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Summary

The optimization and design of large composite structures remains a difficult task due to
the size and discrete nature of the design space of anisotropic materials. Formulation of
the stiffness distribution in composite structures with lamination parameters alleviates this
problem since the resulting design space is continuous and convex, in which case gradient
optimizers are well suited to obtain optimal solutions at a low computational cost. This
strategy is part of a class of composite design and optimization strategies known as multi-step
optimization where a second optimization step is needed to translate the optimal lamination
parameters to stacking sequences with an equivalent stiffness distribution. In this step, it’s
typical to impose manufacturing constraints in order to ensure that the retrieved designs are
resilient and manufacturable.
These constraints lead to a mismatch between the feasible design spaces of the continuous
and discrete optimization steps, often causing difficulty in the retrieval of equivalent stacking
sequences. In large composite structures, spatial variation in stiffness can be achieved either
through locally changing the number of plies or by fiber steering. In the former, ensuring
fiber continuity throughout the structure (blending) further reduces the design space which
in turn leads to a substantial increase in mass of feasible designs retrieved in the discrete step.
A method to include blending constraints in the continuous optimization proposed by Mac-
quart et al. [1] has been shown to yield continuous optima with a more realistic stiffness
distribution at a modest mass increase. In doing so, the mismatch in the feasible design
regions between the continuous and discrete optimization steps is reduced and exploration of
the design space in the vicinity of the continuous optima with lamination parameter matching
objectives becomes a viable option.
To this end, an open-source stacking sequence retrieval toolbox coded in Python named
pyTLO was developed for this thesis. This application relies on a genetic algorithm dedicated
to stacking sequence tables (SST) encoding [2] which enables a straightforward implementa-
tion of various manufacturing constraints in the discrete optimization step and guarantees
that all retrieved stacking sequence designs are blended. Other core criteria of the pyTLO
application include computational efficiency and the ability to carry out simultaneous opti-
mization of multiple composite components, each with an individual SST.
The work presented here focuses on the stacking sequence retrieval of large composite struc-
tures in multi-step optimization schemes through lamination parameter matching of a con-
tinuous LP optimum. The aim was to explore the vicinity of the optima obtained in the
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continuous optimization and retrieve stacking sequences with a similar stiffness distribution
and mechanical behavior without a substantial increase in mass. This was achieved by us-
ing pyTLO and subjecting simple lamination parameter objective functions to mechanical
constraint penalties. By penalizing solutions with failed constraints, the genetic algorithm is
steered towards designs with improved mechanical performance in the vicinity of the contin-
uous optima.

A novel constraint approximation method based on Kreisselmeier-Steinhauser (KS) envelope
functions which agglomerates multiple local linear approximations into a single conservative
approximation was used. It proved effective in the retrieval of feasible stacking sequences of
an ONERA regional wing model described by 396 design variables without requiring refined
sampling of reference points. Even in circumstances where the evaluated discrete design points
had a large error with respect to the lamination parameters of the continuous optimum, the
KS approximations where sufficiently accurate to steer the discrete optimization towards
feasible designs.

A total of three different feasible stacking sequence solutions for the ONERA regional wing
model are presented in the report. Two solutions were obtained for a continuous optimum
including blending constraints, whereas the third solution was obtained for an optimum with
no blending constraints. It was demonstrated that although the use of blending constraints
in the continuous optimization imparted a 5.7% mass increase over the continuous result with
no blending constraints, stacking sequence retrieval yielded feasible designs that were up to
18% lighter than those retrieved from the continuous optimum with no blending constraints.
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Chapter 1

Introduction

Composite materials are well known for superior mechanical properties such as stiffness- and
strength-to-weight ratio when compared to metals. Coupled with their anisotropic nature,
a higher structural efficiency can be achieved through the ability of tailoring the strength
and stiffness direction of designs for an optimal load distribution. Where aircraft design is
concerned, the increased tailoring capabilities open up additional possibilities in the design of
lighter aircraft wings by enabling designers to carefully control its shape under aerodynamic
loads for optimal performance and stability in a range of flight phases.
These advantages are especially valuable to the aerospace industry, where minimizing weight
is one of the core criteria in the design of aircraft. The use of composite materials in the
secondary and primary structures of commercial aircraft has been increasing over the past
decades, with both Boeing and Airbus manufacturing aircraft containing composite structures
accounting for over 50% of their weight. This rise can be attributed to rising fuel costs, tighter
environmental regulations which pressure manufacturers to design lighter and more efficient
airplanes. Innovation in industry automation an manufacturing of composite structures also
contributed by making them more cost-effective.
The potential gains in weight and performance derived from using composite materials in
aerospace structures is entirely dependent on the level of our understanding of various fac-
tors surrounding the design, manufacturing and operation of composite structures. As it
stands, the design of composite structures in aerospace relies on several knock-down factors
on material properties that ensure that the gaps in that knowledge never become a problem
during operation, but this compromises performance gains over metals [4]. Defining robust
optimization strategies that factor in manufacturing constraints and are able to consistently
retrieve optimal designs can help to fill in some of these gaps and lead to significant gains in
structural efficiency.
Even though composite structures are widely applied in the industry, their design and opti-
mization remains a challenge. Anisotropy is a ‘double edged sword’; although tailoring the
stiffness distribution can enhance structural design and with it lower weight can be achieved,
it comes at the cost of a much larger number of design variables. Take for instance compos-
ite laminate structures, which are the most frequently used type of composite materials in
aerospace. These laminates are built with thin layers of fibers embedded in a plastic matrix
that are stacked in various fiber orientations to obtain the desired directional stiffness and
strength. For a single stiffness region, the number of design variables needed to describe a
laminate becomes 2N, where N is the total number of layers used and each is described by
its fiber orientation and thickness. In highly-loaded design problems where hundreds of plies
can be necessary, the number of design variables quickly explodes.
Another disadvantage in the design of stacking sequences is that the design space is discrete
since the number of layers is defined by an integer and fiber orientation is restricted to specific
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orientations due to manufacturing constraints, which rules out gradient based optimization as
a means to determine design optimums. Instead, direct search methods such as evolutionary
algorithms are used. These methods are good at exploring the design space since there’s a
low risk of being trapped in local optima, but become less effective at searching it entirely as
the design problems become larger and more complex. As a consequence, retrieved optima
are never guaranteed to be global and these algorithms are plagued by long run times if finite
element analysis of the designs is involved.
In order to mitigate some of these issues, it is possible to represent the stiffness of laminates
not in terms of their stacking sequence but with lamination parameters (LP) formulation.
Proposed by Tsai and Pagano [5], LP make it possible to describe the mechanical properties
of any laminate with 12 parameters in addition to its thickness, independently of the number
of layers and orientations it contains. The 12 parameters are divided in three sets of four
variables - V A

1−4 are used to describe the membrane stiffness, V D
1−4 the out-of-plane stiffness

and V B
1−4 the coupling between the two former sets. In addition to the reduced number of

design variables, LP-space is continuous and convex. Thus, gradient-based optimization can
be used to explore the design space effectively and at a low computational cost [6].
In this context, the most common type of optimization is a multi-step strategy where a first
step is carried out in the continuous design space step followed by a second step in the discrete
space that translates the results of the first step to equivalent stacking sequences. An exact
match between the two is possible provided that there is no restriction on layer orientation
and thickness, but that is not the case due to manufacturing constraints.
In structures where load varies spatially, it is typical to define multiple regions with changing
mechanical properties in order to improve structural efficiency. In composite laminates, the
changes in properties are achieved by adding or dropping plies between adjacent regions which
introduces stress concentrations and material discontinuities. In order to avoid premature
failure, fiber continuity and the severity of the stress concentrations due to ply drops are
considered in the design process by a method referred to as blending of variable stiffness
composite structures. The additional blending requirements constrain the design space further
and the mismatch in feasible design regions between the two steps becomes too large for the
discrete step to succeed in finding equivalent stacking sequences. Results obtained through
stiffness or LP-matching are often inadequate and unable to meet strength requirements
without a substantial increase in weight.
A proposal by Terence et al. [7] to include blending constraints in the continuous design
space has been shown to yield optimal LP-space designs with a smoother and hence more
realistic stiffness and thickness distribution in variable stiffness composites. By reducing the
mismatch between the continuous and discrete feasible regions, stacking sequence retrieval
through LP-matching is more likely to succeed in retrieving equivalent stacking sequences. In
the discrete step, improvements on blending algorithms such as Irisarri’s Stacking Sequence
Tables (SST) [2] have made it possible for large composite design problems to be represented
with a relatively low number of design variables while providing inherent blending and a
straightforward framework in the application of several manufacturing constraints in stacking
sequence design.
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1.1 Project Goals

The aim of the thesis project was to revisit stacking sequence retrieval of large composite struc-
tures with a GA by LP-matching of continuous optima subjected to blending constraints. By
subjecting the LP-matching objective to mechanical constraints such as strength and buckling
in the discrete step of the optimization, it is expected that the GA should be steered towards
designs in the vicinity of the continuous optimum with improved mechanical behavior. For
this purpose, two main research questions were devised to guide the project:

1. Can LP-matching fitness strategies subjected to mechanical constraints improve the
mechanical performance of Variable Stiffness (VS) composite laminates retrieved by a
genetic algorithm?

2. What is the increase in mass of an aircraft wing design over its continuous LP optimum
with a LP-matching fitness function subjected to mechanical constraints?

(a) What is the change in the mass increase of wing designs obtained from a continuous
target with blending constraints vs. a target without blending constraints?

A regional aircraft wing model is considered in this project which was provided by ONERA1

together with a ready-to-use FE model. Finally, an open-source python based GA for stacking
sequence retrieval using SST encoding was developed in the course of the project in order test
various objective functions and to evaluate the effects of blending constraints on the retrieval
stacking sequences.

1.2 Report Outline

In chapter 2 a more in-depth introduction is given to the optimization of large composite
structures with focus on multi-step strategies. In chapter 3 a description of the python ta-
pered laminate optimizer (pyTLO) developed for this project is given where its computational
performance is also evaluated. The 18-panel horseshoe benchmark is used to evaluate the ef-
fectiveness of LP-matching objectives subjected to mechanical constraints in chapter 4, by
comparing retrieved results to an example available in the literature. Then, in chapter 5 a
comparison of stacking sequence retrieval of a 4-component aircraft wing known as the ON-
ERA regional wing model is carried out with different fitness functions under a constant mass
condition.
Finally, the mass increase necessary to retrieve feasible stacking sequences for the ONERA
regional wing model is discussed in chapter 6 followed by a summary of the report’s conclusions
and general recommendations for future research and development in chapter 7.

1The French Aerospace Lab



Chapter 2

An Introduction to Composite
Structural Optimization

The design and optimization of composite structures, especially where variable stiffness lami-
nates are considered, is a challenging task due to the anisotropic nature of composite materi-
als. Several strategies have been proposed in the literature for which references [8,9] provide
a thorough overview. In this report, the scope is narrowed to a class of composite design
methods known as multi-step optimization.
These strategies comprise of an initial optimization step carried out using continuous inter-
mediate design variables, generally LP, followed by a second step in discrete space where
stacking sequences that best comply with the structural properties derived in the first step
are retrieved. Successfully translating the results of the continuous step to feasible 1 lami-
nates remains a difficult task due to additional design criteria that are not imposed in the first
step. The focus of this work relies on combining traditional LP Root Mean Square (RMS)
error objective functions with response constraints in the discrete step in order to steer a GA
towards feasible stacking sequence designs.
The different classes of composite optimization are expanded in section 2.1 where concepts
such as variable stiffness (VS) and Constant Stiffness (CS) are explained, followed by an
introduction to lamination parameters in section 2.2. In section 2.3 an introduction to multi-
step optimization techniques based on lamination parameters and the challenges related to
stacking sequence retrieval are discussed. A number of design guidelines aimed at ensuring
manufacturability and robustness of composite laminates such as blending is presented in
section 2.4. The encoding method used in this thesis to retrieve blended stacking sequences
for VS composite structures known as SST is covered in section 2.5. Finally, response ap-
proximation schemes are presented in section 2.6 in addition to the relevance of these topics
in the goals of the project discussed in this report.

