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COMPUTER APPLICATIONS
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Abstract
Objectives To investigate the added diagnostic value of arterial
spin labelling (ASL) and diffusion tensor imaging (DTI) to
structural MRI for computer-aided classification of Alzheimer's
disease (AD), frontotemporal dementia (FTD), and controls.
Methods This retrospective study used MRI data from 24
early-onset AD and 33 early-onset FTD patients and 34 con-
trols (CN). Classification was based on voxel-wise feature
maps derived from structural MRI, ASL, and DTI. Support
vector machines (SVMs) were trained to classify AD versus
CN (AD-CN), FTD-CN, AD-FTD, and AD-FTD-CN (multi-
class). Classification performance was assessed by the area
under the receiver-operating-characteristic curve (AUC) and
accuracy. Using SVM significance maps, we analysed contri-
butions of brain regions.

Results Combining ASL and DTI with structural MRI result-
ed in higher classification performance for differential diag-
nosis of AD and FTD (AUC = 84%; p = 0.05) than using
structural MRI by itself (AUC = 72%). The performance of
ASL and DTI themselves did not improve over structural
MRI. The classifications were driven by different brain re-
gions for ASL and DTI than for structural MRI, suggesting
complementary information.
Conclusions ASL and DTI are promising additions to struc-
tural MRI for classification of early-onset AD, early-onset
FTD, and controls, and may improve the computer-aided dif-
ferential diagnosis on a single-subject level.
Key points
•Multiparametric MRI is promising for computer-aided diag-
nosis of early-onset AD and FTD.

• Diagnosis is driven by different brain regions when using
different MRI methods.

• Combining structural MRI, ASL, and DTI may improve dif-
ferential diagnosis of dementia.

Keywords Classification . Dementia . Differential
diagnosis . Perfusion . Diffusion tensor imaging

Abbreviations
AD Alzheimer’s disease
ASL Arterial spin labelling
AUC Area under the ROC curve
CBF Cerebral blood flow
CN Cognitively normal controls
DTI Diffusion tensor imaging
FA Fractional anisotropy
FTD Frontotemporal dementia
GM Grey matter
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MMSE Mini-Mental State Examination
ROC Receiver-operating characteristic
SVM Support vector machine
T1w T1-weighted structural MRI
WM White matter
VBM Voxel-based morphometry

Introduction

Alzheimer's disease (AD) and frontotemporal dementia (FTD)
are major diseases underlying dementia, especially in younger
patients (age < 65 years) [1]. Establishing an accurate diagno-
sis in the early stage of the disease can be difficult. Although
clinical symptomatology differs between the diseases, symp-
toms in the early stage may be unclear and can overlap [2, 3].
The current clinical criteria, which entail qualitative inspection
of neuroimaging, fail to accurately differentiate AD from FTD
[4]. However, early and accurate differential diagnosis of AD
and FTD is very important, mainly because it gives patients
access to supportive therapies [5, 6]. In addition, early diag-
nosis supports new research into understanding the disease
process and developing new treatments [5, 6].

In this difficult case of differential diagnosis between AD
and FTD, methods for computer-aided diagnosis may be ben-
eficial. These methods make use of multivariate data analysis
techniques that train a model (classifier) based on neuroimag-
ing or related data, resulting in an objective diagnosis. In ad-
dition, computer-aided diagnosis can be more accurate than
using only clinical criteria [7], as it potentially makes use of
subtle group differences. Using structural T1-weighted (T1w)
MRI to find characteristic patterns of brain atrophy, computer-
aided diagnosis methods yielded accuracy of up to 84% for
differentiation of AD and FTD [8–10].

Besides using structural MRI, evidence of neurodegenera-
tion can be measured with advanced MRI techniques such as
arterial spin labelling (ASL) and diffusion tensor imaging
(DTI). ASL can non-invasively measure brain perfusion in
terms of cerebral blood flow (CBF) [11, 12]. Recent studies
have shown differences in perfusion patterns for FTD and
AD indicating that this technique is promising for differential
diagnosis [13–16]. In addition, some classification studies
showed an added value of ASL over atrophy measurements
for AD diagnosis in individual patients, although others did
not [13, 17–19]. Using DTI, the fractional anisotropy (FA)
can be quantified, which is related to the degradation of white
matter (WM) bundles. WM degradation has been shown to be
more prominent in FTD than in AD, especially in frontal brain
regions [14, 20, 21]. In classification studies, DTI generally
shows a slight added value to atrophy measurements [22–28].

