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Abstract 

Recent technologies for recording and storing data, as well as advancements in data processing techniques, have 
opened up novel possibilities for urban planners to design a more optimal public transport network. This study aims 
to initially develop a robust framework for making an insightful understanding of already recorded and available data 
sets using machine learning approaches. This will give transportation planners a powerful framework to use great 
recorded datasets to understand the network better and make datasets more meaningful for transport planners. 
And then introduces an approach to use Machine Learning algorithms and extract hidden patterns for predicting 
financial loss during any crisis, which is a novel perspective and application. To do this, seven alternative machine 
learning algorithms were developed to predict ridership: Multiple Linear Regression, Decision Tree, Random Forest, 
Bayesian Ridge Regression, Neural Networks, Support Vector Regression, and k-Nearest Neighbors. The developed 
framework was applied to the available 10 years of historical recorded data from the blue bus line number 4 in Stock-
holm, Sweden. The best model, kNN, with an average R-squared of 0.65 in 10-fold cross-validation, was accepted 
as the best model. This model is then used to estimate the financial loss of the network during the pandemic in 2020 
and 2021. Results reveal a decline of 49% in 2020 and 82% in 2021 in the studied line. Finally, the results were vali-
dated with a similar study that analyzed the ticket validations and passenger counts during the spring of 2020.
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1  Introduction
Public transport has both direct and indirect effects 
on environment and economy. Their significant 
impact on traffic congestion and emissions is inevi-
table. Recent fuel and energy challenges have brought 
more interest in designing more attractive networks 
for both residents and governments. The environmen-
tally friendly features of public transportation lead 

governments, city planners, and policymakers to opti-
mally design the network which attracts more resi-
dents toward public transport.

Demand and supply imbalances are one of the biggest 
problems in public transportation [20]. This may result 
in longer trip times, delays, reduced comfort, customer 
dissatisfaction, and ultimately, a change in users’ behav-
ior toward modes of transportation that are more unsus-
tainable [36]. On the other hand, this mismatching may 
lead to underutilized supply and energy waste, congested 
roads, and delays, operating the system ineffective from 
an environmental and financial perspective [34].

Therefore, for the first stage, transportation planners 
need to accurately estimate the ridership in order to opti-
mally design the network in various scenarios, including 
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social crises. However, since there are so many inherent 
uncertainties in estimating ridership in public transport 
designing a network that is both user-friendly and cost-
effective is challenging for transportation planners, and 
policymakers [27]. The following characteristics stand 
out when examining the ridership for public transporta-
tion, all of which make planning difficult [2, 3]:

•	 Ridership patterns fluctuate significantly within vari-
ous spatial and temporal scales.

•	 There are an excessive number of independent vari-
ables, such as travel time, headway, reliability, cost, 
weather, and other network features affecting the rid-
ership [11].

Today, more developed, accurate, and automated tech-
niques for planning the public transportation network, 
together with a greater level of service, are anticipated 
thanks to a variety of data sources, vast recorded data 
over time, and more advanced analytical algorithms 
[27]. This will help transportation planners first design 
a system that is more economical and environmentally 
friendly and later be prepared for unseen scenarios and 
crises.

This study seeks to uncover any hidden patterns in the 
bus network’s recorded journey history data in order to 
create forecasting models. The findings can provide deci-
sion-makers and travel planners with a useful tool to bet-
ter understand the network’s behavior, particularly under 
extreme and unexpected circumstances where there may 
not be enough data or records.

During the pandemic years (2020 and 2021), due to 
lockdowns and social distancing challenges, people pre-
ferred to work from home and/or were less willing to use 
public transport for commuting. Therefore, this caused 
not only a notable change in travel patterns but also, 
more significantly, a great financial loss for public author-
ities. This study aims to initially develop a robust frame-
work for making an insightful understanding of already 
recorded and available data sets using machine learning 
approaches. This will lead transportation planners to 
have a robust framework to use great recorded datasets 
for a more precise understanding of the network and 
make datasets more meaningful for transport planners. 
And then introducing an approach to use machine learn-
ing algorithms and extracted hidden patterns for predict-
ing financial loss during any crisis.

