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1Normal patterns in this context are defined as the normal distributions (from -∞ to +2 sigma) of Runway Occupancy Time for a given flight and for a range 

covering from crossing the threshold and its tail vacating the runway exit. 
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Abstract - Accidents on the runway triggered the development 

and implementation of mitigation strategies. Therefore, the 

airline industry is moving toward proactive risk management, 

which aims to identify and predict risk precursors and to 

mitigate risks before accidents occur. For certain predictions 

Machine Learning techniques can be used. Although many 

studies have explored and applied novel Machine Learning 

techniques on different aircraft Radar and operational Taxi data, 

the identification and prediction of abnormal Runway 

Occupancy Times and the observation of related precursors are 

not well developed. In our previous papers, three feasible 

methods were introduced: Lasso, Multi-Layer Perception and 

Neural Networks to predict the Taxi-Out Time on the taxiway 

and the Time to Fly and True Airspeed profile on final approach.  

This paper presents a new Machine Learning method, where we 

merge these feasible Machine Learning techniques for predicting 

the abnormal Runway Occupancy Times of unique radar data 

patterns. Additionally we use in this study the Regression Tree 

method to observe key related precursors extracted from the top 

10 features. Compared with existing methods, the new method no 

longer requires predefined criteria or domain knowledge. Tests 

were conducted using runway and final approach aircraft radar 

data consisting of 78,321 Charles de Gaulle flights and were 

benchmarked against 500,000 Vienna flights. 

 

Keywords-component; combined machine learning technique, 

(abnormal) AROT, regression tree and precursors  

I.  INTRODUCTION  

Machine Learning (ML) can be used to identify patterns
1
 

and to observe related risks precursors in past data [1, 2, 3, 4]. 

These patterns and precursors can be transferred into ‘what-if’ 

statements by analyzing relations between the Arrival Runway 

Occupancy Time (AROT) [5] and the prediction variables. 

This analysis is needed to predict forthcoming operational 

risks during real time landing operations based on the 

observation of risks precursors. Such a prediction would feed 

predictive tools at the airport to alert Air Traffic Controllers 

(ATCO’s) about impending aircraft behaviors and to produce 

both point forecasts and probabilistic forecasts in real time. In 

this context, a decision-support tool is needed to inform the 

ground controller risks associated to the AROT. This study 

will mainly focus on a better understanding and prediction of 

abnormal AROT’s which lead to an improvement in runway 

safety and throughput.  

A. Related work 

Many work in the literature have tried to tackle these 

patterns and observe related risks precursors. We divide the 

literature in two groups. We start with the first group which 

focuses on abnormal events detection methods for aviation 

systems. The Morning Report software package was one of 

the earliest efforts made to detect abnormal events from 

routine Flight Data Recorder (FDR) data [6]. The software 

models the time-series data of selected flight parameters using 

a quadratic equation. Each flight is mapped into a point that is 

described by the coefficients of the quadratic equations in the 

feature space. Thereafter, for each flight an ‘atypical score’ is 

measured using the distance between the point and the mean 

of the distribution in the feature space. Later studies apply 

data-mining techniques to detect abnormal events in data of 

aerospace systems [7–12]. One of these studies applies 

supervised learning software called; Inductive Monitoring 

System (IMS) [10]. The IMS software method summarizes the 

data distributions of typical system behaviors from a historical 

training dataset, which is then compared with real-time 

operational data to detect abnormal behaviors. However, the 

limitation of the IMS is that it always needs a training data set 

for labeling the norms. Other studies used unsupervised 

learning techniques. These studies focuses on discrete flight 

parameters for monitoring pilot operations such as cockpit 

switch flips [7, 8]. The techniques observe abnormal events in 

the switch operations based on the longest common 

subsequence measures. The study [9] developed a statistical 

framework to incorporate both continuous and discrete flight 

parameters in FDR data. Das et al. developed multiple kernel 

abnormal detection (MKAD), which applies a one-class 
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support vector machine for abnormal detection [12]. MKAD 

assumes one type of data pattern for normal operations, which 

is not always valid in real operations, since standards vary 

according to flight conditions. Most recently, Matthews et al. 

summarized the knowledge discovery pipeline for aviation 

data using the previously discussed algorithms [13]. Also 

many studies on AROT have been executed such as [14] and 

[15]. 

