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Abstract
We obtain stochastic duality functions for specific Markov processes using representation
theory of Lie algebras. The duality functions come from the kernel of a unitary inter-
twiner between ∗-representations, which provides (generalized) orthogonality relations for
the duality functions. In particular, we consider representations of the Heisenberg algebra and
su(1, 1). Both cases lead to orthogonal (self-)duality functions in terms of hypergeometric
functions for specific interacting particle processes and interacting diffusion processes.

Keywords Stochastic duality · Lie algebra representations · Hypergeometric functions ·
Orthogonal polynomials

1 Introduction

A very useful tool in the study of stochastic Markov processes is duality, where information
about a specific process can be obtained from another, dual, process. The concept of dual-
ity was introduced in the context of interacting particle systems in [17], and was later on
developed in [15]. For more applications of duality see e.g. [4,6,13,18].

Two processes are in duality if there exists a duality function, i.e. a function of both
processes such that the expectations with respect to the original process is related to the
expectations with respect to the dual process (see Sect. 2 for a precise statement). Recently
in [5,16] orthogonal polynomials of hypergeometric type were obtained as duality func-
tions for several families of stochastic processes, where the orthogonality is with respect
to the corresponding stationary measures. These orthogonal polynomials contain the well-
known simpler duality functions (in the terminology of [16], the classical and cheap duality
functions) as limit cases. In [5], Franceschini and Giardinà use explicit relations between
orthogonal polynomials of different degrees, such as raising and lowering formulas, to prove
the stochastic duality. In [16], Redig and Sau find the orthogonal polynomials using gen-
erating functions. With a similar method they also obtain Bessel functions, which are not
polynomials, as self-duality function for a continuous process.
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98 W. Groenevelt

The goal of this paper is to demonstrate an alternative method to obtain the orthogonal
polynomials (and other ‘orthogonal’ functions) from [5,16] as duality functions. The method
we use is based on representation theory of Lie algebras. This is inspired by [3,7], where
representation theory of sl(2,C) and the Heisenberg algebra is used to find (non-orthogonal)
duality functions, see also Sturm et al. [19] for a Lie algebraic approach to duality. Roughly
speaking, the main idea is to consider a specific element Y in the Lie algebra (or better,
enveloping algebra). Realized in two different, but equivalent, representations ρ and σ , ρ(Y )

and σ(Y ) are the generators of two stochastic processes. In case of sl(2,C), Y is closely
related to the Casimir operator. The duality functions come from an intertwiner between
the two representations. In this paper we consider a similar construction with unitary inter-
twiners between ∗-representations, so that the duality functions will satisfy (generalized)
orthogonality relations.

In Sect. 2 the general method to find duality functions from unitary intertwiners is
described. In Sect. 3 the Heisenberg algebra is used to show duality and self-duality for
the independent random walker process and a Markovian diffusion process. The self-duality
of the diffusion process seems to be new. The (self-)duality functions are Charlier poly-
nomials, Hermite polynomials and exponential functions. In Sect. 4 we consider discrete
series representation of su(1, 1), and obtain Meixner polynomials, Laguerre polynomials
and Bessel functions as (self)-duality functions for the symmetric inclusion process and the
Brownian energy process.Wewould like to point out that the self-duality functions are essen-
tially the (generalized) matrix elements for a change of base between bases on which elliptic
or parabolic Lie group / algebra elements act diagonally, see e.g. [2,14], so in these cases
stochastic self-duality is a consequence of a change of bases in the representation space.

1.1 Notations and Conventions

ByNwedenote the set of nonnegative integers.We oftenwrite f (x) for a function x �→ f (x);
the distinction between the function and its values should be clear from the context. For
functions x �→ f (x; p)depending on one ormore parameters p, we often omit the parameters
in the notation. For a set E , we denote by F(E) the vector space of complex-valued functions
on E . P is the vector space consisting of polynomials in one variable.

We use standard notations for shifted factorials and hypergeometric functions as in e.g.
[1]: for a ∈ C and n ∈ N the shifted factorial (a)n is defined by

(a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1),

and the hypergeometric series r Fs is defined by

r Fs

(
a1, a2, . . . , ar
b1, b2 . . . , bs

; x
)

=
∞∑
n=0

(a1)n(a2)n · · · (ar )n
(b1)n(b2)n · · · (bs)n

xn

n! .

See e.g. [1, Section 2.1] for convergence properties of this series. Note that if ai ∈ −N for
some i , then the series is a finite sum.

2 Stochastic Duality Functions from Lie Algebra Representations

In this section we describe the method to obtain stochastic duality functions from
∗-representations of a Lie algebra. This method will be applied in explicit examples in
Sects. 3 and 4 .
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Duality functions from Lie algebra... 99

2.1 Stochastic Duality

Let X1 = {η1(t) | t > 0} and X2 = {η2(t) | t > 0} be stochastic Markov processes with
state spaces �1 and �2, respectively. These processes are in duality if there exists a duality
function D : �1 × �2 → C such that for all t > 0, η1 and η2, the relation

Eη1

[
D(η1(t), η2)

] = Eη2

[
D(η1, η2(t))

]
holds, whereEη represents the expectation. If X1 = X2, the process is called self-dual. Let L1

and L2 be the infinitesimal generators of the two processes. Under appropriate conditions, see
e.g. [10, Proposition 1.2], duality of the processes is equivalent to duality of the generators,
i.e.

[L1D(·, η2)](η1) = [L2D(η1, ·)](η2), (η1, η2) ∈ �1 × �2.

If L1 = L2, then the operator is self-dual.
In this paper, we consider processes with state space � = E1 × · · ·× EN , where each E j

is a subset of R. Furthermore, the generators will be of the form

L =
∑
i< j

Li, j (2.1)

where Li, j is an operator on F(Ei × E j ). This allows us to only consider operators acting
on functions in two variables.

2.2 Lie Algebra Representations

Let g be a finite dimensional complex Lie algebra, with basis elements X1, . . . , Xn satisfying
the commutation relations

[Xi , X j ] =
n∑

k=1

ci jk Xk, 1 ≤ i < j ≤ n,

for certain coefficients ci jk ∈ C. The universal enveloping algebra U (g) is the associative
algebra with unit element generated by X1, . . . , Xn subject to the relations

Xi X j − X j Xi =
n∑

k=1

ci jk Xk, 1 ≤ i < j ≤ n.

We assume g has a ∗-structure, i.e. there exists an involution X �→ X∗ such that

(aX + bY )∗ = aX∗ + bY ∗, [X , Y ]∗ = [Y ∗, X∗], X , Y ∈ g, a, b ∈ C.

The ∗-structure of g extends uniquely to a ∗-structure of U (g), i.e.

(aX + bY )∗ = aX∗ + bY ∗, (XY )∗ = Y ∗X∗, X , Y ∈ U (g), a, b ∈ C.