1Meeting the design criteria and being manufacturable.
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2.1 Variable Stiffness Laminates

The design and optimization of composite laminate structures can be classified in two different
categories as proposed by Setoodeh et al. [8, 10]:

1. Constant stiffness CS: Both the stacking sequence and thickness distribution are uniform
throughout the entire composite structure.

2. Variable Stiffness VS: The composite structure contains multiple regions where the
mechanical properties are allowed to vary as a function of the loads it’s subjected to.
Hence, both the thickness distribution and stacking sequences can vary throughout the
structure.

Designing VS composite laminates implies discretising it into multiple regions of different
stiffness according to load distribution and\or geometric constraints. The stacking sequences
of these regions can then be optimized for the best performance subjected to a number of
manufacturing constraints such as “blending” [11] to ensure that structural integrity is not
compromised. Conventional VS laminate stacking sequences make use of straight fiber layers
which can be placed at different orientations with respect to one another, and stiffness changes
are obtained by adding or removing layers in the different design zones. This is referred to
as patch design. Alternatively, non-conventional laminates employ fiber or tow steering to
gradually change the fiber orientation throughout the layers themselves.
Although fiber steering enables a higher potential in the tailoring of composite structures
due to the additional design freedom, the number of design variables to consider is also
larger than straight-fiber stacking sequence optimization. Furthermore, fiber-steered large
composite structures are not yet a viable option in the aerospace industry due to added
complexity and costs in design and manufacturing in addition to the current certification
framework being aimed at conventional laminates [12]. For these reasons, fiber-steered large
composite aerospace structures is considered to be at a lower Technological Readiness Level
(TRL) than conventional straight-fiber layers and in the work presented here it is the only
method considered in the design of VS laminates.
The optimization of composite structures poses a difficult challenge due to the anisotropic
nature of the material which provides a higher potential in tailoring the design, but a larger
number of design variables need to be considered. For instance, in the design of constant
stiffness laminates the number of variables grows with 2N , where N is the number of layers
for which the material and orientation need to be selected. As a result, hundreds of variables
need to be defined in problems concerning large composite structures where laminates contain
a large number of plies. This problem is further exacerbated in the design of variable stiffness
composite structures since multiple different stacking sequences need to be defined. Another
issue with optimizing composite laminates in terms of ply material and orientation is that the
design space is discrete and difficult to explore since the optimization relies on direct search
methods such as GA that do not guarantee global optimums are obtained [8]. The root cause
is that GA are not deterministic, so various runs yield different results and only with an
infinite number of runs would one be able to confirm whether a result is a global optimum or
not.

2.2 Lamination Parameters

The stiffness distribution of composite structures can be represented in terms of a set of
intermediate design variables known as lamination parameters. This method is independent
of the laminate’s stacking sequence and thus reduces the number of variables in composite
design problems. LP were proposed by Tsai and Pagano [5] and are obtained by integrating
the layer angles of a given laminate through thickness h as given by equation 2.1.



6 An Introduction to Composite Structural Optimization

(
V A

1 , V
A

2 , V
A

3 , V
A

4

)
= 1

h

∫ h/2

−h/2
(cos2θ, sin2θ, cos4θ, sin4θ) dz

(
V B

1 , V B
2 , V B

3 , V B
4

)
= 4

h2

∫ h/2

−h/2
z (cos2θ, sin2θ, cos4θ, sin4θ) dz (2.1)

(
V D

1 , V D
2 , V D

3 , V D
4

)
= 12

h3

∫ h/2

−h/2
z2 (cos2θ, sin2θ, cos4θ, sin4θ) dz

The three sets of lamination parameters have a similar representation to that of the [ABD]
matrix in the sense that V A

n set represents the membrane stiffness, V D
n the bending or out-of-

plane stiffness and the V B
n set represents the response couplings between the membrane and

bending stiffness. The [ABD] matrices can be derived from the LP, the material invariant
matrices and laminate thickness as shown in equation 2.2. The material invariants depend
only on ply material and are not considered as variables during optimization.
This method makes it possible to describe the stiffness of a laminate independently of its
stacking sequence, which can considerably reduce the number of design variables. For any
number of plies a laminate contains, the 12 LP in addition to the thickness are sufficient
to determine the laminate stiffness. This number is further reduced when only symmetric
laminates are considered, since the in- and out-of-plane response coupling terms V B

n = 0
and [B] = 0. Constraining the search to balanced designs leads to only 4 LP in addition
to thickness being needed, since (A16, A26) and bending-twist (D16, D26) response couplings
equal zero. The same applies to lamination parameters, i.e., (V A

2 , V
A

4 ) = 0 and (V D
2 , V D

4 ) = 0.
This is a clear advantage over stiffness as a function of stacking sequences, especially where
thicker laminates are concerned.

A = 1
h

(
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4

)
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D = 12
h3
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4

)
Other advantages in using LP to describe the stiffness properties of the laminates lie in the fact
that the design problem can be formulated by continuous design variables alone and that the
resulting design space is convex [6]. This enables the use of fast converging gradient-based
optimization strategies which are efficient in finding optimal design points at a relatively
low computational cost even for complex VS composite design problems [9]. Lamination
parameter optimization is generally used as a multi-step optimization strategy since a second
step is necessary to retrieve stacking sequences that best match the design variables obtained
in the first optimization step.

2.3 Multi-Step Optimization strategies

Structural optimization is employed with the aim of maximizing a design’s performance sub-
jected to a number of constraints such as buckling or strength. A general formulation for
optimization problems can therefore be expressed by equation 2.3 where fobj is an objective
function of a given property and x represents a set of design variables bounded by a lower
and upper limit xl, xu. The terms gi and K express design constraints and their threshold,
respectively.
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min (fobj(x))
gi ≤ K i = 1, ..., N (2.3)

xl ≤ x ≤ xu

This principle applies whether the optimization is carried out in a continuous or a discrete
design space.
Multi-step composite optimization relies on two or more steps to retrieve feasible designs.
The first step concerns a structural optimization in a continuous design space using LP, in
which gradient-based optimizers are used to derive optimal design points using sensitivities
of the constraints with respect to LP and thickness to guide the optimization towards feasible
solutions. Although these methods display high convergence rates, they are highly dependent
on the starting position in the design space and tend to converge to local optima in nonconvex
problems. However, since the stiffness of composite laminates depends linearly on LP as seen
in equation 2.2, problems formulated in terms of lamination parameters result in a convex
design space [13] which can be efficiently explored with gradient-based solvers. Nevertheless,
the optimization of composite structures based on LP formulation is not without limitations.
Firstly, LP are coupled so an independent variation of the parameters can lead to unfeasible
design points that don’t yield a positive-definite stiffness matrix. The definition of feasible re-
gions in LP formulation is therefore important but not entirely solved as no analytical method
is available to define the feasible envelope of in- and out-of-plane lamination parameters si-
multaneously. A numerical method has been proposed by Setoodeh et al. [14] to approximate
the feasible envelope and represent it as a set of linear inequality constraints which can be
used with gradient-based solvers.
Secondly, design optima derived in the continuous step need to be translated to stacking
sequences as LP by themselves only describe the stiffness distribution and hold no bearing
on whether the solution is manufacturable or not. Furthermore, an exact match between LP
and retrieved stacking sequences is only guaranteed provided that the ply orientations and
thickness are taken as continuous variables, which is not the case in the design of composite
laminates.

[±454]s

[04]s
[904]s

[0 90 ±45]s

Figure 2.1: Continuous and discrete design space of the in-plane parameters
V A

1 and V A
3 .
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Generally, plies are limited to a set of angles and thickness to ensure manufacturability and
this results in a reduction of the feasible design space between the continuous and discrete
optimizations. As a consequence, stiffness and load distribution can be entirely different in
retrieved stacking sequences resulting in poor performance or even premature failure under
design loads. This can be visualized in figure 2.1 where the feasible region of the in-plane lam-
ination parameters V A

1 and V A
3 is plotted for balanced-symmetric laminates [15,16]. Whereas

the continuous design space is the entire area enclosed by the quadratic function, by restrict-
ing the permissible ply angles to combinations of [0, 90, ±45] layers in the discrete step, the
feasible space is reduced to the triangular area within the dashed lines assuming an infinite
number of plies. As the number of plies is restricted, the design space becomes discrete. For
an 8-ply laminate under balance and symmetry constraints, the only possible combinations
are represented by the red dots.
Since the second step is carried out in a discrete design space, gradient solvers are no longer
an option and direct search methods are used instead. GA optimizers are especially popular
in the design of composite structures due to their ability to search the design space without
becoming trapped in local optima. GA can be compared to a simplified version of the theory
of evolution where a “population” made up of encoded design points as chromosomes goes
through the process of selection, mating and mutation over a number of generations to induce
semi-random variations in the designs and guide it towards feasible solutions.
As the problem dimensionality grows, the effectiveness of GA is diminished due to the high
number of evaluations required. Furthermore, GA tend to incur a high computational cost
due to the large number of design points evaluated in a single optimization run, especially
if Finite Element Analysis (FEA) is employed to calculate the structural response. For this
reason, approximations of the response are used extensively over Finite Element Modelling
(FEM) to verify that structural constraints are satisfied during the optimization.

2.4 Design Criteria of Composite Laminates

The design of composite laminates is challenging not only due to the many design variables
that need to be considered, but also due to weaknesses related to anisotropy such as inter-
laminar stresses and damage tolerance. When compared to metals, additional care in the
design phase of composite laminates is needed to ensure that these weaknesses are patched
up to avoid premature failure of the designs. To this end, a number of best practices has
been compiled by the industry pertaining the design of composite structures [17,18] covering
a large range of criteria in both micro and macro design details. Given that the optimization
and stacking sequence retrieval is generally done at a preliminary design level, the guidelines
more commonly applied at this stage in the design of stacking sequences are as follows [2]:

1. Symmetry: Ensures that the stacking sequence of laminates is symmetric about the
mid-ply, with the goal of decoupling membrane and bending responses to loading. As a
result, the B-matrix and the 4 V B

n terms equal zero and can be neglected in the design
process.

2. Balance: For every ply angle θ 6= {0◦, 90◦}, a −θ ply is present in the stacking se-
quence. As a consequence, tension-shear and bending-twist response couplings equal
zero. Although this is beneficial in most designs, it has been shown that unbalanced
designs are advantageous in the aeroelastic tailoring of aircraft wings since the shear-
twist couplings of the skins can be used as a passive load relief mechanism and improve
divergence characteristics [19].

3. Damage Tolerance: Outer layers of the laminate should be comprised of ±45◦ plies
which provide better impact resistance by protecting the main load carrying layers . A
positive side-effect of this design rule is that buckling resistance is improved by placing
±45◦layers away from the mid-ply.
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4. The 10% rule: The stacking sequence should contain at least 10% of plies in the
primary directions (0◦, 90◦, ±45◦) to prevent premature failure due to unexpected sec-
ondary loads and avoid matrix-dominated directions in the laminate. Since this guide-
line can constrain the ply angle selection considerably, a guideline based on minimum
in-plane stiffness has been proposed by Abdalla et al. [20].

5. Disorientation: In order to avoid high interlaminar stresses which can lead to delami-
nation between layers, the angle difference between adjacent plies should be a maximum
of 45◦.

6. Ply Contiguity: Clusters of plies with equal orientation should not exceed 2 to 4 [2,17]
equal plies to limit the growth of matrix cracks across multiple layers.

Where the design of VS composite laminates is concerned, additional criteria is considered to
mitigate the effects of ply drops between adjacent patches which introduce out-of-plane loads
locally and to ensure fiber continuity throughout the structure:

1. Covering: A continuous layer should cover the inner and outer surfaces of the laminate
to avoid exposed dropped plies.

2. Internal Continuity: There should be a continuous layer for every three dropped
plies.

3. Maximum Ply Drop: A limit on the number of dropped plies between adjacent
panels should be used to minimize stress concentrations and to ensure a more gradual
load distribution. This guideline is known as the ∆n rule.