The second group of literature consists of abnormal event 

detection outside the aviation domain. In general those 

abnormal event techniques can solve problems for a domain-

specific formulation. Some techniques are developed for 

intrusion detection in computer systems [16-18]; fault 

detection in mechanical units and structures [19,20]; and fraud 

detection related to phones, credit cards, insurance claims [21, 

22], etc. Additionally, two groups of techniques are developed 

for time-series data depending on how dissimilarities are 

measured: data based and model based [23, 24]. The former 

measures the dissimilarity based on data observations. The 

dissimilarity is measured by a variety of distance functions 

such as Euclidean distance [25, 26], dynamic time warping 

distance [27], probability based distance [28], correlation-

based distance [29].  

B. Aim  

With the literature in respect, this study considers a novel 

Machine Learning (ML) method that is representative of the 

state of the art for coping with the variability of AROT  

behaviors. In previous papers that we wrote [3, 4], ML 

techniques were assessed on their capabilities to produce fast 

and accurate predictions and to test a number of ‘what-if’ 

statements.  

The main purpose of this study is twofold. First, to better 

characterize and predict AROT as a function of operational 

parameters from historical data. Second to identify and predict 

abnormal AROT flights with their related risks precursors, for 

which the identification and prediction is done using a new 

data-driven method. The key objective of this study is to 

develop a real time model that forecasts the AROT for 

different aircraft types and weather conditions using this new 

data-driven method for Charles de Gaulle (CDG) and Vienna 

(VIE) airport. This model should offer insight into the 

predictability of key precursors impacting AROT.  

C. Structure  

The structure of this paper is as follows: First, the data 

and prediction variables are described in section II. Second the 

methodology is outlined in section III whilst introducing the 

AROT behavior and data preparation. Furthermore, the 

feasible ML techniques are combined to a new ML model 

which is applied on a regression tree. Thereafter abnormal 

AROT results are predicted and related precursors are 

observed. In section IV the real time model is outlined and 

finally conclusions are drawn in section V. 

II. DATA AND PREDICTION VARIABLES  

The AROT is a key driver of airport runway throughput, 

especially when low airborne separation minima are applied. 

Several factors, such as aircraft type, weather conditions (wind 

and visibility), traffic demand, air traffic controller workload, 

and the coordination of flows with neighbouring airports 

influence the AROT [14, 15]. In order to predict AROT 

profiles and extract risks precursors, final approach and 

runway radar data are used, for which the variables are 

highlighted in Table 1. 

A. Final approach and runway radar data  

     Aircraft radar data is extracted from runway schedulers and 

has been provided by CDG and VIE airport. The data covers 

respectively 5 years and 3 years of final approach and runway 

radar data from 2011 to 2015 and from 2013 to 2015 included. 

In total, the data comprises about 78,321 and 500,000 arrival 

flights. The data sets are stored in CSV formats and are 

thereafter saved in separate MatLab and Python files. 

Table 1. Prediction and response variables. 

Prediction 

variables 

AROT Variables  Description 

1. Anne Year 

2. Caractredevol Commercial or private flight  

3. CodeIATA IATA code company  

4. CodeAeroportOACI Airport origin ICAO code 

5. CodeAeroportIATA Airport origin IATA code 

6. Compagnie Airline  

7. Crosswind Crosswind vector  

8. DateReal Actual date 

9. Deep landing  The runway length available 

beyond the touchdown point 

10. IdentifiantvolATC ATC call sign 

11. Long flare  Estimate the start of the flare until 

touchdown 

12. Mois Month 

13. NumFlight Flight Number 

14. Postedestationnement Gate arrival  

15. QFU Runway Orientation 

16. Semaine Week 

17. Tailwind  Tail wind vector 

18. Temp Temperature  

19. TimeReal Actual time of the day 

20. Typeavion  
 

Aircraft type 

21. Visibility METAR visibility conditions  

Additional 

prediction 

variables 

22. Arrival runway 

throughput  
The amount of landings that is 

performed on a runway in 30 min 

Identificat

ion of 

23. ACSpeedPoint  Speed of the aircraft  at 2NM, and 
1NM out, threshold and the 



 

