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Abstract

The demand for implementing neural networks on edge devices has rapidly increased as
they allow designers to move away from expensive server-grade hardware. However, due
to the limited resources available on edge devices, it is challenging to implement complex
neural networks. This study selected the Kria SoM KV260 hardware platform due to its
affordability and sufficient hardware capabilities for creating a resource-constrained en-
vironment. By leveraging the hardware acceleration capabilities of the FPGA for specific
nodes of the MobileNetv1 model and offloading other nodes to the onboard quad-core ARM
cortex-A53 CPU, it was feasible to implement a neural network on a hybrid combination of
CPU and FPGA. Results showed that when executing the MobileNetv1 model in a hybrid
configuration, a total runtime improvement of 2.8x over a pure CPU implementation can
be achieved. The study concludes that node-wise partitioning of the MobileNetv1 model
is a practical solution. This approach offers a cost-effective solution for users who seek
an accessible way to run neural networks without the need for expensive server-grade
hardware.
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1
Introduction

Artificial intelligence (AI) and machine learning (ML) are becoming increasingly important
topics in science and technology. Researchers in academia and worldwide industries are
solving everyday problems using ML, from medical imaging devices to detect tumor cells
in scans[1]–[3]; to marketing to target which ads are best to show to which user. A specific
type of machine learning algorithm modeled after the human brain’s structure and function
is a neural network (NN), which consists of interconnected nodes or neurons that process
and transmit information—allowing the network to learn patterns and make predictions or
classifications [4]. NNs are particularly effective for tasks that involve complex input-output
mappings, such as image recognition and natural language processing.

As AI and ML become increasingly prevalent in various industries, the need for specific
hardware to run these models has become more prominent [5]. The hardware required
for AI and ML applications can vary depending on the specific needs of the task but typ-
ically includes graphics processing unit (GPU), field programmable gate array (FPGA),
application-specific integrated circuit (ASIC), and central processing unit (CPU). To train
a neural network model for image recognition, designers must teach such a network the
correct solution for a given image. Such a process is called the training phase. Like the
human brain, we learn to recognize patterns in images or structures in faces to identify an
object or person. The structure of a NN works similarly to this; during the training phase,
we input data to the neural network model, and the network learns the correct outcome
and is corrected when it does not predict correctly. These decisions are made by large
interconnects of neurons; each neuron performs mathematical operations; during training,
we adjust the weights and biases of each neuron. Changing the weights and biases of a
neuron affects how strongly the neuron responds. During the inference phase, the neural
network is given unseen data, making predictions based on the data it was trained on.

Models are trained on server-grade hardware designed to handle large amounts of data
and perform complex computations. Training a model is often done using GPUs as teach-
ing a model costs significant amounts of memory and computational resources due to the
many parameters that need to be learned [6]. Server-grade hardware is optimized for high
performance and often has multiple processors, large amounts of memory, and other spe-
cialized hardware components. Inference uses pre-trained weights and biases, requiring
less computational and memory load than training. Once a model has been trained, it can
be deployed in the field. As many neural network models are designed to run near the data
source to process data in real-time, models are often deployed to edge devices. These
edge devices are typically smaller, less powerful, and less expensive than server-grade
hardware [7]. The mobility of edge devices makes them an attractive alternative to server-

1



1.1. Context 2

grade hardware, enabling users to deploy neural networks in mobile applications such as
drones, smart IoT, hospital patient monitoring, and more. Edge devices are optimized for
low power consumption but contain limited processing power and memory. Edge devices
are a low-cost, low-resource alternative to server-grade hardware; however, challenges do
arise when performing inference on edge devices; this research aims to uncover a method
to accelerate machine learning on edge devices. The following section will provide more
context into the goals of this research.

1.1. Context
Current state-of-the-art research in machine learning on edge devices shows techniques
such as pruning, quantization, and altering network architectures [8] to reduce the compu-
tational complexity of neural network models. While this reduces the computational and
memory load, models often still can not be fully implemented on edge devices as the re-
sources of the chosen platform limit them [9].

This research aims to find a method to make inference on edge devices possible. We
specifically investigate how we can leverage the strengths of CPU and FPGA to perform
inference of NN on edge devices. Using quantized neural networks reduces the computa-
tional complexity of the system [10]. By identifying which layers of a quantized neural net-
work benefit from FPGA acceleration. We aim to devise a partitioning algorithm to split and
deploy neural networks on resource-limited devices. By leveraging the strengths of both
FPGAs and CPUs, this research aims to deliver a method for inference of complex neu-
ral network models on edge devices with limited resources, such as the Kria SoM KV260,
which is a System on Module (SoM) that combines a quad-core Arm Cortex-A53 (referred
to as CPU in this thesis) with a Zynq UltraScale+ MPSoC (XCK26), which is specifically de-
signed for the platform. This platform is selected for this study as it offers a CPU + FPGA
environment that constrains resource requirements allowing this research to experiment
with a resource-limited environment. A dataflow-style architecture is desired to distribute
a neural network to the Kria SoM KV260, as dataflow architectures are highly flexible and
scalable in design. Such flexibility and scalability allow for implementation to be easily al-
tered. This project collaborates with Advanced Micro Devices (AMD), formerly known as
Xilinx Research Labs, who are interested in this work, to help them find a method to ad-
vance the world of AI and hardware acceleration for resource-limited devices. The AMD
research team developed the FINN [11] (Framework for Fast, Scalable Binarized Neural
Network Inference) project. FINN is a dataflow-style architecture used to build hardware
platforms that can efficiently perform inference on binarized neural networks, which are a
type of neural network that represent weights in low precision, rather than using floating-
point values, making them well-suited for edge devices. Low precision is desirable for edge
devices as it reduces the computational load while consuming less power and requiring less
memory.

The proposed research aims to advance applications such as autonomous drones,
smart cameras, and intelligent IoT devices in edge computing scenarios. We aim to dis-
play the possibility of executing models in resource-limited environments. By enabling the
execution of neural networks in resource-limited environments, the opportunity arises to
deploy neural networks on edge devices, bringing AI closer to the source and allowing for
less dependency on server-grade hardware.

1.2. Problem statement & research questions
The main problem that this research address is as follows:
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• How can we leverage the unique strengths of CPUs and FPGAs in a hybrid computing
architecture, to optimize the performance and efficiency of specific neural network
models?

To answer the problem statement, we need to addresses the following sub-questions:

1. Is a hybrid FPGA+CPU implementation a feasible and cost-effective solution for run-
ning neural networks compared to a pure CPU implementation?

2. What are techniques for partitioning and distributing neural networks between FPGAs
and CPUs?

3. How do the partitioning and distribution of neural networks between FPGA and CPU
affect performance metrics, such as throughput, latency, and cost, and what factors
influence the optimal distribution strategy?

1.3. Thesis outline
The remainder of this thesis is broken up into the following chapters.

Chapter 2 presents essential background information to provide the foundation neces-
sary to address the problem statement. It provides the necessary knowledge and under-
standing to help answer the problem statement and research questions.

Chapter 3 supplies the methodology necessary to answer the problem statement and
research questions. This chapter will explore possible solutions and approaches to opti-
mize performance and efficiency for neural network applications by effectively leveraging
the unique strengths of CPUs and FPGAs in a hybrid computing architecture.

Chapter 4 discusses the steps taken to implement the potential solutions from the pre-
vious chapter. Here a detailed explanation is given to the steps taken in realizing the im-
plementation.

In Chapter 5 we discuss the proposed experiments that will be conducted to test the
effectiveness of the proposed algorithms. The results of these experiments are presented
in this chapter. It includes graphs and charts to illustrate the data obtained. The chapter
describes the results, thoroughly discussing any limitations or implications of the research.

In Chapter 6, conclusions are drawn based on the previous chapters. The research
questions are summarized and answered, along with recommendations for improvements
that can be made in future works.



2
Background

This chapter contains background knowledge used in this research to help answer the
problem statement and research questions outlined in Chapter 1. This section of the re-
port is structured as follows, what an FPGA is and its general architecture is presented in
Section 2.1. Heterogeneous computing is explained in Section 2.2, and information is pro-
vided on the difference between sequential and parallel programming. Section 2.3 briefly
introduces what neural networks are and the common terminology used when discussing
them. Section 2.4 presents Open Neural Network Exchange (ONNX), onnxruntime, and
the FINN framework.

2.1. Field programmable gate array (FPGA)
The FPGA proposed by Xilinx in 1984 was introduced to expedite the design phase of
application-specific integrated circuits (ASICs) [12]. By utilizing FPGAs, engineers could
create, code, authenticate, and confirm hardware designs without fabricating tangible inte-
grated circuits (ICs).

Since the 1980s, the use of FPGA has expanded beyond designing and testing ASICs.
Today, FPGAs have diverse applications in digital signal processing, high performance
computing, the internet of things, automotive, aerospace technology, security, encryption,
and more. FPGAs allow designers to access customized low-power and high-performance
solutions.

2.1.1. General FPGA architecture
Although FPGAs differ slightly depending on themodel, they can be broken down into these
3 basic components as shown in Figure 2.1.

The basic building blocks of an FPGA are the configurable logic blocks (CLBs) (named
logic blocks in Figure 2.1), comprised of lookup tables (LUTs), flip-flops, and multiplexers
that can be configured to implement any digital logic function. The number and organi-
zation of CLBs can vary between different FPGA architectures, and the functionality of
the LUT within each CLB can also vary. Input/output blocks (IOBs) interfaces the FPGA
with external devices, providing the physical connection between the FPGA pins and the
external peripherals. A designer can customize the configuration of the IOBs to meet spe-
cific requirements. Finally, programmable interconnects are the internal connections within
an FPGA that allow different logic blocks to communicate. Hardware designers configure
a routing resource matrix to create custom connections between different blocks of the
FPGA, enabling complex signal paths between logic elements using hardware description

4



2.1. Field programmable gate array (FPGA) 5

Figure 2.1: A simplified version of the FPGA architectures, figure from [13]

languages such as VHDL or Verilog. Designers can achieve high performance and low
power consumption in custom digital circuits by utilizing FPGAs, which offer a key advan-
tage through the flexibility of their programmable interconnects.

2.1.2. FPGA resources
This section explores the resources available on common FPGAs, including logic elements,
memory blocks, and digital signal processors. The available resources for the Kria KV260
Vision AI Starter Kit [14] are also shown, as this is the chosen platform for this research.
In Table 2.1, the resources for the KV260 starter kit can be found along with the PYNQ-Z2,
Ultra96v2, and the Alveo U280, which is a server grade FPGA. These platforms depict the
differences between edge devices and compare these to a server-grade FPGA.

Platform Available
IOBs

LUTs
(x1000)

FlipFlops
(x1000)

Block
RAMs

Ultra
RAMs

DSPs

Kria
KV260

189 117.12 234.24 144 64 1248

PYNQ-Z2 125 53.2 106.4 140 0 220
Ultra96v2 82 70.56 141.12 216 0 360
Alveo
U280

624 1304 2607 2016
(36Kb)

960
(288Kb)

9024

Table 2.1: FPGA resources for the Kria KV260, PYNQ-Z2, and the Ultra96v2.

As mentioned in Section 2.1.1, a CLB is made up of LUTs, flip-flops, and multiplexers.
The resources available on a given FPGA differ based on the manufacturer. A designer se-
lects a platform based on a neural network model and performance to meet the designer’s
requirements.

Block RAM is a specialized memory block within an FPGA that can store data or pro-
gram code. Block RAMs can be configured to have different sizes and organizations de-
pending on the neural network requirements. They can be used for implementing functions
like first-in-first-out buffers (FIFOs) and state machines. Digital signal processing (DSP)
blocks are specialized hardware blocks within an FPGA optimized for implementing signal
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processing algorithms like filtering, FFTs, and convolutions. DSP blocks often include fea-
tures like high-speed multipliers, adders, and accumulators, which can implement complex
digital signal processing pipelines with low latency and high throughput.

LUTs are essential components of FPGAs that allow digital logic functions to be imple-
mented through pre-defined truth tables. Each LUT can be considered a small memory
unit that receives input signals and returns the corresponding pre-defined value output.
The LUTs are often connected to create complex logic functions, with the output of one
LUT feeding into the input of another. Optimizing the use of LUTs is critical to achieving
maximum performance and efficiency in FPGA designs.

2.1.3. System on module (SoM) FPGAs
As mentioned in Section 2.1.2 the selected platform for this research is the Kria KV260
Vision AI Starter Kit, a system on module (SoM). A SoM differs from a system on chip
(SoC); therefore, this report section explains the difference.

A SoC and SoM are technologies used in embedded systems design but have different
architectures and purposes. A SoC is a single integrated circuit containing all the compo-
nents of a complete electronic system. It typically includes a processor, memory, periph-
erals, and other system components integrated onto a single piece of silicon. FPGAs are
often used in SoCs as they allow for the creation of highly customized, application-specific
computing systems that can perform complex tasks at high speeds. Note that the Ultra96
and the PYNQ-Z2 shown in Table 2.1 are SoC implementations.

A SoM is a production-ready printed circuit board (PCB) that integrates essential com-
ponents of an embedded processing system, such as processor cores, communication
interfaces, and memory blocks [15]. SoMs are designed to be easily embedded into vari-
ous end systems, ranging from robots to security cameras. By using a modular approach, it
is possible to provide a convenient and efficient way to integrate computing power into mul-
tiple applications. This allows designers and developers to focus on the specific features
and functions of their products, without having to worry about the underlying hardware and
software infrastructure.

2.2. Heterogeneous computing
Heterogeneous computing is a computing platform containing more than one type of com-
puting resource, with each resource optimized for different tasks [16]. Combining the fol-
lowing homogeneous computing systems [17] multicore CPUs, graphics processing units
(GPUs), FPGAs, and ASICs results in a heterogeneous computing system (i.e., FPGA+CPU).
Each one of these platforms has its advantages and disadvantages. ASICs are the least
reprogrammable as they are designed for specific tasks. CPUs are also not reconfigurable
but are designed to perform a wide range of tasks, making themmore versatile than ASICs.
GPUs are platforms that handle the demands of computer graphics and video processing.
They can performmany simple calculations in parallel, making them highly energy efficient.
Regarding re-programmability, GPUs lie between CPUs and FPGAs, as they are not as re-
programmable as FPGAs, but more versatile than CPUs. FPGAs are highly reconfigurable
and can be programmed to perform various tasks. The re-programmability and energy ef-
ficiency of FPGAs make them well-suited for prototyping. Figure 2.2 shows the platforms
mentioned above and how they scale in terms of re-programmability and energy efficiency.
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CPU GPU FPGA ASIC

Energy Efficiency

Re-programmability

Figure 2.2: Different computing systems ordered in terms of re-programmability and energy efficiency

2.2.1. Sequential processing
Sequential processing refers to the execution of instructions in sequential order, also known
as the instruction pipeline. The CPU fetches each instruction from memory, decodes it to
determine the operation to be performed, executes the operation, and then stores the result
in a register or memory location [18]. This process is repeated for each instruction in the
program, with each instruction executed in sequence, one after the other. Methods such as
pipelining exist, which improve the throughput of the CPU [19]. Figure 2.3 shows an exam-
ple of a fully pipelined instruction pipeline. While sequential processing is generally more
straightforward, it may not be well suited for large or complex tasks. The sequential nature
of CPU processing allows complicated tasks to be broken down into simple operations that
can be executed in a predetermined order.

Figure 2.3: An example of an instruction pipeline, figure modified from [18].

2.2.2. Parallel processing
FPGAs allow for parallel processing, which allows for the simultaneous execution of multi-
ple operations by dividing them into smaller tasks and distributing them in various process-
ing units. Parallel processing in FPGAs is achieved by programming the logic gates on the
FPGA to perform specific functions. This flexibility allows for custom processing units opti-
mized for specific tasks, resulting in improved performance and energy efficiency. Parallel
processing can achieve high levels of performance and efficiency but requires specialized
hardware and software to implement [20].

2.2.3. CPU+FPGA
A CPU + FPGA computing architecture is used in this research. Combining these two
platforms provides multiple benefits [21], discussed in this section regarding the heteroge-
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neous platform. A combination of a CPU and FPGA can handle specific tasks in parallel,
resulting in faster processing times and higher performance than a single CPU processor
while utilizing the performance of each platform. The FPGA’s re-programmability provides
greater flexibility in the system, which is particularly useful in applications where require-
ments change frequently. Additionally, the CPU and FPGA can allocate resources effi-
ciently, leading to better utilization of the available resources. The FPGA can also offload
specific tasks to the CPU, freeing up resources on the FPGA and improving overall perfor-
mance. An FPGA can improve power efficiency as it can be configured to perform specific
tasks with low power consumption compared to a general-purpose CPU.

Applications for CPU + FPGA
Many use cases exist for CPU + FPGA hybrid models, such as video, image compression,
automotive, autonomous vehicles, network processing, and high-performance computing.
Besides these use cases, a CPU+FPGA hybrid may also be beneficial in a resource-limited
environment. As stated in Section 2.1.2, there is a big difference in the type of FPGA
used. A smaller FPGA, such as the Kria SoM KV260, may be unable to implement the
application with the available resources. While a server-grade FPGA such as Alveo U280
can implement the application as it has more available resources. As a designer, it may
not always be possible to use a server-grade FPGA; therefore, this scenario of a limited
resource environment may present itself. The solution may be a hybrid combination of
CPU+FPGA. In the NN domain, CPU and FPGA hybrid systems can be beneficial because
they provide a powerful platform for accelerating NN computations. NNs require massive
amounts of analysis; by combining CPUs and FPGAs, users can take advantage of the
parallel processing capabilities of FPGAs to accelerate inference phases of NNs.

