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Sensor Selection and Rate Distribution Based
Beamforming in Wireless Acoustic Sensor Networks

Jie Zhang, Richard Heusdens, and Richard C. Hendriks

Circuits and Systems (CAS) Group, Delft University of Technology, the Netherlands

E-mail: {j.zhang-7; r.heusdens; r.c.hendriks}@tudelft.nl

Abstract—Power usage is an important aspect of wireless
acoustic sensor networks (WASNs) and reducing the amount of
information that is to be transmitted is one effective way to save
it. In previous contributions, we presented sensor selection as
well as rate distribution methods to reduce the power usage of
beamforming algorithms in WASNs. Taking only transmission
power into account, it was shown that rate distribution is a gen-
eralization of sensor selection and that rate distribution is more
efficient than sensor selection with respect to the power usage
versus performance trade-off. However, this excludes the energy
consumption that it takes to keep the WASN nodes activated.
In this paper, we present a more detailed comparison between
sensor selection and rate-allocation by taking also into account
the power to keep sensors activated for centralized WASNs.
The framework is formulated by minimizing the total power
usage, while lower bounding the noise reduction performance.
Numerical results show that whether rate distribution is more
efficient than sensor selection depends on the actual power that
is used to keep sensors activated.

Index Terms—Wireless acoustic sensor networks, beamform-
ing, sensor selection, rate distribution, energy consumption.

I. INTRODUCTION

Power usage is a vital factor for the applications in wireless

acoustic sensor networks (WASNs), e.g., beamforming based

noise reduction, since usually the sensors are battery-driven

and have limited power budget [1]. It is desirable that the

tasks at hand consume as little energy as possible, such that

the network lifetime can be maximized. In this work, we focus

on the centralized WASNs, which exploit a fusion center (FC)

to gather and process the data. The sensor nodes are connected

with the FC via wireless links and transmit their recordings to

the FC at a certain communication rate. Obviously, the actual

rate influences the performance that can be achieved; lowering

the rate will increase the amount of quantization noise.

Sensor selection [2]–[6] and rate allocation [7]–[11] are

two often-used strategies to reduce the power usage for

WASNs. Sensor selection chooses a subset of sensors by

optimizing a certain performance criterion, while constraining

the cardinality of the selected subset, or the other way around.

As the sensor measurements in a WASN are usually highly

correlated, there is often no need to gather all data from the

complete network to achieve a certain prescribed performance.

Hence, with sensor selection the most informative subset of

sensors that should be involved can be determined, leading

to reduced data transmission. On the other hand, since the

wireless transmission cost is directly related to the bit-rate,

another strategy is to distribute the transmission bits to sensors

such that a certain prescribed performance is obtained. The

difference between these two techniques lies in the hard binary

decision to select a node versus the soft decision by assigning

a certain amount of bits for transmission. In other words, the

sensors selected by the sensor selection algorithms use either

zero or maximum rate to communicate with the FC, while the

rate allocation methods allow the sensors to use any possible

rate between zero and the maximum value.

In [10], we proposed a rate-distributed linearly constrained

minimum variance (LCMV) beamformer based noise reduc-

tion algorithm for energy-aware WASNs. The problem was

formulated by minimizing the total transmission cost between

the sensors and the FC under a constraint on the desired noise

reduction performance. The optimal rate distribution over the

network was shown to lead to a reduced power consumption

compared to sensor selection. Moreover, by representing rate

distribution as a Boolean optimization problem, it was shown

that sensor selection is a special case of rate allocation.

Although it followed from [10] that rate-allocation is always

more efficient than sensor selection in terms of the power

usage versus performance trade-off, this strongly depends on

how power usage is defined. In [10], only the power consump-

tion for transmission was taken into account, while the sensor

self-cost, i.e., the power needed to keep sensors activated (even

if they transmit at a very low rate), was neglected. Taking

the power to keep nodes activated into account is expected to

change the outcome of the comparison between rate allocation

and sensor selection and will be investigated in this paper.

