
c b

Now the arm between the two forces can be found using the first
moment of area using integration by parts. 1 1 Integration by parts,∫

u dv = u v −
∫

v du

u = x v = − ft

λ
e−λ(t−a−b)

du = dx dv = ft e−λ(t−a−b) dx

Sy;t;2 =
∫ t−tt1−tc

0
x ft e−λu(x) dx

u(x) =
ut − ucr

t − tc − tt1
· x = αx

= − x ft

λ α
e−λαx

∣∣∣∣t−tt1−tc

0
−
∫ t−tt1−tc

0
− ft

λα
e−λαx dx

= − x ft

λα
e−λαx

∣∣∣∣t−tt1−tc

0
− ft

λ2α2 e−λαx
∣∣∣∣t−tt1−tc

0

= − (t − tt1 − tc) ft

λα
e−λ(ut−ucr) +

ft

λ2α2

(
1 − e−λ(ut−ucr)

)
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The arm of the equivalent force of the part of the tension zone is
equal to,

rt;2 = tt1 +
Sy;t;2

Ft;2/b

The arm of the total tension zone is,

rt =
2
3 tt1 Ft;1/b + rt;2 Ft;2/b

Ft;1/b + Ft;2/b

The normal force adds a constant force to be added to the cross-
section. This causes the rotation point of the moment to be shifted.
This shift should be adjusted for and can be calculated using,

∆xna =

(
σc +

N
A

)
tc1 + tt1
σt + σc

− tc1;

The final moment-rotation relationship can be found in Fig. 2.6
The moment-rotation relationship can be found in blue as well as
the linearized relationship in black. The linearized diagram will be
used by DIANA using the user-supplied subroutine.
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Figure 2.6: Moment-rotation relation-
ship for user-supplied subroutine as
well as stress distribution over the
cross-section for given rotations.
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2.5 User-Supplied Subroutine

To implement the linearized non-linear behaviour of the rotation
spring, the user-supplied subroutine USRSPR is used. The input
and output variables are obtained from DIANA-9.5 User’s Manual.
A schematized representation of the Fortran program written to
implement the NL spring is presented in Fig. 2.7 and the Fortran
program is added to Sec. ??.

Explanation of USRSPR The USRSPR user-supplied subroutine
updates the moment, rotation and the stiffness of the spring for a
given original and incremental rotation, schematized in rows 6 and
7 of Fig. 2.7. DIANA uses the moment as an internal force of the
element and the stiffness for numerical iteration towards the next
result. The updated stiffness from the USRSPR is used in DIANA’s
iteration procedure and determines the convergence and numerical
stability of the model. The numerical convergence of the non-linear
spring model is presented in Fig. 2.10.

The moment in the spring depends on its history, and thus
hysteresis effects can be found. To implement these effects the
maximum and minimum rotation as well as its associated moment
are saved as state variables. These variables are passed to the next
iteration step. In every step the final rotation is compared to the
extreme values, and if needed these are adjusted. This procedure is
schematized in Fig. 2.7 in rows 8 and 9.

The reloading and unloading stiffness is determined using these
state variables. Since the unloading of the material means unload-
ing of the individual straws of the cross-section, secant unloading
of the individual straws does not have to mean secant unloading
of the total cross-section. In Section 2.A a prove is given that for
secant unloading this reasoning can be made and for non-secant
unloading not. In rows 2 to 5 the loading state of the analysis is
determined and the stiffness is updated.

Programming the USRSPR gave some difficulties. The model
sometimes shows an incorrect stiffness. For example, the secant
stiffness for unloading is used for updating the rotation while
the load is still increasing and not reloading. These errors in the
USPRSPR algoritm result in incorrect moment-rotation diagrams.
This is overcome by adding an error margin, see Section 2.B.

The user-supplied subroutine can be expended to obtain a full
M − N − ϕ relationship. This can be done by translating the MAT-
LAB numerical derivation to FORTRAN. The normal force can
be obtained from one of the adjoining beam elements. An extra
iteration loop should be added to the subroutine where the elas-
tic and cracking components of the rotation are dertemined. This
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is possible since the moment in the spring can be calculated for
both individual components and they should be equal. If this is
implemented there is no need for a linearized moment-rotation dia-
gram. The tangential moment can than be calculated for all possible
rotations.

Loading?

FORCE > 0   AND   DDELTA > 0

OR

FORCE < 0   AND   DDELTA < 0

Reloading?

DELTA0 < RMAX   AND   DELTA0 > RMIN

Direction?

 DDELTA > 0

State var RMAX
DELTA > RMAX

STIFF = MMIN / RMIN

YES

YESNO

NO

NO

NO

NO

YES

YES

YES

STIFF = MMAX / RMAX
STIFF found from “backbone” 

moment-rotation relationship for DELTA0

 

Update Moment

FORCE = FORCE + STIFF * DDELTA

 

Update Rotation

DELTA = DELTA0 + DDELTA

 

Update RMAX & MMAX

RMAX = DELTA, MMAX = FORCE

State var RMIN
DELTA < RMIN

YES

 

Update RMIN & MMIN

RMIN =  DELTA, MMIN = FORCE

Direction?

 FORCE > 0

Output

 

Update Secant Sti!ness

STIFF = FORCE / DELTA

Input1

2

3

4

5

6

7

8

9

10

Figure 2.7: Schematized representation of User-Supplied Subroutine USRSPR
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2.6 Loads

Self-weight and a cyclic horizontal displacement is applied on this
model. The details of the loads applied on the model are presented
in Table 2.5 for the static analysis.

Order of
application

Type of load
Point of

application
Amount (steps) Direction

1 Self-weight - - (1) -y

2 Displacement Node 3

2.5 × 10−3 m (40),
−2.5 × 10−3 m (40)

x

Table 2.5: Applied loads on USRSPR Model during static analysis.

2.7 Convergence Criteria

For the static three convergence criteria have been specified. The
incremental step is converged if all three criteria are simultaneously
met. The iteration method continuous with the next step if the cri-
teria are not met and the maximum number of iterations is reached.
Only when the intermediate solution diverges the calculation is
aborted.

Details on the convergence criteria are specified in Table 2.6.

Method Convergence norm Rel. convergence
tolerance

Newton-Raphson Displacement 1.0 · 10−3

" Force 1.0 · 10−3

" Energy 1.0 · 10−3

Table 2.6: Details on convergence criteria of USRSPR Model.
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2.8 Static Analysis
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Figure 2.8: Loading direction for static
analysis of USRSPR Model.

The load-displacement diagram resulting from the static analysis
is presented in Fig. 2.9. In Fig. 2.10 the convergence plot from the
loading part of the analysis as well as the deformed shape of the
wall before and after cracking is shown.

From the deformed shape it can be concluded that the non-linear
spring behaves as expected, first stiff as an interface element and
after cracking it takes all the deformation and the beams are almost
not bended any more.
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Figure 2.9: Load-displacement diagram
from static analysis of Physical Non-
linear Spring Model.
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Figure 2.10: Convergence plots from
static analysis of Physical Non-linear
Spring Model.
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2.9 Conclusion

The non-linear material behaviour of the masonry is translated to
a moment-normal-force-rotation relationship using a constitutive
stress-relative-deformation relationship for masonry based on frac-
ture energy. Via a numerical derivation the moment-normal-force-
rotation relationship is obtained. The relationship is implemented
in a non-linear spring using a user-supplied subroutine.

The numerical derivation shows the shift of the point of rotation
during cracking in the cross-section. Also the influence of the axial
force on the physical behaviour of the wall is found. This influence
is of great importance when trying to prevent cracks.

In the next chapter the found load-displacement curves are
compared with result from a discrete cracking model.
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2.A Unloading Stiffness NL spring

The non-linear spring has a linearized moment-rotation relationship
(Fig. 2.11). This relationship is derived from the loading of the
tensile and compressive fibres in the thickness direction of the wall.
The stress of the tensile fibres is reduced after the tensile strength
is reached (Fig. 2.12). The individual tensile fibres are assumed to
unload in a secant manner (Fig. 2.12). However, it is uncertain if
this also results in secant unloading of the total cross-section.

Figure 2.11: Moment-rotation relation-
ship with unloading (red).

Figure 2.12: Force-deformation rela-
tionship with unloading (red).

Thie moment capacity for a given rotation is dependent on two
parameters, the arm and the equivalent force. The equivalent force
is the stress integrated over the area. Since secant unloading is a
linear relation between stress and deformation in a point a reduc-
tion of the deformation of all points with a factor 2 would mean
a stress reduction of all points with a factor two. This results in
an equivalent force reduction with a factor 2. Under the hypoth-
esis that plane sections remain plane, the relationship between
the rotation and deformation along the vertical axis of the wall
is linear. This means that a reduction of the rotation by halve re-
sults in a reduction of the equivalent force by halve. The arm of
the couple is influenced by the cracking of the cross-section. The
further the crack propagates the smaller the arm becomes, shifting
the point of rotation. When secant unloading of the individual
fibres is concerned the stress is reduced linearly with the rotation
of the cross-section. Therefore the relative distribution of the stress
does not change and so the arm is constant. The shift of the point
of rotation is caused by the cracking of the cross-section, during
unloading and reloading this stays constant since there is no crack
propagation.

Thus, secant unloading of the moment-relationship is a result
of the secant unloading of the individual fibres. However, non-
secant unloading results in a more non-linear relation between local
force-deformation and global moment-rotation relationships.
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2.B Transition from reloading to loading

After some initial good performances the behaviour of the non-
linear spring showed some inaccurate behaviour. In Fig. 2.13 and
2.14 show in red the increase of the moment with an incorrect
stiffness.

Figure 2.13: Moment-rotation diagram
with secant loading in red.

Figure 2.14: Moment-rotation diagram
with secant loading in red (2).

Figure 2.15: Proper moment-rotation
diagram.

Figure 2.16: Error margin.

During loading the stiffness suddenly changes to the secant
stiffness. This is clearly not right and causes significant higher
moment in the spring for large rotations as can be seen in the first
figure. This problem is caused by the check for the loading, see Fig.
2.7. The user-supplied subroutine suddenly thinks that the spring
is in the reloading state and then changes the stiffness to the secant
stiffness.

The check preformed is an IF statement where the rotation at
the beginning of the load step, DELTA0, is compared with the
minimum and maximum rotations observed so far, RMIN and
RMAX. If the load is as in both figures depicted here in the first
load cycle, DELTA0 should always be equal to RMIN or RMAX
and makes the reloading state impossible to occur. However, if
both variables are examined, there is a very small difference are
found which occasionally causes the IF statement to be true. This
round-off error is probably caused by a permutation of DELTA0

after the user-supplied subroutine saves the same value as the user
state variables RMIN and RMAX.

To solve the problem the boundaries in the check for reloading
should be adjusted such that DELTA0 has to be equal to RMIN
or RMAX but within the margin of a round-off error, now set at
1.0E-017. This solves the problem, see Fig. 2.15. In Fig. 2.16 the
error margin is schematically shown. The margin causes a little
error in actual transitions from reloading to loading due to earlier
unloading. However since the margin is significantly smaller than
the incremental step size this is negligible.





3
Discrete Crack Model

The Discrete Crack Model is used to check the derived relationship
of the Physical Non-linear Spring Model. It is applied using a line
interface element which is placed in between the beam elements
in the longitudinal direction of the wall. The two ends of the line
interface element are tied together to reduce the element to two
nodes which are connected to the beams. Over the width of the
interface element (in x-direction), eleven integration points are used
to apply the material model.