2.3. Neural Networks
A neural network (NN) can be seen as a function 𝑓(𝑥), which takes in some input x and
returns an output [22]. A fundamental building block of the NN is the perceptron intro-
duced in 1958 [23]. Figure 2.4 shows a snapshot of the perceptron. Each node is called a
neuron; the associated edges are called synapses. Each edge has an associated weight
that represents the strength of the connection between the two neurons. The weight of an
edge determines the amount of influence one neuron has on another neuron. In a neural
network, the edge passes data from the input to the output. The weights of the edges are
trained during a phase known as training. During this process, the weights are adjusted so
the neural network can accurately perform a task, such as an image classification.

Each neuron receives input from the previous layer and applies mathematical opera-
tions, including a dot product of the input and the weights, adding a bias term, and applying
an activation function. The activation function is a non-linear operation that introduces non-
linearity to the model, allowing the network to learn more complex relationships between
inputs and outputs. The Rectified Linear Unit (ReLU) activation function is a popular choice
in many neural networks because it is computationally efficient. Typically, neural network
architectures consist of a series of layers, each containing multiple neurons connected by
edges with associated weights. As shown on the right in Figure 2.4.

Fully connected layers
Fully connected layers are a layer that is common in neural network models. A fully con-
nected layer consists of neurons, each neuron in one layer is connected to all the neurons
in the next layer and all neurons in the previous layer, as shown in Figure 2.4. The purpose
of a fully connected layer is to learn a non-linear mapping between the input and output
of a given dataset. Each neuron in a fully connected layer applies a non-linear activation
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Layer 1 Layer 2 Layer 3

Σ f(x)

W0

W1

W2

Figure 2.4: Left: is a snapshot of a single perception. Right: is an example of a single layer of a neural network

function to the weighted sum of its inputs, which allows the network to learn complex re-
lationships between the input and output. Typically this activation function is the rectified
linear unit (ReLu); non-linear operation replaces negative values with zero to introduce
non-linearity in a neural network model, denoted by the equation:

𝑦 = 𝑚𝑎𝑥(0, 𝑥) (2.1)

It is worth mentioning that fully connected layers are widely used in deep neural network
(DNN) architectures. However, fully connected layers can be memory and computation
intensive, especially for large datasets such as imagenet [24]. The number of neurons in
the layer and the number of input features determine the computational complexity of a
fully connected layer. It’s typically O(m*n) for a fully connected layer with m input features
and n neurons, where m and n are the input sizes and the number of neurons, respectively.

2.4. Software resources
This thesis section will introduce the software tools used in this research. First, an introduc-
tion will be given to Open Neural Network Exchange (ONNX), an open-source format for
representing machine learning models. An introduction is given to onnxruntime, the soft-
ware used to execute these ONNX models. Concluding with an introduction to the FINN
framework and the build flow of the tool.

2.4.1. ONNX
ONNX (Open Neural Network Exchange) is an open standard for representing deep learn-
ing models in a format that is both flexible and computationally efficient [25]. This standard
has been developed to encourage the exchange of deep learning models between different
software frameworks and hardware platforms. The development of ONNX is a response
to the fragmentation observed in the deep learning community [26], where models built in
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one framework may not be compatible with other tools and platforms.
ONNX is built using Google’s Protocol Buffers (protobufs) [27]. These buffers provide

a language and platform-independent way to structure data, similar to the JSON format.
The protobufs format is ideal for dataflow architectures. Such buffers are designed to store
data in a compact form that can be quickly parsed by many different programming lan-
guages enabling a seamless exchange between various programming languages. The
ONNX standard is designed with both performance and compatibility in mind. It supports
many deep learning models and operations, making it well-suited for deployment on var-
ious hardware platforms, including cloud-based systems, edge devices, and embedded
systems. ONNX can be seen as a mathematical functions programming language, as the
ONNX language contains all necessary operations to implement machine learning infer-
ence functions. An example of generating a linear regression can be seen in Listing 2.1.
Such code can then be used to create an ONNX graph. The ONNX graph generated for
the given linear regression can be seen in Figure 2.5.
1 def onnx_linear_regressor(X):
2 ”ONNX code for a linear regression”
3 return onnx.Add(onnx.MatMul(X, A), B)

Source Code 2.1: Example python code to generate a ONNX linear regression taken from [28].

?×? ?×?

?×?

?

X A

B

MatMul

Add

Y

Figure 2.5: Linear regression ONNX graph taken from [28]. The nodes represent operations, while the edges
represent the inputs and outputs of the operation. The question marks are where the shape of the data should
be shown.

The above example can be expanded using frameworks such as PyTorch [29] or Ten-
sorFlow [30] to generate NN models. The trained model can be exported to the ONNX
format, representing the model as an ONNX graph. A computational graph in ONNX con-
sists of a set of nodes representing mathematical operations, and directed edges serve
as the data flow between operations, as seen in Figure 2.5. Each node in such an ONNX
graph is of the protobuf format, which contains information about the node’s type, shape,
and other parameters. The edges represent the inputs and outputs of the operation, allow-
ing data to flow from one operation to another. Such a graph can then be serialized into
one contiguous memory buffer that can be run using onnxruntime.

2.4.2. Onnxruntime
Onnxruntime is an open-source project by Microsoft to accelerate machine learning [31]. It
is a cross-platform, high-performance inference engine for machine learning models in the
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ONNX format. This allows users to leverage the best features and optimizations of different
frameworks while still being able to use the exact model representation. ONNX runtime is
a highly optimized and flexible system for executing ONNX models. It takes advantage of
hardware-specific optimizations and provides advanced features to ensure that models are
executed as efficiently as possible. Onnxruntime automatically parses through a model to
identify optimization opportunities and provides access to the best hardware acceleration
available.

2.4.3. FINN
FINN is a framework developed by AMD [11], which aims to investigate the implementa-
tion of DNN inference on FPGAs. The FINN framework provides designers an end-to-end
flow that gives developers access to specialized hardware architectures. Dataflow archi-
tecture and the custom precision for few-bit weights and activations are two techniques
that FINN leverage. Dataflow architecture in FINN provides dedicated hardware for each
layer in a NN model. Using a dataflow architecture has the advantage that each layer can
contain a different amount of hardware resources proportional to the compute resources of
the device. The inputs can then be streamed through the device like a pipelined architec-
ture. The advantage of this architecture is that only the resources required are utilized; in
terms of latency, streaming architectures do not need to buffer data, which results in higher
throughput. The FINN dataflow architecture is very specific for each model implemented
using FINN, giving a designer a high level of control when it comes to tuning a model’s
performance on hardware. A designer can control the model performance by changing the
folding setting of the FINN framework. Folding refers to the number of resources dedicated
to a neural network that increases or decreases a model’s throughput. A folding setting of 1
indicates fully unfolded, meaning that every neuron in a NNmodel has dedicated hardware.
Resulting in maximum performance and means that the neural network will classify at the
clock rate of the FPGA. A higher folding setting results in fewer resources for the neural
network by proportionally removing resources from each layer, decreasing the network’s
throughput.

A designer can alter specific parameters, such as the number of processing elements
(PEs) and the depth of the single input multiple data (SIMD) lane, to help control the number
of resources used. Using more resources increases the throughput, with the result that a
smaller portion of the neural network can be implemented on an FPGA. A Matrix–Vector–
Threshold Unit (MVTU) forms the computational core for the FINN framework, shown in
Figure 2.6.

Figure 2.6: Overview of MVTU, figure is from paper [11]
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Such a core comprises two components the SIMD lanes (S) and the processing ele-
ments (PE). Each PE is made up of SIMD lanes. Changing the folding setting for a given
network alters the number of PEs and depth of SIMDs. Changing these two values affects
the throughput of the neural network. The number of cycles needed to complete onematrix-
vector multiply is Equation 2.2. X and Y refer to a matrix’s height and width, respectively,
and PE and SIMD are the set values.

𝐹 = 𝑋
𝑃𝐸𝑥

𝑌
𝑆𝐼𝑀𝐷 (2.2)

Figure 2.7: Neuron and weight folding for MVTU [11].

Figure 2.7 shows an example of themapping of a 6x4 with SIMD equal to 2 and PE equal
to 3. As changing the values of PE and SIMD affect performance, we, as the designers, can
manually change these by providing a folding file to the FINN build flow. There is also the
possibility to let FINN auto-set the folding values for a given network, each layer containing
an MVTU will be set differently to maximize the resources used.

Custom precision for few-bit weights and activations is the second technique that FINN
exploits. The idea is to reduce the weights and activation size during training while main-
taining a respectable level of accuracy. Reducing the bit precision reduces the hardware
footprint, allowing for more of a NN model to be implemented on a hardware platform. The
end-to-end flow can be seen in Figure A.1, and each block is discussed below. The FINN
end-to-end flow starts with exporting a neural network model in brevitas. The exported
model then undergoes a network preparation step shown in Figure 2.8. Upon comple-
tion of the network preparation step, a hardware build can be made of the provided neural
network. The network is then ready to be deployed to the FPGA platform.

Streamlining is a step in the network preparation step of the FINN framework, and it
is the technique used to optimize models by eliminating floating-point operations. These
transformations can include moving the operations around, collapsing them into a single
operation, and converting them into multithresholding nodes. For more information on
streamlining, refer to [32]. Once this step is completed, the resulting ONNX model will
contain custom and standard nodes. During the convert to high-level synthesis (HLS)
step, standard or custom layers are transformed into HLS layers, which map directly to
a finn-hlslib function call. By converting the model to HLS layers, the transformation al-
lows the resulting implementation to utilize specialized hardware circuits to perform these
operations. Following the convert to the HLS step, the ONNX graph consists of HLS and
non-HLS layers.
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Figure 2.8: Network preparation steps, a snippet from Figure A.1

The dataflow partition step splits the graph to create two graphs, the parent and child
(named partition graph in this thesis). The parent graph contains the non-HLS layers,
while the HLS layers are in the partition graph. Folding is the final step in the network
preparation step, and it is the process that sets the number of parallel operations in a node
of the partition graph. Higher parallelization increases the neural network’s throughput but
increases resource usage. This trade-off creates a design space for the designer, enabling
them to choose between implementing a neural network with a high throughput or a lower
throughput with lower resource usage. Folding works by grouping multiple computations
into a single operation, reducing the number of parallel operations required to compute
the neural network. The FINN compiler can perform the folding step automatically, which
uses a folding algorithm to optimize the hardware design. However, supplying a file that
manually sets the folding constraints is also possible, allowing the designer to control how
resources will be used.

To execute the DNN on the intended hardware platform, the hardware build step shown
in Figure 2.9 involves generating an HLS IP for each layer, creating a stitched design, and
performing hardware synthesis to produce a bitfile and PYNQ Python driver.

After creating HLS IP blocks per layer and stitching them into a single design, the FINN
framework hardware build process results in an optimized hardware design. Creating HLS
IP per layer step uses Vivado HLS tools to convert each layer from the graph into cus-
tom IP blocks. This approach leads to more resource-efficient usage, simplified design,
and improved performance through pipelining and parallelization. These IP blocks can be
reused across different accelerator designs, making it possible to build a library of stan-
dard IP blocks. In the stitched design step, the custom IP blocks are integrated into a
single design using a dataflow-based stitching approach that enables efficient communica-
tion between different layers. The resulting design can be implemented on an FPGA using
Vivado or Vitis. The hardware build process includes synthesis, place, route, and bitstream
generation steps using Vivado. These steps involve translating the hardware description
into a netlist, determining the optimal physical location and interconnect resources for logic
blocks, and generating the configuration file for the FPGA. The FINN framework generates
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Figure 2.9: Hardware build steps, a snippet from Figure A.1

a PYNQ python driver file that works with the generated bitfile to download the bitstream
to the target FPGA and run it.

Estimation report FINN
Running for an estimate-only (no hardware synthesis) is possible in the FINN build flow.
After setting the folding configurations of the model, FINN generates estimate reports. A
designer can use these estimation reports to gauge metrics such as estimated resource
usage, network performance, and clock cycles per layer. Such metrics allow a designer to
decide if the design meets set requirements before performing hardware synthesis, which
can take hours depending on the model’s size.

2.5. Alternative solutions
To highlight and compare alternative solutions, this thesis section will present alternative
solutions for heterogeneous computing and machine learning in resource-limited environ-
ments. We will delve into various solutions in this thesis section. Three end-to-end ac-
celerators for deep learning on mobile devices will be discussed TVM, hls4ml, and Vitis
AI [33].

TVM is an open-source deep-learning compiler for CPUs, GPUs, and specialized ac-
celerators; that provides performance portability to deep-learning workloads across diverse
hardware back-ends [34] by exposing graph/operator level optimization to deploy the work-
load to mobile devices such as embedded devices, FPGAs, and ASICs. TVM solves deep
learning challenges by using high-level operator fusion, mapping to arbitrary hardware
primitives, and memory latency hiding. TVM uses the high-level operations of a compu-
tational graph to perform optimization, such as operator fusion and data layout transfor-
mations. TVM offers users a general-purpose tool for optimizing machine learning models
across various hardware platforms.

Hls4ml is a Python plugin for machine learning, designed to allow designers to quickly
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prototype a machine learning algorithm for implementation on FPGAs by taking a high-level
representation of an ML model such as PyTorch or Tensorflow and generating synthesiz-
able hardware description language (HDL) [35]. Enabling a seamless implementation of
a machine learning model on FPGAs, hls4ml includes network optimization techniques,
such as pruning and quantization-aware training. The goal of hls4ml is to translate ma-
chine learning algorithms for implementation on FPGAs and ASICs.

Vitis AI is a development environment that designers can leverage to accelerate AI mod-
els on Xilinx platforms [33]. It provides developers with a high-level programming interface
and toolchain to accelerate their deep-learning applications. Vitis AI is made of the following
key components. DPUs, which are computation engines designed to optimize a convolu-
tional neural network, DPUs are efficient and scalable IP blocks that can be changed to
meet an application requirement. Vitis AI contains a quantizer which is a tool that supports
model quantization. The compiler of Vitis AI compiles the quantized model for the intended
target, and runtime (VART) inferences the model on the embedded application.

The previous three presented works aim to design, optimize and deploy neural network
models on dedicated hardware platforms. While each tool uses different techniques to
achieve this, they all aim to improve performance, reduce latency and increase the through-
put of a neural network model. These three presented works pose that advances in em-
bedded devices (edge devices) have pushed researchers to develop methods to deploy
neural networks to hardware devices in a performance-efficient manner.

As the Internet of Things (IoT) evolves, hardware is needed to infer DNN on edge. As
edge devices often have limited computational resources and small storage. Currently,
the industry heavily relies on cloud computing and server-grade hardware. This depen-
dency presents several technical challenges, including latency, reliability, and privacy con-
cerns [8]. There is a growing interest in on-device computation and storage to address
these issues, which is essential for many time-critical industrial IoT applications that require
real-time processing. Researchers are exploring threemajor research areas to deploy DNN
models on edge devices: quantization, pruning, and network architecture design. These
techniques help to reduce the computation and space complexity of DNN models, making
them applicable to industrial IoT devices.



3
Methodology

This chapter supplies the methodology necessary to answer the problem statement and
research questions 1, 2, and 3 as defined in Chapter 1. This chapter will explore possible
solutions and approaches to optimize performance and efficiency in neural network models
by effectively leveraging the unique strengths of CPUs and FPGAs in a hybrid computing
architecture. As the goal is to develop an algorithm, Section 3.1 will elaborate on the design
choices made in developing the two algorithms. The information discussed in this section
is later used for the implementation chapter.

3.1. Design flow
In this section of the report, we present an overview of the design flow used to develop
an algorithm that leverages the distinctive capabilities of both CPUs and FPGAs in a hy-
brid computing architecture. With the primary objective of optimizing performance and
efficiency for a neural network model, as specified in the problem statement. Figure 3.2
shows the implementation eventually arrived at. The Kria SoM KV260 platform is cho-
sen for this work as it is a cheaper alternative to server-grade hardware and provides a
CPU + FPGA environment that we can use to experiment on. The Kria SoM KV260 con-
tains fewer resources than a server FPGA making this a suitable option to experiment with
resource-limited environments. We choose FINN as the software framework, as it is a
framework that is structured in a dataflow-style architecture, making splitting more natural.
This will significantly reduce the time required to develop and deploy custom hardware-
accelerated applications. As explained in Section 2.4.3, the FINN framework is a tool used
to convert machine learning models trained with high-precision floating-point arithmetic to
low-precision fixed-point arithmetic. It enables the deployment of neural network models
on edge devices with low power and low memory constraints while preserving model ac-
curacy. We propose an algorithm to address research questions 1, 2, and 3 by partitioning
and distributing a neural network in a resource-limited environment.