Particularly, we generalize the framework in [10] by taking

the sensor self-cost into account. The proposed framework

is formulated by optimizing the trade-off between the total

power usage and the noise reduction capability. Using an

LCMV beamformer, the problem is formulated as a semi-

definite program for both sensor selection and rate allocation.

II. FUNDAMENTALS

A. Signal model

We consider a WASN consisting of K microphones that

monitor the sound field. We assume there is one target source

and several interferers1. In the short-time Fourier transfer

(STFT) domain, let l and ω denote the time-frame index and

1As will be shown in the experimental results, the proposed methods are
also validated when multiple target sources are present. Without loss of
generalization, we stick here to the case of one target source.
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the angular frequency, respectively. The noisy and transmitted

STFT coefficient that is received by the FC from the kth

microphone, say Yk(ω, l), is then given by

Yk(ω, l) = Xk(ω, l) +Nk(ω, l), k = 1, 2, · · · ,K, (1)

where Xk(ω, l) = ak(ω)S(ω, l) with ak(ω) the acoustic trans-

fer function (ATF) of the target source from the source location

to the kth microphone and S(ω, l) the STFT coefficient of

the target source at its original location. In (1), the total

noise (including interferers) received by the FC is denoted

by Nk(ω, l), which is given by

Nk(ω, l) = Zk(ω, l) +Qk(ω, l), (2)

where Zk(ω, l) denotes the total received acoustic noise by the

kth microphone (including correlated noise sources and un-

correlated noise) and Qk(ω, l) denotes the quantization noise

introduced by representing the data at a low communication

rate.2 For notational convenience, the frequency variable ω and

the frame index l will be omitted taking into account that all

processing takes place per time frame and per frequency band.

We use vector notation and stack the quantized signals from K
microphones in a vector y = [Y1, ..., YK ]T ∈ C

K . Similarly,

we define K dimensional vectors a, x, n, z, and q for the

ATFs, the target speech component, the received noises by the

FC, the acoustic noise and the quantization noise, respectively,

such that (1) can be rewritten as

y = aS + z+ q, (3)

where x = aS and n = z+ q. Assuming that all sources are

mutually uncorrelated, the correlation matrix of the received

signals is given by [10]

Ryy = E{yyH} = Rxx +Rzz +Rqq︸ ︷︷ ︸
Rnn

∈ C
K×K , (4)

where E{·} denotes mathematical expectation. In case the

sensors utilize uniform quantizers to quantize their recordings,

the correlation matrix of the quantization noise Rqq is given

by [9], [10], [12]

Rqq =
1

12
diag

([A2
1

4b1
,
A2

2

4b2
, ...,

A2
K

4bK

])
, (5)

where Ak = max{|Yk|} and bk denotes the number of bits

used by the kth microphone node. In this work, we assume

that the ATFs of the target sources are known.

B. LCMV beamforming

The LCMV beamformer is widely used in acoustic array

processing. It is formulated by minimizing the noise power

subject to a number of linear constraints, resulting in the

following constrained problem formulation [13]–[16]

ŵLCMV = argmin
w

wHRnnw, s.t. ΛHw = f , (6)

where f = [f1, · · · , fU ]T ∈ C
U and Λ ∈ C

U×K with U
denoting the number of equality constraints. The closed-form

2In practice, the microphone measurements are already quantized by
the analog-to-digital converter before being transmitted to the FC. In this
case, Qk(ω, l) indicates the error caused by resampling the microphone
measurements at a lower rate.

solution to (6) is given by [13]–[16]

ŵLCMV = R−1
nnΛ(ΛHR−1

n+qΛ)−1f , (7)

resulting in an output noise power [16]

ŵHRnnŵ = fH(ΛHR−1
nnΛ)−1f . (8)

The linear constraints in (6) can be used to preserve sources

or cancel interferers by specifying the matrix Λ and vector f .