To achieve these two goals, the structure of the next 
sections is as follows: Firstly, an overview of the literature 
review joint with highlighted contributions of this study 
is provided. Then in Sect. 3, the steps and the framework 

is elaborated. Results of different models are compared 
and discussed in Sect.  4. Estimating the financial loss 
during pandemic as a practical application of study and 
the validation of the results is the ultimate goal of this 
section. The summary of the study and directions for 
future research are discussed in Sect. 5.

2 � Literature review
The latest published articles were analyzed to compile 
a comprehensive list of both external and internal fac-
tors influencing the demand for public transportation. 
Subsequently, various forecasting methodologies were 
assessed. To accomplish this, a literature review method-
ology utilizing various databases was employed to gather 
information. A thorough search was conducted across 
Web of Science, Scopus, and Google Scholar databases. 
This process yielded a significant number of references 
related to public transport demand. Subsequently, the 
results were filtered for the past recent years (from 2015), 
excluding others for reasons such as duplications, irrel-
evance to the study’s scope, or outdated information.

In summarizing the literature review results, the exist-
ing literature on predicting public transportation demand 
can be categorized into six distinct groups, as identified 
from previously published works. These categories are as 
follows: 

1.	 Prediction horizon: which indicates the length of 
prediction.

•	Long-term models are utilized with a prediction 
horizon spanning a year to explore the effects of 
substantial changes within the system and its envi-
ronment [28].

•	Short-term models, operating with a prediction 
horizon of days or hours, are employed to regulate 
supply in accordance with immediate needs [21].

2.	 Data sources: The data utilized for data-driven mod-
els stems from various sources and methodologies.

•	Surveys conducted by Chakrabarti in 2017 [4] and 
research by Hensher & Rose in 2007 contribute 
insightful primary data [8].

•	Historical data plays a significant role, including 
studies by Y. Li et  al. in 2017 [15], research con-
ducted by Oort, Brands, & Romph in 2015, studies 
by Oort, Drost, & Yap in the same year [19, 20], 
and investigations by Xue et al. also in 2015 [35]. 
This diverse array of data sources enables a com-
prehensive understanding of the factors influenc-
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ing both long-term and short-term models in fore-
casting public transportation demand.

3.	 Methods: Up until now, numerous projects have 
relied on past data and records to forecast short-term 
traffic. These forecasting methods encompass:

•	Parametric techniques including historical average 
[37], smoothing technique [6], and the autoregres-
sive integrated moving average (ARIMA) model 
[38]. The ARIMA model is specifically employed 
for predicting traffic flow, travel time, speed, and 
occupancy.

•	Non-parametric techniques encompassing non-
parametric regression [23], Kalman filtering mod-
els [32], support vector machines [33], the Shep-
ard model [16], neural networks [31], and deep 
neural networks, which are deep learning algo-
rithms [27]. These methods collectively contribute 
to short-term traffic forecasting by leveraging a 
diverse array of modeling approaches and compu-
tational strategies.

4.	 Spatial Level: Research endeavors have encompassed 
diverse spatial levels, ranging from a systemic view-
point down to the individual vehicle-stop passenger 
level.

5.	 Temporal Level: Various studies have employed 
a range of time intervals, spanning from monthly 
aggregates to observations per passenger per station. 
For example, Zhou et al. (2017) opted for a narrower 
focus, utilizing specific hours and weekdays instead 
of monthly averages to scrutinize intraday trends and 
patterns in ridership [39].

6.	 Affecting Features:

•	Temporal features: Extensive literature has delved 
into the impact of time and date [35]. Addressing 
demand seasonality, researchers have employed 
various methodologies, such as calibrating sepa-
rate models for peak and off-peak hours [26], 
devising distinct models for each season [14, 15], 
integrating dummy variables to denote day types 
and time periods [18], and employing moving 
average methods for time series analysis on rider-
ship data [29].