The goal of this model is to confirm the results found in Chapter
2 by comparing the load-displacement diagrams. This would
confirm the understanding of the cracking mechanism of the out-of-
plane behaviour of masonry walls.

u

Line interface (L16IF)
Discrete Cracking

Curved Bending Beam (CL9BE)
Linear Elasticity

y

xz

Figure 3.1: Schematized representation of the Discrete Crack Model.
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3.1 Discretization

The model consists of two curved bending beam elements (CL9BE)
and a line interface elements (L16IF).

Figure 3.2: Curved beam element
(CL9BE) (TNO DIANA BV, 2014)

Figure 3.3: Line interface element
(L16IF) (TNO DIANA BV, 2014)

The beam elements have three nodes, with three degrees of free-
dom (ux, uy and φz). Quadratic interpolation of the displacements
can be applied, this causes the strains to vary linearly over the
height.

The line interface element has four nodes, with four degrees of
freedom (ux, uy, uz and φz). It has eleven integration points in the
thickness direction of the wall. Since only the behaviour of the
wall over the thickness of the element is of interest the two bottom
nodes and the two top nodes are tied to each other.

The nodes are numbered from the bottom of the wall (1) to the
top (6). The extra nodes of the line interface element are from
bottom (13) to top (14).

3.2 Geometry

The typical dimensions are presented in Table 3.1.

Dimension Beam Element
(CL9BE)

Line Interface
Elements (L16IF)

Thickness t [m] - 0.11

Length l [m] 0.75 0.95

Area A
[
m2] 0.95 × 0.11 -

Table 3.1: Typical dimensions of the elements in Discrete Crack Model.

3.3 Boundary Conditions

The wall is simply supported, see Table 3.2.

Set Node ux uy φz

Top node 6 X - -

Bottom node 1 X X -

Table 3.2: Boundary conditions of the Discrete Crack Model.
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3.4 Material properties

A linear elastic material model is applied to the beam elements and
the discrete crack material model is applied to the line interface
element. The general material properties are presented in Table 3.3.

Element Mass Density Youngs Modulus Poisson’s Ratio Stiffness

ρ
[
kg/m3] E

[
N/m2] ν [−] DSTIF

[
N/m3]

Beam Elements (CL9BE) 1800 5.4 × 109 0.0 -

Line interface (L16IF) 0 - - 1.0 × 1013 N/m3 ×

Table 3.3: Material parameters applied in Plane Strain Model. × Discrete Crack model
applied

On the line interface elements the Discrete Crack material model
is applied. This material model seperates the evaluation of the
tensile and the shear behaviour. For the tensile softening behaviour
Hordijk softening is used. For the shear a brittle model is applied
where zero shear stiffness is used after tensile cracking. The two
seperate material models are depicted in Fig. 3.4. The details of the
material model are given in Table 3.4.

Element Tensile strength
Mode-I fracture

energy

ft
[
N/m2] G f t

[
J/m2]

Line interface (L16IF) 0.45 × 106 35

Table 3.4: Material parameters for Discrete Crack material model for line interface
elements (L16IF).

Figure 3.4: Discrete Crack material
model, tensile and shear behaviour.
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3.5 Loads

Self-weight, an overburden force and an imposed horizontal dis-
placement are applied on this model. The overburden applied is
equal to the 0.15 MPa overburden applied to Specimen 8. The de-
tails of the loads applied on the model are presented in Table 3.5 for
the static analysis.

Order of
application

Type of load
Point of

application
Amount (steps) Direction

1 Self-weight - 9.81 m/s2 (1) -y

1 Displacement Node 6 15.675 kN (1) -y

2 Displacement Node 2

1.0 × 10−5 m (500),
1.0 × 10−4 m (100)

x

Table 3.5: Applied loads on Discrete Crack Model during static analysis.

1.0E-5(500) 1.0E-4(100)

3.6 Convergence Criteria

For the static three convergence criteria have been specified. The
incremental step is converged if all three criteria are simultaneously
met. The iteration method continuous with the next step if the cri-
teria are not met and the maximum number of iterations is reached.
Only when the intermediate solution diverges the calculation is
aborted.

Details on the convergence criteria are specified in Table 3.6.

Method Convergence norm Rel. convergence
tolerance

Newton-Raphson Displacement 1.0 · 10−3

" Force 1.0 · 10−3

Table 3.6: Details on convergence criteria of Discrete Crack Model.
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3.7 Static Analysis

u

Figure 3.5: Loading direction for static
analysis of Discrete Crack Model.

Load-displacement The results of the static analysis and displayed
in Fig. 3.6, where the load at mid-height is plotted against the de-
formation at mid-height. Also the results from the previous chapter
are shown. The maximum capacity of the wall is accurately approx-
imated. However, it is difficult to find the post-peak resistance with
a linearized stiffness relation. Since the vertical part is essential to
find the correct resistance the error made here can only be small. It
is however also the hardest part to find convergence.

Convergence In Fig. 2.10 the convergence plot from the loading
part of the analysis. No convergence is found at the point where
the wall cracks. This can be explained with the moment-rotation
diagram for this normal force given in Fig. 2.6 in which a big snap-
back can be found. With a displacement based analysis it is not
possible to find convergence in those steps. Luckily convergence is
quickly found again.

Deformation From the deformed shape (Fig. 3.8) it can be con-
cluded that the non-linear spring behaves as expected, first stiff
while all the deformation in the wall is caused by bending of the
beam elements and after cracking the beam elements relax and the
rotation is transferred to the interface element. In the last point in
can be found that all the deformation is caused by rotation of the
interface.
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Figure 3.6: Load-displacement diagram
from static analysis of Discrete Crack
Model.
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Figure 3.7: Convergence plots from
static analysis of Discrete Crack Model.
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Figure 3.8: Deformation plots from static analysis of Discrete Crack Model

3.8 Conclusion

In this chapter the material model was applied using the Discrete
Crack model from DIANA. The results are similar to the results of
the Physical Non-linear Spring model. This confirms the correct
interpretation of the formation of the crack during ouf-of-plane
bending of masonry walls.

The line interface element shall be used in the Curved Shell
Model where the geometric and physical non-linear behaviour
is combined. The next chapter will focus only on the geometric
non-linear effects.



4
Geometrical Non-linear Spring Model

To implement the geometric effects of the wall rocking on it’s bricks
the Geometric Non-linear Spring Model is developed. The main
goal of this model is to investigate geometric non-linear effects
during transient excitation. Since in the experiments of Doherty
only cracked walls are considered for transient excitation tests
this model does not have the cracking properties of the previous
chapters.

Instead non-linear springs are used at mid-height and the two
boundaries to restrict the wall from any behaviour except the
rocking behaviour. At each tip a horizontal and a vertical spring is
used which is very stiff when loaded in compression but has a low
stiffness in tension. This allows the rocking motion but prevents
divergence. The loads applied to this model are static forces as well
as acceleration signals applied to the base of the model.

u

2x Translational Spring (SP2TR)
No Tension

Curved Bending Beam (CL9BE)
Linear Elasticity

Translational Spring (SP2TR)
Linear Elasticity

y

xz

ua

a

Figure 4.1: Schematized representation of the Non-Linear Spring Model.
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4.1 Discretization

The wall is discretized using two rigid beam elements. The cracked
cross-section and the top and bottom boundary cannot be modelled
as a hinges since the thickness of the wall is important for the
stabilising moment due to the overburden load and self-weight.
Therefore a set of elements is assembled to obtain the preferred
behaviour.

Figure 4.2: Discretization of URM wall
to GNL spring model.

Figure 4.3: Set of elements represent-
ing a cracked cross-section.

Elements representing cracked cross-section At the cracked cross-
section the wall can rotate around the two edges of the wall. Two
stiff elements are used to model the surfaces of the cracked inter-
face over the thickness of the wall, see Fig. 4.3. We assume that
the cross-section is totally cracked and no crushing will occur.
Therefore the left and right edges are connected using to vertical
compression-only springs. This makes it possible for the cross-
section to transfer the overburden force and self-weight via one or
two springs depending on the displacements. Since only rotations
are allowed around the two edges the horizontal displacement of
the edge nodes are restricted as well.

Uncracked cross-section This model can later be used in a physical
and geometrical non-linear analysis by using the non-linear rotation
spring which accounts for the elastic bending of the wall as well as
the cracking and crushing. Since the displacements until cracking
are small the geometrical non-linear effects of elastic deformation
are small and the rigid element assumption is justified. The rotation
spring can be attached to the mid-nodes of the cracked cross-
section.

4.2 Geometry

The typical dimensions are presented in Table 4.1.

Dimension
Beam

Element
(L6BEN)

Rotational
Spring

(SP2RO)

Length l [m] 0.75 0

Area A
[
m2] 1.0 1.0

Table 4.1: Typical dimensions of the elements in Geometric Non-linear Spring Model.

4.3 Boundary Conditions

Bottom constraint The bottom constraint in Doherty’s test setup
a sliding constraint with a horizontal friction constraint. In this
model this friction is assumed to be satisfying to constraint the wall
and thus a hinged constraint is applied. Since the wall will rotate
around its edges the cracked cross-section setup as explained above
is also implemented for this constraint.
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Top constraint For the top constraint the horizontal displacement
is restricted by Doherty using angle cleats which allows the wall to
rotate. A vertical overburden is applied using six springs connected
to a horizontal plate. The wall can rotate around its edges over
the plate as with the bottom constraint. The horizontal plate is
constraint in the horizontal direction, the vertical displacement of
its three nodes are tied together. The middle node is supported
by a vertical spring with a stiffness equivalent to the six springs in
Doherty’s setup.

The overburden stress is applied by a prescribed displacement of
the top node which induces a force in the top boundary constraint
spring. This prescribed displacement is equal to,

uy =
N
k

=
16500N

9.5 · 105N/m
= −0.017m

The boundary conditions are summarized Table 4.2.

Set Node nr. ux uy uz φx φy φz

Top node 4 X X X - - -

Bottom node 1 X - X - - -

Table 4.2: Boundary conditions of the Geometric Non-linear Spring Model.

4.4 Material properties

Due to the rigid element assumption the Youngs’s modulus applied
is 1000 times larger and the Poisson ratio is set to zero.

Element Mass density Young’s Modulus Poisson’s Ratio Spring Stiffness[
kg/m3] [

N/m2] [−] [N/m]

Rigid Beams (L6BEN) 1800 9.4 · 109 0.1 -

Rigid CS (CL9BE) 0 9.4 · 1012 0.1 -

Vert. CS Springs (SP2TR) - - - 9.4 · 1012

Hor. CS Springs (SP2TR) - - - 9.4 · 1012

Top BC Spring (SP2TR) - - - 9.6 · 105

Table 4.3: Material parameters applied in GNL Model with Springs.

Rayleigh damping is applied. The Rayleigh coefficient are
derivated using the eigenfrequencies from the response of the
cracked wall as reported by Doherty. The calculation of the coef-
ficients is obtained from the Modal Analysis which is reported in
Section 4.8

Damping ratio Mass coefficient Spring coefficient

[−] [1/s] [s]

0.1 0.178 0.013

Table 4.4: Rayleigh Damping coefficients applied on GNL Model with Springs.
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4.5 Loads

Self-weight, overburden stress, horizontal displacement and base
acceleration are applied on this model in different analyses. The
details of the loads applied on the model for the static analysis are
combined in Table 4.5 and for the transient analysis in Table 4.6.

