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Abstract
Effective reservoir flood control demands real-time decision-making that balances mul-
tiple objectives. However, traditional optimization approaches are often too computa-
tionally intensive and become intractable when considering dynamically changing pref-
erences of operators, modelled as weights of different objectives. This study aims to
develop tractable real-time flood control strategies that maintain performance while
reducing computational complexity. We propose two data-driven approaches based
on Model Predictive Control (MPC): (1) an explicit MPC using deep neural networks to
directly determine optimal outflow schedules, and (2) a switched MPC that produces
optimal weights of objectives based on hydrological conditions. Both methods leverage
offline learning from an online Parameterized Dynamic MPC framework incorporating
state-dependent weights. We tested these approaches on South Korea’s Daecheong
multipurpose reservoir using historical flood events with various patterns. The explicit
MPC demonstrated reliable performance under conditions similar to its training data.
However, it showed frequent changes in outflow schedules and constraint violations for
scenarios outside training data. In contrast, the switched MPC maintained robustness
across all test scenarios due to a linear optimization process in a receding horizon man-
ner, though with slightly reduced performance compared to the explicit MPC under sce-
narios inside the range of training data. Most significantly, both approaches reduced
computation time from approximately 10 minutes to less than one second, making real-
time implementation feasible. This dramatic improvement enables prompt decision-
making during rapidly evolving flood events while maintaining near-optimal control perfor-
mance.
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Introduction
Floods are among the most destructive natural disasters, resulting in substantial economic
and environmental damage across affected communities. Therefore, flood control is one of
the main purposes of most reservoirs. Reservoir flood control, which significantly impacts
watershed management, has attracted research attention for decades [1,2]. However, rapidly
changing hydrological conditions, highly uncertain forecasts, and changes in decision makers’
preferences [3,4] make reservoir flood control challenging. Many researchers have suggested
optimization-based control methods because flood control is a control problem, as its name
implies [5]. Various optimization-based methodologies have been proposed to address chal-
lenges of real-time optimal flood control, particularly subject to uncertainty, either in rainfall
or inflow forecasts [6–8]. The complexity of reservoir flood control arises from the system’s
nonlinearity, which stems from intricate relationships among different objectives that oper-
ators want to achieve, including minimizing changing outflow schedules, minimising peak
outflow, minimising Reservoir Water Level (RWL), and minimising opening and closing of
spillway gates [9].

Water Resources Public Corporation’s website
(http://kwater.or.kr). The data and code of this
research are available at
https://doi.org/10.4121/
b6dd9d97-118d-406e-867d-b821fb6d08d4
under the CC-BY-4.0 license.

Funding: The authors received no specific
funding for this work.

Competing interests: The authors have
declared that no competing interests exist.

The flood control problem can be formulated as a multi-objective problem involving out-
flow schedules, RWL, and other factors. Various approaches have been proposed to effectively
solve this multi-objective optimization problem of reservoir flood control. In classical Model
Predictive Control (MPC) approaches, the relative importance of objectives is assumed to be
constant throughout the flood event [7,10]. Therefore, optimal weights, as significant perfor-
mance factors, should be determined properly and in advance. However, the relative impor-
tance of objectives can vary with the hydrological conditions in practice. Under this dynamic
preference scenario, reflecting the operators’ preferences in the weights of the objectives
[9,11], the optimal outflow sequence can be chosen from the Pareto front [12]. This approach
is flexible in the decision-making process, either by operators or through methods such as
multi-criteria decision-making at each time step. The performance of this method, however,
depends on the effective derivation of the Pareto fronts in real-time. Nonetheless, generating a
Pareto front for the real-time application can be intractable when a nonlinear and nonconvex
multi-objective problem has to be solved. Because the search spaces for exploration can grow
exponentially [13,14], getting optimality guarantees for solutions can also be difficult, and it
can take longer than the available decision window during flood events.

In our previous work in [9], a Parameterized Dynamic Model Predictive Control (PD-
MPC) framework to derive optimal outflow schedules in reservoir flood control problems has
been investigated. The PD-MPC formulation explicitly considers the dynamic characteris-
tic of the relative importance of objectives depending on the situation via time-varying rela-
tive weights for the different objectives. In this approach, we separated the weight optimiza-
tion and control action optimization in an alternating fashion until convergence. A Genetic
Algorithm (GA) was employed to optimize objective weights and system parameters at the
same time using the nonlinear system model and objectives, while the linear MPC problem
was solved to optimality for a given weight set. The approach utilizes a single indicator, i.e.,
the absolute performance evaluator, to obtain optimal weights and parameters, along with
optimal control inputs, at each time step. To the best of our knowledge, it was the first attempt
to decide weights at each time step depending on hydrological conditions in real-time MPC-
based reservoir flood control. Nonetheless, the approach still suffers from the inefficiency
of online implementation due to the employed gradient-free algorithm requiring consider-
able time to achieve sufficient convergence. This can be limiting for the PD-MPC approach in
real-time control.
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In recent years, data-driven models like Machine Learning (ML), Deep Learning (DL),
and Reinforcement Learning (RL) have emerged as effective tools to build efficient meta-
(surrogate) models and thus reduce online computational complexity [15–17]. These mod-
els can be trained offline to map the nonlinear relationships between inputs and desired
outputs [18,19], enabling efficient online implementation in various fields. For example, an
Artificial Neural Network (ANN) was trained offline using the input and output data of a
nonlinear MPC controller for a power converter and a robot, allowing the ANN to be imple-
mented on hardware as an efficient explicit MPC that directly maps states to optimal control
inputs [20,21]. In [22,23], hybrid RL-MPC approaches are proposed where the original MPC
non-linear program is truncated to be one step ahead, with cost-to-go functions of the MPC
replaced with the value function of the following state from RL. In [24], Multilayer Percep-
tron (MLP) policies are learned offline fromMPC to automatically choose hard-to-optimize
decision parameters, and so to parameterize a linear MPC to be solved online.

In real-time reservoir operations, these data-driven approaches are particularly valuable
because they can address a practical operational challenge, i.e., computational time under
a multi-objective optimization problem. Despite many studies in various fields, it is diffi-
cult to find a study on adopting data-driven models for an optimization problem with many
objectives and dynamically changing weights of objectives. Due to the complex relationship
among objectives, dynamically changing weights can make it difficult to learn the relation-
ship between states and control inputs or optimal weights in a data-driven model. The con-
ventional approach, which collects training data directly from simulation environments and
trains an ANN or RL model, is not suitable for this case. This is because, for example, there
can be many weight sets which can produce an optimal control input.

In this work, we leverage data-driven approaches to avoid difficulties in dealing with
changing weights and solving a highly nonlinear problem online. From a control point of
view, this article investigates explicit MPC and switched linear MPC approaches using data-
driven models trained on the outputs of PD-MPC.The switched MPC framework allows the
MPC system models to switch based on system states and predefined switching rules [25],
requiring prior knowledge of these rules [26]. This allows simpler linear MPC problems to be
solved online by selecting the appropriate model based on the initial state and the switching
rules as a function of the states. In contrast, explicit MPC approaches compute control actions
offline for all states by solving an optimal control problem for each state space partition [27],
establishing either a mapping table or piecewise affine functions to relate states and control
actions.

For our reservoir optimal flood control problem, we develop explicit MPC and switched
MPC approaches from the PD-MPC results computed under a large set of inflow scenarios.
A DNNmodel is trained offline to directly map states to control inputs as an explicit MPC
controller. Additionally, a data-driven model is used to learn a mapping from system states
to optimal parameters (i.e., state-dependent switching rule for optimal objective weights and
other system parameters to use in a linear MPC online); this latter approach can be formu-
lated as a switched linear MPC problem.

The novel contributions of this article are: i) we can obtain a consistent optimal weight set
for a specific state by adopting the ℓ1-norm, ii) we present approaches for adopting explicit
and switched MPC approaches using data-driven models, and iii) we demonstrate the advan-
tages and disadvantages of switched and explicit MPC approaches for a multi-objective opti-
mization problem with dynamically changing weights. To the best of the authors’ knowledge,
this is the first application and comparison of learning-based explicit and switched MPC for
reservoir management.

