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Abstract

This paper introduces an electricity price exten-
sion to the intention-aware routing system (IARS)
for electric vehicles (EV). The existing intention-
aware routing system is used to route electric ve-
hicles who require to charge en-route through a
road network. To achieve the objective of mini-
mizing the average journey time, the intentions of
EVs and waiting times at charging stations are com-
municated. Instead of only minimizing travel time,
the model extension presented in this paper makes
it possible to express a decision trade-off between
price and time. A vehicle computes its routing
policy such that the combined utility of price and
time is as high as possible. In this paper the per-
formance of IARS with a price extension is com-
pared to a greedy maximizing algorithm (MAX) in
several settings. The increase in utility by using
IARS depends on the population of electric vehi-
cles. However, in most experiments conducted in
this research IARS achieves a significantly higher
average utility.

1 Introduction
The sales of electric vehicles has soared this decade and ac-
cording to the Global EV Outlook 2021, even in a conser-
vative scenario, sales will keep increasing with 30% annu-
ally and electric vehicles will ”account for about 7% of the
road vehicle fleet by 2030” [3]. This increasing adaptation
of electric vehicles demands charging infrastructures and EV
routing policies over the network which avoid congestion at
charging stations as much as possible. An efficient allocation
of EVs over the different charging stations in a road network
is important since charging a car takes significantly longer
than refuelling (e.g. Tesla’s V3 Supercharger will charge a
Tesla Model 3 in 15 minutes [9]), which makes congestion
more likely to occur.

The area of route guidance and information systems
(RGIS, [1]) has already extensively studied optimal vehicle
routing using real time information. Research into coordi-
nation mechanism to prevent congestion is done in [5] and
[6]. However, all these approaches do not take into account

en-route charging. De Weerdt et al. [2] introduced an in-
tention aware routing system for EVs to tackle the problem
of congestion at charging stations when EVs have to charge
en-route. In their work they describe a model where EVs
communicate their intentions to charging stations, charging
stations communicate expected waiting times back and EVs
use this information to construct an optimal routing policy.
In some cases, this intention aware routing system ”leads to
over 80% improvement in waiting times at charging stations
and a more than 50% reduction in overall journey times” [2].

Even though the IARS distinguishes between EV types in
terms of battery capacity, the decision policy of all EVs is
set to minimize the expected journey time. Minimising travel
time makes sense if we assume electricity costs are equal at
all charging stations. However, in a real world scenario, the
price of electricity at charging stations might be correlated
with the popularity of that station. This paper will extend the
IARS model and simulation such that each charging station
has its own electricity price.

The main research questions this paper tries to answer is

From the perspective of an individual vehicle, when
presented with the choice of several stations who
each charge a certain price for electricity, how can
we best model the choice of which station to go to?

This question is split up in several subquestions:

• Q1) How can we extend IARS to incorporate different
electricity prices at charging stations in the model and
simulation?

• Q2) How can we model a price/patience trade-off for an
individual electric vehicle driver?

• Q3) How can we model the decision policy of the indi-
vidual vehicles?

• Q4) Which decision policy achieves the highest average
utility given the drivers preferences towards time and
price?

By answering these questions this paper contributes to the
existing state of the art by formalizing the aspect of price dif-
ferences in the IARS and giving insights into the effects of
these differences on individual decisions.

The remainder of this paper is structured as follows. First,
in section 2 we describe the problem and formalize the model
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behind IARS. The price extension on this model and simula-
tion is then described in section 3. In section 4 we explore
several decision models that can be used by individual EVs.
The results of running two of these decision models in sev-
eral situations are presented in section 5, followed by a note
on reproducibility of this research in section 6. A discussion
is presented in section 7 and section 8 concludes and presents
directions for further research.

2 Problem Description
In this section the problem of routing EVs with limited
charge through the road network is formalized by describing
the base model as presented by De Weerdt et. al. [2].

The EV routing problem is formalized using ”a stochastic
time-dependent model, where roads and charging stations are
represented by probability distributions of their travel time
or waiting time” [2] (including actual charging time), respec-
tively.
The domain of this EV routing model is given by
〈V,E, T, P, S, C〉. The set V contains all the vertices, which
indicate decision points in the road network. Vertices are con-
nected by directed edges e = (vi, vj) ∈ E, where an edge
represents either a road segment, Eroads ⊂ E or a charging
station, Estations ⊂ E. If we assume an EV has unlimited
charge it should never be required to pass by a charging sta-
tion on the route from A to B, therefore charging stations are
represented as edges which form a self loop.
An edge incurs a probabilistic amount of time (travel time or
waiting time, depending on the edge type), described by the
probability mass function P which is dependent on the time
of the day t ∈ T . This dependence on the time of day models
the fact that the time it takes to traverse a certain road seg-
ment highly depends on the traffic conditions.
Moreover, a road segment edge e ∈ Eroads incurs an amount
of chargeC(e) and a charging station e ∈ Estations resets the
state of charge to smax ∈ S. So the new state of charge after
traversing edge e is given by:

SOC(ec, sc) =

{
sc − C(ec) if ec ∈ Eroads

smax if ec ∈ Estations

Given this domain description, the problem for a single EV
is to find an optimal routing policy π∗ : V×T×S → V which
maximizes the expected utility without running out of charge
during the journey.
The expected utility for a certain policy is given by EU(ec =
(vc, w), tc, sc, |π). The value is computed using a recursive
formulation with two base cases. The first base case is when
the EV runs out of charge by traversing the next edge, in
which case the expected utility is −∞. The second base case
is when the EV reaches its destination when traversing the
next edge. In this case, the expected utility is calculated as∑

∆t∈T P (∆t|ec, tc) · U(tc + ∆t, s′). Here P (∆t|ec, tc) is
the probability of traversing the edge in ∆t time units, given
that we are at ec at time tc and U(tc + ∆, s′) is the final util-
ity calculated from the destination node s′ at arriving time
tc + ∆t.

When the EV still has charge and is not yet at its destination,
we use the same formula as in base case two but instead of
using the final utility we recursively use the expected utility
at the destination node s′: EU((w, π(w, tc + ∆t, s′)), tc +
∆t, s′|π). The full formulation is then as follows:
EU(ec = (vc, w), tc, sc, |π) =
−∞ if sc ≤ 0∑

∆t∈T P (∆t|ec, tc) · U(tc + ∆t, s′) if w = vdest∑
∆t∈T P (∆t|ec, tc)

·EU((w, π(w, tc + ∆t, s′)), tc + ∆t, s′|π) otherwise

where s′ = SOC(ec, sc).
The utility function is a function of time and charge U : T ×
S → R:

U(tc, sc) =

{
−∞ if sc ≤ 0

−tc otherwise

This utility function makes sure an EV chooses a policy
that minimizes the expected time of arrival while not running
out of charge (if possible).

3 Price model
In this section we will introduce the price model, which is
an extension of the base model described in section 2. This
section will provide the answer to subquestion 1 and 2. In
subsection 3.1 the price extension to the base model is for-
malized and subsection 3.2 describes the used utility function
in this extended model.

3.1 Model extension
In the base model (see section 2) the state of an EV is de-
scribed by (vc, tc, sc) ∈ (V × T × S). To include the price
attribute, we extend this to (vc, tc, sc,mc) ∈ (V×T×S×M),
where mc ∈ {0, . . . ,Mmax} indicates the money an EV has
already spent during its trip. The amount of money spent is
initialized as 0 when the EV starts its journey.
Each e ∈ Estations will increase the spent money mc of an
EV by P (e) once the EV travels over e. Here, P : E → R
is a price function indicating the price paid when traversing
edge e:

P (e) =

{
0, for all e ∈ Eroads

pe, for all e ∈ Estations

where pe is a fixed electricity price at station e and can be
used to introduce price differentiation between stations. Note
that a road segment, i.e. e ∈ Eroads, does not effect the
money spent attribute of the EV in this model. However, it
is straightforward to extend the model to allow to pay for
charge while driving, which means this allows for modelling
scenarios where vehicles charge while driving [4].
Given the new state description of an EV the policy function
will now be π∗ : V × T × S ×M → V and the expected
utility formulation will change to:
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EU(ec = (vc, w), tc, sc,mc|π) =

−∞ if sc ≤ 0∑
∆t∈T P (∆t|ec, tc) · U(tc + ∆t, s′,m′) if w = vdest∑
∆t∈T P (∆t|ec, tc)

·EU((w, π(w, tc + ∆t, s′,m′)),

tc + ∆t, s′,m′|π) otherwise

where m′ = mc +M(ec).
In this model the EV driver pays for a full charge P (e)
at charging station e. We made this assumption to make
sure there is no advantage of charging early. However, it
is straightforward to extend the model to charge dependent
payments at the charging stations. Although this would
require to take into account left over charge at the end of
the trip, otherwise charging early (or not at all) would be
beneficial.