•	Spatial features: While some studies have omitted 
spatial elements in their models, recent research 
has identified and incorporated several variables 
influencing ridership. For instance, passenger 
counts from bus feeder services near metro sta-
tions have been utilized to forecast short-term 
metro ridership [5]. Literature also explores built 

environment features affecting stop or route 
attractiveness, including intermodal station con-
nectivity, adjacent business or residential areas, 
station types, and demographic variables like local 
population demographics [13].

•	Other features: Additional features that impact 
ridership encompass: 

(a)	 Weather: Extensive literature has explored 
the influence of weather variables on rid-
ership [7, 12, 14, 39]. Findings indicate a 
complex relationship as weather variables 
can indirectly affect travel experiences [7]. 
However, the impact of seasons appears to 
be less pronounced compared to the effects 
of specific weather conditions.

(b)	 Special Events: Events contribute to 
increased demand within the transpor-
tation network. Some models consider 
event-related information such as event 
type/category, proximity to the next event, 
and dummy variables indicating the pres-
ence of an event [21, 22]. Social media data 
is utilized to gauge event popularity for 
predicting passenger flow [17]. Conversely, 
certain studies choose time spans devoid of 
specific events or holidays to mitigate their 
influence [39].

(c)	 Holidays: Ohler et  al. (2017) incorporated 
dummy variables signifying various holiday 
types into their models [18]. Kalkstein et al. 
(2009) investigated demand fluctuations 
before and after holidays [12].

(d)	 Public transport characteristics: Utiliz-
ing clustering analysis, studies have estab-
lished three clusters based on factors like 
average headway, route length, number 
of bus stops, route type, and congestion 
levels [14]. Subsequently, distinct fore-
casting models were developed for each 
cluster. Brakewood et  al. (2015) examined 
the impact of introducing real-time travel 
information [3]. Other variables such as 
distance between stations [13], centrality 
measure evaluating average travel time to 
all other stations [30], seating and maxi-
mum capacity [20], travel time [4, 19], gas-
oline prices, and bridge tolls have also been 
investigated in the literature.

(e)	 Socioeconomic factors: The relationship 
between the number of cars per household 
and public transport ridership has been 
explored in studies conducted by Chakra-
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barti (2017) [4] and Spears et  al. (2013) 
[24].

2.1 � Literature gaps and contribution
The reviewed literature, categorized into six groups, liter-
ature gaps, and the contribution of this study is depicted 
in Fig. 1.

The main scopes of this study can be summarized as 
follows: 

1.	 Most already published studies have predicted rid-
ership with time series analysis without including 
demographic variables. This study regresses the rid-
ership toward different network and demographic 
variables, including population.

2.	 Extensive studies have investigated machine learn-
ing techniques for predicting ridership in public 
transport. However, they implement their models on 
smaller datasets, such as six months of records. This 
study aims to include all the past records from 2012 
to the end of 2021. Although this will bring some 
new challenges regarding analyzing big data, it opens 
new opportunities for seasonal analysis and observ-
ing the effects of pattern fluctuations within different 
years and at different levels.

3.	 What significantly distinguishes this study from 
other studies using data-driven models for predicting 
ridership for public transport is the comparison and 
discussion done over seven different parametric and 
non-parametric machine learning algorithms. This 
will give an insightful understanding of the applica-
tion of these models for similar case studies.

4.	 Last but not least, the framework developed in 
this study is a novel perspective and application of 
machine learning algorithms to estimate the financial 
loss of systems in case of unexpected crises and out-
breaks, such as pandemics.

3 � Methods
This project can be categorized as a supervised regres-
sion data analysis problem.To create a model for estimat-
ing the number of boardings, boardings are regressed 
toward time (one feature), station (31 features), month 
(11 features), and population (one feature) using a total 
number of 44 features. The overview of the framework 
and steps used in this study is visualized in Fig. 2.