PLOS Water https://doi.org/10.1371/journal.pwat.0000361 May 9, 2025 3/ 31
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The article is organized as follows. In Sect 1, the PD-MPC framework and the study area
are discussed. The control objectives and system constraints used in this research are also for-
mulated. Sect 2 presents the methodology and experimental setup. Focusing on approaches
for data acquisition using PD-MPC, we describe the proposed data-driven surrogate mod-
els for explicit MPC and switched MPC. Sect 3 presents results, discussion, assessing the effi-
ciency and characteristics of the surrogate models based on the two considered approaches.
Finally, conclusions are drawn.

1 Problem formulation
1.1 Parameterized dynamic model predictive control
Model Predictive Control (MPC) utilizes a system model to predict states of a control sys-
tem and produces a control input vector which optimizes objectives while explicitly consid-
ering constraints over a prediction horizon [28,29]. By implementing the MPC process in a
receding horizon manner, the first control input in a sequence of optimal control inputs is
implemented, and then the control inputs are updated based on the new system state, which
is generally observed, as described in Fig 1.

The flood control problem can be formulated as a Parameterized Dynamic Model Predic-
tive Control (PD-MPC) problem [9], where the dynamic preferences of operators are rep-
resented by changing the relative importance of objectives [9,31]. As depicted in Fig 2, the
PD-MPC problem solves a multi-objective optimal control problem at each time step, where
the weights are also co-optimized to reflect these changing preferences of the operators. The
relative importance of the objectives can depend on the state of the system and projected
inflows. For example, although frequent changes in schedules may not be desired from one
time step to another, they become far less important if the potential for flooding increases due
to a high water level driven by inaction.

The diagram in Fig 2 depicts how the PD-MPC approach solves the optimal control prob-
lem at the kth step of a receding horizon implementation:

{zk∗,uk∗} = arg min
zk ,uk ,xk

E(zk,uk, xk|xk0), (1)

by alternatingly solving the two sets of problems:

{zk∗} = argmin
z

E(z|xk,uk), and (2a)

{uk∗|zk} = argmin
xk ,uk

J(xk,uk|xk0, zk), (2b)

respectively, where xk0 is the initial state at time k, J(⋅) denotes the multi-objectives of a linear
MPC and u expresses control inputs for a given weight set, z.

What we call the absolute performance evaluator, E(⋅), is used to improve the optimal
weight set, zk∗ by solving a nonlinear simulation-based heuristic optimization, where the cor-
responding control actions uk∗|z are generated by the linear MPC and the evaluation is done
with a nonlinear system model and objectives. Here, this evaluator assesses additional nonlin-
ear performance criteria that represent the operators’ selection criterion but are not included
in J(⋅). Using this method, we can decouple finding an optimal weight set and the control
action set, which is represented in (1), thereby reducing the complexity of the co-design prob-
lem. In other words, in each time step, solving (2b) provides control actions associated with
the given weight set, and by solving (2a), we are able to improve the optimal weight set, and
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Fig 1. The concept diagram of receding horizon MPC, in which the first one among the optimal control inputs
generated at time step k is implemented.Then, the whole sequence of the control inputs is regenerated at k+ 1,
reflecting updated states. (Modified from [30]).

https://doi.org/10.1371/journal.pwat.0000361.g001

the corresponding control action set using the evaluators expressed by (2a). The evaluator can
be solved using heuristic optimization methods such as Bayesian Optimization (BO) and GA.

The key aspect of this approach is the dynamic adjustment of the relative importance
(weights z∗) of objective functions based on hydrological conditions, allowing reservoir oper-
ators to respond more effectively to changing flood situations. For example, if the reservoir
water level approaches a critical threshold, the weight for the objective to maintain RWL in
the safe range increases.

In our previous research [9], the GA was applied, which evaluates and explores a set of
potential solutions (the population) over each iteration until it meets convergence or time cri-
teria. Another popular approach is BO algorithms, such as the Tree-structured Parzen Estima-
tor (TPE) algorithm [32,33]. This algorithm is considered efficient because the TPE algorithm
explores solutions based on a probabilistic model and is easy to parallelize [34].

PLOS Water https://doi.org/10.1371/journal.pwat.0000361 May 9, 2025 5/ 31
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Fig 2. The schematic diagram of PD-MPC [9].

https://doi.org/10.1371/journal.pwat.0000361.g002

In this manuscript, we employ the TPE algorithm, a BO algorithm that makes use of tree-
structured search spaces. At each time step, the TPE algorithm derives the optimal param-
eter vector by learning a surrogate probabilistic model for parameters and their associated
objective values, i.e., z and E online. The TPE algorithm utilizes a Kernel Density Estimator,
especially a Parzen estimator, as the surrogate model. It employs the Expected Improvement
(EI) and weighted random sampling as the acquisition method to explore promising regions
of parameters z and update the surrogate model. The exploration terminates when either the
specified number of searches is reached, or the evaluation index falls into a predefined thresh-
old. Thereafter, the best parameters and their associated evaluation value are returned. The
corresponding control inputs, uk∗, can then be computed. Therefore, the TPE algorithm is uti-
lized at each time step in order to determine z∗, minimizing the return (penalty) value from
the absolute performance evaluator, E.

1.2 Reservoir flood control
A total of 13 linear and nonlinear objectives are suggested to describe the practical reservoir
flood control problem, including minimizing peak spillway outflow, gate operations, and
changes in outflow schedules [9]. Our approach here aims to approximate this rather complex
PD-MPC problem derived from these considered objectives. To do so, the switched MPC and
explicit MPC approaches are taken into account. To simplify the problem, three objectives
for linear MPC and six nonlinear objectives to formulate the evaluator are then considered.
This simplification is introduced because it may be difficult to show the performance of our
approaches due to the highly complicated relationships among the objectives, when consider-
ing all 13 of them. Moreover, it would be reasonable to focus on objectives only directly relat-
ing to flood control in practice, as other objectives, such as minimizing environmental effects
and securing water for demands, naturally receive lower priorities during flood events.

The three objectives for linear MPC are related to RWL, peak outflow, and outflow sched-
ule changes. Reservoir operators should maintain RWL within a target range not only to
ensure the dam’s safety but also to secure enough water to satisfy demands. Therefore, three
target water levels are defined: (i) The lower target level, to secure water, so it constrains
RWL from decreasing a certain level; (ii) The upper level, to secure the flood control capac-
ity between this level and the FWL; and (iii) the highest level for dam safety, considering

PLOS Water https://doi.org/10.1371/journal.pwat.0000361 May 9, 2025 6/ 31
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uncertainty. Furthermore, to reduce downstream flood risk, minimising peak outflow is also
an essential factor, as the high outflows directly affect downstream water levels. Meanwhile,
because each outflow schedule is shared with other flood control organizations, the previ-
ously shared outflow schedule should be maintained consistently with the minimum num-
ber of changes possible. Moreover, limiting the frequency of operations of spillway gates is
advantageous to prevent wear and malfunction. This can be achieved implicitly by minimizing
changes in consecutive outflow schedules. Additionally, a soft constraint is added to constrain
opening spillway gates before the total outflow exceeds the turbine capacity.