Order of
application

Type of load Point of
application

Amount Load steps Direction

1 Self-weight - - 1 -y

1 Displacement Node 19 −0.017 mm 1 y

2 Displacement Node 11 0.5 mm 300 x

Table 4.5: Applied loads on GNL Test Model during static analysis.

Order of
application

Type of load Point of
application

Amount Load steps Direction

1 Self-weight - - 1 -y

1 Base Hor. supports Load factors ×g 1241(0.01s) x

Table 4.6: Applied loads on GNL Test Model during transient analysis.

Two load sets are used on specimen 12, the record of the Na-
hanni (NH) earthquake scaled from 100 to 400% and the El Centro
(EL) earthquake scaled to 66%.

4.6 Convergence Criteria

The Newton-Raphson method is used to find equilibrium for each
time step. A force norm convergence criteria is applied in this
analysis. The details are given in Table 4.7.

Method Convergence norm Rel. convergence
tolerance

Rel. divergence
tolerance

Newton-Raphson Force 1.0 · 10−5 1.0 · 104

" Displacement 1.0 · 10−5 1.0 · 104

Table 4.7: Details on convergence criteria of GNL Test Model for static analysis.

Method Convergence norm Rel. convergence
tolerance

Newton-Raphson Force 1.0 · 10−3

" Displacement 1.0 · 10−3

Table 4.8: Details on convergence criteria of GNL Test Model for transient analysis.

4.7 Time Integration Method

The Newmark method is used for time integration.

Method Step size Remark

Newmark 1.0 × 10−3 s γ = 1
2 , β = 1

4

Table 4.9: Details on time integration method for GNL Model with Springs.
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4.8 Modal analysis

Figure 4.4: Modal analysis of Non-
Linear Spring Model.

A modal analysis is performed to check the validity of the finite
element model. The eigenfrequency reported by Doherty is derived
using beam theory. This results in a first eigenfrequency of 51.7 Hz.

DIANA is only able to derive the eigenfrequencies from a linear
stiffness matrix. Since non-linear material models are used to
constrain non-rocking deformations these modes are not found.
DIANA does have a function where the tangential stiffness matrix
from a non-linear analysis is used, however, this function only uses
the tangential stiffness matrix for one particular deformed state of
the wall. Therefore the results still does not give accurate results for
the eigenfrequencies and modes.

Eigenmodes and Eigenfrequencies The results of the linear modal
analysis are given in Table 4.10 and Fig. 4.5a-d. As mentioned the
eigenfrequencies are not accurate, the found results are too high
frequencies. This is a result of the high compressive stiffness of the
springs which is the initial state of the springs.

Figure 4.5: Eigenmodes of Non-Linear Spring Model

Eigenmode 1 2 3 4

Eigenfrequency [Hz] 406 423 1125 1427

Table 4.10: Eigenfrequencies of Non-Linear Spring Model.
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4.9 Static Analysis

u

u

Figure 4.6: Loading direction for static
analysis of Non-Linear Spring Model.

Load-displacement diagram The load-displacement diagram result-
ing from the geometric non-linear analysis is depicted in Fig. 4.7. In
this figure the results of Doherty are depicted as well. The model
can predict the initial resistance with a small error. This results
from the undeformed situation and the initial overburden stress
which is known. The behaviour for bigger displacements shows a
bigger error. The experiment shows a higher resistance but it looks
as if the ultimate displacement before failure will be smaller. This
is probably the effect of crushing, which can be thought of as a
shift of the point of rotation. This results in a smaller arm for the
overburden force and thus an earlier collapse. The higher resistance
can occur due to a greater vertical displacement during loading and
thus a bigger overburden stress.

Overburden stress In Fig. 4.9 the development of the overburden
force during the analysis is shown. As can be seen the overburden
increases with almost 100%. Doherty also mentions this increase for
110 mm thick walls and states that an increase of more than 20% is
not acceptable. Due to the big over shoot over the overburden stress
it is arguable if this setup is a good representation of a real masonry
wall, because the overburden rig is really stiff. In a building the
floors can give some stiffness due to resisted deformation. Doherty
does not validate the stiffness against real situations.

Convergence The analysis generally converges after 1 iteration. In
load step 113 no convergence can be found after 30 iterations and
the analysis is terminated. This is the point where the moment due
to the vertical force becomes positive and thus the wall becomes
unstable.

Deformation The deformation behaviour of the wall is as can be
expected. The wall is tested with displacement in positive and
negative direction, for which the resulting behaviour is similar. The
cracked cross-sections behave as described in Section 4.1 and 4.A.
See Fig. 4.10 for deformation plots.
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Figure 4.10: Deformations plot of Geometric Non-linear Spring Model.
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4.10 Transient Analysis
a

a

Figure 4.11: Loading direction for
transient analysis of Non-Linear
Spring Model.

A transient analysis is executed using recorded accelerations from
seismic events. After optimizing the compressive stiffness and the
thickness of the wall at mid-height the time-displacement diagram
of Fig. 4.12 is obtained.

Frequency In Fig. 4.13 the amplitude spectrum of the response
is shown. This spectrum is the result of a Fast Fourier Transform
and displays the absolute amplitude of the individual frequencies
for a fourier series of the signal. The governing frequency is the
frequency with the biggest amplitude and corresponds to the
main rocking frequency. This governing frequency is very well
approximated. However, the amplitude of the response is generally
too big. This is also visible from the time-displacement diagram.

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D
is

pl
a.

 (
m

)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015
Midwall displacement for Transient loading

Geometric Non-linear Spring Model
12 Sep NH 100%

Figure 4.12: Load-displacement dia-
gram from static analysis of Geometric
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4.11 Conclusion

From the test model it can be concluded that the set of elements
which make up the cracked cross-section do give a good representa-
tion of the geometric non-linear behaviour. It also gives an accurate
result since the results found are almost exact the analytical derived
values.

From the modal analysis of the full wall no good approximation
is found for the first eigenmode and eigenfrequency. The found
values are much higher than the analytical approximation reported
by Doherty. This is due to the fact that DIANA can only calculate
eigenmodes for tangential stiffness matrices of one particular
deformed state. The first eigenmode shows the axial deformation of
the wall which is not realistic as first eigenmode, although its high
eigenfrequency is plausible.

From the GNL analysis of the full wall it can be concluded that
a good approximation is obtained. The initial load is very well
predicted. The peak resistance has an error of approximately 15%.
The diagram shows the same increasing and decreasing behaviour
which suggests that the model is good in the main properties.
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4.A Test Model

Figure 4.15: Test model of wall with
cracked cross-section and allowable
displacements.

The rocking behaviour is tested using a beam element of half the
wall height and the cracked cross-section at the bottom support
which only allows rocking behaviour, see Fig. 4.15. A vertical
force is applied on top of the wall. All other material parameters,
convergence criteria and boundary conditions are equal to the full
model.

Analytical derivation The horizontal force that can be applied
is dependent on the arm of the vertical applied force, which is
dependent on the horizontal displacement of the column via the
rotation. The moment at which zero horizontal load can be applied
is when the arm of the vertical force reduces to zero, thus at half of
the thickness of the wall. Since the wall is rigid the relation should
be linear. The maximum load resistance is equal to,

F =
N · t
2 · l

=
200 · 103 · 110

2 · 750
= 14.667 kN

Numerical load-displacement The results depicted in Fig. 4.18 show
that the relation between the load and the displacement have
the same value as the analytical derived values. It can thus be
concluded that the cracked cross-section behaves as it should.

Full model It can be concluded that the cracked-cross section with
non-linear springs does behave as expected. Since the total wall has
two points of rotation a double ultimate displacement is expected
as well as a double initial resistance due to a bigger arm.

Figure 4.16: Total deformation.

Figure 4.17: Deformation at bottom
support (scale of horizontal and
vertical different to show deformation)

Deformation The deformation behaviour of the wall is as can be
aspected. The wall is tested with displacement in positive and
negative direction, for which the resulting behaviour is similar. The
cracked cross-sections behave as described in Section 4.1. See Fig.
4.16 and 4.17 for deformation plots.

Figure 4.18: test



5
Physical and Geometrical Non-linear Interface Model

To combine the physical and the geometrical non-linear behaviour
as a first step the Non-linear Interface Model, pictured in Fig 5.1, is
developed. This model has two interface elements at mid-height of
the wall in the thickness direction of the wall to which the discrete
crack material model is applied. It thus combines the geometry of
Chapter 4 with the material behaviour of Chapter 3.
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Figure 5.1: Schematized representation of the Non-Linear Interface Model.
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5.1 Discretization

The model consists of two curved bending beam elements (CL9BE)
and four line interface elements (CL12I), two at mid-height, one
at the bottom and one at the top. The extra line interface at mid-
height is used to have more integration points to model the crack-
ing at mid-height more accurately. The overburden force is applied
on the model using a translational spring (SP2TR).

Figure 5.2: Line interface element
(CL12I) (TNO DIANA BV, 2014)

The CL12I line interface element has 6 nodes with each 2 trans-
lational degrees of freedom. Six point Gauss integration has been
applied along the length of the element to model the cracking of the
wall accurately.

All other elements have been discussed in previous chapters.

5.2 Geometry

The typical dimensions are presented in Table 5.1.

Dimension
Beam

Element
(CL9BE)

Line
Interface
(CL12I)

Translational
Spring

(SP2TR)

Thickness t [m] - 0 -

Length l [m] 0.75 0.055 0.1

Width b [m] - 0.95 -

Area A
[
m2] 0.95 × 0.11 - -

Table 5.1: Typical dimensions of the elements in Non-linear Interface Model.

5.3 Boundary Conditions

The wall is supported similar to the Non-linear Spring Model. At
the bottom the wall has a ’rocking’ support which is applied using
a no-tension interface element. The bottom of the line interface is
fully constraint.

The top of the wall is hinged in the experiment by two angle
cleats which have some rotational freedom. The overburden rig
however remains horizontal and thus rocks on the top of the wall.
When both the top and the bottom of the interface element are
horizontally supported the wall is overconstraint and gives a sec-
ond resistance peak first observed in the model of Feenstra. This is
explained in Sec. 5.A.

Set Node nr. ux uy φz

Bottom support 1-3 X X -

Top support 14 X - -

Top node, overburden spring 19 X X -

Table 5.2: Boundary conditions of the Non-linear Interface Model.
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5.4 Material Properties

Two material models are applied; Linear elasticity is applied to
the bending beam elements and the discrete cracking material
model is applied to the line interface elements. The general material
properties per element type are presented in Table 5.3.

Element Mass Density Youngs Modulus Poisson’s Ratio Stiffness

ρ
[
kg/m3] E

[
N/m2] ν [−] K / DSTIF

Beam Elements (CL9BE) 1800 5.4 × 109 0.0 -

Line interface (CL12I) - - - 1.0 × 1013 N/m3 ×

Overburden Spring (SP2TR) - - - 9.6 × 105 N/m

Table 5.3: Material parameters applied in Non-Linear Interface Model. × Discrete Crack model
applied

On the mid-height line interface elements the Discrete Crack ma-
terial model is applied. For the tensile softening behaviour Hordijk
softening is applied, since this is most similar to exponential soft-
ening. For the shear a brittle model is applied where zero shear
stiffness is used after tensile cracking. The two seperate material
models are depicted in Fig. 3.4. The details of the material model
are given in Table 3.4.