Design choices
After selecting the FPGA and FINN framework, the focus of this research must shift towards
identifying the specific problem we aim to solve. As outlined in the research questions, we
aim to develop a partitioning technique and distribute a neural network on a hybrid platform.

The primary objective of this research is to develop an algorithm that efficiently parti-
tions a neural network to optimize its performance on a hybrid platform. To start, we must
determine the inputs and outputs of the algorithm. We want to work with a model represen-
tation easily portable to various hardware or software platforms. ONNX graphs are easy

16
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to work with and simplify partitioning using pre-built Python packages. Thus the selected
model representation for this research is a model in the ONNX format. With a model struc-
ture selected, we can now explain the overall framework of the algorithm. To distribute a
single ONNX model to deploy on a hybrid platform, a partition must be made to enable its
distribution. To identify the partition that offers the best performance in terms of total run-
time. To obtain this objective, it is key to identify a function that can be used to identify when
the partition satisfies the minimum runtime. The minimization function can be expressed
using Equation 3.1, where 𝑇𝑓𝑝𝑔𝑎 is defined in Equation 3.2.

min (𝑇fpga + 𝑇cpu) (3.1)

𝑇fpga = 𝑇data to device + 𝑇inference time + 𝑇data from device (3.2)

To reach high-speed computation, low latency, and low power consumption, it is nec-
essary to move data to FPGAs instead of reading it out of memory. Migrating data to
an FPGA can improve system performance by reducing the amount of data transferred.
Equation 3.2 considers the duration of data movement when evaluating FPGA time. When
using an FPGA to execute a neural network, it is necessary to transfer data to the device to
take advantage of its high performance, parallel processing, low power consumption, and
cost-effectiveness.

Figure 3.1 depicts the three scenarios considered, where the baseline is denoted as a
full CPU implementation as an assumption is made that the provided neural network model
does not fit within the resources of the given platform.
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Figure 3.1: Three scenarios when creating subsets from a givenONNXmodel. The right three are the scenarios
tested. The baseline is denoted as a full CPU implementation. The CPU is the quad-core Arm Cortex-A53 on
the Kria SoM KV260.

Partitioning Techniques
Several techniques exist for partitioning and distributing neural networks between FPGAs
and CPUs. Each partitioning technique has its advantages and disadvantages. Select-
ing the most appropriate approach can depend on various factors, including computa-
tional requirements, available resources, and the complexity of the network architecture.
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One technique is layer-based partitioning, which involves partitioning each neural network
layer to either the FPGA or the CPU based on computational requirements or available
resources [36], [37]. This approach has the advantage of being relatively straightforward
to implement. Furthermore, it allows for efficient use of resources and can result in im-
proved performance by minimizing data movement between the FPGA and CPU. Another
technique is node-based partitioning, where the neural network is divided into small sub-
graphs consisting of individual or small groups of layers. Each partition is then distributed
to a specific FPGA or CPU based on the node’s computational requirements and available
resources. This approach can provide fine-grained control over the distribution of compu-
tations. For this research, we plan to perform node-based partitioning as we group layers
based on the topology of the nodes in the ONNX graph.

Distributing a neural network between an FPGA and a CPU can be done using hard-
ware/software co-design. The idea is to split the workload between the FPGA and the
CPU, based on the strengths and weaknesses of the respective device, to achieve the
best overall performance. An approach to distributing the neural network is partitioning a
NN model into different sub-networks, with each sub-network optimized for execution on
either the FPGA or the CPU. This requires analyzing the neural network’s computational
requirements and identifying which network parts can be executed most efficiently on which
platform. For example, convolutional layers, which involve a lot of matrix multiplication, are
typically well-suited for acceleration on an FPGA [38]. In contrast, fully connected layers
and activation functions can be executed on a CPU.

3.2. Proposed algorithms
An outline of the two primary algorithms implemented in Chapter 4 is given using the infor-
mation explained above. First, an introduction is given to the exhaustive search algorithm,
followed by proposed changes for implementing the second algorithm.

3.2.1. Exhaustive search algorithms
This section explores the design choices and the approach used for the exhaustive search
algorithm. An exhaustive search algorithm solves a computational problem by exploring all
possible solutions among a finite set. The algorithm selects the solution that best meets
the requirements or is closest to the desired outcome. An advantage of an exhaustive
search algorithm is that it guarantees to find a global minimum within a finite set. The
algorithm explores all possible solutions and evaluates each feasible option. One major
drawback of an exhaustive search algorithm is that it can be computationally intensive, as
the intensity grows exponentially with the size of the problem, which can quickly become
computationally infeasible. The possible subset for the exhaustive search algorithm grows
exponentially with the number of nodes (𝑛!) with n equal to the number of nodes in a given
ONNX graph. Although the algorithm is computationally intensive, it is relatively simple to
implement, making it an appropriate starting point for this research.

3.2.2. Setup of algorithm 1
The first proposed solution is to implement an exhaustive search algorithm in a naive im-
plementation, meaning that the algorithm tests all possible partitions. This implementation
finds a global minimum, the best runtime for a given neural network model. Below in Fig-
ure 3.2, the exhaustive search algorithm for the primary algorithm can be found.

Experimental testing shows that utilizing an ONNX graph with a forking structure leads
to complex partitioning due to the multiple paths in such a graph. Models of the non-
sequential contain residual blocks [39], which is outside the scope of this research. There-



3.2. Proposed algorithms 19

Onnx graph
Generate 
partitions

Measure 
inference 

time 

CPU partition

runtime 
for given 
partition

Estimate 
time data to 

FPGA

Estimate 
inference 

time 

Estimate 
time data to 

cpu

runtime 
for given 
partition

Combine 
dataset

CPU

FPGA

Minimum runtime

∀ 
subsets

FPGA
partition

Figure 3.2: Design flow for algorithm 1. The input to the algorithm is a pre-trained ONNX graph, and the output
is a dataset in which it is possible to find the best configuration based on design criteria.

fore, this research has selected a sequential ONNX graph structure as the preferred graph
type for this study. To partition a sequential ONNX graph by grouping nodes (nodes are
the operations as shown in Figure 2.5) into various sub-graphs, we either deploy the sub-
graph to the FPGA or the CPU. To perform this partitioning, we use the QONNX (quantized
ONNX), a Python package used to represent uniform quantization [40]. PartitionFromDict()
is a function within the QONNX package that allows users to transform an ONNX model by
passing a dictionary that defines partitions based on node indices. The resulting partitions
each have a model attribute. Figure 3.3 illustrates the feasible partitions that can be placed
on the FPGA. Note that the part placed on the CPU is not in the figure. It is important to
note that the scenario with a single node is excluded by choice as it is not practically viable.
The generated subset seen below are subsets for execution on the FPGA.
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Figure 3.3: An example of the possible subsets for an ONNX graph of nodes to be placed on the FPGA, the
nodes not shown in the subsets are placed on the CPU. Note that the scenarios with a single node are ignored.

3.2.3. FPGA estimation
To estimate the expected inference time of a neural network partition on the FPGA, it can
be broken down into three parts as shown earlier in Equation 3.2. In the FINN flow, a step
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in the build process generates estimate reports containing information such as execution
time, resource usage, and more. To estimate the execution time of the FPGA, we use the
estimate report named estimate_network_performance.json; an example is below.

{
”critical_path_cycles”: 8718751,
”max_cycles”: 394272,
”max_cycles_node_name”: ”Thresholding_Batch_0”,
”estimated_throughput_fps”: 253.63201038876716,
”estimated_latency_ns”: 87187510.0

}

To estimate the execution time of our design, we can utilize the critical path cycles and
the clock frequency of the FPGA. As the critical path cycles indicate the maximum clock
cycles needed to output an answer, using this information, we can define the inference time
as 𝑇inference time = critical path cycles∗CLK−1. However, estimating the data movement
times requires more effort since this information is not readily available in the FINN frame-
work. A fit function will be derived to determine the movement times for data of a specific
size in megabytes (MB). To do so, we pass data of different sizes (in MB) from the CPU to
the FPGA and measure the time to transfer data. This process is repeated for data from
the FPGA to the CPU, resulting in two functions defining the functions used to estimate the
data movement times.

3.2.4. CPU measurements
As the ONNX graph is present for the CPU partition, it is possible to measure the execution
time on the CPU. This can be done by using onnxruntime. Onnxruntime provides efficient
and optimized execution of ONNX models on CPU platforms, leveraging the hardware and
software capabilities of the system.
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3.2.5. Setup of algorithm 2
The study proposes a second algorithm that builds on the previous algorithm described
in Section 3.2.2 but incorporates a validation check to speed up the estimation process.
Specifically, the assessment determines whether the FPGA partition fits within the resource
limit of the given platform. A JSON file displays the utilized estimate resources during the
FINN estimate report generation phase. Figure 3.4 shows that the algorithm adds a check
for each generated subset to verify if the given partition’s estimated resources fit on the
Kria SoM KV260. If the estimation exceeds the total allowed resources of the Kria SoM
KV260 (Table 2.1), the algorithm skips this partition. This pruning reduces the number of
estimates that need to be made, resulting in a shorter estimation time for the same neural
network.

Onnx graph

Generate 
subsets

Measure 
inference 

time 

runtime 
for given 
partition

Estimate 
time data to 

FPGA

Estimate 
inference 

time 

Estimate 
time data to 

cpu

runtime 
for given 
partition

Combine 
dataset

CPU

FPGA

Minimum inference 
time

∀ 
subsets

Fits on 
FPGA?

Estimate 
resource 

usage

FPGA 
partition

CPU partition

FPGA partition

No

Figure 3.4: Design flow for algorithm 2. The input to the algorithm is a pre-trained ONNX graph, and the output
is a dataset in which it is possible to find the best configuration based on design criteria. A check is added to
see if it fits within the resources of the FPGA; if not, it skips and goes to the next partition.



4
Implementation

This chapter outlines the implementation of the previously introduced algorithms in Sec-
tion 3.2.2 and Section 3.2.5. The code presented in this chapter is pseudo-code. The
complete code can be found in Appendix B. We begin by introducing our implementation of
algorithm 1, explaining how we set up an experiment to obtain the functions for estimating
data movement, and discussing how we plan to approach the CPU implementation. Af-
ter that, we describe how we modified the second iteration of the algorithm to check if a
partition remains within the resource bounds.

4.1. Implementation algorithm 1
A practical implementation of algorithm 1 is provided below, Figure 3.2 refers to the outline
used in this implementation. It explains how to partition the ONNX graph to generate the
search space and experiments run to determine data movement times. It also outlines the
approach for CPU inference times. Finally, it demonstrates how these components work
together to identify the best partition.

4.1.1. Defining search space
Our implementation must partition a pre-trained ONNX graph at each custom operation
”MultiThreshold.” FINN uses the ”MultiThreshold” node as a custom operation to represent
the quantization and binarization of neural network weights and activations. The node takes
a tensor as input and applies a set of fixed threshold values to each element in the tensor.
Without the MultiThreshold nodes, the FINN framework would not know which nodes in
the neural network require quantization. It could not perform the necessary optimizations
to generate a hardware design that efficiently implements the quantized neural network.
Thus this node is critical to using the FINN framework, and therefore a graph is split at
each MultiThreshold node.

Pseudo-code 1 generates a list of the indices where the MultiThreshold node is located.
Our implementation shown in Pseudo-code 2 iterates over this list and compiles all possible
subgraphs. This results in two lists, one for the nodes containing the ranges for CPU and
one containing the nodes for the FPGA partition. These two lists can now be used with the
function PartitionByDict to partition the CPU and FPGA partitions.

22
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Algorithm 1 Generate partitions
1: procedure GeneratePartitions(model)
2: wanted_Nodes ← empty list
3: for each 𝑛𝑜𝑑𝑒 ∈ model.graph.node do
4: if 𝑛𝑜𝑑𝑒.name == “MultiThreshold” then
5: wanted_Nodes.append(𝑛𝑜𝑑𝑒.index)
6: end if
7: end for
8: return wanted_Nodes
9: end procedure

Algorithm 2 Group sub graphs
1: 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠_𝑙𝑠𝑡_𝑓𝑝𝑔𝑎, 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠_𝑙𝑠𝑡_𝑐𝑝𝑢 ← ∅
2: 𝑚𝑎𝑥_𝑙𝑒𝑛←length(model.graph.node)
3: for 𝑖 in 𝑤𝑎𝑛𝑡𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 do
4: for 𝑙 in 𝑤𝑎𝑛𝑡𝑒𝑑_𝑛𝑜𝑑𝑒𝑠 do
5: if 𝑖 < 𝑙 then
6: if 𝑖 = 0 and 𝑙 ≠ 𝑚𝑎𝑥_𝑙𝑒𝑛 then
7: 𝑓𝑝𝑔𝑎 ← 𝑟𝑎𝑛𝑔𝑒(𝑖, 𝑙)
8: 𝑐𝑝𝑢 ← 𝑟𝑎𝑛𝑔𝑒(𝑙,𝑚𝑎𝑥_𝑙𝑒𝑛)
9: else if 𝑙 = 𝑚𝑎𝑥_𝑙𝑒𝑛 then
10: 𝑓𝑝𝑔𝑎 ← 𝑟𝑎𝑛𝑔𝑒(𝑖, 𝑙)
11: 𝑐𝑝𝑢 ← ∅ if 𝑖 = 0 else 𝑟𝑎𝑛𝑔𝑒(0, 𝑖)
12: else
13: 𝑓𝑝𝑔𝑎 ← 𝑟𝑎𝑛𝑔𝑒(𝑖, 𝑙)
14: 𝑐𝑝𝑢 ← [𝑟𝑎𝑛𝑔𝑒(0, 𝑖), 𝑟𝑎𝑛𝑔𝑒(𝑙,𝑚𝑎𝑥_𝑙𝑒𝑛)]
15: end if
16: if 𝑓𝑝𝑔𝑎 and 𝑐𝑝𝑢 then
17: 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠_𝑙𝑠𝑡_𝑓𝑝𝑔𝑎.append(𝑓𝑝𝑔𝑎)
18: 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠_𝑙𝑠𝑡_𝑐𝑝𝑢.append(𝑐𝑝𝑢)
19: end if
20: end if
21: end for
22: end for

4.1.2. FPGA estimation
For the above-created partitions, the FPGA estimation can begin, which is done in three
steps illustrated in Figure 4.1. First, we use a function to estimate the data movement to
the FPGA. Then, the FINN build flow is used to estimate the inference time, followed by an
estimate of the time back to the device. Reading the critical path cycles from FINN build
flow estimates report and dividing it by the clock frequency produces the estimated FPGA
runtime. These three steps are essential in realizing the implementation.
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Figure 4.1: Implementation pipeline for estimation of the partition on FPGA

4.1.3. Finding data movement times
As data movement is a part of the total time for the FPGA it requires us to define a method
to estimate these times for a given input size. The approach generalizes the duration of
data movement to and from the device by considering the data size in MB and timing how
long it takes to move x MB of data to and from the device. With this data, we can generate
a function that returns the data movement time in seconds for a given data size. As this is
an unknown in our algorithm, the following experiment derives a function that can be used
to estimate the movement time.

1. Generate a bitfile for a model containing a single fully connected layer with a small
input and output size. This model is used as we want to analyze the time it takes to
move data to the device.

2. Vary the batch sizes to simulate different data sizes being passed to and from the
device.

3. For each batch size, record the size of the data and the time taken to move the data.
The data size is obtained using the formula (x.nbytes) ∗ 10−6 where x is a numpy
array, and 10−6 makes the result size in MB.

4. Obtainmovement times bymeasuring PYNQ functions 𝑐𝑜𝑝𝑦_𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎_𝑡𝑜_𝑑𝑒𝑣𝑖𝑐𝑒
and 𝑐𝑜𝑝𝑦_𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑎𝑡𝑎_𝑓𝑟𝑜𝑚_𝑑𝑒𝑣𝑖𝑐𝑒.

5. Fit a function to obtain a relationship between data size and transfer time.

This process allows for a measurement setup to measure how long data movement
takes based on the size of the data being transferred in MB. Measurements were taken us-
ing the Python time package tomeasure the PYNQ functions 𝑐𝑜𝑝𝑦_𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎_𝑡𝑜_𝑑𝑒𝑣𝑖𝑐𝑒
and 𝑐𝑜𝑝𝑦_𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑎𝑡𝑎_𝑓𝑟𝑜𝑚_𝑑𝑒𝑣𝑖𝑐𝑒. Using the data collected for various sizes of MB
and the time required to move, a linear fit function is fit to the data. As such, Equation 4.1
and Equation 4.2 are derived and will be used to estimate the time to move x MB of data
to and from the device.