Therefore, the overall objective function can be written as follows:

min
u

Jk =min
u

z1J1 + z2J2 + z3J3 + z4J4, (3)

in which

J1 ∶= max
t∈k,…,k+N–1

Ospill,t ×N × 𝛼MAVE
1 , J2 ∶=

k+N–1
∑
t=k
(ΔS1t +ΔS2t +ΔS3t )× 𝛼MAVE

2 , (4a)

J3 ∶=
k+N–1
∑
t=k
(ΔOI

t +ΔOD
t )× 𝛼MAVE

1 , (4b)

J4 ∶=
k+N–1
∑
t=k

ΔOcom
t × 𝛼MAVE

1 , (4c)

in which z1, z2, z3, and z4 are the objective weights. To scale the different objective values,
constants, i.e., 𝛼MAVE here, based on the Maximum Allowed Value Estimate (MAVE) values of
the associated objectives are applied [35,36]. The MAVE values are the spillway outflow capac-
ity Cspill for J1, J2, and J4, the storage amount between FWL and LWL for J2, respectively. The
optimization of these objectives is subject to the constraints:

Ospill,t +Oturb,t –Ototal,t = 0, (5a)
Ototal,t – Cturb +ΔOcom

t –Ospill,t = 0, (5b)

Ok
total,k –O

k–1
total,k = 0, (5c)

ΔS1t + SU – St ≥ 0, (5d)
ΔS2t + St – SL ≥ 0, (5e)
ΔS3t + SH – St ≥ 0, (5f)

ΔOI
t –ΔOD

t + (Ok
total,t –O

k–1
total,t)× 𝜎t = 0, (5g)

ΔOI
t , ΔOD

t , ΔOcom
t , ΔS1t , ΔS2t , ΔS3t ≥ 0, (5h)

in which k represents each time step for the defined receding horizon MPC, where t at time
step k ranges from k to k+N–1. Therefore, the optimal control input vector obtained from the
proposed linear MPC over the time span t = k, k + 1, ..., k +N – 1 can be written as follows:

uk = {Ok
total,k, ...,

Ok
total,k+N–1,O

k
spill,k, ...,O

k
spill,k+N–1,

Ok
turb,k, ...,O

k
turb,k+N–1,},

(6)
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where Cturb denotes the turbine outflow capacity, and Ok
total,t, O

k
spill,t, and Ok

turb,t express the
total outflow, the spillway gate outflow, and the turbine outflow at time t and time step k,
respectively. We refer to uk as an outflow schedule at time step k. The control horizon is N. For
simplicity, we omit a superscript k, e.g., Jk1 at time step k denotes J1, except when it is essential,
e.g., in (5c) and (5g) because these equations compare current outflows with outflows at pre-
vious time steps. ΔOI

t , ΔOD
t , ΔS1t , ΔS2t , ΔS3t , and ΔOcom

t are considered as slack variables. ΔOI
t

and ΔOD
t express the amounts of increase and decrease between consecutive outflow sched-

ules at time t, respectively. ΔS1t , ΔS2t , and ΔS3t are also introduced to penalize the violations of
target reservoir storage, i.e., the highest target water level, SH, the upper target water level, SU,
and the lower target water level, SL.

To address the complementarity between outflows via turbines and spillway gates, ΔQcom
t is

also taken into account. In general, this constraint is formulated by a nonlinear complemen-
tarity operator that can be written as [37]:

Ospill × (Oturb – Cturb) = 0. (7)

This nonlinear constraint can be linearised by adding a slack variable ΔOcom
t in (5b) and

using the penalty function approach to integrate constraint violations in the objective J4.
As an example, if Ototal,k ≤Cturb, then Ospill,t = 0 and ΔOcom

t is minimized by the difference
between the total outflow and the turbines’ capacity outflow. Conversely, if Ototal,k >Cturb,
then Oturb,t =Cturb and ΔQcom

t becomes zero. Since this is a soft constraint and this value is
independent of other objectives, i.e., there is no trade-off with other objectives; we therefore
deem J4 as not dynamically responding to the relative preferences among objectives, and so z4
is set to a constant.

To assign a higher penalty for changes in the near future, a time-dependent weight func-
tion, 𝜎t, is defined as follows:

𝜎t =
⎧⎪⎪⎨⎪⎪⎩

1/(t – k) , if t≥ k + 1,
1 otherwise.

(8)

Even though there are nonlinear elements in the reservoir system, such as reservoir
storage volume-water level relationship and water level-spillway outflow capacity rela-
tionship, we consider only the linear parts of the reservoir system by using reservoir vol-
ume directly as state instead of RWL and by assuming that errors from nonlinear fac-
tors can be included as additive errors within inflow uncertainty. These can be written as
follows:

St+1 = St + It –Ototal,t (9a)
s.t. 0≤Ospill,t ≤Cspill, (9b)

0≤Oturb,t ≤Cturb, (9c)
Omin ≤Oturb,t +Ospill,t, (9d)
LWL≤ RWLt ≤ FWL, (9e)

where St, It, and Ot denote the reservoir storage, inflow, and outflow at time t, respectively.
Cspill expresses the outflow capacity via spillway gates. The constraints are set for the spillway
and turbine discharge capacity, the LWL, and the FWL. The minimum water supply should be
more than the demands, Omin, as expressed in (9d). In fact, the total demand varies monthly;
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however, in this study, a constant value of 52m3 s–1 is used, which is the annual average. Non-
linear elements, such as the relationship between RWL and storage amount, are used for the
absolute performance evaluator.

1.3 Online selection of the best weight set
Since the weight for the soft constraint does not need to change dynamically because its value
is independent of other objectives and constraints, as mentioned earlier, we set z4 to a con-
stant with a reasonably small value for simplicity. Therefore, the optimal set to be determined
consists of three weights, as follows:

z∗ = {z∗1 , z∗2 , z∗3}. (10)

Using TPE, we can explore search spaces, such as those in Table 1, at each time step of the
receding horizon control implementation. The search space is quantized in the normalised
range [0,1] with steps of 0.01 interval to sufficiently explore all the objectives’ space. Rea-
sonably, z = {0, 0, 0} is excluded from the search space. As mentioned, the evaluator plays
an important role in providing the best weight set at each time step according to (2a) and
Fig 2. We formulate the absolute performance evaluator consisting of six nonlinear objective
functions as follows:

minE =min(E1 + E2 + E3 + E4 + E5 + E6), (11)

where,

E1 = exp(p ×maxOspill,t/Cspill) – 1, (12a)

E2 = q × [maxRWL –NHWL]+ + q × [RWLt+N–1

–RWLt]+ + v × [maxRWL – SH]+ + (q + v) (12b)

×[SL –minRWL]+ + q × [RWLt+N–1 – RWLt]+,

E3 =max𝛾t ×
w

exp(2 × t)
,

𝛾t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if ∣Ok
spill,t –O

k–1
spill,t∣ = 0,

1 otherwise,
(12c)

E4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

exp(2 × p ×maxt (Ospill,t+1 –Ospill,t)) – 1

if Ospill,t ≥max It,

0 otherwise,

(12d)

Table 1. Search spaces for weights in this research.
z1 z2 z3

Search space [0,1] [0,1] [0,1]
Search step 0.01 0.01 0.01

https://doi.org/10.1371/journal.pwat.0000361.t001
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E5 = p ×∑
t
𝜅t,

𝜅t =
⎧⎪⎪⎨⎪⎪⎩

1 if Ospill,t > 0 & Ospill,t+1 = 0,
0 otherwise,

(12e)

E6 =
⎧⎪⎪⎨⎪⎪⎩

l if ∃t where Ospill,t ≥ 0 & Oturb,t <Cturb,
0 otherwise,

(12f)

where [.]+ is the ramp function, i.e., [A]+ = A+|A|
2 , and p, q, v, and w are constants to be used

to normalize each objective value between zero and 10 over typical situations such as when
RWL is lower than SH and Ospill is within the peak inflow of the target flood, with values of
2.4, 10, 5, and 75, respectively. l should be very large, chosen here as 5000, to avoid opening
the gates when the outflow capacity of turbines is not fully utilized. 𝛾t and 𝜅t are used for the
values from conditional expressions.

Among the objectives in (12), E1 to E3 have the same meaning as J1 to J3, and E6 as J4 in
(4), but they are more freely configured using exponential functions and conditional equa-
tions. Moreover, E4 and E5 are considered in the evaluator to account for preferences for i)
minimising outflow schedule changes inside a prediction horizon and ii) minimising the
number of gate closures in a prediction horizon after opening action. These objectives may
not be as critical as E1, E2, and E3 but are related to operators’ preferences [9].

It is worth noting that the objective values for J1 and J3 in the linear MPC can be normal-
ized to be of the same scale by multiplying N for J1. Additionally, changes are smaller than
peaks, i.e., ΔO≤maxO. Furthermore, the effect of long-term changes is diminished by 𝜎t in
(8). Therefore, the MAVE values can not scale the objective values of the linear MPC exactly.
In contrast, the evaluator’s objective E3 in (12d) holds equal importance to the other objec-
tives within the evaluator, as various exponential and conditional equations are used to scale
objective values, ensuring they reach the same values in worst-case scenarios. Moreover, E3
has the maximum value when there is at least one change in outflow schedules.

