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Abstract

The first part of the paper presents a partitioned fluid-structure interaction
(FSI) coupling for the non-uniform flow hydro-elastic analysis of highly flex-
ible propellers in cavitating and non-cavitating conditions. The chosen fluid
model is a potential flow solved with a boundary element method (BEM).
The structural sub-problem has been modelled with a finite element method
(FEM). In the present method, the fully partitioned framework allows one
to use another flow or structural solver. An important feature of the present
method is the time periodic way of solving the FSI problem. In a time peri-
odic coupling, the coupling iterations are not performed per time step but on
a periodic level, which is necessary for the present BEM-FEM coupling, but
can also offer an improved convergence rate compared to a time step coupled
method. Thus, it allows to solve the structural problem in the frequency
domain, meaning that any transients, which slow down the convergence pro-
cess, are not computed. As proposed in the method, the structural equations
of motion can be solved in modal space, which allows for a model reduction
by involving only a limited number of mode shapes.

The second part of the paper includes a validation study on full-scale. For
the full-scale validation study a purposely designed composite propeller with
a diameter of 1 m has been manufactured. Also an underwater measurement
set-up including a stereo camera system, remote control of the optics and
illumination system has been developed. The propeller design and the un-
derwater measurement set-up are described in the paper. During sea trials
blade deflections have been measured in three different positions. A compari-
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son between measured and calculated torque shows that the measured torque
is much larger than computed. This is attributed to the differences between
effective and nominal wakefields, where the latter one has been used for the
calculations. To correct for the differences between measured and computed
torque the calculated pressures have been amplified accordingly. In that way
the deformations which have been computed with the BEM-FEM coupling
for non-uniform flows became very similar to the measured results.

Keywords: flexible marine propellers, fluid-structure interaction, numerical
modelling, full-scale validation

1. Introduction

Over the last decades many papers have been published on the hydro-
elastic analysis of flexible (composite) propellers. The majority of studies
have been limited to steady inflow conditions. Fewer papers have been pub-
lished about the hydro-elastic analysis in behind ship conditions, i.e. involv-
ing non-uniform flows, for instance [1, 2, 3, 4]. The most probable reason for
this is that the non-uniform flow conditions complicate the analyses signif-
icantly. First of all, the hydro-elastic analysis needs to be performed with
the structural dynamic equations, a quasi-static analysis does not suffice [5].
This means that hydrodynamic damping and fluid added mass effects have
to be incorporated in the analysis. For composite propellers the ratio be-
tween fluid added mass and structural mass will be much higher than one
[5]. Computations with high fluid added mass ratios are prone to instabilities
[6, 7] and therefore either a monolithic method has to be adopted, in which
the fluid and structural problem are solved simultaneously, or a dedicated
partitioning between fluid and structural solver is required to stabilize the
coupling iterations between the two sub-domains.
A second complicating factor due to the non-negligible hydrodynamic damp-
ing and fluid added mass effects is that structural blade vibration velocities
and accelerations have to be coupled to the fluid as well, whereas for uni-
form flow calculations only the blade deformations matter. Two different
approaches have been presented in literature to cope with this. In [1, 2, 3, 4]
the vibration-induced pressures have been written in terms of closed form
expressions for added mass and hydrodynamic damping and moved to the
left-hand side of the structural equations. The advantage of this approach is
that the vibration induced pressures are directly included in the structural
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analysis, resulting in a faster convergence. However, the derivation of the
closed form expressions has been based on several assumptions, with the small
blade deformation assumption as the most important one [5]. A more precise
approach would be to include the vibration velocities and accelerations of the
propeller blade by additional boundary conditions in the flow calculation. In
[5] both approaches have been compared. It was concluded that the first
approach provides reasonable results, because the structural response was
dominated by stiffness and therefore the consequences of modelling errors in
the fluid added mass and hydrodynamic damping contributions were rela-
tively small. The second approach is recommended for problems involving
significant blade deformations, i.e. highly flexible blades.
This paper is divided in two parts. The purpose of the first part is to present
a fluid structure interaction (FSI) method for the hydro-elastic analysis of
highly flexible blades in behind ship conditions. Since the kind of monolithic
method as presented in [4] is limited to small deformations and extension of
this method to large blade deformations seems hardly possible, a partitioned
method has been adopted. An advantage of a partitioned method is that for
the structural and fluid sub-problem existing black-box solvers can be used.
In this work a boundary element method (BEM) for the fluid simulations
has been used, but the present method may be suitable for other flow solvers
as well. A BEM was chosen because this method is particularly effective in
capturing the flow details but requires only 1% of the effort needed for fully
viscous flow simulations [8]. In this work the BEM PROCAL, developed
by the Maritime Research Institute Netherlands (MARIN) [9, 10], has been
used. In PROCAL cavitation models have been implemented. Hence, the
present method can be applied for the (non-)uniform flow FSI analysis of
highly flexible blades, showing large blade deformations, in cavitating and
non-cavitating conditions.
The second part of the paper shows a validation of the method with full-scale
measurement results. In so far as literature presents results on the validation
of flexible propeller calculations, those studies are for small-scale propellers
(maximum diameter around 60 cm), where the measurement results are ob-
tained from laboratory tests [11, 12, 13, 14, 15]. Except in [15] results for
non-uniform flow conditions have been shown. For this work, full-scale tests
have been performed with a purposely designed 1 m diameter glass-epoxy
propeller. The full displacement field of the blades at the wake peak have
been obtained with a digital image correlation technique. The measurement
results have been compared to calculation results.
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This work has been structured as follows: Section 2 presents the unsteady
BEM-FEM coupling procedure. Section 3 explains the design of full-scale
composite propeller. In Section 4 the full-scale measurement set-up has been
explained. Section 5 provides a comparison of numerical and experimental
results. Conclusions and recommendations are given in Section 6.

2. Unsteady BEM-FEM coupling procedure

The unsteady coupling procedure to compute the steady-state fluid struc-
ture interaction (FSI) response of flexible propellers in behind ship conditions
(i.e. in a non-uniform flow) will be discussed in the following, starting with
some background knowledge on FSI, a brief description of fluid and structural
modelling and finally explaining the coupling scheme.