𝑇data to device = 1.0976 ∗ 𝑥input size mb + 0.3052 (4.1)

𝑇data from device = 0.5606 ∗ 𝑥output size mb + 0.0954 (4.2)
Using the above-defined linear equations, the implementation can be seen in Pseudo-

code 3 to estimate the time for data movement. The input and the output shape of a given
FPGA partition are known, our implementation uses this knowledge to approximate the
size of the tensors in MB, and using the functions defined above, the movement time can
be estimated.
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Algorithm 3 Calculate data movement times
1: function get_data_in(𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑡ℎ)
2: 𝑚𝑜𝑑𝑒𝑙 ← ModelWrapper(𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑡ℎ)
3: 𝑖𝑛𝑝_𝑛𝑎𝑚𝑒 ← 𝑚𝑜𝑑𝑒𝑙.𝑔𝑟𝑎𝑝ℎ.𝑖𝑛𝑝𝑢𝑡[0].𝑛𝑎𝑚𝑒
4: 𝑖𝑛𝑝𝑡_𝑠𝑖𝑧𝑒 ← 𝑚𝑜𝑑𝑒𝑙.𝑔𝑒𝑡_𝑡𝑒𝑛𝑠𝑜𝑟_𝑠ℎ𝑎𝑝𝑒(𝑖𝑛𝑝_𝑛𝑎𝑚𝑒)
5: 𝑖𝑛𝑝𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟 ← np.random.randint(0, 255, 𝑖𝑛𝑝𝑡_𝑠𝑖𝑧𝑒).astype(′𝑢𝑖𝑛𝑡8′)
6: 𝑑𝑎𝑡𝑎_𝑡𝑜_𝑑𝑒𝑣𝑖𝑐𝑒_𝑡𝑖𝑚𝑒 ← 1.0976256841119194 × 𝑖𝑛𝑝𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟.𝑛𝑏𝑦𝑡𝑒𝑠 × 10−6 +
0.3052411426075403

7: return 𝑑𝑎𝑡𝑎_𝑡𝑜_𝑑𝑒𝑣𝑖𝑐𝑒_𝑡𝑖𝑚𝑒
8: end function
9: function get_data_out(𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑡ℎ)
10: 𝑚𝑜𝑑𝑒𝑙 ← ModelWrapper(𝑚𝑜𝑑𝑒𝑙_𝑝𝑎𝑡ℎ)
11: 𝑜𝑢𝑡_𝑛𝑎𝑚𝑒 ← 𝑚𝑜𝑑𝑒𝑙.𝑔𝑟𝑎𝑝ℎ.𝑜𝑢𝑡𝑝𝑢𝑡[0].𝑛𝑎𝑚𝑒
12: 𝑜𝑢𝑡𝑝𝑡_𝑠𝑖𝑧𝑒 ← 𝑚𝑜𝑑𝑒𝑙.𝑔𝑒𝑡_𝑡𝑒𝑛𝑠𝑜𝑟_𝑠ℎ𝑎𝑝𝑒(𝑜𝑢𝑡_𝑛𝑎𝑚𝑒)
13: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟 ← np.random.randint(0, 255, 𝑜𝑢𝑡𝑝𝑡_𝑠𝑖𝑧𝑒).astype(′𝑢𝑖𝑛𝑡8′)
14: 𝑑𝑎𝑡𝑎_𝑓𝑟𝑜𝑚_𝑑𝑒𝑣𝑖𝑐𝑒_𝑡𝑖𝑚𝑒 ← 0.5606177488366392 × 𝑜𝑢𝑡𝑝𝑢𝑡_𝑡𝑒𝑛𝑠𝑜𝑟.𝑛𝑏𝑦𝑡𝑒𝑠 ×

10−6 + 0.09549860536045693
15: return 𝑑𝑎𝑡𝑎_𝑓𝑟𝑜𝑚_𝑑𝑒𝑣𝑖𝑐𝑒_𝑡𝑖𝑚𝑒
16: end function

4.1.4. CPU estimation
Weuse the PartitionByDict function fromQONNXand the list of CPU partitions fromPseudo-
code 2. We measure the time required to execute each partition on the CPU. For this, we
use onnxruntime for this purpose, as it allows the execution of an ONNX graph directly on
the CPU. By measuring the time required for each partition, we can accurately measure its
execution time rather than relying on an estimate. The exe_ort function shown in Pseudo-
code 4 is called five times to reduce measurement instabilities on the CPU and the average
is taken of these five runs.

Algorithm 4 Measure time for CPU execution
1: function exe_ort(model_file)
2: 𝑚𝑜𝑑𝑒𝑙 ← ModelWrapper(model_file)
3: 𝑠𝑒𝑠𝑠 ← ort.InferenceSession(model.model.SerializeToString(),so)
4: 𝑥_𝑡𝑒𝑠𝑡 ← np.ones(model.get_tensor_shape(model.graph.input[0].name),

dtype=np.float32)
5: 𝑠𝑡𝑎𝑟𝑡 ← time.time
6: sess.run(None, {model.graph.input[0].name: x_test})
7: 𝑠𝑡𝑜𝑝 ← time.time
8: 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 ← (𝑠𝑡𝑜𝑝 − 𝑠𝑡𝑎𝑟𝑡) ∗ 1𝑒3
9: return 𝑟𝑢𝑛𝑡𝑖𝑚𝑒
10: end function
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4.1.5. Summary implementation algorithm 1
In conclusion, the following implementation is realized for algorithm 1. Our implementation
begins by partitioning a given ONNX graph into FPGA and CPU partitions, passing each
partition to its respective device. To estimate the data movement time for the FPGA, we
first examine the expected input tensor of the ONNX graph resulting in the estimated time
to transfer data to the FPGA. Next, we generate a FINN estimate report using the FINN
build flow. Finally, we use the function derived for data movement from the FPGA using
the output tensor size to estimate the time needed to move data back. The sum of these
three components results in the time required to run a given partition on the FPGA. For the
CPU, the time is measured using Python package time and onnxruntime. This is because
onnxruntime allows for easy deployment of an ONNX graph to the CPU. We are execut-
ing all the given partitions’ results in the time required for each device for a given neural
network. These two outputs together result in the following output for each partition (i.e.,
Table 4.1). All partitions are combined into one large dataset, which we can then apply an
argmin function to the total_runtime[ms], resulting in the best partition for a given neural
network model.

Run Id 0
Number of nodes 146
CPU_range range(0, 6),range(11, 146)
total_runtime_CPU[ms] 351.2269497
runtime_part_0[ms] 5.992269516
runtime_part_1[ms] 345.2346802
FPGA_range range(6, 11)
total_runtime_FPGA[ms] 1.129702223
runtime_FPGA[ms] 0.07516352
data_in_FPGA[ms] 0.738004216
data_out_FPGA[ms] 0.316534486
total_runtime[ms] 352.3567

Table 4.1: An example of the output generated for a single partition. With an FPGA range of 6 to 11, the CPU
contains two partitions, one from 0 to 6 and the other from 11 to the end. Total CPU runtime is the sum of the
two CPU partitions the total_runtime = total_runtime_cpu + total_runtime_fpga

4.2. Implementation of algorithm 2
An outline for the implementation of the second proposed algorithm fromChapter 3 is given.
This implementation builds on top of the algorithm explained in Section 4.1; therefore, our
explanation will only add what has been added to this algorithm. The difference between
the two algorithms is the added check to validate if the partition fits on the KV260. This can
be seen in Figure 4.2 while the code implemented is shown in Pseudo-code 5
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Figure 4.2: With respect to the previous implementation, a check is added to validate whether a given partition
fits the Kria SoM KV260.

The rest of the algorithm is exactly the same as the implementation explained in Sec-
tion 4.1, this implementation helps prune the search space as it skips the partitions which
are too large for the given FPGA.

Algorithm 5 Check if resource estimate within limits of KV260
1: function check_resources
2: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑖𝑚𝑖𝑡 ← ”𝐵𝑅𝐴𝑀_18𝐾” ∶ 144, ”𝐿𝑈𝑇” ∶ 117120, ”𝑈𝑅𝐴𝑀” ∶ 64, ”𝐷𝑆𝑃” ∶ 1248
3: Open file ”𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒_𝑙𝑎𝑦𝑒𝑟_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠.𝑗𝑠𝑜𝑛” in read mode
4: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑟𝑝𝑡 ← Load JSON data from file
5: for (𝑘, 𝑣) in 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑟𝑝𝑡[”𝑡𝑜𝑡𝑎𝑙”] do
6: if 𝑣 ≤ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑖𝑚𝑖𝑡[𝑘] then
7: return False
8: end if
9: end for
10: return True
11: end function



5
Results

This chapter outlines the experimental setup in Section 5.1, explaining which neural net-
work(NN) models are tested and the resources used to evaluate each proposed algorithm.
The remainder of this chapter presents results obtained from each of these experiments;
Section 5.2 presents the results for the first NN model tested, Section 5.3 presents exper-
iments to examine if it is feasible to accelerate this NN further. Section 5.4 presents the
results for the remaining two models. Each section discusses each algorithm in detail and
concludes with a conclusion for the given model.

5.1. Experimental setup
To evaluate the performance of the implemented algorithms, a set of experiments are per-
formed to measure the performance of each algorithm. The experiments remain constant
for all algorithms to ensure an equal comparison can be made between each algorithm.
The experimental setup contains the resources used, the models used to test the algo-
rithms, and the metrics that must be captured to compare each algorithm. To test each
algorithm, two resource platforms are used. The qce-alveo01 server generates and builds
FPGA-accelerated applications for estimate report generation. The server is used to create
the estimate reports as it has the FINN compiler setup and the required software tools, such
as Vivado and Vitis. For the CPU measurements, the Kria SoM KV260 is used. Combin-
ing these two resources enables a complete analysis of the algorithm’s performance and
guides the selection of the most effective solution.

A crucial step in evaluating the performance of a given algorithm is defining specific
metrics to gauge the algorithm’s performance. Since these algorithms aim to minimize
runtime on a hybrid platform, measuring the runtimes for each platform is essential. Another
vital metric is the time required to estimate a given neural network. Considering these
metrics, the algorithm’s performance can be evaluated, and a conclusion can be drawn as
to which algorithm generates the quickest estimation.

The following metrics must be captured for each model to evaluate which partition
meets the runtime criteria. To make a fair comparison between each tested partition,
PE and SIMD are set to 1, which is set by providing a folding configuration file to the
FINN compiler. From the FPGA estimation, data movement times to and from the FPGA
are derived, as well as the estimated runtime on the FPGA, which is read from the esti-
mate_network_performance.json. The sum of these three is denoted below as total run-
time FPGA[ms]. For the CPU time, the execution times are measured on the Kria SoM
KV260; for a given partition to remove any measurement instabilities, we run a given par-

28



5.2. MobileNetv1 results 29

tition five times and average over to calculate the runtime for the CPU denoted below as
total runtime CPU[ms].

Model selection
To demonstrate the effectiveness of the partitioning algorithm, we pass a pre-trained ONNX
model to each algorithm to determine their respective partitioning locations for the model.
As these algorithms should work with any sequential ONNX model, we test the following
three models: MobileNetv1, cybersecurity, and CNV. All three models are pre-trained and
ready for use in FINN. Each model is of a sequential structure. A design choice is made to
ignore models with residual blocks, such as ResNet, as this makes partitions difficult due
to the residual blocks in such graphs. For each model, a comparison is made between a
pure CPU implementation where the entire network is run on the CPU. This is used as a
baseline to demonstrate the performance difference using a hybrid implementation.

5.2. MobileNetv1 results
This section will present and discuss the results of the MobileNetv1 neural network, evalu-
ated on both the first and second algorithms introduced in Chapter 3. For each algorithm,
the top 5 best runtime estimates are presented. Each of these will be compared to the base-
line implementation, where the entire network is run on the CPU. For each tested algorithm,
a discussion will be held to highlight significant findings and pose possible modifications
that can be made.

5.2.1. Results of algorithm 1
Here results for MobileNetv1 implemented on algorithm 1 are presented. Table 5.1 shows
the top 5 best-estimated runtimes sorted in terms of total runtime. This table also contains
the ranges and runtimes for the FPGA and CPU partitions.

MobileNetv1 model
Top k FPGA range Runtime FPGA[ms] CPU range Runtime CPU[ms] Runtime[ms]
1 range(0, 146) 6.5116 None None 6.5116
2 range(0, 136) 6.5275 range(136, 146) 3.0578 9.5853
3 range(6, 146) 6.6654 range(0, 6) 6.0182 12.6836
4 range(6, 136) 6.6813 (range(0, 6), range(136, 146)) 9.0321 15.7134
5 range(0, 131) 6.0132 range(131, 146) 22.8128 28.826

Table 5.1: Top 5 estimated runtimes for the MobileNetv1 neural network algorithm 1.

The MobileNetv1 graph comprises a total of 146 nodes, which are evaluated in 406
different possible partitions. The outcome of this evaluation process reveals that imple-
menting the complete model yields the lowest runtime of 6.51 ms. The other four best
results involve implementing a large portion of the network on the FPGA and a small part
on the CPU. However, resource usage shows that the top 5 results for the MobileNetv1
model cannot be accommodated on the Kria SoM KV260 platform, rendering them infeasi-
ble. This infeasibility motivated the need to implement algorithm 2, which includes a check
to verify that the implementation fits the platform. Resource usage for the MobileNetv1 is
depicted in Figure 5.1. The right figure reveals the utilization of BRAM exceeds the limit for
the FPGA by 7x for the MobileNetv1 model, thereby making it infeasible to implement on
the Kria SoM KV260.
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Figure 5.1: MobileNetv1 neural network’s resource usage for algorithm 1, where the resource is normalized
to maximum resource usage, revealing that the BRAM resource is being over-utilized, causing the top 5 to
not fit on the FPGA. In contrast, the left figure illustrates the LUT usage, which meets the constraint since the
maximum usage is 42.10%.

Figure 5.2 shows the improvement over this baseline for the MobileNetv1 graph for all
tested partitions, with the baseline runtime of the MobileNetv1 on CPU of 356.46ms. The
x-axis shows the percentage of the network implemented on the FPGA. The figure depicts
that as the percent of the model on the FPGA increases, the higher the improvement as
the total runtime decreases. In the best-case scenario where the entire network can be
implemented on the FPGA, we show close to 100% improvement. Equation 5.1 shows the
formula used to derive the improvement metric, indicating that as the estimated runtime
approaches 0 ms, the total improvement approaches 100%.

improvement % = 𝑡CPU baseline − 𝑡est. runtime
𝑡CPU baseline

∗ 100 (5.1)

Figure 5.2: Algorithm 1 runtime for MobileNetv1 improvement with respect to a full CPU implementation. The
diamonds represent the total runtime (right y-axis), and the dots represent the % improvement (left y-axis).
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5.2.2. Results algorithm 2
For the implementation of algorithm 2, a check is added to verify that the partition generated
fits on the Kria SoM KV260. Table 5.2 contains the top 5 best partitions for the MobileNetv1
graph. As this algorithm adds a check to verify the partition fitting within the resource
limit, the top 5 partitions presented below are theoretically feasible. Figure 5.3 shows the
resource usage for the top 5 best partitions. It demonstrates that the max of each partition
remains below the resource limit of the Kria SoM KV260.

MobileNetv1 model
Top k FPGA range Runtime FPGA[ms] CPU range Runtime CPU[ms] Runtime[ms]
1 range(0, 81) 3.6453 range(81, 146) 122.9647 126.6101
2 range(6, 81) 3.7991 (range(0, 6), range(81, 146)) 131.858 135.6571
3 range(0, 76) 3.6247 range(76, 146) 132.3175 135.9423
4 range(6, 76) 3.7785 (range(0, 6), range(76, 146)) 144.696 148.4745
5 range(0, 71) 3.1099 range(71, 146) 147.5528 150.6628

Table 5.2: Top 5 estimated runtimes for the MobileNetv1 neural network algorithm 2

Figure 5.3: Estimated resource utilization for the MobileNetv1 neural network when implemented on algorithm
2.

An important observation that can be made between these results and the results from
Section 5.2.1 is the fact that the runtime increases by 19.44x for the best case. The increase
in runtime directly results in a larger portion of the neural network being implemented on
the CPU. A comparison is again made with a pure CPU implementation to indicate the
improvement achieved by implementing this algorithm. Figure 5.4 shows a scatterplot of
the improvement made with respect to the pure CPU implementation with a runtime of
356.46 ms. The figure shows that as the percentage of the model implemented on the
FPGA increases, the total runtime decreases.
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Figure 5.4: Runtime improvement compared to the full CPU implementation for the MobileNetv1. The dia-
monds represent the total runtime (right y-axis), and the dots represent the % improvement (left y-axis).

Compared to Figure 5.2, only around 60% of the MobileNetv1 model can be imple-
mented on the FPGA and remain below the resource limits of the Kria SoM KV260, which
corresponds with the best partition shown in Table 5.2. This is the theoretical maximum por-
tion of the MobileNetv1 that will fit on the FPGA. As less of the model can be implemented
on the FPGA, the best total improvement is 64.48% (calculated using Equation 5.1). When
implementing MobileNetv1 on algorithm 2 we can show that the greatest performance in-
crease occurs when the largest portion of the model is implemented on the FPGA. It is a
similar result as when implementing the network on Algorithm 1.