1.4 Daecheong reservoir: Description of a case study
Daecheong Reservoir is a multipurpose reservoir located in the upper reaches of the Geum
River, flowing through the central region of South Korea, as depicted in Fig 3.

The Daecheong reservoir serves as a vital water source, delivering 922,000m3 of drinking
water daily to approximately 2 million residents in surrounding areas, while also supporting
irrigation, hydroelectric power generation, and flood control. Geographically, it features a
complex elongated structure with a dendritic drainage pattern, reaching a maximum width of
around 1 km.The watershed flowing into Daecheong Dam covers 3204 km2, and at full capac-
ity, the reservoir holds 1490× 106m3 of water, spans a surface area of 72.8 km2, and reaches a
maximum depth of 55m [38]. Annual precipitation and water flow predominantly occur
during summer months (June-September), with water levels fluctuating significantly—up to
15m—during monsoon seasons. The hydraulic residence time averages about 145 days, char-
acteristic of typical river-type reservoirs [39]. Annual average rainfall is 1230mm and average
inflow is 102m3 s–1. The inflow for a five-year frequent flood is 5000m3 s–1, which is 50 times
the annual average inflow.

Although it impacts the flood control in the Geum River basin, Daecheong Reservoir
has a relatively limited flood control capacity in comparison to its extensive watershed area.

PLOS Water https://doi.org/10.1371/journal.pwat.0000361 May 9, 2025 10/ 31
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Fig 3. Location of the Daecheong reservoir.The left figure shows the location of the Geum river basin, and the right figure illustrates the location of
the Daecheong Reservoir. The base maps are the digital elevation model (DEM) and the river shape file of Korea from the National Geographic Infor-
mation Institute (https://www.ngii.go.kr) and the basin shape file from VWorld (https://www.vworld.kr) published by the Han River Flood Control
Office (https://www.hrfco.go.kr).

https://doi.org/10.1371/journal.pwat.0000361.g003

For instance, the 200-year flood inflow is almost 10,700m3 s–1, which can fill the flood con-
trol capacity in almost 6.5 hours. The characteristics of Daecheong Reservoir are provided in
Table 2.

Based on the characteristics of the Daecheong reservoir, the threshold SH is set to Eleva-
tion Level (EL) 78.5m, which is the 99.5th percentile of observed RWL during the experiment
flood events, and SU and SL are set to EL 76.5m (the NHWL), and EL 76.0m in (5), respec-
tively. The control horizon, N in (4), is set to 6 h inspired by 6 h rainfall forecast reported by
the meteorological agency of South Korea [9].

Hourly inflow data were collected for 24 years from 1997 to 2020, including 28 observed
flood events from the National Water Resources Management Information System (WAMIS)
operated by the Ministry of Environment, Korea, and the Korea Water Resources Public
Corporation (K-water). These inflow data were calculated data based on measured outflows

Table 2. Characteristics of the Daecheong reservoir.
Type Value
Flood Water Level (FWL) EL 80.0m
Normal High Water Level (NHWL) EL 76.5m
Spillway crest level EL 64.5m
LowWater Level (LWL) EL 60.0m
Total storage 1490 × 106 m3

Spillway capacity (Cspill) 11,680m3 s–1

Turbine capacity (Cturb) 264m3 s–1

https://doi.org/10.1371/journal.pwat.0000361.t002

PLOS Water https://doi.org/10.1371/journal.pwat.0000361 May 9, 2025 11/ 31

https://doi.org/10.1371/journal.pwat.0000361.g003
https://doi.org/10.1371/journal.pwat.0000361.t002
https://doi.org/10.1371/journal.pwat.0000361


i
i

“pwat.0000361” — 2025/5/9 — 11:38 — page 12 — #12 i
i

i
i

i
i

PLOS WATER Learning-based explicit and switched MPC approaches for reservoir flood control

and changes in measured RWL over time. K-water records RWLs and outflows on an hourly
basis, allowing inflows to be calculated using the water balance (Eq 9a) presented in Sect 1.2.
The dataset is noise-corrupted due to measurement errors. By applying a wavelet filter [40],
noises can be detected and removed from the dataset [41,42]. To account for uncertainty in
inflow prediction, random normal values, in which the deviation is increased over the pre-
diction time, are added to the filtered inflow data. A moving average filter is then used to pre-
vent significant fluctuations. Details of this process can be found in [9], and a summary of it is
given in Appendix A.

2 Simulation study
2.1 Data-driven models for explicit and switched MPC
Taking dynamical parameters into account based on real-time hydrological conditions used
in PD-MPC is computationally expensive. For instance, with three dynamical weights and
a search space of 100 quantized values per weight, each iteration of PD-MPC requires an
average of 8.48 minutes to complete(CPU: AMD EPYC™ 9654). As the number of dynami-
cal weights increases and the search space grows exponentially, the computational burden
becomes too large. Therefore, two well-known methodologies, namely the explicit MPC and
the switched MPC approach, are utilized to address this computational challenge of PD-MPC.

In conventional explicit linear MPC, it is assumed that for each predefined partition in the
entire state space, there exists an affine function that maps the states to the optimal control
inputs [27]. The state space may consist of several polyhedral partitions. Therefore, because
of the high dimensionality of either state or control spaces, implementation of explicit MPC
may be challenging [27,43]. In conventional switched MPC approaches, the dynamic system
states are first partitioned into predefined parts. Then, based on the given system states, con-
trol inputs are calculated by MPC with the corresponding dynamical system [26]. Ensuring
the continuity of control inputs in line with the well-defined optimized system partitions and
switching rules in this approach is challenging [44].

For flood control, i.e., short-term operation, two specific challenges should be addressed:
(i) unavailability of a comprehensive dataset including as many potential operational scenar-
ios like flood events with several high peaks as possible; (ii) the smoothly changing states and
the implicit relationship between the states and weights, which make it difficult to formu-
late switching rules for weights explicitly. Therefore, the implementation of explicit MPC and
switched MPC is not straightforward.

In this work, we take a pragmatic approach, using a DNNmodel as a surrogate model for
explicit MPC, trained based on PD-MPC results. In other words, the relationship between the
states and the optimal control inputs is modeled using DNN based on the dataset obtained
by PD-MPC, as shown in Fig 4. Similarly, for the switched MPC approach, the relationship
between states and optimal weights from the PD-MPC results is modeled utilizing a Random
Forest classifier and regressor as surrogate models for switching between different linear MPC
controllers (i.e., switching between different weights). The detailed process illustrated in Fig 4
will be explained in the following section.

2.2 Data generation for learning surrogate models
2.2.1 Data consistency. At each time step of a receding horizon implementation, PD-

MPC can propose a unique optimal outflow schedule uk∗. However, there may be many com-
binations of the optimal parameter set, i.e. zk∗ = {z∗1 , z∗2 , z∗3}, that could result in the same
schedule. For instance, when a flood is going to occur, the RWL is between SL and SU, and

PLOS Water https://doi.org/10.1371/journal.pwat.0000361 May 9, 2025 12/ 31
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Fig 4. A schematic diagram of the approach taken in this research. (a) Model development (b) Implementation.

https://doi.org/10.1371/journal.pwat.0000361.g004

flood control can be achieved by regulating turbine outflow itself, while some objectives are
inactive (are zero) in this scenario, resulting in the same optimal outflow schedule with dif-
ferent weight sets corresponding to the zero objectives (i.e., inactive constraint violations). In
such cases, PD-MPC would randomly select a set among several available candidates at that
time step, as there would be no one-to-one mapping between zk* and uk*.