Prediction 

variables AROT Variables  Description 

AROT   runway exit  

24. ALDT Actual Landing Time  

Response 

variable 
25. AROT Arrival Runway Occupancy Time 

III. METHODOLOGY  

For this study, we propose a methodology comprising five 

steps. The method is based on our previous papers [3, 4], 

literature study [30] and the Statistical Package for the Social 

Science (SPSS) ML method [31]. This methodology describes 

the steps to come up with a usable predictability model that 

identifies and predict abnormal AROT flights with their 

related risks precursors. Each step is detailed below: 

A. Identification and understanding of the AROT 

    The AROT response is extracted by calculating the time 

between the aircraft crossing the threshold and its tail vacating 

the runway exit [5], using the variables ACSpeedPoint and 

ALDT. This forms a matrix Y where each row represents a 

flight, column 1 until 22 a prediction variable and column 25 

the AROT response variable (table 1).  

We propose to first extract the AROT per aircraft type for 

runway 09L, 27R, 08R and 26L for all 78,321 CDG flights 

and for 500,000 VIE flights for runway 11L and 29R. This is 

done to cover seasonal variations and to have a minimum of 

15 AROT measurements per aircraft type and runway. Figure 

1 shows for 49 aircraft types their AROT at runway 08R at 

CDG airport. The AROT results for the remaining CDG 

runways and 49 different aircraft types can be found in 

[30].

 
Figure 1; Example of AROT per aircraft type for runway 08R  

    We observed from Figure 1 that the AROT is influenced by 

the aircraft type or different aircraft categories. Therefore as a 

next step we plot the AROT as function of the categories; 

‘Heavy’, ‘Medium’ and ‘Small’ per CDG runway and time of  

the day.  

 

 

 

 

Figure 2; AROT versus time of the day and different ICAO aircraft categories 
(H, M, S) for runway 09L, 27R, 08R and 26L. 

 



 

    Figure 2 shows that there is an effect of the hour of the day 

(peak hours) on the extracted AROT. The most likely 

explanation for this behaviour is the differences in runway 

throughput and weather conditions (day/night). Plotting the 

arrival throughput versus the AROT shows that a higher 

throughput leads to a decrease in the AROT for all categories. 

Figure 3 shows an example for the ‘Medium’ aircraft 

category.

Figure 3; AROT versus different runway throughput levels for different 
aircraft types on runway 26R. 
 

    According to [15] the AROT depends mainly on the 

approach speed, the Rapid Exit Taxiway (RET) used, the type 

of RET, the exit speed and the brake policy by the airlines. 

Therefore, as a next step we plot the AROT versus different 

CDG runway exits for both ICAO and RECAT-EU (Figure 4). 

All results can be found in report [30]. 

 

 
 

 
 

 

 
 

Figure 4; Number of flights versus the AROT for different runway exits for 

Heavy aircraft (H-ICAO) and type A (RECAT-EU) aircraft. 

 

B. Data preparation  

    The data preparation phase covers all activities required to 

set up the final dataset from the initial raw aircraft operational 

runway and final approach radar data. Before the ML model 

will be trained with the prediction variables highlighted in 

Table 1, first the most important (group) features will be 

selected using RreliefF and Sequentialfs (feature selection). In 

previous papers we have introduced these techniques [3, 4]. 

The objective of feature selection is threefold: improving the 

prediction performance of the predictors, providing faster and 

more effective predictors, and providing a better 

understanding of the underlying process that generated the 

data [32]. RreliefF and Sequentialfs have commonly been 

viewed as feature selection methods that are applied in a 

prepossessing step before the model is learned [33]. The 

standard RreliefF regression modelling technique has been 

extensively discussed in many papers [34]. In this study, the 

technique has been applied on 78,321 final approach flights 

for CDG as shown in Figure 5 and benchmarked against 

500,000 VIE flights. We observed for both airports that the 

QFU, aircraft type, arrival runway throughput, visibility, wind 

vectors and temperature are the most important features for 

predicting the AROT. The same results are obtained for the 

Sequentialfs technique. 