Let ρ be a representation of g on the vector space F(E). We call ρ a ∗-representation of g
on H = L2(E, μ) with dense domain D ⊆ H, if ρ(X) is defined on D and 〈ρ(X) f , g〉 =
〈 f , ρ(X∗)g〉 for all X ∈ g and all f , g ∈ D. A ∗-representation of g extends uniquely to a
∗-representation of U (g) on H (with the same domain D).

If ρ1 and ρ2 are ∗-representations of g on H1 and H2 respectively, then ρ defined by

ρ(X) = (ρ1 ⊗ ρ2)(�(X)), �(X) = 1 ⊗ X + X ⊗ 1 ∈ U (g)⊗2, X ∈ g,
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100 W. Groenevelt

is a ∗-representation of g on H1 ⊗ H2 (the Hilbert space completion of the algebraic tensor
product of H1 and H2). Furthermore, ρ can be considered as a representation of U (g)⊗2 by
defining (slightly abusing notation)

ρ(X) = (ρ1 ⊗ ρ2)(X), X ∈ U (g)⊗2.

We will often use the notation ρ = ρ1 ⊗ ρ2.
Two ∗-representations ρ1 and ρ2 are unitarily equivalent if there exists a unitary operator

� : H1 → H2 such that �(D1) = D2 and �[ρ1(X) f ] = ρ2(X)�( f ) for all X ∈ g and
f ∈ D1.

Lemma 2.1 For j = 1, 2, let ρ j be representations of g on F(E j ) and ∗-representations of g
on L2(E j , μ j ) with domainD j . Suppose K : E1 × E2 → C is a function with the following
properties:

1. [ρ1(X∗)K (·, y)](x) = [ρ2(X)K (x, ·)](y) for all X ∈ g and (x, y) ∈ E1 × E2.
2. The operator � : D1 → L2(E2, μ2) defined by

� f =
(
y �→

∫
E1

f (x)K (x, y) dμ1(x)

)
,

extends to a unitary operator � : L2(E1, μ1) → L2(E2, μ2).

Then ρ1 and ρ2 are unitarily equivalent ∗-representations of g with intertwiner �.

Proof This follows directly from

(�[ρ1(X) f ])(y) =
∫
E1

[ρ1(X) f ](x)K (x, y) dμ1(x) =
∫
E1

f (x)[ρ1(X∗)K (·, y)](x) dμ1(x),

and

[ρ2(X)(� f )](y) =
∫
E1

f (x)[ρ2(X)K (x, ·)](y) dμ1(x),

using property 1. �

2.3 Duality from ∗-Representations

We are now ready to obtain duality functions for certain operators from the kernels of inter-
twining operators between ∗-representations.
Theorem 2.2 For j ∈ {1, . . . , N } let ρ j and σ j be unitarily equivalent ∗-representations of g
on L2(E j , μ j ) and L2(Fj , ν j ), respectively, such that the corresponding unitary intertwiner
� j : L2(E j , μ j ) → L2(Fj , ν j ) is an integral operator as in Lemma 2.1, i.e.

(� j f )(y) =
∫
E j

f (x)K j (x, y) dμ j (x), for ν j − almost all y ∈ Fj ,

for some kernel K j : E j × Fj → C satisfying

[ρ j (X
∗)K j (·, y)](x) = [σ j (X)K j (x, ·)](y), (x, y) ∈ E j × Fj , X ∈ g. (2.2)

Furthermore, let

�1 = E1 × · · · × EN , �2 = F1 × · · · × FN ,
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Duality functions from Lie algebra... 101

and let μ and ν be the product measures on �1 and �2 given by

μ = μ1 × · · · × μN , ν = ν1 × · · · × νN ,

then ρ = ρ1 ⊗ · · · ⊗ ρN and σ = σ1 ⊗ · · · ⊗ σN are ∗-representations of U (g)⊗N on
L2(�1, μ) and L2(�2, ν), respectively. For Y ∈ U (g)⊗N , let L1 and L2 be the operators
given by

L1 = ρ(Y ∗), L2 = σ(Y ).

Then L1 and L2 are in duality, with duality function given by

D(x, y) =
N∏
j=1

K j (x j , y j ), x = (x1, . . . , xN ) ∈ �1, y = (y1, . . . , yN ) ∈ �2.

Proof Write Y = ∑
Y(1) ⊗ · · · ⊗ Y(N ), with Y( j) ∈ U (g). It is enough to verify that

[ρ j (Y
∗
( j))K j (·, y j )](x j ) = [σ j (Y( j))K j (x j , ·)](y j ), (x j , y j ) ∈ E j × Fj ,

for j = 1, 2. Since we have Y( j) = Y j,1Y j,2 · · · Y j,k j for certain Y j,i ∈ g, the result follows
from (2.2). �

Remark 2.3 If the set �1 in Theorem 2.2 is countable, then the set of duality functions
{D(x, · ) | x ∈ �1} is an orthogonal basis of L2(�2, ν). Indeed, write

∫
�1

f (x)dμ(x) =
∑
x∈�1

w(x) f (x),

and define dx (y) = δx,y/w(x) for x, y ∈ �1, then {dx | x ∈ �1} is an orthogonal basis
for L2(�1, μ) with squared norm w(x)−1. Then by unitarity of � = �1 ⊗ . . . ⊗ �N and
(�dx )(y) = D(x, y) it follows that {D(x, ·) | x ∈ �1} is an orthogonal basis for L2(�2, ν).

In the following sections we apply Theorem 2.2 using explicit representations in terms
of difference operators or differential operators. L1 and L2 will be generators of specific
processes, and μ and ν are corresponding stationary measures. In particular, L1 and L2

are self-adjoint operator on L2(�1, μ) and L2(�2, ν) respectively. The main problem is
finding explicitly the appropriate intertwiner. The algebra element Y , which is self-adjoint
in U (g)⊗N , will always have a specific form corresponding to (2.1);

Y =
∑
i< j

pi, j Ŷi, j , (2.3)

with Ŷ a self-adjoint element inU (g)⊗2 and pi, j ≥ 0. Here we use leg-numbering notation:
for X = ∑

X(1) ⊗ X(2) ∈ U (g)⊗2 we denote by Xi, j ∈ U (g)⊗N the element

Xi, j =
∑

1 ⊗ · · · ⊗ 1 ⊗ X(1) ⊗ 1 ⊗ · · · ⊗ 1 ⊗ X(2) ⊗ 1 · · · ⊗ 1,

with X(1) in the i th factor and X(2) in the j th factor. In fact, we obtain duality between the
operators ρ(Ŷi, j ) and σ(Ŷi, j ) corresponding to each of the terms of the sum in (2.3).

123



102 W. Groenevelt

3 The Heisenberg Algebra

To illustrate how the method from the previous section is applied, we use the Heisenberg
Lie algebra to obtain duality functions for two stochastic processes. Let us first describe the
processes.