This can be a problem for a surrogate to learn a mapping between states and optimal
weights. Therefore, we would want to somehow project the weights corresponding to the
objectives relating to inactive constraints to a lower dimension. An ℓ1 regularization could,
for example, be used to enforce these non-unique weights to have the same value (in this case,
the mean of the weights for the objectives that are non-zero). An ℓ1 regularisation is typically
employed to prevent overfitting in DNNmodels by adding the ℓ1-norm of model parame-
ters to the original loss function. However, we incorporate the ℓ1-norm for weights into the
objective function of the TPE algorithm to construct preferences for the same weights. The
objective function expressed by (11) is then rewritten as follows:

minE + 𝜌 ∥z – z∥1 , (13)

where 𝜌 denotes the weight for the preference for the same weights and small parameter
value, and ∥.∥1 expresses the ℓ1-norm. To normalize a weight set, the average of weights z is
subtracted.

It can be implied from (13) that, when there are multiple choices for weights, a set whose
elements are as equal as each other should be chosen. Therefore, PD-MPC suggests z∗ where
its elements are the same, i.e., z1 = z2 = z3, when u∗ is not sensitive to z and it returns the

PLOS Water https://doi.org/10.1371/journal.pwat.0000361 May 9, 2025 13/ 31
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unique optimal z∗ when it is highly sensitive. It should be noted that if {z1 = z2 = z3}, what-
ever each value is, then it is trivial that the optimal control inputs are always equal to the
control inputs when {z1 = 1, z2 = 1, z3 = 1}. Thus, we can set z∗ to {z1 = 1, z2 = 1, z3 = 1} when
z1 = z2 = z3 without trying to find the exact value of each weight. Basically, in the case of large
𝜌, PD-MPC proposes a suboptimal z that tends to be closer to the equal weight preference
than z∗. On the other hand, in the case of small 𝜌, it always finds an optimal solution for
z∗; however, it may not distinguish situations where u∗ is insensitive to z, thereby failing to
ensure data consistency. To select an appropriate 𝜌, a sensitivity analysis is conducted using
five training flood events, including some extreme cases. A total of 10 candidates are con-
sidered for 𝜌, ranging from 1× 10–5 to 1× 103 with an additional case where 𝜌 = 0 (meaning
𝜌 = 1×10–∞). Moreover, for each event, five uncertain inflow forecasts are applied. To consider
a sufficiently diverse set of scenarios, we examine three initial water levels, i.e., EL 76.0m, EL
76.5m, and EL 77.0m, covering a total of 750 cases (5 × 10 × 5 × 3).

The sensitivity analysis results are depicted in Fig 5. Each point represents the average or
the maximum penalty of the five uncertain inflow scenarios. Points not marked in the figure,
e.g., those for Event No.10 in Fig 5a with 𝜌 = 1× 103, 1× 102, and 1× 101, indicate the cases
where online PD-MPC iterations are infeasible, meaning that constraint violations occurred
at least once. In this figure, as 𝜌 decreases, the performance of PD-MPC is improved, i.e.,
penalty values decrease, and no further improvement is observed for smaller 𝜌 than 1 × 10–3.

In Fig 6, ZI is an index for weights, where ZI= 1 corresponds to z∗ = {z1 = z2 = z3 = 1}
and ZI= 2 is for all other cases. when ZI= 1, it also means that the same u∗ is computed for
various zs, indicating that u∗ is insensitive to z. As shown in the figure, in most cases, such
as the early stage of a flood event, u∗ is insensitive to z, resulting in several instances with
ZI= 1. Therefore, ZI= 1 and ZI= 2 are considered differently in this analysis. In this figure,
as 𝜌 decreases, a more diverse set of weights, i.e., ZI= 2 cases, appears. This indicates that
even when the control inputs are less sensitive to weights, more weight sets closer to z∗ can
be obtained. Conversely, for larger values of 𝜌, ZI= 2 cases are only suggested when con-
trol inputs are highly sensitive to weights. When 𝜌 = 0, most cases are ZI= 2, but it causes the
inability to find the consistent weight set when the optimal control inputs are insensitive to
weights, as discussed above. For instance, at time steps where multiple zs lead to the same
optimal control inputs and none of these zs are in ZI= 1, with 𝜌 = 0, the optimal weight set is
randomly selected among ZI= 2 cases. However, for 𝜌 greater than zero, a case with less dif-
ference between each weight is preferably chosen. Therefore, based on the sensitivity analysis
and the discussion above, 𝜌 can be set to 1 × 10–4.

2.2.2 Simulating multiple events for generating control learning data. Among the total
of 28 flood events, 22, 3, and 3 events are assigned for model training, validation, and test-
ing, respectively. These validation and testing events may not represent all practical cases, but
we carefully choose them to cover various inflow patterns, such as multiple peak inflows, sig-
nificant peak magnitudes, and so on. For this case study, we do not anticipate very different
conditions compared to the range of extreme and average scenarios considered. For other
applications where different conditions are anticipated, data-driven models can be trained
using outputs of simulation models, which can, for example, produce future inflows based on
changes in land use and land cover patterns, and climate change scenarios.

Data are collected through PD-MPC simulations [9] under the following conditions. The
initial water levels were set from NHWL-0.5m to +0.5m at intervals of 0.1m, using five
uncertain inflow predictions. Setting much higher or lower initial water levels than our initial
levels allows PD-MPC to stabilize RWL quickly by increasing or decreasing outflows abruptly.
Therefore, a narrow range of water levels around the NHWL is set as initial RWLs. Conse-
quently, the training data consists of 1210 cases (21 events × 11 initial RWLs × five uncertain

PLOS Water https://doi.org/10.1371/journal.pwat.0000361 May 9, 2025 14/ 31
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Fig 5. Results of the sensitivity analysis in terms of the penalty values from the evaluator. (a) average values of the
sum of penalty values for five different uncertain forecasts. (b) average values of the maximum penalty value of each
uncertain forecast. (c) maximum values of the maximum penalty value of each uncertain forecast.

https://doi.org/10.1371/journal.pwat.0000361.g005
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Fig 6. The number of data for each ZI.

https://doi.org/10.1371/journal.pwat.0000361.g006

inflow cases), and each validation and testing data have 165 cases (three events × 11 initial
RWLs × five uncertain inflow cases) as presented in Table 3.

It is worth noting that historically observed initial RWLs are lower than our simulation,
e.g., Event No.3, which occurred near the end of the flood season, started with an RWL at ele-
vation 72.2m. This is because operators want to secure enough flood control capacity in case
of unexpected huge inflows, even though lower RWLs increase risks to water supply. Thus,
lower initial RWLs in historical data often result from the absence of an optimal flood con-
trol system, which is what this study aims to address. Therefore, we set the initial RWL in this
research to the NHWL, representing the likely initial condition when operators have access to
optimal reservoir flood control inputs at each time step.

2.3 Optimal outflow schedule by DNN controller
The efficiency of DNNs can be affected by hyperparameter settings, such as the number of
nodes and layers, the learning rate, the activation function, and the batch size. To find the best
hyperparameters, a grid search based on mean squared errors is carried out [45]. However,
considering the extensive use of ramp functions in the evaluator, the Rectified Linear Unit
(ReLU) is selected as the activation function. In addition, the number of layers is also fixed
to six based on a six-hour prediction horizon. We utilize the mean square error (MSE) loss
function [46–48] with the Adam optimizer [48–51], which is widely used in developing surro-
gate inflow prediction models. The MSE loss function is particularly suitable for flood inflow

Table 3. Study flood events.
Purpose Events Cases Event No.
Training 22 1210 All except validation and testing events
Validationa 3 165 #22–#24
Testingb 3 165 #1, #2, and #25
aone high (≈ 5000m3 s–1, #23), two (#24) and three inflow peaks (#22).
bone high (> 5000m3 s–1, #1), two high (≈ 5000m3 s–1, #2), and three inflow peaks (#25).

https://doi.org/10.1371/journal.pwat.0000361.t003

PLOS Water https://doi.org/10.1371/journal.pwat.0000361 May 9, 2025 16/ 31

https://doi.org/10.1371/journal.pwat.0000361.g006
https://doi.org/10.1371/journal.pwat.0000361.t003
https://doi.org/10.1371/journal.pwat.0000361


i
i

“pwat.0000361” — 2025/5/9 — 11:38 — page 17 — #17 i
i

i
i

i
i

PLOS WATER Learning-based explicit and switched MPC approaches for reservoir flood control

prediction due to the huge variance between peak and low inflows. Additionally, it helps in
accurately estimating the peak values, which are critical when targeting flood prediction.