2.1. Fluid-structure interaction

2.1.1. Monolithic and partitioned FSI

Monolithic or partitioned methods can be used to solve FSI problems.
In a monolithic method the fluid and structure problem are simultaneously
solved using a single code. This might be difficult to realize because fluid
and structural solvers are usually completely different each using its own op-
timized tools specific for the field of application. Furthermore, a monolithic
solver might be very inefficient since structural and fluid problems are of-
ten solved differently (linearly and non-linearly) and with different temporal
resolutions. However, in a monolithic scheme both fields have to be inte-
grated with the highest of the two temporal resolutions. Another option is
a partitioned method in which the fluid and structure problem are solved in
separate codes. In case of strong interaction between fluid and structure, a
partitioned method requires coupling iterations to converge to the monolithic
solution, which can be computationally expensive. An important advantage
of such a partitioning for the present method is that the structural problem
may be coupled to a black-box fluid solver able to model cavitation as well.
That was also an important reason to adopt a partitioned method for this
work.

2.1.2. Time step and time periodic partitioned FSI

In a time step FSI coupling, fluid and structural calculations are alter-
nately performed for each time step. In case of one fluid and structural
evaluation for each time step, a time step difference exists between fluid and

4



structural solution. Then, for strongly coupled FSI problems, sub-iterations
between fluid and structural solver are required to reach dynamic equilibrium
for each time instant.
In case of a periodic FSI problem, the periodicity can be used to get rid of
the time step difference by using results from the same time step of a previ-
ous period. This coupling is called the time periodic coupling and has been
described and investigated in previous work [16]. A time periodic coupling
is the most obvious for the present work for several reasons. First of all,
the time periodic coupling can take advantage of the periodic nature of the
problem to be solved. Secondly, the potential flow solver PROCAL used in
this work is completely periodical in nature. Think of the vortex wake shed-
ding and the use of symmetry blades [9] and therefore a non-periodic solution
could not be treated in PROCAL. The time periodic coupling allows for first
letting PROCAL to converge before new disturbances enter the equations.
An appealing advantage of the time periodic coupling is that it allows to
solve for the structural equations in the frequency domain. That means that
only the steady state response is obtained and any transients, which slow
down the convergence to the steady state FSI solution, are not computed
[16]. However, as shown, convergence problems as appearing in time step
couplings due to strong fluid added mass effects, arise in time periodic cou-
plings as well. This requires a dedicated partitioned solution method.

2.1.3. Partitioned solution methods

In a partitioned FSI method fluid and structural problems are separately
solved and the coupling between the two sub-domains is accomplished by
imposing boundary interface conditions. In that case a partitioned solution
method has to be provided in which it is defined how the body boundary
interface information has to be exchanged between the two solvers. Espe-
cially in case of a high ratio between fluid added mass and structural mass
and an incompressible fluid, the solution process may not converge without a
dedicated partitioned solution method [6]. Two of these partitioned solution
methods have been investigated in a time step and time periodic framework
in [16]. It has been shown that the Quasi-Newton inverse least squares (QN-
ILS) method outperforms the Aitken under-relaxation method in any case.
Furthermore, the QN-ILS method in a time periodic framework converges for
any fluid added mass ratio. Therefore, in this work the QN-ILS method is
applied in the unsteady coupling procedure for flexible propellers. For more
results obtained with the QN-ILS partitioned solution method, the imple-

5



mentation of this method in a time-periodic framework and its convergence
behaviour one is referred to [16]. Details on the mathematical background
of the QN-ILS method can be found in [17].

2.2. Fluid model description

In this work the boundary element method (BEM) PROCAL has been
used. PROCAL has been developed by the Maritime Research Institute
Netherlands (MARIN) for the Cooperative Research Ships (CRS) to anal-
yse the hydrodynamics of (non-)cavitating ship propellers in open-water and
in behind ship conditions [9, 10]. In order to determine the fluid forces for
flexible propellers in behind-ship conditions several modifications to PRO-
CAL have been made in order to include deformation induced fluid velocities
and accelerations. Due to blade deformations panel normal vectors become
time-dependent, which is reflected in the panel source strengths. The hy-
drodynamic influence coefficients of the blade also become time-dependent.
Finally, the pressures and fluid forces have to be evaluated from the com-
puted velocity potentials on a modified grid. PROCAL has been modified to
make it suitable for shape adaptive propeller modelling.

In [5] two different approaches to include blade deformation effects in
BEM have been proposed. Both were implemented in PROCAL. In the par-
tially geometry dependent (PGD) BEM modelling the source strengths are
calculated from the blade deformation dependent panel normal vectors and
the pressures and forces are evaluated on the modified BEM geometry, while
keeping blade and wake influence coefficients constant. In the fully geome-
try dependent (FGD) BEM modelling, blade and wake influence coefficients
are blade deformation dependent as well. This requires a significant amount
of additional calculation time since the system of equations have to be re-
calculated for every time step. The results obtained with the PGD-BEM
model are close to results obtained with FGD-BEM model. Although, it has
been shown that some results obtained for the most flexible case with the
PGD-BEM model do not comply with the accuracy criteria. Therefore, ap-
plying this modelling approach for very flexible cases needs to be considered
carefully [5].

In the FGD-BEM modelling the total disturbance velocity potential Φ
is solved with PROCAL. The total velocity, v, relative to the operating
propeller becomes,

v(x, t) = v0(x, t) +∇Φ(x, t) (1)
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with v0 the inflow velocity, t the time and x the position vector in a Carte-
sian coordinate system. The velocity, v0, can be written as the sum of the
ship’s effective wake field velocity, vw, and the effect of the propeller angular
velocity, θ,

v0(x, t) = vw(x, t)− θ × x (2)

The flow is assumed to be incompressible and have a constant density. There-
fore, Laplace's equation applies to the disturbance velocity potential,

∇2Φ(x, t) = 0 (3)

Then, the fluid pressures, p, are related to the total velocity and the distur-
bance velocity potential according to Bernoulli's law,

∂Φ

∂t
+

1

2
|v|2 +

p

ρ
+ gz =

pref
ρ

+
1

2
|v0|2 (4)

For a propeller, pref is the pressure far upstream (along the shaft axis) and it
obeys the hydrostatic law, pref = patm + ρgzshaft, with patm the atmospheric
pressure at the free surface, and the submergence z at the shaft being zshaft.
In order to solve Eq. 3 boundary conditions have to be imposed on the pro-
peller surface, SB and wake sheet, SW , which contains the shed vorticity. On
the propeller surface the impermeability condition is imposed for a deforming
and vibrating blade,

∇Φ · n(x, δ) = −v0 · n(x, δ) +
∂δ

∂t
· n(x, δ) (5)

The right hand side of this boundary condition consists of two parts, the
surface normal velocity due to the inflow velocity, v0 · n(x, δ), where the
surface normal vector is also a function of blade deformation, δ. The second
part, ∂δ

∂t
· n(x, δ), is the vibration velocity of the deformed blade itself.