3.1 � Data preprocessing
In the available dataset, boarding is recorded as a 
monthly (excluded July) average number of persons per 
bus arrival according to the timetable. Since the timeta-
ble was not fixed during the study period and throughout 
the year, the boardings were aggregated per hour in the 
preprocessing phase.

Then all the data were standardized and normalized to 
ensure that all the features are scaled in a similar range, 
and all the machine learning algorithms are precisely 
applied to the dataset.

Moreover, to deal with categorical dependent variables 
(i.e. stations and months), dummy encoding (one-hot) 
was used. To avoid the co-linearity in the input matrix, 
one of the features was also dropped.

Fig. 1  Summary of the literature for predicting public transport ridership, highlighting research gaps and the contribution of the current study
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3.2 � Model selection and tuning
Each of the seven selected models tuned for their param-
eters to achieve the best performance: (1) Linear Regres-
sion (LR): with and without coefficient. (2) Decision 
Tree (DT): Maximum depth. (3) Random Forest (RF): 
Maximum depth and number of estimators. (4) Bayesian 
Linear Regression (BLR): with and without intercept. (5) 
One layer Neural Network (NN): Number of hidden lay-
ers and activation functions (i.e. identity, logistic, tanh, 
and relu). (6) Support Vector Regression (SVR): kernel 
(i.e. linear, polynomial, RBF, sigmoid), and (7) k-Nearest 
Neighbour (kNN): number of neighbors.

Although ridership is inherently a time-series dataset, 
traditional time-series models such as ARMA or ARIMA 
were not selected for this study due to their limitations 
in incorporating additional influential variables [9], 
such as station characteristics, population, and time-of-
day effects. Other machine learning models were cho-
sen instead as they offer greater flexibility in capturing 

complex and understanding, non-linear relationships 
between these external factors and ridership patterns, 
including demographic data and spatial characteristics.

Using the coefficient of determination (R-Squared) and 
Mean Squared Error (MSE) as the performance met-
rics, the accuracy of the models have been examined. To 
ensure that every observation has the chance to show up 
in both the training and test sets, k-fold cross-validation 
was used. Using one fold as the test set and the remain-
ing sets as the training set in each run, the process was 
repeated ten times. The final model performance was 
reported using the average achieved in each run.

As explained earlier in the introduction, to find the 
inherent patterns within the recorded data, all of the 
models were developed, trained, and tested using data 
collected prior to 2020 when the Covid pandemic began.

Based on the performance indices and other criteria 
due to specific characteristics of the data, the best model 
was chosen. This model reveals the best understanding of 
the hidden patterns within the recorded data set and can 
be the most reliable model for prediction. Finally, assum-
ing that there was no change in travel patterns, the model 
was used to predict the ridership in 2020 and 2021. Com-
paring the predicted values and recorded data implies the 
financial loss of the whole network during the pandemic. 
This comparison reveals a quite reasonable estimation 
of the public authorities’ revenue if no pandemic had 
occurred.

4 � Results and discussion
In this section, initially, a brief overview of the case study 
and data sets used in this study will be given. Then, some 
descriptive analysis of the data will be presented. The sec-
tion will be followed by performance indices of different 
developed machine learning models. A discussion over 
criteria for choosing the best model will be provided. 
Finally, the predicted results for the years 2020 and 2021 
will be explained. This section ends with results valida-
tion with other published studies.