In binaural applications [11], [17]–[19], LCMV beamforming

can also be used to preserve certain interaural relations (e.g.,

spatial cue preservation).

III. PROPOSED FRAMEWORK

A. Problem formulation

Using Shannon’s channel capacity theorem [20], the power

needed to transmit data from microphone k to the FC for a

single time-frequency bin is given by [21]–[23]

Ek = d2kVk(4
bk − 1), (9)

where dk denotes the transmission distance and Vk the power

spectral density (PSD) of the channel noise.

In this paper, our focus is on reducing the transmission costs

between sensors and the FC, while reaching a prescribed noise

reduction performance. The transmission costs are reduced by

utilizing rate distribution or sensor selection strategies, and

noise reduction is performed using LCMV beamforming. The

initial problem is formulated by minimizing the total power

usage, which consists of the sum of the transmission powers

over all sensors, and the power that is needed to keep the

transmitting devices activated, subject to a constraint on the

noise reduction performance. That is,

min
w,b

g(b) =

K∑
k=1

d2kVk(4
bk − 1) + c0||b||0

s.t. wHRnnw ≤ β

α
ΛHw = f , bk ∈ Z+, bk ≤ b0, ∀k,

(P1)

where β denotes the output noise power that is achieved if

all sensors are activated at the maximum rate, α ∈ (0, 1] is

to control a certain desired performance compared to β, Z+

denotes a non-negative integer set, b0 the maximum bit-rate

per sample, and c0 is the cost for having a sensor activated.

The �0-(quasi) norm of b refers to the number of non-zero

entries in b, i.e., ||b||0 := |{k : bk �= 0}|. Note that here

we assume that the sensors are homogeneous without loss of

generality, i.e., their self-costs are the same. Notice that the

output noise power wHRnnw depends on b via the noise

correlation matrix Rnn. The general form in (P1) is built from

the rate distribution point of view, yet it can easily be extended

to the context of sensor selection, which will be shown in Sec.

3.3. Notice that (P1) differs from the one presented in [10] as

now the power to keep sensors activated is also taken into

account. This might change the bit distribution, depending on

the value of c0. It might lead to situations where instead of

a small number of bits, it is preferred to allocate no bits to a

particular device in order to save the power for keeping that

device active. By solving (P1), one obtains the optimal rate



distribution that the microphone nodes should use to quantize

their measurements before transmission, such that a certain

specified noise-reduction performance is guaranteed. Solving

(P1) using an exhaustive search is intractable unless b0 and/or

K are very small, as this offers (b0 + 1)K choices. Next, we

will solve (P1) using convex optimization techniques.

B. Rate-distributed LCMV beamforming
Considering the Lagrangian function of (P1), it can easily

be verified that the LCMV beamformer in (7) is a candidate

solution. Hence, we can substitute (7) into (P1), such that (P1)

can be simplified by leaving out the linear constraints, resulting

in the following optimization problem:

min
b

g1(b) =
K∑

k=1

d2kVk(4
bk − 1) + c0||b||0

s.t. fH(ΛHR−1
nnΛ)−1f ≤ β

α
bk ∈ Z+, bk ≤ b0, ∀k,

(P2)

which is clearly non-linear and non-convex in b. Note that

the unknowns b are implicit in the term fH(ΛHR−1
nnΛ)−1f

through Rnn. We therefore need to split b out from

fH(ΛHR−1
nnΛ)−1f . To do this, we introduce a Hermitian

positive definite matrix G ∈ S
U
++ with S

U
++ denoting a set

for Hermitian positive definite matrices of dimension U × U ,

such that the first inequality constraint in (P2) can equivalently

be written as the following two constraints:

ΛHR−1
nnΛ = G, (10)

fHG−1f ≤ β

α
, (11)

where (10) can be expressed as a linear matrix inequality

(LMI) using the Schur complement [24, p.650], i.e.,[
G f

fH β
α

]
� OU+1. (12)