A relation between the disturbance potential on the fluid boundary sur-
face and the source strengths (normal component of the disturbance velocity
at the body boundary) for an unsteady flow and deformable body is given
by the following integral equation [5],

2πΦ(a (δ) , t) =

∫

SB(δ)

[
Φ(b (δ) , t)

∂G(a (δ) ,b (δ))

∂nb (δ)
− ∂Φ(b (δ) , t)

∂nb (δ)
G(a (δ) ,b (δ))

]
dS

+

∫

SW (δ)

∆Φ(b (δ) , t)
∂G(a (δ) ,b (δ))

∂nb (δ)
dS (6)
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This integral equation follows from Morino’s formulation of Green’s third
identity [18] and the dynamic boundary condition on the wake sheet. In this
equation a and b are points on the fluid domain boundary surface and nb is
the outward normal at b. The Green’s function, G, for the Laplace equation
is defined as,

G(a,b) =
1

r(a,b)
r(a,b) = |r| = |a− b| (7)

The integral equation Eq. 6 is solved in PROCAL by approximating the
surfaces SB and SW by Ntotal panels. On each panel a collocation point is
defined where the integral equation is applied. Finally, a system of equations
is obtained, unknown in the strengths of the source and dipole elements. The
system of equations is updated every time step according to the deformations
in blade geometry and blade vibration velocities. For more details about the
FGD-BEM modelling approach one is referred to [5].

2.3. Structure model description

Details about geometry and material aspects in the FEM modelling of
composite ship propellers have been given in [19]. This subsection reveals
the structural dynamic equations for a propeller blade and the analyses of
dry and wet blade natural frequencies and mode shapes required for the
structural analyses with a reduced model in modal space.

2.3.1. Propeller blade structural equations

For the case of a propeller in behind ship condition the structural dynamic
equations for a propeller blade in a blade fixed (i.e. rotating) reference system
is given by,

[Ms] {ü}+ [Cs] {u̇}+ [Ks] {u} = {fh}+ {ffict} (8)

where [Ms], [Cs] and [Ks] denote structural mass, damping and stiffness
matrices. {fh} is the hydrodynamic force vector, which implicitly includes
fluid added mass, hydrodynamic damping and fluid stiffness contributions.
The vector {ffict} represents the fictitious forces as a result of solving a
rotating problem in a body fixed reference system.

8



2.3.2. Loads

The hydrodynamic pressures are computed with the FGD-BEM model as
explained in Section 2.2. Analyses are performed only for constant angular
speeds which means that Euler forces are zero but centrifugal forces and
Coriolis forces are present. The centrifugal force on a mass m rotating with
angular velocity θ̇ at position p is,

fcentrifgul = m
(
θ̇ ×

(
θ̇ × p

))
(9)

The Coriolis force is equal to,

fCoriolis = 2m

(
θ̇ × dp

dt

)
(10)

The Coriolis force contributes to the total damping but is assumed to be
negligible in comparison to the hydrodynamic damping and therefore ne-
glected in the analyses [3]. Hence, only the centrifugal forces contribute to
the fictitious force vector in Eq. 8.

2.3.3. Dry natural frequencies and eigenmodes

For an N degree of freedom structural system with mass matrix, [M], and
stiffness matrix, [K], the structural dynamic equation for forced vibration is,

[M] {ü}+ [K] {u} = {f} (11)

where {ü} and {u} are the structural acceleration and deformation vectors
and {f} is the force vector. The natural frequencies ωi=1...N and corresponding
modes ψi=1...N follow from the solution of the eigenvalue problem,

[
−ω2M + K

]
{u} = {0} (12)

The eigenmodes are orthogonal with respect to the system mass and stiffness
matrix. This property can be utilized to transform the system of equations
to the modal space. An uncoupled system of equations is obtained and the
degrees of freedom are the modal participation factors, qi, rather than the
nodal structural response vectors. The first step in this transformation is
to write the structural deformation vector as a linear combination of all the
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eigenmodes,

{u} =
N∑

i=1

ψiqi = [Ψ] {q} (13)

[Ψ] = [ψ1,ψ2, . . . ,ψN ] (14)

{q} =




q1
q2
...
qN


 (15)

Substituting these expressions in the structural dynamic equations and mul-
tiplying by [Ψ]T gives,

[Ψ]T [M] [Ψ] {q̈}+ [Ψ]T [K] [Ψ] {q} = [Ψ]T {f} (16)

When the modes are normalized with respect to the mass matrix, i.e. [Ψ]T [M] [Ψ] =
[I], the following uncoupled system of equations is obtained,

[I] {q̈}+ [Ω] {q} = [Ψ]T {f} (17)

where [I] is the identity matrix and [Ω] is a diagonal matrix with the square
of the natural frequencies ωi on its main diagonal.

2.3.4. Wet natural frequencies and eigenmodes

From the closed form expression for the fluid added mass matrix as pre-
sented in [5] a full non-symmetrical added mass matrix can be obtained. To
calculate the wet natural frequencies and mode shapes the added mass ma-
trix has to be added to the structural mass matrix. A possible approach
is to lump the off-diagonal terms of the added mass matrix on its main di-
agonal and add it to the structural mass matrix in order to compute wet
natural frequencies and mode shapes by solving the corresponding eigen-
value problem [3]. An important reason for this lumping is that many of
the commercial FEM software packages cannot handle non-symmetric and
non-sparse matrices.