To reduce computational burden and searching time and to prevent overfitting during
the process of finding optimal hyperparameters, 330 cases for six events among the training
events are utilized along with the early stopping technique [52], and the five-fold cross-
validation approach. Through the grid search method, we found that batch size had the
greatest impact on model performance, followed by learning rate and the number of nodes,
respectively. The best hyperparameters are presented in Table 4.

As the results shown in Fig 7 and summarized in Table 5 indicate, the DNNmodel, map-
ping the states to the control inputs, is able to mimic accurately the PD-MPC control. Note
that the DNNmodel is trained only for total outflows, i.e., Ototal, for simplicity because spill-
way outflows can be obtained by abstracting the turbine capacity from total outflows when
total outflows are larger than the turbine capacity. The Nash-Sutcliffe model efficiency coef-
ficient, which is commonly used to evaluate the prediction accuracy of hydrological models
[53], is consistently more than 0.95, which demonstrates that the model is reliable enough to
replace PD-MPC [54]. The Root Mean Squared Error (RMSE) also varies between 42m3 s–1

and 167m3 s–1. Considering that the initial inflows for the three flood events in the valida-
tion set are 227.6m3 s–1, 224.4m3 s–1, and 116.6m3 s–1, and their respective peak inflows
are 4985.8m3 s–1, 3655.2m3 s–1, and 2590.4m3 s–1, we can say that the model is accurate. It
should be noted that because Ok

t is fixed to the value determined in the previous time step,
i.e., k–1, the DNNmodel output has N–1 values when the prediction horizon is N hours.
As expected, predictions for shorter time horizons are more accurate, while performance
gradually deteriorates as the prediction time increases.

2.4 Training machine learning models for mapping states to preference
(weights of objectives)
To simulate the changes in weights based on the states of the system, machine learning mod-
els are used to map them together. Given the predominance of ZI= 1 cases (shown in Fig 6)
and the challenges of identifying a linear relationship between the states and the weights
(shown in Fig 8), constructing a linear relationship to directly assign the best weights based
on the states seems to be infeasible. Therefore, a binary classification model is employed to
distinguish between the cases of ZI= 1 and ZI= 2. Additionally, a regression model is utilized
to estimate the weights for ZI= 2.

Among the available criteria for selecting a binary classification algorithm, accuracy, preci-
sion score, and recall score are taken into account in this article. Accuracy represents the ratio
of correctly classified instances to the total number of predictions. Precision score refers to the
proportion of correctly classified instances for a specific class divided by the total instances
classified as a given class by the model. Recall score measures the ratio of instances correctly
classified as a particular class to the total instances of that class. When a classifier classifies a
case with ZI= 1, the weight set is determined; however, when ZI= 2, the optimal weight set
should be estimated using the regressor. In other words, a case needs to be classified as ZI= 2

Table 4. Hyperparameters of derived DNNmodels.
Learning rate Layers Nodes Activation Batch size Epochs Loss
0.0005 6 128 Relu 10 1000 MSE

https://doi.org/10.1371/journal.pwat.0000361.t004
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Fig 7. Validation results of the DNNmodels for mapping states to outflow schedules; (a): Ototal,t+1, (b): Ototal,t+2,
(c): Ototal,t+3, (d): Ototal,t+4, (e): Ototal,t+5. Performance diminishes with increases over time.

https://doi.org/10.1371/journal.pwat.0000361.g007
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Table 5. Nash–Sutcliffe coefficient and RMSE for validation events.
Ototal,t+1 Ototal,t+2 Ototal,t+3 Ototal,t+4 Ototal,t+5

NSC 0.998 0.986 0.982 0.980 0.963
RMSE (m3 s–1) 42.1 105.5 119.2 124.2 167.6

https://doi.org/10.1371/journal.pwat.0000361.t005

Fig 8. The correlation among state elements and weights, where PI1: predicted inflow at t+1, PO1: previously
decided outflow at t+1.

https://doi.org/10.1371/journal.pwat.0000361.g008

when there is uncertainty and ZI= 1 when no uncertainty exists. Therefore, ZI= 1 and ZI= 2
are selected with a high precision score and a recall score, respectively.

Furthermore, to address the skewness of data in ZI, we adopt both under-sampling and
over-sampling algorithms. The Edited Nearest Neighbours (ENN) is an under-sampling
method that removes the nearest neighbors from the majority class data [55]. The Synthetic
Minority Over-sampling Technique (SMOTE) [56] is an over-sampling technique where syn-
thetic data are generated by randomly selecting one data point from the minority class and
its nearest neighbor in the minority class. The synthetic data are classified by a classification
model. Through the application of these techniques, the number of cases for ZI= 1 and ZI=
2 becomes balanced. The number of cases changes to 158134 for ZI= 1 from 187587 in the
original data and 150783 from 89833 for ZI= 2.

Classifiers are constructed based on k–nearest Neighbors, Random Forest, and Support
Vector algorithms using balanced data. As summarized in Table 6, the validation results indi-
cate that the Random forest model is the best regarding precision and recall scores. For the
implementation, a python library imbalanced learning [57] is used for the SMOTEENN
algorithm, and the scikit-learn package [58] with default parameters for the classifiers.

Table 6. Binary classification results on ZI.
Classifier Precision ZI=1 Precision ZI=2 Recall ZI=1 Recall ZI=2 Accuracy
Random forest 0.952 0.741 0.898 0.865 0.890
K neighbors 0.930 0.708 0.888 0.802 0.866
Support vector 0.941 0.676 0.864 0.839 0.857

https://doi.org/10.1371/journal.pwat.0000361.t006
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To map the nonlinear relationship between the states and the weights when ZI= 2, a
Random forest regressor is employed, which uses an ensemble approach with decision trees,
which can effectively map the nonlinear relationship between inputs and outputs [18,59]. This
model uses the average value at the final (decision-making) node for regression.

The parameters, i.e., the number of trees and the maximum depth of trees, are selected by
grid search based on RMSE values for the validation events, as shown in Fig 9. The param-
eters are selected at the point where the RMSE curve starts to level off in order to simplify
the model. The selected number of trees is then 150, and the maximum depth of each tree
is 30. However, as can be seen in Fig 9, no significant difference is observed with different
parameter values.

In addition, the Piecewise Affine (PWA) modelling approach, which is known for effec-
tively approximating switched discrete-time nonlinear systems [60,61], is also employed. They
are widely used to strike a balance between simplicity and accuracy [18]. This PWA approxi-
mation does not show considerable improvement in terms of the Peak RWL and the penalty
values of the evaluator compared to the Random Forest regressor. The Random Forest regres-
sor demonstrates even better performance in terms of the peak outflow and peak evaluator
value. Linear Random Forest regressor [62], which uses the Random Forest algorithm, but the
final value is calculated by linear regression, showing similar results with the Random Forest
regressor. The details on the PWAmodel and Linear Random Forest regressor can be found in
Appendix B.

3 Results and discussion
In this section, the efficiency of data-driven models based on the two aforementioned MPC
approaches on the test dataset for flood events is presented and discussed. In this regard, the
flood events selected for testing, as shown in Table 3, include cases with two and three peaks
of inflow and a large peak. Therefore, except for extreme cases like the Probable Maximum
Flood for designing reservoirs, these events could represent situations similar to those
encountered by operators during flood control operations.

Fig 9. Hyperparameter grid search results (to compare hyperparameters by the same scales, the scale of the
y-axis is fixed to [0.40, 0.45]), (a) the number of trees (when the maximum depth of each tree is 30), (b) the
maximum depth of each tree (when the number of trees is 150).

https://doi.org/10.1371/journal.pwat.0000361.g009
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3.1 Analyses of test events
The average of result indexes for each test event, i.e., the peak outflows, peak RWLs, minimum
RWLs, the total evaluator values, and peak evaluator values, are presented in Table 7, Table 8,
and Fig 10. ‘Fixed 1’, ‘Fixed 2’, and ‘Fixed 3’ refer to predefined weights, which are z = {1, 1, 1},
{0.125, 0.625, 0.25}, and {0.0625, 0.625, 0.3125}, respectively. ‘Fixed 2’ and ‘Fixed 3’ repre-
sent the cases with a high weight for J2 in (4), which emphasizes maintaining the RWL in
the target water level. J2 with a high weight forces the linear MPC controller to maintain the
reservoir water level at the minimum possible level, ensuring operational stability even over
extreme conditions. In addition, ‘Fixed 3’ highlights the importance of J3, minimizing changes
between outflow schedules.