As ASL and DTI measure aspects of the neurodegenerative
process that are different from brain volume changes, we
hypothesise that these techniques have an added diagnostic

value over structural MRI. Although ASL and DTI have been
shown to be potential markers for differential diagnosis of AD
and FTD, their combined added value for computer-aided
differential diagnosis has not yet been evaluated. This study
aims to investigate the added diagnostic value of ASL and
DTI to structural MRI for classification of AD, FTD, and
controls.

Materials and methods

Participants

We retrospectively included 24 AD patients, 33 FTD patients,
and 34 cognitively normal (CN) controls. Patients who visited
the memory clinic of our institution between February 2011
and June 2015 were considered for inclusion. Patients
underwent neurological and neuropsychological examination
as part of their diagnostic work-up. Patients with a Mini-
Mental State Examination (MMSE) score ≥ 20 were included
if they had undergone MR imaging with a standardised pro-
tocol including structural T1w MRI, ASL, and DTI. Patients
with psychiatric or neurological disorders other than dementia
were excluded. The reference standard was a diagnosis of AD
or FTD established by consensus of a multidisciplinary team
according to the clinical criteria [2, 3, 29]. Controls were re-
cruited from patient peers and through advertisement, and had
no memory complaints, history of neurological or psychiatric
disease, or contra-indications for MRI.

This study was approved by the local medical ethics com-
mittee. Eighty-seven participants signed informed consent;
consent from the remaining four patients was waived because
of the retrospective nature of the study.

Image acquisition and processing

MR imaging was performed at 3 T with 8-channel head coils
on two identical scanners (DiscoveryMR750; GE Healthcare,
Milwaukee, WI, USA). The protocol included T1w, ASL, and
DTI. High-resolution isotropic T1w images were acquired
with 3D inversion recovery fast spoiled gradient-recalled ech-
o. According to the recommendations for ASL [12], we ac-
quired 3D pseudo-continuous ASL perfusion-weighted im-
ages and a separate proton-density image for scaling. DTI
used 2D single-shot echo planar imaging in 25 non-collinear
directions [30]. Detailed parameters are listed in Table 1.

For image processing, the Iris pipeline [19] was applied to
obtain voxel-basedmeasures of structuralMRI, ASL, and DTI
(see Appendix A for a detailed description). From structural
MRI, we derived tissue segmentations—WM, grey matter
(GM), cerebrospinal fluid—and a brain mask. In a group tem-
plate space, we derived features based on voxel-based mor-
phometry (VBM) within a mask of the 1) GM (VBM-GM), 2)
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WM (VBM-WM) and 3) supratentorial brain (VBM-Brain).
For ASL, CBF was quantified using a single-compartment
model and partial volume correction. The CBF voxel values
of the GM in the template space were used as features for
classification. For DTI, tensor fits were performed to derive
FA maps. The FA voxel values in WM in the template space
were used as features for classification.

Quality control

The following images were visually inspected (E.E.B.,
5 years of experience): GM segmentation, WM segmenta-
tion, brainmask, template space registration, ASL registered
to structural MRI, CBF map, DTI registered to structural
MRI, and FA map. Any errors in the image processing were
corrected until visual inspection revealed nomore unaccept-
able results.

Analysis and statistics

Classifications of AD versus CN (AD-CN), FTD-CN, and
AD-FTD were performed with linear support-vector-
machine (SVM) classifiers [31]. The SVM C-parameter was
optimised in cross-validation on the training set. Classifiers
were trained on VBM-GM, VBM-WM, VBM-Brain, CBF,
and FA features separately. For combination of multiple pa-
rameters, the classifiers were combined by averaging posterior

probabilities [32]. The following multi-parametric classifiers
were trained:

& GM combination: VBM-GM and CBF
& WM combination: VBM-WM and FA
& Full combination: VBM-Brain, CBF, and FA

For multi-class classification (AD-FTD-CN), pairwise
classifiers were combined by multiplying the posterior prob-
abilities. Using fourfold cross-validation, the mean area under
the receiver operating characteristic curve (AUC), the mean
accuracy, and standard deviations over 50 iterations were
computed. The multi-class AUC was evaluated over pairs of
classes [33], and the multi-class accuracy equalled the correct-
ly classified rate.