3.2 Utility function
Whereas we previously only took the arrival time into
account in the final utility function, we now also consider the
spent money during the trip. In this revised utility function
we model a price/patience trade-off using a parameter
γ ∈ [0, 1] which expresses the weight of the preference
towards time of the EV driver. The weight towards price is
then computed as 1 − γ, since the weights should add up to
1.

U(tc, sc,mc) ={
−∞, if sc < 0

γ ∗ Tmax−tc
Tmax−Tmin + (1− γ) ∗ Mmax−mc

Mmax−Mmin
otherwise

Mmax andMmin are used to normalize the price factor and
Tmax and Tmin are used to normalize the time factor. Mmax

indicates the maximum the driver can pay for the journey,
which is given by the highest price of all charging stations.
Mmin is the minimum amount of money that should be paid
for the journey and is given by the lowest price charged by
a charging station in the road network. Tmax is the maxi-
mum arrival time a driver is willing to accept and Tmin is the
minimum time to get from the source to the destination, so
including unavoidable travel and charging time. This utility
function will make sure an EV chooses a policy that maxi-
mizes the weighted sum of the price and time factor accord-
ing to the predefined weights, while not running out of charge
(if possible).

4 Decision models
Electric vehicles who need to charge en-route have to choose
between potentially more than one charging station. Which
station they choose depends on the decision model used and
the expected utility of each choice. In this section we answer
subquestion 3 by describing three different decision models.

• MAX: a greedy decision strategy that always takes the
path with the highest expected utility (i.e. the path with
the lowest expected travel time in the base model). This

greedy maximizing approach resembles the way naviga-
tion systems lead cars through a road network.

• RANDOM(λ): a decision strategy which models sub-
optimal behavior of humans [7] by choosing the next
road segment with a certain probability. This probability
relates to the expected utility of the road segment in the
following way:
P (e|vc, tc, sc) = eλ∗EU(e,tc,sc|π′)∑

{e′|(vc,w)} e
λ∗EU(e′,tc,sc|π′)

This strategy also assumes zero waiting time at the
charging stations. The λ parameter describes the level
of rationality. A high value will result in more ratio-
nal behaviour, i.e. choosing the road segment with the
highest expected utility. A low value will result in more
randomness in the behaviour.

• IARS: a decision strategy which follows from the inten-
tion aware routing system as presented in [2].

De Weerdt et. al [2] compared these decision models and
confirmed the following hypothesis ”the average journey time
for IARS is lower than for any other approaches”. In the re-
mainder of this paper we will only use MAX and IARS to
evaluate the performance of the price model on.

5 Experiments and Results
In this section we present the experiments we conducted
along with the results. These results provide the answer for
subquestion 4. In subsection 5.1 we describe the road net-
works we tested on and the configurations we used. In sub-
section 5.2 and subsection 5.3 we present the results of run-
ning several vehicle types on the bottleneck network and grid
network respectively. In subsection 5.4 we give an insight
in the performance when varying in the vehicle population
structure.

5.1 Experimental setup
To analyse how well the different decision models perform in
terms of average utility, we have to construct a certain road
network to evaluate them on. In our experiments we use two
different road networks, a bottleneck network and a grid net-
work, see Figure 1 and Figure 2 respectively. Charging sta-
tions charge different prices for their electricity in both net-
works. To create a suitable environment for the price and time
trade-off, their exists an inverse relationship between the edge
weights near a charging station and the price at the charging
station. That is, a charging station that provides electricity at
a low price is on a route which would take longer than a route
through a charging stations at which the electricity price is
high. Note that the edge travel times are thus constant over
the whole day, this is a simplification compared to the base
model introduced by de Weerdt et. al [2]. We made this sim-
plification to examine the effect of the price model in a more
isolated manner.

Throughout our experiments, we assume that charging an
EV takes 15 minutes [9]. In order to produce consistent
and reproducible results we repeat all the simulations several
times and average the results. Furthermore, in all the graphs
a 95% confidence interval is shown on every bar. For a more
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Figure 1: The bottleneck road network with electricity prices and
travel times

Figure 2: The grid road network with electricity prices and travel
times

elaborate note on the reproducibility of these experiments see
section 6.

5.2 Results on the bottleneck network
For the analysis of the overall performance and comparison
between routing policies on the bottleneck network we use
an environment with five different vehicle types who differ in
their γ value but all use the same decision model. We ran this
environment for the two decision models, IARS and MAX,
to compare them. In all simulations the prices are set in the
same way as in Figure 1.

In Figure 3 the resulting average utilities of running this ex-
periment can be found. In Figure 4 and Figure 5 the resulting
average journey time and money spent is shown, respectively.