4.1 � Case study
The case study focuses on public transport in Stockholm, 
the capital and largest city in Sweden as well as the larg-
est urban area in Scandinavia. Stockholm, with a cur-
rent population of 987,661 (June 30, 2023) is estimated 
to reach a population of almost 3 million by 2045, which 
highlights the importance of increasing the urban facili-
ties, public transport, and transportation infrastructure 
in the next 20 years. Public transport in Stockholm con-
sisting of 8 different modes (i.e. bus, metro, commuter 
rail, inner-city rail, regional rail, light rail, tram, and com-
muter ferries) is authorized by SL (Storstockholms Loka-
ltrafik). The dense bus network in Stockholm is operating 

Fig. 2  Overview of the framework developed in this study
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within 502 bus lines and 6710 stops. Five main blue bus 
lines in the inner city, with express character, higher fre-
quencies, shorter distances between two consecutive 
stops, moving on the inner city main roads, commute 
the most passengers of the bus network in Stockholm. 
Among all these bus lines, blue bus line number 4, with 
the longest length and the busiest bus line in the entire 
of Sweden, is chosen for detailed exploration within this 
study [25]. This line has been operating with 28 stations 
only since 2021. Therefore, the removed three stations 
have not been removed from the dataset.

Besides the important role of public transport in Stock-
holm, what makes this case study even more interesting 
is the quite different strategy taken by public authori-
ties in Sweden during the pandemic. Unlike many other 
countries, Sweden decided to limit the actions recom-
mendations rather than obligation and full lockdowns. 
So, residents were recommended to stay at home if they 
prefer or if they feel sick. Therefore, no restrictions were 
implied on public transport services, and the supply 
remained almost unchanged, despite many other coun-
tries. Hence, any decline in public transport ridership can 
be related to residents’ own choices [10].

4.2 � Datasets
As discussed earlier, ridership in public transport is 
affected by numerous variables, both within public 
transport networks and other factors such as popula-
tion, weather, quality of the network, and so on. Having 
these many variables raises one of the most important 
challenges of this Machine Learning study which is the 
overfitting trap. Adding too many features and variables 
may result in more accurate training results. However, it 
is likely to decrease the accuracy of predictions on new 
data sets. Moreover, adding more variables may increase 
the model’s accuracy, but it reduces the explainability of 
the model. Therefore, in order to avoid overfitting traps 
and try to make the results interpretable for transporta-
tion planners, the affecting variables are limited to time 
(one feature), month (11 features), population (one fea-
ture), and station (31 features) with a total of 44 features. 
To ensure transparency, it is important to note that the 
data for July was not included in the dataset provided by 
SL for any of the years, and therefore, was excluded from 
the analysis.

A list of all variables and datasets is introduced in 
Table 1.

4.3 � Results
To start with, three different patterns were recognized 
in the 10 years of operation of the network: (1) Through-
out a year (Fig.  3), (2) Throughout a route (Fig.  4), and 
(3) Throughout a day (Fig. 5). According to Fig. 3, August 

and January exhibit the lowest and highest ridership dur-
ing the study period, respectively. Although the exact 
causal relationship behind these patterns requires fur-
ther investigation [1], these fluctuations may be linked 
to the number of holidays and vacation periods in these 
two months. Figure  4 highlights the boarding patterns 
throughout the line and at various stops. The stops with 
higher boardings are those located near metro stations 
and/or other modes of transportation, such as trams and 
commuter trains. Fig. 5 demonstrates the morning (7–9) 
and afternoon (15–17) peak hours for the stations with 
the highest demand.

The predicted daily average boardings per year com-
paring different models are depicted in Fig.  6. In this 
figure, the blue line represents the real observations. 
This blue line shows the significant ridership decrease 
after 2019, which was the obvious impact of covid pan-
demic. Each dashed line shows the predicted values with 
a trained machine-learning model using data from 2012 
to 2019. It is worth noting that predicted values for 2020 
and 2021 are the estimation of average daily boardings 
if no pandemic had occurred since the recorded data 

Table 1  Variables and datasets

Variables Type Time period Source

Population Quantitative Jan 2012 - Dec 2021 SCB

Year Qualitative Jan 2012 - Dec 2021 SL

Time Quantitative Jan 2012 - Dec 2021 SL

Month Qualitative Jan 2012 - Dec 2021 SL

Station Qualitative Jan 2012 - Dec 2021 SL

Boardings Quantitative Jan 2012 - Dec 2021 SL

Fig. 3  Box plots for boardings per month (2012-2021)



Page 7 of 11Movaghar et al. European Transport Research Review           (2025) 17:37 	

for these two years have been removed from the train-
ing dataset. Therefore, the difference between the blue 
line (real observations) and the dashed lines (prediction 
based on trained models) reveals the loss of the network 
system during the pandemic due to the change in resi-
dence travel behavior in 2020 and 2021.