Differences in mean AUC and accuracy were tested: 1)
CBF versus VBM-GM, 2) FA versus VBM-WM, 3) GM
combination versus VBM-GM, 4) WM combination versus
VBM-WM, 5) Full combination versus VBM-Brain. This was
done using non-parametric permutation tests: the difference in
performance of the two classifications was compared
(α ≤ 0.05) to a null distribution that was estimated using 500
permutations in which the labels were randomly distributed
over the samples.

For detection of features that contributed significantly to
the SVM, we calculated statistical significance maps (p-
maps). These maps were computed on all data using an ana-
lytical expression that approximates permutation testing [34].

Table 1 MRI acquisition parameters

T1w ASL DTI

Sequence 3D IR FSPGR 3D pCASL 2D single-shot EPI

Scan parameters (TI/TR/TE) 450 ms / 7.9 ms / 3.1 ms 1525 msa / 4632 ms / 10.5 ms N.A. / 7925 ms / 82 ms

Resolution 1 mm isotropic 3.3 mm isotropic 1.9 × 1.9 in-plane

Acquisition matrix 240 × 240 × 176 512 sampling points on 8 spirals 128 × 128

Reconstructed voxel size 0.9 × 0.9 × 1.0 mm (sagittal) 1.9 × 1.9 × 4.0 mm (axial) 0.9 × 0.9× 2.5 mm or
0.9 × 0.9 × 2.9 mm (axial)

ASL-specific

Labelling duration - 1450 ms -

Number of excitations - 3 -

Background suppression - Yes -

Readout - Interleaved fast spin echo -

DTI-specific

Non-collinear directions - - 25

Maximum b-value - - 1000 s/mm2

No. b0 volumes (b-value = 0 s/mm2) - - 3

Acquisition time 4:41 min 4:29 min 4:50 min

a For ASL, TI equals the post-labelling delay

ASL arterial spin labelling, DTI diffusion tensor imaging, EPI echo-planar imaging, FSPGR fast spoiled gradient-recalled echo, IR inversion recovery,
pCASL pseudo-continuous ASL, T1w structural T1-weighted MRI, TE echo time, TI inversion time, TR repetition time
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Clusters of significant voxels were obtained by applying a
slightly conservative p value threshold (α ≤ 0.01). We did
not correct for multiple comparisons, as permutation testing
has a low false-positive detection rate [35]. The clusters’ lo-
cations were identified by visual inspection.

Results

Participants

The inclusion of participants is visualised in Fig. 1. Table 2
shows the demographics andMMSE scores of the participants
(24 AD, 33 FTD, 34 CN). Four patients were excluded be-
cause of poor ASL data quality, i.e. motion artefacts or noise.
Included FTD disease subtypes were as follows: behavioural
variant FTD (bvFTD, n = 12), PPA (n = 16, including ten with
semantic dementia [SD] and four with progressive non-fluent
aphasia [PNFA]), and five patients with unknown subtype. In
the AD group, six patients had <1 year follow-up (range 0–7
months), and the diagnosis of 18 patients was confirmed by
>1 year follow-up (range 12–45 months). In the FTD group,
12 patients had <1 year follow-up (range 0–11 months), and
21 patients had >1 year follow-up (range 12–47 months).

Classification results

Figure 2 shows the classification performance using T1w,
ASL, and DTI voxel-wise features (Fig. 2a: AUC; 2b: accu-
racy). Table 3 shows non-parametric testing for significant
differences between classifications.

For AD-CN classification, mean AUCs were 92% (VBM-
GM), 87% (VBM-WM), 94% (VBM-Brain), 89% (CBF), 89%
(FA), 95% (GM combination), 91% (WM combination), and
98% (Full combination). Classification accuracy was slightly
lower than AUC in general. The performance using CBF and
FA features was similar to that of the VBM features. The
feature combinations yielded slightly higher performance than
the VBM features, but differences were not significant.

For FTD-CN classification, AUCs using VBMwere some-
what higher than for AD-CN, but combination with FA and
CBF did not improve performance. AUCs were 95% (VBM-
GM), 96% (VBM-WM), 95% (VBM-Brain), 87% (CBF), 91%
(FA), 93% (GM combination), 95% (WM combination), and
96% (Full combination).