To avoid lumping of the fluid added mass matrix and adding of the fluid
added mass contribution by discrete masses in a black-box FEM solver the
wet natural frequencies and mode shapes can be computed directly from
dry frequencies and mode shapes and the fluid added mass matrix by the
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following approach. First of all, the modal added mass matrix, [Γ], has to
be computed from the full and non-symmetrical added mass matrix [Mh].
In order to obtain a fully uncoupled system of equations, the modal added
mass matrix needs to be symmetric. A symmetric modal added matrix, [Γ],
has been obtained in the following way,

[Γ] = [Ψ]T [M∗
h] [Ψ] (18)

where [M∗
h] = 1

2

(
[Mh] + [Mh]T

)
. The symmetric modal added mass matrix

is added to the structural modal mass matrix [I]. In order to obtain the wet
natural frequencies and mode shapes a second eigenvalue problem has to be
solved in analogy with Eq. 12,

[
−ω̄2 [I + Γ] + Ω

]
{q} = {0} (19)

From this eigenvalue problem the wet natural frequencies ω̄i=1...N and eigen-
vectors θi=1...N are obtained. The eigenvectors θi are eigenmodes in modal
space. These eigenmodes are mass normalized with the total modal mass ma-
trix [I + Γ]. The wet mode shapes are obtained by multiplying the matrix
with the dry mode shapes by the eigenvector matrix [Θ],

[
Ψ̄
]

= [Ψ] [Θ] (20)

where [Θ] = [θ1,θ2, . . . ,θN ]. Then, the wet modal stiffness matrix,
[
Ω̄
]
, is

equal to [Θ]T [Ω] [Θ] and is a diagonal matrix with the squared wet natural
frequencies ω̄i on its main diagonal.
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2.4. Coupling scheme
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Figure 1: Flow chart of coupling scheme.
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Figure 1 presents schematically the FSI coupling procedure. In this
scheme index r is the counter of the number of PROCAL revolutions and
index k is the counter of the number of FSI cycles. Generally, r will be
larger than k since PROCAL requires an iterative procedure over a number
of propeller revolutions in order to converge to a steady state flow solution.
A propeller revolution is subdivided in M number of time steps. At the be-
ginning of the first PROCAL calculation the indices k and r are one. The
coupling scheme will be explained step by step in the following subsections.

2.4.1. Pressure calculation

The coupling scheme starts by computing with PROCAL the steady state
solution for the loads on the undeformed propeller in the unsteady wakefield.
As mentioned before, PROCAL solves this problem iteratively and therefore
after every propeller revolution, r, the convergence to the steady state solu-
tion is checked. The converged hydrodynamic pressures for the full revolution
at FSI cycle, k, are denoted with superscript k − 1 since in the PROCAL
calculation the structural response of the previous FSI cycle has been used.
After the PROCAL analysis the convergence of the FSI solution is monitored
by comparing the hydrodynamic loads of the present and previous FSI cycle.
When the load difference between these two cycles is smaller than a specified
tolerance, the FSI solution is said to be converged, otherwise the calculation
continuous with two pressure corrections. The first correction is for the over-
estimation of the pressures at the propeller tip obtained with the BEM. The
second one is a viscous correction for frictional losses. Both are explained in
more detail in [20].

2.4.2. Loads

Once the pressures have been computed, they are imposed on the FEM
model and the corresponding equivalent nodal forces are calculated together
with the equivalent nodal forces of the centrifugal load. With the wet modes
hapes the loads for a full revolution are converted to wet modal space. Im-
portant to note is that identical meshes have been used in the BEM and
FEM model [20]. The main advantage is that no interpolation of pressures
and structural response is required in the exchange of boundary interface
information between the fluid and structural domain.
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2.4.3. Structural equations in wet modal space

For a better convergence, estimates for fluid added mass and hydrody-
namic damping forces have been added to left- and right-hand side of the
structural dynamic equation. Then, Eq. 8 for FSI cycle k reads,

([Ms] + [M∗
h]) {ü}k + ([Cs] + [Ch]) {u̇}k + [Ks] {u}k = (21)

{fh}k−1 + {ffict}k−1 + [M∗
h] {ü}k−1 + [Ch] {u̇}k−1

where [Ch] denotes the hydrodynamic damping matrix. The derivation of
added mass and hydrodynamic damping matrices has been elaborated in
[5] Eq. 21 shows clearly the main drawback of a partitioned method; the
structural response for FSI cycle k is computed from the loads based on the
previous FSI cycle k − 1.

The structural problem is solved in wet modal space. Accordingly, Eq. 21
transforms to,
[
Ψ̄
]T

([Ms] + [M∗
h])
[
Ψ̄
]
{r̈}k +

[
Ψ̄
]T

([Cs] + [Ch])
[
Ψ̄
]
{ṙ}k + (22)

[
Ψ̄
]T

[Ks]
[
Ψ̄
]
{r}k =

[
Ψ̄
]T

[M∗
h]
[
Ψ̄
]
{r̈}k−1 +

[
Ψ̄
]T

[Ch]
[
Ψ̄
]
{ṙ}k−1 +

[
Ψ̄
]T

({fh}+ {ffict})k−1

which can be written as,

[I] {r̈}k +
[
Z̄
]
{ṙ}k +

[
Ω̄
]
{r}k =

[
Ψ̄
]T {f}k−1 (23)

where
[
Z̄
]

is the total damping matrix in wet modal space. After this trans-
formation a weak coupling in the system of equations still exists as a result
of the full hydrodynamic damping matrix, [Ch]. This coupling in the sys-
tem of equations has been neglected and model reduction has been applied
by computing the modal participation factors only for a limited number of
mode shapes.

The flow chart of Figure 1 shows that the added mass and hydrodynamic
damping forces are approximated based on the response of the previous FSI
cycle and are added to the other excitation forces, resulting in modal forces

for the M times steps of a full revolution
[
Ψ̄

T
f0, Ψ̄

T
f1, . . . , Ψ̄

T
fM−1

]
.

2.4.4. Fourier transform

The time periodic coupling allows one to solve the structural problem in
the frequency domain by taking advantage of the periodicity in the prob-
lem, resulting in a faster convergence to the steady state solution than in
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case of solving the problem in the time domain [16]. With the forward
Fourier transform the sequence of modal force vectors for a full revolution[
Ψ̄

T
f0, Ψ̄

T
f1, . . . , Ψ̄

T
fM−1

]
transform into M spectral components in the fre-

quency domain, [F0,F1 . . .FM−1], which are defined by,

{Fm} =
M−1∑

l=0

[
Ψ̄
]T {fl} e−imω̂tl m = 0, 1, . . . ,M − 1 (24)

where ω̂ is the fundamental frequency equal to 2πn in rad/s with n the
propeller revolution rate in Hz. The inverse transform is then,

{
Ψ̄

T
fl

}
=

M−1∑

m=0

{Fm} eimω̂tl l = 0, 1, . . . ,M − 1 (25)

2.4.5. QN-ILS approximation

By computing the structural response for each FSI cycle straight from
Eq. 23 the FSI solution will blow up because of the strong coupling between
fluid and structure. Therefore, a dedicated partitioned solution method is
required to keep the iterative solution process stable and to converge to
the steady state FSI solution in an efficient way. The method which has
been implemented in this work is the Quasi-Newton inverse least squares
(QN-ILS) method which belongs to the class of matrix-free Krylov subspace
methods. Within the coupling method the frequency domain wet modal
forces {F}k−1 might be used as an approximation for {F}k. Repeating this
for subsequent FSI cycles is basically a Gauss-Seidel iterative way of solving
the FSI problem, which does not necessarily (efficiently) converge. With
the QN-ILS method a better approximation for {F}k is made based on all
previous iterates of {F} instead of simply using the last one, i.e. {F}k−1. The
basic idea behind the QN-ILS approximation is that the best approximation

for {F}k =
{
F̃
}k−1

, where
{
F̃
}k−1

is that linear combination of {F} from

previous iterates {k − 1, k − 2, . . . 0, } that will minimise the residuals of the
FSI solution [16, 21].

