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KERNEL-FUNCTION BASED ALGORITHMS
FOR SEMIDEFINITE OPTIMIZATION ∗

M. EL Ghami1, Y.Q. Bai2 and C. roos3

Abstract. Recently, Y.Q. Bai, M. El Ghami and C. Roos [3] intro-
duced a new class of so-called eligible kernel functions which are defined
by some simple conditions. The authors designed primal-dual interior-
point methods for linear optimization (LO) based on eligible kernel
functions and simplified the analysis of these methods considerably.
In this paper we consider the semidefinite optimization (SDO) prob-
lem and we generalize the aforementioned results for LO to SDO. The
iteration bounds obtained are analogous to the results in [3] for LO.

Keywords. Semidefinite optimization, interior-point methods, primal-
dual method, complexity.
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1. Introduction

In this paper we deal with the semidefinite optimization (SDO) problem in the
standard form:

(P ) p∗ = inf
X∈Sn

{Tr(CX) : Tr(AiX) = bi(1 ≤ i ≤ m), X � 0},
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and its dual problem:

(D) d∗ = sup
y,S

{
bT y :

m∑
i=1

yiAi + S = C, S � 0

}
,

where C ∈ Sn and Ai ∈ Sn, i = 1, . . . ,m, b ∈ Rm. X � 0 means that X is a
symmetric positive semidefinite matrix. Without loss of generality we assume that
the matrices Ai are linearly independent. Interior-point methods (IPMs) provide a
powerful approach for solving SDO problems. A comprehensive list of publications
on this topic can be found in the SDO homepage maintained by Alizadeh [1].
The pioneering works in this direction are due to Alizadeh [1,2] and Nesterov
and Nemirovskii [8]. Most IPMs for SDO can be viewed as natural extensions of
IPMs for linear optimization (LO) and have similar polynomial complexity results.
However, obtaining a valid search direction in SDO case is much more difficult than
in the LO case.

In this paper we present the approach of using kernel function to determine the
search directions and to design primal-dual IPMs for solving SDO problems.

Our aim in this paper is to show that the approach presented in [3] for LO, which
is based on so-called eligible kernel functions, can be extended in a natural way to
SDO, thus yielding a wide class of new methods for SDO. For another class, of the
so-called self-regular kernel functions, this has already been done [9]. Just as in the
LO case, the new methods have the same iteration complexity for small-update
methods, but the iteration complexity is better for large-update methods.

This paper is organized as follows. In Section 2 we recall the notion of a kernel
function, and the barrier function for SDO induced by a kernel function, and we
show how any kernel function defines in a natural way a primal-dual interior-point
algorithm. In Section 3, following [3] we introduce the class of eligible kernel
functions. We also recall some results from [3] that are useful in the current
context. Section 3.2 is devoted to properties of an eligible kernel function and its
barrier function that we need in the analysis of the algorithm. We find a default
value for the step size, an upper bound for the decrease of the barrier function
during one iteration, etc. The main result is that the complexity of the algorithm
can be obtained by the same simple scheme that was presented in [3] for LO; the
only input for the scheme, which is given in Section 3.3, is the kernel function and
the dimension n of the problem that we want to solve. Finally, some concluding
remarks follow in Section 4.

We use the following notational conventions. Throughout, ‖·‖ denotes the
2-norm of a vector. The nonnegative and the positive orthants are denoted as
Rn

+ and Rn
++, respectively, and Sn, Sn

+, and Sn
++ denote the cone of symmetric,

positive semidefinite and positive definite n × n matrices, respectively. For any
V ∈ Sn, we denote by λ(V ) the vector of eigenvalues of V arranged in nondecreas-
ing order, that is, λ1(V ) ≤ λ2(V ) ≤, . . . , λn(V ).

Finally, if z ∈ Rn
+ and f : R+ → R+, then f (z) denotes the vector in Rn

+

whose i-th component is f (zi), with 1 ≤ i ≤ n.
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2. Algorithms based on kernel functions

2.1. Preliminaries

We assume that (P ) and (D) satisfy the interior-point condition (IPC), i.e.,
there exists X0 � 0 and (y0, S0) with S0 � 0 such that X0 is feasible for (P ) and
(y0, S0) is feasible for (D). Moreover, we may assume that X0 = S0 = E, where
E is the identity matrix. In that case, for any μ > 0 there exist a unique primal
feasible X and unique dual feasible y and S such that

XS = μE. (2.1)

This solution is denoted by (X(μ), y(μ), S(μ)); X(μ) is called the μ-center of (P )
and (y(μ), S(μ)) is the μ-center of (D). The set of μ-centers (with μ > 0) defines
a homotopy path, which is called the central path of (P ) and (D) [4,9].