For differential diagnosis of AD versus FTD, AUCs were
78% (VBM-GM), 76% (VBM-WM), 72% (VBM-Brain), 81%
(CBF), 80% (FA), 84% (GM combination), 81% (WM
combination), and 84% (Full combination). Combination
with CBF and FA features improved performance over the
use of VBM features only.For multi-class diagnosis of AD,
FTD, and CN, mean AUCs were 85% (VBM-GM), 83%
(VBM-WM), 84% (VBM-Brain), 82% (CBF), 83% (FA),

87% (GM combination), 85% (WM combination), and 90%
(Full combination). Classification accuracy was lower, but it
should be noted that for this three-class diagnosis, the accura-
cy for random guessing would be only ~33%. For multi-class
classification, AUCs were highest for the combination
methods. The method that combined VBM-Brain with CBF
and FA yielded a significantly higher AUC (90 vs. 84%,
p = 0.03) and accuracy (75 vs. 70%, p = 0.05) than VBM-
Brain by itself. This is reflected in the examples of confusion
matrices for one iteration of the cross-validation (Appendix C;
Table C1), which show a higher number of correctly classified

Fig. 1 Flow of participants: a) patients with Alzheimer’s disease (AD),
b) patients with frontotemporal dementia (FTD)
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patients and controls for Full combination than for VBM-
Brain. However, combining VBMwith ASL or DTI may also
reduce the number of correctly classified patients, e.g. GM
Combination has a lower number of correctly classified FTD
patients than VBM-GM, while accuracy is improved.

Significance maps

Using SVM p-maps (Figs. 3, 4, and 5, Appendix B Figs. B1
and B2), we evaluated which voxels contributed significantly
to the classifications. For VBM-GM (Fig. 3), we noted major
influence of the perihippocampal region on the classifier;
overall we observed a larger number of significant voxels in
the left than in the right hemisphere. For differential diagnosis
of AD-FTD, mainly voxels in the anterior temporal lobe were
involved.

For VBM-WM (Fig. B1), we observed most clusters of sig-
nificantly contributing voxels in the temporal lobe and around
the ventricles. For AD-CN and FTD-CN classification, a
smaller cluster of significant voxels in the corpus callosum
was found. The temporal lobe clusters were present mainly
in the left hemisphere, especially for AD-FTD differentiation.

For VBM-Brain (Fig. B2), p-maps were very smooth as the
feature is formed by the Jacobian determinant of the spatially
smooth deformation to template space. Smoothness is lost in
VBM-GM and VBM-WM by multiplying the Jacobian deter-
minant with the probabilistic tissue segmentations. For AD-
CN, the classification was driven mainly by periventricular
and left temporal lobe features. For FTD-CN, the temporal
lobe contributed with the largest clusters of significant voxels.
For AD-FTD, small clusters were found in the middle frontal
gyrus, temporal lobe and periventricular regions.

For CBF (Fig. 4), p-maps showed small clusters of signif-
icant voxels in multiple brain regions. For AD-CN, significant
voxels were observed mainly in the GM of the parietal lobe,
precuneus, posterior cingulate gyrus, posterior temporal lobe
and the insula. For FTD-CN, the main regions with significant
voxels were the posterior cingulate gyrus, superior frontal
gyrus, the straight gyrus, lingual gyrus and the putamen. For
AD-FTD, the classification relied mainly on voxels from the
posterior cingulate gyrus, parietal lobe, caudate nucleus,
insula, temporal lobe and the cuneus.

For FA (Fig. 5), clusters of voxels in the corpus callosum
and around the globus pallidus and putamen contributed sig-
nificantly to the AD-CN classification. In addition, clusters of
voxels in the visual and motor tracts contributed. For FTD-
CN, the clusters of significant voxels were observed mainly in
the anterior temporal lobe, the frontal WM, the corpus
callosum, and language-associated tracts (uncinate fasciculus,
superior longitudinal fasciculus). For the differential diagnosis
of AD-FTD, fewer voxels were significant with only a cluster
of significant voxels in the uncinate fasciculus.

Discussion

Differential diagnosis of early-onset AD and FTD was im-
proved (p = 0.03-0.05) by combining voxel-based features of
ASL and DTI with those of structural MRI, however improve-
ment was only borderline significant. For all classifications,
ASL and DTI by themselves yielded performance similar to or
slightly higher than structural MRI. While combining ASL
and DTI with structural MRI improved differential diagnosis,
no added value was observed for the classification of AD

Table 2 Participant
demographics All participants AD FTDa CN

No. 24 33 34

Age mean ± SD (range) [years] 67.1 ± 7.5 (52.4–81.3) 64.7 ± 8.8 (40.7–79.7) 64.7 ± 6.5 (46.5–78.8)