 

 
Figure 5; Top10 features for the AROT using the RreliefF technique for CDG. 



 

    Thereafter we construct the datasets and find the stability of 

three different data parts. Based on different data sources and 

the Table 1 mentioned variables, standardize the feature 

matrix X. Split the matrices X and Y in two subsets Xtrain; 

Ytrain; used to train the model and Xtest;Ytest used to evaluate 

the model accuracy. Finally we analyse the default ratios 

(splitting the data) for training, testing and validating into 

respectively 70%, 15% and 15%. 

C. Merging feasible ML techniques  

    To answer the question ‘What machine learning algorithm 

should I use and how should I combine them?’ Depends on the 

size, quality and nature of the data. It depends what you want 

to do with the answer. It depends on how the math of the 

algorithm was translated into instructions for the computer 

you are using and it depends on how much time you have. 

Even the most experienced data scientists can't tell which 

algorithm will perform best before trying them [35]. This 

study will use the outcome of 3 feasible ML techniques; 

Lasso, MLP and Neural Networks. By doing so we take into 

account the characteristics of final approach and runway radar 

data. The method is based on expert studies [35, 36, 37] and 

will now be explained in 3 steps; 

Novel combined ML method   

 First we learn the AROT for 78,321 flights with 22 

different features. Three models will be learned using the 

Lasso, Multi-Layer perception and Neural Networks 

technique.  

 Second we merge the AROT results of all 3 models to 

one final matrix for 78,321 flights.  

 Finally we apply the regression tree technique to the final 

matrix obtained in the previous step.   

 

D. Assessing combined ML method  

    We have seen in previous papers that learning a model with 

less prediction variables wouldn’t change the MSE 

significantly compared to with all the variables. Therefore we 

propose to identify abnormal AROT flights based on the 10 

important features [5]. Before we analyze the forecast 

performance, computational time and minimum amount of 

data needed for the novel combined ML technique, we first 

check the stability of three different data parts known as cross 

validation. To check the stability of different data parts, the 

data will be randomly divided into training, validation and 

testing subsets. It has been assumed that the default ratios in 

this study for training, testing and validation are 0.70, 0.15 

and 0.15, respectively. The model is adjusted accordingly 

during training. The validation is used to measure network 

generalization and to halt training when generalization stops 

improving. To prove that a randomly selected data set is 

stable, epoch and validation checks are performed. Epoch 

indicates the amount of a single pass through the entire 

training set, followed by testing of the verification set. 

Thereafter we check convergence on the validation and at the 

end of the learning process the model is evaluated on the test 

set. The test has no effect on the training and therefore 

provides an independent measure of network performance 

during and after training. Figure 6 shows an example of a 

trained model by selecting 78,321 CDG final approach flights 

for runway 08R. We learned the model with the 10 most 

important prediction variables highlighted in figure 5. It has 

also been tested that the same Mean Squared Error (MSE) 

results are obtained using all features. However by excluding 

14 variables the model is trained two times faster and is more 

robust for new data sets. 

 

 
 

Figure 6; MSE of AROT using the top 10 features. 

 

Abnormal AROT flights and observation of outliers  

    We are interested in abnormal flights that stay too long on 

the runway. Therefore, in this study we define an abnormal 

AROT (abnormal pattern) if the AROT > 2σ deviated from the 

normal standard deviation mean. Only those flights are learned 

with our combined machine learning technique. As a next 

step, the inconsistency is measured between the outputs and 

the targets. One way to show this inconsistency is by plotting 

the regression for the training, validation, test sets and for the 

complete set (all). Figure 7 shows an example where the 

regression R values measure the inconsistency between the 

predicted outputs and the targets. An R value of 1 means a 

close relationship, 0 a random relationship.  



 

    By analyzing this R values we observe outliers. With 

outliers we mean when a data point is not consistent with the 

other data points. In this study we define an outlier when it has 

an R value between 0 and 0.25. Analysing Figure 7 shows that 

there are indeed outliers. It will be obvious that by neglecting 

them in the target set, a better R value will be obtained for the 

predicted model. Doing this for the above example results in 

an overall R value of 0.54 instead of 0.31 presented in Figure 

7. 

 
Figure 7; Outliers example of abnormal AROT flights for training the model 

with 10 features.  
     