‘E-MPC’ refers to the explicit MPC implemented using a DNNmodel, which is directly
mapping the states and the outflow schedules. On the other hand, the switched MPC
approach, which employs a random forest classifier and regressor as surrogate models for the
weight vector, is referred to as ‘S-MPC’.

For cases with predefined weights, the system violates at least one constraint more than
once, and the peak RWL reaches the FWL sometimes. For example, although Fixed 3 has a
high weight to the water level, in which the weight for J2 is ten times higher than J1 and two
times higher than J3, it shows the highest peak RWL in Event No.1 and 25. This result implies
that fixing the weights may not respond adequately, i.e., being sensitive enough, to changing
hydrological situations, thereby failing to satisfy the constraints and produce reliable results
from a long-term perspective. In contrast, E-MPC, which incorporates the DNNmodel, and
S-MPC, which applies the Random Forest models, show stable operation for the test events.

Table 7. Average results for all test events.
Peak outflow Peak RWL Minimum RWL Total E Peak E No. changes

PD-MPC 4137.3 78.27 76.07 934.5 17.3 49.4
E-MPC 4167.1 78.09 76.03 3207.7 30.6 926.9
S-MPC 4650.1 79.61 75.97 2667.7 52.3 23.9

https://doi.org/10.1371/journal.pwat.0000361.t007

Table 8. Average results for each test event.
Event Peak out. Peak RWL Min. RWL Total E Peak E No. changes

PD-MPC 1 5487.7 78.4 76.1 1007.9 18.7 38.9
Fixed 1 1 5304.8 79.9 76.0 2415.8 62.4 50.3
Fixed 2 1 5304.8 79.9 76.0 2408.7 62.4 49.3
Fixed 3 1 5474.9 80.0 76.0 2496.7 58.6 43.0
E-MPC 1 5340.0 78.4 76.0 2778.6 33.1 702.7
S-MPC 1 5225.7 79.5 76.0 1791.2 50.4 14.5
PD-MPC 2 5024.9 78.3 76.1 908.8 20.8 64.8
Fixed 1 2 Constraint violation
Fixed 2 2 Constraint violation
Fixed 3 2 4324.7 79.9 76.0 3454.7 57.6 46.8
E-MPC 2 5056.3 78.4 76.0 3392.5 29.6 1006.1
S-MPC 2 4154.6 79.4 76.0 2353.1 41.9 30.1
PD-MPC 25 1899.3 78.0 76.0 886.7 12.5 44.5
Fixed 1 25 1533.1 80.0 76.0 4571.4 59.4 35.0
Fixed 2 25 1533.1 80.0 76.0 4586.2 59.4 34.1
Fixed 3 25 Constraint violation
E-MPC 25 2104.9 77.4 76.1 3452.2 29.2 1071.9
S-MPC 25 4570.1 79.9 76.0 3858.9 64.7 27.1

https://doi.org/10.1371/journal.pwat.0000361.t008
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Fig 10. Average results for each test event in terms of (a) Peak RWL, (b) Peak Outflow, (c) Total E, and (d)
Number of changes in outflow schedules.

https://doi.org/10.1371/journal.pwat.0000361.g010

In this scenario, the maximum outflow capacity, minimum water supply, and RWL con-
straints are all satisfied. Even though the best performance belongs to PD-MPC, they also
outperform the fixed weight cases with respect to the absolute performance evaluator value.

The Absolute Performance Evaluator quantifies what reservoir operators want to achieve
during flood events. While conventional MPC approaches are limited to linear or quadratic
objective formulations, making it challenging to express complex operational goals mathe-
matically, the PD-MPC framework overcomes this fundamental limitation by enabling the
use of diverse nonlinear equations, including exponential functions and conditional formu-
lations. Therefore, this evaluator can serve as a definitive performance index, providing a
single quantitative measure. As presented in Table 7, S-MPC shows a lower average penalty
in terms of the evaluator compared to E-MPC. Fixed weight cases generally present higher
penalties than both S-MPC and E-MPC, with one exception: in Event No.1, E-MPC exhibits
the highest evaluator value. However, regarding the highest penalty during an event period,
‘Peak E’, E-MPC has a lower average penalty than S-MPC. The results indicate that the relative
performance of S-MPC and E-MPC is contingent upon specific event characteristics. Note
that ‘Total E’ in Tables 7 and 8 represents the sum of penalty values accumulated during an
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event period. Here, E is interpreted as a penalty since the evaluator’s objectives are formulated
as minimization problems.

Considering the peak RWL and peak outflow, E-MPC mimics PD-MPC results accu-
rately. It can be concluded that E-MPC is able to respond adequately to changes in the states.
However, E-MPC tends to change the outflow schedule frequently, leading to very high values
for E3 in (11). This is because even small changes in the outflow schedule yield an increase in
E3 value, and the DNN regressor is less sensitive to minor deviations due to the effect of a loss
function, which is the mean squared error.

On the other hand, S-MPC derives state-dependent weights, and the linear MPC, incorpo-
rating these weights, generates the optimal outflow schedule in real-time. As a result, in terms
of the absolute performance evaluator, switched MPC shows lower penalty values and fewer
changes in outflow schedules - an area emphasized by the evaluator, as mentioned in Sect 1.3
- compared to E-MPC. Since the PD-MPC framework is designed to select optimal control
inputs based on the evaluator, not the linear MPC’s objectives, we can conclude that switched
MPC better replicates the original multi-objective optimization results compared to E-MPC.

However, this improvement is obtained by compromising the peak outflow and peak
RWL, since the number of changes, peak outflow, and peak RWL are correlated. This can be
explained by errors in these two surrogate models, indicating that the models are not suffi-
ciently sensitive to a given state.

Some errors in the classification of ZI and the regression of weights can be expected for
the surrogate models. Firstly, if the classifier fails to identify situations where ZI= 2, i.e., when
weights need to change, the model maintains RWLs between the target RWLs and outflows at
the minimum amount. It yields subsequent higher RWLs and larger outflows. Furthermore,
if the regressor fails to provide the optimal weights, linear MPC may struggle to accurately
determine the appropriate adjustments to the outflow.

Moreover, when RWLs exceed EL 78.89m, which is the maximum RWL in training data,
switched MPC surrogate models need to provide optimal weights for states that fall outside
the range of the training data. It can result in errors.

Despite errors in the surrogate models (RMSEs are approximately 0.45 in Fig 9) in optimal
decision timings and outflows, the switched MPC approach enables linear MPC to produce
robust results concerning constraints. Even if the surrogate models cannot present the opti-
mal weights at a certain time step and the system state worsens in terms of the evaluator val-
ues, they can promptly respond to the slightly deteriorated new state due to the receding hori-
zon control. Thus, linear MPC makes appropriate decisions with the weights provided by the
surrogate model.

3.2 Comparison of explicit MPC and switched MPC
For a deeper understanding of the characteristics of surrogate models within the frameworks
of explicit MPC and switched MPC, we define scenarios that these models have not previously
been trained on. In general, data-driven models often fail to produce reliable outputs when
the inputs are beyond the range of the training data [63,64]. A scenario with an initial RWL
of EL 75.0m is defined, while, in the training data, the lowest water level is EL 75.95m. This
scenario is simulated for Event No.1 with one peak and a significant peak inflow.