As is well known, the definition of search directions for SDO requires some
symmetrization scheme. In this paper we use the scheme due to Nesterov and
Todd, which uses the positive definite matrix

P := X
1
2

(
X

1
2SX

1
2

)− 1
2
X

1
2 = S− 1

2

(
S

1
2XS

1
2

) 1
2
S− 1

2 ; (2.2)

the last equality can be verified by elementary means. Let X � 0 be primal and
S � 0 dual feasible, and let D = P

1
2 , where P

1
2 denotes the symmetric square

root of P . Then the matrix D can be used to scale X and S to the same matrix
V , which is defined by [4,11]:

V :=
1√
μ
D−1XD−1 =

1√
μ
DSD =

1√
μ

(
D−1XSD

) 1
2 . (2.3)

Obviously the matrices D and V are symmetric and positive definite.

2.2. Kernel functions and their barrier functions

We call the univariate function ψ : (0,∞) → [0,∞) a kernel function if ψ is
three times differentiable and the following conditions are satisfied.

(i) ψ′(1) = ψ(1) = 0;
(ii) ψ′′(t) > 0, for all t > 0;

(iii) lim
t↓0

ψ(t) = lim
t→∞ψ(t) = ∞.

Clearly, (i) and (ii) say that ψ(t) is a nonnegative strictly convex function which
is minimal at t = 1, with ψ(1) = 0. Note that ψ(t) is completely determined by
its second derivative, because we have

ψ(t) =
∫ t

1

∫ ξ

1

ψ′′(ζ) dζdξ. (2.4)
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Because of property (iii) we say that ψ(t) has the barrier property.
Given a kernel function ψ, we recall the definition of a matrix function [7,10].

Definition 2.1. Let X be a positive definite (and hence symmetric) matrix, and
let

X = Q−1
X diag (λ1(X), λ2(X), . . . , λn(X))QX, (2.5)

be an eigenvalue decomposition of X , where λi(X), 1 ≤ i ≤ n, denote the
eigenvalues of X , and QX is orthogonal. Following [9], the matrix function
ψ(X) : Sn → Sn is defined by

ψ(X) = Q−1
X diag (ψ(λ1(X)), ψ(λ2(X)), . . . , ψ(λn(X)))QX (2.6)

and the barrier function Ψ(X) : Sn → R induced by ψ is defined by

Ψ(X) :=
n∑

i=1

ψ(λi(X)) = Tr(ψ(X)). (2.7)

In this paper, when we use the function ψ(.) and its first three derivatives ψ′(.),
ψ′′(.), and ψ′′′(.) without any specification, it denotes a matrix function if the
argument is a matrix and a univariate function (from R to R) if the argument is
in R.

2.3. Kernel-function based search directions

Following [9] we now describe the kernel-function-based approach to SDO. Given
the kernel function ψ(t) and the associated ψ(V ) and ψ′(V ) as defined in Defini-
tion 2.1, just as in [9] we define the scaled search direction by the following linear
system:

Tr (ĀiDX) = 0, i = 1 . . . ,m,
m∑

i=1

ΔyiĀi +DS = 0, (2.8)

DX +DS = −ψ′(V ),

where
Āi := DAiD, i = 1, 2, . . . , m,

Having DX and DS , we find displacements ΔX and ΔS in the X and S-spaces
from

ΔX := μDDXD; ΔS := μD−1DSD
−1. (2.9)

One may easily understand thatDX andDS , and also ΔX and ΔS are orthogonal.
We therefore have

Tr(DXDS) = 0. (2.10)
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Generic Primal-Dual Algorithm for SDO

Input:
a kernel function ψ(t);
a threshold parameter τ > 0;
an accuracy parameter ε > 0;
a barrier update parameter θ, 0 < θ < 1;

begin
X := E; S := E; V := E; μ := 1;
while nμ ≥ ε do
begin
μ := (1 − θ)μ;
while Ψ (V ) ≥ τ do
begin

solve ΔX , Δy and ΔS from (2.8) and (2.9);
determine a step size α;
X := X + αΔX ;
S := S + αΔS;
y := y + αΔy;
compute V from (2.3)

end
end

end

Figure 1. Generic primal-dual interior-point algorithm for SDO.