    The next and final step of our methodology (Step E) will 

only take those abnormal AROT flights into account with an R 

value of 0.25<R<1 for runway 08R at CDG. 

E. Observe risk precursors with regression tree  

 

    The purpose of building a regression tree is to extract a set 

of if-then-else (what-if statements) split conditions in order to 

extract the main risk precursors that most influence abnormal 

AROT flights. The observed flights from Figure 7 (0.25<R<1) 

for runway 08R are analysed and build into a single regression 

tree which should give a good understanding of which features 

(top 10 from Figure 5) influence these abnormal AROT 

flights.  By building this tree we start at the root node, and ask 

a sequence of questions about the predictors. In each iteration, 

the tree chooses the variable and the split point to achieve the 

minimum MSE between the predictions and the abnormal 

AROT targets. This process will continue until a stopping rule 

is applied. Each of the terminal leaves represents one of the 

partitions of the input space. To provide a model that can 

generate accurate predictions and are not over-complicated, 

we need to find the optimal tuning parameters for the tree. In 

this study we use two parameters. The first parameter is the 

minimum leaf size (lmin), for which we need enough data points 

in each terminal node to create a distribution. The parameter 

minimum leaf size can be used to stop the splitting process 

when the number of instances in a leaf is too small. In 

addition, if the tree contains too many variables, it is hard to 

interpret. The second tuning parameter for the tree is the 

maximum tree depth (dmax). A very large tree with many leaves 

might over-fit the data, while a small tree might not be able to 

capture the important structure of all the variable or top 10 

feature variables. The maximum tree depth can restrict the 

number of layers of a tree. Cross-validation is used to select 

the minimum leaf size, lmin and MSE to select the maximum 

tree depth, dmax. So in our case the tree is fit for a range of 

values of the two parameters to three quarters data. Thereafter, 

the MSE of the predictions is computed on the remaining one 

quarter.  This is done for each quarter of the data, and the four 

MSE are averaged. The set of parameters that gives the lowest 

MSE will be selected. As shown in Figure 8, we first train the 

trees with all 22 variables and different settings of dmax and 

lmin. We observed that the MSE drops as the tree depth 

increases from one to 7, regardless of the leaf size. After tree 

depth reaches 6, the MSE does not change significantly. On 

the other hand, a tree with 400 minimum leaf size performs 

slightly better than the trees with 500 and 600 minimum leaf 

sizes. We also try to set the minimum leaf size to be less than 

400, but the model does not improve much. Moreover, if we 

further reduce the leaf size, we may not have enough instances 

in the leaves to fit a distribution. Thereafter we also train a 

model with the top 10 features shown in Figure 5, where we fit 

a tree to the entire data set with maximum tree depth and 

minimum leaf size set to 6 and 400, respectively. We then sort 

the predictors based on their feature importance and select the 

first 10 as the final predictors. Thereafter, we retrain the tree 

with these 10 variables.  We change the values of   dmax  and 

lmin. and repeat the cross-validation process described above. 

The tree with lmin equals 400 still performs slightly better than 

the others, and the MSE does not change significantly after 

tree depth reaches 6. Thus, our final model, has 10 predictors 

and is fitted with maximum tree depth and minimum leaf size 

set to 6 and 400, respectively. 

 
Figure 8; MSE versus Tree Depth for different leaf size and features. 



 

By learning the tree a mean and distribution is extracted per 

decision node. This is needed to observe risk precursors and 

understand what is likely to happen for abnormal AROT 

flights. Our model divides all the abnormal AROT flights into 

17 segments. In other words, the regression tree shown in 

Figure 9 has 17 terminal nodes for which the outcomes are 

rounded off to 100, 105, 110, 115 or 120 seconds. We can 

interpret the most important predictors as the major factors 

that play key roles in influencing abnormal 

AROT.

Figure 9; Regression tree only for abnormal AROT at runway 08R. The tree 

shows ‘what-if’ statements. If the statement is right we go to the upper node, 
if the statement is wrong we go to the under node.   

After the tree is learned with a tree depth of 6, we observed for 

the 17 abnormal AROT categories their related precursors 

which are shown in Table 2. 