Algorithm 2
Top k FPGA range Runtime FPGA[ms] CPU range Runtime CPU[ms] Total runtime[ms]
1 range(0, 81) 3.6453 range(81, 146) 122.9647 126.6101
2 range(6, 81) 3.7991 (range(0, 6), range(81, 146)) 131.858 135.6571
3 range(0, 76) 3.647 range(76, 146) 132.3175 135.9423
4 range(6, 76) 3.7785 (range(0, 6), range(76, 146)) 144.696 148.4745
5 range(0, 71) 3.1099 range(71, 146) 147.5528 150.6628

First 5 that fit algorithm 1
Top k FPGA range Runtime FPGA[ms] CPU range Runtime CPU[ms] Total runtime[ms]
51 range(0, 81) 3.6453 range(81, 146) 126.5804 130.2257
55 range(6, 81) 3.7991 (range(0, 6), range(81, 146)) 129.9025 133.7016
58 range(0, 76) 3.647 range(76, 146) 132.6485 136.2732
61 range(6, 76) 3.7785 (range(0, 6), range(76, 146)) 140.9487 144.7272
64 range(0, 71) 3.1099 range(71, 146) 147.5308 150.6407

Table 5.3: Comparision between algorithm 2 and the first five that fit from algorithm 1.

Table 5.3 shows that algorithm 1 and 2 both give the same results when looking at the
first 5 that fit for algorithm 1. The total runtime differs slightly due to CPU measurements
taken at different times. Top k shows where the first five fall in terms of runtime for algorithm
1, note that they are not sequential as these are the first 5 that have a BRAM utilization
under the 100%. Showing that both algorithms come to the same solution if the constraint
is resource utilization.
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5.2.3. Estimation time for MobileNetv1
To measure the performance of an algorithm, measurements were taken to quantify the
amount of time necessary to estimate the best runtime. Figure 5.5 depicts the time required
to generate the above results. For the CPU and FPGA, the time package from python
is used to measure. As we measure the CPU time for a given partition to remove any
measurement instabilities, we run a given partition 5 times and average over to calculate
the runtime.

Figure 5.5: Estimation times for the MobileNetv1 neural network.

The figure shows that algorithm 2 has an improvement in estimation time. Implementing
a check to verify if the model fits acts as a pruning technique for skipping partitions that are
not feasible solutions. The implementation of algorithm 2 shows an improvement of 3x
over algorithm 1 for MobileNetv1. While algorithm 2 does not reach a global minimum for
MobileNetv1 as it does not search the entire search space. It does return the partition with
the lowest total runtime that fits on the FPGA.

5.2.4. Finding for algorithm 1 and 2 for MobileNetv1
In conclusion, algorithm 1 shows promising results in partitioning a neural network for a
hybrid platform. Implementing the entire neural network on the FPGA is the best option,
as shown in the results above. While this may be the best solution, estimated resource
usage shows that these top 5 are not always feasible to implement on an FPGA. Algorithm
2 solved this issue of infeasibility by validating if a given partition meets the resource con-
straints of the FPGA. Compared to a pure CPU implementation, an improvement of 54.74x
is achieved for algorithm 1 as the best-case scenario for that algorithm is to implement
the MobileNetv1 on the FPGA fully. While this is theoretically the best implementation,
it is practically infeasible for the Kria SoM KV260, as the BRAM exceeds the platform’s
resource limits.

In contrast, for algorithm 2, we see an improvement of 2.82x for the best-case partition.
These 5 all remain within the resource limits of the Kria SoM KV260, rendering them fea-
sible solutions. While these may be feasible solutions, they do come at a cost. Runtime
increases from 6.51ms to 126.61ms from algorithm 1 to 2 in the best-case scenario. While
the solutions from algorithm 1 are not practically feasible, they indicate that a resource-
limited environment decreases the total runtime for the MobileNetv1 compared to the best-
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case scenario. Regarding algorithm performance, algorithm 2 improved estimation time
by 3x compared to algorithm 1, making algorithm 2 the better choice for estimation as it is
quicker and yields results that can be implemented.

5.3. Further improvement MobileNetv1
To evaluate if we can reduce the total runtime for this hybrid setup, additional experiments
are conducted to evaluate if a trade-off can be made on the FPGA to improve the overall
runtime. We use the results obtained in Section 5.2.2 as these can be implemented on the
FPGA. We will examine possible trade-offs on FPGA to hopefully improve the runtime of
the MobileNetv1 network on a hybrid platform.

5.3.1. Varying SIMD and PE
As the experimental setup explains, SIMD and PE are set to 1 to allow for a fair compari-
son between partitions. However, setting SIMD and PE to 1 results in low throughput for
MobileNetv1. Increasing the values of PE and SIMD enhances a model’s throughput on
an FPGA by enabling more parallel processing. Thus the first design optimization allows
FINN to auto-configure the folding settings for the model by passing target frame rates to
the FINN build flow setting SIMD and PE to values other than 1. For design optimization,
only feasible partitions are evaluated. The same method is used as algorithm 2. Figure 5.6
shows that when increasing the target frame rate, the percentage of the MobileNetv1 model
that can be implemented on the FPGA is reduced. As increasing the target FPS increases
the resources needed, the percentage of models which can be implemented on the FPGA
decreases. The right figure from Figure 5.6 shows that increasing target FPS decreases
runtime on the FPGA. Overall, the total runtime still increases; such an increase is due to
a greater portion of the model being implemented on the CPU, solidifying the case that the
CPU is the bottleneck in this hybrid platform.

Figure 5.6: Varying target frame rate to evaluate if an improvement can be achieved for the total and FPGA
runtime when setting SIMD and PE at higher values. Only evaluating partitions that fit the Kria SoM.
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5.3.2. Theoretical improvement CPU
The previous experiment showed that the CPU of the Kria SoM KV260 is the bottleneck in
the process. As such, calculations are made to see if improvements can be achieved if the
CPU clock is faster than the current CPU clock of the Kria SoM KV260. This theoretical
calculation demonstrates what is possible if the CPU platform were to have a higher clock
speed. The calculation is done using Equation 5.2, where n is the factor speedup of the
CPU, and 𝑇CPU runtime and 𝑇FPGA runtime are the runtime results from algorithm 2.

𝑇theoretical total runtime[ms] =
𝑇CPU runtime

𝑛 + 𝑇FPGA runtime (5.2)

Figure 5.7: Theoretical total runtimes for different speedup factors for the MobileNetv1. Where the speedup
factor in the legend corresponds to n in Equation 5.2.

Figure 5.7 shows how the speedup factor of the CPU affects the total runtime for the
situation where SIMD and PE equal 1. We chose this scenario as it showed that the greatest
partition of the model could be implemented on the FPGA. It can be seen that in the case of
an improvement by a factor 10 the best case runtime becomes 15.94ms, an improvement
of 7.94x that of the baseline (full CPU). A factor 10 improvement would mean that the CPU
needs to have a clock speed of 3.3 GHz instead of 333.3 Mhz. Table 5.4 shows that as
n increases, the difference in best and worst case decreases, as the CPU is the limiting
factor where n=1 the effect of the CPU is much greater on the total runtime. Therefore when
increasing the CPU clock speed, the slow-down effect of the CPU decreases resulting in a
lower impact on the total runtime.

n Min [ms] Max [ms] Δ [ms]
1 126.61 414.85 288.24
2 65.13 207.75 142.63
5 28.24 83.5 55.26
10 15.94 42.08 26.14

Table 5.4: Worst and best case total runtimes for theoretical speedup.
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Using these theoretical calculations, a conclusion can be made that a faster CPU clock
decreases the total runtime of the hybrid setup. Taking the CPU clock speed into consid-
eration when selecting the hardware platform can significantly impact the total runtime.

5.3.3. Hardware resource usage vs. total runtime
We analyze how altering the target FPS affects resource utilization to investigate if trade-
offs can be made to improve total runtime. With this information, we aim to present how
FPS affects resource utilization. For this experiment, results from algorithm 1 are used to
visualize what happens when we exceed the total resource limit.

Figure 5.8: BRAM and LUT utilization for all partitions, a larger point indicates which target FPS yields the
lowest runtime value for each resource. 100% utilization is the maximum of the Kria SoM KV260. Vertical lines
indicate different hardware platforms (PYNQ-Z2, Ultra96v2, ZCU104, ALINX AX7450, and Alveo U280). If the
vertical line is absent, it is outside the scale of the x-axis, indicating that the resource fits on the platform.

Figure 5.8 shows results for all possible partitions of the MobileNetv1 and the respective
resource utilization. The right plot demonstrates that the MobileNetv1 implementation on
the Kria SoM KV260 FPGA platform stays within the 117120 LUTs for all partitions. Addi-
tionally, the figure shows how the target frame rate and LUT usage can be adjusted. The
figure identifies the best frame rate for a given LUT utilization since the minimum bound-
ary indicates the minimum total runtime. On the other hand, the left plot indicates that the
MobileNetv1 implementation on the Kria SoM KV260 has excessive BRAM utilization by 7
times, making it infeasible to implement the model fully. A platform with 7 times the BRAM
of Kria SoM KV260 is needed to solve this, resulting in 1008 BRAM blocks. One such plat-
form is the Alveo U280, which has 2016 (36Kb) BRAM. In the figure, vertical lines indicate
other common FPGA platforms and where they fall respective to the Kria SoM KV260. The
figures also reveal that higher BRAM utilization and target frame rate lead to lower total
runtime due to less CPU slow-down and more of the model running on the FPGA. How-
ever, there’s a trade-off between FPS and resource utilization, and lower utilization requires
lower target FPS for BRAM and LUT. Therefore, the figures help select the lowest runtime
value based on the partition and target FPS.
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5.3.4. Comparison to other platforms
In this section, we will compare our results to other platforms. We compare the best-case
runtime from algorithm 2 (FPGA range(0,81)) to the ZCU102 and the U280. These compar-
isons are made using FINN estimations for each new platform, respectively. We can only
compare to the FPGA runtime because we cannot access these platforms. In Table 5.5, we
show that the KV260 is the slowest of the three, with the U280 having the fastest estimated
runtime. The ZCU102 and the U280 have folding files from https://github.com/
Xilinx/finn-examples/tree/main/build/mobilenet-v1/folding_config.

Device FPS Latency [ns]
U280 2987.90198 10263252.0
ZCU102 469.68891 0.31194
KV260 1.94627 3.6453

Table 5.5: A comparison between the U280, ZCU102, and the KV260 for best case from algorithm 2

In terms of resource usage, we can see from Table 5.6. It can be seen that the resources
for the U280 and ZCU102 remain well within the limits of the device. As these devices have
a large number of resources available, the performance increase of these two devices is
largely in part due to the fact that more resources can be utilized. More resource utilization
results in more parallelization and a higher neural network application throughput. While
higher FPS and shorter runtime is acheived for the U280 and ZCU102 these two platforms
are much more expensive compared to the Kria SoM KV260. At the time of writing this
report, the ZCU102 cost ≈ $3, 200, the U280 ≈ $8, 500, and the KV260 costs ≈ $250.
While the Kria SoM KV260 does lack performance it is a cheaper alternative.

Device BRAM LUT DSP
U280 349 334344 96
Max resources U280 2016 1304000 9024

Device BRAM LUT DSP
ZCU102 215(6.88Mb) 84631 48
Max resources ZCU102 32.1Mb 653000 2520

Device BRAM LUT DSP
KV260 138 25662 0
Max resources KV260 144 117120 1248

Table 5.6: A comparison between the U280, ZCU102, and the KV260 in terms of resource usage for the best
case from algorithm 2

5.3.5. Comparison to other work
In this section, we compare other works to this research; the comparison presented in Ta-
ble 5.7 highlights some similarities and differences between the current research and other
works aimed at improving AI in resource-limited environments. The other works primarily
focus on simplifying the computational complexity by looking at methods to simplify convo-
lution operations. In contrast, this work possesses an alternative solution using an HW/SW
co-design to partition and distribute a neural network on edge devices. In terms of the cost,
the devices presented cost thousands of dollars (in combination with an evaluation board)
compared to the $250 of the Kria SoM KV260.

https://github.com/Xilinx/finn-examples/tree/main/build/mobilenet-v1/folding_config
https://github.com/Xilinx/finn-examples/tree/main/build/mobilenet-v1/folding_config
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Model Platform Method Improvement
over CPU

FPS

Ours MobileNetv1 Kria SoM KV260 HW/SW co-design 2.82x 1.95
[41] MobileNetv2 Arria 10 SoC Dwsc 20x 266.6
[42] MobileNet ZU2 MPSoC Dwsc 15.4x 205.3
[42] MobileNet ZU9 MPSoC Dwsc 60.7x 809.8
[43] RGB image of 384 × 384 VCU1525 FlexCNN 4.02x 23.8

Table 5.7: A comparison between other works and this work. *Dwsc=Depth wise separable convolution fully
on an FPGA platform.

5.4. Cybersecurity and CNV model results
Here, the cybersecurity and CNV model results will be shown and discussed. Both models
are tested for each algorithm. The CNV model contains 46 nodes and has 54 possible
partitions that are each evaluated. Table 5.8 shows the top 5 best runtimes for the CNV
neural network implemented for algorithms 1 and 2. The cybersecurity model contains 25
nodes evaluated in 12 possible partitions. The top 5 best partitions are located in Table 5.9.
Below, the results of each of these models will be discussed; the section is concluded with
a summary of our findings.

Algorithm 1
Top k FPGA range Runtime FPGA[ms] CPU range Runtime CPU[ms] Runtime[ms]
1 range(0, 46) 1.0058 None None 1.0058
2 range(2, 46) 1.0058 range(0, 2) 0.1951 1.2009
3 range(0, 39) 1.006 range(39, 46) 0.2604 1.2664
4 range(2, 39) 1.006 (range(0, 2), range(39, 46)) 0.4671 1.4731
5 range(0, 35) 1.0034 range(35, 46) 0.7284 1.7318

Algorithm 2
Top k FPGA range Runtime FPGA[ms] CPU range Runtime CPU[ms] Runtime[ms]
1 range(0, 46) 1.0058 None None 1.0058
2 range(2, 46) 1.0058 range(0, 2) 0.1928 1.1985
3 range(0, 39) 1.006 range(39, 46) 0.2571 1.2631
4 range(2, 39) 1.006 (range(0, 2), range(39, 46)) 0.5639 1.5699
5 range(0, 35) 1.0034 range(35, 46) 0.6812 1.6846

Table 5.8: Top 5 estimated runtimes for the CNV neural network for algorithms 1 and 2.

Algorithm 1
Top k FPGA range Runtime FPGA[ms] CPU range Runtime CPU[ms] Runtime[ms]
1 range(0, 25) 0.4019 None None 0.4019
2 range(0, 24) 0.4019 range(24, 25) 0.1612 0.563
3 range(0, 19) 0.4019 range(19, 25) 0.2186 0.6205
4 range(7, 25) 0.4009 range(0, 7) 0.3119 0.7127
5 range(0, 13) 0.4019 range(13, 25) 0.3177 0.7196

Algorithm 2
Top k FPGA range Runtime FPGA[ms] CPU range Runtime CPU[ms] Runtime[ms]
1 range(0, 25) 0.4019 None None 0.4019
2 range(0, 24) 0.4019 range(24, 25) 0.1611 0.5629
3 range(0, 19) 0.4019 range(19, 25) 0.2358 0.6377
4 range(0, 13) 0.4019 range(13, 25) 0.2813 0.6832
5 range(7, 25) 0.4009 range(0, 7) 0.3 0.7009

Table 5.9: Top 5 estimated runtimes for the cybersecurity neural network algorithms 1 and 2
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Table 5.9 show that the top implementation for both models is the partition where the
entire network is implemented on the FPGA, similar to the result seen in Section 5.2.1.
Thesemodels are small compared to the MobileNetv1; thus, each can be fully implemented
on the Kria SoM KV260. Figure 5.9 show the estimated resource usages for the top 5
of each model. The figure depicts that estimated LUT and BRAM usages remain within
the limits of the Kria SoM KV260 for both, proving that both models meet the resource
constraints making each a feasible solution.

Figure 5.9: Top row depicts resource utilization for the CNV model and the bottom for the cybersecurity model.

5.4.1. Estimation time for cybersecurity and CNV model
Tabe 5.10 depicts the estimation times for each tested algorithm. Notable is that there is
no improvement in estimation time, unlike MobileNetv1, where partitions do not fit on the
FPGA. Both models meet the resource requirement. Therefore, implementing algorithm 2
does not affect the estimation time, as no partitions can be skipped.

Cybersecurity model
Algorithm 1 [s] Algorithm 2 [s]

FPGA 8.66 8.65
CPU 2.02 2.11

CNV model
Algorithm 1 [s] Algorithm 2 [s]

FPGA 146.06 142.33
CPU 31.85 31.86

Table 5.10: Estimation times for algorithm 1 and algorithm 2 for the cybersecurity and CNV models.
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5.4.2. Findings for cybersecurity and CNV model
In conclusion, this section discusses the cybersecurity and CNV model results for various
algorithms. The top implementation for both models is where the entire network is imple-
mented on the FPGA, similar to the result in the previous section. The estimated resource
usage for the top 5 of each model remains within the limits of the Kria SoM KV260, making
each a feasible solution. Note that there is no improvement in estimation time, as the entire
model fits on the Kria SoM KV260. These results indicate that the selection between algo-
rithms 1 and 2 is invariant; choosing either algorithm will result in the same results within
the same time for the given models.