As the equality constraint in (10) is still non-convex as a

function of b, it can be relaxed to

ΛHR−1
nnΛ � G. (13)

In order to linearize (13) in b, we calculate R−1
nn as

R−1
nn

(a)
= (Rzz +Rqq)

−1

(b)
= R−1

zz −R−1
zz

(
R−1

zz +R−1
qq

)−1
R−1

zz , (14)

where (b) is derived from the matrix inversion lemma [25,

p.18]3. Substituting R−1
nn from (14) into (13), we obtain

ΛHR−1
zz Λ−G � ΛHR−1

zz

(
R−1

zz +R−1
qq

)−1
R−1

zz Λ. (15)

Using the Schur complement, we obtain the following LMI[
R−1

zz +R−1
qq R−1

zz Λ
ΛHR−1

zz ΛHR−1
zz Λ−G

]
� OK+U , (16)

where R−1
qq can be computed from (5) as

R−1
qq

(a)
= 12diag

([
4b1

A2
1

,
4b2

A2
2

, ...,
4bK

A2
K

])
(b)
= diag (e� (t+ 1K)) , (17)

3(A+CBCT )−1 = A−1 −A−1C(B−1 +CTA−1C)−1CTA−1.

where 1K denotes an all-ones column vector, � is Hadamard

product, and (b) is obtained by using the variable change

tk = 4bk − 1 ∈ Z, ∀k and defining a constant vector

e = [ 12A2
1
, · · · , 12

A2
K
], such that R−1

qq and (16) are both linear

in t. Note that ||b||0 = ||t||0. For the non-convex integer

constraint bk ∈ Z+, ∀k, we relax it to bk ∈ R+, i.e., tk ∈ R+.

In addition, the non-convex ||b||0 will be relaxed to ||b||1.

Due to the fact that bk = log4(tk + 1) ≈ tk/ ln 4 using the

first-order Taylor expansion of the function log4(tk + 1), we

have ||b||1 ≈ ||t||1/ ln 4. Altogether, we arrive at the following

standard semi-definite programming problem:

min
t,G

g1(b) =
K∑

k=1

d2kVktk +
c0
ln 4

||t||1 (18)

s.t.

[
G f

fH β
α

]
� OU+1, (18a)[

R−1
zz +R−1

qq R−1
zz Λ

ΛHR−1
zz ΛHR−1

zz Λ−G

]
� OK+U , (18b)

0 ≤ tk ≤ 4b0 − 1, ∀k, (18c)

which can be solved in polynomial time using standard solvers,

like CVX [26]. After (18) is solved, the rate distribution can

be resolved by bk = log4(tk+1), ∀k. As these are continuous

values, they need to be post-processed by randomized round-

ing [5], [6], [10] to obtain the final integer solution. Note that

due to relaxing ||t||0 to ||t||1/ ln 4, the actual power usage of

the rate allocation method will always be lower than the cost

function in (18).

C. Sensor selection based LCMV beamforming

In [10], it was shown that sensor selection is a special case

of rate distribution. Based on the rate distribution problem

in (P2), we will reformulate it for sensor selection based

LCMV beamforming. To do so, we represent (18) from

the perspective of Boolean optimization. Using the variable

change pk = tk/(4
b0 −1) in (18), we can obtain an equivalent

optimization problem, given by

min
p,G

g2(p) =
(
4b0 − 1

) K∑
k=1

pkd
2
kVk + c0||p||1 (19)

s.t.

[
G f

fH β
α

]
� OU+1, (19a)[

R−1
zz +R−1

qq R−1
zz Λ

ΛHR−1
zz ΛHR−1

zz Λ−G

]
� OK+U , (19b)

0 ≤ pk ≤ 1, ∀k, (19c)

where R−1
qq = diag[e�((4b0 −1)p+1K)]. The box constraint

0 ≤ pk ≤ 1 can be regarded as the relaxation of the Boolean

constraint, i.e., pk ∈ {0, 1}, ∀k. The cost function in (19)

can be interpreted as each selected sensor quantizing at the

maximum rate b0, i.e., with transmission power d2kVk(4
b0−1).