2.4.6. Frequency domain solution in wet modal space

Similar to the modal forces the time domain discretised wet modal par-
ticipation factors rl are related to the wet modal participation factors in the
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frequency domain Rm by,

{rl} =
M−1∑

m=0

{Rm} eimω̂tl l = 0, 1, . . .M − 1 (26)

Eq. 23 can be written with the Fourier transformed QN-ILS approximated

modal forces,
{
F̃m

}
, and wet modal participation factors, {Rm} as,

(
− [I]m2ω̂2 + i

[
Z̄
]
mω̂ +

[
Ω̄
])
{Rm}k eimω̂t =

{
F̃m

}k−1

eimω̂t (27)

The wet modal participation factors can be solved for m = 0, . . . ,M − 1
using,

{Rm}k =
(
− [I]m2ω̂2 + i

[
Z̄
]
mω̂ +

[
Ω̄
])−1

{
F̃m

}k−1

m = 0, 1, . . . ,M − 1

(28)

2.4.7. Time domain solution in normal space

Having computed the sequence of M wet modal participation factors
in the frequency domain, the next step is to convert the solution to the
time domain. The time domain wet modal participation factors {rl} can
be obtained from the inverse Fourier transform of Eq. 26. In analogy with
Eq. 13 the time domain nodal deformations can be obtained from the wet
mode shapes and the wet modal participation factors,

{ul} =
[
Ψ̄
]
{rl} l = 0, 1, . . .M − 1. (29)

2.4.8. BEM model updating

Based on the structural response calculated for FSI cycle k, M new BEM
models are constructed for the next FSI cycle. First of all, the new BEM
models include the deformed geometry and the adapted hydrodynamic in-
fluence coefficients based on the calculated structural deformations at each
time step. This has been accomplished by constructing new panel files which
include the geometry of the deformed blade with the PROPART toolbox
[22]. From these new panel files the corresponding hydrodynamic influence
coefficients are calculated in PROCAL. Secondly, the source strengths are
redefined for each time step with Eq. 5 which includes the blade vibration
velocities. Then, a new FSI cycle starts by first computing the steady state
solution for the loads from the updated BEM models. When the loads from
present and previous FSI cycle differ less than a certain tolerance the fully
coupled FSI solution is obtained, otherwise the iterative procedure continu-
ous until convergence.
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Figure 2: The Nautilus (Photo: H. Huppel).

3. Full-scale composite propeller

This section will describe the most important details of the full-scale
propeller and its design. Important to note is that the full-scale composite
propeller was not designed for a long lifetime or the demonstration of the
benefits of composite ship propellers, but for the validation of the hydroelastic
calculation results.

3.1. Vessel and wakefield

The full-scale measurements have been performed on the Nautilus, a div-
ing support vessel of the Royal Dutch Navy, see Figure 2. The main particu-
lars of the the vessel are summarized in Table 1. The Nautilus is a twin-screw
vessel of which the port-side propeller has been replaced by a composite one.
The non-uniform nominal wakefield at the port-side propeller plane has been
calculated with a RANS solver for a ship speed of 10 kn. Figure 3 shows the
computed wakefield.
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Figure 3: Nominal wakefield at the portside propeller plane of the Nautilus.
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Length 37.8 m
Beam 8.7 m
Depth 3.1 m

Draught 1.5 m
Maximum speed 10.5 kn

Propulsion Twin-screw
Engine 2×Volvo Penta Diesel 280 kW

Table 1: Main particulars of the Nautilus.

3.2. Propeller geometry

In an early design stage it was assessed that the existing blade geometry,
Figure 4a, would result in an unacceptable amount of suction side sheet cavi-
tation at higher speeds. Furthermore, to enhance blade flexibility, a propeller
geometry with more skew was desired. Therefore, a new propeller geome-
try, Figure 4b, with a similar open-water performance as the existing blade
geometry was designed. The main particulars of the new and old propeller
geometry are summarized in Table 2. The main differences between the old
and new propeller geometry are in the skew and camber of the propeller sec-
tion profiles. The change in skew for increasing blade flexibility the change
in camber to get rid of the cavitation. Initially, the thicknesses of the com-
posite section profiles were taken similarly to what would have been used in
the design of a nickel-aluminium bronze propeller (NAB) propeller, but in
a later stage the blade thickness at the root section has been significantly
increased to allow for the realisation of the blade-hub connection.
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(a) NAB blade.

0°45° -45°

(b) Composite blade.

Figure 4: Geometry of NAB and composite blade.

3.3. Propeller structural design

Following the propeller geometry design the propeller structural design
was made. The structural design has been based on several considerations,
itemized below.

• Since the composite propeller is a retrofit on an existing drive train
system, it was most obvious to manufacture separate composite blades
and connect the blades to a NAB hub.

• For validation purposes a propeller as flexible as possible was desirable.
For that reason glass fibre reinforced epoxy was selected as the blade
material.

• General guidelines for the design of layered composites have been adopted.
For instance, not more than three plies of equal orientation are stacked
together and the maximum angle change between between plies is 45°.

• For blade manufacturing reasons a sandwich construction with an easily
compressible resin-rich core material was adopted.