4. Ply Continuity: Plies present in the thinnest patch of the structure should be continu-
ous throughout the entire structure. Furthermore, discontinuities in fiber path between
adjacent patches must be avoided to maintain structural integrity as well as to guaran-
tee manufacturability of the stacking sequence design. This requirement is also known
as blending and is covered in more detail in section 2.4.1.

2.4.1 Blending

Efficient design of light-weight aerospace structures calls for a equally loaded material mindset
which is achieved by defining regions of different stiffness throughout the structure to accom-
modate a varying load distribution. This mesh of different stiffness regions can be more or
less refined depending on the problem complexity and computational constraints as the mesh
size dictates the number of design variables that need to considered.
Each of these regions can be represented by a stacking sequence of straight fiber ‘patches’ in
the design of composite laminate structures which can be modified by adding or removing plies
to accommodate the stiffness layout of the different regions. However, the variation of these
properties between adjacent patches lead to discontinuities in the fiber path, leading to stress
concentrations and introduces a taper between adjacent regions. This taper results in a local
strength reduction and out-of-plane stresses that contribute to delamination effects [21, 22].
Since these discontinuities are unavoidable in the quest for structural efficiency, it is necessary
to consider strategies to optimize layer continuity and ply drops in VS composite laminates
and this process is known as ‘blending’.

A number of different approaches to blending in the discrete optimization step have been
developed. One of the first methods was proposed by Liu and Haftka [23] where a continuity
measure is used between two adjacent laminates that controlled both the fiber continuity at
the global level 2 and the stacking sequence at the local level. Minimum continuity constraints

2Properties affecting all or a majority of the sub-regions of a structure
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were then used in a two-step optimization with a GA for stacking sequence retrieval where it
was shown that relatively high fiber continuity is possible throughout the structure without
considerable impact on weight.
Kristinsdottir et al. [11] introduced a ’greater-than-or-equal-to’ blending strategy where plies
could be progressively dropped from the most loaded towards the least loaded patches. The
achievable structural efficiency was limited since removed plies could not be re-added, resulting
in low load regions to be over-designed. A two-step strategy based on sub-laminates was
proposed by Soremekun et al. [24] in 2002, where sub-laminates covering the entire structure
are defined by the thinnest region in the first step, followed a second step where remaining
sub-laminates are defined for the remaining unassigned thickness regions. Finally, these sub-
laminates are optimized by a GA until a satisfactory solution is retrieved. In the same paper
a benchmark problem to gauge the effectiveness of different blending strategies known as the
‘18-panel Horseshoe’ problem was introduced.
A guide-based strategy was proposed by Adams et al. [3] where VS composite laminates are
described by a guide stacking sequence matching the thickest region in the structure and
subsequent ply drops. The number of design variables is considerably reduced with respect to
other methods since all stacking sequences are a derivative of the guide in addition to the ply
drops. Another advantage of this method is that all solutions are inherently blended which
removes the need for blending constraints in the GA. Two types of guide-based blending
were introduced: Outer- and Inner-blending, which depends on whether the outermost or
innermost plies can be dropped, as shown in figure 2.2.
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Figure 2.2: An Outward and Inward blending example.

Although the guide and sub-laminate strategies can both return blended designs, the latter
would not be considered blended under the terms of the guide-based approach. This indicates
that some blending definitions are too limited over what constitutes a blended VS laminate.
Accordingly, Van Campen et al. [25] proposed two blending definitions that cover any potential
blended designs, namely generalized blending, which is similar to the guide-based approach
proposed by Adams et al. [3], and a relaxed blending definition that is the least constrained
blending type, allowing for patches of the same thickness to have different stacking sequences
and still be blended at the global level. Any stacking sequence retrieval algorithm for tapered
laminate structures invariably falls into one of these categories.
The generalized blending definition ensures the continuity of the layers of the thinnest stacking
sequence throughout the whole structure independently of its position in the stacking sequence
unlike Adams’ guide-based method where plies are only dropped at the outer or inner surface
of the laminate as shown in figure 2.3 where the two definitions are compared. The generalized
blending definition is succinctly described by van Campen et. al:

“Generalized blending definition: We consider two adjacent panels completely
blended if all the layers from the thinner panel continue in the thicker one re-
gardless of their position along the thickness of the laminate." [25]
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a) Generalized Blending

b) Inner Blending

Figure 2.3: Two blended designs. Design (a) would not be considered
blended according to inner or outer definitions defined by Adams et al. [3].

The encoding of tapered laminates used in this thesis is based on a method known as SST
which falls under the generalized blending category. Some constraints over blending designs
still remain in this definition, such as the inability to contain different stacking sequences for
different regions of the same thickness or to combine multiple individually blended designs into
a single blended structure. Hence, the relaxed blending definition relies on a single criteria:
A tapered composite laminate design is blended if there are no layer edges in contact in any
of the interfaces between different design regions as shown in 2.4.
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b) Unblended design

a) blended design

Figure 2.4: Example of a blended and unblended design using the relaxed
definition. Design b) is not blended due to layers 1 and 4 having their edges in

contact.

2.4.2 Continuous Design Space Blending Constraints

The blending requirement introduces constraints in the design space which reduces its feasible
region in comparison to LP-space. This is in part due to the fact that in the continuous step
there is no restriction on the variation of lamination parameter values between adjacent
regions since they’re optimized independently, whereas in the discrete design space, blending
of stacking sequences between adjacent regions implies similarity to one another and thus the
change in mechanical properties is limited.
As a result, the retrieval of stacking sequences in the context of multi-step optimization
schemes rarely returns feasible solutions as the constraints make it impossible to match the
variation in LP and stiffness direction throughout the laminate. In order to improve stacking
sequence retrieval from a continuous optimum, Macquart et al. [7] proposed a set of blending
constraints applied in the continuous design space that restrict the variation of the LP between
adjacent regions as well as the number of allowed ply drops.
Although this leads to an increase in mass on the optimal design points obtained in LP-space, a
smoother and more realistic stiffness distribution is achieved and stacking sequence retrieval in
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the discrete step is more effective in finding feasible solutions similar to the optima obtained in
the continuous optimization. Their effectiveness in reducing the LP error of retrieved stacking
sequences in subsequent discrete optimizations has been demonstrated in a number of studies;
Bordogna et al. [26] achieved a 45% reduction in the LP RMS error between the continuous
optimum and retrieved stacking sequences, as well as a lower number of failed elements and
failure index of mechanical constraints.
More recently, Silva et al. [27] included blending constraints as well as ply percentage con-
straints limited to standard [±45◦, 0◦, 90◦] ply orientations in the continuous design space
and were able to retrieve feasible designs of a regional aircraft wing with only a 1% weight
increase over the continuous optimum. Other manufacturing constraints have a similar effect
on constraining the feasible design space of the discrete step, but so far no corresponding con-
straints have been developed in order to achieve a more realistic representation of continuous
design spaces [28].

2.5 Stacking Sequence Tables

Stacking sequence tables are based on lay-up tables used in the manufacturing of composite
laminates by the aerospace industry [29].SST have also been used by Meldrum et al. [30], on
the behalf of Dassault Aviation, to carry out aero-structural optimization in an automatic
process to guide the initial structural sizing and weight of aircraft structures with promising
results. SST are a guide-based method following a generalized blending approach that repre-
sents the stacking sequences and ply-drops of variable stiffness composite laminates in a table
format. Each table contains all stacking sequences between an upper and a lower bound of
the number of plies [Nmax, Nmin] in the composite laminate with ply-drop locations starting
from a guide laminate as shown in figure 2.5. This representation has a number of advantages;
all SST solutions are inherently blended and the table layout simplifies the implementation
of manufacturing guidelines in the design process.
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Figure 2.5: A Stacking Sequence Table example.

Irisarri et. al [2] proposed an encoding of the SST which is suitable for stacking sequence
retrieval using GA. In order to describe the stacking sequence of any design point representing
a multi-patch composite laminate, only three one-dimensional vectors or chromosomes are
needed:

• SSTlam : Represents the stacking sequence of the thickest laminate (Nply = Nmax).
The vector length is equal to the number of plies in that patch, or half that length if
symmetric laminates are considered.

• SSTins: Represents the rank of insertion of each ply w.r.t. the thinnest laminate. Zero
entries denote plies of the thin guide and thus are present in all patches. Non-zero
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entries represent the lowest thickness in which the ply is present. Same vector length
as SSTlam. Unlike the SST method proposed by Irisarri et al., the SSTins can have
plies with the same rank of insertion where balanced laminates are concerned since
non-balanced columns are not encoded.

• Nstr: Contains the number of plies per patch. The vector length is equal to the number
of patches in the structure.

This encoding considerably decreases the number of design variables needed to describe a
multi-patch problem. Additionally, since the decoding of the SST results in inherently blended
designs, it is not necessary to subject the GA to continuity constraints which improves com-
putational performance and the exploration of the design space.

The encoding of the SST is exemplified in figure 2.7 where the resulting SST vectors of a four
patch laminate given in figure 2.6 are displayed for a balanced and symmetric laminate. It
also represents a compressed form of the table shown in 2.5 where all non-balanced stacking
sequences are removed.

16 14 10 8Nply=

Figure 2.6: A 4-patch stacking sequence (symmetric).
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Figure 2.7: A Stacking Sequence Table of a 4-patch problem (symmetric).

The encoded solutions are then used in a GA where the three vectors are used to fully describe
a design point. These vectors can be seen as chromosomes that are subjected to evolutionary
operators in order to induce variations on the design points to explore the design space.

Although there is a gain in computational performance as a result of the compact encoding,
this comes at a cost of a constrained design space typical of guide-based blending strategies.
Patches of the same thickness are forced to have the same stacking sequence even with different
load distributions which restricts local optimization in favor of inherent blending. Other types
of blending encoding are available and provide more design freedom, such as a global shared
layer blending method developed by Jing et al. [31–33] and a genetic algorithm coupled cellular
automaton method developed by van den Oord [34]. However, unlike guide-based methods,
these do not always guarantee that the retrieved designs are fully blended and hence are not
considered here.
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2.6 Response Approximations and Constraints

The optima obtained in continuous LP design space can be considered as the theoretical design
performance ceiling for a given composite structure. It stands to reason that approaching the
discrete optimization step with a RMS error problem of the continuous and discrete set of
lamination parameters (eq. 2.4) should provide feasible VS stacking sequences. However,
due to the reduction of the feasible design space imposed by blending and manufacturing
constraints, RMS error solutions fail to guarantee valid designs as the error between LP is
too large to draw any parallel between the solutions of the two steps.

LPrmse = min

 1
Np

Np∑
n=1

J∑
j=1

√
(LPj,GA(xi)− LPj,opt)2

J

 (2.4)

Here, LPj represents a single lamination parameter of a design retrieved in the GA and LPj,opt
is the equivalent target parameter obtained in the continuous optimization. Np represents the
total number of patches in the structure. For symmetric laminates, J = 8 and for balanced
symmetric laminates, J = 4. Additionally, the formulation of the objective function given
by equation 2.4 acts under the assumption that all patches and LP have equal weight on
performance. Indeed, two solutions with the same RMS error can be completely different and
unable to satisfy constraints.
For feasible solutions to be retrieved additional information on the design requirements needs
to be added to the objective in the form of constraints. These can be either direct or
indirect. Direct constraints basically act as a filter that removes non-compliant designs
from the population, whereas the latter is applied as a penalty in the fitness of the design
but does not remove it from the population. In the present work, both types of constraints
are enforced. Manufacturing constraints are applied as direct constraints, whereas active
mechanical constraints 3 are applied indirectly in the objective function as shown in equation
2.5.

f(xi)GA = min

LPrmse +
J∑
j=1

δ(R̃k(xi)−Rt)

 (2.5)

Given that the approximation is built on continuous design points, the introduction of indirect
constraints in the objective function acts as a weight on the importance of each design variable
by penalizing solutions with active constraints and push the GA to search for specific RMS
error solutions that lower their number and/or magnitude.