 
Table 2. 17 different abnormal AROT categories with their related precursors. 

Precursor category  Likelihood of 

abnormal 

flight 

occurrence per 

precursor 

category    

Amount of  

flights 

observed per 

precursor 

category   

Median 

of the 

AROT 

and the 

Root 

MSE 

1.ArrRwyThroughput > 30 

  TypeAvion = Medium or   
(super) Heavy 

  Visibility < 935m 

  Crosswind > 14kts 
  Time = 07:00 -09:00  

9%  33 120 sec 

3.5 sec 

2.ArrRwyThroughput > 30 

   TypeAvion = Medium or   

(super) Heavy 
  Visibility < 935m 

  Crosswind > 14kts 

  Time ≠ 07:00 -09:00  

12% 21 110 sec 

2.8 sec 

3.ArrRwyThroughput > 30 

   TypeAvion = Medium or   

(super) Heavy 
  Visibility < 935m 

  Crosswind ≤ 14kts 

  Temp > 15C   

3% 18 115 sec 

2.9 sec 

4.ArrRwyThroughput > 30 

   TypeAvion = Medium or   

(super) Heavy 
  Visibility<935m 

  Crosswind ≤ 14kts  

20% 40 110 sec 

2.1 sec 

  Temp ≤ 15C   

5.ArrRwyThroughput > 30 

   TypeAvion = Medium or   

(super) Heavy 

  Visibility ≥ 935m 

  Tailwind > 17kts 

11% 18 110 sec 

3.4 sec 

6.ArrRwyThroughput > 30 

   TypeAvion = Medium or   

(super) Heavy 
  Visibility ≥ 935m 

  Tailwind ≤  20kts 

  Temp > 17C 

17% 21 115 sec 

3.2 sec 

7.ArrRwyThroughput > 30 
   TypeAvion = Medium or   

(super) Heavy 

  Visibility < 935m 
  Tailwind ≤ 17kts 

  Temp ≤ 17C 

15% 18 105 sec 
3.9 sec 

8.ArrRwyThroughput > 30 
   TypeAvion ≠ Medium or   

(super) Heavy 

18% 15 100 sec 
4.0 sec 

9.ArrRwyThroughput ≤ 30 

   TypeAvion = Medium or   
(super) Heavy 

  Visibility < 805m 

  Tailwind > 15kts 
  Crosswind > 12kts 

21% 23 110 sec 

2.2 sec 

10.ArrRwyThroughput≤30 

   TypeAvion = Medium or   
(super) Heavy 

  Visibility < 805m 

  Tailwind > 15kts 
  Crosswind ≤ 12kts 

33% 30 100 sec 

2.5 sec 

11.ArrRwyThroughput≤30 

   TypeAvion = Medium or   
(super) Heavy 

  Visibility < 805m 

  Tailwind ≤ 15kts 

  Temp > 19C 

8% 26 105 sec 

3.1 sec 

12.ArrRwyThroughput≤30 

   TypeAvion = Medium or   

(super) Heavy 
  Visibility < 805m 

  Tailwind ≤ 15kts 

  Temp ≤ 19C 

16% 11 105 sec 

3.2 sec 

13.ArrRwyThroughput≤30 

   TypeAvion = Medium or   

(super) Heavy 
  Visibility ≥ 805m 

  Time = 07:00 -09:00 

20% 20 100 sec 

3.5 sec 

14.ArrRwyThroughput≤30 

   TypeAvion = Medium or   
(super) Heavy 

  Visibility ≥ 805m 
  Time ≠ 07:00 -09:00 

9% 15 105 sec 

4.2 sec 

15.ArrRwyThroughput≤30 

   TypeAvion ≠ Medium or   

(super) Heavy 
  Temp > 14C 

  Visibility < 1060m 

8% 10 105 sec 

2.4 sec 

16.ArrRwyThroughput≤30 
   TypeAvion ≠ Medium or   

(super) Heavy 

  Temp > 14C 
  Visibility ≥ 1060m 

 

23% 9 100 sec 
3.4 sec 

17.ArrRwyThroughput≤30 

   TypeAvion ≠ Medium or   
(super) Heavy 

  Temp ≤ 14C 

19% 20 100 sec  

3.2 sec 

         



 

Given the regression tree in Figure 9, we fit a parametric 

distribution to each terminal leaf. The probability distributions 

we considered include the Gumbel, Gamma, and F 

distributions.  The following equation shows the Gumbel 

distribution since this one fits best. 