In the structural design process of the composite propeller the connec-
tion between composite blades and NAB hub was found to be critical. To
create enough space for an appropriate connection, the blade area adjacent
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NAB prop. Composite prop.
Diameter 1000 mm 1000 mm

Pitch Ratio (mean) 0.94 0.85
Expanded Area Ratio 0.73 0.75

Number of Blades 4 4
Thickness Ratio (mean) 0.0620 0.0817
Camber Ratio (mean) 0.0137 0.0299

Boss Ratio 0.1825 0.1825
Total Skew Angle 29.5° 40.4°

Direction of rotation outward-turning outward-turning

Table 2: Main particulars of the original NAB and composite propeller.

to the hub was made significantly thicker than in the initial design. A de-
tailed description of the developed connection is omitted in this work as it
is irrelevant to the validation study. In general the connection is of a hybrid
type, including an adhesive bonding and a mechanical connection. Both were
designed to be able to separately sustain the full load. The strength of the
designed blade-hub connection was confirmed by static and fatigue tests on
specimens and on full-scale. The glass-epoxy blades have been designed for
infinite fatigue life according to the guidelines as given in [23]. The ultimate
strength of the blades have been assessed for the two critical loadcases of full
speed ahead and full bollard pull astern. It has to be noted that the loads for
the first loadcase have been obtained with FSI method as presented before.
However, since the BEM PROCAL is not directly applicable to astern con-
ditions the loads for the second loadcase have been computed with a vortex
lattice method, excluding the hydro-elastic effects. From these analyses the
full bollard pull astern condition turned out to be the most critical, which
is not surprising given the high skew of the blades. Since this loadcase was
analysed in a simplified way, the propeller was not designed for backward
operation and therefore not for long-term use, but for the period of the full-
scale trials only. However, from fatigue analyses and tests both the blade-hub
connection and blade material itself showed to have an infinite fatigue life.
The blades have been produced by a closed mould vacuum assisted resin
transfer molding process with a post-cure. For blade manufacturing reasons
it was decided to apply a sandwich construction in which a Polymat was

21



used as a core. The Polymat core has a variable thickness which is 37.5% of
the local blade thickness. Advantages of using the Polymat core is that the
mould can be more easily closed due to the compressibility of the core ma-
terial. Secondly, it has good injection properties and therefore it facilitates
the vacuum infusion process. The remaining 31.25% of the blade thickness
on both blade sides have the same symmetric but unbalanced laminate. The
typical stacking sequence of the uni-directional (UD) 0.5 mm thick glass-fibre
plies, according to the ply angle definition as given in Figure 4 is, [20/20/-
15/-60/-105/-60/-15/20/20]°, but can slightly vary due the local thickness.
Essentially, this laminate has fibres in three major orientations: -15°, -60°,
-105°. The 20° plies have been added to increase the shear–extension cou-
pling. Since the laminate is symmetric the laminate itself has no bend-twist
coupling. However, the shear-extension coupling on laminate level creates a
bend-twist coupling on a global level in a sandwich structure were the skin
laminates are mirror images around the neutral axis [24].
Where the local thickness requires more layers, first 20° plies have been added
to increase the shear-extension coupling, then -15° plies and finally -60° plies
have been added. Where the local thickness requires a thinner laminate, plies
are dropped from inside.

3.3.1. Material properties

The blades consist of the following materials. For the load carrying parts
of the blade construction 0.5 mm thick, 600 g/m2 E-glass UD plies have
been used. A Polymat 140 g/m2 core material with on each side a fiberglass
chopped strand mat (CSM) of 1.5 mm thick has been used for the blade
core. To protect the blade surfaces a 0.17 mm thick, 200 g/m2 E-glass woven-
rowing (WR) ply has been added at the outsides of the laminates. In order to
improve the resin flow through the product during injection, between every
three to five UD plies, a 0.5 mm thick, [0/90]° woven fabric injection weave
(IW) has been added. The corresponding material properties are summarized
in Table 3.
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E11 [GPa] E22 [GPa] υ12 [-] G12 [GPa] ρ [kg/m3]
E-glass UD 34.6 5 0.30 3.1 1.8
E-glass WR 21.6 21.6 0.19 3.0 1.8
E-glass IW 10.1 10.1 0.23 2.5 1.4
Polymat 3.50 3.50 0.36 1.4 1.2
CSM 10.4 10.4 0.34 4.0 1.6

Table 3: The (in-plane) material properties of the composite propeller constituents.

3.4. FEM modelling of the full-scale propeller

For FEM modelling and computations MSCMarc/Mentat has been used.
The FEM model of the full-scale propeller consists of one propeller blade
without the hub part. The hub has not been modelled. The blade has been
fully clamped at the blade-hub interface. The models were discretised by
quadratic solid elements. Layered quadratic solid elements have been used,
the complete stacking sequence was modelled by including each individual
layer in the FEM model. A structured FEM mesh has been used with a
29×30×4 element distribution, meaning that 29, 30 and 4 elements are dis-
tributed in chord-wise, radial and through-thickness direction, respectively.
In the FEM modelling special attention has been given to the establishment
of the material orientations in composite blades. In [19, 25] the importance
of a proper material orientations for doubly curved structures has been de-
scribed. Standard commercial FEM software packages are usually not able to
define unambiguously the material orientations in complex geometries [25].
In [19] an approach has been presented to determine the element depen-
dent material orientations in doubly curved structures. In this method the
through thickness direction and the projection of the transverse laminate
(90)-direction on the element surface is used to establish the material ori-
entation per element. A more detailed description of this approach and the
blade FEM modelling can be found in that paper.

3.4.1. Verification

The FEM model of the full-scale propeller has been verified by comparing
measured and computed dry natural frequencies and mode shapes. The dry
natural frequencies and mode shapes of the full-scale propeller have been
measured during a roving hammer test. A grid on the surface of all the
propeller blades was drawn, in each grid point the blades were hit with
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the hammer and the response was measured at the propeller tip with an
accelerometer. Two of the pictures made during the tests are shown in Figure
5.

Figure 5: Images taken during the natural frequency measurements of the composite
blades.

Table 4 presents the measured and computed dry natural frequencies for
the first four modes. It can be concluded that the computed and measured
dry natural frequencies are close together. Furthermore, the weights of the
separate blades have been measured and checked with the amount of mass
in the FEM calculation. The weight of the blades as measured and in the
FEM calculation is approximately 4 kg. Hence, it can be concluded that the
FEM model correctly represents the mass and stiffness distribution of the
propeller blades.

mode 1 [Hz] mode 2 [Hz] mode 3 [Hz] mode 4 [Hz]
Measured 119 188 339 430
Computed 114 186 316 435

Table 4: Measured and computed natural frequencies.