In these graphs we can see that as the γ parameter in-
creases the total journey time decreases and the money spent
increases. This result can be observed for both decision mod-
els and is as expected, since the γ parameter expresses the
importance of the price factor.

Figure 3: Average utilities of several vehicles types on the bottleneck
road network

Figure 4: Average journey times of several vehicles types on the
bottleneck road network

However, there is a difference between IARS and MAX. In
Figure 3 we see that all vehicle types have a higher or equal
utility when using IARS. Since IARS is a coordinated sys-
tem, the load of vehicles is divided better over the network
and charging stations. This coordination in the network ex-
plains why we see that the waiting time at charging stations is
significantly lower for IARS than MAX in Figure 4. Further-
more it is interesting to see here that a higher γ, i.e. a higher
preference for time, is translated better in a lower journey
time when using IARS compared to MAX. The total journey
time decreases more consistently when γ increases for IARS,
see Figure 4.

5.3 Results on the grid network
The experiments on the grid network are conducted in the
same environment as on the bottleneck network. There are
five different vehicle types, we use two different decision
models and the prices are set as presented in Figure 2.
The resulting average utilities, average journey times and av-
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Figure 5: Average money spent of several vehicles types on the bot-
tleneck road network

erage money spending of running this experiment in the grid
network scenario can be found in Figure 6, Figure 7 and Fig-
ure 8, respectively.

Figure 6: Average utilities of several vehicles types on the grid road
network

Although the numbers are different the patterns in the re-
sults on the grid network correspond to the ones on the bot-
tleneck network. Again, the utility for IARS is equally good
or higher than MAX. Moreover, the relationship between γ
and the journey time and money spent is also better expressed
when using IARS.

5.4 Results of different populations
In these last experiments we evaluate the overall performance
when varying with the population construction. In all runs we
use 100 vehicles.
First of all, we investigate how the average utility of two vehi-
cle types change when their population changes. The vehicles
in all these runs have either γ = 0.8, i.e. a high preference for
time or γ = 0.2, i.e. a high preference for money. The runs

Figure 7: Average journey times of several vehicles types on the grid
road network

Figure 8: Average money spent of several vehicles types on the grid
road network

vary in the proportion of vehicles with γ = 0.2 and γ = 0.8.
The result of this experiment using the MAX decision model
is presented in Figure 9 and the results for the IARS equiva-
lent can be found in Figure 10. In all these graphs the popu-
lation construction can be found on the x-axis.

Interesting to see in these results is that when all the
vehicles use IARS, the utility does not significantly depend
on the construction of the population, see Figure 10. On
the other hand, when all vehicles use MAX, the utility of
the vehicles with γ = 0.8 decreases as the amount of them
increases, see Figure 9. This effect can be explained by
the absence of a coordination system in the MAX decision
model. No coordination means that all vehicles use the same
path, i.e. they pick the one with the highest expected utility
in a greedy manner, which leads to congestion on that path.

In a second experiment we evaluate the scenario where
each vehicle has a different gamma drawn from a uniform
distribution U(α, β), where α ≥ 0.0 and β ≤ 1.0. We ran
this scenario several times, each time with a different α and
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Figure 9: Utility of vehicles using MAX in different populations on
the bottleneck road network

Figure 10: Utility of vehicles using IARS in different populations
on the bottleneck road network

β. The results of this experiment can be found in Figure 11.
The distribution we used each time is found on the x-axis.

As can be observed in Figure 11, vehicles benefit from
IARS the most when the majority of the population favors
time. In the scenario U(0.0, 0.2), i.e. where every vehicle
has a γ between 0.0 and 0.2, the average utility of MAX
and IARS are almost the same. However when the aver-
age gamma’s increase, a significant difference between MAX
and IARS starts to emerge. IARS performs 6.2% better than
MAX on average when the gamma is drawn fromU(0.0, 0.5).
In the scenarioU(0.5, 1.0) IARS perform 14.7% better and in
the scenario U(0.8, 1.0) IARS outperforms MAX by 25.1%.

Even though using the IARS system is not that beneficial
in the scenarios with low gammas, it doesn’t harm. The av-
erage utility of vehicles using the MAX decision model is
never higher than of the vehicles using IARS. Furthermore,
in a more realistic scenario where every vehicle has a random
gamma between 0.0 and 1.0, IARS clearly outperforms MAX
(see the first set of bars in Figure 11).

Figure 11: Average utility of vehicles with a random gamma drawn
from U(α, β) on the bottleneck network

6 Responsible Research

In this study we report results on several experiments, each
conducted with different configurations. In this section, we
discuss the reproducibility of these experiments and results.
In subsection 6.1 we identify the random components in-
volved in the experiments and state the implications of them
on reproducibility. In subsection 6.2 we make a note about
the implementation details of the code and in subsection 6.3
we discuss the environmental setup of the experiments.