The results of the seven developed models, along 
with their hyperparameters that yielded the best per-
formance  for the 2012-2019  data, are summarized in 
Table 2. To choose the best reliable model and to miti-
gate the risk of overfitting, the results are reported 
using k-fold cross-validation with 10 randomized folds. 
Results reveal that Random Forest (RF), Neural Net-
work (NN), and k-Nearest Neighbor (kNN) have the 

best accuracy. According to average accuracy, Ran-
dom Forest (RF) has the highest value of 0.74 and a 
promising standard deviation of 0.072. However, Ran-
dom Forest (RF), as well as all tree-based models, are 
not suggested for predicting values out of the range 
of values used in the training dataset. The second-
best model, Neural Network (NN), with an average 
R-squared of 0.71, has also the highest standard devia-
tion of 0.27. This high standard deviation highlights 
the undesirable possibility of this model overfitting. 
Ultimately, the third-best model, kNN, with an aver-
age R-squared of 0.65, is accepted as the best-trained 
model. The low standard deviation of 0.05, which 
highlights the stability of the model on new datasets, 

Fig. 4  Box plots for boardings per station (2012-2021)
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besides the explainability and low running time, adds 
more value to this model within the scope of this study.

To achieve the final goal of this, i.e. estimating the 
financial loss of the network during the pandemic year, 
the developed kNN model with 5 neighbors is used to 
predict the average annual ridership (Table 3).

Results reveal that using the developed KNN model 
for predicting the values for years 2012-2019, an aver-
age error of 1.37 % with a maximum of 4.87% in 2018 
is achieved. Now the same model is used for predicting 
the numbers in 2020 and 2021. It is worth highlighting 
that the predicted values in these two years are inter-
preted as the expected ridership for public transport 
if no pandemic outbreak had happened based on the 
inherent pattern in the past recorded data. The results 
showed a decrease of 49% in 2020 and 82% in 2021. It is 
then estimated that this bus line, over two years of the 
pandemic, lost on average, 12,667.34 passengers daily 
in only one direction. This reveals a significant financial 
loss for the whole system and operational organizations 
in Stockholm during the pandemic.

4.4 � Results validation
The decline in public transport ridership in Stock-
holm has been studied in another study. Jenelius and 

Cebecauer (2020) analyzed the ticket validations, sales, 
and passenger counts data during the spring of 2020 to 
investigate changes in travel patterns during the pan-
demic. Since no restrictions were implied by public 
authorities on public transport services and supply, the 
declined ridership is referred only to travelers’ choices 
[10]. Their results show a 40%−60% reduction across all 
the regions and all modes of transportation in Stock-
holm. Their separate analysis of different modes of public 
transport in the Stockholm region reveals the deduction 
of almost 40% for buses during three months of their 
study period (March to June 2020) [10]. This is quite an 
interesting comparison with the predicted values for the 
entire of 2020 with the developed kNN machine learning 
model based on historical data and input features in the 
current study (Table 3). Using the developed kNN model, 
the estimation of declined ridership is depicted in Fig. 7 
per month in 2020. Results reveal a decrease of 45% com-
paring the predicted results from the model and the real 
observations in May. This finding is in line with Jenelius 
and Cebecauer (2020) using the ticket validation data. 
This highlights the importance and accuracy of data-
driven models for predicting future conditions based on 
the inherent patterns in historical data. This will open up 

Fig. 5  The average number of boardings for two stations with the highest demand (2012-2021)
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Fig. 6  Comparison between all developed machine learning models (dashed lines) and real observations (blue line)