Given the solution of (19), the rates to be allocated can be

resolved by bk = log4[pk(4
b0 − 1) + 1].

Strictly speaking, (18) and (19) are two equivalent optimiza-

tion problems with the same computational complexity. From
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Figure 1. (a) The experimental setup, where the green sensors are selected by the sensor selection method with α = 0.6, (b) an example for rate distribution
with α = 0.6, (c) noise reduction performance and energy usage in terms of the normalized microphone self-cost with α = 0.6.

either problem, we can resolve the optimal rate distribution.

Due to the fact that (19) is built from the perspective of

Boolean optimization, the optimization variable pk can in-

dicate whether sensor k is selected or not. Hence, (19) can

also perform sensor selection, and we therefore call it sensor

selection based LCMV beamforming.

IV. COMPARISON IN TERMS OF POWER USAGE

In this section, we present an informal metric to compare

the power usage of the two approaches. Let S1 denote the

subset of microphones that are activated by the rate allocation

algorithm and S2 the subset of microphones that are selected

by the sensor selection method. In [10], it was shown that in

general |S1| ≥ |S2|, and the sensors in S1 are allocated with

a much lower rate than the maximum rate b0. For the power

usage we thus have from (18) and (19) that

g1(b) =
K∑

k=1

d2kVk(4
bk − 1) + c0|S1|, (20)

g2(p) = P0

K∑
k=1

pkd
2
kVk + c0|S2|, (21)

where ||b||0 = |S1|, ||p||0 = |S2| and P0 = 4b0 − 1. Further,

the difference between the power usage of the two approaches

can be calculated as

Δg = g1(b)− g2(p) (22)

=

K∑
k=1

d2kVk(4
bk − 1)− P0

∑
k∈S2

d2kVk + c0 (|S1| − |S2|)

= P0

( K∑
k=1

d2kVk
4bk − 1

4b0 − 1
−

∑
k∈S2

d2kVk +
c0 (|S1| − |S2|)

4b0 − 1

)

≈ P0

(
c0 (|S1| − |S2|)

4b0 − 1
−

∑
k∈S2

d2kVk

)
,

where the approximation ≈ is due to the fact that 4bk−1
4b0−1
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with bk < b0. To make rate allocation more efficient in terms

of power usage, i.e., Δg < 0, the power c0 to keep the sensor

activated needs to satisfy the following inequality condition:

c0
P0

<

∑
k∈S2

d2kVk

|S1| − |S2| = η, (23)

where the right-hand side only depends on the activated sets

of the two approaches. In other words, given the same noise

reduction performance, if c0 is high, the sensor selection

method is cheaper in power usage. Otherwise the rate allo-

cation method is cheaper in terms of power consumption.

V. SIMULATIONS

Fig. 1(a) shows the simulation setup, where K = 169 mi-

crophones are placed uniformly in a 2D room with dimensions

(12× 12) m. We consider two target point sources (red solid

circles) at (2.4, 9.6) m and (9.6, 2.4) m, respectively. Two

interfering point sources (blue stars) are located at (2.4, 2.4)
m and (9.6, 9.6) m, respectively. We thus have U = 2. The

FC (black solid square) is placed at (6, 6) m in the center of

the room. The target speech signals originate from the TIMIT

database [27]. The interferers are stationary Gaussian speech

shaped noise sources. The uncorrelated noise is modeled as

sensor noise at an SNR of 50 dB. The signal-to-interferer

ratio is set to be 0 dB. The sampling frequency is set to be

16 kHz. We use a square-root-Hann window of 20 ms for

framing with 50% overlap. The ATFs are generated using [28]

with reverberation time T60 = 200 ms. In addition, we assume

that all the sensors are synchronized. The channel noise PSD

is assumed to be the same for all sensors, e.g., Vk = 1, ∀k
without loss of generality.