4. Full-scale measurements

4.1. Measurement technique

Stereo-photography coupled with a Digital Image Correlation (DIC) tech-
nique was selected to measure the propeller blade deformations. With this
technique a very accurate recording of the complete 3D blade deformation
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field can be achieved. In the past, this method was successfully applied for
blade deformation measurements both in uniform flow in the cavitation tun-
nel and in-behind ship model condition in the towing tank [26, 27].
DIC is a full-field image analysis method, based on grey value digital images
that finds the displacements and deformations of an object in three dimen-
sional space [28]. The method tracks the gray value pattern in pixel sub-
sets of the images and computes the three-dimensional deformation pattern
through the stereoscopic principle. The surface of the specimen must present
a random speckle pattern with no preferred orientation and sufficiently high
contrast. On the pressure side of the blades a hand-painted speckle pattern
was applied. With this technique very accurate measurements of the blade
response were achieved.

4.2. Measurement set-up

The development of the measurement set-up was a complex process due
to the uniqueness of such measurement campaign. A feasibility study was
conducted at an early stage to investigate the possibilities for measuring the
propeller deflections on full-scale where several options were studied. It was
concluded that under water stereo-photography presented the most chance
of success for this specific case. This approach required several additional
tests to assess the feasibility of this measurement technique at the preferred
test location and time as the underwater visibility may vary during the year
due to algae blooms. The result of the assessment was positive as the water
visibility was found excellent [29]. Due to the fast rotational speed of the
propeller and the limited amount of natural light available under the ship
hull, it was also concluded that a large amount of artificial light was neces-
sary to avoid motion blur. Another challenge was to find the best position
for the cameras. It was decided to position the cameras on the rudder, which
resulted in additional challenges for the routing of the cables due to rudder
movements and the strong flow a this location.
After performing the pre-study the measurement set-up was further detailed
out including: the camera set-up, a custom made remote control of the optics
and a custom made underwater strobe illumination system. Since no under-
water cameras with the right specification were available, two high quality
machine vision cameras have been used, protected by underwater housings.
The cameras were triggered through a hardware pulse synchronized with the
propeller shaft. A support structure for the camera housings was developed,
consisting of a base plat welded on the rudder and an L-bar mounted to the
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base plate (Figure 6). The L-bar has slot holes for adjustment of the camera
view after assembly. The cameras were positioned for an optimal view at
the propeller blade in the twelve o’clock position. Further, a custom made
remote control of the optics was developed in order to optimise the lens focus
and aperture from on-board.
For the underwater illumination as a first step, off the shelf underwater lights
were assessed, but no items, able to provide sufficient light intensity while
being reasonably compact, were found. The solution was found by develop-
ing small custom made subsea strobe lights triggered by a hardware pulse,
synchronized with the propeller shaft and the cameras. Two sets of 4 lights
were prepared and mounted respectively on the rudder and on the hull ap-
proximately 1 m to portside of the rudder stock (Figure 7).

Figure 6: Starboard rudder side with cameras.
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Figure 7: Lights on rudder and hull and cables.

4.3. The measurements

The measurements were carried out October 31st and November 1st, 2017.
Two stereo images taken with both cameras for the highest rotation rate are
shown in Figure 8. During all the tests, ship speed, distance and heading,
and on both shafts the rotation rate and with strain gauges the torque were
measured. Tests were conducted at different propeller speeds, sailing on both
propellers, but also only on the portside composite propeller. The reason
was that for higher speeds a large amount of air bubbles obstructed the view
when sailing on both propellers. With only the composite propeller running,
a drift angle was induced which reduced the amount of air bubbles in the
image plane. For each test a large amount of images were taken and image
averaging was applied to filter out displacements resulting from transient
behaviour and to remove air bubbles and particles from the images. The
results were further post-processed and a procedure was applied to correct
for rigid body motions induced by vibrations and movements of the shaft and
the rudder. While the measurement data of the highest quality was collected
when sailing with only the portside propeller running, a fair comparison to
the numerical results for these conditions would require a recalculation of
the wake field including the effect of the drift angle. This activity was not
carried out as part of this research work, therefore the related uncertainties
lead to a worse match between numerical and experimental results for the
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cases with only the portside propeller running. More details on the full-scale
measurement campaign can be found in [29].

Figure 8: Stereo images for the maximum rotation rate (Photos: MARIN).

5. Comparison of experimental and calculation results

5.1. Test conditions and torque results

Although the measurement data of the highest quality was collected when
sailing only on the portside propeller, from a comparison of numerical and
experimental results it turned out that the best resemblance between calcu-
lation and measurement results has been obtained for the conditions with
both propellers in operation. This is not surprising, because due to drifting
of the vessel the propeller inflow in the cases of sailing on one propeller will
become significantly different from the RANS computed wakefield. There-
fore, a fair comparison to the numerical results for these conditions would
require a recalculation of the wakefield including the effect of the drift angle.
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This activity was not carried out as part of this research work. For that rea-
son only results will be presented for the conditions with both propellers in
operation. For these conditions measurements have been conducted for the
ship speeds and rotation rates of Table 5. This table presents also the mea-
sured torque of the portside composite propeller and the torque computed
for the composite propeller and for the assumed completely rigid starboard
propeller. The results show that the flexible properties of the composite
propeller reduces the torque by approximately 5%. The results also reveal
that the measured torque is more than 15% higher than calculated. These
differences are attributed to using the nominal wakefield for the calculations
instead of the effective wakefields.

Ship Rotation PS measured Calculated torque
speed [kn] rate [rpm] torque [kNm] PS [kNm] SB [kNm]

Blade 7, low load, 7.7 420 2.14 1.84 1.92
twelve o’clock

Blade 7, high load, 9.0 473 2.72 2.26 2.38
twelve o’clock

Blade 8, low load 7.7 411 2.06 1.73 1.81
twelve o’clock

Blade 8, high load 8.7 466 2.61 2.23 2.34
twelve o’clock

Blade 7, low load, 8.1 421 2.11 1.78 1.88
one o’clock

Blade 7, high load, 8.8 468 2.74 2.21 2.34
one o’clock

Blade 7, low load, 8.2 419 2.10 1.74 1.84
half past two

Blade 7, high load, 8.8 471 2.65 2.25 2.38
half past two

Table 5: Test conditions, measured torque results portside (PS) composite propeller and
calculated torque results for PS composite and starboard (SB) rigid propeller.
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5.2. Uncertainties
For uniform flow experiments and calculations on model-scale, an uncer-