The independent random walker process IRW is a Markov jump process where particles
move independently between N sites, and each site can contain an arbitrary number of
particles. Particles jump from site i to site j with rate proportional to the number of particles
ni at site i . Let pi, j ≥ 0. The generator of this process is the difference operator acting on
appropriate function in F(NN ) given by

L IRW f (n) =
∑

1≤i< j≤N

pi, j
[
ni

(
f (ni, j ) − f (n)

)
+ n j

(
f (n j,i − f (n)

)]
, n ∈ N

N .

(3.1)

Here ni, j = n + ei − e j , where ei the standard basis vector with 1 as i th component and all
other component are 0.

The second process is a Feller diffusion process on R
N with a constant diffusion matrix,

and a drift vector which is a function of the difference of pairs of coordinates. It can be
considered as N Brownian motions which are attracted to each other with a rate proportional
to their distances. The generator is a differential operator on appropriate functions in F(RN )

given by

LDIF f (x) = c
∑

1≤i< j≤N

pi, j

[(
∂

∂xi
− ∂

∂x j

)2

f (x)

− (xi − x j )

(
∂

∂xi
− ∂

∂x j

)
f (x)

]
, (3.2)

where x ∈ R
N and c > 0.

Note that both generators have the form (2.1).
The Heisenberg algebra h is the Lie algebra with generators a, a†, Z satisfying

[a, Z ] = [a†, Z ] = 0, [a†, a] = Z . (3.3)

The ∗-structure is given by a∗ = a†, (a†)∗ = a and Z∗ = Z . h has a representation ρc with
parameter c > 0 on F(N) given by

[ρc(a) f ](n) = n f (n − 1),

[ρc(a†) f ](n) = c f (n + 1),

[ρc(Z) f )](n) = c f (n),

(3.4)

where f (−1) = 0 by convention. Then ρc is a ∗-representation on the weighted L2-space
Hc = �2(N, wc) consisting of functions in F(N) that have finite norm with respect to the
inner product

〈 f , g〉 =
∑
n∈N

wc(n) f (n)g(n), wc(n) = cn

n! e
−c.

ρc is an unbounded representation, with dense domain the set F0(N) consisting of finitely
supported functions.
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Duality functions from Lie algebra... 103

Define Y ∈ U (h)⊗2 by

Y = (1 ⊗ a − a ⊗ 1)(a† ⊗ 1 − 1 ⊗ a†). (3.5)

This element gives us the relation with the system of independent random walkers.

Lemma 3.1 For c > 0, let ρ be the tensor product representation ρ = ρc ⊗ · · · ⊗ ρc of h on
H⊗N

c , then

L IRW = c−1
∑

1≤i< j≤N

pi, j ρ(Yi, j ).

Proof It suffices to consider (ρc ⊗ ρc)(Y ) acting on functions in two variables n1 and n2.
From (3.4) and (3.5) we find

[ρc ⊗ ρc(Y ) f ](n1, n2)
= cn1

(
f (n1 − 1, n2 + 1) − f (n1, n2)

)
+ cn2

(
f (n1 + 1, n2 − 1) − f (n1, n2)

)
.

This corresponds to the term (i, j) = (1, 2) in (3.1). �
Remark 3.2 We can also consider the tensor product representation ρc1 ⊗ · · · ⊗ ρcN with
(possibly) ci �= c j . This leads to a generator of a Markov process depending on N different
parameters. However, to prove self-duality it seems crucial to assume ci = c for all i , see
Lemma 3.5 later on.

3.1 Charlier Polynomials and Self-Duality of IRW

The Charlier polynomials [11, Section 9.14] are defined by

Cn(x; c) = 2F0

(−n,−x

–
;−1

c

)
.

They form an orthogonal basis for �2(N, wc), with orthogonality relations∑
x∈N

wc(x)Cm(x; c)Cn(x; c) = δmnc
−nn!, a > 0,

and they have the following raising and lowering property,

nCn−1(x; c) = cCn(x; c) − cCn(x + 1; c),
cCn+1(x; c) = cCn(x; c) − xCn(x − 1; c). (3.6)

They are self-dual, i.e. Cn(x; c) = Cx (n; c).
Let us consider the actions of a and a† on the Charlier polynomials

C(n, x; c) = ecCn(x; c).
The reason for this normalization is to obtain a unitary intertwiner withC(n, x; c) as a kernel
later on. For notational convenience we will often omit the dependence on c in the notation;
C(n, x) = C(n, x; c). Using the raising and lowering properties (3.6) we obtain

[ρc(a)C(·, x)](n) = nC(n − 1, x) = cC(n, x) − cC(n, x + 1),

[ρc(a†)C(·, x)](n) = cC(n + 1, x) = cC(n, x) − xC(n, x − 1).
(3.7)

Note that the actions on the x-variable are similar to the actions of Z − a and Z − a† in the
n-variable. This motivates the definition of the following isomorphism.
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104 W. Groenevelt

Lemma 3.3 The assignments

θ(a) = Z − a, θ(a†) = Z − a†, θ(Z) = Z ,

extend uniquely to a Lie algebra isomorphism θ : h → h.

Proof The proof consists of checking the commutation relations (3.3), which is a straight-
forward computation. �
Note that by Lemma 3.3 and (3.7)

[ρc(θ(a))C(·; x)](n) = c C(n, x + 1), [ρc(θ(a†))C(·; x)](n) = x C(n, x − 1).

Furthermore, θ preserves the ∗-structure, i.e. θ(X∗) = θ(X)∗. Clearly, ρc ◦ θ is again a
∗-representation of h on Hc. We will use the Charlier polynomials to construct a unitary
intertwiner between ρc and ρc ◦ θ .

Proposition 3.4 Define the operator � : F0(N) → F(N) by

(� f )(x) =
∑
n∈N

wc(n) f (n)C(n, x; c),

then � extends to a unitary operator � : Hc → Hc, and intertwines ρc with ρc ◦ θ .
Furthermore, the kernel C(n, x) satisfies

[ρc(X∗)C(·, x)](n) = [ρc(θ(X))C(n, ·)](x), X ∈ h. (3.8)

Proof The cheap duality functions δm(n) = δm,n
wc(n)

form an orthogonal basis for Hc with

squared norm ‖δm‖2 = 1
wc(m)

. Applying � to δm gives

�(δm)(x) = C(m, x).

From the orthogonality relations for the Charlier polynomials we find that the squared norm
of C(m, x) is ‖C(m, ·)‖2 = 1

wc(m)
. So � maps an orthogonal basis to another orthogonal

basis with the same norm, hence � is unitary.
To apply Lemma 2.1 we need to verify that (3.8) is satisfied. It is enough to do this for

X = a, a†, Z . Using (3.7) and a∗ = a† we see that

[ρc(a∗)C(·, x)](n) = cC(n, x) − xC(n, x − 1) = [ρc(Z − a)C(n, ·)](x),
[ρc((a†)∗)C(·, x)](n) = cC(n, x) − cC(n, x + 1) = [ρc(Z − a†)C(n, ·)](x).

The action of Z is clear. Now the result follows from the definition of θ , see Lemma 3.3.
�

We are almost ready to prove self-duality for IRW, but first we need to know the image of Y ,
see (3.5), under the isomorphism θ ⊗ θ .