6.1 Randomness

In this research we performed a number of experiments and
used different algorithms and methodologies which contain a
certain degree of randomness. First of all, the whole prob-
lem is modeled as a Markov decision process where roads
and charging stations are represented as edges with a prob-
ability distribution for their waiting time. The time an EV
takes to traverse a certain edge is drawn from the distribution
P (∆t|ec, tc) and is thus not a fixed variable. This means the
whole simulation is exposed to randomness, as travel times
are not necessarily the same in between two simulations.
Secondly, in the grid network the start positions and end goals
of the vehicles are generated randomly.
Even though the earlier mentioned components used in this
research contain random elements, the results presented in
this paper are reproducible to a certain degree of accuracy.
First of all, in most experiments we simplified the problem
by fixing the travel times of edges. This already takes a way a
degree of randomness. Furthermore, every experiment we re-
ported results on during this study was repeated several times.
The results of all these repetitions were then averaged to de-
crease the effect of randomness. Since we repeated and ag-
gregated the results of experiments, we can report the stan-
dard error of all reported values and say something about the
accuracy of these values. All the figures presented in this
paper include error bars which indicate a 95% confidence in-
terval.
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6.2 Implementation
The results in this study do not depend on the implementa-
tion details of the algorithms. The simulation and all decision
policies are implemented in an object oriented manner using
Java. The Java code implements the formal description of the
algorithms and is reproducible in any other language. Aside
from implementation details and possible run times, the re-
sults will be similar to the ones presented in this paper. The
Java code also does not rely on any language specific third
party dependencies. The Java code used in this study is not
publicly available, however, access to the code can be granted
on request.

6.3 Experiment configurations
All experiments in this study use a different configuration, in
our Java code we use a property file which contains all envi-
ronmental settings as input to model these different configura-
tions. Based on this property file the experiment is conducted.
The property file specifies the number of vehicle types, their
specific setting (i.e. γ parameter and used decision policy)
and the layout and settings of the road network. We did not
include the actual property file in this paper. However, the
experimental setup and configuration settings are clearly de-
scribed in subsection 5.1 of this paper.

7 Discussion
In all the results from our experiments we can see that the
price time trade-off works as expected and EV drivers can
thus indicate their preference clearly with the γ parameter.
Moreover, in most experiments IARS performs significantly
better than MAX in terms of average utility.
A limitation on these results are that we only used two dif-
ferent road network setups, as described in subsection 5.1.
Although these two setups represent scenarios where we can
evaluate the decision policies on, they are an oversimplifica-
tion of real world road networks. Due to the complexity of the
problem and the fact that we did not have access to a compute
cluster we were not able to run experiments on bigger graphs.
It would be interesting to analyse the performance in terms
of utility on bigger graphs which resemble a more real world
scenario.

8 Conclusions and Future Work
The main contribution of this paper is the introduction of a
price factor in the model presented by De Weerdt et. al [2]
which can be used to model a price/patience trade-off for
electric vehicles when they have to traverse a road network
and have to charge en-route.
In this study we explored the MAX and IARS decision poli-
cies and did experiments with them. From the experiments
we did, we can conclude that even after including a price fac-
tor in the model and utility functions, IARS still results in the
best overall utility. Moreover, we can conclude that IARS can
translate the drivers preferences more accurately. However,
the advantage IARS gives over MAX depends on the type of
vehicles and the number of them in the population as shown
in the last experiment. In a population that highly favors time
over money the IARS decision model is the most beneficial.

A lot of directions are possible for further research from here.
First of all, the used model could be extended in several ways.
We could extend the model to take charging between vehicles
into account. This concept is introduced in [4] and will give
a whole new dynamic to the system. Furthermore, we could
extend the model to take discharging or selling charge into
account, Tang et. al. use such a approach. [8]. Smaller ex-
tensions that could be implemented in the price model are
also possible. For example, P could be made time depen-
dent, such that charging stations will charge a different price
depending on the time of the day. The price function P could
also be dependent on the demand for electricity, in which case
a market like scenario arises. Furthermore, it would be inter-
esting to do a study on the actual gammas of EV drivers. We
have shown in the last experiment that the advantages you get
from IARS highly depend on the population of EV drivers. If
we know more about the real world population of EV drivers,
we could potentially optimize IARS for this. Lastly, a study
to the practical application of the IARS system with price ex-
tensions is possible.
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