MMSE mean ± SD (range)b 24.1 ± 3.8 (15–30)a 25.3 ± 3.7 (15–30)a 28.7 ± 1.3 (25–30)

Men AD FTDa CN

No. 15 17 22

Age mean ± SD (range) [years] 67.3 ± 7.8 (52.4–81.3) 64.5 ± 8.2 (43.5–79.7) 66.6 ± 4.3 (58.1–78.8)

MMSE mean ± SD (range)b 24.1 ± 4.3 (15–29)a 25.1 ± 4.1 (15–30)a 28.4 ± 1.3 (25–30)

Women AD FTD CN

No. 9 16 12

Age mean ± SD (range) [years] 66.9 ± 7.4 (60.8–79.4) 64.9 ± 9.6 (40.7–78.6) 61.4 ± 8.6 (46.5–75.5)

MMSE mean ± SD (range)b 24.2 ± 3.2 (20–30) 25.5 ± 3.4 (20–30) 29.3 ± 1.1 (27–30)

a Two patients had MMSE scores of 15, which was due to language deficits. Their data were retained in the
analysis, as their full neuropsychological examination indicated only moderate impairment in all cognitive do-
mains except language
b The maximum score for the Mini-Mental State Examination (MMSE) is 30

AD Alzheimer’s disease, CN cognitively normal controls, FTD frontotemporal dementia, MMSE Mini-mental
state examination score
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versus controls nor for the classification of FTD versus
controls.

Classification performance was similar to that previously
published on other data sets for pairwise differentiation of AD
and FTD [8, 9], and slightly higher than that for multi-class
classification [9]. The combination of ASL and DTI for clas-
sification of AD, FTD, and controls has not been assessed
before, and therefore cannot be directly compared to literature
results. The techniques have been applied separately to
pairwise classifications. In concordance with our results, most
studies using DTI obtained good classification performance
[23, 24, 26, 27], but indicated no significant improvement
over structural MRI [22, 25, 28]. In contrast to our current

and previous work [19], most ASL-based classification stud-
ies showed a significant added value to structuralMRI [13, 17,
18]. This is partly due to the higher performance of structural
MRI in our studies. Additionally, not all studies avoid overes-
timation of classification performance by using cross-valida-
tion. For ASL, this overestimation might be larger than for
structural MRI, because of lower signal-to-noise ratio and
robustness. Conclusions obtained with or without cross-
validation can therefore be expected to differ.

This work is, to the best of our knowledge, the first to
perform multiparametric classification of structural MRI,
ASL, and DTI. Multiparametric classification on other modal-
ities has previously used feature-level combination (e.g. one
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Fig. 2 Area under the ROC
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asterisk (*) indicates a significant
improvement over the
classification using VBM features
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a

b

c

Fig. 3 SVM significance maps
for voxel-based morphometry of
the grey matter (VBM-GM): a)
AD-CN, b) FTD-CN, c) AD-
FTD. Colour overlay shows
p values ≤ 0.01

Table 3 P values of the non-parametric permutation tests to test statistical differences between classifiers based on a) mean area under the ROC curve
(AUC) and b) mean accuracy

CBF vs.
VBM-GM

FA vs.
VBM-WM

GM combination
vs. VBM-GM

WM combination
vs. VBM-WM

Full combination
vs. VBM-Brain

a) Mean area under the ROC curve (AUC)

AD-CN 0.810 0.834 0.798 0.452 0.552

FTD-CN 0.388 0.466 0.818 0.816 0.818

AD-FTD 0.752 0.668 0.472 0.322 0.052*

AD-FTD-CN 0.664 0.892 0.546 0.220 0.028*

b) Mean accuracy

AD-CN 0.476 0.688 0.118 0.222 0.540

FTD-CN 0.210 0.324 0.624 0.462 0.998

AD-FTD 0.476 0.980 0.224 0.898 0.122

AD-FTD-CN 0.566 0.920 0.340 0.176 0.050*

* Significant difference (p ≤ 0.05)
AD Alzheimer’s disease, AUC area under the receiver-operating characteristic curve, CBF cerebral blood flow, CN cognitively normal controls, FA fractional
anisotropy, FTD frontotemporal dementia, GM grey matter, ROC receiver-operating characteristic, VBM voxel-based morphometry,WM white matter

3378 Eur Radiol (2017) 27:3372–3382



large feature vector) or classifier-level combination (e.g. com-
bining classifier posterior probabilities). In this study, we av-
eraged posterior probabilities of the individual classifiers,
since we had previously found this to outperform feature-
level approaches [19].