Element Tensile strength
Mode-I fracture

energy

ft
[
N/m2] G f t

[
J/m2]

Line interface (L16IF) 0.45 × 106 35

Table 5.4: Material parameters for Discrete Crack material model for line interface
elements (CL12I).

Figure 5.3: Discrete Crack material
model, tensile and shear behaviour.
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5.5 Loads

Self-weight, overburden stress, horizontal displacement and base
acceleration are applied on this model in different analyses. The
details of the loads applied on the model are presented in Table 5.5
for the static analysis and in Table 5.6 for the transient analysis.

Order of
application

Type of load
Point of

application
Amount (steps) Direction

1 Self-weight - 9.81 m/s2 (1) -y

2 Displacement Node 19 −16.36 × 10−3 m (1) y

3 Displacement Node 11

1.0 × 10−5 m (95),
1.0 × 10−6 m (100),
1.0 × 10−3 m (100)

x

Table 5.5: Applied loads on Non-Linear Interface Model during static analysis.

Order of
application

Type of load
Point of

application
Amount (steps) Direction

1 Self-weight - 1 -y

2 Base Hor. supports
Load factors ×g
(2500 × 0.002s)

x

Table 5.6: Applied loads on Non-Linear Interface Model during transient analysis.

Different sets of load factors are used, the record of the Nahanni
(NH) earthquake scaled from 100 to 400% (Fig. 5.4) and the El
Centro (EL) earthquake scaled to 66%.
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Figure 5.4: Nahanni earthquake acceleration signal (NH 100%).
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5.6 Convergence Criteria

For the static and the transient analysis three convergence criteria
have been specified. The incremental step is converged if all three
criteria are simultaneously met. The iteration method continuous
with the next step if the criteria are not met and the maximum num-
ber of iterations is reached. Only when the intermediate solution
diverges the calculation is aborted.

Two iteration methods are used for the static analysis, full
Newton-Raphson and the Secant iteration method. The Secant
method is used for the second set of steps, 1.0 × 10−6 m (100). Dur-
ing these steps the wall cracks, when full Newton-Raphson is used
divergence will occur. Although the convergence criteria are not
met in this part of the analysis, see Fig. 5.9, the analysis can con-
tinue and after cracking the convergence criteria is met again. For
the other sets of imposed displacement full Newton-Raphson gives
convergence in the least amount of iterations.

Details on the convergence criteria are specified in Table 5.7 for
the static analysis and Table 5.8 for the transient analysis.

Method Convergence norm Rel. convergence
tolerance

Newton-Raphson / Secant × Displacement 1.0 · 10−4

" Force 1.0 · 10−4

" Energy 1.0 · 10−4

Table 5.7: Details on convergence criteria of Non-Linear Interface Model for static
analysis. ×

Secant method used for
second set of imposed
displacement on node 11.

Method Convergence norm Rel. convergence
tolerance

Newton-Raphson Displacement 1.0 · 10−3

" Force 1.0 · 10−3

" Energy 1.0 · 10−3

Table 5.8: Details on convergence criteria of Non-Linear Interface Model for transient
analysis.

5.7 Time Integration Method

The Newmark method is used for time integration.

Method Step size Remark

Newmark 1.0 × 10−3 s γ = 1
2 , β = 1

4

Table 5.9: Details on time integration method for Non-Linear Interface Model with
Springs.



50 modelling report

(This page is left blank on purpose)



physical and geometrical non-linear interface model 51

5.8 Modal Analysis

Figure 5.5: Modal analysis of Non-
Linear Interface Model.

It was not possible to find the eigenfrequencies of the cracked wall.
This is caused by the eigenfrequency analysis of DIANA. This
uses the linear stiffness of the model to calculate the eigenvalues.
Thus the cracks modelled by the interface elements with non-linear
stiffness remain closed. The option to use a stiffness matrix from
a non-linear analysis is not usefull since the time step which is
chosen is arbitrary and gives no eigenfrequencies for and opened
deformed state. Therefore the uncracked eigenfrequencies are
presented below.

Figure 5.6: First four eigenmodes of the uncracked Non-linear Interface Model.

Eigenmode 1 2 3 4

Eigenfrequency [Hz] 131.6 422.8 479.7 1311

Table 5.10: Details on convergence criteria of Non-linear Interface Model.

Damping The Rayleigh damping coefficients are calculated from
the first two eigenmodes with a damping percentage of 1%. The
results are presented in Table 5.11.

Damping ratio Mass coefficient Spring coefficient

[−] [1/s] [s]

1% 0.150 × 102 0.221 × 10−5

Table 5.11: Rayleigh damping coefficients applied on curved beam elements (CL9BE)
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5.9 Static Analysis

u

u

Figure 5.7: Loading direction in static
analysis of Non-Linear Interface
Model.

Load-displacement The results of the static analysis and displayed
in Fig. 5.8, where the load at mid-height is plotted against the
the deformation at mid-height. The initial peak overestimates the
experimental value. The geometric initial resistance is equal to
the found value. The post-peak behaviour is underestimated. This
suggests that the stiffness of the overburden spring or the wall is
underestimated.

Convergence In Fig. 5.9 the convergence plot from the loading part
of the analysis is given. The convergence criteria is not met in two
parts of the analysis. In the beginning the displacement criteria is
not met due to small relative displacement norm when applying a
step of zero displacement. Also after the peak both displacement
and force criteria are not met. During the rest of the load steps both
criteria are met and the number of iterations per step is low.

Deformation In the pre-cracking deformation plot (Fig. 5.10) both
top and bottom interface element are opened, while the mid-height
interface elements remain closed. The deformation of the beam is
obtained by pure bending.

In the post-cracking deformation plot the mid-height interface
elements are opened as well and thus fully cracked. The beam
elements are not curved any more and thus all deformation is
obtained from rotation around the mid-height crack.
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Figure 5.8: Load-displacement diagram
from static analysis of Non-linear
Interface Model.
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Figure 5.9: Convergence plots from
static analysis of Non-linear Interface
Model.

Figure 5.10: Deformation plots for
precracked and postcracked state.
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5.10 Transient Analysis
a

a

Figure 5.11: Loading direction in
transient analysis of Non-Linear
Interface Model.

Time-displacement The response of the Non-linear Interface Model
to the Nahanni earthquake is given in Fig. 5.12. The amplitude of
the response is about the same as the amplitude of the experiment.
The governing frequency is somewhat lower than the governing
frequency during the experiment.

A sensitivity analysis has been performed into several param-
eters of the model. The model is most sensitive to changes in
interface stiffness, thickness and damping.

Convergence The convergence plots for the three convergence
criteria applied is given in Fig. 5.14. The convergence norm is met
for all steps.

Deformation The deformation plots (Fig. 5.15) for the transient
analysis show that the line interface elements do not open, but
deform in compression due to the low interface stiffness. The right
figure shows the deformation for a bigger deformation and shows
some opening of the crack. This interface behaviour is wrong but it
results in global deformations of the right amplitude. This is equal
to the observations made in Chapter 4.

5.11 Conclusion

The Non-linear Interface Model combines the physical and geo-
metrical non-linear behaviour. It is however not able to find correct
transient response with the same material properties for the static
and transient analysis. The interface stiffness should be reduced to
find the correct transient behaviour.

In the next Chapter the beam elements will be replaced by plane
strain elements which will make it possible to more realistically
model the behaviour of the wall over the thickness. With these
elements the damage due to compression can be modelled.
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Figure 5.15: Deformation plots during
transient analysis.
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5.A Feenstra’s Peak

Figure 5.16: Shrink plot of Feenstra’s
Hybrid Model

u

φ
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Figure 5.17: Shrink plot of Feenstra’s
Hybrid Model

1

2

3

Figure 5.18: Shrink plot of Feenstra’s
Hybrid Model

Second peak In the Non-linear Interface Model, the Curved Shell
Model, Feenstra’s Hybrid model (Fig. 5.16), where 3D brick ele-
ments are used to apply the correct boundary conditions as ex-
plained in Sec. 5.3, and Feenstra’s 3D Model a second resistance
peak is observed at some greater displacements, see Fig. 5.19. This
peak is clearly not a realistic effect, but is a results of confinement
of the dummy members at the top support.

In Fig. 5.17 the origin of the problem is schematically shown. The
top of the wall is displayed with two stiff dummy members and
an interface element in between. The bottom dummy member is
rigidly connected to the beam element which resembles the wall.
The top dummy member is supported in horizontal direction to
prevent rotation of the element which resembles the overburden
rig that also cannot rotate. The middle node of the bottom dummy
member is constraint in the horizontal direction since the wall is
supported here with two angle cleats.

When the wall deforms the bottom dummy member starts to
rotate around node 3 since the interface element has a compressive
stress here which causes the shear stiffness to be high. The rotation
causes a vertical and small horizontal displacement of nodes 1 and
2. However the horizontal displacement of node 2 is constraint.
This causes the dummy member 2-3 to be elongated, see Fig. 5.18,
which creates an extra resistance against rotation and thus bigger
capacity.

The solution is to remove the horizontal constraint of the top
side of the interface element. This results in a load-displacement
diagram similar to experimental research, see Fig. 5.8.
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Figure 5.19: Load-displacement diagram of four models all showing some kind of
Feenstra’s Peak



6
Plane Strain Model

To study the importance of the thickness direction of the wall in
more detail a plane strain model is used. This model uses plane
strain elements over the thickness of the wall. Since no strain is
allowed in the longitudinal direction of the wall it is effectively an
infinite wall. This model is used as an alternative to the use of 3D
brick elements.

The plane strain elements should be able to model the damage
done to the wall during static loading. For this purpose a phased
analysis was performed.

Furthermore the cracking load needed to initially crack the wall
is investigated with an increasing number of elements. With this
the minimum number of integration points over the thickness for
the Curved Shell Model can be determined.

Finally, the deformation of the wall during rocking is investi-
gated. This can have an effect on the validity of the Curved Shell
Model since the shell elements are based on Euler-Bernoulli’s hy-
pothesis.

Translational spring (SP2TR) 
Linear elasticity

Plane Strain quadrilateral (CQ16E)
Total strain rotating crack

Line interface (CL12I)
No-tension

a u

a

u

y

xz

Figure 6.1: Schematized representation of the Plane Strain Model.
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6.1 Discretization

The model consists of plane strain elements (CQ16E) and line
interface elements (CL12I). The overburden force is applied on the
model using a translational spring (SP2TR).

Figure 6.2: Plane strain element
(CQ16E) (TNO DIANA BV, 2014)

To model the wall as a true one-way bending wall plane strain
elements are used. These have no strain in the direction normal to
their plane, thus as if an infinite wall was modelled. The element
has eight nodes and quadratic interpolation is applied. Per node it
has two translational degrees of freedom in-plane, ux and uy.

The wall is subdivided in 5 × 16 plane strain elements. At mid-
height one element row is split in two to make the addition of a line
interface possible, which is done for the transient analysis. At the
top and the bottom a line interface is implemented for the rocking
behaviour.

6.2 Geometry

From the discretization the typical dimensions of the elements are
presented in Table 6.1.

Dimension
Plane
Strain

(CQ16E)

Overburden
Spring

(SP2TR)

Line
interface
(CL12I)

Thickness t [m] 0.95 - 0.95

Width / Length b/l [m] 0.022 0.1 0.022

Height l [m] 0.02 - 0

Table 6.1: Typical dimensions of the elements in Plane Strain Model.