6
Conclusion and future work

6.1. Conclusions
The field of edge AI is rapidly growing, driven by the need to bring AI capabilities to low-
power edge devices. This field presents new challenges and opportunities for researchers
and developers to design and optimize AI algorithms to run on edge devices. Edge AI has
the potential to revolutionize a wide range of applications, from autonomous vehicles to
IoT devices, and to unlock new capabilities that were previously impossible. This research
has shown that partitioning and deploying a neural network model is feasible on the Kria
SoM KV260 enabling the execution of neural networks in resource-limited environments,
making inference of neural networks on edge devices possible, bringing AI closer to the
data source and allowing for less dependency on server-grade hardware.

In this work, we studied the following main research question;

• How can we leverage the unique strengths of CPUs and FPGAs in a hybrid computing
architecture to optimize performance and efficiency for the neural network model?

The sub-questions are listed as they were presented in the introduction:

1. Is a hybrid FPGA+CPU implementation a feasible and cost-effective solution for run-
ning neural networks compared to a pure CPU implementation? The question is
answered in Section 6.1.1.

2. What are techniques for partitioning and distributing neural networks between FPGAs
and CPUs? The question will be answered in Section 6.1.2.

3. How do the partitioning and distribution of neural networks between FPGA and CPU
affect performance metrics, such as throughput and latency, and what factors influ-
ence the optimal distribution strategy? This is answered in Section 6.1.3.

6.1.1. Feasibility and cost-effectiveness
A hybrid implementation is more affordable than server-grade hardware, such hardware
costs thousands of dollars. Cloud-based services like Google Cloud Platform (GPC), Ama-
zon Web Services (AWS), or Microsoft Azure also require payment for access, and users
need an internet connection to use them. A more cost-effective option is using a local hard-
ware platform like the Kria SoM KV260, Ultra96v2, or the PYNQz2, typically costing a few
hundred dollars. While these platforms do not have the same resources as server-grade
hardware, they are a more affordable alternative.

41
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By utilizing the FINN framework and the Kria SoM KV260. We have shown that im-
plementing a neural network on a hybrid combination of CPU and FPGA is feasible by
leveraging the hardware acceleration capabilities of the FPGA for specific nodes of the
MobileNetv1 model and offloading other nodes to the onboard CPU. This approach offers
a practical and cost-effective solution for users who seek an accessible way to run neural
networks without the need for expensive server-grade hardware or cloud-based services.

6.1.2. Partitioning and distribution
Partitioning and distributing neural networks between FPGAs and CPUs is required to op-
timize performance and resource utilization in a hybrid setup. This research uses node-
based partitioning to distribute neural network layers between the FPGA and CPU based on
their computational requirements by grouping the nodes of an ONNX graph based on their
topology in the graph. This approach can be practical for networks with highly parallelizable
nodes in an ONNX graph.

6.1.3. Performance metrics
For this research, we analyzed the MobileNetv1 model in detail, as it is a neural network
model which cannot be fully implemented on a Kria SoM Kv260 platform. Partitioning and
distributing the MobileNetv1 neural network between FPGA and CPU significantly affected
performance. Algorithm 1, which concludes that it is best to implement the entire Mo-
bileNetv1 on the FPGA, achieves a runtime of 54x faster than the CPU baseline of 356.5ms.
However, these are not practically feasible on the Kria SoM KV260 due to the resource lim-
itations of the chosen hardware platform. Algorithm 2 addresses this issue by validating
if a given partition meets the resource constraints of the FPGA, resulting in an improve-
ment of around 2x that of the CPU baseline. While these solutions are feasible, they come
at the cost of increased runtime, as the sequential processing of the CPU is slow for the
MobileNetv1.

Experiments were performed to analyze how changing PE and SIMD affects resource
utilization. The results demonstrate a trade-off between FPS and resource utilization,
where lower utilization requires lower target FPS for BRAM and LUT. Higher BRAM uti-
lization and target frame rate lead to lower total runtime due to less CPU slow-down and
more of the model running on the FPGA. However, excessive BRAM utilization may re-
quire a platform with higher BRAM, such as the Alveo U280. We conclude that for this
setup changing the PE and SIMD values has a marginal improvement in total runtime, as
the largest part of the total runtime is the CPU time.

Further analysis was performed to find if any trade-offs could be made on the FPGA
to lower the total runtime. These experiments showed that the FPGA runtime increased
when increasing the target FPS. However, increasing FPS results in more resource usage
required. This led to less of the model being implemented on the FPGA and, in turn, re-
duced the total runtime as the CPU slows down the hybrid platform. Note that the CPU
was the bottleneck of this setup. Theoretical analysis was performed to verify if a faster
CPU would improve the overall performance. These calculations showed that increasing
the CPU speed by a factor of 10 from 333.3 MHz to 3.33 GHz reduced the best-case the-
oretical runtime from 126.61 ms to 15.94 ms for the best-case scenario, which remains in
the resource limits of the Kria SoM KV260. Such results show that increasing the CPU
clock speed achieves a runtime that is 22x faster than the CPU baseline.

Two additional models, the cybersecurity and CNVmodel from FINN examples, validate
that the implemented algorithms work for other models. These models both remain within
the resource constraints of the Kria SoM KV260. These two models are small in terms of
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the number of nodes, they are fully implementable on the Kria SoM KV260 as they use a
low bit precision to reduce the memory footprint of the model. The choice of algorithm did
not make a difference as the second algorithm only removes partitions that do not fit on the
hardware platform. Both of these algorithms indicate that the configuration that results in
the best results is to implement all nodes on the FPGA and none on the CPU, as executing
nodes on the CPU yields slower total runtime.

6.2. Future work
This study aimed to explore the potential of hybrid computing by using the strength of
FPGA and CPU in a resource-constrained setting. To further expand on this research,
some suggestions for future research are discussed in this section.

• A heuristic algorithm can be implemented which finds the largest portion of the neural
network which fits on the FPGA. This research showed that implementing the largest
part of the MobileNetv1 on the FPGA resulted in the lowest runtime. Thus an algo-
rithm that can achieve this efficiently is beneficial.

• This study was conducted using the Kria SoM KV260 platform, and other platforms
with varying levels of resources could yield different results. As shown the CPU
slowed down the overall performance in this setup. Studying the effect of using a
more powerful FPGA or CPU could improve the system’s overall performance.

• Exploration of other neural network models using the implemented algorithms and
partitioning techniques would be valuable as this study focused on MobileNetv1, cy-
bersecurity, and CNV. The latter two are fully implementable on the Kria SoM KV260.
Evaluating other models which are larger and more complex could provide insights
into how well the algorithms and techniques generalize to other models and their spe-
cific characteristics. In this study, we restricted our design space to sequential model
structures (i.e. non-forking), a future improvement using other partitioning techniques
to allow for models with a forking structure that can be beneficial.

• Explore the effects of hybrid computing on non-convolutional networks, such as re-
current neural networks (RNN) or transformers. This will help determine if the par-
titioning and distribution techniques used for convolutional networks also apply to
other types of neural networks. RNN networks are a network structure that the FINN
framework cannot handle. As such, understanding how partitioning networks that
contain RNN structures can significantly help implement quantized neural networks
on edge devices by utilizing the FPGA capabilities for the FINN implementable nodes
and offloading the non-finn layers to the CPU.

• Implementing NN applications using a hybrid solution requires further cost-benefit
analysis for commercial implementation. A complete examination of the economic
feasibility of deploying NN applications on a hybrid platform should be conducted to
analyze whether such an implementation is feasible. This analysis should include the
costs of developing and deploying the hybrid solution and the potential benefits of per-
formance, power consumption, and resource utilization. Additionally, these metrics
should be compared with a server-grade implementation to understand better if such
an implementation is better for the given implementation.
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Figure A.1: An end-to-end flow in FINN, starting from a trained PyTorch/Brevitas network up to deploying on
FPGA [44]
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Figure A.2: An example of a ONNX graph
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Source code

B.1. Algorithm 1 & 2 source code FPGA
1 import numpy as np
2 from qonnx.core.modelwrapper import ModelWrapper
3 import finn.builder.build_dataflow as build
4 import finn.builder.build_dataflow_config as build_cfg
5 import os
6 from tqdm import tqdm
7 import shutil
8 from qonnx.util.cleanup import cleanup
9 from finn.transformation.streamline import Streamline
10 import argparse
11 from itertools import combinations
12 import json
13 from qonnx.util.basic import get_by_name
14

15 from custom_steps import (
16 step_mobilenet_streamline,
17 step_mobilenet_convert_to_hls_layers,
18 step_mobilenet_convert_to_hls_layers_separate_th,
19 step_mobilenet_lower_convs,
20 step_mobilenet_slr_floorplan,
21 custom_step_partition,
22 custom_step_set_pe_simd
23 )
24

25

26 def generate_model_report(model_path,model_name):
27 estimates_output_dir = f”output_estimates_{model_name}”
28 custom_estimate_only_dataflow_steps = [
29 ”step_qonnx_to_finn”,
30 ”step_tidy_up”,
31 ”step_streamline”,
32 ”step_convert_to_hls”,
33 ”step_create_dataflow_partition”,
34 # ”step_target_fps_parallelization”,
35 custom_step_set_pe_simd,
36 ”step_generate_estimate_reports”,
37 ]
38 print(”xczu3eg-sbva484-1-e”)
39 cfg_estimates = build.DataflowBuildConfig(
40 output_dir = estimates_output_dir,
41 stop_step = ”step_generate_estimate_reports”,

47
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42 # mvau_wwidth_max = 80,
43 # target_fps = 1000000,
44 synth_clk_period_ns = 10.0,
45 # fpga_part = ”xck26-sfvc784-2LV-c”, #KV260
46 fpga_part = ”xczu3eg-sbva484-1-e”, #PYNQ-Z1
47 # steps = build_cfg.estimate_only_dataflow_steps,
48 steps = custom_estimate_only_dataflow_steps,
49 generate_outputs=[
50 build_cfg.DataflowOutputType.ESTIMATE_REPORTS,
51 ]
52 )
53 build.build_dataflow_cfg(model_path, cfg_estimates)
54 cleanup(in_file = model_path,out_file = model_path)
55

56

57 return estimates_output_dir
58

59 def generate_model_report_mobilenetV1(model_path,model_name):
60

61 mobilenet_build_steps = [
62 step_mobilenet_streamline,
63 step_mobilenet_lower_convs,
64 step_mobilenet_convert_to_hls_layers_separate_th,
65 ”step_create_dataflow_partition”,
66 # ”step_apply_folding_config”,
67 custom_step_set_pe_simd,
68 ”step_generate_estimate_reports”,
69 # ”step_hls_codegen”,
70 # ”step_hls_ipgen”,
71 # ”step_set_fifo_depths”,
72 # ”step_create_stitched_ip”,
73 # ”step_synthesize_bitfile”,
74 # ”step_make_pynq_driver”,
75 # ”step_deployment_package”,
76 ]
77

78 estimates_output_dir = f”output_estimates_{model_name}”
79

80 cfg_estimates = build.DataflowBuildConfig(
81 steps = mobilenet_build_steps,
82 output_dir = estimates_output_dir,
83 # mvau_wwidth_max = 36,
84 # target_fps = 1000000,
85 # folding_config_file = ”folding.json”,
86 synth_clk_period_ns = 10.0,
87 fpga_part = ”xck26-sfvc784-2LV-c”,
88 generate_outputs=[
89 build_cfg.DataflowOutputType.ESTIMATE_REPORTS,
90 ]
91 )
92 build.build_dataflow_cfg(model_path, cfg_estimates)
93 cleanup(in_file = model_path,out_file = model_path)
94

95

96 return estimates_output_dir
97

98 def get_subsets(model_file):
99 # Instantiate a ModelWrapper object using the specified model file
100 model = ModelWrapper(model_file)
101

102 # Initialize lists for unwanted and wanted node indices
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103 unwanted_nodes, wanted_nodes = [], []
104

105 # Store the maximum number of nodes in the graph
106 max_len = len(model.graph.node)
107

108 # Append the starting and ending indices of the graph to the wanted nodes
list

109 wanted_nodes.append(0)
110

111 # Iterate through each node in the graph
112 for ind, n in enumerate(model.graph.node):
113 # If the node is a ”MultiThreshold” node, add its index to the wanted

nodes list
114 if n.op_type == ”MultiThreshold”:
115 wanted_nodes.append(ind)
116 wanted_nodes.append(max_len)
117

118 # Initialize empty lists for FPGA and CPU node combinations
119 combinations_lst_fpga, combinations_lst_cpu = [], []
120

121 # Iterate through each pair of starting and ending nodes in the wanted
nodes list

122 for i in wanted_nodes:
123 for l in wanted_nodes:
124 # If the starting node is not equal to the ending node and the

ending node is not the last node in the graph
125 fpga, cpu, cpu_0, cpu_1 = None, None, None, None
126 if i < l:
127 # If the starting node is the first node in the graph
128 if i == 0 and l != max_len:
129 fpga = range(i, l)
130 cpu = range(l, max_len)
131 # If equal to max len then
132 elif l == max_len:
133 fpga = range(i,l)
134 if i != 0:
135 cpu = range(0,i)
136 # If the starting node is not the first node in the graph
137 else:
138 fpga = range(i, l)
139 cpu_0 = range(0, i)
140 cpu_1 = range(l, max_len)
141 cpu = (cpu_0, cpu_1)
142

143 # Append the FPGA and CPU node combinations to their
respective lists

144 combinations_lst_fpga.append(fpga)
145 combinations_lst_cpu.append(cpu)
146

147

148 # Return the list of FPGA and CPU node combinations
149 return combinations_lst_fpga,combinations_lst_cpu
150

151 def get_data_in(model_path):
152 # Load the model specified by the given model_path using a ModelWrapper

object
153 model = ModelWrapper(model_path)
154

155 # Get the name and size of the model’s input tensor
156 inp_name = model.graph.input[0].name
157 inpt_size = model.get_tensor_shape(inp_name)
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158

159 # Generate a random input tensor of the same size as the model’s input
tensor

160 input_tensor = np.random.randint(0, 255, inpt_size).astype(’uint8’)
161

162 # Compute the size of the input tensor in MB
163 input_size_mb = input_tensor.nbytes * 1e-6
164

165 # Compute and return the input data transfer time based on the input
tensor size

166 return 1.0976256841119194 * input_size_mb + 0.3052411426075403
167

168 def get_data_out(model_path):
169 # Load the model specified by the given model_path using a ModelWrapper

object
170 model = ModelWrapper(model_path)
171

172 # Get the name and size of the model’s output tensor
173 out_name = model.graph.output[0].name
174 outpt_size = model.get_tensor_shape(out_name)
175

176 # Generate a random output tensor of the same size as the model’s output
tensor

177 output_tensor = np.random.randint(0, 255, outpt_size).astype(’uint8’)
178

179 # Compute the size of the output tensor in MB
180 output_size_mb = output_tensor.nbytes * 1e-6
181

182 # Compute and return the output data transfer time based on the output
tensor size

183 return 0.5606177488366392 * output_size_mb + 0.09549860536045693
184

185 def is_valid(model):
186 if ”MultiThreshold” in [n.op_type for n in model.graph.node] and len(model

.graph.node) > 1:
187 return True
188 else:
189 return False
190

191 def check_resources(rpt_dir = ””, margin=1):
192 KV_260_resource_limit = {
193 ”BRAM_18K”: 144,
194 ”LUT”: 117120,
195 ”URAM”: 64,
196 ”DSP”: 1248
197 }
198

199 with open(f”{rpt_dir}estimate_layer_resources.json”,’r’) as f:
200 resource_rpt = json.loads(f.read())
201 for k,v in resource_rpt[”total”].items():
202 if not KV_260_resource_limit[k]*margin > v:
203 return False
204 return True

B.1.1. Algorithm 1 juypter notebook
1 from FPGA_algorithm_0 import *
2 from qonnx.transformation.create_generic_partitions import PartitionFromDict
3 import time
4 import pandas as pd
5 import shutil
6
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7 # Set path to the input model file
8 # model_file = ”../models/mobilenetv1-w4a4_pre_post_tidy.onnx”
9 # model_file = ”../models/end2end_cnv_w1a1_tidy.onnx”
10 model_file = ”../models/cybsec-mlp-ready.onnx”
11

12 model_name = model_file.split(”/”)[-1].replace(”.onnx”,””)
13

14 # Set the name for the outdir
15 outdir = f”../results”
16

17 if not os.path.exists(outdir):
18 os.mkdir(outdir)
19

20 # Set platform name and algorithm number
21 platform = ”FPGA”
22 Algorithm = ”1”
23

24 # Clean up the input model file and write the cleaned version back to the same
file

25 cleanup(in_file=model_file, out_file=model_file)
26

27 # Get all possible subsets of the input models
28 subset_models_FPGA = get_subsets(model_file)[0]
29 subset_models_CPU = get_subsets(model_file)[1]
30 subset_models = get_subsets(model_file)
31

32 # Instantiate a ModelWrapper object for the input model
33 model = ModelWrapper(model_file)
34

35 # Initialize an empty list to store all the subset metrics
36 all_subset_metrics = []
37

38 # Initialize a dictionary to store the best configuration
39 best_config = {}
40