Lemma 3.5 The following identity in U (h)⊗2 holds:

θ ⊗ θ(Y ) = Y + R

with

R = 1 ⊗ Za† − Z ⊗ a† + Za† ⊗ 1 − a† ⊗ Z + 1 ⊗ aZ − Z ⊗ a + aZ ⊗ 1 − a ⊗ Z

+ 2 Z ⊗ Z − Z2 ⊗ 1 − 1 ⊗ Z2.

In the representation ρc ⊗ ρc, the element R is the zero operator on Hc ⊗ Hc.
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Duality functions from Lie algebra... 105

Proof After a somewhat tedious computation using the definition of θ in Lemma 3.3, we find
the explicit expression for θ ⊗ θ(Y ). Using ρc(Z) = c Id it follows that ρc ⊗ ρc(R) = 0. �

We can now apply Theorem 2.2 with ρ = ρc ⊗· · ·⊗ρc and σ = ρ ◦ (θ ⊗· · ·⊗ θ). Using
Lemma 3.5 we find σ(Yi, j ) = ρ(Yi, j ), and then it follows that

∑
pi, jσ(Yi, j ) = L IRW, see

Lemma 3.1. So we obtain the well-known self-duality of the independent random walker
process. Here the duality function is a product of Charlier polynomials.

Theorem 3.6 The operator L IRW given by (3.1) is self-dual, with duality function

N∏
j=1

C(n j , x j ; c), c > 0.

Remark 3.7 The intertwining operator � : Hc → Hc maps the orthogonal basis of cheap
duality functions to an orthogonal basis of Charlier polynomials (see the proof of Proposi-
tion 3.4), so � can be considered as a change of basis for Hc. In this sense the self-duality
functions in Theorem 3.6 are the matrix elements of a change of base in H⊗N

c .

3.2 Hermite Polynomials and Duality Between IRW and the Diffusion Process

The Hermite polynomials [11, Section 9.15] are defined by

Hn(x) = (2x)n 2F0

(
− n

2 ,− n−1
2

–
;− 1

x2

)
.

They form an orthogonal basis for L2(R, e−x2dx), with orthogonality relations

1√
π

∫
R

Hm(x)Hn(x)e
−x2 dx = δmn2

nn!,

and they have the following lowering and raising properties

d

dx
Hn(x) = 2nHn−1(x),(

− d

dx
+ 2x

)
Hn(x) = Hn+1(x). (3.9)

With the lowering and raising operators for the Hermite polynomials we can realize a and
a† as differential operators. We define

H(n, x; c) = e
c
2 (2c)−

n
2 Hn

(
x√
2c

)
.

Using the representation ρ (3.4) and the differential operators (3.9) we find the following
result.

Lemma 3.8 The Hermite polynomials H(n, x) = H(n, x; c) satisfy

[ρc(a)H(·, x)](n) = c
∂

∂x
H(n, x),

[ρc(a†)H(·, x)](n) =
(
x − c

∂

∂x

)
H(n, x).
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Next we define an unbounded ∗-representation σc of h on the Hilbert space Hc =
L2(R, w(x; c)dx), where

w(x; c) = e− x2
2c√

2cπ
.

The Hermite polynomials H(n, x) form an orthogonal basis for Hc, with squared norm
‖H(n, ·)‖2 = 1

wc(n)
. We define the representation σc by

[σc(a) f ](x) = x f (x) − c
∂

∂x
f (x),

[σc(a†) f ](x) = c
∂

∂x
f (x),

[σc(Z) f ](x) = c f (x).

As a dense domain we take the set of polynomials P .

Proposition 3.9 Define � : F0(N) → F(R) by

(� f )(x) =
∑
n∈N

wc(n) f (n)H(n, x; c),

then � extends to a unitary operator � : Hc → Hc intertwining ρc with σc. Furthermore,
the kernel H(n, x) satisfies

[ρc(X∗)H(·, x)](n) = [σc(X)H(n, ·)](x), X ∈ h.

Proof Unitarity of � is proved in the same way as in Proposition 3.4. The intertwining
property for the kernel follows from Lemma 3.8. Lemma 2.1 then shows that � intertwines
ρc and σc. �

Similar as in Lemma 3.1 we find that the generator LDIF defined by (3.2) is the realization
of Y defined by (3.5) on the Hilbert space H⊗N

c .

Lemma 3.10 For c > 0 define σ = σc ⊗ · · · ⊗ σc, then

LDIF = c−1
∑

1≤i< j≤N

pi, j σc(Yi, j ).

Finally, applying Theorem 2.2 we obtain duality between L IRW and LDIF, with duality
function given by Hermite polynomials.

Theorem 3.11 L IRW and LDIF are in duality, with duality function given by

N∏
j=1

H(n j , x j ; c).

Remark 3.12 This duality between L IRW and LDIF was also obtained in [7, Remark 3.1],
but Hermite polynomials are not mentioned there. Hermite polynomials of even degree have
appeared as duality functions in [5, §4.1.1]; this can be considered as a special case of duality
involving Laguerre polynomials, see [5, §4.2.1] or Theorem 4.15.
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3.3 The Exponential Function and Self-Duality of the Diffusion Process

To show self-duality of the differential operator LDIF, the following isomorphism is useful.

Lemma 3.13 The assignments

θ(a) = 1

2
(a − a†), θ(a†) = i(a + a†), θ(Z) = i Z ,

extend uniquely to a Lie algebra isomorphism θ : h → h.

Proof We just need to check commutation relations, which is a direct calculation. �
Observe that in the representation σc, θ(a) and θ(a†) are the operators

σc(θ(a)) = x

2
− c

∂

∂x
, σc(θ(a†)) = i x .

The kernel of the (yet to be defined) intertwining operator is the exponential function

φ(x, y; c) = exp

(
x2 + y2

4c
− i xy

c

)
, x, y ∈ R.

Lemma 3.14 The function φ(x, y) = φ(x, y; c) satisfies
[σc(θ(a))φ(·, y)](x) = iy φ(x, y),

[σc(θ(a†))φ(·, y)](x) =
(
y

2
− c

∂

∂ y

)
φ(x, y),

Proof From

c
∂

∂x
φ(x, y) =

( x
2

− iy
)

φ(x, y)

we obtain

[σc(θ(a))φ(·, y)](x) =
(
x

2
− c

∂

∂x

)
φ(x, y) = iy φ(x, y).

Using symmetry in x and y, we find

[σc(θ(a†))φ(·, y)](x) = i x φ(x, y) =
(
y

2
− c

∂

∂ y

)
φ(x, y).

�
Now we can show that the integral operator with φ as a kernel is the desired intertwining
operator.