tainty estimation has been presented in [20]. From this study it was con-
cluded that the discretisation errors in the BEM-FEM calculations can be
assumed negligible compared to modelling uncertainties due to not exactly
modelling the properties and conditions as appearing in the experiments.
For these class of errors the two most important sources were using the
design propeller geometry and the design elastic properties instead of the
as-built geometry and actual elastic properties. It is assumed for this work
that the error due to differences between design and actual geometry will
be negligibly small, because of the improved procedure for the assembly of
blades and hub. The results of the natural frequency tests indicate that the
FEM model correctly represents the mass and stiffness distribution of the
propeller blades, therefore as stiffness modelling error only ±5% has been
assumed. The largest modelling error, which is not present in uniform flow
experiments, is expected to be in the wakefield. First, the RANS computed
nominal wakefield has been used for the calculations instead of the effective
wakefield. Secondly, this wakefield has been computed for a ship speed of
10 kn and has been used for other conditions as well. Thirdly, as advance
velocity the ship speed has been used, which would be true in laboratory
conditions, however in full-scale measurements the advance velocity may be
influenced by waves, current and drift angle. It has been considered outside
the scope of this work to define how large the wakefield uncertainties are.
However, given the differences between measured and computed torque as
can be seen in Table 5, significant differences between the RANS computed
nominal wakefield and actual propeller inflow can be expected. In order to
correct for this, the whole pressure distributions calculated with the BEM
have been amplified evenly with the ratio between the measured torque and
the uncorrected calculated torque as given in Table 5 in order to have iden-
tical torque in measurements and calculations in the end. The remaining
modelling uncertainty (including the ±5% stiffness uncertainty) has been as-
sumed to be ±10% on bend and twist deformations.
For the DIC measurements an uncertainty of ±0.25 mm has been assumed.
This value is based on the measurement noise as observed in the data and the
consideration that the measured blade response adjacent to the hub should
be zero, which is generally not the case. With the calculation rules for un-
certainties the twist deformation uncertainty could be obtained from the
displacement uncertainty.
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5.3. Comparison of computed and measured blade response

Figure 9 shows the calculated and measured bend and twist deformations
at the mid-chord points against the radial position, for the low and high load,
for blade 7 and 8 in the twelve o’clock position. Results for both blades have
been shown in the same figure in order to compare them. The graphs show
that the responses of both blades are very similar. This was already expected
from the results of the natural frequency tests. Since the results for blade 7
and 8 are similar, only results for blade 7 will be shown.
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(a) Bend deformation, low load.
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(b) Twist deformation, low load.
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(c) Bend deformation, high load.
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(d) Twist deformation, high load.

Figure 9: Calculated and measured bend (left) and twist (right) deformations of the mid-
chord points against the radial position, for blade 7 and 8 in the twelve o’clock position.

Figures 10 to 12 show the uncertainty intervals for measured and cal-
culated bend and twist deformations against the radial position, for the
low and high load for blade 7 in the twelve o’clock, one o’clock and half
past two position. The uncertainty intervals for the numerical results have
been obtained from the BEM-FEM calculations with amplified pressures for
torque identity and assuming ±10% uncertainty in the obtained bend and
twist deformations. The uncertainty interval for the bend deformations is
the ±0.25 mm bandwidth around the measured displacements. The uncer-
tainty interval for the measured twist deformations has been computed with
the calculation rules for uncertainties from the ±0.25 mm uncertainty in
the displacements. Figures 10 to 12 show a very good resemblance between
calculated and measured bend deformations. The BEM-FEM calculation
slightly underestimates the bend deformation for the twelve o’clock and half
past two position. The opposite is the case for the one o’clock position. A
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good resemblance between calculated and measured twist response has been
obtained for the twelve o’clock position. For the two other blade positions
the resemblance is less good, especially for the half past two position. Given
its magnitude, the measurement of blade twist is strongly correlated with the
measurement uncertainty. The measurement system was optimised for the
twelve o’clock position, therefore the light conditions on the blade surface for
the one o’clock and two o’clock positions are sub-optimal, especially in the
tip area. This may explain why the twist comparison is shown less accurate
in the high radii location for these cases. Furthermore, for the half past two
position the larger deviation in measured and calculated twist response is
also due to difficulties in applying the rigid body motion correction.
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(c) Bend deformation, high load.
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Figure 10: Calculated and measured bend (left) and twist (right) deformations of the
mid-chord points against the radial position, for blade 7 in the twelve o’clock position.
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(a) Bend deformation, low load.
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(c) Bend deformation, high load.
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Figure 11: Calculated and measured bend (left) and twist (right) deformations of the
mid-chord points against the radial position, for blade 7 in the one o’clock position.
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(b) Twist deformation, low load.
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(c) Bend deformation, high load.
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Figure 12: Calculated and measured bend (left) and twist (right) deformations of the
mid-chord points against the radial position, for blade 7 in the half past two position.

6. Conclusions

A partitioned FSI coupling for the non-uniform flow hydro-elastic analysis
of highly flexible propellers in cavitating and non-cavitating conditions has
been presented. The method is a partitioned FSI method in which coupling
iterations between fluid and structural solver are performed on a periodic
level rather than per time step in order to accomplish the strong coupling
between the fluid and structural sub-domain. A time periodic coupling was
necessary for the present BEM-FEM coupling, since the BEM method is
completely periodical in nature and therefore a time step coupling would not
converge. In addition, a time periodic coupling allows to solve the structural
problem in the frequency domain, which is advantageous for the convergence
speed. In the BEM-FEM coupling procedure the structural sub-problem has
been solved in the frequency domain, in wet modal space, which allows for
a model reduction by involving only a limited number of mode shapes. The
present FSI framework is not confined to this way of solving the structural
equations. For instance, it would be also possible to include a geometrically
non-linear FEM, because of the full separation of fluid and structural solver.
From the validation study on full-scale the following conclusions can be
drawn:

• The comparison between measured and computed natural frequencies
confirms that the FEM modelling is fairly accurate.
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• The measurement of the blade deflections were successfully carried out
at full-scale with a stereo-camera system coupled with a DIC technique.

• The comparison between measured and calculated blade responses shows
that the blade response is well predicted with the BEM-FEM coupling
for non-uniform flows.

• The results show that the twist response is relatively small and the
uncertainty in the twist response is relatively large. It remains a chal-
lenge to obtain accurately the twist response of flexible blades with a
stereo camera measurement set-up in combination with a DIC tech-
nique, which is a point of attention for the future.
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