6.3 Boundary Conditions

The wall is supported at top and bottom, see Table 6.2 and Fig. 6.1.
At the bottom the interface nodes that are not connected to the

plane strain elements are constraint in x- and y-direction.
At the top the non-connected line interface nodes are tied in

the vertical direction, this means that vertical displacement of one
of the nodes has a direction effect on the overburden spring. The
middle section of the wall is supported in the horizontal direction.
In the experimental setup the wall the supported by two angle
cleats, these also allow some unknown quantity of rotation but
prevent horizontal displacement.

Set Node nr. ux uy φz

Top node 1152 X X -

Bottom node 1 201 401 ... 2001 X - -

Table 6.2: Boundary conditions of the Plane Strain Model.
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6.4 Material Properties

Two material models are applied; the Total Strain Rotating Crack
model is applied to the plane strain elements and the no-tension
material model is applied to the line interface elements. The general
material properties per element type are presented in Table 6.3.

Element Mass Density Youngs Modulus Poisson’s Ratio Stiffness

ρ
[
kg/m3] E

[
N/m2] ν [−] K / DSTIF [−]

Plane strain element (CQ16E) 1800 5.4 × 109 ∗

11.6 × 109 ∗∗ 0.0 -

Overburden spring (SP2TR) 0 - - 1.01 × 105 N/m

Line interface (CL12I) 0 - - 1.0 × 1013 N/m3 ∗ ×

1.0 × 108 N/m3 ∗∗ ×

Table 6.3: Material parameters applied in Plane Strain Model. ∗ For specimen 8

∗∗ For specimen 12

× Non-linear material model
applied, see Fig. ??

On the plane strain elements the Total Strain Rotating Crack
material model is applied. For the tensile softening an exponential
decay is enforced and in compression parabolic hardening followed
by exponential softening. The details of the material model are
given in Table 6.4.

Element Tensile
strength

Mode-I
fracture
energy

Compressive
strength

Compressive
fracture
energy

Shear
retension

factor

ft
[
N/m2] G f t

[
J/m2] fc

[
N/m2] Gc

[
J/m2] β [−]

Plane strain element (CQ16E) 0.3 × 106 ∗

0.45 × 106 ∗∗ 35 4.41 × 106 5000 0.01

Table 6.4: Material parameters for Total Crack Rotating Strain material model for
plane strain elements (CQ16E).

∗ For specimen 8

∗∗ For specimen 12

Figure 6.3: Stress-strain relations in compression and tension of the Total Strain
Rotating Crack material model applied on the Plane Strain Model.
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6.5 Loads

Self-weight, overburden stress, imposed horizontal displacement
and base acceleration are applied on this model in different anal-
yses. The details of the loads applied on the model are presented
in Table 6.5 for the static analysis and in Table 6.6 for the transient
analysis.

Order of
application

Type of load
Point of

application
Amount (steps) Direction

1 Self-weight - 1 -y

2 Displacement Node 1154 −16.36 × 10−3 m (1) y

3 Displacement Node 78

0.5 × 10−6 m (300),
0.2 × 10−4 m (267)

x

Table 6.5: Applied loads on Plane Strain Model during static analysis.

Order of
application

Type of load
Point of

application
Amount (steps) Direction

1 Self-weight - 1 -y

2 Base Hor. supports
Load factors ×g
(2500 × 0.002s)

x

Table 6.6: Applied loads on Plane Strain Model during transient analysis.

Different sets of load factors are used, the record of the Nahanni
(NH) earthquake scaled from 100 to 400% (Fig. 5.4) and the El
Centro (EL) earthquake scaled to 66%. The results presented in this
chapter are response to the NH100% Specimen 12 signal (Fig. 5.4).
The average acceleration of table and frame is used as input for the
model.
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Figure 6.4: El Centro earthquake acceleration signal (EL 66%).



plane strain model 61

6.6 Convergence Criteria

For the static and the transient analyses three convergence criteria
have been specified. The incremental step is converged if all three
criteria are simultaneously met. However, the analysis will continue
with the next step if the criteria are not met and the maximum num-
ber of iterations is reached. Only when the intermediate iteration
diverges will the calculation be aborted.

Details on the convergence criteria are specified in Table 6.7 for
the static analysis and Table 6.8 for the transient analysis.

Method Convergence norm Rel. convergence
tolerance

Newton-Raphson Displacement 1.0 · 10−4

" Force 1.0 · 10−4

" Energy 1.0 · 10−4

Table 6.7: Details on convergence criteria of Plane Strain Model for static analysis.

Method Convergence norm Rel. convergence
tolerance

Newton-Raphson Displacement 1.0 · 10−4

" Force 1.0 · 10−4

" Energy 1.0 · 10−4

Table 6.8: Details on convergence criteria of Plane Strain Model for transient analysis.

In Sections 6.9 and 6.10 convergence plots are shown. In these
plots for each step the convergence of the three criteria of the last
iteration is given. Also the norm is presented to show if the norm is
met.

6.7 Time Integration Method

The Backward Euler integration scheme is used for time integration.
This method is explained in the literature review. The stability of
the solution during time integration is dependent on the step size
and the method used.

Method Step size Remark

Backward Euler 2.0 × 10−3 s -

Table 6.9: Details on time integration method for Plane Strain Model.
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6.8 Modal Analysis

Figure 6.5: Modal analysis of Plane
Strain Model.

It was not possible to find the eigenfrequencies of the cracked wall.
This is caused by the eigenfrequency analysis of DIANA. This
uses the linear stiffness of the model to calculate the eigenvalues.
Thus the cracks modelled by the interface elements with non-linear
stiffness remain closed. The option to use a stiffness matrix from
a non-linear analysis is not usefull since the time step which is
chosen is arbitrary and gives no eigenfrequencies for and opened
deformed state. Therefore the uncracked eigenfrequencies are
presented below.

Figure 6.6: First four eigenmodes of the uncracked Plane Strain Model.

Eigenmode 1 2 3 4

Eigenfrequency [Hz] 86.2 272 423 544

Table 6.10: Details on convergence criteria of Plane Strain Model.

Damping The Rayleigh damping coefficients are calculated from
the first two eigenmodes with a damping percentage of 1%. The
results are presented in Table 6.11.

Damping ratio Mass coefficient Spring coefficient

[−] [1/s] [s]

1% 0.671 0.142 × 10−4

Table 6.11: Rayleigh damping coefficients applied on plane strain elements (CQ16E)
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6.9 Static Analysis
u

u

Figure 6.7: Loading direction in static
analysis of Plane Strain Model.

For the static push test the plane strain model is used with smeared
cracking. In the thesis report also result of static analysis are dis-
cussed for a plane strain model with an intermediate interface
element and discrete cracking. For this model only the results are
presented here.

Load-displacement For the static analysis the load displacement-
diagram can be found in Fig. 6.8. The initial peak overestimates the
results of Doherty slightly, the post-peak behaviour is underesti-
mated. The increased results of Doherty are a result of the increase
in the overburden force. This could be an effect of hardening of the
overburden spring rig on which only the a static linear stiffness was
given. The maximum capacity of the wall was found to be equal
with respect to the results of ARUP.

Deformations From the deformation plot in Fig. 6.11 it can be
observed that the mid-height elements all open and cracks are
formed there. The Poisson ratio is set to zero to prevent splitting of
the wall due to compressive forces in the toe and the top of the wall.
From the crack planes given in the same figure it can be found that
still crushing planes are formed in the compressive area’s.

Cracks In Fig. 6.10 the total number of cracks is shown. If com-
pared with the convergence plot it is clear that were no convergence
was found this was caused by a big increase in the number of
cracks. In the crack plots 6.11 it is clear that the cracks are widely
distributed over the height of the wall. However, after enough
deformation the cracks seem to centrtalise at mid-height which
is visible form the last figure where the strain is plotted over the
height of the wall.

Convergence The convergence plot in Fig. 6.9 shows the conver-
gence of the last iteration per load step. It is clear that no conver-
gence is obtained for every step although the maximum number
of iterations was increased and the step size was reduced. How-
ever when compared with results form the Curved Shell Model
as well as with model with interface elements and discrete crack-
ing (see Fig. 7.7) it can be concluded that the error as a result of
the non-convergence is negligible. Since the relative change of the
force/displacement between iterations is small due to the small step
size, the error is small if the convergence rate does not become too
big.
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Figure 6.8: Load-displacement diagram
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Figure 6.9: Convergence criteria for
last iteration of load step during static
analysis of Plane Strain Model.
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Figure 6.11: (a) & (b) Stress plots in deformed state for pre- and post-cracking. (c) &
(d) Crack planes in deformed state for different applied displacements.
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6.10 Transient Analysis
a u

a

Figure 6.12: Loading direction in
transient analysis of Plane Strain
Model.

Time-displacement The transient analysis is performed on the Plane
Strain Model. After a sensitivity analysis was performed for the
thickness of the wall (Sec. 6.11). The final time-displacement dia-
gram is given in Fig. 6.13. Here, the mid-height displacement is
plotted over time. The displacement of the model gives a reason-
able approximation for the experimentally found values. Especially
the main frequency is fairly good, but also the damping of the dis-
placement is similar to the experiment. The amplitude has a bigger
margin of error but is still in the same order of magnitude.

The most important difference between the experiment and
the model is the starting point of the initial rocking. This point is
independent of the interface stiffness, damping and even thickness
of the wall at mid-height and bottom. This probably has to do with
the fact that the wall is modelled as a continuous element with
uniform stiffness. Since the mortar is less stiff and strong than
the bricks rounding and grinding over the splices can cause these
excitations.

Frequency In Fig. 6.14 the output from a Fast Fourier Transform
is depicted. The signal is transformed to the frequency domain
which gives the amplitude of the individual components of the
fourier series of the signal, which corresponds to the frequencies
displayed on the x-axis. The governing frequency which has the
maximum amplitude is indicated for both the experimental and
numerical results. The frequency of the analysis is somewhat
lower, this can be observed from the longer period in Fig. 6.13. The
amplitudes of the spectrum of the analysis is generally bigger since
the amplitudes in of the response displacement are bigger as well.

Convergence Fig. 6.15 shows the convergence plots for the transient
analysis. As indicated the norm is not always met for all three
criteria. In the beginning of the analysis the absolute displacement
and energy convergence norms are very small making it hard to
reach convergence, so this can be ignored. Around 0.5 s this is
again the case for the energy convergence criterium. During the
rocking of the wall good convergence is obtained, since no cracking
has to be modelled.

Deformation Fig. 6.16 shows deformation plots at different mo-
ments in time. When the wall start rocking the deformation of the
compressive part of the cross-section is of importance for the be-
haviour. In the middle figure the crack surface is clearly bended
near the compressive zone. And thus the deformation over the
thickness of the cross-section is non-linear. In Chapter 7 this will be
discussed since this behaviour is impossible for shell elements.
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Figure 6.13: Time-displacement
diagram of Plane Strain Model with
NH100% Specimen 12 acceleration
input.
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Figure 6.16: Deformation plots during transient analysis of Plane Strain Model with
NH100% Specimen 12 acceleration input.
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6.11 Sensitivity Study

A sensitivity study was performed to find the influence of the
following parameters: the thickness of the wall at mid-height, the
stiffness of the line interface elements and the Rayleigh coefficients
for mass and stiffness damping.