Proposition 3.15 Define � : P → F(R) by

(� f )(y) =
∫
R

f (x)φ(x, y; c)w(x; c) dx,

then � extends to a unitary operator � : Hc → Hc intertwining σc with σc. Furthermore,
the kernel φ(x, y) satisfies

[σc(X∗)φ(·, y)](x) = [σc(X)φ(x, ·)](y), X ∈ h.
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Proof Unitarity of � follows from unitarity of the Fourier transform. From Lemma 3.14 we
find

[σc(θ(X∗))φ(·, y)](x) = [σc(θ(X))φ(x, ·)](y), X ∈ h,

which proves the result, since θ is an isomorphism. �
By applying Theorem 2.2 and using Lemma 3.10 we obtain self-duality of LDIF (3.2).

Theorem 3.16 LDIF is self-dual, with duality function given by

N∏
j=1

φ(x j , y j ; c).

4 The Lie Algebra su(1, 1)

In this section we use the Lie algebra su(1, 1) to find duality functions for two stochastic
processes. The first one is the symmetric inclusion process SIP(k), k ∈ R

N
>0, which is a

Markov jump process on N sites, where each site can contain an arbitrary number of particles.
Jumps between two sites, say i and j , occur at a rate proportional to the number of particles
ni and n j . Let pi, j ≥ 0. The generator of this process is given by

LSIP f (n) =
∑

1≤i< j≤N

pi, j
[
ni (2k j + n j )

(
f (ni, j ) − f (n)

)

+ n j (2ki + ni )
(
f (n j,i ) − f (n)

)]
, (4.1)

with n = (n1, . . . , nN ) ∈ N
N .

The second process is the Brownian energy process BEP(k), k ∈ R
N
>0, which is a Markov

diffusion process that describes the evolution of a system of N particles that exchange ener-
gies. The energy of particle i is xi > 0. The generator is given by

LBEP f (x) =
∑

1≤i< j≤N

pi, j

[
xi x j

(
∂

∂xi
− ∂

∂x j

)2

f (x)

− 2(ki xi − k j x j )

(
∂

∂xi
− ∂

∂x j

)
f (x)

]
, (4.2)

with x = (x1, . . . , xN ) ∈ R
N
>0.

The Lie algebra sl(2,C) is generated by H , E, F with commutation relations

[H , E] = 2E, [H , F] = −2F, [E, F] = H .

The Lie algebra su(1, 1) is sl(2,C) equipped with the ∗-structure
H∗ = H , E∗ = −F, F∗ = −E .

The Casimir element � is a central self-adjoint element of the universal enveloping algebra
U

(
su(1, 1)

)
given by

� = 1

2
H2 + EF + FE . (4.3)
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Note that �∗ = �.
We consider the following representation of su(1, 1). Let k > 0 and 0 < c < 1. The

representation space is the weighted L2-space Hk,c = �2(N, wk,c) consisting of functions
on N which have finite norm with respect to the inner product

〈 f , g〉 =
∑
n∈N

wk,c(n) f (n)g(n), wk,c(n) = (2k)n
n! cn(1 − c)2k .

The actions of the generators are given by

[πk,c(H) f ](n) = 2(k + n) f (n),

[πk,c(E) f ](n) = n√
c
f (n − 1),

[πk,c(F) f ](n) = − √
c (2k + n) f (n + 1),

(4.4)

where f (−1) = 0 by convention. This defines an unbounded ∗-representation onHk,c, with
dense domain F0(N). Note that [πk,c(�) f ](n) = 2k(k − 1) f (n).

Remark 4.1 For 0 < c1, c2 < 1 define a unitary operator I : Hk,c1 → Hk,c2 by

(I f )(n) =
(
c1
c2

)n/2

f (n).

Then I ◦πk,c1 = πk,c2 ◦ I , so for fixed k > 0 all representations πk,c, 0 < c < 1, are unitarily
equivalent (we can even take c ≥ 1 if we omit the factor (1 − c)2k from the weight function
wk,c). From here on we assume that c is a fixed parameter, and just write πk and Hk instead
of πk,c and Hk,c.

The generator LSIP is related to the Casimir �. Recall that the coproduct � is given by
�(X) = 1⊗ X + X ⊗ 1, and � extends as an algebra morphism to U (su(1, 1)). This gives

�(�) = 1 ⊗ � + � ⊗ 1 + H ⊗ H + 2F ⊗ E + 2E ⊗ F .

We set

Y = 1

2

(
1 ⊗ � + � ⊗ 1 − �(�)

)
. (4.5)

The relation to the symmetric inclusion process is as follows.

Lemma 4.2 For k = (k1, . . . , kN ) ∈ R
N
>0 define πk = πk1 ⊗ · · · ⊗ πkN , then

LSIP =
∑

1≤i< j≤N

pi, j
[
πk(Yi, j ) + 2ki k j

]

Proof Consider L1,2 = πk1 ⊗ πk2(Y ) + 2k1k2. It suffices to show that L1,2 gives the term
(i, j) = (1, 2) in (4.1). From (4.5) and (4.4) we find that L1,2 acts on f ∈ Hk1 ⊗ Hk2 by

[L1,2 f ](n1, n2) = n1(2k2 + n2)[ f (n1 − 1, n2 + 1) − f (n1, n2)]
+ n2(2k1 + n1)[ f (n1 + 1, n2 − 1) − f (n1, n2)],

which is the required expression. �
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In order to obtain duality functions we consider eigenfunctions of the following self-
adjoint element as in [12]:

Xa = −aH + E − F ∈ su(1, 1), a ∈ R. (4.6)

Depending on the value of a this is either an elliptic element (|a| > 1), parabolic element
(|a| = 1), or hyperbolic element (|a| < 1), corresponding to the associated one-parameter
subgroups in SU(1, 1).

4.1 Meixner Polynomials and Self-Duality for SIP

The Meixner polynomials [11, Section 9.10] are defined by

Mn(x;β, c) = 2F1

(−n,−x

β
; 1 − 1

c

)
. (4.7)

These are self-dual: Mn(x;β, c) = Mx (n;β, c) for x ∈ N. For β > 0 and 0 < c < 1, the
Meixner polynomials are orthogonal with respect to a positive measure on N,

∞∑
x=0

(β)x cx

x ! Mm(x)Mn(x) = δmn
c−nn!

(β)n(1 − c)β
,

and the polynomials form a basis for the corresponding Hilbert space. The three-term recur-
rence relation for the Meixner polynomials is

(c − 1)(x + 1
2β)Mn(x) = c(n + β)Mn+1(x) − (c + 1)(n + 1

2β)Mn(x) + nMn−1(x).

Using the self-duality this also gives a difference equation in the x-variable for the Meixner
polynomials.

We set a(c) = 1+c
2
√
c
, so that a(c) > 1. The action of

Xa(c) = −1 + c

2
√
c
H + E − F

on f ∈ Hk is given by

[πk(Xa(c)) f ](n) = √
c(2k + n) f (n + 1) − 1 + c√

c
(k + n) f (n) + n√

c
f (n − 1).

Eigenfunctions can be given in terms of the Meixner polynomials

M(n, x; k, c) = Mn(x; 2k, c).

