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Abstract

To achieve the goals on greenhouse gas emissions, the energy supply and demand is in transi-
tion. Distribution power grids therefore are increasingly reaching their capacity limits due to
electrification and the vast increase of distributed energy resources (DER) connection requests
with large peak power output. Increasing physical grid capacity is a costly operation and take
lots of time to realise. Grid operators are therefore allowed to connect additional energy re-
sources to the power grid at the cost of N −1 reserve capacity. Having N −1 reserve capacity
means that any grid component can go out of service, without causing overloading of another
grid component. When this security principle is abandoned, coupled preventive and corrective
control measures might be necessary to preserve security of energy supply. In this thesis, com-
missioned by the Dutch distribution grid operator Stedin Netbeheer, a preventive-corrective
contingency control method based on differential evolution (DE) is designed to increase the
maximum admissible DER generation on a distribution grid. For the contingency analysis
process in this contingency control method, the full AC power flow method is compared to
the method based on line outage distribution factors. The resulting DE-based preventive-
corrective control method using the full AC power flow contingency analysis method allows
for significant extra DER generation capacity to be connected to the study case distribution
power grid, without requiring expensive grid expansions. The case study of this thesis work is
the Stedin Middelharnis distribution power grid. Due to the computational complexity of the
preventive-corrective contingency control method and the sparse connectivity of power sys-
tem data, convolutional neural networks are deployed to reduce the computational time. In
the first approach, the convolutional neural network is used to perform contingency analysis.
Due to this neural network approach, the time to compute the preventive-corrective control
actions is reduced by 40%. However, the accuracy of the control is significantly reduced due
to the inaccuracy of the used contingency analysis method. In the second approach, a neural
network is trained to determine the coupled preventive control actions. The performance of a
neural network with and without convolutional neural networks is compared in this approach.
Results show that the convolutional neural network outperforms the neural network without
convolutional layers. This second convolutional neural network approach is satisfactory ac-
curate and the computational efficiency of this control method is greatly increased compared
to the control method based on DE, making realtime preventive-corrective control possible.
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Chapter 1

Introduction and background

Earth’s climate is changing rapidly in every region and across the whole climate system and
the role of human influence on this is undisputed, according to the latest International Panel
on Climate Change (IPCC) report [21]. In an effort to combat the global challenges associated
with climate change, world leaders from all across the world signed the Paris agreement in
2015 [45]. The governments agreed to substantially reduce global greenhouse gas emissions
to limit the global temperature increase in this century. In the Glasgow Climate pact, signed
in 2021, the countries agreed to increase their effort and to phase down the use of coal in
energy production [46]. The Dutch government set a goal to reduce the Dutch greenhouse gas
emissions by 49% by 2030, compared to the 1990 levels, and a 95% reduction by 2050 [18]. The
above developments cause this world and The Netherlands in particular to be in the middle
of an energy transition from fossil-based systems of energy production and consumption to
renewable energy sources, like wind and solar energy. This ambitious and progressive energy
transition poses power grid capacity challenges, as is described in Section 1-1. From these
challenges, a problem statement is abstracted in Section 1-2, which is faced in this research.
To face this problem, specific research objectives and research questions are presented in
Section 1-3 and finally, the outline of the rest of this thesis is given in Section 1-4.
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2 Introduction and background

1-1 Grid capacity challenges in facilitation of the energy transition

To achieve the goals on greenhouse gas emission reductions, the energy supply and demand is
in transition. Different sectors, such as mobility and built environment, are electrifying and
power grids are increasingly penetrated by distributed energy resources (DER), such as photo-
voltaic systems or wind turbines. Conventionally, the distribution power grid is designed in a
uni-directional fashion. Power was generated by large-scale centralized generators, powered by
fossil fuels such as natural gas and coal. This power was transported through the transmission
network, into the distribution network. In the distribution network, the power was distributed
mostly radial and uni-directional. Demand and supply was easy to balance by means of the
day-ahead and intra-day energy market. This distribution network was designed to be able to
deal with peak moments in terms of energy demand, with limited risk of congestion. Required
physical grid investments were easy to predict years ahead and relatively low-cost. In grid
codes, the N − 1 reliability principle was and still is widely used to ensure security of supply
in case of contingency or maintenance. This principle means that secure grid operation is
maintained when failure of any component in the grid occurs, which is generally ensured by
oversizing the grid. In The Netherlands, this principle is mandatory for high voltage (>110kV)
grids. For lower voltage distribution grids, the principle is widely used as well. Since DER
typically have a high simultaneity, leading to a generator power input at moments of heavy
wind and solar radiation, extensive grid enhancements are required. Furthermore, due to the
increased penetration of DER, the distribution grid now acts as a bi-directional network more
than ever before, where moments of net supply and demand vary regularly. The power flow
on the power grid is therefore more complex to determine and predict and accurate analysis of
grid performance requires an extensive monitoring and communication infrastructure, which
is currently not present. Overall, these developments require extensive grid expansions of the
electricity grid. However, these improvements are costly and take time.

It is a challenge to improve the grid in time and at reasonable cost for society. In The Nether-
lands, grid operators have announced several regions where there is no room for new DER
connections, so new photo-voltaic energy connections are declined or postponed [29]. The
number of such regions is increasing, and the grid operator Stedin Netbeheer just announced
another locked region [40]. In the Middelharnis region on the island of Goeree-Overflakkee,
no grid capacity to connect DER is available. In Fig. 1-1 and Fig. 1-2, the current status of
congestion is visualised for respectively the area of The Netherlands and Stedin Netbeheer.

In an response to the current and upcoming congestion on the distribution grids, the Dutch
national government now allows Dutch grid operators to connect more DER using the N − 1
reserve capacity [15]. However, when the N − 1 reserve capacity is used for extra DER
connections, parts of the power grid could possibly get congested in case of a grid compo-
nent contingency. This could cause overheating of grid components, security system triggers
leading to local blackouts or voltage instability.

W.J. Treurniet Master of Science Thesis
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Figure 1-1: Grid congestion situation for The Netherlands, from [30].

Figure 1-2: Grid congestion situation for Stedin’s area, from [39].
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4 Introduction and background

1-2 Problem statement

From the above-mentioned grid capacity challenges, a clear problem arises:

Distribution power grids are increasingly reaching their capacity limits due to
electrification and the vast increase of DER connection requests with large peak
power output. Increasing physical grid capacity is a costly operation and take
a considerable amount of time to realise. Grid operators are therefore allowed
to connect additional energy resources to the power grid at the cost of N − 1
reserve capacity. However, this might cause risks in the security of supply in case
of contingencies.

1-3 Research objective and research questions

The problems of overheating of grid components, voltage instability and security system
triggers in case of contingency could be mitigated by means of contingency control. In con-
tingency control, certain control measures are taken to prevent grid limits to be violated.
The most common control measures are active or reactive power curtailment of genera-
tors [2, 8, 12, 20, 57, 59], load shedding [37, 57] and network topology switching [7]. These
control actions can be applied after a contingency occurred, i.e. corrective control, or before
a contingency occurred to prevent grid limit violations directly after the contingency, i.e.
preventive control. Naturally, a combination of preventive and corrective control actions can
also be applied. In literature, this combination of preventive and corrective control actions is
called preventive-corrective control and is researched by multiple authors [8,54,55,57]. How-
ever, the computational complexity of these control methods is large, due to the coupling
between the preventive and corrective control actions. However, several efforts in literature
have shown that machine learning can reduce the required realtime computational effort in
power system control [5, 11,22,58].

The research objective of this thesis is therefore to develop a preventive-corrective
contingency control method to increase the maximum admissible DER generation
on a distribution grid and to improve the computational efficiency using machine
learning techniques.

To reach this research objective, the following questions will be answered:

• Within which time frame can preventive-corrective contingency control be performed?

• To what extent is the maximum admissible DER generation on a grid influenced by
using preventive-corrective contingency control?

• What is the influence of using machine learning on the accuracy and computational
efficiency of preventive-corrective contingency control?

W.J. Treurniet Master of Science Thesis
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1-4 Outline

In this study, a case study will be performed on the selected control methods to analyse the
efficiency and accuracy of these methods and therefore to be able to answer the research
questions. This case study will be performed on relevant distribution grids. The description
of this case study is given in Chapter 2. The preventive-corrective control method based
on iterations between the preventive and corrective control actions is described in Chapter 3.
This method is tested on the case study and the results are presented and discussed in the same
chapter. Then, the influence of using a machine learning technique is discussed in Chapter 4.
The same case study is used to analyse the performance of this technique. Concluding remarks
on both the classical preventive-corrective method and the machine learning-based methods
are made in Chapter 5, where recommendations for further research are also presented.

Master of Science Thesis W.J. Treurniet
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Chapter 2

Case study description

The preventive-corrective contingency control methods developed in this study will be tested
on a case study. The goal is to develop a case study which represents the situation of distribu-
tion grids in The Netherlands. Therefore, a Stedin distribution power grid is selected as main
test grid for this case study. This power grids is discussed in Section 2-1. The aim for this
Stedin power grid is to perform preventive-corrective contingency control within one minute.
This way, the unnecessary curtailment of distributed energy resources (DER) generators and
the risk of post-contingent limit violations is small. Within this minute, the power grid can
be considered stationary, since the demand and supply of the power grid do generally not
change drastically within a one minute time frame. To increase the insights of the influence
of different design choices, several benchmark power grids are also used in this study. These
power grids are also discussed.

In this chapter, the case study on which the contingency control methods will be applied is
presented. To this extent, the relevant power grids are listed in Section 2-1 and the load and
generation data of these power grids is presented in Section 2-2.

2-1 Power grids

The following power grids will be used to study the control methods as described in the
previous chapter. The Stedin Middelharnis power grid as described in Section 2-1-1 forms
the basis for this case study. In addition to this power grid, academic benchmark grids will
be used for particular parts of the case study. These grids are presented in Section 2-1-2.

2-1-1 Stedin Middelharnis power grid

The Middelharnis distribution power grid is selected to provide a realistic case study, which
allows for a more reliable analysis of the performance of the algorithms on Stedin’s power
systems. In collaboration with Stedin’s representatives, a model of the Middelharnis high
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8 Case study description

voltage distribution grid is selected as test system for this research. This 50kV and 13kV
distribution grid is shown in Fig. 2-1. This section of Stedin’s distribution grid faces congestion
issues, due to the DER generation input. Permits for new DER projects are currently not
issued, to prevent increased congestion. To analyse the potential benefits of smart preventive-
corrective contingency control, four extra non-firm DER connections are connected to the
Middelharnis power grid. These four connections will be the controllable generators. They
are placed at the locations marked in Fig. 2-1. The installed capacity for each connection is
60MWp. Connections 2 and 3 are placed in a east-west configuration. More information on
this configuration can be found in [25]. Connections 1 and 4 are faced to the south. For this
case study, it is assumed that the controllable generators can only be curtailed for 20% of
their maximum power output per minute. This coincides with the regulations as found in the
Dutch grid code [3]. Furthermore, it is assumed that any loading or voltage violations should
be mitigated within 30 seconds after a contingency occurred. This results in a limited time to
perform corrective control and hence couples the preventive control actions to the corrective
control actions, which requires preventive-corrective control.

The number of contingencies considered for this power grid is 12. Only non-islanding contin-
gencies are considered, since otherwise the security of supply is lost regardless of any control
actions.

Figure 2-1: Stedin Middelharnis power grid with additional DER marked by numbers.

W.J. Treurniet Master of Science Thesis



2-2 Load and generation data 9

2-1-2 Academic benchmark grids

In addition to the Stedin Middelharnis power grid, academic benchmark power grids will
be used in this research to validate some of the used methods. This is done to analyse the
influence of the size of the networks to the performance of the different methods. The three
different used academic benchmark power grids are discussed below.

IEEE 9-bus power grid

The IEEE 9-bus power grid is a small sized transmission power grid, first used and published
by [32]. The grid is shown in Fig. 2-2 and consists of nine buses, three loads and three
synchronous generators. This benchmark grid can provide useful information on the perfor-
mance of methods on a small scale. Contingency of all lines in this system is considered, so
the number of considered contingencies is 6.