The simulation results of the data-driven models for the aforementioned scenario are
shown in Fig 11 and summarized in Table 9. As expected, PD-MPC outperforms other meth-
ods in this case. In addition, S-MPC does not violate any constraints. However, E-MPC does
not satisfy constraints compared to the other three cases, particularly when the RWL is low;
E-MPC suggests negative outflow, e.g., –844m3 s–1, to increase the reservoir level to the target
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Fig 11. Hydrographs for Event No.1 with unseen initial RWL, (a) PD-MPC, (b) Explicit MPC (DNN), (c)
Switched MPC (Random Forest classification and regression).

https://doi.org/10.1371/journal.pwat.0000361.g011
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Table 9. Results for unseen initial RWL for Event No. 1.
C Peak out. Min. out. Peak RWL Min. RWL Total E No. changes
PD-MPC 5202.0 52.0 78.51 74.99 1282.4 49
E-MPC 5473.0 -844.0 78.41 74.98 3091.2 714
S-MPC 3905.1 52.0 79.90 75.00 2377.6 20

https://doi.org/10.1371/journal.pwat.0000361.t009

range (from EL 76.0m to EL 76.5m), even lower than the minimum outflow for water sup-
ply, i.e. Omin. This is because S-MPC explicitly incorporates constraints through linear MPC,
whereas E-MPC only maps the states and the outflow schedules.

3.3 Discussions
Considering the limitation of data-driven models to model complex relationships between
states and outflow schedules, or states and weights, which are embedded in the training data,
the PD-MPC framework outperforms in all the cases. However, the explicit MPC and the
switched MPC outperform in the fixed weight cases, demonstrating applicable results without
violating constraints for the test events.

The DNNmodel based on the explicit MPC approach results in small and frequent
changes in the outflow schedule, as shown in Table 8 and Fig 11b. This causes physically
impossible outflows and constraint violations for the unseen cases. Despite these shortcom-
ings, they could potentially be addressed by introducing heuristic rules based on an operator’s
experience. For instance, operators can design a simple heuristic algorithm in which a pro-
posed outflow is replaced with the minimum outflow when the proposed outflow is less than
the constrained minimum outflow. Negligible fluctuations between outflow schedules can
also be ignored using these kinds of heuristic rules. Furthermore, as the number of training
flood events increases and various uncertain inflow scenarios and initial RWLs are integrated,
a surrogate DNNmodel can cover all potential states to avoid infeasible control inputs.

The model using the switched MPC approach also demonstrates reliable results for flood
control. However, the complex relationship between the states and optimal weights poses a
challenge due to the selection of a single weight set from multiple sets that produce the same
optimal control inputs. As a result, using a conventional data-driven model often leads to
significant testing errors. For instance, although not presented here, a DNNmodel does not
outperform our proposed classifier and regressor. These errors cause an overall performance
degradation, particularly delaying the timing of changes in the outflow schedule. Moreover,
this degradation can cause a switched MPC surrogate model to encounter states far outside
the training data. Consequently, the peak RWL is higher, and the peak outflow is larger than
the PD-MPC results. The errors can also be mitigated by adopting knowledge-based heuris-
tic rules. As an example, we can design different default weight sets for different states outside
training data based on the operator’s experience. The most crucial point to be considered is
that online implementation of linear MPC can guarantee that the optimal outflow is stable,
not violating constraints, even for unseen cases.

In summary, although PD-MPC outperforms other methods, it requires solving compu-
tationally complex nonlinear optimal control problems online for reservoir flood control,
which makes it difficult to implement in practice. The switched MPC approach replaces the
gradient-free randomized search algorithm, which was time-consuming for solving PD-MPC
online. It thus can significantly reduce complexity. In addition, since linear MPC optimiza-
tion is conducted every time step using updated information, results are robust to errors and
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avoid constraint violations. The explicit MPC approach has the lowest complexity for imple-
menting online as it directly maps states to control, but a DNNmodel can present infeasible
control inputs and needs more training data to cover every possible situation. The complexity
and accuracy of the discussed methods are schematically described in Fig 12.

Even though we can convert an expensive online nonlinear optimization problem into
expensive offline training and cheap online implementation, it will be better to make the
online nonlinear optimization, i.e., the GA or TPE algorithm itself, cheap. This means the
online implementation of the PD-MPC framework becomes more practical. The warm-
starting strategy [33,65] can be a good method to start. Adaptive learning techniques present
promising alternatives to traditional data-driven models. For example, reinforcement learn-
ing [66] and learning-based MPC approaches [67,68] have gained significant attention in
recent research. These methods can effectively reduce the errors inherent in surrogate models,
ultimately near optimality with lower computational complexity.

Another important consideration is how to scale this approach to a multi-reservoir system.
In standard MPC approaches, some challenges in scaling the receding horizon MPC approach
to complicated multi-reservoir systems have been reported [7,69]. In our framework, expand-
ing the surrogate switched and explicit MPC approaches to a multi-reservoir system is tech-
nically straightforward, given that obtaining the optimal outflow schedules and/or the opti-
mal weights is feasible. In such extensions, the number of system states will grow linearly with
the number of reservoirs in the system. Since the switched approach uses linear MPC, the
computational complexity of the real-time control will remain manageable. For the explicit
MPC, it would be even more computationally efficient. However, the most complex task in
such an approach is designing a sufficient number of scenarios for the PD-MPC to generate
a sufficient range of control data sets for learning the explicit and switched models.

The uncertainty of inflow forecasts also needs to be considered. Even though we con-
sider the uncertainty of inflows by adding noise to observed inflow data when generating
the training data, we deal with it in a deterministic way. However, it is advisable to explore
stochastic/robust MPC [70] to consider uncertainty explicitly. In addition, we acknowledge
that we cannot present the comprehensive impacts of the inherent inaccuracy of data-driven

Fig 12. Conceptual diagram of explicit and switched MPC approaches.

https://doi.org/10.1371/journal.pwat.0000361.g012
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models in reservoir flood control, despite our detailed explanations of how S-MPC and E-
MPC respond to the errors of surrogate models within the studied flood scenarios. Many
methodologies for uncertainty quantification of data-driven models, e.g., sensitivity anal-
ysis [71], Bayesian-based approaches, bootstrap-based approaches, and the Monte-Carlo
method, have been studied [72]. However, incorporating these methodologies for compre-
hensive uncertainty analysis is beyond the scope of this research.

4 Conclusions
In this article, we propose data-driven surrogate models in the form of explicit and switched
Model Predictive Control (MPC) approaches for a flood control problem with dynami-
cally changing weights of multi-objectives, which is the first study based on the author’s best
knowledge. These approaches have the advantage of low computational complexity for online
implementation compared to a Parameterized Dynamic Model Predictive Control (PD-MPC)
framework proposed in our previous work [9]. The PD-MPC formulation explicitly considers
the dynamic characteristic of the relative importance of objectives depending on the situa-
tion via time-varying relative weights for the different objectives, which are optimized online
at each time step of the MPC by solving a highly nonlinear optimization problem. Through
numerical experiments on the Daecheong multipurpose reservoir in South Korea, we demon-
strate that both approaches outperform linear MPC approaches with predefined fixed weights
and produce compatible results with PD-MPC. Especially, the switched MPC approach is
robust in terms of model errors despite some constraint violations of the explicit MPC DNN
model under previously unseen events. However, because the highly complex relationship
between states and weights leads to the performance degradation of data-driven models for
the switched MPC, testing these strategies for other case studies where there may be a larger
size of training data may be useful.

Overall, we expect this study to contribute to widening the possibility of the application
of real-time optimal reservoir flood control and lay the foundation for practical implemen-
tation in the field. The switched MPC approach, for example, offers a computationally effi-
cient method for real-time reservoir operation to effectively balance multiple objectives, such
as minimizing flood risk downstream, maintaining reservoir levels, and minimizing outflow
schedule changes, even under uncertain inflow conditions we simulated. Additionally, the
insights into the dynamic weighting of objectives based on real-time hydrological conditions
and states can aid in developing more adaptive and robust flood control strategies.

Even though our research focuses on a single reservoir in South Korea, we believe our
approach could be applicable to reservoirs with various hydrological conditions. The method-
ology presented in this study may be adaptable to different reservoir systems with their own
unique characteristics and operational requirements, as the fundamental concepts of model
predictive control and surrogate modelling potentially extend to diverse hydrological settings.
The framework potentially offers sufficient flexibility to accommodate region-specific con-
straints and objectives, suggesting its potential utility for addressing water resource manage-
ment challenges in different geographical contexts.
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