41 # Initialize a variable to store the minimum runtime
42 min_runtime = float(”inf”)
43 passed =[]
44 # Iterate through the list of subset models
45 _start=time.time()
46 for ind,c in enumerate(tqdm(subset_models_FPGA)):
47 print(c,subset_models_CPU[ind])
48 # Transform the model to a partitioned version with the specified

partitioning scheme
49 parent = model.transform(PartitionFromDict(partitioning={0:c},

partition_dir=f”tmp_models”))
50 model_path = ”tmp_models/partition_0.onnx”
51 if is_valid(ModelWrapper(model_path)):
52 # Estimate the runtime of the model on FPGA using the

estimate_network_performance.json file
53 if ”mobilenetv1” in model_name:
54 est_dir = generate_model_report_mobilenetV1(model_path,model_name)
55 else:
56 est_dir = generate_model_report(model_path,model_name)
57 passed.append(ind)
58

59 # Get the estimated data movement times
60 dm_in = get_data_in(model_path)
61 dm_out = get_data_out(model_path)
62

63 # Load the estimated runtime information from the
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estimate_network_performance.json file
64 with open (f”{est_dir}/report/estimate_network_performance.json”,’r’)

as f:
65 data = json.load(f)
66

67 # Calculate the total runtime, and parse the runtime information to a
dictionary

68 runtime = data[”critical_path_cycles”] * 1e-8 + dm_in + dm_out
69 run_info = {
70 ”FPGA_range”: str(c),
71 ”total_runtime_FPGA[ms]”: runtime,
72 ”runtime_FPGA[ms]”: data[”critical_path_cycles”] * 1e-8,
73 ”data_in_FPGA[ms]”: dm_in,
74 ”data_out_FPGA[ms]”: dm_out,
75 ”CPU_range”: str(subset_models_CPU[ind]),
76 }
77 all_subset_metrics.append(run_info)
78 open(f”{outdir}/results_{model_name}_{platform}_{Algorithm}.json”,’w’)

.write(json.dumps(all_subset_metrics))
79

80 _end = time.time()
81

82 _est_time = _end-_start
83 # parse estimation time to json file
84 with open(f”{outdir}/estimation_time_{model_name}_{platform}_{Algorithm}.json”

,’w’) as f:
85 f.write(json.dumps(
86 {”Estimation time[s]”:_est_time,
87 ”Platform”: platform,
88 ”Algorithm”: Algorithm})
89 )
90 # Print the estimation time to terminal
91 print(f”Total runtime algorithm_1: {_est_time:.5f} s”)

B.1.2. Algorithm 2 juypter notebook
1 from FPGA_algorithm_1 import *
2 from qonnx.transformation.create_generic_partitions import PartitionFromDict
3 import time
4 import pandas as pd
5 import shutil
6

7 # Set path to the input model file
8 # model_file = ”../models/mobilenetv1-w4a4_pre_post_tidy.onnx”
9 model_file = ”../models/end2end_cnv_w1a1_tidy.onnx”
10 # model_file = ”../models/cybsec-mlp-ready.onnx”
11

12 # Get name of model
13 model_name = model_file.split(”/”)[-1].replace(”.onnx”,””)
14

15 # Set the name for the outdir
16 outdir = f”../results_pynqZ1”
17

18 if not os.path.exists(outdir):
19 os.mkdir(outdir)
20

21 # Set platform name and algorithm number
22 platform = ”FPGA”
23 Algorithm = ”2”
24

25 # Clean up the input model file and write the cleaned version back to the same
file
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26 cleanup(in_file=model_file, out_file=model_file)
27

28 # Get all possible subsets of the input models
29 subset_models_FPGA = get_subsets(model_file)[0]
30 subset_models_CPU = get_subsets(model_file)[1]
31 subset_models = get_subsets(model_file)
32

33 # Instantiate a ModelWrapper object for the input model
34 model = ModelWrapper(model_file)
35

36 # Initialize an empty list to store all the subset metrics
37 all_subset_metrics = []
38

39 # Initialize a dictionary to store the best configuration
40 best_config = {}
41

42 # Initialize a variable to store the minimum runtime
43 min_runtime = float(”inf”)
44 fail_start = None
45 passed =[]
46 # Iterate through the list of subset models
47 _start=time.time()
48 for ind,c in enumerate(tqdm(subset_models_FPGA)):
49 print(c,subset_models_CPU[ind])
50 # Transform the model to a partitioned version with the specified

partitioning scheme
51 parent = model.transform(PartitionFromDict(partitioning={0:c},

partition_dir=f”tmp_models”))
52 model_path = ”tmp_models/partition_0.onnx”
53 # If the partition is valid
54 if is_valid(ModelWrapper(model_path)):
55 # If the system has failed then check if the start node is not present

, no estimate will be generated.
56 if fail_start != c[0]:
57 if ”mobilenet” in model_name:
58 est_dir = generate_model_report_mobilenetV1(model_path,

model_name)
59 else:
60 est_dir = generate_model_report(model_path, model_name)
61 # if check resources returns False then the split does not fit onto

FPGA
62 if not check_resources(rpt_dir = f”{est_dir}/report/”, margin=1):
63 # Print statement to show where it doesn’t fit anymore
64 print(f”{c} does not fit!”)
65 # Set a fail point to prune the tree, as every below fail does not

fit either
66 fail_start = c[0]
67 else:
68 fail_start = None
69 # Store the index that succeeded, will be used later.
70 passed.append(ind)
71 # Get the estimated data movement times
72 dm_in = get_data_in(model_path)
73 dm_out = get_data_out(model_path)
74

75 # Load the estimated runtime information from the
estimate_network_performance.json file

76 with open (f”{est_dir}/report/estimate_network_performance.json”,’
r’) as f:

77 data = json.load(f)
78
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79 # Calculate the total runtime, and parse the runtime information
to a dictionary

80 runtime = data[”critical_path_cycles”] * 1e-8 + dm_in + dm_out
81 run_info = {
82 ”FPGA_range”: str(c),
83 ”total_runtime_FPGA[ms]”: runtime,
84 ”runtime_FPGA[ms]”: data[”critical_path_cycles”] * 1e-8,
85 ”data_in_FPGA[ms]”: dm_in,
86 ”data_out_FPGA[ms]”: dm_out,
87 ”CPU_range”: str(subset_models_CPU[ind])
88 }
89 all_subset_metrics.append(run_info)
90 open(f”{outdir}/results_{model_name}_{platform}_{Algorithm}.json”,

’w’).write(json.dumps(all_subset_metrics))
91

92 _end = time.time()
93 _est_time = _end-_start
94 with open(f”{outdir}/estimation_time_{model_name}_{platform}_{Algorithm}.json”

,’w’) as f:
95 f.write(json.dumps({”Estimation time[s]”:_est_time,
96 ”Platform”: platform,
97 ”Algorithm”: Algorithm}))
98 print(f”Total runtime algorithm_1: {_est_time:.5f} s”)

B.2. CPU
B.2.1. CPU estimtate
1 from qonnx.transformation.double_to_single_float import DoubleToSingleFloat
2 from onnx import helper
3 from onnxruntime_extensions import get_library_path
4 import onnxruntime as ort
5 import numpy as np
6 from qonnx.core.modelwrapper import ModelWrapper
7 import time
8 import os
9 from tqdm import tqdm
10 import shutil
11 import qonnx.core.onnx_exec as oxe
12 import argparse
13 from itertools import combinations
14 import json
15 import pandas as pd
16 from qonnx.transformation.create_generic_partitions import PartitionFromDict
17 from qonnx.util.basic import get_by_name
18

19

20 def dataflow_parent_setup(model_file):
21 model = ModelWrapper(model_file)
22 for n in model.graph.node:
23 if n.domain == ”finn.custom_op.fpgadataflow”:
24 n.domain = ”ai.onnx.contrib”
25 model.save(”dataflow_parent_run.onnx”)
26

27 def set_multithreshold_default(model):#,save_model):
28 ’’’
29 Pass a modelproto model and the save file
30 ’’’
31

32 model = model.transform(DoubleToSingleFloat())
33 dl = ””
34 for n in model.graph.node:
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35 if n.op_type == ”MultiThreshold”:
36 if len(model.get_tensor_shape(n.input[0])) == 2:
37 dl = ”NC”
38 elif len(model.get_tensor_shape(n.input[0])) == 4:
39 dl = ”NCHW”
40 else:
41 assert dl == ””, ”NON valid Data layout”
42

43 new_attr = [helper.make_attribute(”out_scale”, 1.0),
44 helper.make_attribute(”out_bias”, 0.0),
45 helper.make_attribute(”data_layout”,dl)]
46

47 for n in model.graph.node:
48 if n.op_type == ”MultiThreshold”:
49 out_scale,bias,datalayout = False,False,False
50 for na in n.attribute:
51 if na.name == ”out_scale”: out_scale = True
52 if na.name == ”out_bias”: bias = True
53 if na.name == ”data_layout”: datlayout = True
54 if not out_scale: n.attribute.append(new_attr[0])
55 if not bias: n.attribute.append(new_attr[1])
56 if not datalayout: n.attribute.append(new_attr[2])
57

58 n.domain = ”ai.onnx.contrib”
59 return model
60

61 def revert_quantAvgPool(model):
62 nodes = [n for n in model.graph.node if n.op_type == ’QuantAvgPool2d’]
63 attrs = [n.attribute for n in model.graph.node if n.op_type == ’

QuantAvgPool2d’]
64 for node,attr in zip(nodes,attrs):
65 for a in attr:
66 if a.name == ”stride”:
67 s = a.i
68 elif a.name == ”kernel”:
69 k = a.i
70 update = helper.make_node(
71 ”AveragePool”,
72 inputs=[node.input[0]],
73 outputs=[node.output[0]],
74 kernel_shape=[k,k],
75 strides=[s,s],
76 )
77

78 model.graph.node.remove(node)
79 model.graph.node.append(update)
80 return model
81

82

83 def get_subsets(model_file):
84 model = ModelWrapper(model_file)
85 unwanted_nodes,wanted_nodes = [],[]
86 max_len = len(model.graph.node)
87 combinations_lst_fpga,combinations_lst_cpu = [],[]
88 wanted_nodes.append(0)
89 for ind,n in enumerate(model.graph.node):
90 if n.op_type == ”MultiThreshold”:
91 wanted_nodes.append(ind)
92 wanted_nodes.append(max_len)
93

94 for i in range(len(wanted_nodes)):



B.2. CPU 56

95 for l in range(len(wanted_nodes)):
96 if i<l:
97 if wanted_nodes[l]+1 < max_len and wanted_nodes[i] == 0:
98 fpga = range(wanted_nodes[i],wanted_nodes[l]+1)
99 cpu = range(wanted_nodes[l]+1,max_len+1)
100 combinations_lst_fpga.append(fpga)
101 combinations_lst_cpu.append(cpu)
102 else:
103 fpga = range(wanted_nodes[i],wanted_nodes[l]+1)
104 if fpga != range(0,max_len+1):
105 cpu = {”part”: 2, ”ranges”: [range(0,wanted_nodes[i]),

range(wanted_nodes[l]+1,max_len+1)]}
106

107 combinations_lst_fpga.append(fpga)
108 combinations_lst_cpu.append(cpu)
109 return combinations_lst_fpga,combinations_lst_cpu
110

111 so = ort.SessionOptions()
112 so.register_custom_ops_library(get_library_path())
113

114 def exe_ort(model_file):
115 model = ModelWrapper(model_file)
116 if [True for n in model.graph.node if n.op_type == ”QuantAvgPool2d”] !=

[]:
117 model = revert_quantAvgPool(model)
118 model = set_multithreshold_default(model)
119

120 sess = ort.InferenceSession(model.model.SerializeToString(),so)
121

122 x_test = np.ones(model.get_tensor_shape(model.graph.input[0].name), dtype=
np.float32)

123

124 idict = {model.graph.input[0].name: x_test}
125 start = time.time()
126 try:
127 sess.run([],idict)
128 except:
129 pass
130 stop = time.time()
131 runtime = (stop-start)*1e3
132

133 return runtime
134

135 def get_input_file(model_name,file_directory):
136 input_file = [os.path.join(file_directory,i) for i in os.listdir(

file_directory) if ”results” in i and model_name in i and i.endswith(”json
”)]

137 if len(input_file) == 1:
138 with open(input_file[0],’r’) as f:
139 data = json.loads(f.read())
140 return data, input_file[0]
141 else:
142 return None,None
143 def write_estimation_time_to_file(model_name,file_directory, est_dict):
144 estimation_file = [os.path.join(file_directory,i) for i in os.listdir(

file_directory) if ”estimation_time_” in i and model_name in i and i.
endswith(’.json’)]

145 if len(estimation_file) == 1:
146 with open(estimation_file[0],’r’) as f:
147 data = json.loads(f.read())
148 pd.DataFrame([data,est_dict]).to_csv(estimation_file[0].replace(”json”
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,”csv”),index=False)
149

150

151 def get_top_k_result(k,result_file,model_name,outdir):
152 df = pd.read_csv(result_file)
153 min = df.sort_values(”total_runtime[ms]”,ascending=True)
154 min = min[[’FPGA_range’, ’total_runtime_FPGA[ms]’,’CPU_range’, ’

total_runtime_CPU[ms]’,’total_runtime[ms]’]].head(k).reset_index(drop=True
)

155 min.to_csv(f”{outdir}/top_{k}_{model_name}.csv”,index=False)

B.2.2. Algorithm 1 & 2 juypter notebook CPU
1 import pandas as pd
2 import shutil
3 from CPU_estimate import *
4 import os
5

6 # print(os.listdir(”../results”))
7 # Get all possible subsets loaded from the FPGA splits possible
8 # model_file = ”../models/mobilenetv1-w4a4_pre_post_tidy.onnx”
9 model_file = ”../models/end2end_cnv_w1a1_tidy.onnx”
10 # model_file = ”../models/cybsec-mlp-ready.onnx”
11 for model_file in models:
12

13 model_name = model_file.split(’/’)[-1].replace(”.onnx”,””)
14 # Define the location where the result file is located
15 outdir = f”../results”
16 if not os.path.exists(”results”):
17 os.mkdir(”results”)
18 # Get the input data file
19 [rng_data,result_dir] = get_input_file(model_name,outdir)
20

21 platform,Algorithm = ”CPU”, ”2”
22

23 _base_model = ModelWrapper(model_file)
24 all_subset_metrics = []
25 min_runtime = float(”inf”)
26

27 n = 5
28 _start = time.time()
29 for c in tqdm(rng_data):
30 rng = eval(c[”CPU_range”])
31 runtime, runtime_0, runtime_1 = 0,0,0
32 if type(rng) == range:
33

34 part_0 = None
35 part_1 = rng
36 parent = _base_model.transform(PartitionFromDict(partitioning={1:

part_1},partition_dir=f”tmp_models”))
37 for _ in range(n):
38 runtime += exe_ort(”tmp_models/partition_1.onnx”)
39 c[”total_runtime_CPU[ms]”] = runtime/n
40

41 elif type(rng) != range and rng != None:
42

43 part_0 = rng[0]
44 part_1 = rng[1]
45 parent = _base_model.transform(PartitionFromDict(partitioning={0:

part_0,1:part_1},partition_dir=f”tmp_models”))
46 for _ in range(n):
47 runtime_0 += exe_ort(”tmp_models/partition_0.onnx”)
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48 runtime_1 += exe_ort(”tmp_models/partition_1.onnx”)
49

50 c[”runtime_part_0[ms]”] = runtime_0/n,
51 c[”runtime_part_1[ms]”] = runtime_1/n,
52 c[”total_runtime_CPU[ms]”] = (runtime_0+runtime_1)/n
53

54 with open(f”results/results_{model_name}_{platform}_{Algorithm}.json”,
’w’) as file:

55 json.dump(c,file)
56

57 _end = time.time()
58 _est_time = _end - _start
59

60 est = {”Estimation time[s]”:_est_time,
61 ”Platform”: platform,
62 ”Algorithm”: Algorithm}
63 write_estimation_time_to_file(model_name,outdir,est)
64

65 print(f”Total estimation time for CPU {_est_time} s”)
66

67 df = pd.DataFrame(rng_data)
68 df[”total_runtime[ms]”] = df[”total_runtime_FPGA[ms]”] + df[”

total_runtime_CPU[ms]”]
69 df.to_csv(f”{outdir}/results_{model_name}_complete.csv”)
70

71 get_top_k_result(5,f”{outdir}/results_{model_name}_complete.csv”,
model_name,outdir)

72 shutil.rmtree(”tmp_models”)



Bibliography

[1] K. Suzuki, Machine learning in computer-aided diagnosis: Medical imaging intelli-
gence and analysis: Medical imaging intelligence and analysis. IGI Global, 2012.

[2] P. Yan, K. Suzuki, F. Wang, and D. Shen, Machine learning in medical imaging,
Pages: 1327–1329 Publication Title: Machine Vision and Applications Volume: 24,
2013.

[3] K. Suzuki, “Overview of deep learning in medical imaging,” Radiological physics and
technology, vol. 10, no. 3, pp. 257–273, 2017, Publisher: Springer.

[4] P. Picton and P. Picton,What is a neural network? Springer, 1994.
[5] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for machine

learning: Challenges and opportunities,” in 2017 IEEE Custom Integrated Circuits
Conference (CICC), IEEE, 2017, pp. 1–8.