CIGRÉ MV power grid

The CIGRÉ MV test system as shown in Fig. 2-3 is suitable for this research. It is a 20kV
AC power system, most commonly used for control purposes in literature. This network is
connected to the transmission grid via a slack bus. The system is weakly-meshed and includes
multiple switches. These switches could be controlled or considered closed or open at all times.
If the switches are considered open at all times, the system reduces to a radial system. To
ensure supply of power for all contingencies, the switches will be closed for this research.
This test system is presented in detail in [9]. It is mentioned that network voltage level, line
lengths, types and parameters and load values can be adjusted as necessary, though voltage
level changes requires the conductors, transformers, etc. to be adjusted accordingly. In [34],
this CIGRÉ MV network is used to design a benchmark distribution network for investigation
of integration of DER. Part of the scope of this benchmark is to allow for studies on energy
management systems for DER in the MV distribution network. In the article, a wind turbine,
photovoltaic systems, batteries, fuel cells in households and combined heat and power stations
are connected to the system. Contingency of all lines and transformers in this power grid is
considered, so the number of contingencies is 17.

IEEE 39-bus power grid

The IEEE 39-bus power grid originates from [1]. It is a high voltage transmission grid
with ten generators, as shown in Fig. 2-4. This grid is significantly larger than the other
benchmark grids discussed above. This enables analysis and discussion on the scalability of
different methods. Contingency of all non-islanding lines and transformers in this power grid
is considered, so the number of contingencies is 46.

2-2 Load and generation data

To perform simulations on the different power grids, different realistic load and generation
scenarios are considered, as is described in the following section.

Master of Science Thesis W.J. Treurniet



10 Case study description

Figure 2-2: IEEE 9-bus power grid,
adepted from [32]. Figure 2-3: CIGRÉ MV power grid [9]

For the Middelharnis power grid, load and generation data is delivered by Stedin Netbeheer.
The load profiles from [28] are used for all academic benchmark grids. These profiles are
developed by NEDU, the Dutch association for energy data exchange, which is a joint initiative
of the Dutch energy sector, including Stedin Netbeheer. The load profiles describe the hourly
fraction of the total yearly electricity consumption for different types of connections. Standard
practice at Stedin is to use the E1B load profile for residential connections and the E3A load
profile for commercial and industrial connections. The E1B profile is based on 1401 series of
Dutch smart meter data. The E3A profile is based on 3883 data series, made available to
NEDU by balance responsible parties. Assuming an equal load profile for every residential or
industrial load might not represent a realistic scenario. Especially when learning a process,
these unnatural patterns could hinder learning the full complexity of the process. Therefore,
a random adjustment of 10% is added to each different load. The reactive power load is
determined by multiplying the active power load of each load by 0.2(±0.1). This approach is
stems from [13].

The generation profiles for the photovoltaic systems originate from the Dutch PV portal [10].
This portal delivers power profiles for photovoltaic systems based on the solar system design,
modelling expertise of the Photovoltaic Materials and Devices group at Delft University of
Technology and weather measurements of the Royal Netherlands Meteorological Institute
(KNMI). A detailed description of this data portal is given in [36]. The generation profiles
for the wind turbines in the Middelharnis power grid are given by Stedin Netbeheer.

W.J. Treurniet Master of Science Thesis



2-2 Load and generation data 11

Figure 2-4: IEEE 39-bus power grid, adepted from [1].
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Chapter 3

Preventive-corrective contingency
control using differential evolution

Contingency control methods have been frequently studied in academic literature. In contin-
gency control, a distinction is made between preventive and corrective control measures.
Corrective control is applied after a contingency has occurred. Preventive control is applied to
the system prior to a potential contingency, to prevent or mitigate potential post-contingency
constraint violations. Control actions are usually to be minimized, since they come at a cost.
Corrective control has the advantage of being applied only when absolutely necessary. How-
ever, corrective control relies on two major assumptions [8]: (i) post-contingency constraint
violations can be tolerated for a certain period of time, leaving enough time for the applica-
tion of adequate corrective control actions and (ii) the system will remain stable in the period
between contingency occurrence and the post-contingency steady-state operating point. The
latter is called transient stability, which is mainly an issue with large-scale transmission grids.
If either one of these assumptions does not hold, preventive control is a required alternative
or addition to corrective control, even though it has the drawback that costly control action
is applied regardless of the actual occurrence of a contingency. Due to this drawback, it
is generally considered to be undesired to solve all possible post-contingent limit violations
using preventive control. Thus, the combined use of preventive control and corrective control
is preferred. This is called preventive-corrective control.
If preventive and corrective control methods can be decoupled, the preventive-corrective con-
trol does not differ significantly from preventive or corrective control. Separate monitoring
and control algorithms can be implemented for both types of control. This is for example
the case when the loading and voltage levels instantaneously after a contingency occurs are
required to be within certain tight limits, but the time to apply corrective control actions and
steer the system into a secure long-term grid situation is large enough for any required cor-
rective control actions. Now, the preventive and corrective control actions can be computed
separately, without any coupling between the two.
However, in some cases these different control actions might be coupled. For example, correc-
tive control actions on the power output of generators might be limited in terms of their ramp
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14 Preventive-corrective contingency control using differential evolution

to prevent grid instability. The tolerated time to solve a limit violation in post-contingent
grid state might therefore be exceeded if control actions are only applied in a corrective form.
Therefore, preventive control should be applied. The amount of preventive control action in-
fluences the required corrective control actions for different contingencies. In these situations,
the preventive and corrective control actions should be determined in a coupled manner.

Preventive-corrective control is characterized by the coupling between preventive and cor-
rective control actions. One set of preventive control actions influences the sets of op-
timal corrective control actions for different contingencies. The studies in literature on
preventive-corrective control have shown that this coupling requires extensive computational
effort [8, 54, 55, 57], since multiple iterations are required between the preventive and corre-
sponding corrective control actions to find optimal sets of these control actions. The study
of [54] presents a hybrid method using an algorithm based on differential evolution (DE),
which is a specific type of evolutionary algorithm. In this algorithm, preventive and correc-
tive control actions are defined for a large population of offsprings. These population members
are distinguished by their control variable space. After each iteration, the offspring popu-
lation is updated according to specific evolutionary rules and the new offspring population
is evaluated again. The evolutionary rules make sure that the new population is closer to
the optimum then the previous. The contingency control problem is non-convex and might
have multiple local minima. As long as the initial offspring population is sufficiently diverse,
this algorithm is capable to escape local minima. A similar approach is used in [55], where a
different parameter set is used to distinguish the different members of a population. In [57],
the coupling between preventive and corrective control is quantified in a risk coordination
parameter. The optimal value of this parameter is determined by performing a golden section
searches on multiple parameter values until convergence. The parameter values are updated
each iteration based on the previous golden section search. However, this golden section-based
might struggle to escape local minima, since only two samples are used to define new values
of the risk coordination parameter. This risk increases with an increasing number of control
variables. The study in [8] focuses on the transient stability, where the main challenge in the
case of Dutch distribution grid is the overloading of lines and transformers. Computation
times for the above-mentioned methods range between 70 seconds for a small 14-bus system
and 5527 seconds for a 118-bus system.

Given the above analysis, the most suitable preventive-corrective control method for this
thesis is the method based on DE as proposed by [54] and [55]. The building blocks of the
DE algorithm consist of performing contingency analysis and computing the optimal power
flow (OPF). Therefore, these processes will first be described in Section 3-1 and Section 3-2.
After this, the preventive-corrective contingency control method using DE will be discussed
in detail in Section 3-3. To analyse the performance of this method, the method is tested
on the case study using different design choices. The results of this testing are presented in
Section 3-4 and conclusions are finally drawn in Section 3-5.

3-1 Contingency analysis

Contingency analysis is one of the important steps in contingency control. In this practice, the
influence of possible contingencies on the power grid operation is analysed, given a particular
loading scenario. In this particular case study, the contingency analysis method should be
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3-1 Contingency analysis 15

able to determine which contingencies lead to limit violations in terms of voltage levels and
the loading of remaining grid components.

Power flow computations form the basis for most contingency analysis methods. In power
flow computations, all known loading and voltage data of the power grid is used to compute
the power flows through all components of the grid. The used methods to solve the power
flow problem are therefore discussed in Section 3-1-1. Using these power flow computation
methods, two different classical contingency analysis methods are discussed in Section 3-1-2
and Section 3-1-3. Finally, the results of these methods on the case study are presented and
discussed in Section 3-1-4 and conclusions are drawn in Section 3-1-5.

3-1-1 Power flow problem

The power flow is the network solution describing the active and real power flow and complex
voltage value at each network bus. The power flow can be described by the following equations
[61]:

Pi(V ,θ) = Vi

N∑
j=1

Vj (Gij cos θij +Bij sin θij) (3-1)

Qi(V ,θ) = Vi

N∑
j=1

Vj (Gij sin θij −Bij cos θij) (3-2)

where Vi, θi, Pi and Qi are the voltage magnitude and voltage angle and the active and
reactive power flows at bus i, respectively. Furthermore, θij = θi − θj is the voltage angle
between bus i and j and Gij and Bij are the real and imaginary parts of the [i, j] indices of
the admittance matrix, given by:

Yij = Gij + jBij =


−(gij + jbij), if i 6= j

(gi + jbi) +
∑N
j=1
j 6=i

(gij + jbij) , if i = j

0, if no connection exists
(3-3)

This admittance matrix is constant for a particular power grid and describes the conductance
and susceptance of the lines and transformers of the power grid.

Each bus has four variables (Pi, Qi, θi and Vi) and two equations. Therefore, two variables
have to be known for each bus to solve this set of equations. For load buses, the P and Q
are known. For generator buses, the P and V are known. For swing buses, the θ and V are
known. Since the power flow equations are non-linear, finding the solution for all variables is
not straightforward. Two widely used algorithms to solve the power flow are discussed in the
following sections.

Newton-Raphson method

The Newton-Raphson method is an accurate and widely used approach to solve the power
flow equations. The following derivation originates from [61]. To this end, the following
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16 Preventive-corrective contingency control using differential evolution

mismatch equations are proposed, as presented in (3-1) and (3-2):

∆Pi = Pis − Pi = Pis − Vi
n∑
j=1

Vj (Gij cos θij +Bij sin θij) = 0 (3-4)

∆Qi = Qis −Qi = Qis − Vi
n∑
j=1

Vj (Gij sin θij −Bij cos θij) = 0 (3-5)

where Pis andQis are the known bus real and reactive power injections, respectively. Equation
(3-4) has to hold for each PV and PQ bus and (3-5) has to hold for each PQ bus. It is assumed
that bus n is a slack bus, buses 1 to m are PQ buses (where Pi and Qi are known) and buses
(m+1) to (n−1) are PV buses (where Pi and Vi are known). When these mismatch equations
are expanded into Taylor series, the following first-order approximation can be obtained:[

∆P
∆Q

]
= −J

[
∆θ

∆V /V

]
= −

[
H N
K L

] [
∆θ

V −1
D ∆V

]
(3-6)

where

∆P =


∆P1
∆P2
...
∆Pn−1

 (3-7)

∆Q =


∆Q1
∆Q2
...
∆Qm

 (3-8)

∆θ =


∆θ1
∆θ2
...
∆θn−1

 (3-9)

∆V =


∆V1
∆V2
...
∆Vm

 (3-10)

VD = diag(V1, V2, ..., Vm) (3-11)

H is an (n−1)×(n−1) matrix, and each element with index (i, j) is described by Hij = ∂∆Pi
∂θj

.
N is an (n− 1)×m matrix, and each element with index (i, j) is described by Nij = Vj

∂∆Pi
∂Vj

.
K is an m× (n− 1) matrix, and each element with index (i, j) is described by Kij = ∂∆Qi

∂θj
.

L is an m×m matrix, and each element with index (i, j) is described by Lij = Vj
∂∆Qi
∂Vj

.

For i 6= j, the expressions for these matrices are given by
Hij = −ViVj (Gij sin θij −Bij cos θij)
Nij = −ViVj (Gij cos θij −Bij sin θij)
Kij = ViVj (Gij cos θij −Bij sin θij)
Lij = −ViVj (Gij sin θij −Bij cos θij)

(3-12)
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3-1 Contingency analysis 17

For i = j, the expressions are given by

Hii = V 2
i Bii +Qi

Nii = −V 2
i Gii − Pi

Kii = V 2
i Gii − Pi

Lii = V 2
i Bii −Qi

(3-13)

Now, given input data for each bus, the bus admittance matrix of the network and some
initial bus voltage and angle values, the power mismatch equations (3-4) and (3-5) can be
solved by computing the Jacobian matrix J , using the initial bus voltage and angle values.
This Jacobian is used to solve (3-6) for ∆θ and ∆V , after which the bus voltages of PQ
buses and bus angles of all buses are updated according to

V
(k+1)
i = V

(k)
i + ∆V (k)

i

θ
(k+1)
i = θ

(k)
i + ∆θ(k)

i

(3-14)

where k is the iteration number. Now, it can be checked whether the algorithm has converged,
i.e. max |∆Pi| and max |∆Qi| are below certain thresholds. Otherwise, the computations are
iterated by computing the Jacobian matrix again, and so forth.