2.6.1 Response Approximations

Response approximations are an effective tool in evaluating constraints at a fraction of the
cost of FEM calculations. The approximations are a function of the design variables and
sometimes the derivatives of reference design points. Several approximation methods are
available which can be broadly classified under two categories [35].

1. Local Approximations: Responses are approximated with respect to a reference
design point such as optima retrieved in previous runs and are only accurate near the
reference. Linear approximations based on a Taylor expansion of the response are the
most common type used in structural approximations due to their low computational
cost and have been covered extensively in the literature [35,36].

3Constraints such as buckling or strength that are above its failure threshold for a given design.
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2. Global Approximations: Valid in the entire design space, these methods rely on
building a surface response approximation through interpolation based on multiple de-
sign points obtained by sampling. For complex design problems with a large number
of design variables, extensive sampling is required for accurate approximation and thus
the computational costs of building such models can become prohibitive.

The creation of a surface response approximation is outside the scope of this project and only
local approximations are considered in the remainder of this report. More specifically, linear
approximations around reference design points are used to evaluate buckling, strength and
displacement responses in the discrete optimization step.
Linear approximations of a response can be obtained by a Taylor’s expansion restricted to the
first order terms as shown in eq. 2.6. R0 is a response evaluated at a reference design point
such as the optima obtained in the continuous design point described by the set of design
variables x0. The sensitivities of the response ∂R

∂xi
are obtained in the continuous optimization

and used as reference to build the approximation. Higher order terms can be considered to
improve accuracy but incur a higher computational expense.

R̃(xi) = R(x0) +
N∑
i=1

∂R

∂xi

∣∣∣∣
0
· (xi − x0i) (2.6)

Expressing the linear approximation directly in terms of the optimization design variables,
i.e., LP and patch thickness tp yields equation 2.7 for symmetric laminates (V B

1,2,3,4 = 0).
The additional sum accounts for load redistribution by adding the contribution of the cross-
sensitivities to the response.

R̃(V, t) = R0 +
Np∑
p=1

 4∑
i=1

∂R

∂V A,D
i,p

∣∣∣∣
0
·
(
V A,D
i,p − V A,D

0i,p

)
+ ∂R

∂tp
· (tp − t0,p)

 (2.7)

There is however a disadvantage of using simple linear approximations of the response in
order to evaluate the fitness of design points (eq. 2.5). It provides an incentive fora GA
to retrieve solutions where the approximation accuracy is diminished non-conservatively by
maximizing the error between the design variables that affect the response positively. This
is problematic since the approximations no longer hold true and the retrieved designs are in
fact poor in performance.
This issue is especially evident when local approximations based on a single design point are
used since the validity of the approximation diminishes if the GA moves away from it in any
direction in the stiffness space. A solution to this problem is to use linear approximations of
multiple reference design points and select the most conservative value of the set of approxi-
mations for a given response. Doing so guarantees that non-conservative approximations are
discarded as moving away from one reference design point is likely to lead the optimization
towards the vicinity of another reference point, improving the accuracy of the approximation
and steering the discrete optimization towards feasible solutions.

2.6.2 Kreisselmeier-Steinhauser envelope functions

The selection of the appropriate approximation during the discrete optimization process can
be made by using a type of envelope functions known as the Kreisselmeier-Steinhauser (KS)
function [37] shown in equation 2.8. Normally, these functions are used to aggregate multiple
constraints in order to simplify the optimization. For a number of constraints gj(x), the
function evaluates each one and takes the value of the most critical constraint, neglecting the
others. This process can be made more or less conservative depending on which ρ value is
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used. Lowering the ρ factor translates to a conservative output whereas increasing it pushes
the output towards max(gj), i.e., limρ→∞fks = max(gj) as shown in figure 2.8.

fks (gj(x)) = gmax(x) + 1
ρ

ln

 ng∑
j

eρ(gj(x)−gmax(x))

 (2.8)
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Figure 2.8: gi constraint aggregation example with three different ρ values.

Alternatively, instead of aggregating constraints this method can be used to aggregate a
number of linear approximations based on multiple reference points for a response Ri and
return a conservative approximation with respect to a simple linear approximation relying
on a single point. For this process, it’s necessary to first obtain a number of design points
in the vicinity of the continuous optimum including FEM analysis and stored as a reference
for subsequent discrete optimization runs. This reference data is then used to build N linear
approximations for each response and stored in a list from which the KS approximation can
be obtained as shown in figure 2.9.

Store data as reference
for subsequent discrete

optimization runs

Evaluate Response of GA design
points with N linear approximations

of each response Ri

Obtain N Design points
x0 (VA,VD, t)

and response sensitivities

Calculate the final response
approximation with the KS

function

Figure 2.9: Flowchart of the process to obtain the KS of a number of linear
approximations.

Having defined key topics in the multi-step optimization of composite structures such as the
stacking sequence retrieval challenges and approximation schemes, the goals of this project
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can be detailed more clearly. A detailed optimization framework flowchart is exemplified in
figure 2.10 which factors in the approximations of the response and the objective function
provided by equation 2.5.
The focus of this project is on the second discrete step. More specifically, the aim is to
retrieve feasible stacking sequences starting from optimal design points previously retrieved
in the continuous step that are also solutions to the RMS error problem given by equation
2.4. To do so, mechanical constraints are added as penalty to the RMS objective function to
determine the fitness of the design points evaluated by a GA as given by equation 2.5.
These constraints include strength criteria, buckling, displacement and mass as will be shown
in later chapters using ONERA’s regional wing model as a case study. The mechanical
constraints are approximated using the KS method described in section 2.6.2. As blending
constraints have been used to retrieve the continuous reference points, it is expected that LP
matching fitness functions yield improved results with a lower LP RMS error and further gains
can be made by exploring the vicinity of the continuous optimum by considering mechanical
constraints in the discrete step. Accordingly, a GA based on SST encoding has been developed
and is introduced in the next chapter.
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Figure 2.10: Multi-step optimization framework.



Chapter 3

pyTLO: A Python Tapered Laminate
Optimizer

During this thesis, a new GA toolbox was designed. Its name is pyTLO, which stands for
python-based Tapered Laminate Optimizer. One of its core criteria was to take advantage
of the SST encoding and provide a GA with dedicated crossover and mutation operators
that use different methods depending on which manufacturing constraints are considered.
A general version of pyTLO has been made available Open-Source on Gitlab at https:
//gitlab.com/FGS_SSR/pytlo.
An overview of its capabilities and processes is provided in this chapter in section 3.1, which
covers its general framework and code structure, followed by a detailed description of pyTLO’s
workflow in section 3.2. In section 3.3, the different crossover and mutation operations used in
pyTLO’s GA are described in detail. Finally, the process of verifying the application is covered
in section 3.4 where its effectiveness in retrieving known solutions of a set of Multi-Panel
Assembly (MPA) with varying number of patches and thicknesses is measured. Additionally,
the 18 panel horseshoe benchmark problem is used to compare the tool’s performance with
literature results using the same SST encoding method.

3.1 pyTLO Framework and Capabilities

The encoding of stacking sequence designs using the SST method provides an efficient means
of obtaining fully blended designs for VS laminate structures using a GA. This is a result of
its compact form that reduces the number of design variables needed to describe the problem
and guaranteed blending. Although there are a number of GA toolboxes available, these are
often kept generic to comply with different optimization problems.
In the context of composite optimization subjected to manufacturing constraints, considerable
computational costs are incurred when there is no restriction on what constitutes a feasible
modification of a stacking sequence design. Hence, the probability of retrieving valid designs
from generic GA operators is extremely low, meaning computational resources are wasted on
repeated evolution-related operations until a sufficient number of valid outputs is generated.

The development of pyTLO was bound by a core set of requirements to ensure its re-usability
in other composite optimization projects. It was mainly devised as a toolbox that could
be used to test different GA objective functions in the context of large blended composite

https://gitlab.com/FGS_SSR/pytlo
https://gitlab.com/FGS_SSR/pytlo
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structures. For that reason, it was built on Python and libraries which are open-source.
Furthermore, the code framework follows an Object-Oriented Programming (OOP) approach
which helps to define a modular code structure.
This makes it easy for future users to adapt the application to their needs by modifying
existing or adding extra modules as is explained later in this chapter. Overall, it follows a
typical GA structure - firstly a population is generated and ranked according to objective
criteria, followed by selection of the fittest designs, crossover and mutation for a designated
number of generations or until an objective threshold is reached.
The top-level framework of pyTLO is comprised of eight modules shown in bold in figure 3.1.
Since code readability is a key property to ensure the code is re-usable by third parties, most
functions and methods are self-contained, i.e., exist in separate files to restrict the maximum
number of lines per file. In total, the generic1 pyTLO version contains roughly 80 files.

Structure.py

Settings.py

Main.py

Evaluate.pySensitivity.py

Optimiser.py

PopGenerator.py

Evolution.py

DataCollection.py
Output

Figure 3.1: pyTLO’s main module tree and relationship.

Additionally, since the design of large composite structures is rarely restricted to a single
component, the ability to factor in the effects of changing the stiffness of a component onto
the entire structure has been made an integral part of pyTLO. Simultaneous optimization of
multiple components within a structure is possible, provided that a response approximation
model containing cross-component sensitivities is included in the problem setup. This brings
advantages in the design of aerospace structures where final shape for a given load case is
important, such as in the aeroelastic tailoring of aircraft wings.
The ability to carry out simultaneous optimization is made possible by using an OOP orga-
nization for each individual design as shown in figure 3.2 that contains information of the
different component SST, as well as fitness, design variables and responses. Take for instance
an aircraft wing where it is desirable to consider the lower & upper skins, as well as rear &
front spars; the attributes under individual.Components would appear 4 times and can be
accessed with individual.components[’component_ID’].attribute_name. In the context
of a GA, the population of designs is a list containing N individual objects. The evolution
process within the GA is applied independently to each component, A more detailed descrip-
tion of pyTLO and how to access, add or modify attributes within the different classes shown
in figure 3.1 is provided in a user manual available in pyTLO’s repository.
In addition to the multi-component optimization, pyTLO was tailored to take advantage
of the SST encoding discussed in chapter 2. Considerable computational cost reduction
was achieved by using dedicated functions in both the initial population initialization and
evolution operations when manufacturing constraints are considered. Instead of randomly
generating designs and filtering out those that don’t comply with criteria, specific operations
are carried out with respect to constraints. For instance, if damage tolerance is part of the
design criteria the top ply orientation is automatically set to ±45◦; if only balanced laminates
are desired, every time a non-0◦ or 90◦ ply is added the algorithm keeps track of it and

1Not containing any project specific modules such as Sensitivity.py.
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attempts to add a balancing ply in a randomly selected stacking position in the following
operation(s). Other manufacturing constraints listed in section 2.4 are implemented in a
similar manner. Randomness in ply angle selection and positioning ensures that the design
space is properly explored2.

3.2 pyTLO’s Workflow

The steps needed to initialize pyTLO are described in this section followed by the work-
flow sequence of pyTLO’s optimization framework. Firstly, the guidelines for setting up
the design problem are provided, followed by a work-flow diagram and explanation of the
optimization process with pyTLO. Overall, there are three files that should be edited with
information pertaining the design problem: Settings.py, Structure.py and Objective.py.
The Settings.py file is where material properties, GA settings and manufacturing constraints
are defined. The complete list of options within this file in the default version of pyTLO is
as follows:

• Ply Properties

• Manufacturing Constraints

• GA Settings

• General options - Objective type, constraint weights, etc.

• Data Settings - Options related to results organization such as time-stamp or batch ID.