2.4. Generic primal-dual interior-point algorithm

The algorithm considered in this paper is described in Figure 1. Note that we
initialize the algorithm with X = S = E. Since then XS = 1 ·E, this means that
X = X(1) and S = S(1), and hence V = E, and therefore Ψ(V ) = 0.

Given the kernel function ψ(t), just as in the case of linear optimization, the
parameters τ, θ, and the step size α should be chosen in such a way that the al-
gorithm is ‘optimized’ in the sense that the number of iterations required by the
algorithm is as small as possible. Obviously, the resulting iteration bound will
depend on the kernel function, and our main task is to find a kernel function that
minimizes the iteration bound.

In the analysis of the algorithm we also use a norm-based proximity measure
δ(V ), which is defined by

δ(V ) =
1
2
‖ψ′(V )‖ =

1
2

√√√√ n∑
i=1

ψ′(λi(V ))2 =
1
2
‖DX +DS‖ . (2.11)
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3. Eligible kernel functions

3.1. Definition

In this paper we only deal with so-called eligible kernel functions. Such kernel
functions were introduced in [3] and are characterized by the fact that the following
four conditions are satisfied

tψ′′(t) + ψ′(t) > 0, t < 1, (3.1-a)
ψ′′′(t) < 0, t > 0, (3.1-b)

2ψ′′(t)2 − ψ′(t)ψ′′′(t) > 0, t < 1, (3.1-c)
ψ′′(t)ψ′(βt) − βψ′(t)ψ′′(βt) > 0, t > 1, β > 1. (3.1-d)

By way of example we presented in [3], Table 6.4, seven eligible kernel functions,
and the iteration bound for the corresponding algorithm for LO for each of these
functions. As we show in this paper, exactly the same bounds can obtained for
SDO.

In the sequel we denote by � : [0,∞) → [1,∞) and ρ : [0,∞) → (0, 1] the inverse
functions of ψ(t) for t ≥ 1, and − 1

2ψ
′(t) for t ≤ 1, respectively. In other words

s = ψ(t) ⇔ t = �(s), t ≥ 1, (3.2)

s = − 1
2ψ

′(t) ⇔ t = ρ(s), t ≤ 1. (3.3)

Let us also mention here that at some places we apply the function Ψ to a positive
vector v. The definition is compatible with Definition 2.1 when identifying the
vector v with its diagonal matrix diag(v) and applying Ψ to this matrix to obtain

Ψ(v) =
n∑

i=1

ψ(vi), v ∈ Rn
++.

3.2. Properties of Ψ(V ) and δ(V )

In this subsection we extend Theorem 3.2 and Theorem 4.9 in [3] to positive
definite matrices. Let us recall from [3] that these theorems follows from condi-
tions (3.1-d) and (3.1-b), respectively.

Theorem 3.1. With � as defined in (3.2), we have for any positive definite matrix
V , and any β > 1,

Ψ(βV ) ≤ nψ

(
β�

(
Ψ(V )
n

))
·

Proof. Let vi := λi(V ), 1 ≤ i ≤ n. Then v > 0 and

Ψ(βV ) =
n∑

i=1

ψ(βλi(V )) =
n∑

i=1

ψ(βvi) = Ψ(βv).
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Using [3], Theorem 3.2, we may write

Ψ(βv) ≤ nψ

(
β�

(
Ψ(v)
n

))
= nψ

(
β�

(∑n
i=1 ψ(λi(V ))

n

))
= nψ

(
β�

(
Ψ(V )
n

))
·

This proves the theorem. �

The next theorem gives a lower bound on the norm-based proximity measure
δ(V ), as defined by (2.11), in terms of Ψ(V ). Observe that since Ψ(V ) is strictly
convex and attains its minimal value zero at V = E, we have

Ψ (V ) = 0 ⇔ δ (V ) = 0 ⇔ V = E.

Theorem 3.2. Let � be as defined in (3.2). Then δ(V ) ≥ 1
2ψ

′ (� (Ψ(V ))).

Proof. The statement in the lemma is obvious if V = E since then δ(V ) = Ψ(V ) =
0. Otherwise we have δ(V ) > 0 and Ψ(V ) > 0. To deal with the nontrivial case
we again let vi := λi(V ), 1 ≤ i ≤ n. Then v > 0 and

1
4

n∑
i=1

ψ′(λi(V ))2 = 1
4

n∑
i=1

ψ′(vi)2 = δ(v)2.