Lemma 4.3 The Meixner polynomials M(n, x) = M(n, x; k, c) are eigenfunctions of
πk(Xa(c)), i.e.

[πk(Xa(c))M(·, x)](n) = c − 1√
c

(x + k) M(n, x), x ∈ N.

Proof This follows from the three-term recurrence relation for the Meixner polynomials.
�

Using the difference equation for the Meixner polynomials, we can realize H as a differ-
ence operator acting on M(n, x) in the x-variable.
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Lemma 4.4 The following identity holds:

[πk(H)M(·, x)] (n) = − 2c

1 − c
(2k + x)M(n, x + 1) + 1 + c

1 − c
2(k + x)M(n, x)

− 2x

1 − c
M(n, x − 1).

Proof We use the difference equation for M(n, x), which is, by self-duality, equivalent to
the three-term recurrence relation:

(c − 1)(n + k) M(n, x) = c(2k + x)M(n, x + 1) − (1 + c)(k + x)M(n, x) + xM(n, x − 1).

Since [πk(H)M(·, x)](n) = 2(k + n)M(n, x) the result follows. �

With the actions of Xa(c) and H on Meixner polynomials, it is possible to express E
and F acting on M(n, x) as three-term difference operators in the variable x . This leads to a
representation by difference operators in x , in which the basis elements H , E and F all act by
three-term difference operators. Having actions of H , E and F , we can express, after a large
computation, �(�) in terms of difference operators in two variables x1 and x2. We prefer,
however, to work with a simpler representation in which H acts as a multiplication operator,
and E and F as one-term difference operators. Note that the action of Xa(c) in the x-variable
corresponds up to a constant to the action of H in the n-variable, i.e. it is a multiplication
operator. We can make a new sl(2,C)-triple with Xa(c) playing the role of H . The following
result from [8, §3.2], where it is proved using conjugation with a group element, gives the
corresponding isomorphism.

Lemma 4.5 Define elements Hc, Ec, Fc ∈ su(1, 1) by

Hc = 1 + c

1 − c
H − 2

√
c

1 − c
E + 2

√
c

1 − c
F,

Ec =
√
c

1 − c
H − 1

1 − c
E + c

1 − c
F,

Fc = −
√
c

1 − c
H + c

1 − c
E − 1

1 − c
F,

then the assignments

θc(H) = Hc, θc(E) = Ec, θc(F) = Fc,

extend to a Lie algebra isomorphism θc : su(1, 1) → su(1, 1) with inverse (θc)
−1 = θc.

Furthermore, θc(�) = �.

Proof To show that θc defines a Lie algebra homomorphism we need to check the commuta-
tion relations, which is a straightforward computation. The matrix of θc with respect to the
basis {H , E, F} is

1

1 − c

⎛
⎝1 + c −2

√
c 2

√
c√

c −1 c
−√

c c −1

⎞
⎠ .

To show that (θc)
−1 = θc, or equivalently (θc)

2 = Id, it suffices to check that the square of
this matrix is the identity matrix. Again, this is a straightforward calculation. �
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Note that θc preserves the ∗-structure, i.e. θc(X∗) = θc(X)∗.
Observe that Hc = 2

√
c

c−1 Xa(c), so we defined Hc in such a way that

[πk(Hc)M(·, x)](n) = 2(k + x)M(n, x).

By Lemma 4.5,

H = (θc)
−1(Hc) = θc(Hc) = 1 + c

1 − c
Hc − 2

√
c

1 − c
Ec + 2

√
c

1 − c
Fc.

This gives

Ec − Fc = 1 + c

2
√
c
Hc − 1 − c

2
√
c
H ,

Ec + Fc = 1 − c

4
√
c

[H , Hc], (4.8)

which shows that we can express Ec and Fc completely in terms of Hc and H . This allows
us to write down explicit actions of Ec and Fc acting on M(n, x) in the x-variable. This then
shows that M(n, x) has the desired intertwining properties.

Lemma 4.6 The functions M(n, x) satisfy

[πk(Hc)M(·, x)](n) = 2(k + x)M(n, x),

[πk(Ec)M(·, x)](n) = √
c(2k + x)M(n, x − 1),

[πk(Fc)M(·, x)](n) = − x√
c
M(n, x + 1).

Proof We already know the action of Hc. Using (4.8) and Lemma 4.4 for the action of H we
find

[πk(Ec − Fc)M(·, x)] (n) = √
c(2k + x)M(n, x + 1) + x√

c
M(n, x − 1),

[πk(Ec + Fc)M(·, x)] (n) = √
c(2k + x)M(n, x + 1) − x√

c
M(n, x − 1),

which gives the actions of Ec and Fc. �
Now we are ready to define the intertwiner.

Proposition 4.7 The operator � : F0(N) → F(N) defined by

(� f )(x) =
∑
n∈N

wk(n) f (n)M(n, x)

extends to a unitary operator � : Hk → Hk , and intertwines πk with πk ◦ θc. Furthermore,
the kernel M(n, x) satisfies

[πk(X
∗)M(·, x)](n) = [πk(θc(X))M(n, ·)](x), X ∈ U (su(1, 1)).

Proof Unitarity follows from the orthogonality relations and completeness of the Meixner
polynomials. The properties of the kernel follow from Lemma 4.6. �

For j = 1, . . . , N assume k j > 0 . From Proposition 4.7 we find unitary equivalence for
tensor product representations,

πk1 ⊗ · · · ⊗ πkN � (πk1 ⊗ · · · ⊗ πkN ) ◦ (θc ⊗ · · · ⊗ θc).
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Using θc ⊗θc ◦� = �◦θc and θc(�) = �, we see that, as in Lemma 4.2, the right-hand-side
applied to

∑
pi, j [Yi, j − 2ki k j ] is the generator LSIP. Applying Theorem 2.2 then leads to

self-duality of LSIP (4.1), i.e. self-duality of the symmetric inclusion process SIP(k).

Theorem 4.8 The operator LSIP defined by (4.1) is self-dual, with duality function

N∏
j=1

M(n j , x j ; k j , c).

Remark 4.9 The Lie algebra su(2) is sl(2,C) equipped with the ∗-structure defined by
H∗ = H , E∗ = F . It is well known that su(2) has only finite dimensional irreducible
∗-representations. These can formally be obtained from the su(1, 1) discrete series repre-
sentation (4.4) by setting k = − j/2 for some j ∈ N, where j + 1 is the dimension of the
corresponding representation space. If we make the corresponding substitution ki = − ji/2
in the generator (4.1) of the symmetric inclusion process, we obtain the generator of the sym-
metric exclusion process SEP on N sites where site i can have at most ji particles. Making a
similar substitution in Theorem 4.8 we find self-duality of SEP, with duality function given
by a product of Krawtchouk polynomials.

4.2 Laguerre Polynomials and Duality Between SIP and BEP

The Laguerre polynomials [11, Section 9.12] are defined by

L(α)
n (x) = (α + 1)n

n! 1F1

( −n

α + 1
; x

)
.