 
For -∞<x<∞ where 0 < µ, ß < ∞      

    Figure 10 shows the 17 Gumbel distributions fitted to the 

terminal leaves. The shapes of the terminal leaves’ 

distributions are quite different from each other. In general, 

the distributions with lower medians are less spread out. This 

indicates that in these segments, the uncertainties of the 

AROT flights are low. If there are a lot of AROT flights in 

these segments at the airport, the managers should have more 

confidence in making adjustments to their plans.  

 
Figure 10; Distributions of the Instances Fall into the 17 Terminal Leafs.  

IV. REAL TIME MODEL  

Based on the data availability we develop a prototype 

model using the regression tree method to forecast AROT at 

CDG airport. This model is built on 78,321 flights collected 

over 5 years Radar data.  To generate real-time predictions 

from the model, we develop an application using MatLab. The 

output from running the application included the mean and 

quantiles of flights. The aim is to generate forecasts for each 

AROT flight and number of landing aircraft to a given runway 

per time window. Suppose we are at time h, and try to make 

predictions for the next x minutes. Given a real-time flight 

information before ALDT, our regression tree model will 

determine which segment the flight belongs to. For example, if 

a small aircraft type plans to land at runway 08R with an 

ArrRwyThroughput>30, then this flight will fall into leaf 8 of 

the abnormal AROT flights. Thus, the median of the AROT is 

100sec and the distribution of her connection time can be 

described by a Gumbel distribution with µ =103 and ß=4.0. 

However there is a likelihood of 18% that it will fall into the 

abnormal AROT flight category.   

Next, we produce the distribution of the number of AROT 

aircraft during a certain time interval [h1,h2] where h< h1< 

h2<h+x. This distribution is obtained by aggregating all the 

distributions of the flights that landed in the last 2 hours or 

will land in the next x minutes. The procedure of generating 

this distribution is summarized in two steps; 

I. Suppose there are n flights that landed in the last 2 hours 
or will land in the next x minutes. We sample one AROT from 
each of the n flights’ distributions, and calculate the time when 
the tail is vacating the runway. We then count how many 
flights landed between the time interval [h1,h2], and record this 
number as y1. 

II. Repeat step I, m times, and construct an empirical 
distribution using y1, y2,…… ym.  Then the q-th quantile of the 
number of flights land between the time interval [h1,h2] can be 
approximated by the q-th quantile of y1, y2,…… ym 

In the live trail we produced the distributions of the AROT 
of the flights who have landed in the last 2 hours or will land in 
the next x minutes. 

 
Live trail - assumed Real time data 

We assume real time data for a selected data set for which 
we exclude the actual data variables ALDT ACSpeedPoint. To 
conveniently generate predictions in real time, we develop a 
MatLab compiler that can work in most operation systems 
(Windows, Linux, Mac, etc.). Figure 11 shows the interface of 
the application.  

 
Figure 11. Interface of application. 

This application allows users to set the forecasting window 
x, the runway at CDG (RWY), number of simulations (m), 
update frequency, forecast resolution (r), starting time of the 
first forecasting window (h), machine learning technique (ML) 
and ending time of the last forecasting window. The default 
settings of the first three parameters are 120 min, 1500 
simulations, and 5 min, respectively. We update the predictions 
every 10 min and the default resolutions are 1 min, 5 min, 
15min, and 60 min. The starting time defaults to the current 
time if the user does not specify one. The ending time will be 
24 hours after the starting time. As shown in Figure 12, the 
predictions for this case study are generated on a rolling basis 
to runway 08R. Suppose the trial started at 8:00 a.m. We first 
collected data of the flights who landed at CDG after 6:00 a.m. 
or will land before 10:00 a.m., and then generate forecasts for 
the next two hours (8:00 – 10.00 a.m.). Thirty minutes later 
(8:30 a.m.), the second trial started. Similarly, we only 
considered the flights who landed at CDG after 6:30 a.m. or 
will arrive before 10:30 a.m., and generate forecasts for the 
time interval between 8:30 to 10:30 a.m. The dots in Figure 12 
show the difference between the predicted AROT and their real 
values (error). The difference is measured in seconds and 



 

shown for 12 flights, for which each flight fall into one of the 
ICAO categories ‘Small’ (S), ‘Medium’ (M) or ‘Heavy’ (H). 
We didn’t show all the flights in this example but only three 
per 30 minutes to illustrate the differences per ICAO category.  