The Structure.py file contains aspects of the design problem such as patch layout, neigh-
boring panels and load distribution. The target optimum data retrieved in LP space such
as thickness distribution and lamination parameters is defined in the objective.py file. In
any of these files, extra attributes can be added by the user on the fly if needed by the ob-
jective function guiding the optimization. Once the design problem is defined in these files,
pyTLO can be initialized by executing pytlo.py in which the total number of runs can be
defined. Every time a run is completed, general fitness plots and best individuals are stored
in a dictionary that can be accessed by the user once all runs are completed. Otherwise, this
information is also stored in a ‘results‘ folder.
The work-flow of the optimization process is displayed in figure 3.3. After initializing the
structure and settings files, these are used as input for the main optimizer. At this point,
several classes are initialized with information that only needs to be calculated once. For
instance, the CLT_properties.py calculates all material invariants, reduced stiffness matrix
and rotated stiffness matrices of the permissible ply orientations. This information is stored
in hash tables and can be accessed at any point during the optimization process.

2Within the inherent constraints of the SST method.
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Figure 3.3: pyTLO’s simplified workflow diagram

After each new generation of designs has been evaluated, data such as best, worst and mean
fitness are stored in the statistics class. A hall of fame of the best design at each generation
is also assembled. The code terminates once either the maximum number of generations or
the fitness threshold has been reached. The run statistics and the best design properties are
saved in .csv format. In the latter, the following files are generated: component_name.csv
which includes its SSTlam, SSTins and Nstr as well as the list of manufacturing constraints
applied. LP_error.csv and LP_retrieved.csv contain the LP error for each patch and the
retrieved values, respectively. Finally, patch_properties.csv contains the stacking sequence
of each patch, thickness distribution and total number of plies.

3.3 The Genetic Algorithm

The genetic algorithm implemented in pyTLO was designed with the SST encoding in mind.
As a result, its crossover and mutation operations are geared towards handling the SSTlam,
SSTins and Nstr lists. The advantage is that the process can be guided by the manufacturing
constraints, which in turn improves computational efficiency considerably since the chance
of a feasible design being retrieved from these operations is much higher than completely
random operations with a direct constraint filter. The algorithm behavior can be controlled
to a set of options available in settings.ga_settings which is listed in table 3.1.

3.3.1 Population Creator

The population generation builds the SST from the thinnest to the thickest stacking sequence
in the structure. Firstly, the guide is built step by step taking into account the manufacturing
constraints until it contains Nmin plies. For instance, if damage tolerance is active, the first
ply will have a ±45 orientation. Subsequent additions consider the allowable orientations and
filter them depending on which stack position is being considered.
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Table 3.1: GA options in pyTLO

Attribute Description
elitism Fraction of population kept unchanged through next gener-

ation. elitism ∈ [0, 1]
initial_pop Size of generated designs from which the best pop_size in-

dividuals are selected
pop_size Population size per generation
cx_fraction Fraction of population to be used for crossover, ranked ac-

cording to fitness. cx_fraction ∈ [0, 1]
mut_pb Mutation probability for each individual. mut_pb ∈ [0, 1]
max_gen Maximum number of iterations for the GA.
rf_freq Refresh population frequency every N generations.
fit_tol Fitness threshold necessary to conclude GA
update_cycle Frequency with which fitness statistics are collected &

progress printed on screen.
fit_weights Fitness weight(s). Selection always based on first weight. If

negative, minimization objective.
delete_duplicates Delete crossover results that are duplicates of existing de-

signs in the population pool.
refresh_population Refresh non elite population every rf_freq generations.

This operation takes into account manufacturing constraints such as disorientation and con-
tiguity by checking the neighboring plies. After filtering out the orientations that wouldn’t
comply, a random selection with uniform probability of the remaining orientations is made.
For balanced designs, a wait list is used to keep track of all θ plies added. If the wait list isn’t
empty, each new add operation first considers the plies needed to balance the guide before
randomly selecting plies from the list of all possible options.
Once the guide is assembled, the SST genotype described by the SSTlam, SSTins and Nstr
vectors is created in similar fashion by ply-add operations from the thinnest to the thickest
stacking sequence in the laminate. The SSTlam is built by extending the initial guide stacking
sequence with each new ply added according to manufacturing constraints. In this step, the
probability of a given position in the stacking sequence to be chosen for a ply add is inversely
proportional to the distance to the position of the previous add operation. This is done to
ensure that dropped plies are well distributed through-thickness.
Considering now the symmetric example given in figure 3.4 where a ply is added to the
guide laminate in position 4 and the possible angles ∈ [−75◦, 90] in steps of 15◦. With
a maximum disorientation between plies of ±45◦, the resulting possible orientations are
[0,−15,−30,−45,−60] from which the ply orientation is randomly selected.
If balance does not need to be restored the SSTins is updated with the rank of insertion of the
new ply. Note here that the rank of insertion of a given ply in the SSTins vector represents
the minimum laminate thickness at which a given ply is present and the zero values denote
the guide plies. The advantage of this change in the SSTins encoding is that modifications
to the SST resulting in the removal of columns do not affect SSTins and no additional repair
operation is necessary. Furthermore, the decoding of the stacking sequences with respect to
both SSTins and Nstr is more straightforward.
The balancing of the SST is done by an extra operation which is triggered whenever an
orientation not in [0◦, 90◦] is added. In this case, two plies or four if symmetry is enforced,
are added in a single operation. At the end of each add operation, the SSTins vector is
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Figure 3.4: Assembly of a Stacking Sequence Table

modified with the rank of insertion of the added plies as shown in figure 3.4. Since both plies
were added in the same add operation, the SSTins entry is the same for both plies.

Finally, the Nstr list is built according to predefined thickness distributions3 and maximum
allowed ply-drop (∆n) between adjacent panels. For this step, a connectivity matrix detailing
the neighbors of a patch is needed. For each patch, the list of possible thicknesses derived from
the SSTins is filtered according to the target thickness range of the patch and the maximum
∆n between adjacent patches. The Nstr entry is randomly selected from the resulting list.
There are two cases where the filtered list is empty and the resulting Nstr can differ from the
predefined thickness distribution:

1. The SST does not contain a stacking sequence thickness entry that falls within the
thickness range of a given patch. This can be the case with balanced laminates since
some stacking sequences are skipped for not being balanced.

2. Due to the ∆n constraints. Neighboring patches can restrict the permissible patch
thickness outside the prescribed range.

In both cases, the selected Nstr entry will be the nearest possible integer.

3.3.2 Selection

In the context of GA, selection refers to the process with which the population of designs
is filtered for different purposes. Generally, selection is influenced by the fitness attributed
to an individual design. In pyTLO, three different kinds of selection are available: by best
fitness, tournament and random selection.
Best fitness selection simply takes the population pool as input and sorts it by best fitness
in descending order, returning N individuals, where 0 < N ≤ populationsize. Tournament
selection takes the population pool and tournament size as inputs; a random selection of P
individuals is made, where P = tournament size. From this set of individuals, the two with
the best fitness are selected for crossover. The probability of lower fitness designs taking part
in the crossover operations depends on P , where larger values lead to a lower chance poor
fitness designs participate. Random selection is, as the name implies, a random selection of
N individuals from a population pool independent of fitness values.

3Each patch is assigned a [Nmax, Nmin] thickness range
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3.3.3 Crossover

The crossover operation is applied once every generation. Firstly a "crossover population"
of size pop_size · cx_fraction is built using the best fitness selection method. Then two
designs are selected through a tournament selection followed by the crossover of either the
SSTlam or Nstr which is randomly selected. If the operation is successful according to design
constraints, the new designs (offspring) are added to the new population as shown in figure
3.5. This process is repeated until the non-elite portion of the population is re-filled. Once
the population size equals pop_size the GA progresses to the mutation phase.
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Figure 3.5: Population crossover process

The go-to crossover operation applied by pyTLO for general laminates is a simple two-point
crossover. This operation is only applied to the SSTlam or Nstr lists, with the latter being
skipped in case thickness distribution is fixed. An example of a two-point crossover is shown in
figure 3.6 on an Nstr list; two slicing points, CX1 and CX2 are randomly selected, followed by
an exchange of the slice between the parents. In all cases, the result of a crossover operation is
checked against manufacturing constraints and if it’s deemed unfeasible, new parent designs
are selected and a new attempt is made.

 14    12    8      8      6     8     12  14   10    12    12   10     4     6

14    12     8     8      6      4      6 14    10   12    12    10    8     12

CX1 CX2

Parent 1 Parent 2

Child 1 Child 2

Figure 3.6: Crossover operation of the Nstr vector for non-balanced
laminates.

Balanced laminates

In order to increase the success rate of the crossover operations for balanced laminates, a
dedicated operation is applied which is shown in detail in figure 3.7. After parent selection,
a ply-pair list and their positions is built for each SSTlam. Finally, a ply-pair position is
randomly selected and exchanged between the two designs if deemed possible under predefined
manufacturing constraints.
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Figure 3.7: Crossover operation for balanced laminates.

Given that balanced stacking sequence tables are likely to have different possible thickness
distributions, the crossover of theNstr list can lead to cases where a stacking sequence does not
exist for all thickness distributions. In such cases, the resulting Nstr is repaired by rounding-
off the non-existing thickness distribution to the nearest available integer in the SST as shown
in figure 3.9.

Parent 1
C1 (SST1)

C2 (SST2)

C3 (SST3)

Parent 2
C1 (SST4)

C2 (SST5)

C3 (SST6)

Child 1
C1 (SST1)

C2 (SST5)

C3 (SST3)

Child 2
C1 (SST4)

C2 (SST2)

C3 (SST6)

Figure 3.8: Component crossover operation.

Finally, if the optimization is carried out for structures containing at least two components, a
crossover operation to exchange component designs between different individuals is applied.
In this case, the selected component for crossover exchanges its entire SST as shown in figure
3.8.

3.3.4 Mutation

When all crossover operations are completed and the new population is assembled, a mutation
cycle is applied. Mutations introduce variations in the designs which lower the risk of the GA
becoming trapped in local optima and thus improving the exploration of the design space.
The probability that a non-elite individual of the population undergoes mutation is defined
by the settings.ga_settings.mut_pb attribute. In total, four different mutations are pos-
sible: Change of orientation of N plies in the SSTlam vector, permutation of the ply rank of
insertion values in the SSTins, change in ply stacking sequence position and change of patch
thickness in the Nstr vector. As with the crossover operations, different methods are used
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Figure 3.10: Mutation of the SSTlam

depending on the balance constraint. Only one mutation is applied for a selected individual
and it is randomly selected from the list of available mutations.

SSTlam Mutation

The SSTlam mutation of non-balanced designs involves changing ply orientations of N ran-
domly selected stacking positions as shown in figure 3.10. N can be set either as an integer
number or as a function of the patch thickness to control how large the mutation is with
respect to the number of plies in the laminate; mutating a single ply angle on a 200-ply lam-
inate has a much smaller effect on the design when compared to a single ply mutation in a
10-ply laminate.

SSTins Mutation

Two different mutations of the SSTins vector are possible. One applies a permutation to
the non-zero entries of the vector which correspond to the layers that are not part of the
guide laminate. This translates to a change in which layers are dropped at a given laminate
thickness as shown in figure 3.11. The goal of the second mutation is to change the stacking
sequence of the laminate and its effect over the design depends on the selected layer’s rank of
insertion, i.e., changing the position of a layer of the guide laminate has a larger effect than
if the selected layer exists only in thicker laminates. This mutation impacts both the SSTins
and SSTlam vectors as shown in figure 3.12. The two layers exchange position, but their
rank of insertion remains the same. In the example provided, if the disorientation guideline
is active, the resulting mutation would be discarded due to the adjacent ±45◦ laminates and
a new mutation attempt is carried out.
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Figure 3.11: SSTins permutation mutation



3.4 Algorithm Verification 27

SSTins

0

-45

+45

0

-45

90

+45

0

0

-45

+45

0

-45

90

+45

0

-45

+45

0

90

0

-45

+45

90

Nply 16 14 12 10
0

1

2

3

4

5

6

7

p
o
si

ti
o
n

0

-45

+45

90

8

-45

0

SSTins

0

-45

+45

0

-45

90

+45

0

0

-45

+45

0

-45

90

+45

0

-45

+45

90

0

-45

+45

90

Nply 16 14 12 10
0

1

2

3

4

5

6

7

p
o
si

ti
o
n

0

-45

+45

90

8

-45

Exchange
positions (2, 5)

sym. sym.