This algorithm requires computation of the Jacobian matrix and its inverse for each iteration
and these iterations are required for each contingency when performing contingency analysis.
An application of this method is shown in [38]. When assessing larger power grids, the
amount of contingencies to consider increases, as well as the computational effort to compute
the Jacobian matrix and its inverse. This results in a large computational burden. The
greater part of this burden is caused by the computation of the Jacobian matrix. Reducing
the computational time is therefore mainly focused on this Jacobian matrix. A means to do
this is by decoupling the active and reactive power changes, which is demonstrated in the
following section.

Fast decoupled load flow method

A commonly used power flow computation technique is the fast decoupled load flow (FDLF)
[43]. For high voltage systems, the resistance to reactance ratio R/X is generally low (� 1).
This means that the influence of Vj on Pi is relatively small compared to the influence of θj on
Pi while the influence of Vj on Qi is relatively large compared to that of θj on Qi. Therefore,
the following assumptions are made:

∂∆Pi
∂Vj

≈ 0 (3-15)

∂∆Qi
∂θj

≈ 0 (3-16)

This means that (3-6) is reduced to

[
∆P
∆Q

]
= −

[
H 0
0 L

] [
∆θ

V −1
D ∆V

]
(3-17)
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18 Preventive-corrective contingency control using differential evolution

Now, the real and reactive power mismatch is decoupled and can be used separately to
compute the voltage magnitude and angle, respectively. Additional assumptions can be made
to simplify (3-17) even further. The difference of voltage angles of two ends in a line (θij) is
generally small. Therefore, we have

cos θij = cos (θi − θj) ≈ 1
Gij sin θij � Bij

(3-18)

We can now rewrite Hij and Lij of (3-12) for i 6= j as:

Hij = ViVjBij i, j = 1, 2, . . . , n− 1 (3-19)
Lij = ViVjBij i, j = 1, 2, . . . ,m (3-20)

If we use the assumptions of (3-18) and assume a flat voltage profile, meaning that two
adjacent buses have the same voltage level, i.e. Vi = Vj , then Hii and Lii are defined by

Hii = BiiV
2
i −

N∑
j=1

V 2
i Bij = V 2

i

Bii − N∑
j=1

Bij

 (3-21)

Lii = BiiV
2
i +

N∑
j=1

V 2
i Bij = V 2

i

Bii +
N∑
j=1

Bij

 (3-22)

From (3-3) we know that Bij = −bij for i 6= j and Bij = bi +
∑N
j=1
j 6=i

bij for i = j. Therefore,

(3-21) and (3-22) can be rewritten into

Hii = V 2
i

Bii +
N∑
j=1
j 6=i

bij − bi −
N∑
j=1
j 6=i

bij

 = V 2
i (Bii − bi) (3-23)

Lii = V 2
i

Bii − N∑
j=1
j 6=i

bij + bi +
N∑
j=1
j 6=i

bij

 = V 2
i (Bii + bi) (3-24)

We know that Bii is generally much larger than bi, since bi describes the effect of the line
charging, which is generally relatively small. Therefore, all elements of H and L, including
the case where i = j, can be approximated by

Hij = ViVjBij i, j = 1, 2, . . . , n− 1 (3-25)
Lij = ViVjBij i, j = 1, 2, . . . ,m (3-26)

and (3-17) can be rewritten into

V −1
D1 ∆P = B′VD1∆θ (3-27)
V −1
D2 ∆Q = B′′∆V (3-28)
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3-1 Contingency analysis 19

where

VD1 =


V1

V2
. . .

Vn−1

 (3-29)

VD2 =


V1

V2
. . .

Vm

 (3-30)

and B′ and B′′ only consist of Bij values of the admittance matrix. For full derivation,
consult [61]. The right-hand side VD1 in (3-27) is now assumed to be identity, simplifying the
equation to

V −1
D1 ∆P = B′∆θ (3-31)

Now the iteration depicted in Fig. 3-1 is executed, where (3-4) and (3-5) are used to compute
P and Q, after solving (3-31) and (3-28) and checking their convergence.
Executing one iteration of this FDLF algorithm is computationally simple compared to an it-
eration of the Newton-Raphson method. However, the convergence rate per iteration is lower,
due to the assumptions that are made. The decrease of the convergence rate is dependent on
the validity of the assumptions for the specific power flow scenario. When the assumptions
are reasonable, the FDLF delivers a lower convergence time as was discussed in [42]. Since
the power flow equations are non-convex, it is not guaranteed that the FDLF algorithm will
converge to the global optimum. Again, the likelihood of convergence to the global optimum
decreases when the validity of the assumptions worsens. As presented in [6], the error on the
results of the FDLF method is well below 1% on average when the assumptions are generally
adhered to. The most crucial assumption when applying the FDLF to distribution power sys-
tems is the assumption of low R/X ratio, since this is not valid for most distribution power
systems. In [47], it is shown that this method does not converge for the 14-, 30- and 57-bus
IEEE test systems, which are really comparable to the case study of this thesis in terms of
their R/X ratio. However, several efforts have successfully improved the convergence rate and
accuracy of FDLF for lower voltage power systems with larger R/X ratio [16, 27, 31, 33, 47].
The most important variants of the FDLF method are described in [47]. Adjustments are
made to the B′ and B′′ matrices, to account for the existing coupling between the active and
reactive power. It is found by the authors of the paper that BX variant usually delivers the
best performance. In this variant, the B′ and B′′ matrices are computed as follows:

B′ij = − xij
r2
ij + x2

ij

B′ii =
∑
j 6=i

xij
r2
ij + x2

ij

B′′ij = − 1
xij

B′′ii = −
∑
j 6=i

B′′ij

(3-32)
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20 Preventive-corrective contingency control using differential evolution

Figure 3-1: Fast decoupled load flow iteration scheme, adepted from [43].
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3-1 Contingency analysis 21

where rij and xij are the resistance and reactance between bus i and j, respectively. In [47]
and [27], it is shown that this BX variant is very capable to compute the power flow of
distribution grids with comparable or even higher R/X ratios with respect to the systems
in this case study. It might take a few more iterations compared to the Newton-Raphson
method as described above, but due to the simplicity of the iterations, the computational
time to converge is similar for smaller grids. For larger grids, the BX FDLF-method delivers
superior computational times. In this research, the standard Newton-Rapshon method is
used, since only relatively small grids are used in the case study. However, the FDLF method
serves as a basis for the contingency analysis method based on line outage distribution factors,
which will be discussed later in Section 3-1-3.

3-1-2 Complete AC power flow method

Automatic contingency selection is introduced by Ejebe et al. in [14], using the complete
AC power flow method. This method iterates through all contingencies, computes the AC
power flow using the Newton-Raphson method and detects any constraint violations. In
later studies, line overloads, load loss, frequency deviation and other parameters were also
included in the performance index. Of course, other power flow computation methods can
also be used, depending on the suitability of the different methods for the particular case
study. For example, the FDLF method is used in [48], where transmission power system
models are used as case study. In [19], the FDLF method is also used.

In this research, the Newton-Raphson method will be used to solve the power flow equations.
This power flow method is very versatile, since it is suitable for different network configurations
and voltage levels. Moreover, the main focus of this study is on distribution power grids, for
which the FDLF is generally known not to add significant improvement in computational
efficiency, as is discussed above.

After the power flow computation, a contingency is determined to be critical or non-critical
based on the voltage levels of buses and the loading percentages of lines and transformers.
The voltage levels follow directly from the power flow computations. Using the admittance
data and voltage results, the power flow from bus i to bus j can be defined using [24]:

Pij = ViVj |Yij | cos (θij − φij)− V 2
i |Yij | cosφij (3-33)

Qij = ViVj |Yij | sin (θij − φij)− V 2
i |Yij | sinφij (3-34)

(3-35)

where |Yij | is the absolute value of the admittance between bus i and j and φij is the corre-
sponding complex angle. Now, the apparent power can be defined by:

Sij =
√
P 2
ij +Q2

ij (3-36)

and the current flow is defined as:
Iij = |Sij/Vij | (3-37)

the loading l on the component is now determined as follows:

l = Iij/Iij,nom · 100% (3-38)

Master of Science Thesis W.J. Treurniet



22 Preventive-corrective contingency control using differential evolution

where Iij,nom is the nominal current of the component.
In the complete AC power flow contingency analysis method, the power flow computations
and voltage and loading violations check is performed for each possible contingency. The
output of the algorithm is a list of critical contingencies for this current grid state.

3-1-3 Line outage distribution factors

Instead of completely solving the power flow equations, approximated linearized methods
can also be used to perform contingency ranking and selection. A well-known instrument to
approximate the post-contingency power flow is the line outage distribution factor (LODF).
This factor is given by [51]:

LODF`,k = ∆f`
f

(0)
k

(3-39)

where
LODF`,k = line outage distribution factor when monitoring line ` after an outage on line k
∆f` = change in MW flow on line `
f

(0)
k = original flow on line k before it was contingent.

If these LODFs are known, the flow f̂` on any line ` of the power system after outage of
component k can be determined by:

f̂` = f
(0)
` + ∆f` = f

(0)
` + LODF`,kf

(0)
k (3-40)

without requiring any further power flow equations.
It should be noted that this LODF-based contingency analysis method is by definition not able
to analyse voltage violations due to any contingencies. This poses an important limitation on
this contingency analysis method.
The LODFs can be determined from only the admittance data of the power grid, as is done
in [49]. In this paper, contingency analysis using this method is performed. The contingency
analysis requires the pre-contingency power flow data and the LODFs of the power grid. The
method is considerably faster than the full AC power flow method using the Newton-Raphson
or FDLF power flow method. However, nodal voltage violations can not be assessed using this
method and there is a fault range of 0.2 to 5% compared to the before-mentioned methods.
The derivation of the LODF values based on the admittance data originates from [51] and is
given in the following sections.

Derivation of LODFs based on PTDFs

The contingency of any component k, placed between buses i and j, can be represented by
power injections ∆f at buses i and j, as is visualised in Fig. 3-2.
The power injections ∆fi and ∆fj represent the outage of line k if and only if

∆fi = f̃k (3-41)
∆fj = −f̃k (3-42)
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(a) Pre-contingent situation (b) Post-contingent situation

Figure 3-2: Line contingency representation using power injections, adepted from [51].

We now introduce the power transfer distribution factor (PTDF), described by:

PTDFi,j,k = ∆fk
∆fi,j

(3-43)

where ∆fk is the change of power flow through component k, due to ∆fi,j , a transfer of power
input from bus i to bus j. Using this factor, the following flow can be computed:

f̃k = f
(0)
k + PTDFi,j,k∆fi,j (3-44)

where f (0)
k is the flow through component k prior to the power transfer and f̃k is the flow

through component k after the power transfer ∆fi,j from bus i to bus j. In the case of
Fig. 3-2, from (3-41) and (3-42), we know that ∆fi,j = f̃k, which gives:

f̃k = f
(0)
k + PTDFi,j,kf̃i,j (3-45)

which can be rewritten into:

f̃k =
(

1
1− PTDFi,j,k

)
f

(0)
k (3-46)

The change in flow on line ` from s to j now logically follows as:

∆f` = PTDFi,j,`f̃i,j = PTDFi,j,`f̃k = PTDFi,j,`

(
1

1− PTDFi,j,k

)
f

(0)
k (3-47)

Substituting f` from (3-47) into (3-40), it follows that:

LODFl,k = PTDFi,j,`

(
1

1− PTDFi,j,k

)
(3-48)

It is hereby demonstrated that the LODFs can be determined from PTDFs only.