Thickness The thickness of the wall at mid-height is reduced to
simulate the degree of damage and geometric irregularities due to
bad craftsmanship. When a wall is damaged mortar can drop out
of the joints. This reduces the effective width on which the wall
rocks while leaving the weight approximately equal. Doherty does
not give an accurate description of the damage of the wall before
the shake table experiment. The thickness reduction is obtained by
narrowing the mid-height nodes.

From Fig. 6.17 and 6.18 it can be concluded that the hypothesis
made in the previous paragraph was correct. For smaller thick-
nesses the amplitude and the governing period of the response
increases. A base value of 90 mm is chosen for the thickness of the
wall.

Interface stiffness The interface stiffness is of importance since it
influences the compressive stiffness of the top and bottom supports
as well as the mid-height interface during rocking. According to
general rule of thumb the stiffness should be significantly bigger
than the effective stiffness of the surrounding elements (100 to 100

times as big). This causes the compressive deformation to be in the
plane strain elements and the tensile deformations in the interface
elements.

In Fig. 6.21 and 6.22 the interface stiffness can be found. Both
the amplitude and the governing frequency seem to be converging
towards the experimental results for higher stiffnesses. Therefore
a stiffness of 10−13 N

mm3 or 0.0054 mm eq. URM is chosen as a base
value.

Rayleigh damping coefficients The Rayleigh damping coefficients
are not determined by Doherty. Since it was not possible to find
the correct eigenmodes with DIANA they are determined via this
sensitivity study.

The mass damping coefficient has a great effect on the maximum
amplitude as well as on the decay of the amplitude (Fig. 6.21).
From Fig. 6.22 it can be concluded that the mass coefficient should
be 4 s−1. However, from the Fig. 6.21 it can be observed that for
this mass coefficient the rate of decay of the amplitude is too big.
Thereforce the smaller mass coefficient of 1s−1 is chosen.

The stiffness damping coefficient only has an effect on the decay
of the amplitude. Since this in not visualised in Fig. 6.24 the base
value is chosen from Fig. 6.23 to be 1.4 × 10−5s.
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Figure 6.17: Time-displacement
diagram for different mid-height
and bottom thickness of Plane Strain
Model.
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Figure 6.18: Maximum amplitude
and mean frequency for different
mid-height and bottom thickness of
Plane Strain Model.
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Figure 6.19: Time-displacement
diagram for different interface stiffness
of Plane Strain Model.
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stiffness of Plane Strain Model.
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Figure 6.21: Time-displacement dia-
gram for different Rayleigh coefficients
for mass damping of Plane Strain
Model.
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Figure 6.22: Maximum amplitude and
mean frequency for different Rayleigh
coefficients for mass damping of Plane
Strain Model.
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Figure 6.23: Time-displacement dia-
gram for different Rayleigh coefficients
for stiffness damping of Plane Strain
Model.
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Figure 6.24: Maximum amplitude and
mean frequency for different Rayleigh
coefficients for stiffness damping of
Plane Strain Model.
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6.12 Conclusion

The Plane Strain Model mimics the behaviour of an infinite wall.
It is used in this study as an alternative to 3D modelling.

The model is able to approximate the static resistance accord-
ing to the results of ARUP, both with discrete cracking as well as
with smeared cracking. Although it was not possible to find full
convergence, the results are comparable with the results from the
Curved Shell Model. The post-peak resistance is underestimated
when compared with the results from the experiment.

Results from transient analysis are very good for the Nahanni
100% accelerations. The main influence on the amplitude and
frequency of the response are the thickness of the wall at mid-
height/bottom support and the damping. These parameters are
unknown since damage was inaccurately reported by Doherty and
the damping was not measured.

From transient deformation plots it was observed that the wall
does not deform linearly over the thickness during transient analy-
sis. This can have an influence on the response of the shell elements
used in the final model.
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6.A Phased Analysis

Due to the order of experiments followed by Doherty as explained
in Sec. 1.5 the transient tests are all from cracked and damaged
specimen. This causes an uncertainty in the validation of the ma-
terial model, since the damage can not be modelled a priori. A
phased analysis is proposed where the wall is first cracked with
an imposed displacement using a static analysis and then excited
using a transient analysis.

Cyclic loading Since the wall must be cracked over the whole
cross-section a cyclic loading is applied. In Fig. 6.25 a total cycle is
displayed. The area between the loading and unloading curve is
the dissipated energy. The peak in the second loading direction is
smaller than the first peak. This is due to the damage already done
in the first half cycle. Less energy is needed to crack the last bit of
the wall and thus the resistance is lower.

Transient excitation After cracking the wall is excited by a base
acceleration. The accelerations signal Nahanni 100% specimen
12 is used. Divergence occurs at loadstep 6. This is caused by the
cracked cross-section which is not able to transfer any loads after
being cracked.
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Figure 6.25: Load-displacement
diagram for static part of phased
analysis.
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6.B Integration Points over Thickness

In shell elements implemented in DIANA it is possible to use a
certain number of integration points over the thickness direction
of the element. The maximum number of integration points is
eleven. To see if this amount is sufficient The Plane Strain Model
with elements in the thickness direction of the wall is used. In this
model the number of elements over the thickness is scaled from 1

to 5 with 2 or 3 integration points per element. Material properties,
geometry and loads are as explained before. Since the development
of the crack over the thickness is important for the maximum load
resistance the number of integration points is of importance.

From analyses with increasing number of integration points it
can be concluded that 10 integration points is sufficient for initial
and post-peak behaviour. To find a good approximation of the peak
resistance 8 is already sufficient, see Fig. 6.27

To check if this conclusion also holds for the Curved Shell Model,
the analysis was redone with increasing numbers of integration
points. From this test it can be concluded that eight integration
points over the thickness is sufficient to model the cracking of the
wall correctly, see Fig. 6.28
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Figure 6.27: Load-displacement
diagram for Plane Strain Model with
increasing number of integration
points over the thickness.
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6.C Variation of number of elements over thickness

During transient loading the deformation over the cross-section is
non-linear. Since reduction of the interface stiffness for the Curved
Shell Model effectively decreased the minimum crack size to be
lower than the full width, see Sec. 7.11 the idea is that increasing
the number of elements over the thickness will have the same effect
for the Plane Strain Model. This should then allow the development
of smaller cracks to open and thus show earlier excitations.

Transient analyses was performed with elements over the thick-
ness varying from 5 to 10. The results are displayed in Fig. 6.29.
It can be seen that the initial significant excitation is equal for all
variations and thus the hypothesis is wrong.

It should also be noted that the decay of the response increases
with increasing numbers of elements over the thickness. In Fig.
6.12 the final transient response after optimization is shown. This
response seem to have a too long echoing response. Increasing the
number of elements over the thickness could thus be beneficial.
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Figure 6.29: Variation of number of
elements over the thickness.



7
Curved Shell Model

A very efficient way to model a wall is with curved shell ele-
ments; elements in which the third dimension is compressed into
one plain. Still it is possible to account for stress differences over
the thickness by applying multiple integration points over the thick-
ness. In this way it should be possible to model both in-plane and
out-of-plane failure modes realistically.

In this chapter shell elements are used to validate the experiment
of Doherty. Since during the experiment of Doherty the wall is
already cracked before it was tested on a shake table the model is
first cracked with a static analysis as applied by Doherty. Also a
fully split model is used where the crack is already modelled with
an interface element.

Translational spring (SP2TR) 
Linear elasticity

Curved shell quadrilateral (CQ48S)
Total strain rotating crack
11 integration points z-dir

Line interface (L16IF)
No-tension
11 integration points z-dir

a u

a

u

y

zx

Figure 7.1: Schematized representation of the Curved Shell Model.
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7.1 Discretization

Figure 7.2: Curved shell element
(CQ48S) (TNO DIANA BV, 2014)

Curved shell elements For the Two-Dimensional Curved Shell
Model, schematised in Fig. 7.1, CQ48S elements have been used,
see Fig. 7.2. It is an eight noded quadrilateral and has six degrees
of freedom per node. This element was chosen after analyses with
elements with less degrees of freedom diverged. The reason for the
divergence was the occurance of spurious modes, see Section 7.A.
These modes are suppressed by constraining the extra degrees of
freedom.

Figure 7.3: Line interface element
(L16IF)(TNO DIANA BV, 2014)

Line interfaces For the bottom support, the top support and the
cracked midsection, a line interface element is used, the element
L16IF, see Fig. 7.3. Since this line interface has also a rotational de-
gree of freedom and can have integration points over the thickness
similar rocking behaviour a within the shell element is possible.
The difference is that the interface element the deformation is not
a smeared crack but a difference in displacement between the top
and the bottom nodes. This approach was chosen after a compari-
son with a model with dummy elements representing the cracked
cross-section. In Section 5.A it is shown that both approaches are
equivalent, but the second is more complex.

Top spring At the top of the wall a spring is attached to apply an
overburden force as is done in the experiment.

Rocking behaviour Important for the geometric non-linear be-
haviour is the ability of the wall to rock, as is described in Chapter
4. Since the thickness of the shell elements is applied as an pa-
rameter the geometric non-linear effect must be enforced by the
integration points over the thickness of the element. The out-of-
plane rotation of the shell elements changes the effective stress
over the thickness of the shell element and thus in the integration
points were the stress-strain relationship is evaluated. Due to the
low tensile and the high compressive strength the integration points
at the outer side of the wall will first fail. This results in a smeared
crack of the element in that layer. Since in the compressive side of
the wall only small elastic deformations are present the rotation
point will shift towards the compressive side. Rocking behaviour
should thus be possible.
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7.2 Geometry

The typical dimensions of the elements are presented in Table 7.1.

Dimension
Shell

Element
(CQ40S)

Dummy
Element
(CL9BE)

Top
Spring

(SP2TR)

Line
Interface
(L16IF)

Thickness t [m] 0.11 - - 0.11

Width / Length b/l [m] 0.1 0.1 0.1 0.05

Height h [m] 0.1 - - -

Area A
[
m2] - 1.0 - -

Table 7.1: Typical dimensions of the elements in Curved Shell Model.

Integration Points For realistic cracking to occur a minimum num-
ber of integration points over the thickness is needed. In Section
6.B the minimum number of integration points over the thickness is
determined to be eight.

Direction
Shell

Element
(CQ40S)

Dummy
Element
(CL9BE)

Top
Spring

(SP2TR)

Line
Interface
(L16IF)

η 2 2 1 1

ξ 2 1 1 2

ζ 11 1 1 11

Table 7.2: Integration points per elements in Curved Shell Model.

7.3 Boundary conditions

The elements are constraint as indicated in Fig. 7.1 and Table 7.3.
At the bottom and top the nodes of the line interface that are not
connected with a shell element are supported in translational
directions (at the top y-direction is free) as well as rotations around
the x-axis. This allows for a relative rotation difference to develop
over the line interface.

To restrain spurious modes the sides of the elements are con-
straint as a line of symmetry, it therefore mimics an endless wall.
This is done by restraining the rotation around the y- and z-axis
and translation in x-direction.

Set Node nr. ux uy uz φx φy φz

Top node spring 436 X X X - - -

Top interface; top nodes 436 - - X X - -

Top interface; bottom nodes 436 - - X X - -

Bottom interface; top nodes 436 - - - - - -

Bottom interface; bottom nodes 436 X X X X - -

Shell elements; left nodes 436 - - - - X X

Shell elements; right nodes 436 X - - - X X

Table 7.3: Boundary conditions of the Curved Shell Model.