Fig. 1(b) shows an example of rate distributions that are

obtained by the rate allocation method (referred to as RD-

LCMV) and the sensor selection method (referred to as SS-

LCMV) for α = 0.6. The maximum rate is set to be b0 = 16
bits per sample, and the selected sensors of the SS-LCMV

method quantize their measurements at the maximum rate.

As an example, the power needed to keep a sensor activated

is set at c0 = 4b0 − 1. We can see that for the RD-LCMV

method, the sensors that are close to the target sources and

the FC are distributed with higher rate (still much lower

than the maximum rate), since they have higher SNR and

less transmission cost. Fig. 1(a) shows an example of sensor

selection by the SS-LCMV method for α = 0.6. Clearly, the

sensors that are close to the target sources and the FC are

more likely to be selected due to the reasons stated before.

Fig. 1(c) compares the two approaches in terms of the power

c0. Observing the output noise power in the top plot, we can
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conclude that with the power c0 being taken into account,

both methods still satisfy the performance requirement, but

the rate distribution method is closer to the desired perfor-

mance. Further, observing the energy usage in the bottom

plot, it is clear that when c0 is small, the rate allocation

method consumes less energy; when it is large, the sensor

selection method is cheaper. For the setup in Fig. 1(a) where

|S1| = 124 and |S2| = 24, we can calculate from (23) that

η =
∑

k∈S2
d2
kVk

|S1|−|S2| ≈ 2.2. This also validates our theoretical

analysis in Sec. IV.

Furthermore, in Fig. 2 we show the number of the activated

sensors for the two approaches in terms of α and the power

c0. Clearly, the rate allocation method always needs to activate

more sensors than the sensor selection method. For both

methods, more sensors need to be activated when α is large.

VI. CONCLUDING REMARKS

In this paper, we presented a comparison between sensor

selection and rate allocation for beamforming in WASNs,

taking into account also the power that it takes to keep

sensors activated. The problem was formulated by minimizing

the total power usage and constraining the noise reduction

performance. By taking into account the power to keep sensors

activated, the sensor selection and rate allocation methods

could be compared in a fair way. Both theoretical analysis

and simulation results showed that given a pre-defined noise

reduction performance, it depends on the actual cost to keep

sensors activated whether sensor selection or bit-rate allocation

is more efficient in terms of power consumption.

REFERENCES

[1] A. Bertrand, “Applications and trends in wireless acoustic sensor
networks: a signal processing perspective,” in IEEE Symposium on
Communications and Vehicular Technology in the Benelux (SCVT),
2011, pp. 1–6.

[2] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE
Trans. Signal Process., vol. 57, no. 2, pp. 451–462, 2009.

[3] A. Bertrand and M. Moonen, “Efficient sensor subset selection and link
failure response for linear mmse signal estimation in wireless sensor
networks,” in EURASIP Europ. Signal Process. Conf. (EUSIPCO), 2010,
pp. 1092–1096.

[4] J. Szurley, A. Bertrand, M. Moonen, P. Ruckebusch, and I. Moerman,
“Energy aware greedy subset selection for speech enhancement in
wireless acoustic sensor networks,” in EURASIP Europ. Signal Process.
Conf. (EUSIPCO), 2012, pp. 789–793.

[5] S. P. Chepuri and G. Leus, “Sparsity-promoting sensor selection for
non-linear measurement models,” IEEE Trans. Signal Process., vol. 63,
no. 3, pp. 684–698, 2015.

[6] J. Zhang, S. P. Chepuri, R. C. Hendriks, and R. Heusdens, “Micro-
phone subset selection for MVDR beamformer based noise reduction,”
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 26, no. 3, pp.
550–563, 2018.

[7] O. Roy and M. Vetterli, “Rate-constrained collaborative noise reduction
for wireless hearing aids,” IEEE Trans. Signal Process., vol. 57, no. 2,
pp. 645–657, 2009.