They form an orthogonal basis for L2([0,∞), xαe−xdx), with orthogonality relations given
by ∫ ∞

0
L(α)
m (x)L(α)

n (x)xαe−xdx = δmn
�(α + n + 1)

n! , α > −1.

The three-term recurrence relation is

−xL(α)
n (x) = (n + 1)L(α)

n+1(x) − (2n + α + 1)L(α)
n (x) + (n + α)L(α)

n−1(x),

and the differential equation is

x
d2

dx2
L(α)
n (x) + (α + 1 − x)

d

dx
L(α)
n (x) = −nL(α)

n (x).

We consider the action of the parabolic Lie algebra element X1 = −H + E − F ,

[πk(X1) f ](n) = −2(n + k) f (n) + n√
c
f (n − 1) + √

c(2k + n) f (n + 1).

Using the three-term recurrence relation for the Laguerre polynomials

L(n, x; k) = n!c− n
2

(2k)n
L(2k−1)
n (x),

we find the following result.

Lemma 4.10 The Laguerre polynomials L(n, x) = L(n, x; k) are eigenfunctions of πk(X1),

[πk(X1)L(·, x)](n) = −xL(n, x), x ∈ [0,∞).
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Just as we did in the elliptic case, we can define an algebra isomorphism that will be
useful. In this case, the element X1 corresponds to the generator E .

Lemma 4.11 The assignments

θ(H) = E + F, θ(E) = i

2
(−H + E − F), θ(F) = i

2
(H + E − F),

extend to a Lie algebra isomorphism θ : sl(2,C) → sl(2,C). Furthermore, θ(�) = �.

Note that θ(E) = i
2 X1. Furthermore, θ does not preserve the su(1, 1)-∗-structure,

i.e. θ(X∗) �= θ(X)∗ in general. However, we can define another ∗-structure on sl(2,C)

by � = θ−1 ◦ ∗ ◦ θ , then

H � = −H , E� = −E, F� = −F, (4.9)

which is the ∗-structure of isl(2,R). Next we determine the actions of the generators on the
Laguerre polynomials.

Lemma 4.12 The Laguerre polynomials L(n, x) satisfy

[πk(θ(H))L(·, x)](n) = 2x
∂

∂x
L(n, x) + (2k − x) L(n, x),

[πk(θ(E))L(·, x)](n) = −1

2
i x L(n, x),

[πk(θ(F))L(·, x)](n) = −2i x
∂2

∂x2
L(n, x) − 2i(2k − x)

∂

∂x
L(n, x) + i

2
(4k − x) L(n, x).

Proof The action of θ(E) is Lemma 4.10. From the differential equation for Laguerre poly-
nomials we find

[πk(H)L(·, x)](n) = 2(k + n)L(n, x) = −2x
∂2

∂x2
L(n, x)

−2(2k − x)
∂

∂x
L(n, x) + 2k L(n, x).

By linearity πk(H) extends to a differential operator acting on polynomials. Then the action
of θ(H) is obtained from the identity θ(H) = E + F = − 1

2 [X1, H ]. Finally, the action of
θ(F) follows from θ(F) = θ(E) + i H . �

Nextwedefine anunbounded representationσk of sl(2,C)onHk= L2([0,∞), w(x; k)dx),
where

w(x; k) = x2k−1e−x

�(2k)
.

As a dense domain we take the set of polynomials P . The representation σk is defined on the
generators H , E, F by

[σk(H) f ](x) = 2x
∂

∂x
f (x) + (2k − x) f (x),

[σk(E) f ](x) = −1

2
i x f (x),

[σk(F) f ](x) = −2i x
∂2

∂x2
f (x) − 2i(2k − x)

∂

∂x
f (x) + i

2
(4k − x) f (x).

(4.10)
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Note that this is not a ∗-representation of su(1, 1), but σk ◦ θ−1 is. Equivalently, σk is a
∗-representation on Hk with respect to the ∗-structure defined by (4.9). In the following
lemma we give the intertwiner between πk and σk ◦ θ−1. The proof uses Lemma 4.12 and
orthogonality and completeness of the Laguerre polynomials.

Proposition 4.13 The operator � : F0(N) → F([0,∞)) defined by

(� f )(x) =
∑
n∈N

wk(n) f (n)L(n, x),

extends to a unitary operator � : Hk → Hk intertwining πk with σk ◦ θ−1. Furthermore, the
kernel L(n, x) satisfies

[πk(X
∗)L(·, x)](n) = [σk(θ−1(X))L(n, ·)](x), X ∈ U (su(1, 1)).

For j = 1, . . . , N let k j > 0, and define

σk = (σk1 ⊗ · · · ⊗ σkN ) ◦ (θ−1 ⊗ · · · ⊗ θ−1), (4.11)

which is a ∗-representation of su(1, 1) on ⊗n
j=1 Hk j . The counterpart of Lemma 4.2 for the

representation σk is as follows.

Lemma 4.14 The generator LBEP given by (4.2) satisfies

LBEP =
∑

1≤i< j≤N

pi, j
[
σk(Yi, j ) + 2ki k j

]
,

where Y is given by (4.5).

Proof Using θ ⊗ θ ◦ � = � ◦ θ and θ(�) = �, we see that (θ ⊗ θ)(Y ) = Y . It is enough
to calculate σk1 ⊗ σk2(Y ). Using (4.5) and (4.10) we find

[σk1 ⊗ σk2(Y ) f ](x1, x2) = −2k1k2 f (x1, x2) − 2(x1k2 − x2k1)
( ∂

∂x1
− ∂

∂x2

)
f (x1, x2)

+ x1x2
( ∂2

∂x21
− 2

∂2

∂x1∂x2
+ ∂2

∂x22

)
f (x1, x2),

which corresponds to the term with (i, j) = (1, 2) in (4.2). �
Finally, application of Theorem 2.2 gives duality between the symmetric inclusion process
SIP(k) and the Brownian energy process BEP(k).

Theorem 4.15 The operators LSIP defined by (4.1) and LBEP defined by (4.2) are in duality,
with duality function

N∏
j=1

L(n j , x j ; k j ).

4.3 Bessel Functions and Self-Duality of BEP

The Bessel function of the first kind [1, Chapter 4] is defined by

Jν(x) = (x/2)ν

�(ν + 1)
0F1

(
–

ν + 1
;− x2

4

)
.
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The function Jν(xy) is an eigenfunction of a second-order differential operator;

T = − ∂2

∂x2
− 1

x

∂

∂x
+ ν2

x2
, T Jν(xy) = y2 Jν(xy).

The Hankel transform is a unitary operator Fν : L2([0,∞), xdx) → L2([0,∞), ydy)
defined by

(Fν f )(y) =
∫ ∞

0
f (x)Jν(xy)x dx, ν > −1,

for suitable functions f , and the inverse is given by F−1
ν = Fν .