0 0

0

0

0

0

10

12

14

16

0

0

0

0

14

12

10

16

Figure 3.12: SSTins stacking sequence mutation

Nstr Mutation

The mutation of the Nstr vector simply changes the thickness of a randomly selected patch
from a list of possible options. These options are obtained from the list of available thicknesses
in the stacking sequence table and filtered according to the maximum allowed ply drop ∆n
between neighboring panels.

Balanced laminates

When balanced laminates are considered, a different set of mutation algorithms is used to
ensure that balance is maintained throughout the retrieval process. Of the four possible muta-
tions, the stacking sequence and Nstr mutations are not affected by the balance guideline and
no separate operation is needed. For the SSTlam mutation, the applied approach is similar to
the crossover of balanced designs shown in figure 3.7 where the ply-pairs are listed followed by
changing the orientation of a randomly selected pair for the list of allowed orientations. After
each operation, the result is checked against the manufacturing constraints and if the outcome
is invalid a new attempt is made. For each individual that’s been selected for mutation, up to
30 attempts are made for a valid mutation. If no feasible mutation is retrieved, the algorithm
skips to the next individual.

The permutation of ply ranks of insertion of the SSTins vector also operates in terms of ply
pairs where balanced designs are considered. Hence, the algorithm starts by assembling a list
of ply pairs, followed by an exchange in the SSTins entries of two randomly selected pairs.
Additionally, if the laminate contains more than one 0 or 90◦ ply there’s a 50% chance of
making a permutation of the rank of insertion of three plies; the initially selected ply pair in
addition to a 0 or 90◦.

3.4 Algorithm Verification

The effectiveness of the GA provided in pyTLO was measured by testing its ability to retrieve
known stacking sequence tables. For this purpose, a total of 18 different multi-panel problems
are considered which include variation in number of patches as well as maximum number of
plies Nmax.

Finally, an optimization test is made using the 18 panel horseshoe problem in order to val-
idate the algorithm by showing that the lightest solutions retrieved are in agreement with
published results in the literature using the same blending strategy. This optimization is
carried out twice, one with symmetry as the only manufacturing constraint and another with
all constraints listed in section 2.4.
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3.4.1 Performance Verification With a Set of Multi-Panel Problems

The 18 multi-panel problems considered have 2, 4, 8, 16, 32 and 64 patches. For each of
these cases, three different Nmax= [20, 40, 80] are applied with Nmin = 14 for all cases. The
GA settings are given in table 3.2. Where manufacturing constraints are concerned, ply
orientations in steps of 15◦ are used and symmetry is enforced. Given that the ply-drop rule
∆n is not enforced and neither loads nor responses are relevant to this verification process,
the layout and dimension of the patches are not relevant, only their thickness distribution for
the purpose of calculating the LP.
The genotype (SSTlam, SSTins and Nstr) of the target design points were randomly retrieved
using pyTLO’s population creator and their lamination parameters used as a target in the
verification runs. This way it is ensured that the targets are part of the discrete feasible
design space and can be retrieved by the GA. The experiment is set up to run 50 times per
case with a simple LP-matching objective function given by equations 3.1 and 3.2.

fobj = min(LPrmse) (3.1)

LPrmse = 1
P

P∑
p=1

√
mean

(
(LPGA − LPobj)2

)
(3.2)

Where P is the total number of patches. The ply material properties used are given in table
3.3.

Table 3.2: GA settings used in the verifi-
cation runs

attribute Value

elitism 0.04
initial_pop 100
pop_size 100
cx_fraction 0.75
mut_pb 0.15
max_gen 500
rf_freq -
fit_tol 0.001
update_cycle 10
fit_weights -1
delete_duplicates False
refresh_population False

Table 3.3: Ply material properties

Property Value

E1 [GPa] 177
E2 [GPa] 10.8
G12 [GPa] 7.6
µ12 [−] 0.27
Thickness [mm] 0.20

The effectiveness of the algorithm is determined by how well the design space is explored,
i.e., that design points similar to the target are reliably retrieved and how long a run of
500 generations lasts. The results are collected in figures 3.14-3.15. The time taken per run
displayed in figure 3.13 is obtained by calculating the mean of the time taken for all runs of
each MPA.
It can be seen that the number of patches does not have a large impact on the run time when
the maximum Nply = [20, 40], whereas the increase in maximum Nply leads to a clear increase
which is exponential. This is expected as a consequence of the encoding used in the SST; the
size of the three chromosomes SSTlam, SSTins and Nstr vary differently depending on which
parameter is modified. The length of both the SSTlam and SSTins depends only on Nply,max,
whereas the number of patches affects only Nstr.
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The increase in run-time associated with the number of patches is mainly related to the
number of different stacking sequences that need to be evaluated for each design point in
the GA. Given that only symmetric laminates are being considered, the maximum number
of different stacking sequences resulting from dropped plies is equal to 1 + Nmax−Nmin

2 . Since
Nmax = [20, 40, 80] and Nmin = 14, this means that for Nmax the maximum number of
stacking sequences that need to be evaluated is equal to 4, 14 and 34 respectively.
This also explains why after a certain number of patches, the computational time is no longer
affected by further increases in patch number as a consequence of the number of different
stacking sequences reaching its peak when Npatches ≥ Nlaminates. If the number of patches
had been further increased from 64 for the Nmax = 80 case, the (blue) line of the run-time
would be nearly vertical starting from Npatches = 32 similar to the other two cases. On
average, evaluation of the LP of the population accounts for 20− 25% of the total run-time.
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Figure 3.13: Mean time taken per run (left) and Mean of best LPrmse (right)

The mean of LPrmse of the best design point retrieved for each run in 3.13 shows a similar
behavior, namely that once the peak for the maximum number of different laminates is
reached, the retrieved LPrmse does not vary with increasing patch numbers. Furthermore, it
can be seen that runs with thicker stacking sequences return lower average LPrmse for cases
with 2 or 4 patches. This is a combination of thicker laminates providing a less constrained
design space since more stacking combinations are available and the number of different
laminates in the SST is small enough that 500 generations are sufficient to explore the design
space. For the MPA cases where Nmax = 20, it can be seen in 3.14 a) that the algorithm was
able to retrieve the exact solution for most MPA which was no longer the case for Nmax = 40
and Nmax = 80 due to the increased dimensionality of the problem and relatively low number
of generations per run.
Overall, the algorithm consistently retrieves design points with a relatively low LPrmse when
compared to the average error and rapidly converges at the start of the optimization as seen
in figure 3.15.
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Figure 3.14: LPrmse of the best design point retrieved for 50 runs per case.
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3.4.2 Verification with the 18-panel Horseshoe Problem

Finally, the algorithm is used to optimize the horseshoe problem proposed by Soremekun et
al. [24] shown in figure 3.16 which is comprised of 18 patches subjected to bi-axial compression
loads. This benchmark was created with the purpose of measuring the effectiveness of different
blending strategies in the context of weight optimization subjected to buckling constraints.
The goal is then to retrieve the lightest solution that is fully blended and complies with
buckling constraints as summarized by equation 3.3.

fobj = min(ρ
P∑
i=1

Ai · ti) st. λi ≥ 1 (3.3)

Where P is the total number of patches, Ai and ti are the area and thickness of the ith patch,
respectively. The buckling reserve factor of each patch λi is obtained using equation 3.4.
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Figure 3.16: The 18-panel horseshoe problem incl. loading distribution in
lb/in2

λi = π2D11,i(m/ai)4 + 2 (D12,i + 2D66,i) (m/ai)2(n/bi)2 +D22,i(n/bi)4

(m/ai)2Nx,i + (n/bi)2Ny,i
(3.4)

This benchmark problem is critical in buckling mode m,n = 1 so no other modes were consid-
ered during the optimization but the final retrieved results were verified against all buckling
mode combinations up tom,n = 3. The benchmark relies on two assumptions: 1) The patches
are assumed to be under a simply supported boundary condition and 2) The applied loads
remain constant with load redistribution due to stiffness changes not being considered in the
optimization. The material properties used in the optimization runs represent Graphite/E-
poxy IM7/8552 laminates with E1 = 141 GPa, E2 = 9.03 GPa, G12 = 4.27 GPa, u12 = 0.32
and tply = 0.191 mm. The permissible ply orientations are given in steps of 15 degrees.
The lightest solution obtained in ten runs with only symmetry enforced weighs 28.81 Kg and
each run took 5 minutes to complete, whereas the solution obtained by Irrisarri et al. [2]
using SST blending weighs 28.55 Kg with a run time of 40 minutes. This difference can be
explained by the fact that pyTLO laminates are always even-numbered, whereas the literature
example allows odd-numbered symmetric laminates. If the same decoding is applied in both
cases, the resulting weight is identical. With all manufacturing constraints enforced except
for maximum ∆n, the lightest solution obtained weighs 29.46 Kg which is slightly above
literature results of 29.29 Kg [38]. The run-time with all manufacturing constraints increased
to 12 minutes per run due to the additional operations and checks required to ensure feasible
laminates.



Chapter 4

Discrete Optimization Subjected to
Mechanical Constraints

In this chapter, the methodology used in this report to retrieve stacking sequences of multi-
panel blended laminates is described in detail. The core of the strategy is to subject LP RMS
error objective functions to mechanical constraints such as buckling in order to search the
vicinity of the target continuous optimum for feasible designs. A continuous optimization of
the 18-panel horseshoe benchmark that employs blending constraints [7] is used as a target
for the discrete optimization discussed in this chapter.
In section 4.1 the two main objective functions used with pyTLO are introduced together with
their limitations, followed by a comparison of the functions and their effectiveness in retrieving
solutions for the horseshoe benchmark problem in section 4.2 where the methodology, results
and conclusions are covered.

4.1 LP matching fitness functions

In this work, focus is given to a class of fitness functions known as LP matching, which act
by guiding the discrete optimization step towards stacking sequences that best match the
parameters obtained in the continuous step. These objectives are known to result in poor
solutions due to the mismatch between the continuous and discrete design spaces, but with
the application of blending constraints in the continuous design space, it is possible to retrieve
solutions with lower lamination parameter error [26].

4.1.1 Lamination Parameter Matching Objective Functions

Lamination parameter matching objective functions are based on a RMS error minimization
problem where the objective is to achieve the lowest RMS error between the target LP of
the continuous step and the retrieved stacking sequences. The lower the error, the more the
retrieved stacking sequences match the stiffness distribution of the continuous optimum. As
the design space of the discrete space is more constrained, the lowest achievable error between
LP is often still too large which causes the mechanical properties of the retrieved stacking
sequences to be far too different from those derived from the continuous optimization step [27].
A common LP matching objective function used in the retrieval of tapered laminate stacking
sequences is given by equation 4.1 where Np is the number of patches in the laminate, J is
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the number of LP being considered per patch and x represents the design variables, which in
the discrete optimization step are the stacking sequence orientations [θ1, ..., θn] and thickness
of each patch for the ith design being evaluated by the GA.

LPrmse = min

 1
Np

Np∑
n=1

J∑
j=1

√
(LPj,GA(xi)− LPj,opt)2

J

 (4.1)

Since the objective function is an average of the error contribution from all panels and LP,
all these variables are considered to have the same weight in the optimization, which is not
necessarily the case. This can be clearly demonstrated with figure 4.1 assuming a single patch
buckling problem under a simply-supported assumption.

This implies that the only relevant lamination parameters are V D
1 and V D

3 . After retrieving
a continuous design optimum in terms of LP, a stacking sequence retrieval is applied and due
to additional constraints in the discrete optimization a residual error remains in all retrieved
solutions “+”. Although they all portray an equal fitness according to equation 4.1 since they
lie on the dashed circle centered on the target design point, the difference in the LP can lead
to some of these designs having a lower than required buckling reserve factor.
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Figure 4.1: Example of a number of discrete solutions with the same LPrmse

but different stiffness properties.