Using [3], Theorem 4.9, we get

δ(v) ≥ 1
2ψ

′ (� (Ψ(v))) = 1
2ψ

′
(
�

(
n∑

i=1

ψ(λi(V ))

))
= 1

2ψ
′ (� (Ψ(V ))) .

This completes the proof of the theorem. �

3.3. Analysis of the algorithm

In the analysis of the algorithm the concept of exponential convexity [3,5,6] is
again a crucial ingredient. In this section we derive a default value for the step size
and we obtain an upper bound for the decrease in Ψ(V ) during a Newton step. A
consequence of condition (3.1-a) is that any eligible kernel function is exponentially
convex [9], equation (2.10):

ψ(
√
t1t2) ≤ 1

2
(ψ (t1) + ψ (t2)) , ∀t1 > 0, ∀t2 > 0.

As was shown in [9], Proposition 5.2.6, this implies the following inequality, which
is crucial for our purpose.

Ψ
(
(V

1
2

1 V2V
1
2

1 )
1
2

)
≤ 1

2
(Ψ(V1) + Ψ(V2)) , ∀V1 � 0, ∀V2 � 0. (3.4)
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After a damped step with step size α, using (2.9) and (2.3) we have

X+ = X + αΔX = X + α
√
μDDXD =

√
μD (V + αDX)D,

S+ = S + αΔS = X + α
√
μD−1DSD

1 =
√
μD−1 (V + αDS)D−1.

By (2.3), the V -matrix corresponding to X+ and S+ with respect to μ, is given

by V+ = 1√
μ

(
D−1X+S+D

) 1
2 . From this we deduce that V 2

+ is unitarily similar to

the matrix X
1
2
+S+X

1
2
+ and hence the eigenvalues of V+ are the same as those of the

matrix

Ṽ+ :=
[
(V + αDX)

1
2 (V + αDS) (V + αDX)

1
2

] 1
2
. (3.5)

By the definition of Ψ we have Ψ (V+) = Ψ
(
Ṽ+

)
. Our aim is to find α such that

the decrement
f(α) := Ψ (V+) − Ψ (V ) = Ψ

(
Ṽ+

)
− Ψ (V ),

is as small as possible. Due to (3.4) it follows that

Ψ
(
Ṽ+

)
= Ψ

([
(V + αDX)

1
2 (V + αDS) (V + αDX)

1
2

] 1
2
)

≤ 1
2 [Ψ (V + αDX) + Ψ (V + αDS)] .

Therefore we have f(α) ≤ f1(α), where

f1(α) := 1
2 [Ψ (V + αDX) + Ψ (V + αDS)] − Ψ (V ).

Note that is f1(α) is convex in α, since Ψ is convex. Obviously, f(0) = f1(0) = 0.
Taking the derivative to α, we get

f ′
1(α) = 1

2Tr (ψ′ (V + αDX)DX + ψ′ (V + αDS)DS).

This gives, using the last equality in (2.8), and also (2.11),

f ′
1(0) = 1

2Tr (ψ′(V ) (DX +DS)) = − 1
2Tr

(
ψ′(V )2

)
= −2δ(V )2. (3.6)

Differentiating once more, we obtain

f ′′
1 (α) = 1

2Tr
(
ψ′′ (V + αDX)D2

X + ψ′′ (V + αDS)D2
S

)
. (3.7)

Below we use the shorthand notation

δ := δ(V ).

Starting from (3.7) and using the same arguments as in [12] one obtains the fol-
lowing lemma, which is cited without proof.
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Lemma 3.3 (Lemma 5.19 in [12]). One has

f ′′
1 (α) ≤ 2δ2 ψ′′ (λ1(V ) − 2αδ).

Putting vi = λi(X), 1 ≤ i ≤ n, we have

f ′′
1 (α) ≤ 2δ2 ψ′′ (v1 − 2αδ),

which is the same inequality as in Lemma 4.1 in [3]. From this stage on we can
apply word-by-word the same arguments as in [3] for the LO case to obtain the
following results.