Approximated PTDFs based on admittance data

If the PTDFs can be approximated based on admittance data, we are able to perform con-
tingency analysis for all contingencies using only the pre-contingent power flow and the ad-
mittance data of the power grid. To do this, we use (3-27) and assume the voltage levels
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24 Preventive-corrective contingency control using differential evolution

of all buses to be equal to 1. All calculations are done in a per-unit system, which means
all different voltage levels are normalised. Furthermore, the power grids of main importance
are distribution power grids, which are generally well-balanced in terms of voltage levels.
Therefore, VD1 and V −1

D1 are assumed to be identity matrices. Equation (3-27) then reduces
to:

∆P = B′∆θ (3-49)

The phase angle changes due to a power transfer from bus i to bus j can now be approximated
by:

∆θ = [X]∆Pi,j (3-50)

where ∆θ is the vector consisting of phase angle changes for each bus, [X] = (B′)−1 and
∆Pi,j is a vector with all zeros, expect a +1 at index i and −1 at index j. The phase angle
changes of bus m and n due to power transfer between buses i and j are now approximated
by:

∆θm = Xmi −Xmj (3-51)
∆θn = Xni −Xnj (3-52)

The linear power flow equation is now derived from (3-1), by assuming that all bus voltages
are 1, the assumptions from (3-18) and sin θi − θj ≈ θi − θj , which holds for small angles.
The linear power flow is now:

Pm =
N∑
j=1

Bmn(θm − θn) (3-53)

Using this, the change of flow on line k from m to n is now:

∆fk = Bk(∆θm −∆θn) = Bk((Xmi −Xmj)− (Xni −Xnj)) (3-54)

The change of power flow ∆fk and the transferred power ∆P = 1 can now be substituted
into (3-43) to get:

PTDFi,j,k = Bk((Xmi −Xmj)− (Xni −Xnj)) (3-55)

It is now shown that the PTDF values can be approximated from only admittance data,
assuming that the linear power flow is a reasonable approximation of the non-linear power
flow and assuming a flat voltage profile. Using the BX variant of the matrix B′, as described
in (3-32), is supposed to increase the accuracy of this method for higher R/X systems, where
the default linear power flow approximation might not be sufficient.

In [35], this LODF-based method is used to perform contingency analysis. It is shown in
this research that this method can lead to large errors, compared to the full AC power flow
method and an artificial neural network method. However, the research also shows that the
computational efficiency of this method is superior.
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3-1-4 Contingency analysis results on case study

To analyse the results of the full AC power flow method and the LODF-based method,
contingency analysis using these methods is performed on the Stedin Middelharnis power
grid and all proposed academic benchmark power grids. The full AC power flow method
is the most accurate method and will therefore be considered 100% accurate. Naturally,
the accuracy of this method is depending on the accuracy of the admittance and nominal
current data and the input bus data, consisting of voltages and load and generation powers.
In this research, this data is assumed to be correct. Therefore, the accuracy of the LODF-
based method will be compared to the output of the full AC power flow method. The first
accuracy measure is the percentage of contingencies which are accurately identified as being
safe, alarming or critical. However, for the application of contingency control, the insecure
contingency cases are of main interest. To ensure safe grid operation, all insecure cases should
be considered when performing contingency control in a later stage. Therefore, the percentage
of unidentified insecure cases is analysed for all networks.

Accuracy of LODF-based method

The results of the LODF-based method are shown in Table 3-1. It can be observed that
the accuracy for this method is larger than 90% for all power grids, except the IEEE 9-bus
grid. This deviation can be explained from the limitations of the LODF method. First of all,
the LODF-based method is not able to deal with islanding. This means that a contingency
might cut off a certain part of the grid from the remainder. When performing full AC power
flow computations, the power flow of the remainder of the grid can be computed without
the part of the grid which is disconnected. However, the LODF-based method computes
the new power flows directly from the pre-contingent flow, using the LODF factors. This
means that there is no way to consider the islanded situation and therefore the fundamental
change in power flow, other than recognizing the islanded situation and compute a new power
flow for this particular islanded situation. However, this would deteriorate the computational
benefit of the LODF-based method for this particular contingency. The IEEE 9-bus power
grid is the smallest sized grid in this case study. Therefore, the influence of disconnected
generators from the grid is the largest for this grid. Furthermore, the LODF-based method
relies on the linear DC power flow. This means that congestion due to reactive power can
not be considered. In the IEEE 9-bus power grid, critical contingencies often stem from the
overloaded transformers, due to the increased reactive power. These two factors also explain
why 100% of the insecure cases is unidentified for the IEEE 9-bus system. All insecure cases
are due to the disconnection of a generator due to the contingency or due to reactive power
loading on transformers, or both. It therefore follows that this LODF-based method is not
suitable for this grid. The Middelharnis power grid has no contingencies which disconnect
any parts of the power grid from the remainder. This is the reason why the LODF-based
method has the best performance for this power grid.

Computational efficiency comparison

For the complete AC power flow method, the computational time to perform the contingency
analysis is of foremost interest. This data is presented and compared to the evaluation time of
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Grid Accuracy
(%)

Unidentified
insecure cases (%)

Evaluation
time (s)

IEEE 9-bus 66.78 100 0.031

Middelharnis 90.34 6.32 0.052

CIGRÉ MV 97.95 9.78 0.052

IEEE 39-bus 90.39 23.62 0.179

Table 3-1: LODF-based method contingency analysis results

the LODF-based method in Table 3-2. Evaluating the neural networks is considerably faster
compared to the full AC power flow computation using Newton-Raphson. The LODF-based
method performs 2 to 10 times faster than the full AC power flow method. With increasing
power grid size, the benefit of the LODF-based method compared to the full AC power flow
method increases. This means that for larger power grids, where the computational complex-
ity of contingency analysis is a problem, the value of the LODF-based method increases.

Grid Buses Contingencies
Evaluation time (s)
Full AC

power flow LODF

IEEE 9-bus 9 6 0.059 0.031

Middelharnis 9 12 0.33 0.052

CIGRÉ MV 15 17 0.22 0.052

IEEE 39-bus 39 46 1.80 0.18

Table 3-2: Comparison of evaluation time for LODF and full AC power flow methods.

3-1-5 Conclusions on contingency analysis methods

The LODF-based method delivers improved computational efficiency compared to the full
AC power flow method for the considered case study grids. However, the inaccuracy of the
LODF method will cause critical contingencies to be neglected and might therefore very well
steer the system into a critical state. Furthermore, the LODF-based method is not able to
detect voltage violations, which limits the capabilities of the contingency control method when
this analysis method is used. The preferred contingency analysis method for the DE-based
contingency control method of this chapter is therefore the full AC power flow method.

3-2 Optimal power flow

The second important process in the preventive-corrective contingency control is the compu-
tation of the OPF. This OPF problem is basically an extension of the power flow problem,
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where control parameters, a cost function and (in)equality constraints are added to the prob-
lem. Now, the challenge is to determine the optimal control variables which minimizes the
cost function and satisfies the (in)equality constraints, such as component loading limits and
voltage level limits. Typical objectives to be minimized fuel cost, generator curtailment and
switching actions. Control variables are typically the demand or supply of energy, referred to
in literature as load shedding and generation curtailment and switching actions. The general
OPF problem is presented in [59] as follows:

minF (3-56a)
subject to Pi(V ,θ) = PG,i + PCG,i − PD,i (3-56b)

Qi(V ,θ) = QG,i −QD,i (3-56c)
PCG,i,min ≤ PCG,i ≤ PCG,i,max (3-56d)
Vi,min ≤ Vi ≤ Vi,max (3-56e)
Ik,min ≤ Ik(V ,θ) ≤ Ik,max (3-56f)

(3-56g)

where

F : the objective function, of which the details will be discussed later in this section
PG,i: the combined active power output of all uncontrollable generators at bus i
PCG,i: the combined active power output of all controllable generators at bus i
QG,i: the combined reactive power output of all uncontrollable generators at bus i
PD,i: the combined active power of all loads at bus i
QD,i: the combined reactive power of all loads at bus i
V : the vector of voltage levels for all buses i
θ: the vector of voltage angles for all buses i

PG,i: the power output of the controllable generator at bus i
Il: the current flow through line l

and all variables with subscript max or min are the maximum and minimum values. Equations
(3-56b) and (3-56c) are the power flow equations as described in Section 3-1-1.

Before solving the above OPF problem, we first define the state variables x as:

x =



θ
V

}
on each PQ bus

θ
QG

}
on each PV bus

PG
QG

}
on reference bus


(3-57)

and all known, specified variables y as
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y =



θref
Vref

}
on reference bus

PD
PG
QD
QG

 on each PQ bus

PG
PD
V

 on each PV bus


(3-58)

Of all variables in y, only the PG variables of the buses with controllable generators connected
are adjustable. All other variables are fixed, such as the load and generation values P and Q
at each load bus. Vector y can therefore be partitioned into a vector u of control parameters
and a vector w of fixed parameters:

y =
[
u
w

]
(3-59)

The parameters of w may vary over time, but are known for any moment and time and remain
constant during the optimisation process. These constant values are therefore omitted in the
notation in the following derivation.

Different choices can be made for the objective function F . With a linear cost function, the
power output generator with the largest influence on the voltage or current limit violation
will always be used to alleviate the limit violation. This will lead to the most efficient
optimisation from an energetic point of view. However, in reality, it might be desirable to use
multiple generators to alleviate a limit violation, even though not all generators have equal
influence. Different generators are generally owned by different entities and therefore it might
be favorable to spread the generator output reduction over different generators to prevent a
large power output reduction of one particular generator. The objective function should be
carefully selected for each particular situation based on the agreements with the owners of
the controllable generators. The same holds for the cost parameters for different generators.
These should be connected to the compensation costs owed to generator owners in case of
power output limitation. In this case study, a quadratic objective function is selected and the
cost parameter is equal for all controllable generators. This leads to the following objective
function:

F =
∑

j∈SCG

cj
(
P

(0)
G,j − PG,j

)2
(3-60)

where SCG is the set of buses with controllable generators, cj is the cost parameter for the
reduction of power output of generator j, which is constant for all j.

Now, the equality and inequality constraints are rearranged to fit the standard formulation
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3-2 Optimal power flow 29

of optimisation problems:

WP,i = Vi

N∑
j=1

Vj (Gij cos θij +Bij sin θij)− PG,i + PD,i = 0 (3-61a)

WQ,i = Vi

N∑
j=1

Vj (Gij sin θij −Bij cos θij)−QG,i +QD,i = 0 (3-61b)

WG,max,i = PG,i − PG,i,max ≤ 0 (3-61c)
WG,min,i = PG,i,min − PG,i ≤ 0 (3-61d)

WV,max,i = Vi − Vi,max ≤ 0 (3-61e)
WV,min,i = Vi,min − Vi ≤ 0 (3-61f)

WI,max,k = Ik(x)− Ik,max ≤ 0 (3-61g)
WI,min,k = Ik,min − Ik(x) ≤ 0 (3-61h)

Since this OPF will be solved in an iterative manner, the constraints on the power output of
the controllable generators can be satisfied by clipping the new control values to the specified
minimum and maximum values, as is suggested and demonstrated in [60]. Therefore, there is
no need to include the constraints (3-61c) and (3-61d) explicitly in the following mathematical
derivation of the OPF. We can stack all remaining inequality constraints into vector g:

g(x,u) =
[
W ᵀ
V,max W ᵀ

V,min W ᵀ
L,max W ᵀ

L,min

]ᵀ
(3-62)

Now, the Lagrangian (L), the augmented unconstrained objective function with Lagrange
multipliers (λ) for equality constraints and penalty functions (p) for inequality constraints,
is introduced:

L(x,u,λ) = F + λᵀ

[
WP (x,u)
WQ(x,u)

]
+ p(g(x,u)) (3-63)

Penalty function p should be 0 if gi = 0 for all i and should be large otherwise. Furthermore,
the function should have a continuous derivative, to be able to perform Newton’s method.
We therefore introduce the following penalty function:

p(g(x,u)) = β
m∑
i=1

max(0, gi(x,u))2, β � 1 (3-64)

The Lagrangian optimisation problem is now defined as:

min
x,u,λ

L(x,u,λ) (3-65)
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At the optimum, the following conditions hold by definition:

∂L(x,u,λ)
∂λ

=
[
WP (x,u)
WQ(x,u)

]
= 0 (3-66)

∂L(x,u,λ)
∂x

= ∂F

∂x
+

∂WP (x,u)
∂x

∂WQ(x,u)
∂x

ᵀ λ+ ∂p(g(x,u))
∂x

= 0 (3-67)

∂L(x,u,λ)
∂u

= ∂F

∂u
+

∂WP (x,u)
∂u

∂WQ(x,u)
∂u

ᵀ λ+ ∂p(g(x,u))
∂u

= 0 (3-68)

The above optimality conditions can be used to compute optimisation steps for the control
variables by executing the following steps:

Step 1

The first optimality condition ∂L(x,u,λ)
∂λ = 0 represents the power flow equations. These power

flow equations can be solved using Newton-Raphson’s method or any other power flow method.
In this case study, Newton-Raphson’s power flow method as described in Section 3-1-1 is used.
In the first iteration, the maximum power output value of the controllable generators can be
used as initial starting point of the algorithm. However, if more educated initial values are
available, these should be used. For example, if the OPF is solved for multiple time steps, the
optimized control variables of the time step can be used as initial values for this optimisation.