Table 2  Summary of developed models and their performance

Model Parameters Value Separate train/split Cross validation

R2 Mean squared error Training time k Average std

MLR Intercept yes 0.395 1545.2367 182 ms 10 0.3703 0.064

DT Max depth 30 0.7083 744.902 522 ms 10 0.6139 0.0877

RF Max depth 50 0.8459 393.6823 32.5 s 10 0.7367 0.0724

# of estimators 150

BLR Intercept yes 0.34804 1665.1382 383 ms 10 0.288 0.1826

NN Hidden layer 1 0.8911 278.0442 10 min 31 s 10 0.7140 0.2758

Hidden nodes 150

Activation function tanh

SVR Kernel rbf 0.5687 1101.6712 3 min 22 s 10 −66.86 22.56

kNN # of neighbors 5 0.7613 609.7122 38.3 s 10 0.6511 0.0477

Table 3  Predicting ridership in different years using the developed kNN

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Real observation 21,432.90 22,177.01 26,358.02 26,242.52 30,085.24 29,909.08 28,019.93 32,186.60 21,752.63 17,863.63

Predicted 22,211.03 22,459.00 26,021.75 26,794.92 30,450.12 29,907.22 29,383.70 31,904.22 32,395.45 32,555.48

Difference 778.13 281.99 –336.27 552.41 364.88 –1.86 1,363.77 –282.38 10,642.82 14,691.85

Percentage % 3.63 1.27 –1.28 2.11 1.21 –0.01 4.87 –0.88 48.93 82.24
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a significant application of data-driven models for predic-
tions during future pandemics or crises.

5 � Conclusions
Designing an optimum public transport while avoiding 
any demand and supply mismatching is of high impor-
tance for city planners due to the population increase in 
urban areas. Advances and techniques in recording data, 
on the one hand, and analyzing big datasets, on the other 
hand, have made researchers interested to make avail-
able big recorded datasets meaningful and insightful for 
transportation planners and policymakers. This study 
was initiated to fulfill two main goals: (1) First and fore-
most, to find inherent patterns and insights within avail-
able datasets using machine learning algorithms. To do 
this, the number of boardings in blue bus line 4 in Stock-
holm regressed toward time, month, station, and popu-
lation, using seven different algorithms that were trained 
and tested over data from 2012 to 2019. (2) Then, the best 
model was used to estimate the financial loss of the sys-
tem during the pandemic years and lockdowns. In order 
to achieve this, the third best model based on 10-fold 
cross-validation, kNN with 5 neighbors, was picked for 
predicting the values for 2020 and 2021. Results revealed 
a financial loss of 49% in 2020 and 82% in 2021.

Unlike some other models, such as Neural Networks 
(NN), kNN did not exhibit signs of overfitting or instabil-
ity, which made it more reliable for the studied dataset. 
The simplicity and interpretability of the kNN model also 
made it a favorable choice for the study, given the various 
and non-linear input features.

The proposed framework in this paper is transfer-
able to other cities and regions, especially when histori-
cal ridership data is available. However, the performance 
of different models may vary in any new city, as local 
input factors, such as population, infrastructure, and 

socio-economic conditions, can significantly influence 
the results. The ability to predict financial losses and rid-
ership patterns during unexpected events, using models 
trained on historical data with features selected based on 
local factors, along with the use of cross-validation for 
model validation and the process for handling and pre-
processing historical data, could provide valuable insights 
for public transport planners and policymakers.

The currently available dataset was aggregated monthly 
data. Therefore, no detailed studies have been done on 
the effect of working days, weekends, and big events. 
Different models for different types of day, coupled with 
new datasets such as weather, station distances to the 
city centers, and big business and residential areas, are 
interesting topics for further exploration. Future work 
could also explore the integration of simulated data to 
supplement real-world datasets, particularly in scenarios 
with limited historical records, to enhance model perfor-
mance and reliability.
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