Let k > 0. We consider the second-order differential operator σk(F), see (4.10). Using
the differential equation for the Bessel functions, we can find eigenfunctions of σk(F) in
terms of the Bessel functions

J (x, y; k) = e
1
2 (x+y)(xy)−k+ 1

2 J2k−1(
√
xy).

We can also determine the actions of H and E on the eigenfunctions.

Lemma 4.16 The Bessel functions J (x, y) = J (x, y; k) satisfy

[σk(H)J (·, y)](x) = −2y
∂

∂ y
J (x, y) − (2k − y)J (x, y),

[σk(E)J (·, y)](x) = 2iy
∂2

∂ y2
J (x, y) + 2i(2k − y)

∂

∂ y
J (x, y) − i

2
(4k − y) J (x, y),

[σk(F)J (·, y)](x) = 1

2
iy J (x, y).

Proof The action of F follows from the differential equation for the Bessel functions. We
have

[σk(E)J (·, y)](x) = − i x

2
J (x, y),

then using the self-duality of the Bessel functions, i.e. symmetry in x and y, we obtain the
action of E . Finally, having the actions of E and F , we find the action of H from H = [E, F].

�
Using the Hankel transform we can now define a unitary intertwiner with a kernel that has
the desired properties.

Proposition 4.17 The operator � : P → F([0,∞)) defined by

(� f )(y) =
∫ ∞

0
f (x)J (x, y)w(x; k) dx,

extends to a unitary operator � : Hk → Hk intertwining σk with itself. Furthermore, the
kernel satisfies

[σk(X�)J (·, y)](x) = [σk(X)J (x, ·)](y).
Proof Since the set of polynomials P is dense in Hk , it is enough to define � on P . Unitarity
of� is essentially unitarity of the Hankel transformF2k−1. The intertwining property follows
directly from Lemma 4.16. �
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Note that � intertwines between ∗-representation with respect to the ∗-structure given by
(4.9). Equivalently,� intertwines σ ◦θ−1 with itself, which is a ∗-representation with respect
to the su(1, 1)-∗-structure.

Let k ∈ R
N
>0, and consider the tensor product representation σk defined by (4.11). Then

from Proposition 4.17, Lemma 4.14 and Theorem 2.2 we obtain self-duality of the Brownian
energy process BEP(k).

Theorem 4.18 The operator LBEP given by (4.2) is self-dual, with duality function given by

N∏
j=1

J (x j , y j ; k j ).

4.4 More Duality Relations

The Meixner polynomials from Sect. 4.1 can be considered as overlap coefficients between
eigenvectors of the elliptic Lie algebra element H and another elliptic element Xa(c). There
is a similar interpretation as overlap coefficients for the Laguerre polynomials (elliptic H
- parabolic X1) and Bessel functions (parabolic X1 - parabolic X−1). So far we did not
consider overlap coefficients involving a hyperbolic Lie algebra element, because there does
not seem to be an interpretation in this setting for the element Y from (4.5) as generator
for a Markov process. However, the construction we used still works and leads to duality as
operators between LSIP or LBEP and a difference operator Lhyp defined below, which may
be of interest. We will give the main ingredients for duality between LSIP and Lhyp in case
N = 2 using overlap coefficients between elliptic and hyperbolic bases, which can be given
in terms of Meixner–Pollaczek polynomials, see also [9,12].

The Meixner–Pollaczek polynomials [11, Section 9.7] are defined by

P(λ)
n (x;φ) = einφ (2λ)n

n! 2F1

(−n, λ + i x

2λ
; 1 − e−2iφ

)
.

The orthogonality relations are

1

2π

∫ ∞

−∞
Pm(x)Pn(x) e

(2φ−π)x |�(λ + i x)|2 dx=δmn
�(n + 2λ)

(2 sin φ)2λ n! , λ > 0, 0 < φ < π,

and the Meixner–Pollaczek polynomials form an orthogonal basis for the corresponding
weighted L2-space. The three-term recurrence relations is

2x sin φ Pn(x) = (n + 1)Pn+1(x) − 2(n + λ) cosφ Pn(x) + (n + 2λ − 1)Pn−1(x),

and the difference equation is

2(n+λ) sin φ Pn(x)=−ieiφ(λ−i x) Pn(x+i)+2x cosφ Pn(x) + ie−iφ(λ + i x)Pn(x − i).

We also need the representation ρk on Hφ
k = L2(R, w

φ
k (x)dx), with weight function

w
φ
k (x) = (2 sin φ)2k

2π�(2k)
e−πx |�(k + i x)|2,

given by

[ρk(H) f ](x) = 2i x f (x),

[ρk(E) f ](x) = (k − i x) f (x + i),

[ρk(F) f ](x) = −(k + i x) f (x − i).
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Now define an operator Lhyp on an appropriate dense subspace of Hφ
k1

⊗ Hφ
k2

by

Lhyp = ρk1 ⊗ ρk2(Y ) + k1k2,

where Y is given by (4.5), then we see that Lhyp is the difference operator given by

[Lhyp f ](x1, x2) = 2(k1 − i x1)(k2 + i x2)
(
f (x1 + i, x2 − i) − f (x1, x2)

)

+ 2(k1 + i x1)(k2 − i x2)
(
f (x1 − i, x2 + i) − f (x1, x2)

)
.

In order to obtain a duality relation, we use the Lie algebra isomorphism θφ : sl(2,C) →
sl(2,C) defined by

θφ(H) = i

sin φ

(
− cosφH + E − F

)
,

θφ(E) = 1

2i sin φ

(
− H + e−iφE − eiφF

)
,

θφ(F) = 1

2i sin φ

(
− H + eiφE − e−iφF

)
.

Note that θφ(H) = i
sin φ

Xcosφ , see (4.6), which is a hyperbolic Lie algebra element. The
isomorphism does not preserve the su(1, 1)-∗-structure, but we have θφ(X∗) = θφ(X)�, see
(4.9). Now consider the functions

P(n, x) = P(n, x; k, φ) = exφ
n!

(2k)n
P(k)
n (x;φ).

Using H = −i
sin φ

(cosφ(θφ(H)) − θφ(E) − θφ(F)), the three-term recurrence relation and
the difference equation, one finds

[πk(θφ(H))P(·, x)](n) = 2i x P(n, x),

[πk(θφ(E))P(·, x)](n) = −(k − i x)P(n, x + i),

[πk(θφ(F))P(·, x)](n) = (k + i x)P(n, x − i).

so that

[πk(X
∗)P(·, x)](n) = [ρk(θ−1

φ (X))P(n, ·)](x).
Then we can construct a unitary intertwiner between πk ◦ θφ and ρk with P(x, n) as a kernel,
but we do not actually need the intertwiner, since the kernel is enough to state the duality
result. Using θφ(�) = �we obtain duality between the operators LSIP and Lhyp, with duality
function given by the product

P(n1, x1; k1, φ)P(n2, x2; k2, φ).

In a similarwaywe can find duality between LBEP and Lhyp in terms of Laguerre functions,
and also self-duality for Lhyp in terms of Meixner–Pollaczek functions.
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