Step 2

From the second optimality condition, an updated λ can be determined:

λ = −

∂WP (x,u)
∂x

∂WQ(x,u)
∂x

ᵀ
−1 (

∂F

∂x
+ ∂p(g(x,u))

∂x

)
(3-69)

Step 3

The objective function at any new point u(k+1) can be approximately expressed using the
second-order Taylor series expansion with respect to the known point u(k):

L(x,u(k+1),λ) ≈ L(x,u(k),λ) +
[
∂L(x,u(k),λ)

∂u

]ᵀ
∆u+ 1

2∆uᵀH
(
x,u(k),λ

)
∆u (3-70)

where H is the Hessian matrix of the second order partial derivatives of L with respect to u.
For the optimal ∆u∗, the gradient of this function to ∆u equals 0. Therefore, this approxi-
mated optimal change in control variables can now be computed as follows:

∂L(x,u(k+1),λ)
∂∆u ≈ ∂L(x,u(k),λ)

∂u
+H(x,u(k),λ)∆u∗ = 0 (3-71)

∆u∗ ≈ −H
(
x,u(k),λ

)−1 ∂L(x,u(k),λ)
∂u

(3-72)
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The term ∂L(x,u(k),λ)
∂u can be directly determined from the third optimality condition (3-68).

The Hessian H should be determined taking the partial derivative of (3-68) with respect to
u.

Step 4

The control variables can be updated using ∆u∗ from Step 3: u(k+1) = u(k) + β∆u∗. Here,
β is the step size, which is a positive value. This step size can be adjusted to improve the
convergence rate of the algorithm. The values of u are restricted by the maximum and
minimum power output of the controllable generators. Therefore, after updating the control
variables u, the values are clipped to the minimum and maximum values.

Step 5

Convergence of the algorithm is now checked using convergence criteria. Possible convergence
criteria are:

• Change in objective function between current and previous iteration being less then
prescribed tolerance value;

• Change in control values ∆u being less than prescribed tolerance value.

In this case study, the change in objective function is chosen as the convergence criterion. If
the algorithm has not converged yet, the algorithm is repeated from Step 1.

This Newton’s algorithm based OPF method is used in the following contingency control
method.

3-3 Differential evolution algorithm

Differential evolution is a specific type of evolutionary algorithm. An evolutionary algorithm is
a stochastic search and optimisation algorithm which mimics natural evolution principles [50].
The main imitated principle is the survival of the fittest. In this, the three genetic operators
of reproduction, mutation and crossover play an important role.

Preventive-corrective contingency control using DE is used by both [54] and [55]. The dif-
ference between both approaches is the parameter choice for the members of the population.
This can be regarded as the search space of the algorithm. In [54], the members of the
population are differentiated based on the maximum active power output of the controllable
generators. In [55], binary parameters are used to describe whether a contingency will be
solved in a preventive or a corrective manner. The required population size is directly pro-
portional to the number of parameters of each population member. The size of the population
is closely related to the computational complexity of the algorithm. Therefore, if the number
of considered contingencies is larger than the number of controllable generators, which is true
for this case study, the approach of [54] is favourable.

The working principle of the DE algorithm as described in [54] is visualised in Fig. 3-3. The
following process steps are shown in the figure:
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32 Preventive-corrective contingency control using differential evolution

Figure 3-3: DE-based preventive-corrective control method, adepted from [54].

W.J. Treurniet Master of Science Thesis



3-3 Differential evolution algorithm 33

Step 1

An initial population is selected. Every member of this population has a unique set of param-
eters. The members consist of a set of maximum power output setpoints for the controllable
distributed energy resources (DER) generators. The values represent fractions of the actual
maximum power output and are therefore within the [0, 1] interval. If there is no information
on the position of the optimal setpoints, the initial population is selected randomly based
on this [0, 1] interval. However, if more information on the optimal setpoints is known, the
initial population can be selected more specifically. For example, it might be known that the
optimal setpoints for all generators are larger than 0.5, the initial population can be randomly
selected in the interval [0.5, 1].

Step 2

In this step, all the fitness of all members of the population is evaluated. In this case, the
fitness of the members of the population is evaluated by means of two criteria:

• The costs of preventive control actions Cpc. These control costs are defined as Cpc =∑
j∈SCG

cj
(
Pmax
G,j − PG,j

)2
, where SCG is the set of controllable generators, cj is a

generator-specific control cost parameter, Pmax
G,j is the original maximum power out-

put of generator j and PG,j is the preventive control value for generator j. In [54], the
corrective control costs are also included in the control costs. However, as the authors
of [8] rightfully point out, this requires an accurate estimate of the failure probabil-
ity of any grid component. Moreover, the main goal in pre-contingency state is to
minimize power curtailment, thus preventive control actions. However, in emergency
post-contingent situations, secure grid operation is of utmost importance and the costs
of corrective control actions are not as important. Therefore, only the preventive control
costs are included in the cost function.

• The number of contingencies for which the limit violations can not be mitigated in the
required time frame after a contingency happened. Members with less of critical contin-
gencies are always considered more fit than members with more of these, regardless of
their Cpc. This ensures that the algorithm converges towards solutions with no critical
contingencies.

To define the preventive control costs and critical contingencies for each member of the pop-
ulation, three substeps are taken. First of all, the pre-contingency OPF is solved, given the
maximum power output setpoints of all controllable generators, defined for each member.
Then, contingency analysis is performed for these setpoints, to analyse which contingencies
require additional corrective control actions. If the loading of a grid component exceeds 150%
immediately after a contingency occurred, given the particular preventive control actions, this
contingency is marked as a critical contingency, for which no corrective control action can
compensate. In current Stedin safety practice, components will shut off when the detected
loading exceeds 150%, because of the potential damage to the grid component. Finally, a
post-contingency OPF is solved for each of the contingencies which require additional correc-
tive control actions. If no possible control actions mitigate the constraint violations within
the selected time frame, these contingencies are also labelled as critical contingencies.
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Using the set of critical contingencies and the preventive control setpoints, the fitness of each
member of the population is evaluated.

Step 3

In the third step, the solution candidate is updated. To do this, the selection procedure
is executed first. Every members of the current population is compared to a member of
the previous population. The member with the smallest number of critical contingencies is
selected and will be a parent member for the next iteration. If both members share the same
number of critical contingencies, the member with the smallest Cpc is selected.

Out of all the selected parent members, the member with no critical contingencies and smallest
Cpc is selected as solution candidate. If there are no members without critical contingencies,
the member with smallest number of critical contingencies is selected. If multiple members
share this number of contingencies, the member with smallest cost is selected.

Step 4

The convergence criteria of the DE algorithm are now checked. Possible convergence criteria
are: (i) best member of current population is not better than best member of previous iteration
for a predetermined number of iterations or (ii) maximum number of iterations is reached. If
the convergence criteria are not met, the iterations continue. It is worth to mention that it
is advised against to use criteria (i) for only one iteration. Especially with relatively small
population size, the probability that the best member of the current population is not better
than the best member of the previous population is significant. It is shown in [13] that the
best candidate might not improve for multiple iterations, although it has not yet converged to
the optimum. Since the maximum number of non-improving iterations while not converged
can not be determined, a maximum total number of iterations is used as stopping criteria in
this study.

Step 5

Now, a new population is generated, based on mutation and crossover operators. The objec-
tive of mutation is to diversify the parameter space of the members of the population, while
at the same time steer the population members to the optimal values within reasonable time
period. In DE, new population members are generated by adding the scaled difference of two
parent members to a third member. So:

x′i = xi + F (xr1 − xr2) (3-73)

where x′i is the new member, xr1 and xr2 are randomly selected old population members and
F is a scaling factor in the range 〈0, 1]. Furthermore, r1 6= r2 6= i, since x′i should be a
mutation, and not just a linear combination of two members. An optional addition to this
operation is a scaled version of the difference between the base vector xr3 and the current
solution candidate, thus:

x′i = xi + λ(xbest − xi) + F (xr1 − xr2) (3-74)
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3-3 Differential evolution algorithm 35

Figure 3-4: Visuzaliation of crossover operator for D = 5, n = 2 and L = 3, adepted from [41]

where λ is a scaling factor in the range 〈0, 1], but generally significantly smaller than F , to
avert premature convergence.

The second important operator in the generation of a new population is crossover. This
operator aims to increase the diversity of parameter vector. After the mutation operator, the
crossover operator selects certain values of the newly mutated members to replace values of
the old member at that index. There are various ways to select the parameters to crossover.
In [41], where DE is introduced, crossover is performed in the following manner:

(xi,new)j =
{

(x′i)j for j = 〈n〉D, 〈n+ 1〉D, . . . , 〈n+ L− 1〉D
(xi)j for all other j ∈ [0, D − 1]

(3-75)

where the brackets 〈〉D denote the modulo function with modulus D and D is the number of
parameters of each member, thus in this case the number of controllable generators. So if the
value inside the brackets is larger than D, the remainder of the division of the value over D
is returned. In (3-76), n is a randomly chosen integer from the interval [0, D − 1]. Integer L
denotes the number of parameters to be selected and is drawn from the interval [1, D]. This
crossover operation is visualised in Fig. 3-4.

In [50], a different crossover operation is proposed. Instead of subsequent crossover variables,
the probability of crossover is set for each variable of each member of the population. This
means that there is no cross-correlation between crossover probability of two separate vari-
ables. The same authors also propose another alternative to this discrete crossover operator.
Instead of a crossover probability, leading to a discrete crossover, a continuous crossover is
proposed as follows:

xi,new = xi + f2(xr3 − xi) + F (xr1 − xr2) (3-76)

It can be observed that if f2 = 1, the model represents a discrete crossover and mutation
model with a crossover probability equal to 1. If f2 = 0, the model reduces to the mutation-
only model of (3-74). In [50], it is mentioned that with a population size of 20D, F = 0.8 and
f2 = 0.5 appear to be good values for the DE process. It is also stated that the population size
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can range between 2D and 100D. In [54], a population size of 6D is proposed. Different DE
models as described above with different tuning parameter values will be used and analysed
in the case study.

Now, using the new population, the algorithm is repeated, starting from Step 2.

3-4 Results of differential evolution-based contingency control method

In this section, the results of the DE-based contingency control method on the case study
as presented in Chapter 2 will be discussed. For the performance of the algorithm, a few
design choices are relevant. First of all, the specific DE model should be chosen. For this
case study, the discrete crossover and mutation model as used in [50] is used. The number of
controllable generators in the case study is only 4, and therefore the crossover operator of [41]
as visualised by Fig. 3-4 is not expected to add significant value, compared to the discrete
crossover model. Furthermore, the continuous crossover and mutation model of (3-76) is used,
since this continuous model might have an influence on the performance of the algorithm. For
this continuous model, different F and f2 parameter settings will be compared. Furthermore,
the population size is generally considered to have an important impact. If the population
size is too small, the convergence over subsequent iterations will be slow and the risk of
premature convergence will be large. However, increasing the population size increases the
computational time to compute each iteration.

The contingency control method is evaluated for different moments in time. The results
for two moments in time are shown in this section. For results on more moments in time,
Appendix A can be consulted.

3-4-1 Crossover and mutation model design

To select the appropriate crossover and mutation model, different model designs are inves-
tigated as mentioned above. The continuous crossover and mutation model is evaluated for
scaling factors F = 0.8 and f2 = 0.5, as suggested by [50] and F = 0.6 and f2 = 0.35.
Furthermore, the discrete crossover and mutation model will be evaluated for the crossover
probability pCR = 0.85 and probability pCR = 0.95. These are both within the range of 0.8
to 1, suggested by the authors of [50].

Since the first and foremost goal of the contingency control method is to mitigate the potential
risks of critical contingencies, one could expect an analysis of the capability of the controller
design to mitigate critical contingencies. However, since the members with less critical con-
tingencies are always considered more fit than the members with more critical contingencies,
the DE algorithm easily converges to a solution with no critical contingencies. The main
challenge of the algorithm is to converge to a solution with minimal preventive control costs
Cpc. Therefore, the evolution of the Cpc of the best population member is analysed to select
an appropriate crossover and mutation model design.

In Fig. 3-5, the evolution of the Cpc is presented for July 1st at noon for different DE model
designs and different population sizes. The same results are shown for July 6th in Fig. 3-6.
In these figures, D is again the number of controllable generators.
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From these figures, it can be observed that there is no clear superior crossover and mutation
model. It can be concluded from this data that the different design choices in this model do
not influence the convergence rate significantly. The tested model designs are all within the
derived preferable boundaries of previous studies [50,54], which explains why the performance
of these different models does not diverge significantly. With increasing population size, the
difference of results between the different models further diminishes. This was to be expected,
since in a larger population, the crossover and mutation operators are applied to a population
member relatively less frequently, compared to a smaller population. The influence of different
operator options therefore diminishes.

Given the above observations, the continuous model with F = 0.8 and f2 = 0.5 is selected for
this case study. Now, the population size design choice for this model is discussed.