[6] J. Lee and H.-J. Yoo, “An Overview of Energy-Efficient Hardware Accelerators for
On-Device Deep-Neural-Network Training,” IEEE Open Journal of the Solid-State
Circuits Society, vol. 1, pp. 115–128, 2021. doi: 10.1109/OJSSCS.2021.3119554.

[7] M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan, and F. Hus-
sain, “Machine Learning at the Network Edge: A Survey,”ACMComput. Surv., vol. 54,
no. 8, Oct. 2021, Place: New York, NY, USA Publisher: Association for Computing
Machinery, issn: 0360-0300. doi: 10.1145/3469029. [Online]. Available: https:
//doi.org/10.1145/3469029.

[8] S. Liu, D. S. Ha, F. Shen, and Y. Yi, “Efficient neural networks for edge devices,” en,
Computers & Electrical Engineering, vol. 92, p. 107 121, Jun. 2021, issn: 00457906.
doi: 10.1016/j.compeleceng.2021.107121. [Online]. Available: https://
linkinghub.elsevier.com/retrieve/pii/S0045790621001257 (visited
on 04/14/2023).

[9] M. Zhang, F. Zhang, N. D. Lane, et al., “Deep Learning in the Era of Edge Computing:
Challenges and Opportunities,” en, in Fog Computing, A. Zomaya, A. Abbas, and S.
Khan, Eds., 1st ed., Wiley, May 2020, pp. 67–78, isbn: 978-1-119-55169-0 978-1-
119-55171-3. doi: 10.1002/9781119551713.ch3. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/10.1002/9781119551713.ch3 (visited
on 04/18/2023).

[10] Srivatsan Krishnan, Quantization for Fast and Environmentally Sustainable Rein-
forcement Learning – Google AI Blog, Sep. 2022. [Online]. Available: https://
ai.googleblog.com/2022/09/quantization-for-fast-and.html#:
%20:text=Quantization%20can%20save%20memory%20storage,models%
20and%20achieve%20faster%20training..

[11] Y. Umuroglu, N. J. Fraser, G. Gambardella, et al., “FINN: A Framework for Fast, Scal-
able Binarized Neural Network Inference,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-ProgrammableGate Arrays, arXiv:1612.07119 [cs],
Feb. 2017, pp. 65–74. doi: 10 . 1145 / 3020078 . 3021744. [Online]. Available:
http://arxiv.org/abs/1612.07119 (visited on 07/06/2022).

59

https://doi.org/10.1109/OJSSCS.2021.3119554
https://doi.org/10.1145/3469029
https://doi.org/10.1145/3469029
https://doi.org/10.1145/3469029
https://doi.org/10.1016/j.compeleceng.2021.107121
https://linkinghub.elsevier.com/retrieve/pii/S0045790621001257
https://linkinghub.elsevier.com/retrieve/pii/S0045790621001257
https://doi.org/10.1002/9781119551713.ch3
https://onlinelibrary.wiley.com/doi/10.1002/9781119551713.ch3
https://onlinelibrary.wiley.com/doi/10.1002/9781119551713.ch3
https://ai.googleblog.com/2022/09/quantization-for-fast-and.html#:%20:text=Quantization%20can%20save%20memory%20storage,models%20and%20achieve%20faster%20training.
https://ai.googleblog.com/2022/09/quantization-for-fast-and.html#:%20:text=Quantization%20can%20save%20memory%20storage,models%20and%20achieve%20faster%20training.
https://ai.googleblog.com/2022/09/quantization-for-fast-and.html#:%20:text=Quantization%20can%20save%20memory%20storage,models%20and%20achieve%20faster%20training.
https://ai.googleblog.com/2022/09/quantization-for-fast-and.html#:%20:text=Quantization%20can%20save%20memory%20storage,models%20and%20achieve%20faster%20training.
https://doi.org/10.1145/3020078.3021744
http://arxiv.org/abs/1612.07119


Bibliography 60

[12] S. M. S. Trimberger, “Three Ages of FPGAs: A Retrospective on the First Thirty Years
of FPGA Technology: This Paper Reflects on How Moore’s Law Has Driven the De-
sign of FPGAs Through Three Epochs: The Age of Invention, the Age of Expansion,
and the Age of Accumulation,” IEEE Solid-State Circuits Magazine, vol. 10, no. 2,
pp. 16–29, 2018, issn: 1943-0582. doi: 10.1109/MSSC.2018.2822862. [Online].
Available: https://ieeexplore.ieee.org/document/8392473/ (visited on
02/22/2023).

[13] FPGA Design, Architecture and Applications [2023]. [Online]. Available: https://
www.logic-fruit.com/blog/fpga/fpga-design-architecture-and-
applications/.

[14] Kria KV260 Vision AI Starter Kit Data Sheet (DS986), Mar. 2022. [Online]. Available:
https://docs.xilinx.com/r/en- US/ds986- kv260- starter-kit/
Summary.

[15] What’s a SOM. [Online]. Available: https://www.xilinx.com/products/som/
what-is-a-som.html.

[16] A. Khokhar, V. Prasanna, M. Shaaban, and C.-L. Wang, “Heterogeneous computing:
Challenges and opportunities,” Computer, vol. 26, no. 6, pp. 18–27, Jun. 1993, issn:
0018-9162. doi: 10.1109/2.214439. [Online]. Available: http://ieeexplore.
ieee.org/document/214439/ (visited on 02/07/2023).

[17] Q. Liu and W. Luk, “Heterogeneous Systems for Energy Efficient Scientific Comput-
ing,” in Reconfigurable Computing: Architectures, Tools and Applications, O. C. S.
Choy, R. C. C. Cheung, P. Athanas, and K. Sano, Eds., vol. 7199, Series Title:
Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 64–75, isbn: 978-3-642-28364-2 978-3-642-28365-9. doi: 10.1007/978-
3-642-28365-9_6. [Online]. Available: http://link.springer.com/10.
1007/978-3-642-28365-9_6 (visited on 02/07/2023).

[18] I. Pipelining, “Instruction Pipelining,” Computer, 2003.
[19] P. M. Kogge, The architecture of pipelined computers. CRC press, 1981.
[20] D. B. Thomas, L. Howes, and W. Luk, “A comparison of CPUs, GPUs, FPGAs, and

massively parallel processor arrays for random number generation,” en, in Proceed-
ings of the ACM/SIGDA international symposium on Field programmable gate arrays,
Monterey California USA: ACM, Feb. 2009, pp. 63–72, isbn: 978-1-60558-410-2. doi:
10.1145/1508128.1508139. [Online]. Available: https://dl.acm.org/doi/
10.1145/1508128.1508139 (visited on 04/04/2023).

[21] Y. Li, X. Zhao, and T. Cheng, “HeterogeneousComputing PlatformBased onCPU+FPGA
and Working Modes,” in 2016 12th International Conference on Computational In-
telligence and Security (CIS), Wuxi, China: IEEE, Dec. 2016, pp. 669–672, isbn:
978-1-5090-4840-3. doi: 10.1109/CIS.2016.0161. [Online]. Available: http:
//ieeexplore.ieee.org/document/7820552/ (visited on 02/07/2023).

[22] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, What is the State of Neural Net-
work Pruning? arXiv:2003.03033 [cs, stat], Mar. 2020. [Online]. Available: http:
//arxiv.org/abs/2003.03033 (visited on 01/26/2023).

[23] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain.,” en, Psychological Review, vol. 65, no. 6, pp. 386–408,
1958, issn: 1939-1471, 0033-295X. doi: 10.1037/h0042519. [Online]. Available:
http://doi.apa.org/getdoi.cfm?doi=10.1037/h0042519 (visited on
01/25/2023).

https://doi.org/10.1109/MSSC.2018.2822862
https://ieeexplore.ieee.org/document/8392473/
https://www.logic-fruit.com/blog/fpga/fpga-design-architecture-and-applications/
https://www.logic-fruit.com/blog/fpga/fpga-design-architecture-and-applications/
https://www.logic-fruit.com/blog/fpga/fpga-design-architecture-and-applications/
https://docs.xilinx.com/r/en-US/ds986-kv260-starter-kit/Summary
https://docs.xilinx.com/r/en-US/ds986-kv260-starter-kit/Summary
https://www.xilinx.com/products/som/what-is-a-som.html
https://www.xilinx.com/products/som/what-is-a-som.html
https://doi.org/10.1109/2.214439
http://ieeexplore.ieee.org/document/214439/
http://ieeexplore.ieee.org/document/214439/
https://doi.org/10.1007/978-3-642-28365-9_6
https://doi.org/10.1007/978-3-642-28365-9_6
http://link.springer.com/10.1007/978-3-642-28365-9_6
http://link.springer.com/10.1007/978-3-642-28365-9_6
https://doi.org/10.1145/1508128.1508139
https://dl.acm.org/doi/10.1145/1508128.1508139
https://dl.acm.org/doi/10.1145/1508128.1508139
https://doi.org/10.1109/CIS.2016.0161
http://ieeexplore.ieee.org/document/7820552/
http://ieeexplore.ieee.org/document/7820552/
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
https://doi.org/10.1037/h0042519
http://doi.apa.org/getdoi.cfm?doi=10.1037/h0042519


Bibliography 61

[24] S. Han, H. Mao, and W. J. Dally, Deep Compression: Compressing Deep Neural
Networks with Pruning, TrainedQuantization and Huffman Coding, arXiv:1510.00149
[cs], Feb. 2016. [Online]. Available: http://arxiv.org/abs/1510.00149
(visited on 02/01/2023).

[25] J. Bai, F. Lu, K. Zhang, et al., ONNX: Open Neural Network Exchange, Publication
Title: GitHub repository, 2019. [Online]. Available: https://github.com/onnx/
onnx.

[26] Faith Xu, “Faster Scalable ML Model Deployment Using ONNX and Open Source
Tools,” in 2020 IEEE Infrastructure Conference, San Francisco, CA, USA: IEEE, Oct.
2020, pp. i–i, isbn: 978-1-72817-728-1. doi: 10.1109/IEEECONF47748.2020.
9377615. [Online]. Available: https://ieeexplore.ieee.org/document/
9377615/ (visited on 04/04/2023).

[27] Google, Protocolbuffers/protobuf: Protocol Buffers - Google’s data interchange for-
mat. [Online]. Available: https://github.com/protocolbuffers/protobuf.

[28] ONNX Runtime developers, ONNX Concepts - ONNX 1.15.0 documentation. [On-
line]. Available: https://onnx.ai/onnx/intro/concepts.html.

[29] A. Paszke, S. Gross, F. Massa, et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in Advances in Neural Information Processing Systems 32,
Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.
neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf.

[30] M. Abadi, P. Barham, J. Chen, et al., “Tensorflow: A system for large-scale machine
learning,” in 12th Symposium on Operating Systems Design and Implementation,
2016, pp. 265–283.

[31] ONNX Runtime developers, ONNX Runtime, 2021. [Online]. Available: https://
onnxruntime.ai/.

[32] Y. Umuroglu and M. Jahre, Streamlined Deployment for Quantized Neural Networks,
arXiv:1709.04060 [cs], May 2018. [Online]. Available: http://arxiv.org/abs/
1709.04060 (visited on 07/06/2022).

[33] Xilinx/Vitis-AI: Vitis AI is Xilinx’s development stack for AI inference on Xilinx hard-
ware platforms, including both edge devices and Alveo cards. [Online]. Available:
https://github.com/Xilinx/Vitis-AI.

[34] T. Chen, T. Moreau, Z. Jiang, et al., “TVM: End-to-end optimization stack for deep
learning,” arXiv preprint arXiv:1802.04799, vol. 11, no. 20, 2018, Publisher: CoRR.

[35] FastML Team, Fastmachinelearning/hls4ml, 2023. doi: 10.5281/zenodo.1201549.
[Online]. Available: https://github.com/fastmachinelearning/hls4ml.

[36] S. B. Akintoye, L. Han, H. Lloyd, et al., Layer-Wise Partitioning and Merging for Effi-
cient and Scalable Deep Learning, arXiv:2207.11019 [cs], Jul. 2022. [Online]. Avail-
able: http://arxiv.org/abs/2207.11019 (visited on 04/11/2023).

[37] A. Parthasarathy and B. Krishnamachari, Partitioning and Placement of Deep Neural
Networks onDistributed EdgeDevices toMaximize Inference Throughput, arXiv:2210.12219
[cs], Oct. 2022. [Online]. Available: http://arxiv.org/abs/2210.12219 (vis-
ited on 04/11/2023).

http://arxiv.org/abs/1510.00149
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://doi.org/10.1109/IEEECONF47748.2020.9377615
https://doi.org/10.1109/IEEECONF47748.2020.9377615
https://ieeexplore.ieee.org/document/9377615/
https://ieeexplore.ieee.org/document/9377615/
https://github.com/protocolbuffers/protobuf
https://onnx.ai/onnx/intro/concepts.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://onnxruntime.ai/
https://onnxruntime.ai/
http://arxiv.org/abs/1709.04060
http://arxiv.org/abs/1709.04060
https://github.com/Xilinx/Vitis-AI
https://doi.org/10.5281/zenodo.1201549
https://github.com/fastmachinelearning/hls4ml
http://arxiv.org/abs/2207.11019
http://arxiv.org/abs/2210.12219


Bibliography 62

[38] R. Ding, G. Su, G. Bai, W. Xu, N. Su, and X. Wu, “A FPGA-based Accelerator of Con-
volutional Neural Network for Face Feature Extraction,” in 2019 IEEE International
Conference on Electron Devices and Solid-State Circuits (EDSSC), 2019, pp. 1–3.
doi: 10.1109/EDSSC.2019.8754067.

[39] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition,
arXiv:1512.03385 [cs], Dec. 2015. [Online]. Available: http://arxiv.org/abs/
1512.03385 (visited on 04/10/2023).

[40] A. Pappalardo, Y. Umuroglu, M. Blott, et al.,QONNX: Representing Arbitrary-Precision
Quantized Neural Networks, arXiv:2206.07527 [cs, stat], Jun. 2022. [Online]. Avail-
able: http://arxiv.org/abs/2206.07527 (visited on 04/19/2023).

[41] L. Bai, Y. Zhao, and X. Huang, “A CNN Accelerator on FPGA Using Depthwise Sep-
arable Convolution,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 65, no. 10, pp. 1415–1419, 2018. doi: 10.1109/TCSII.2018.2865896.

[42] D. Wu, Y. Zhang, X. Jia, et al., “A High-Performance CNN Processor Based on FPGA
for MobileNets,” in 2019 29th International Conference on Field Programmable Logic
and Applications (FPL), 2019, pp. 136–143. doi: 10.1109/FPL.2019.00030.

[43] A. Sohrabizadeh, J. Wang, and J. Cong, “End-to-End Optimization of Deep Learning
Applications,” en, in Proceedings of the 2020 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, Seaside CA USA: ACM, Feb. 2020, pp. 133–
139, isbn: 978-1-4503-7099-8. doi: 10.1145/3373087.3375321. [Online]. Avail-
able: https://dl.acm.org/doi/10.1145/3373087.3375321 (visited on
04/19/2023).

[44] End-to-End Flow — FINN documentation. [Online]. Available: https://finn.
readthedocs.io/en/latest/end_to_end_flow.html.

https://doi.org/10.1109/EDSSC.2019.8754067
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/2206.07527
https://doi.org/10.1109/TCSII.2018.2865896
https://doi.org/10.1109/FPL.2019.00030
https://doi.org/10.1145/3373087.3375321
https://dl.acm.org/doi/10.1145/3373087.3375321
https://finn.readthedocs.io/en/latest/end_to_end_flow.html
https://finn.readthedocs.io/en/latest/end_to_end_flow.html

	Introduction
	Context
	Problem statement & research questions
	Thesis outline

	Background
	Field programmable gate array (FPGA)
	General FPGA architecture
	FPGA resources
	System on module (SoM) FPGAs

	Heterogeneous computing
	Sequential processing
	Parallel processing
	CPU+FPGA

	Neural Networks
	Software resources
	ONNX
	Onnxruntime
	FINN

	Alternative solutions

	Methodology
	Design flow
	Proposed algorithms
	Exhaustive search algorithms
	Setup of algorithm 1
	FPGA estimation
	CPU measurements
	Setup of algorithm 2


	Implementation
	Implementation algorithm 1
	Defining search space
	FPGA estimation
	Finding data movement times
	CPU estimation
	Summary implementation algorithm 1

	Implementation of algorithm 2

	Results
	Experimental setup
	MobileNetv1 results
	Results of algorithm 1
	Results algorithm 2
	Estimation time for MobileNetv1
	Finding for algorithm 1 and 2 for MobileNetv1

	Further improvement MobileNetv1
	Varying SIMD and PE
	Theoretical improvement CPU
	Hardware resource usage vs. total runtime
	Comparison to other platforms
	Comparison to other work

	Cybersecurity and CNV model results
	Estimation time for cybersecurity and CNV model
	Findings for cybersecurity and CNV model


	Conclusion and future work
	Conclusions
	Feasibility and cost-effectiveness
	Partitioning and distribution
	Performance metrics

	Future work

	Appendix A
	Source code
	Algorithm 1 & 2 source code FPGA
	Algorithm 1 juypter notebook
	Algorithm 2 juypter notebook

	CPU
	CPU estimtate
	Algorithm 1 & 2 juypter notebook CPU