78 modelling report

7.4 Material Properties

Two material models are applied; the Total Strain Rotating Crack
model is applied to the shell elements and the No-tension material
model is applied to the line interface elements. The general material
properties per element type are presented in Table 7.4.

Element Mass Density Youngs Modulus Poisson’s Ratio Stiffness

ρ
[
kg/m3] E

[
N/m2] ν [−] K / DSTIF [−]

Shell Element (CQ40S) 1800 5.4 × 109 ∗ �

11.6 × 109 ∗∗ � 0.0 -

Overburden spring (SP2TR) - - - 1.01 × 105 N/m

Line interface (L16IF) - - - 1.0 × 1013 N/m3 ∗ ×

1.0 × 108 N/m3 ∗∗ ×

Dummy Element (CL9BE) - - - 1.0 × 1013 N/m3

Table 7.4: Material parameters applied in Curved Shell Model. ∗ For specimen 8

∗∗ For specimen 12

� Total Strain Rotating Crack
material model applied.

× No-tension material model
applied

Total Strain Crack model In this material model the crack is smeared
out over the element as if it were a plastic strain. This has as an
advantage that cracks can appear anywhere in the structure but and
the geometry remains unchanged.

The influence of rotating or fixed cracking is crucial for the resis-
tance of the wall in out-of-plane behaviour during cyclic loading.
This is explained in Section 7.B.

Element Tensile
strength

Mode-I
fracture
energy

Compressive
strength

Compressive
fracture
energy

Shear
retension

factor

ft
[
N/m2] G f t

[
J/m2] fc

[
N/m2] Gc

[
J/m2] β [−]

Curved shell element (CQ48S) 0.3 × 106 ∗

0.45 × 106 ∗∗ 35 4.41 × 106 5000 0.01

Table 7.5: Material parameters for Total Crack Rotating Strain material model for
curved shell elements (CQ48S).

∗ For specimen 8

∗∗ For specimen 12

No-tension model In the interfaces a no-tension material model is
applied. This is a material model which reduces the stiffness if the
relative displacement between the nodes in the interface is positive.
The difference between the compressive and tensile stiffness is in
the order of 109. This causes only the tensile displacements to be
significant.

If the general rule of thumb is used to determine the stiffness of
the interface element, an extreme stiff interface element is found
that does not lead to realistic results. The stiffness used in this
model is obtained from a sensitivity analysis described in Section
7.11.
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7.5 Loads

Self-weight, overburden stress, imposed horizontal displacement
and base acceleration are applied on this model in different anal-
yses. The details of the loads applied on the model are presented
in Table 7.6 for the static analysis and in Table 7.7 for the transient
analysis.

Order of
application

Type of load
Point of

application
Amount Load steps Direction

1 Self-weight - - 1 -y

2 Displacement Node 436 −16.36 × 10−3 m 1 y

3 Displacement Node 116 0.5 × 10−3 m 300 x

Table 7.6: Applied loads on Curved Shell Model during static analysis.

Order of
application

Type of load
Point of

application
Amount Load steps Direction

1 Self-weight - - 1 -y

2 Base Hor. supports Load factors ×g 1241(0.01s) x

Table 7.7: Applied loads on Curved Shell Model during transient analysis.

Different sets of load factors are used, the record of the Nahanni
(NH) earthquake scaled from 100 to 400% (Fig. 5.4) and the El
Centro (EL) earthquake scaled to 66%. In the results presented in
this chapter the Nahanni 100% acceleration signal for specimen 12

was used.
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7.6 Convergence Criteria

For the static and the transient analysis three convergence criteria
have been specified. The incremental step is converged if all three
criteria are simultaneously met. The iteration method continuous
with the next step if the criteria are not met and the maximum num-
ber of iterations is reached. Only when the intermediate solution
diverges the calculation is aborted.

Details on the convergence criteria are specified in Table 7.8 for
the static analysis and Table 7.9 for the transient analysis.

Method Convergence norm Rel. convergence
tolerance

Newton-Raphson Displacement 1.0 · 10−3

" Force 1.0 · 10−3

" Energy 1.0 · 10−3

Table 7.8: Details on convergence criteria of Curved Shell Model for static analysis.

Method Convergence norm Rel. convergence
tolerance

Newton-Raphson Displacement 1.0 · 10−3

" Force 1.0 · 10−3

" Energy 1.0 · 10−3

Table 7.9: Details on convergence criteria of Curved Shell Model for transient
analysis.

In the following sections the convergence of the analyses is also
presented. For each step the convergence of all these criteria at the
end of the iteration is given. Also the norm is presented to show if
the norm is met.

7.7 Time Integration Method

The Backward Euler integration scheme is used for time integration.
This method is explained in the literature review. The stability of
the solution during time integration is dependent on the step size
and the method used.

Stability During the development of this model divergence oc-
cured due to spurious modes, see Section 7.A. After decreasing the
step size no divergence was observed any more.

Method Step size Remark

Backward Euler 2.0 × 10−3 s -

Table 7.10: Details on time integration method for Curved Shell Model.
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7.8 Modal Analysis

Figure 7.4: Modal analysis of Curved
Shell Model.

A modal analysis was performed to find the eigenfrequencies of the
model as well as the Rayleigh Damping coefficients for transient
analysis. For this analysis the cracked model with the line interface
element at mid-height was used since during transient analysis this
will be cracked as well.

The eigenfrequencies are presented in Table 7.11 and the eigen-
modes are displayed in Fig. 7.5. Eigenmode 1 is the governing
mode during transient analysis, rocking of the bodies in out-of-
plane direction. Eigenmode 2 is bending of the wall itself in the
second natural frequency. The second and the third are eigenmodes
where the interface element and the topspring are deformed, these
are neglected for calculation of the Rayleigh coefficients since they
do not play a big role in the out-of-plane deformation of the wall.

Figure 7.5: First four eigenmodes of the Curved Shell Model with a line interface
element at mid-height.

Eigenmode 1 2 3 4

Eigenfrequency [Hz] 5.48 28.76 70.31 218.96

Table 7.11: Details on convergence criteria of Curved Shell Model.

Damping The Rayleigh damping coefficients are displayed in Table
7.12.

Damping ratio Mass coefficient Spring coefficient

[−] [1/s] [s]

0.05 3.357 0.709 × 10−4

Table 7.12: Rayleigh Damping coefficients applied on Curved Shell Model



82 modelling report

7.9 Static Analysis
u

u

Figure 7.6: Loading direction in static
analysis of Curved Shell Model.

A static analysis is performed to find the load-displacement be-
haviour before and after cracking. For this purpose there is no line
interface element at mid-height and thus the physical properties
of the wall are enforced by the shell elements. In the Thesis Report
also a Curved Shell Model with a line interface at mid-height and
discrete cracking is considered. Here only the results are presented
in Fig. 7.7.

Load-displacement Since the material is very brittle a sudden drop
in the load-displacement diagram, Fig. 7.7 is visible after the max-
imum load is reached. This is the point where the wall cracks.
Dependent on the normal force applied and the fracture energy
the resistance can increase after the initial cracking (explained in
Section 2.A). In this case the resistance decreases and a snap-back
curve is expected. With a displacement controlled procedure it is
not possible to fully follow this snap-back curve. Instead the dis-
placement is increased, for a few steps no convergence is found,
but then the curve is found again and the analysis can continue. In
Section 7.C an estimate is made for this snap-back curve.

The post-peak behaviour is underestimated in comparison with
Doherty’s experimental results. Compared with the Plane Strain
Model this model gives similar results. This enforces the idea that
the increase in resistance found by Doherty is an effect of non-linear
behaviour of the overburden spring or a bigger Youngs Modulus.

Convergence From Fig. 7.8 it can be concluded that only just after
the peak resistance the convergence norm for all criteria is not met.
After the peak the energy and displacement convergence criteria
are met and the solution can again be thought of as reliable. After
0.07 m displacement there is some load steps in which convergence
is not met, however the model does not diverge as well. Since no
irregularities are found in the load-displacement diagram it is
assumed that this is no problem and the error remains small.

Cracks In Fig. 7.9 the development of the number of cracks is
given. As can be seen most cracks develop during the initial crack-
ing of the wall. From Fig. 7.10.a & d it can be concluded that most
cracks are found in the tensile zone at mid-height, the crack con-
tinues over the thickness of the beam at mid-height between load
steps 100 and 200 and in the tensile zone at top and bottom also
cracks form. For this axial load no crushing occurs.

Stress From the stress plots of the outer surface of the wall the
tensile zones at mid-height can be observed. The maximum stress
of the elements are presented. It can be observed that the in mid-
height region the tensile strength is reached and the cracks develop.
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Figure 7.7: Load Displacement dia-
gram for Curved Shell Model.
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Figure 7.10: (a,b) Cracks in wall and stress at outer surface of wall at loadstep 100

(c,d) Cracks in wall and stress at outer surface of wall at loadstep 200.
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7.10 Transient Analysis
a

a

Figure 7.11: Loading direction in
transient analysis of Curved Shell
Model.

Time-displacement The response of the Curved Shell Model has
been fitted to the experimental results by changing the interface
stiffness, damping and mid-height thickness (Fig. 7.12). The initial
excitation, amplitude, frequency (Fig. 7.13) and damping are very
accurate with the experimental results. As discussed in Sec. 7.4 a
reduced stiffness is used for the line interface elements. This is a
consequence of the shell elements that can only deform linearly
over the thickness.

Frequency In Fig. 7.13 the amplitude spectrum of the response is
shown. The governing frequency is the frequency with the biggest
amplitude and corresponds to the main rocking frequency. As can
be observed the spectra line up very accurately and the governing
frequency is approximately similar.

Convergence The model has no problem to converge with the
Backward Euler time integration method and sufficiently small time
steps. During the rocking behaviour more iterations are required to
obtain convergence.

Deformations In Fig. 7.15 the resultant traction and deformation
vectors of the line interface elements are plotted. It can be seen that
in the start of the analysis the deformation is still linear and fully
in compression, but at bigger excitations the compressive area is
smaller and the deformation is non-linear.

Sensitivity The model is very sensitive for changes in the interface
stiffness, damping and thickness of the wall. A sensitivity study has
been performed into these parameters and is presented in Section
7.11. The main conclusion from this study is that the interface
elements do not allow non-linear deformation over the thickness of
the elements and therefore the stiffness should be reduced.
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Figure 7.12: Time-displacement
diagram of the Curved Shell Model.
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transient analysis of Curved Shell
Model.

Figure 7.15: (a-b) Traction and deformation plots in deformed state for small
excitation. (c-d) Traction and deformation plots in deformed state for big excitation.
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7.11 Sensitivity Analysis

During testing of this model a sensitivity analysis was carried out.
The model is very sensitive to dummy stiffness, thickness of the
wall and damping. When modelling a URM wall these parameters
are not always known a priori and it is good too obtain some kind
of sense for the sensitivity of these properties. The reason for the
variation of these properties is thoroughly discussed in Sec. 6.11.

Thickness Fig. 7.16 shows some the time-displacement diagram
of the mid-height wall response for varying thickness. This figure
shows that the response decays faster for thicker walls. Fig. 7.17

gives the maximum amplitude and the governing frequency as a
function of the thickness. From this graph it could be concluded
that the governing frequency is best approximated with a wall
of 100 mm thick. However, the wall decays too fast too reach the
second oscillation. Therefore a wall thickness of 90 mm is chosen.