(a) Population size 2D (b) Population size 5D

(c) Population size 10D (d) Population size 20D

Figure 3-5: Preventive control cost evolution for different model designs on July 1st, given
different population sizes.
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(a) Population size 2D (b) Population size 5D

(c) Population size 10D (d) Population size 20D

Figure 3-6: Preventive control cost evolution for different model designs on July 6th, given
different population sizes.

3-4-2 Population size

Now that the crossover and mutation model has been evaluated, an analysis on the population
size remains. The population size has major influence on the risk of premature convergence,
the convergence rate and computational complexity of the DE algorithm. First of foremost,
premature convergence should be prevented, since this diminishes the performance of the
algorithm. Then, an analysis has to made between the computational complexity of an
iteration and the convergence rate per iteration. To this end, the Cpc will be evaluated over
time, instead of over iteration. The results of the evolution of Cpc over time using different
population sizes is shown in Fig. 3-7 for July 1st and Fig. 3-8 for July 6th.

Note that the evolution lines do not share the same starting time. The first data point is
the cost after one iteration. The time it takes to perform this first iteration is not equal
for all population size. From the figures, it can be observed that the population size 20D
is too large. Due to the time it takes to perform one iteration, the time to converge is
large. The same holds to a lesser extent for population size 20D. The population size 2D
on the other hand requires a lot of iterations and in many cases does not improve for a large
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Figure 3-7: Preventive control cost evolution for different population sizes on July 1st.

Figure 3-8: Preventive control cost evolution for different population sizes on July 6th.

number of iterations. This makes it hard to define the convergence criterion based on the
improvement of the best population member. Moreover, in Fig. 3-5 and Fig. 3-6, it can be
observed that the population size 2D frequently leads to premature convergence. For this
reason, the population size of 5D seems to be adequate for this contingency control problem
on this case study. This coincides with the findings of [54], where a population size of 6D
is used. In [13], a maximum number of iterations of 30 is used, which does not suffice for
all scenarios in this case study. Therefore, the number of iterations is set to 40. After 40
iterations, the evolutionary algorithm is converged in all tested scenarios.

3-4-3 Visualisation of preventive-corrective contingency control

Now that the parameters of the contingency control design are defined, the working principle
of this control method can be visualised. The visualisation is based on the loading limits
of the grid components. In Fig. 3-9 and Fig. 3-10, the power output of the controllable
DER connections and the loading of grid components is shown for different situations: the
pre-contingent situation, the post-contingent situation directly after contingency occurrence,
when no corrective control actions are applied yet, and the post-contingent situation after 30
seconds, when the optimal corrective control actions are applied. In Fig. 3-9, this is shown
for corrective control, where the power output of the controllable DER is not restricted in a
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preventive manner. It can be observed that the corrective control actions after the contingency
occurred are not capable to mitigate the loading violations in time, because of the constraint
on the curtailment ramp of the connections. In Fig. 3-10, it can be observed that the power
output of the controllable DER connections is already curtailed in a preventive matter, to
make sure that the allowed corrective control actions are sufficient to mitigate the loading
violations in time. The loading of the critical component after preventive-corrective control
actions is 100.23%, which means it is still slightly overloaded. This 0.23% is due to the minor
inaccuracy of the OPF algorithm. This error is considered to be acceptable as long as the
loading is smaller than 101%. This overloading would likely not lead to any serious damage
to the components and can be resolved quickly.

3-4-4 Extra grid capacity due to contingency control

The DE-based contingency control algorithm is performed on 1972 randomly selected day-
time timepoints in one year. Given the preventive-corrective power output setpoints of this
dataset, the total share of active power curtailment due to preventive control actions can be
determined. On the other hand, it would be interesting to determine the extra renewable
energy power generation that preventive-corrective control would allow on a power grid, com-
pared to a situation in which only restricted corrective actions could have been applied. To
determine this, the for each generator, the maximum curtailment percentage of a generator
during all timepoints is used to scale that generator down. This means that the generator is
dimensioned to prevent any preventive actions to be necessary at all. In Table 3-3, the results
for the situation where no control is applied, the preventive-corrective control situation and
the scaled generator situation with only corrective control are shown.

Gen. 1 Gen. 2 Gen. 3 Gen. 4
No Control 100% 100% 100% 100%
Preventive-corrective control 99.6% 98.7% 97.89% 94.1%
Scaled generator situation 88.6% 39.1% 66.9% 8.5%

Table 3-3: Percentage of DER energy share for different scenarios

It can be observed that the scaling the generators to the worst moment in time reduces
the amount of renewable energy share tremendously. However, using a preventive-corrective
control algorithm, only up to 6% of the energy output is curtailed in a preventive way. In
the case of no control, 100% of all possible renewable energy is delivered to the power grid.
However, this would lead to potentially insecure grid situations in case of critical contingencies.

3-4-5 Computational complexity

The computational time of the DE iteration for the Middelharnis power grid considered in
this study ranges from 351 to 2481 seconds and the average time is 970 seconds. The required
time hugely depends on the number of optimal power flows and contingency analyses to be
executed. These numbers differ between scenarios. The average number of executions per
scenario and the average computation time per execution is shown in Table 3-4. The percent-
age of computation time used by these different processes compared to the total computation
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time is also presented in the same table. Reducing the time to compute the optimal power
flow and to perform contingency analysis would be effective measures to decrease the total
computational complexity of this contingency control method.

The computational complexity of the OPF in this case study is high compared to data from
literature. For example, in [13], the OPF for a slightly smaller system takes 0.05 seconds to
compute. In that research, the MATPOWER package is used to compute the OPF, which
uses advanced solvers, mainly based on the interior point method. Using different methods to
solve the OPF is not further researched in this thesis, but is recommended in further research
efforts.

OPF Contingency
analysis

Other
operations

Average number
of executions (-) 2360 800 -

Average computational
time per execution (s) 0.32 0.36 -

Percentage of
computation time 70% 27% 3%

Table 3-4: Computational effort of different contingency control process operations

3-5 Conclusions

The preventive-corrective contingency control based on differential evolution is able to define
suitable preventive and corrective control measures for the case study of this thesis. From
the traditional contingency analysis methods, the full AC power flow method is the prefer-
able method, due to its accuracy and the limited computational benefit of the LODF-based
method.

The crossover and mutation model design is based on the performance results of different
parameter settings. The continuous model with F = 0.8 and f2 = 0.5 was selected as
favourable design option. However, other designs within the ranges previously determined by
other academic efforts could also be selected. The most critical parameters are the population
size and maximum number of iterations, which are set to 5D and 40, respectively, where D
is the number of considered contingencies.

The resulting preventive-corrective contingency control method is capable to keep the power
grid in secure state, while only reducing curtailing up to 6% of the active power, for this case
study. An alternative where all preventive control actions are avoided by dimensioning the
DER connections to the worst case moment in time delivers far worse performance in terms
of renewable energy share.

The control method is computationally too complex to deliver realtime preventive and correc-
tive control actions, since the algorithm takes on average 970 seconds to converge. The power
flow on the distribution grid has a dynamic nature, especially when the DER penetration
is high. Therefore, efforts should be made to decrease the computational complexity of this
control method.

Master of Science Thesis W.J. Treurniet



42 Preventive-corrective contingency control using differential evolution

(a) Pre-contingent situation with no control actions
applied

(b) Post-contingent situation with no control actions
applied

(c) Post-contingent situation with corrective control
actions applied

Figure 3-9: Corrective contingency control example
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(a) Pre-contingent situation with preventive action ap-
plied

(b) Post-contingent situation with only preventive ac-
tion applied

(c) Post-contingent situation with corrective control
applied

Figure 3-10: Preventive-corrective contingency control example
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Chapter 4

Use of convolutional neural networks
in preventive-corrective control

Because of the dynamic nature of the load and generation on a distribution grid, especially
considering volatile distributed energy resources (DER), the computational times of the con-
tingency control method based on differential evolution (DE) as presented in Chapter 3 can
generally be considered not sufficient to guarantee secure grid operation, because of the delay
between the power grid situation and adequate control actions.

Machine learning has proven to be a useful study to reduce online computational complexity
for a wide variety of optimisation problems in power grid operation. There are multiple studies
where machine learning is used to define corrective control actions as in [5, 11, 22, 58]. The
authors of [11,22] and [5] describe local, decentralized machine learning methods to determine
local control variables. This could be mainly interesting for large scale distribution grids,
where realtime data collection and communication is an issue. In [58], Q-learning is used to
perform contingency control. The authors of this method stress the challenges of this method
on convergence and reasonable learning time, optimality of the policy and scalability. Besides,
training this algorithm would require either dynamic simulation or physical implementation,
which adds to the problem of reasonable learning time. The studies all show that machine
learning techniques are capable to compute adequate control actions in a short time frame.

There are also very promising results in the use of machine learning for contingency analysis
[13, 17, 44, 52, 53, 56], which is a computationally intensive step in the process of contingency
control, as is discussed in Section 3-4. In [44] and [17], artificial neural networks are used to
determine the influence of a contingency on the grid situation. In [53], neural networks are
combined with concentric relaxation. This concentric relaxation exploits the attribute that the
critical influence of a contingent component is usually limited to the grid components nearby
[51]. Therefore, the method in [53] might be specifically interesting for larger distribution
power grids. In [13], a convolutional neural network (CNN) is used to this end. Convolutional
neural networks are an extension on neural networks and are capable to detect patterns in
input samples. These networks are commonly used in image classification, because the visual
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patterns in images form a suitable basis for classification. The results in [13] show improved
results compared to methods without convolutional layers.

To the author’s knowledge, there are no efforts in literature where machine learning tech-
niques increase the computational efficiency of preventive-corrective control problems. The
promising results for corrective control and contingency analysis, combined with the need for
improved computational efficiency in preventive-corrective control, calls for an effort on the
application of machine learning techniques for preventive-corrective control. Based on the
analysis above, the CNN is the most promising technique for preventive-corrective control.
This is a centralized method which has proven improved performance compared to standard
neural network approaches and it is suitable for different sized distribution power grids.

In this chapter, neural network techniques will be applied to contingency analysis and con-
tingency control processes. First, the CNN is introduced in Section 4-1. Then, using CNN to
perform contingency analysis as a process step of preventive-corrective control is discussed in
Section 4-2. Furthermore, the use of neural networks, for the complete process of contingency
control is presented in Section 4-3. Conclusions on these methods are drawn in Section 4-4.

4-1 Convolutional neural networks

Artificial neural networks are developed to mimic biological neural networks used by humans
and animals to process complex tasks efficiently. These artificial neural networks are fre-
quently applied in engineering to perform nonlinear approximation and classification. This is
done by passing an input through different layers of neurons, which all apply a weight to the
input, before passing it through to the next neuron. The weights on the inputs are updated
based on known input and output data, which is called the learning process. Furthermore,
activation functions can be applied on layers of neurons. These nonlinear functions enable
the network to learn nonlinear processes. Convolutional neural networks are an extension
on neural networks. Instead of relatively simple multiplicative operations, convolution oper-
ations are performed in the convolutional layers. The convolution is defined as the integral
of the product of the two functions after one is reversed and shifted and can be described for
one-dimensional cases as:

(f ∗ g)(t) =
∫ ∞
−∞

f(τ)g(t− τ)dτ (4-1)

This convolution produces a function that expresses how the shape of function f is modified
by function g for different shifts t. This operation can be used to extract features of inputs,
using different filter functions, frequently named kernels. For the two-dimensional case, the
operation is as follows [13]:

O(i, j) =
c−1∑
u=0

c−1∑
v=0

I(i+ u, j + v) ·H(u, v) + b (4-2)

where O is the output feature map for filter H on input data I. Parameter c represents
the size of the filter and b is the bias parameter. This operation is visualised for one filter
H for the two-dimensional case in Fig. 4-1. The output is constructed by shifting all filters
over the input. This output is called a feature map, since it contains the different features
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Figure 4-1: Schematic of convolutional operation of neural network, adepted from [4]

in different parts of the input. Multiple sequential convolutional layers can be used. The
feature map from the previous layer is used to extract other, more complex, features in the
next layer. The use of convolutional layers in neural networks is introduced in [26], where this
method is used to recognize handwritten zip codes on postal items. The convolutional neural
network approach relies on sparse connectivity of the input. This means that the output
of the network is largely dependent on the relation of an input data point with its nearby
data points. Therefore, the method is frequently used for image classification. However data
with a grid-like topology, such as power network data, is also sparsely connected, since the
influence of buses on nearby buses is relatively large.
In this research, all neural networks are learned using the Adam optimisation method origi-
nating from [23], which is a first order stochastic gradient optimisation algorithm.