 
Figure 12. Output after running the application for the first trial. 

    It has been observed that for this case study and for each 
prediction trial the first 30 minutes have a significantly lower 
error compared to the remaining 90 minutes prediction time. 
Table 4 shows these differences in percentages for four trials. 
 

Table 4. Average error differences per trial and for the time prediction 
window 0 - 30 minutes and 30 - 90 minutes. 

 0 - 30 minutes 30 - 90 minutes 

Trial 1 6% 10% 

Trial 2 4% 8% 

Trial 3 4% 9% 

Trial 4 2% 6% 

V. DISCUSSION AND CONCLUSION   

    This study demonstrates the use of combined machine 

learning techniques to forecast AROT per flight. We first 

reviewed the AROT aircraft behaviours, the data sources, key 

features and ML outcome. Based on the availability of data 

and the importance of the problem, we then identified 

activities that will benefit from making greater use of data, 

where we focused on the AROT at runway 08R. 

    We built a predictive model for AROT flights by merging 

the Neural Network, MLP, Lasso and Regression Tree 

technique. We then developed an approach to generate 

distributions of each AROT flight and the number of landings 

to a specific runway (08R) within a time frame of 30 minutes. 

We also developed an application for CDG and VIE to 

produce these forecasts. Finally, we will run a live trial at 

CDG on the 11
th

 of March 2017, for which we have to assess 

the accuracy of the model and making improvements. For this 

we will write a feasibility study where we analyse how our 

predictability tool can be used by air traffic controllers in their 

decision making and planning to ensure resilience, safety, and 

efficiency of air traffic control operations locally in a sector, 

but also taking into account coordination with other sectors. 

    After assessing our feature selection techniques RrelliefF 

and Sequentialfs we include the following 10 features in our 

ML model; QFU, typeavion, ArrRwyThroughput, Visibility, 

Crosswind, Tailwind, Temp, LongFlare, TimeReal and 

CodeAeroportIATA. Based on ATC experience, it is well 

known that these features are mostly impacting the AROT 

behaviour. From our regression tree we have learned that by 

knowing the top 7 features in advance a good prediction can 

be made of the abnormal and normal AROT for which each 

abnormal AROT flight fall into one of the 17 precursor 

categories shown in Table 2. Furthermore, we observed that 

the regression technique performs best for finding related 

precursors, for which the regression technique is fitted with a 

maximum tree depth and minimum leaf size of 6 and 400, 

respectively. 

    There are some advantages associated to using our model. 

First, the machine learning technique we used to build the 

model is fast, intuitive and efficient. It can help the managers 

to understand the driving features of the AROT per runway. 

Second, our model has been built based on a large historical 

data set of 78,321 CDG and 500,000 VIE flights. For which 

22 variables are available for selection as predictors. These 

variables also enable one to build new features using domain 

knowledge of the data. Third, our model can update the 

predictions in real time. The application we developed for 

CDG and VIE can easily extract real-time data for both 

airports. The forecasting procedure is effective and the 

predictions can be generated in a short amount of time. Our 

model is the first to provide forecasts for each AROT flight to 

a specific runway. The forecasts of an AROT flight may help 

ATCO’s to make better decisions, predict whether the flights 

will experience abnormal AROT and to anticipate in advance 

on the aircraft sequencing on final approach by knowing when 

landing queuing starts. If an ATCO can retrieve this 

information far in advance, he or she may be able to generate 

more stable and accurate AROT used in A-CDM and APOC. 

    While the model is developed for the AROT target, we 

believe the methodology proposed in this study can be easily 

applied to other runway processes, such as the prediction of 

unstable approaches. This will be done in our next paper. 
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