This forms the basis of enhancing the discrete optimization step with mechanical constraints
in this project. As gradients of the different responses can be obtained from FEA, this
information can be used to approximate the response in the evaluation of the designs by the
GA and add a penalty to solutions which don’t comply with constraints. In effect, using the
gradients to weight the different design variables indirectly by their impact on the mechanical
responses.

4.1.2 Lamination Parameter Matching Subjected to Response Constraints

The mechanical responses of the design points can be added to the objective function 4.1
as indirect constraints, which ensures that potential solutions are not prematurely removed
from the population pool without first going through the evolutionary processes. The resulting
function is given by equation 4.2 where R̃k(x) is an approximated mechanical response j of a
GA individual and Rt is a threshold that determines whether the constraint is active or not.
The penalty is only added when R̃k(x)−Rt > 0 as defined by the unit step function δ.
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f(x)GA = min

 1
Np

Np∑
n=1

J∑
j=1

√
(LPj,GA(xi)− LPj,opt)2

J
+

K∑
k=1

δ(R̃k(x)−Rt)

 (4.2)

{
δ = 1 R̃k(x) > Rt

δ = 0 R̃k(x) ≤ Rt

The equation above is only valid for cases where the thickness distribution, and hence the
mass, are fixed throughout the optimization. Otherwise, it becomes unbounded since in-
creasing patch thickness translates to a lower LPrms error as a larger number of plies relaxes
the design space and encourages a mass increase for improved fitness. Additionally, it’s ef-
fectiveness is directly tied to the approximation scheme. If the approximation or surrogate
carries a large error over the actual FEM response it can cause retrieved results to be assumed
feasible by the GA if the approximation is non-conservative when in fact a number of failed
elements are present. The opposite happens with over-conservative approximations, leading
to a compromised structural efficiency.

4.2 Horseshoe Benchmark Test
The 18 panel horseshoe benchmark is again used here to compare the two objective functions
given by equations 4.1 and 4.2. The assumptions remain the same, i.e., the loads are fixed
and each panel is subjected to a simply supported boundary condition. These assumptions
simplify the problem considerably since the panels are effectively decoupled from one another
except for the blending constraint.
Additionally, with the simply supported and symmetric laminates assumptions, only two
lamination parameters are relevant in the optimization: V D

1 and V D
3 . The aim of this exercise

is to gauge the improvement on the retrieved stacking sequences with respect to the reserve
buckling factor of the different patches without allowing for a mass increase over a reference
continuous optimum obtained from an article by Macquart et al. [7] which employs blending
constraints in the continuous optimization.
The buckling reserve factor is calculated for each patch using equation 3.4 which is repeated
again here for convenience. The threshold for buckling failure is equal to 1, hence a design is
only feasible if all patches have a buckling reserve factor λi ≥ 1.

λi = π2D11,i(m/ai)4 + 2 (D12,i + 2D66,i) (m/ai)2(n/bi)2 +D22,i(n/bi)4

(m/ai)2Nx,i + (n/bi)2Ny,i

The derivatives of the buckling response λi in terms of the V D
1 and V D

3 parameters can be
obtained from equation 3.4 by replacing the [D] stiffness terms with the LP equivalent in
terms of material invariants as given by equation 2.2. Since thickness is taken as a constant
and the loads are fixed in this exercise, the resulting derivatives are a constant given by the
expressions 4.3 and 4.4.

dλi
dV D

1
= h3π2U2

12
[
Nx,i

(
m
ai

)2
+Ny,i

(
n
bi

)2
] · [(m
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)4
−
(
n
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)4
]

(4.3)

dλi
dV D

3
= h3π2U3

12
[
Nx,i

(
m
ai

)2
+Ny,i

(
n
bi

)2
] · [(m

ai

)4
+
(
n

bi

)4
−
(
m

ai

)2
·
(
n

bi

)2
]

(4.4)
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The buckling reserve factor can then be calculated solely in terms of LP and the sensitivities
through a linear approximation given by equation 4.5.

λ̃i = λ0i + dλi
dV D

1

∣∣∣∣
0
·∆V D

1 + dλi
dV D

3

∣∣∣∣
0
·∆V D

3 (4.5)

Where ∆V D
n = V D

n,i − V D
n,0i, the difference between retrieved and target LP. Since the deriva-

tives are constant, the approximation is exact.

4.2.1 Optimization Methodology

In order to measure the performance of the different fitness functions, pyTLO is set up with
the horseshoe problem including the sensitivities which are calculated a priori. A total of
three different runs are executed:

1. LPrmse: Simple LP matching with respect to a reference continuous optimum (eq. 4.1).

2. LPrmse + λc: LP matching subjected to buckling penalty whenever λi < 1 as given by
equation 4.2.

3. λc: Fitness is measured only by the penalty of active constraints, i.e., only the second
half of equation 4.2.

Twenty GA runs were performed for each case. The settings of the runs are the same as given
in table 3.2 and the material reference is Graphite/Epoxy IM7/8552. The only manufacturing
constraint being considered is symmetry which is in line with the reference case.

4.2.2 Results

The achieved buckling reserve factors are provided in table 4.1 for the best results obtained,
selected according to the lowest LPrmse of each batch. The first column pertains to the
continuous design optimum and thus all panels are above the failure threshold. This is not
the case for the retrieved designs in the discrete design space where the algorithm fails to
retrieve designs with less than 8 failed panels (marked in bold) or 12 in the case of the
reference discrete optimum.
It is in figure 4.2 that the effects of subjecting the LP matching objective to constraint
penalties become clear. The top diagram shows the number of failed panels per run for each
case and the dashed red line represents the reference discrete result. Although all methods
were able to retrieve designs with a minimum of 8 failed panels only those with constraint
penalties were able to do so consistently across all runs. It can be noted that for all the cases
the retrieved results were better than those of the reference where the best results had 12
failed panels. This is a consequence of the SST encoding used in pyTLO, which follows a
generalized blending definition and thus is less restrictive on the design space than the method
used in the reference paper which follows an inner blending definition.
The results indicate that adding constraints to guide the GA towards the feasible regions
of the design space (see figure 4.1) in the vicinity of the continuous optimum leads to an
improvement in the mechanical properties of the retrieved solutions. The impact on the
discrete optimization is expected to be larger where the load redistribution resulting from
stiffness changes in tapered laminates is considered since each set of LP pertaining to a
given patch will also be weighted according to its effect on surrounding patches due to cross-
sensitivities, i.e., the effects of its design variables on the response of surrounding patches.
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Table 4.1: Reserve Buckling Factors(λ) for each objective, best of 20 runs.

Reference Results [7] Discrete fobj
Continuous Optimum Discrete Optimum LPrmse LPrmse + λc λc

P
at
ch

N
o.

1 1.006 0.884 0.917 0.925 0.941
2 1.024 0.930 0.937 0.951 0.975
3 1.002 0.940 0.985 0.985 0.981
4 1.039 0.985 1.039 1.047 1.042
5 1.156 1.138 1.206 1.212 1.208
6 1.133 1.095 1.136 1.144 1.133
7 1.006 0.954 1.006 1.014 1.009
8 1.035 0.941 0.970 0.975 0.968
9 1.044 1.007 1.034 1.040 1.034
10 1.005 0.891 0.922 0.929 0.942
11 1.011 1.010 1.017 1.029 1.051
12 1.019 0.926 0.932 0.947 0.971
13 1.186 1.146 1.189 1.197 1.186
14 1.102 1.045 1.102 1.110 1.105
15 1.003 0.912 0.941 0.946 0.939
16 1.005 0.958 0.976 0.979 0.975
17 1.020 0.968 1.020 1.028 1.023
18 1.027 0.993 1.031 1.037 1.028
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6

8

10

12

14

N
r.

 o
f 

Fa
ile

d
 P

a
n
e
ls Reference Result

HS_constraints

HS_LP_match

HS_LP_constraints

2 4 6 8 10 12 14 16 18 20

GA Run

0.00

0.05

0.10

0.15

0.20

0.25

LP
rm

s

1

Figure 4.2: Number of failed panels and LPrmse per GA run for different
objective functions.
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Finally, although both the LPrmse + λc and λc cases consistently retrieved a reduced number
of failed panels, the former did so which a much lower LPrmse of 0.124 versus 0.212. The
LPrmse of the reference retrieved design amounts to 0.186. If load redistribution had been
taken into account, it’s possible that the larger error of the λc and the subsequent difference
in stiffness distribution compared to the continuous optimum could result in a larger number
of panels to fail [39].
In the benchmark of the 18-panel horseshoe problem there’s no real need to restrict the discrete
optimization to the vicinity of the continuous optimum since the mechanical behavior of each
patch is mostly independent of one another except for the blending requirement. However, in
other design problems such as aircraft wings, restricting the direct search to the vicinity of
optima retrieved in the continuous design space brings real value as that guides the second
step towards designs with similar stiffness distribution which translates to similarities in the
wing deformation under load.
This is important in the aeroelastic tailoring of aircraft wings since the wing shape is neces-
sary in the optimization to ensure that aerodynamic performance is maintained between the
continuous and discrete steps. If the wing shape is not maintained, the aerodynamic behavior
of the wing defined in the first step becomes invalidated and the retrieved discrete design is
unlikely to meet performance criteria even if buckling and strength constraints are satisfied.



Chapter 5

Aircraft Wing Discrete Optimization:
Fixed Thickness

A more complex problem is used to validate the use of mechanical constraint approximations
in a GA to retrieve stacking sequences. To this end, a discrete optimization using response
approximations is used to retrieve stacking sequences of an aircraft wing comprised of four
components that best matches a previously retrieved LP continuous optimum. This refer-
ence wing has been provided by ONERA together with an FE model and is identified as
“ONERA regional wing model” henceforth. Unlike the horseshoe benchmark problem, load
redistribution due to stiffness changes is considered by building response approximations using
cross-patch and cross-component sensitivities. The approximations are obtained by a novel
method which aggregates a number of linear approximations built on multiple reference design
points using a KS envelope function. This method helps to ensure that the approximation is
conservative and that retrieved stacking sequences satisfy the mechanical constraints. In this
step, optimization is carried out under a fixed thickness condition, i.e., the patch thickness
distribution derived in the continuous optimum is maintained in the discrete step.

In section 5.1 a general description of the ONERA regional wing model and its components
is provided, in addition to load criteria, design variables and reference data. A selection
method to reduce the number of mechanical constraints used in the optimization is discussed
in section 5.2, followed by a description of the KS approximation method in section 5.3 where
its validation is also discussed. Finally, the results of the discrete optimization of the reference
wing are presented in section 5.4 under a fixed thickness condition.

5.1 ONERA Regional Wing Model: General Description

The ONERA regional wing model is comprised of four separate components as seen in fig-
ure 5.1: Upper Wing (UW) and Lower Wing (LW) skins, Front Spar (FS) and Rear Spar
(RS). Each component is split into a number of different stiffness regions (patches) where the
stacking sequence is constant.

The structure is divided in a total of 44 different patches, 14 for the upper and lower skins,
8 for each spar. The properties of the ply material used in both optimization steps are given
in table 5.4.
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Upper Wing Skin

Figure 5.1: ONERA regional wing model layout with the various patches.