[8] J. Amini, R. C. Hendriks, R. Heusdens, M. Guo, and J. Jensen, “On
the impact of quantization on binaural MVDR beamforming,” in 12th
ITG Symposium of Speech Communication. VDE, 2016, pp. 1–5.

[9] F. de la Hucha Arce, F. Rosas, M. Moonen, M. Verhelst, and A. Bertrand,
“Generalized signal utility for LMMSE signal estimation with applica-
tion to greedy quantization in wireless sensor networks,” IEEE Signal
Process. Lett., vol. 23, no. 9, pp. 1202–1206, 2016.

[10] J. Zhang, R. Heusdens, and R. C. Hendriks, “Rate-distributed spatial
filtering based noise reduction in wireless acoustic sensor networks,”
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 26, no. 11,
pp. 2015–2026, 2018.

[11] J. Zhang, R. Heusdens, and R. C. Hendriks, “Rate-distributed binaural
LCMV beamforming for assistive hearing in wireless acoustic sensor
networks,” in IEEE 10th Sensor Array and Multichannel Signal
Processing Workshop (SAM), 2018.

[12] R. M. Gray, “Quantization noise spectra,” IEEE Trans. Information
Theory, vol. 36, no. 6, pp. 1220–1244, 1990.

[13] O. Lamont Frost III, “An algorithm for linearly constrained adaptive
array processing,” Proceedings of the IEEE, vol. 60, no. 8, pp. 926–
935, 1972.

[14] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,” IEEE Signal Process. Mag., vol. 5, no. 2, pp. 4–24,
1988.

[15] J. Benesty, S. Makino, and J. Chen, Speech enhancement, Springer
Science & Business Media, 2005.

[16] M. Souden, J. Benesty, and S. Affes, “A study of the LCMV and MVDR
noise reduction filters,” IEEE Trans. Signal Process., vol. 58, no. 9, pp.
4925–4935, 2010.

[17] A. I. Koutrouvelis, R. C. Hendriks, R. Heusdens, and J. Jensen, “Relaxed
binaural LCMV beamforming,” IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 25, no. 1, pp. 137–152, 2017.

[18] E. Hadad, S. Doclo, and S. Gannot, “The binaural LCMV beamformer
and its performance analysis,” IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 24, no. 3, pp. 543–558, 2016.

[19] E. Hadad, D. Marquardt, S. Doclo, and S. Gannot, “Theoretical analysis
of binaural transfer function MVDR beamformers with interference cue
preservation constraints,” IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 23, no. 12, pp. 2449–2464, 2015.

[20] C. E. Shannon, “Communication in the presence of noise,” Proceedings
of the IRE, vol. 37, no. 1, pp. 10–21, 1949.

[21] S. Shah and B. Beferull-Lozano, “Adaptive quantization for multihop
progressive estimation in wireless sensor networks,” in EURASIP Europ.
Signal Process. Conf. (EUSIPCO). IEEE, 2013, pp. 1–5.

[22] Y. Huang and Y. Hua, “Multihop progressive decentralized estimation
in wireless sensor networks,” IEEE Signal Process. Lett., vol. 14, no.
12, pp. 1004–1007, 2007.

[23] Y. Huang and Y. Hua, “Energy planning for progressive estimation in
multihop sensor networks,” IEEE Trans. Signal Process., vol. 57, no.
10, pp. 4052–4065, 2009.

[24] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge
university press, 2004.

[25] K. B. Petersen, M. S. Pedersen, et al., “The matrix cookbook,” Technical
University of Denmark, vol. 7, pp. 15, 2008.

[26] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined
convex programming,” 2008.

[27] J. S. Garofolo, “DARPA TIMIT acoustic-phonetic speech database,”
National Institute of Standards and Technology (NIST), vol. 15, pp. 29–
50, 1988.

[28] E. A. P. Habets, “Room impulse response generator,” Technische
Universiteit Eindhoven, Tech. Rep, vol. 2, no. 2.4, pp. 1, 2006.