4-2 Use of convolutional neural network in contingency analysis

As mentioned before, a deep convolutional neural network is used to perform contingency
analysis in [13]. It is shown that this CNN-based approach is very fast compared to the
model-based approach and significantly more accurate than the artificial neural network ap-
proach. Furthermore, we have shown in Section 3-4-5 that 27% of the computational time of
the preventive-corrective control algorithm is directly attributed to the contingency analysis
operation. Therefore, the CNN-based method to perform contingency analysis is implemented
in this section.

4-2-1 Neural network design

The design of the neural network is displayed in Fig. 4-2. As can be observed from Fig. 4-
1, the convolutional layer reduces the dimensions of the data, due to the size of the filters.
To maintain the input dimensions in the convolutional layer, cell padding is applied. This
technique augments the input data such that the output dimension matches the original input
dimension. Furthermore, as the final activation function for Output 2, classifying the security
state, the Softmax activation function is used, which is described by:

σi(z) = ezi∑K
j=1 e

zj
(4-3)
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where z is the input vector. This function ensures that all output values of the function will
sum to 1. These final values can be considered as the probability that the system is in the
corresponding security state.

4-2-2 System security state definition and loss function

The neural network is aimed to identify three different security states: safe, alarm and in-
secure. In safe security state, there is no threat of overloading grid components or voltage
violations. In alarm security state, the system is close to insecure security state, so compo-
nents might be almost overloading or voltage violations almost occur. In insecure security
state, components are overloaded and/or voltage violations exist. This security state is based
on a security index IS . The security index as presented in [44] is used in this research:

IS =

∑
i

d(u)
v,i

g
(u)
v,i

4

+
∑
i

d(l)
v,i

g
(l)
v,i

4

+
∑
l

(
dp,l
gp,l

)4


1/4

(4-4)

where
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(u)
i
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(u)
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(4-5)
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if Vi < F

(l)
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0 if Vi ≥ F (l)
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g
(l)
V,i =F

(l)
i − V

(l)
i

Vi,nom
(4-8)

dL,j =
{

Lj−LF,j

100% if Lj > LF,j
0 if Lj ≤ LF,j

(4-9)

gL,j =LP,j − LF,j
100% (4-10)

In these equations, the following variables are defined:
Vi: the voltage level at bus i

F
(u)
i : the upper voltage alarm limit for bus i

V
(u)
i : the upper voltage security limit for bus i

Vi,nom: the nominal voltage at bus i
F

(l)
i : the lower voltage alarm limit for bus i

V
(l)
i : the lower voltage security limit for bus i
Lj : loading percentage of grid component j
LF,j alarm loading limit of grid component j
LP,j security loading limit of grid component j.
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Figure 4-2: Convolutional neural network designed, based on [13]

Now, if IS = 0, the system is in a safe state. If 0 < IS ≤ 1, the system is in an alarm state.
If IS > 1, the system is in an insecure state. Using this index, contingencies can be ranked
based on their severity. For the purpose of this CNN, the ranking is reduced the security state
classification as described above to define Output 2. This means that the system is either
classified as safe, alarm, or insecure. The categorical cross-entropy loss function is used for
Output 2, since this is the most widely used loss function for multi-classification outputs [13].

For Output 1, the mean square error is used. This mean square error function is frequently
used for continuous outputs. In contrast to the design in [13], a tanh activation function
is used in the layer Dense 1. This activation layer allows a non-linear relationship between
the feature map output of the convolutional layers and Output 1. Output 2, the security
state output, it of foremost interest, since it is the main purpose of contingency analysis. It
is therefore interesting to research whether a neural network with only Output 2 as output,
could outperform the neural network as presented in Fig. 4-2. However, the voltage output
data might be useful in the contingency control, for example to use as initial conditions for
the optimisation problem. Therefore, two networks will be analysed: a network with only the
system security state as output and a network with both the system security state and the
voltage data as outputs.

4-2-3 Results

To train the convolutional neural network, the hourly data of one year of grid operation is
used. This means that there are 8760 data samples for each analysed contingency. This data
is split into training, validation and test data. The split between these different dataset is
80%, 10% and 10%, respectively. Training data is used to train the neural network and is
fed into the learning process each epoch. The validation data is used to validate the trained
network after the learning process. The main purpose of this data set is to detect and prevent
overfitting. Hyperparameters, such as the number of epochs, layers and filters or neurons per
layer can be determined using the validation data. The test data is only used in the final
stage of the development of the neural network. The data is used to analyse the results of
the network.
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Inclusion of voltage angle and magnitude outputs

As stated in Section 4-2-2, two convolutional neural networks are investigated. The first
network includes both outputs, the voltage and security state output, and the second network
includes only the security state as an output. The results for the network including both
outputs are shown in Table 4-1, while Table 4-2 presents the results when including only the
security state output.

Grid Epochs
Errors Accuracy

(%)

Unidentified
insecure
cases (%)

Training
time
(s)

Evaluation
time
(s)

Voltage
(p.u.)

Phase
(deg)

IEEE 9-bus
10 0.24 8.72 86.85 24.29 156

0.06550 7e-2 2.88 94.32 4.45 568
100 2e-2 2.82 97.04 0.84 1270

CIGRÉ MV
10 1e-2 0.74 98.92 5.87 499

0.07050 5e-3 0.25 99.56 0.14 2442
100 6e-3 0.25 99.70 1.49 4305

Middelharnis
10 1.4 30.9 80.69 48.78 1004

0.06950 3e-3 0.86 93.74 16.12 4945
100 3e-3 0.69 95.11 5.5 9244

IEEE 39-bus
10 5e-3 2.42 92.42 12.75 6664

0.10450 6e-3 1.64 93.6 4.44 33078
100 3e-2 1.25 94.52 3.76 55560

Table 4-1: Convolutional neural network results with both outputs

Grid Epochs Accuracy
(%)

Unidentified
insecure cases (%)

Training
time (s)

Evaluation
time (s)

IEEE 9-bus
10 87.99 21.7 75

0.06550 94.39 5.99 402
100 96.79 1.75 765

CIGRÉ MV
10 99.42 1.56 282

0.07050 99.07 0 1438
100 99.66 1.44 2843

Middelharnis
10 85.04 0.28 91

0.06850 92.89 4.39 443
100 93.63 0.84 883

IEEE 39-bus
10 86.56 13.89 3031

0.10250 94.40 2.96 15187
100 93.64 3.14 28883

Table 4-2: Convolutional neural network results with only security output
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In these tables, the evaluation time is defined as the time it takes to evaluate the security state
of the network for all considered contingencies, consisting of all lines and transformers. It
can be observed that high classification accuracy is achieved for both neural network designs
for all grids. Furthermore, the percentage of insecure cases which is classified as alarm or
safe cases is low. The network design with only one output has comparable accuracy results
compared to the network design using both outputs, while the training time is reduced by
more than 50%. However, the evaluation time is not significantly influenced. This means that
the voltage output comes at the cost of increased training time, without major increase in
accuracy and evaluation time. The neural network design with two outputs should therefore
only be used when the voltage output can be used at a later stage of the control process,
for example as initial values for an optimisation step. In this case of this study, these initial
values are actually used, so the CNN with two outputs is preferred.

Accuracy of convolutional neural network in contingency analysis

Table 4-1 shows that the classification accuracy of the CNN is higher than 94% for all power
grids of this case study. Besides, the percentage of unidentified insecure cases is not larger
than 5% over all different power grids. It can be observed that the percentage of unidentified
insecure contingencies does not necessarily coincide with the overall accuracy of the network.
The network is designed to classify all contingencies in three categories and the resulting net-
work might not be equivalently accurate for all types of contingencies. Possible explanations
for this could be overfitting on training data, non-representative data set in general or specific
neural net design in which not all dynamics of the non-linear process can be learned. Since
separate training, validation and test data is used, as is described in Section 2-2, overfitting
is monitored and is not present. A non-representative data set is more reasonably, since the
data set is limited. To reduce the likelihood of insecure contingency cases not to be considered
in the following contingency control process, all alarm state cases could also be considered
by default. However, this might increase the computational complexity of the contingency
control algorithm, since the amount of considered contingencies is increased. This trade-off
should therefore be considered with caution.

Comparison of full AC load flow, LODF-based and CNN-based method

The accuracy of the CNN-based method is significantly better than the method based on
line outage distribution factor (LODF), as is clearly demonstrated in Table 4-3. Both in the
overall accuracy as in the percentage of unidentified insecure contingencies, the CNN method
is superior.

The comparison of computational times to perform contingency analysis is given in Table 4-
4. It can be observed that the CNN method shows superior performance with respect to
computational efficiency. For the smallest IEEE 9-bus grid, the CNN-based method is the
slowest. For this power grid, the full AC power flow method is preferable, due to its accuracy
and computational complexity. For the larger test grids, the CNN-based method is 3-17
times faster than the full AC power flow method. Compared to the LODF-based method,
the CNN method is considerable faster for the IEEE 39-bus power grid, but slightly slower
for the Middelharnis and CIGRÉ MV power grids. Further analysis of the evaluation time
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Grid
LODF method CNN method

Accuracy (%) Unidentified
insecure (%) Accuracy Unidentified

insecure (%)

IEEE 9-bus 66.78 100 97.04 0.84

Middelharnis 90.34 6.32 95.11 5.5

CIGRÉ MV 97.95 9.78 99.70 1.49

IEEE 39-bus 90.39 23.62 94.52 3.76

Table 4-3: Accuracy-based comparison of LODF and CNN (both outputs) contingency anal-
ysis methods

results in Table 4-4 shows that the computational benefit of the CNN- and LODF-based
methods compared to the full AC power flow method deteriorates when the number of buses
and contingencies increases. For the CNN-based method, this is also found by the authors
of [13]. This observation reduces the value of these alternative methods, since these methods
would mainly be useful in large power grids, where the computational efficiency of the full
AC power flow method is insufficient.

Grid
Evaluation time (s)

Full AC
power flow LODF CNN

IEEE 9-bus 0.059 0.031 0.065

Middelharnis 0.33 0.052 0.069

CIGRÉ MV 0.22 0.052 0.070

IEEE 39-bus 1.80 0.179 0.104

Table 4-4: Comparison of evaluation time for all contingency analysis methods.

Given the accuracy and computational efficiency results, the CNN method is preferable for
larger power grids if the computational complexity of the full AC load flow method is un-
desired, due to its accuracy compared to the LODF-based method. In situations where the
accuracy is of minor importance, one could opt to use the LODF-based method for medium-
sized power grids. It should be noted that the traditional full AC power flow and LODF
methods excel in simplicity and their easy to implement nature. There is no need to per-
form any learning process and it is uncomplicated to adjust the method to an adjusted grid
topology. The method is also more robust to previously unseen load and generation scenarios.
Therefore, in a frequently changing and unpredictable power system, either the full AC power
flow or LODF-based method is recommended.

In the next section, the computational improvement of the contingency control method using
the CNN method in contingency analysis is discussed.

W.J. Treurniet Master of Science Thesis



4-3 Use of neural networks in contingency control 53

Comparison of contingency control with or without CNN-based contingency analysis

As discussed in Section 3-4, the execution time of contingency control can potentially be re-
duced by 27% by using a more efficient contingency analysis algorithm, under the assumption
that the number of required optimal power flow (OPF) executions is not influenced. This
number could be influenced however, when the CNN-based contingency analysis method is
significantly inaccurate, which could influence the number of identified insecure contingencies
and thereby the number of OPF executions. The computational results of the DE-based
method using the CNN approach for contingency analysis is shown in Table 4-5. It can be
observed from this table that the required computational time for the contingency analysis
operation is reduced compared to the method of Chapter 3. The total computational time
of the new control method ranges between 238 and 1084 seconds, with an average of 580
seconds. This means that the average computational time is reduced by 40%. This reduction
is larger than expected, since an maximum reduction of 27% was expected. However, this
indicates that the CNN does not identify all insecure contingencies, due to which less OPF
operations are performed. This is also shown in the results, since the average number of OPF
operations is reduced from 2360 to 1970.

OPF Contingency
analysis

Other
operations

Average number
of executions (-) 1970 800 -

Average computational
time per execution (s) 0.31 0.065 -

Percentage of
computation time 88% 8% 4%

Table 4-5: Computational effort of different contingency control process operations using
CNN as contingency analysis

Further analysis of the contingency control results using a CNN as contingency analysis
method shows that this method is considerably less conservative than the DE method of
Chapter 3. It is found that in 82% of all results, the preventive control output of both
methods was equal. This is the case when both methods results in full active power output
for a particular controllable generator. In 10% of the cases, the method using CNN resulted
in a higher power output than the original method. In 1% of all cases, this difference was
more than 10%, with maximum of 35%. Since we assume the DE-based method of Chapter 3
to convergence to satisfactory accurate values, this indicates that the CNN-based approach
does not identify certain critical contingencies. This leads to a higher control output, which
could lead to potentially dangerous power grid scenarios.