Lemma 3.4 (Lem. 4.2 in [3]). One has f ′
1(α) ≤ 0 if α satisfies the inequality

− ψ′ (λ1(V ) − 2αδ) + ψ′ (λ1(V )) ≤ 2δ. (3.8)

Lemma 3.5 (Lem. 4.3 in [3]). With ρ as defined in (3.3), the largest possible
solution of inequality (3.8) is the step size

ᾱ :=
ρ (δ) − ρ (2δ)

2δ
· (3.9)

Lemma 3.6. Let ρ and ᾱ be as defined in Lemma 3.5. Then

1
ψ′′ (ρ (2δ))

≤ ᾱ ≤ 1
ψ′′ (ρ (δ))

·

The left inequality in (3.10) is in [3], Lemma 4.4, the proof of the right inequality
goes in a similar way. As in the LO case, we use

α̃ =
1

ψ′′ (�(2δ))
, (3.10)

as the default step size. By Lemma 3.6 we have α̃ ≤ ᾱ.

Theorem 3.7 (Thm. 4.6 in [3]). Let ρ be as defined in (3.3) and α̃ as in (3.10).
Then

f(α̃) ≤ − δ2

ψ′′ (ρ(2δ))
· (3.11)

Just as in the LO case, the right-hand side expression in (3.11) is monotonically
decreasing in δ, due to (3.1-c). Hence, by using the results of Theorems 3.7 and 3.2
we obtain

f(α̃) ≤ − (ψ′ (� (Ψ(V )))2

4ψ′′ (ρ (ψ′ (� (Ψ(V ))))
· (3.12)

This upper bound for the decrease in Ψ(V ) during an inner iteration is completely
in terms of ψ(t), its first and second derivatives ψ′(t) and ψ′′(t), and the inverse
functions ρ and �.
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Step 0: Specify a kernel function ψ(t); an update parameter θ, 0 < θ < 1; a
threshold parameter τ ; and an accuracy parameter ε.

Step 1: Solve the equation − 1
2
ψ′(t) = s to get ρ(s), the inverse function of

− 1
2
ψ′(t), t ∈ (0, 1]. If the equation is hard to solve, derive a lower bound

for ρ(s).
Step 2: Calculate the decrease of Ψ(v) during an inner iteration in terms of δ for

the default step size α̃ from

f(α̃) ≤ − δ2

ψ′′(ρ(2δ))
·

Step 3: Solve the equation ψ(t) = s to get 	(s), the inverse function of ψ(t), t ≥ 1.
If the equation is hard to solve, derive lower and upper bounds for 	(s).

Step 4: Derive a lower bound for δ in terms of Ψ(v) by using

δ(V ) ≥ 1
2
ψ′ (	 (Ψ(V )) .

Step 5: Using the results of step 3 and step 4 find a valid inequality of the form

f(α̃) ≤ −κΨ(V )1−γ

for some positive constants κ and γ, with γ ∈ (0, 1] as small as possible.
Step 6: Calculate the upper bound of Ψ0 from

Ψ0 ≤ Lψ(n, θ, τ ) = nψ

(
	
(
τ
n

)
√

1 − θ

)
≤ n

2
ψ′′(1)

(
	( τ
n
)√

1 − θ
− 1

)2

.

Step 7: Derive an upper bound for the total number of iterations by using that

Ψγ
0

θκγ
log

n

ε

is an upper bound for this number.
Step 8: Set τ = O(n) and θ = Θ(1) to calculate a complexity bound for large-

update methods, and set τ = O(1) and θ = Θ( 1√
n
) to calculate a com-

plexity bound for small-update methods.

Figure 2. Scheme for analyzing a kernel-function-based algorithm.

As a result, the further analysis boils down to exactly the same analysis as given
in [3] for the LO case. We do not wish to repeat this analysis here, but refer to [3].
As a result the computations required to get iteration bounds can be performed
in a systematic way by using the scheme in Figure 2, which is essentially the same
scheme as was presented in [3], Section 6.1, for the LO case.

4. Concluding remarks

In this paper we extended the results obtained for kernel-function-based IPMs
in [3] for LO to SDO. We have seen that at some point (after Lem. 3.3 in this
paper) the analysis boils down to exactly the same analysis as for the LO case.
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As a consequence, the resulting iteration bounds for semidefinite optimization are
the same as the bounds that were obtained in [3] for LO.

Apart from the topics for future research that were mentioned in [3], there is
one interesting topic which is of special interest for semidefinite optimization: the
search direction used in this paper is based on the Nesterov-Todd symmetrization
scheme and it is natural to ask whether or not other existing symmetrization
schemes can be used in the kernel-function-based framework.
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