Interface Stiffness From Fig. 7.18 is can be seen that low interface
stiffness results in big excitations and high stiffness in low excita-
tions. In Fig. 7.19 the stiffness is expressed as an equivalent height
of URM column. The left figure confirms the statement made from
Fig. 7.18, the right figure shows that for higher interface stiffness
the frequency also increases.

As explained in Sec. 6.11 the stiffness should be significantly
bigger than the effective stiffness of the surrounding elements.
However for the Curved Shell Model with interfaces this does not
seem to be the case. When a high dummy stiffness is used the
point of rotation shift totally to the outer fibre and only the last
integration point is loaded in compression. For lower stiffnesses
more integration points are loaded in compression. This mimics the
real behaviour of a masonry wall where there is also a compressive
toe area over which the compressive force is spread. The interface
stiffness should thus be adjusted to this phenomenon.

Rayleigh damping coefficients The mass damping coefficient has a
great effect on the maximum amplitude as well as on the decay of
the amplitude (Fig. 7.20). From Fig. 7.21 it can be concluded that
the mass coefficient should be 4 s−1. However, from the Fig. 7.20 it
can be observed that for this mass coefficient the rate of decay of
the amplitude is too big. Thereforce the smaller mass coefficient of
1s−1 is chosen as base value.

The stiffness damping coefficient only has an effect on the decay
of the amplitude. Since this in not visualised in Fig. 7.23 the base
value is chosen from Fig. 7.22 to be 6 × 10−3s.
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Figure 7.16: Time-displacement
diagram for different mid-height and
bottom thickness of Curved Shell
Model.
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Curved Shell Model.
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Figure 7.18: Time-displacement
diagram for different interface stiffness
of Curved Shell Model.
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Figure 7.19: Maximum amplitude and
mean frequency different interface
stiffness of Curved Shell Model.
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Figure 7.20: Time-displacement dia-
gram for different Rayleigh coefficients
for mass damping of Curved Shell
Model.
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Figure 7.21: Maximum amplitude
and mean frequency for different
Rayleigh coefficients for mass damping
of Curved Shell Model.
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Figure 7.22: Time-displacement dia-
gram for different Rayleigh coefficients
for stiffness damping of Curved Shell
Model.
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coefficients for stiffness damping of
Curved Shell Model.



curved shell model 89

7.12 Conclusion

The Curved Shell Model is numerically the most efficient since is
has a discretization with the least amount of nodes. However, from
static an dynamic validation it was not found to accurate in all
situations.

The Curved Shell Model is not able to approximate the dynamic
behaviour with a smeared cracking approach. After cracking of the
wall it diverges, no rocking behaviour is found. This is probably
due to a reduction of the shear resistance after cracking.

When a line interface is applied at mid-height of the wall a very
good approximation is possible for both static as well as dynamic
analysis if the line interface stiffness is reduced. The reduced
stiffness is needed to account for the inability of the shell and
line interface elements to model non-linear deformations over
the thickness of the elements. This is due to Euler-Bernoulli’s
hypothesis plane sections remain plane.

With the help of a sensitivity study it was possible to find good
values for the interface stiffness and obtain a good approximation
of the response of the wall.
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7.A Spurious Modes

During development of the Curved Shell Model for transient exci-
tations divergence occured at random moments in time. When the
deformed shapes were observed some strange deformations were
found. A few deformation plots are shown in Fig. 7.24. Different
types of divergence occur, from left to right; the bottom interface
is lost in shear out-of-plane, one of the shell elements expands in
vertical direction, the thinner element at mid-height folds double,
the whole wall buckles in in-plane direction.

These spurious modes are an effect of numerical instability dur-
ing time integration. When the time step is too large it is possible
that no solution is found and the problem diverges. This can be
solved by either changing the time integration method to a method
which adds some numerical damping like Wilson time integration
or reduce the incremental time step. The second option is used
for the transient analysis described in Section 7.10, the time step is
reduced to 2.0−3 s.

Too reduce the possibility of spurious modes, the unrealistic de-
formations are restraint as much as possible. The wall is a segment
of an infinite long wall, which is loaded over the whole length in
out-of-plane direction. The deformation should thus be equal over
the length and rotations around the y-axis and z-axis are impos-
sible. Therefore these degrees of freedom are constraint, see Sec.
7.3.

Together these measures result in a stable time integration.

Figure 7.24: Divergence due to spurious modes.
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7.B Fixed and Rotating Smeared Cracking

In the total strain cracking concept two approaches are possible,
one where the strain orientation is fixed upon cracking and one
where the strain automatically orientates in the direction of the
principle strain.

Both methods are available in DIANA and are implemented in a
similar manner. The material parameters are evaluated by updating
the stress tensor with a stress increment which is dependent on the
strain increment. This increment is evaluated along certain axes.
For the rotating approach these axes are the principle directions
of the strain tensor, for the fixed approach the principle directions
of the strain tensor upon cracking. To find the strain increment
in this direction the strain increment in the global coordinates is
transformed using a transformation matrix which is found using
the Jacobi method, which calculates the eigenvectors of the strain
tensor.

The fixed total strain concept fixes the transformation matrix
from the cracking moment on. This is a logical approach for tensile
cracks since the material splits and thus the crack can no longer
change it’s orientation. However, in compression the orientation
of the crushing plane can change during increased loading. Also,
when cyclic loading is applied, the orientation of a crushing plane
does not necessarily need to have the same orientation as a tensile
crack which was formed earlier on the same spot. These effects are
missed by the fixed total strain cracking concept.

This effect of the different orientation of crushing and cracking
is clearly visible for an out-of-plane wall which is cyclic loaded.
Shell elements are used to model the wall, with the fixed total strain
crack concept. Over the thickness direction 11 integration points are
used. The wall is loaded with an overburden load and a prescribed
displacement at mid-height of the wall.

First tensile cracks appear in the integration points of outer layer
of the elements. These cracks have a horizontal orientation, which
is fixed for the rest of the analysis. When the deformation continues
crushing occurs at the inner layer (Fig. 7.26.a). These crushing
planes are orientated diagonally and are from that moment on also
fixed for the rest of the analysis. When the wall is unloaded and
then reloaded in the other direction no horizontal tensile cracks can
develop since the diagonal crushing planes are fixed (Fig. 7.26.b).
This results in a stiff behaviour visible in the load-displacement
diagram. When the rotating total strain crack concept is used the
orientation of the crushing planes is not fixed and the wall has
similar load-displacement behaviour in both directions.
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For a wall loaded purely out-of-plane the direction of the ten-
sile cracks and crushing planes should in principle be horizontal.
Due to the discretization of the finite elements the direction of the
principal compressive stresses is orientated in a diagonal direc-
tion, although in a continuing wall these should also be horizontal.
When other situations are examined, for instance a building with
walls loaded in-plane as well as out-of-plane, the orientation of
the cracks in cyclic loading will also change for tension and com-
pression. A possible alternative could be a mixed concept where
the crack orientation is only fixed when a tensile crack has devel-
oped and is released when the crack is closed. If the same crack is
reloaded the original orientation of the crack is recovered.
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Figure 7.25: Load-displacement
diagram for Curved Shell Model with
Total Strain Fixed Crack material
model.
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Figure 7.26: Cracks for Fixed Total Strain Cracking at load steps 128, 249 and 673
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7.C Snap-Back Estimation

The load-displacement diagram of the static analysis has a steep
decline after the initial peak, see Fig. 7.8. Due to the cracking na-
ture of the material a snap-back could be in the load-displacement
diagram. At a snap-back the equilibrium path first decays for both
the force and displacement before the displacement increases again.

As explained in the literature review, the area underneath the
load-displacement diagram equals the work performed. With
this relation it is possible to make an estimate of the ’real’ load-
displacement curve since the energy required to crack the cross-
section is equal to the fracture energy times the cross-section area.

To give an estimate for the snap back behaviour two models are
compared. One with shell elements over the full height of the wall
to which the Total Strain Rotating Crack material model is applied
and one with an interface element half way to which the no-tension
material model is applied as being an already cracked cross-section.
The difference in the load-displacement diagram will thus only be
the cracking of the cross-section. In Fig. 7.27 both diagrams are
shown. The difference must thus be the work done during cracking.
The difference during greater displacements is caused by the stiff
line interface behaviour and is not taken into account.

The difference between the curves is approximated using the
trapezoid rule for numerical integration,

W = Σ( f (u)− g(u)) · ∆u = 3.7096 Nm

The work performed during cracking should be equal to,

W = G f · l · t = 3.6575 Nm

Since the work performed during cracking is bigger than the
theoretical work done during cracking there is a sign of a snap-back.
However, this snap-back is only very small. The important variation
of the interface stiffness does effect the peak load, which effects the
approximation of the performed work. Still it is proven that there is
some kind of snap-back.
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Figure 7.27: Load Displacement
diagram for cracked and non-cracked
Curved Shell Model.
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7.D Element Choice Boundary Conditions

In the 2D model with curved shell elements over the length of the
wall, the geometric non-linear effect of the thickness, the rocking
of the wall, should be incorporated. At mid-height this is not a
problem since the stresses are distributed over the thickness of
the wall. The rotation point then automatically shifts towards the
extreme fibres.

y

zx

Figure 7.28: Modelling rocking be-
haviour with line interface elements.

y

zx

Figure 7.29: Modelling rocking be-
haviour with plane interface elements
and dummy members.

The boundary conditions are however more tricky. The con-
nection should be represented in a realistic manner. With a brick
standing loose on the floor or a floor being laid upon a wall with-
out a rotational constraint a clamped boundary constraint would
not represent the rocking behaviour observed in experiments. Two
different modelling methods are explored: using a line interface
element with a rotational degree of freedom around its axis and
using dummy interface elements to model the cross-section itself.

Line interface The first method a phenomenological approach is
chosen. The interface is constraint at the bottom in all three trans-
lational and in the rotational degree of freedom around its axis.
The interface element has 11 integration points over its thickness,
like the shell elements have. When the wall is displaced in the mid-
dle the bottom and top constraints are rotated. Since the bottom
line is constraint in this direction of rotation the rotation has to be
generated from strain differences over the thickness of the inter-
face element in the normal direction. Since a no-tension material
model is applied the strain in the tensile fibres will increase much
more rapid than in the compressive fibres. This causes the point
of rotation to shift towards the extreme compressive fibre. The vis-
ible result will be that the line interface will open at nodes of the
interface. The rocking behaviour is thus accurately modelled.

Plane interface In the second method a more realistic modelling
approach. Here the interface is modelled with dummy elements
representing the area of the brick which is opened by the cracks.
This first side of the crack is connected to the second side, which is
also made of dummy elements and is constrained with the help of a
plane interface element. This plane has a no-tension material model
which makes the connection act as a rocking wall. Since in this
way of modelling the rocking is made visible by dummy members
it is more intuitive. It is however less robust since the dummy
members have a high stiffness which could make the numerical
model unstable.
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Excluding the possibility of overconstraining described in the
Section 5.A as Feenstra’s Peak, both models give similar results.
The results are presented in Fig. 7.30. When comparing this to
the model where both top and bottom supports were clamped
(20150226b), it can be easily seen that the peak resistance of the
clamped wall is higher than that of the rocking supported walls.
This justifies the idealisation of the rocking support for wall connec-
tions that are not rotationally constraint. Modelling this as clamped
could over predict the capacity of the wall and thus lead to unsafe
situations.
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Figure 7.30: Load-displacement
diagram of Curved Shell Element
for different methods to apply the
boundary conditions.
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