4-3 Use of neural networks in contingency control

Instead of using a neural network only for the contingency analysis, this technique could also
be applied to the complete contingency control algorithm. This novel strategy, or any machine
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learning technique, has not been researched in previous academic literature for preventive-
corrective control. However, machine learning is used before for corrective control strategies
in [5,11,22,58]. Furthermore, the input information of contingency control is still in a grid-like
topology and sparsely connected, which means that a data point is more closely related to
its nearby data points than to more distant data points. Therefore, the convolutional neural
network might still be preferable compared to a traditional neural network. However, this is
not shown in previous researches and a comparison between the use of a convolutional neural
network and a standard deep neural network will therefore be made.

In preventive-corrective control, the output of the neural network would preferable be the
preventive and the corrective control actions. However, the number contingencies for which
corrective control actions should be determined is not known a priori and also not constant.
This is a complicating factor, since the number and shape of outputs of a neural network is
generally known and constant. One could choose to set the corrective control actions equal
to the preventive control actions, if there are no extra corrective control actions necessary.
However, this would increase the output data dimension of the CNN hugely, since corrective
control actions are defined for every contingency, without adding significant extra information.

4-3-1 Defining only preventive control actions using neural networks

The most important aspect of preventive-corrective control is to define preventive control
actions within a short time frame. After all, computing the corrective control actions only
takes the time of one OPF computation, if the preventive control actions are known. A
potential solution to the output data dimension challenge could therefore be to only define
the preventive control actions using the neural network. The preventive control action data
set can be computed using the DE-based contingency control method discussed in this thesis.
This way, the preventive control actions take into account the complicating coupling between
the preventive and corrective control actions.

Furthermore, before computing the preventive control actions using the neural network, it
should be checked whether any preventive measures are necessary. By doing this, there is no
need to train the neural network for cases where no preventive control action is necessary.
This should simplify the learning process of the network and reduce the amount of data
required to acquire satisfactory accuracy. Defining whether any preventive control actions is
required is does not require substantial computational effort: a single contingency analysis
to define whether any contingency would cause grid limits to be violated and a subsequent
optimal power flow for these identified contingencies will suffice to define whether preventive
control actions are required to solve the optimisation problem.

4-3-2 Design of the neural networks

As an input for the neural network, the active and reactive power outputs of all grid buses
are available. In this input data, the controllable generators are considered to deliver their
maximum capacity. However, the reactive power is generally closely related to the active
power for most buses, due to the constant power factor. Therefore, it is expected that only
the active power values of the buses is sufficient to learn to accurately determine the preventive
control actions. This reduces the amount of input data, without significantly reducing the
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Figure 4-3: Convolutional neural network design for contingency control.

Figure 4-4: Neural network design without convolutional layers for contingency control

amount of information fed to the system, which increases the convergence time of the neural
network. The output of the neural networks is a set of preventive control actions for the
controllable DER.
As before-mentioned, the convolutional neural network is still expected to deliver superior
results compared to a neural network without convolutional layers. However, since this has
not yet been verified in academic literature, both types of networks are designed and evaluated.
The designs of the neural networks with and without convolutional layers are shown in Fig. 4-3
and Fig. 4-4, respectively. In these figures, n is the number of buses. Compared to the CNN
used for contingency analysis, the same number of convolutional filters and layers is used.
For both layers, the number of neurons per dense layer is increased until no improvement in
results was observed.

4-3-3 Data generation

The data for the contingency control neural network is generated using the DE-based method
of Chapter 3. It is important that the data in this set is as accurate as possible, because
the accuracy of the neural network heavily depends on the accuracy of the training data.
Therefore, the data is generated using the control method with the full AC power flow anal-
ysis method, instead of the CNN-based analysis method. To generate the data, the Stedin
Middelharnis power grid with load and generation data as discussed in Section 2-2 is used.
The controllable DER connections are all set to maximum power output. The active power
output of all buses is used as input for the neural network. The output of the neural network
is the optimal preventive control action as defined by the optimisation problem in Chapter 3.
A total of 1972 of datapoints were acquired using the DE-based contingency control method.
This data is again split into training (80%), validation (10%) and test data (10%).

4-3-4 Results

The results of the neural networks on cases where preventive control actions are required
are presented in Table 4-6. Error ε is the error percentage between the preventive control
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variable actions as determined by the DE-based contingency control method of Chapter 3
and the preventive control action output of the neural network. It can be observed that the
convolutional neural network has superior performance in terms of output error compared to
the neural network without convolutional layers. This confirms the hypothesis that the bus
power input of the power grid is sparsely connected and therefore convolutional layers will be
beneficial in predicting accurate preventive control measures.
Furthermore, the results of Table 4-6 show that the performance of the neural networks does
not increase after 500 epochs. Given the small dataset of 1972, the networks might be prone to
overfitting on this dataset after this large number of epochs. The evaluation time of the neural
network is seconds, which is to times faster than the computation time of the DE-based
control method. On average, it is times faster. This neural network approach is therefore
extremely beneficial compared to the DE-based control method in terms of computational
times. At the same time, after 500 epochs of neural network training, the mean error of
the CNN is below 1% and the maximum output error for a single DER generator is 3.86%.
This means that the CNN-based method is able to perform within reasonable accuracy, while
displaying a vast increase in computational efficiency.

Epochs

No convolutional layers Convolutional layers
Mean
ε (%)

Max.
ε (%)

Learning
time (s)

Eval.
time (s)

Mean
ε (%)

Max.
ε (%)

Learning
time (s)

Eval.
time (s)

100 1.62 8.83 472

0.044

1.07 6.19 592

0.045200 1.34 12.68 903 1.16 4.97 1050
500 0.97 4.24 2102 0.81 3.86 2489
1000 0.96 5.42 4020 0.84 4.58 4822

Table 4-6: Neural network results on contingency control with or without convolutional layers.

4-4 Conclusions

In this chapter, the application of (convolutional) neural networks on preventive-corrective
control problem has been discussed. When the convolutional neural network is used to per-
form contingency analysis, the computational performance of the DE-based contingency con-
trol method is increased by 40%. However, the accuracy of the preventive control actions is
affected, since not all critical contingencies are identified. Therefore, although this method
increases the computational efficiency of the control, it is not recommended to use in prac-
tice. Also, this adjusted DE-based method is still computationally complex and not able
to meet the computational performance requirements. Therefore, the approach where the
coupled preventive control actions are determined by a neural network is also implemented
and discussed. The computation time of the preventive control actions is decreased tremen-
dously using this method, while the accuracy error is on average only 0.81% with a maximum
of 3.86%. However, it should be noted that this neural network is prone to changes in the
potential contingencies to be considered, any physical changes in the power grid, new con-
trollable generators, or changes in any other constraints, such as the maximum curtailment
ramp of the controllable generators. If any changes occur in these aspects, a new data set
will have to be generated and the neural network should be retrained.
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Chapter 5

Conclusions and recommendations

In a power grid system where corrective control actions are not sufficient for adequate con-
tingency control and where preventive and corrective control actions are coupled, preventive-
corrective contingency control is to be deployed. The contingency control method based
on differential evolution (DE) as described and discussed in Chapter 3 is capable to de-
termine suitable preventive and corrective control actions which satisfy the power grid and
coupling constraints and minimize the power curtailment of the controllable distributed en-
ergy resources (DER) connections. Using preventive-corrective control, a significant amount
of extra DER can be connected to the power grid without risking security limit violations in
case of contingencies. Depending on the location of the DER generator in the grid of this
study case, the amount of renewable energy which can be delivered to the distribution grid is
increased by a factor 1.2 to 11.6, while less than 5% preventive power curtailment is required.
However, this method is not capable to perform this preventive-corrective contingency control
within reasonable time frame. The average computational time of the DE iteration for the
Middelharnis power grid considered in this study is 970 seconds. In a dynamic distribution
power grid, the grid situation can change significantly within this period of time, causing
the control actions to be outdated and therefore inadequate. For larger power systems, the
computational complexity would even increase further.
Machine learning techniques can be used to increase the computational efficiency of the con-
tingency control process. A convolutional neural network (CNN) is capable to perform con-
tingency analysis for different distribution power grids. Using a CNN-based method increases
the computational efficiency of the contingency analysis by up to 17 times compared to the
accurate full AC power flow method for the power grids in this case study. This factor is
expected to increase when larger power grids are considered. The accuracy is only decreased
by 0 to 5%, which is superior to the line outage distribution factor (LODF)-based contin-
gency analysis method. However, it is found that using the CNN-based contingency analysis
method in the contingency control strategy, the resulting preventive control actions can differ
significantly from the optimal actions. This points toward the fact that not only contin-
gencies which are just slight insecure are neglected, but also more severe contingencies. This
means that the CNN-based contingency analysis method is not fit for this contingency control
method.
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The alternative of performing the complete preventive control determination using a neural
network is also investigated. It is found that the convolutional neural network shows supe-
rior performance compared to the neural network without convolutional layers. This method
delivers satisfactory accuracy results compared to the DE-based contingency control method,
since an average deviation under 1% is found and a maximum deviation under 4%. Further-
more, this approach is computationally very efficient and able to compute preventive control
actions in a fraction of a second.

For Stedin Netbeheer, the coupling between the preventive and corrective control actions
is not as strict as in the case study of this thesis, since generators can be curtailed rather
steep without the risk of grid instability. Therefore, it is advised to decouple the preventive
and corrective control actions. In a preventive manner, controllable generators should be
curtailed such that no grid component is overloaded and no voltage violations are present
when no contingency has occurred. In case of a contingency, corrective control actions should
be taken to mitigate the voltage or loading limit violations. These measures can be computed
in a short time frame, since only one optimal power flow (OPF) operation is required.

5-1 Recommendations for future research

In further academic efforts, it is recommended to investigate several topics related to this
research:

Improving OPF computations

It is advised to perform supplemental research on the computational complexity of the
preventive-corrective control method based on DE, for example by performing the OPF op-
eration using a method based on Machine learning (ML) or using an interior point algorithm.

Extend case study to large-scale transmission power grids

The benefit of the preventive-corrective control methods as discussed in this thesis might
be most present in large-scale transmission power grids. In these grids, the restrictions on
generator curtailment in case of emergency are more strict, since the transient stability of
the grid might be affected by steep generator curtailment. Therefore, it is recommended
to research the potential scenarios in transmission grids where preventive-corrective control
might be required and test the methods of this thesis work on these scenarios.

Investigate business case for preventive-corrective control

It would be interesting to study the potential business case of preventive-corrective control,
considering the amount of extra DER which could be connected to the grid and the compensa-
tion costs for the curtailment of these generators. These study cases should be performed for
different-sized distribution and transmission power grids, considering the curtailment limits
in practice and the saved grid expansion costs.
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Extend dataset for contingency control neural network

Generation of the dataset for the contingency control neural network as described in Section 4-
3 is computational complex, since it relies on the control method as described in Chapter 3.
Therrefore, the dataset used in this thesis work was limited. The accuracy of this method
could potentially be increased using an increased amount of data. In further research, the
influence of using a larger data set could be investigated.
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Appendix A

Additional contingency control results

In this appendix, additional results on different designs of the preventive-corrective contin-
gency control method based on differential evolution can be found.
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(a) Population size 2D (b) Population size 5D

(c) Population size 10D (d) Population size 20D

Figure A-1: Preventive control cost evolution for different model designs on June 2nd, given
different population sizes.

Figure A-2: Preventive control cost evolution for different population sizes on June 2nd.
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Figure A-3: Preventive control cost evolution for different population sizes on April 15th.

(a) Population size 2D (b) Population size 5D

(c) Population size 10D (d) Population size 20D

Figure A-4: Preventive control cost evolution for different model designs on April 15th, given
different population sizes.
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Figure A-5: Preventive control cost evolution for different population sizes on April 15th.

(a) Population size 2D (b) Population size 5D

(c) Population size 10D (d) Population size 20D

Figure A-6: Preventive control cost evolution for different model designs on August 4th, given
different population sizes.
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Figure A-7: Preventive control cost evolution for different population sizes on August 4th.
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Glossary

List of Acronyms

DER distributed energy resources
OPF optimal power flow
CNN convolutional neural network
FDLF fast decoupled load flow
ML Machine learning
LODF line outage distribution factor
PTDF power transfer distribution factor
DE differential evolution
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