The SVM significance maps showed that the brain regions
contributing to the classifications corresponded to those asso-
ciated with AD or FTD, which indicates that the classifier
makes plausible decisions. For structural MRI, the temporal
lobes showed large clusters of significant voxels. While the
medial temporal lobe (i.e. hippocampus, amygdala) largely
contributed to the classifications of AD versus controls and
FTD versus controls, the differentiation between AD and FTD
was based mainly on anterior temporal lobe features, which
corresponds to the literature on atrophy in AD [27, 36–39] and
FTD [27, 39]. ASL and DTI showed less influence of the
temporal lobe. In the frontal and language-associated regions,
DTI contributed to the classifications involving FTD. While
frontal atrophy is expected in FTD [27, 39], no frontal lobe
contribution was observed. ASL p-maps showed significant

areas in the parietal lobe for classifications involving AD [40].
While parietal lobe atrophy is often proposed as a differential
marker [10, 27, 39], we did not find significant clusters in the
VBM p-maps, which is in agreement with many VBM stud-
ies, e.g. [10, 41]. In addition to the parietal lobe, CBF in the
cingulate gyri and subcortical structures—insula and caudate
nucleus [40]—showed significant features for AD and FTD
classification. Finally, DTI captured the contribution of the
corpus callosum for all classifications [20, 21]. Since the clus-
ters of voxels influencing the classifications showed different
brain regions for ASL and DTI compared to structural MRI,
neuropathological processes with a spatial distribution other
than atrophy are likely to be depicted.

Both the improved performances for differential diagnosis
and the involvement of different brain regions suggest that
ASL and DTI have additional diagnostic value to structural
MRI and could improve diagnosis of individual AD and FTD
patients. However, suboptimal image quality of these tech-
niques in general, e.g. low signal-to-noise ratio, may have
limited their diagnostic power when used separately. Similar

a

b

c

Fig. 4 SVM significance maps
for cerebral blood flow (CBF): a)
AD-CN, b) FTD-CN, c) AD-
FTD. Colour overlay shows
p values ≤ 0.01
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to our findings, studies using data from the Alzheimer's
Disease Neuroimaging Initiative 2 (ADNI 2) have shown that
ASL and DTI separately provide information that is not avail-
able on structural MRI, but do not show better diagnostic
power [42].

A limitation of this study is that the diagnosis was based on
clinical criteria rather than post mortem histopathological ex-
amination. Although diagnosis was typically confirmed by
follow-up, it is possible that some of the patients were
misdiagnosed. Additionally, the size of our data set (24 AD,
33 FTD, 34 controls) was modest albeit comparable to that of
other studies. Studies performing classification of AD and
FTD using structural MRI data are typically of similar size
[9, 13] (only larger in [8]). To obtain these group sizes, we
did not limit inclusion to young-onset dementia, but included
five AD and six FTD patients whowere older than 70 years. In
young-onset dementia, computer-aided differential diagnosis
of FTD and AD would be most clinically relevant, as these
patients show larger overlap of symptoms [39]. Also, we
pooled the patients of several FTD subgroups (bvFTD, SD,

and PNFA), which could have influenced the classification
results and the regions involved in classification. The modest
data size did not allow for validation on a separate validation
set; instead, cross-validation was used. In addition, potential
vascular white matter damage in the AD group, e.g. infarcts
and white matter hyperintensities, might have influenced the
classification performance of DTI. However, we expect this
effect to be small, as patients were excluded when they had a
history of cerebrovascular accidents (CVA) or CVA reported
in their MRI examination; additionally, they were relatively
young.

Regarding these limitations and the results being only bor-
derline significant, this study primarily has exploratory value.
Future research on a larger and more specific presenile cohort
is needed. To assess the generalisability of our conclusions,
evaluation on multi-centre data and a separate validation set is
necessary as well. With our current work, we presented a
computer-aided diagnosis methodology based on structural
MRI, ASL, and DTI which is ready to be evaluated on a larger
data set when available.

a

b

c

Fig. 5 SVM significance maps
for fractional anisotropy (FA): a)
AD-CN, b) FTD-CN, c) AD-
FTD. Colour overlay shows
p values ≤ 0.01
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In conclusion, we postulate that ASL and DTI are promis-
ing for multiparametric computer-aided diagnosis, since com-
bining these techniques with structural MRI improved differ-
entiation of early-onset AD and FTD in our study.
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