5.1.1 Reference Data

The continuous optimization of the ONERA regional wing model was carried out externally
and is only used here as a reference for subsequent stacking sequence retrieval in the discrete
step of the optimization. Two different cases are considered, one included blending constraints
[7] in the continuous design space in order to reduce the mismatch between the feasible regions
of the two optimization steps, whereas the other did not. From here on, these cases are referred
to as the blended and unblended target, respectively. Both cases were optimized for the eight
load cases provided in table 5.1.
The final mass of the retrieved continuous designs is 610.25 Kg with blending constraints and
577.49 Kg otherwise. The 5.7% increase in mass is a direct result of the blending constraints
“smoothing” out the thickness and stiffness distribution throughout the structure. In both
cases, the thickness of all patches was rounded to multiples of .2mm in order to ensure an
equivalent ply count integer. Only the blended target is considered in this chapter since
the retrieval of stacking sequences is more likely to succeed if the difference between the
feasible design space of the two step optimization is reduced. In chapter 6, a comparison
is made between retrieved stacking sequences and total mass starting from the blended and
unblended continuous optimum.
Included in the reference data for all patches is the thickness distribution as shown in figure
5.2, target lamination parameters for each patch, responses and their sensitivities in terms
of the design variables, i.e., LP and thickness. Only symmetric laminates are considered in
the optimization, hence the coupling terms V B

n = 0 and the stiffness Ci of each patch is a
function of Ci = f(V A

n , V
D
n , t). With 44 different patches, a total of 396 design variables are

needed to describe the wing in the continuous design space; 8 LP per patch in addition to
their thickness.
Additionally, four responses are considered here:

1. Strength(σ): These responses are evaluated according to a failure envelope developed by
Ijsselmuiden [36] which is based on the Tsai-Wu criteria to define conservative feasible
design regions where strain failure does not occur in any orientation for a given stacking
sequence.

2. Buckling reserve factor (λ): The buckling responses are obtained under the assumption
that each patch is simply supported for a conservative estimate.
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3. Displacement (u): Linear modeling of the wing displacement tracked at 90 locations in
the wing, 45 points at the Leading Edge (LE) and the other 45 at the Trailing Edge
(TE).

4. Mass: Single value for the entire structure.

2

4

6

8
mm

UW LW

FS

RS

Figure 5.2: Thickness distribution and polar stiffness E11(θ) of the blended
continuous optimum.

Finally, the wing is optimized according to the eight static loads given in table 5.1. The
sensitivities of the mechanical constraints and displacement are available for each load case.

Table 5.1: List of Static Load Cases

Load Case Flight Load Weight Dynamic Pressure

LC1 2.5G MTOW Sea Level
LC2 -1G MTOW Sea Level
LC3 2.5G MTOW Cruise
LC4 -1G MTOW Cruise
LC5 2.5G MLW Sea Level
LC6 -1G MLW Sea Level
LC7 2.5G MLW Cruise
LC8 -1G MLW Cruise

5.1.2 Mechanical Constraints
Where the strength and buckling constraints are considered, the structure is further divided
into smaller elements. The buckling regions represent the plate elements delimited by stringer
and rib placement throughout the wing, whereas all FEM CQUAD4 elements are considered
for the strength constraints.
Buckling constraints are only considered in the UW and LW components. Each wing skin
contains over 200 buckling regions where 15 different buckling modes are considered. The
strength constraints are applied to all four components and their individual count is given in
table 5.2. A total of 3987 constraints per load case are included in the model.
The sensitivities of these responses are obtained from the FEM in the continuous optimization
for each design variable and load case. Hence each mechanical constraint is accompanied by
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Table 5.2: Mechanical Constraints Breakdown

Component Strength Buckling

Upper Wing (UW) 1576 222, 15 modes
Lower Wing (LW) 1586 223, 15 modes
Front Spar (FS) 196 -
Rear Spar (RS) 184 -

396 sensitivities per load case given in equation 5.1 where xp is a vector containing the design
variables of the patch p = [1, ..., 44].

∂Ri
∂xp

=
(

∂Ri

∂V A,p
1−4

,
∂Ri

∂V D,p
1−4

,
∂Ri
∂tp

)
(5.1)

As stated in chapter 3, pyTLO is capable of handling multiple components at once. This
becomes an advantage when response cross-patch and cross-component sensitivities are avail-
able. The stacking sequence retrieval can be carried out simultaneously for the four compo-
nents so that load redistribution due to stiffness changes in one component are taken into
account in the optimization of the remaining components. This is especially important with
respect to buckling, since although the buckling ratio equation (3.4) is a function of the out-
of-plane stiffness terms only, the in-plane loads Ny and Nx are a function of the in-plane
stiffness terms. Otherwise, the individual optimization of multiple components cannot guar-
antee that the design as a whole satisfies the constraints once load redistribution takes place.
As a workaround, margins of safety can be applied to ensure that all constraints are satisfied
even if the actual load distribution differs, but this comes at the cost of a higher structural
weight.

5.2 Constraint Selection

Due to the large number of constraints being used in the model, a selection method was de-
veloped to filter out buckling and strength responses that are not at risk of failure without a
substantial change in the design variables. This helps to reduce the computational time con-
siderably, since fewer linear approximations are needed in the discrete optimization. Basically,
a simplified linear approximation of each constraint is built with respect to its sensitivities
and a uniform ∆LP to determine what change in LP is causes it to reach a failure threshold.
If the value of ∆LP is below a pre-defined threshold, the constraint Ri is added to a list of
constraints used in the fitness evaluation in the discrete optimization step. This process is
summarized in the flowchart given in figure 5.3. This task is only carried out once and the
selection list is then stored for subsequent optimization runs.
The ∆LP threshold is defined in the first step by using a number of reference GA runs with
a simple LP matching fitness function. The largest LP error found in these runs is multiplied
by a safety margin of 1.5 to ensure that the constraint selection is conservative. A total of 10
reference runs NGA were used to obtain the threshold for the aircraft wing. Since a constant
∆ LP is considered, the sensitivities of a given response Ri are simply summed together for
the approximation. A couple of additional guidelines are applied to the process regarding the
selection across multiple load cases and modes where buckling is concerned. If constraint Ri
is critical in multiple load cases, only the most critical one (lowest ∆LPi) is added to the
selection list.
Buckling constraints require an additional step; since there are 15 modes per response, the
most critical one needs to be selected. Two different modes of the same response are added
to the selection list if there are critical responses with opposing ∆LPi sign. If the slope of
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Figure 5.3: Constraint Selection Process

the approximation is negative for one mode, and positive for the other, both modes should
be considered.

Although this is a rather simplistic method that doesn’t take into account LP feasible regions
nor how their values don’t vary independently, the selection is thorough and the number of
constraints added in the second stage is small. For instance, out of 1783 selected constraints
for all four components, only 18 were added in the second stage.

If this selection is not carried out, the additional number of calculations would greatly increase
the computational time. At 3987 constraints and 8 load cases, that’s 127.6 × 109 linear
approximations required for a GA run with 200 individuals and 2000 generations. With the
constraint selection, a total of 7.1× 109 approximations are required, which is a reduction of
94.4%.

5.3 Response Approximation Method

Approximations of the response are used in the discrete optimization step in order to avoid
the high computational cost of using an FEM evaluation for each design point generated by
the GA. Local approximations based on a Taylor’s expansion around a reference design point
are used in this project and combined with KS envelope functions to provide a conservative
approximation.
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5.3.1 Linear Approximations

Buckling and strength responses are approximated linearly from a reference design point such
as a continuous optimum using the sensitivities of the response in terms of the design variables,
namely LP and patch thickness. The contribution of cross-patch sensitivities is also factored
in as shown in equation 5.2.

R̃(V, t) = R0 +
Np∑
p=1

 4∑
i=1

∂R

∂V A,D
i,p

∣∣∣∣
0
·
(
V A,D
i,p − V A,D

0i,p

)
+ ∂R

∂tp
· (tp − t0,p)

 (5.2)

These approximations are only accurate in the immediate vicinity of the reference point and
perform poorly as the LP error increases. As a consequence, they are not reliable in the context
of this project due to LP varying non-linearly in addition to the relatively large LP errors
between the target and retrieved stacking sequences. For this reason, these approximations are
instead used here to create a more conservative approach based on KS envelope functions [37].

5.3.2 Response Approximations with Kreisselmeier-Steinhauser Function

The response approximations used in the discrete optimization step are obtained by building
Nref + 1 linear approximations of the response Ri, where Nref is the number of reference
design points. These reference design points are comprised of the continuous target as well
as subsequent discrete optima obtained with the GA. In principle, the distance in terms of
LP to some of these reference points x0 to the individuals xi evaluated during a GA run is
smaller than to the continuous target and linear approximations. As a consequence, linear
approximations built on the nearest reference point are more accurate than those built on
the continuous target. This concept can be visualized with a simplified representation of the
design space shown in figure 5.4 where LPrms2 << LPrms1.

+

+

++

+
+

*
LPrms 1

LPrms 2
Continuous Target x0

Reference x0GA Points 

Evaluated Design Point xi *
+
+

Design Space

Figure 5.4: Representation of a distribution of reference points in the design space

After building the linear approximations over all the reference points for a given constraint,
the final response value Ri for a constraint is obtained by using the KS function given in
equation 5.3 which selects the largest (most conservative) linear approximation R̃i,j from a
set of Ri approximations, i.e., Rmax = max([R̃i,1, ..., R̃i,Nref ]) in addition to the ρ contribution
that controls how conservative the KS output is.

R̃i
(
R̃i,j(x)

)
= Rmax(x) + 1

ρ
ln

Nref+1∑
j=1

eρ(R̃i,j(x)−Rmax(x))
 (5.3)

In equation 5.3, i refers to the constraint ID, j is the linear approximation ID and x is the
vector containing the design variables.
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5.3.3 Validation of the KS Approximation Strategy

The approximation method based on the KS envelope functions was validated by carrying
out a large number of discrete optimizations using pyTLO. All the optima retrieved in these
run are evaluated using the FEM and then stored in a “GA” pool. The validation process is
comprised of the following steps:

1. Nref reference design points are selected from the GA pool.

2. Linear and KS approximations of the remaining design points using the selected refer-
ence design points are built.

3. Calculate approximation error, median and RMS error with respect to FEM evaluations.

4. Repeat steps 1-3 10 times to ensure multiple combinations of reference points and ap-
proximated optima.

5. Plot the results.

A total of 80 GA optima were used to validate the approximation method for different numbers
of reference runs and ρ coefficients. The median of the approximation error is shown in
figure 5.5 for both simple linear approximations based on the continuous target and KS
approximations.
Where the linear strength(σ) approximations are concerned, not only is the error large for the
FS and RS components, the approximation is non conservative in all cases. The consequence is
that retrieving feasible designs on linear approximations alone is not possible as the constraints
remain below the failure threshold instead of being added as a penalty to a design’s fitness.
Although these designs are deemed feasible by the GA evaluation, that is not the case when
the results are finally verified with the FEM.
On the other hand, there is a marked improvement in using the KS method. Except for larger
values of ρ, the approximation is conservative in all cases and the average error is under 5%
for the majority of the constraints even though no sampling was used in the selection of the
reference runs. The spars are affected by a larger error; stacking sequence retrieval of the
front spar is affected by a larger LPrmse which in turn affects the approximation, whereas the
rear spar constraints are rarely near failure, meaning that the constraints are not guiding its
optimization process, only the LPrmse is.
It can be seen in figures 5.5 e) and f) that the approximation of the buckling responses using
the KS method is extremely poor in comparison to a simple linear approximation. This is
a consequence of some of the reference runs containing outliers in the sensitivities which are
orders of magnitude larger than those in the continuous optimum, leading to a large variation
in the approximation from small changes in the design variables. Evidently, it’s impossible to
match the LP of two different design points and if both display large outlier sensitivities in
the response, one of them will compromise the KS of the response since it selects the larger
linear approximation.
The source of these outlier sensitivities provided by the FEM could not be identified and it
sometimes occurs in the strength sensitivities. These reference design points are filtered out
of the Nref runs to ensure that the strength approximation is not compromised. Unlike the
linear strength approximations, the buckling counterparts are conservative (negative error %)
and can be used in the GA instead of the KS to retrieve feasible results.
Finally, the best values of the ρ parameter were defined from these results. Subsequent
optimizations used ρ = 150 for the UW, ρ = 500 for the LW, ρ = 100 for the FS and RS. The
number of reference linear approximations per constraint is set to Nref = 10 as increasing
further incurs a higher computational cost and increases the approximation error as seen in
figure 5.6. Only the UW diagram is provided here since the trend is similar for the four
components.
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Figure 5.5: Median of the approximation error for all components. Nref = 10
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Figure 5.6: Median of the UW strength approximation error for an increasing Nref . ρ = 100.

5.4 Results - Fixed Thickness
The first set of discrete optimization runs of the reference aircraft wing are done under a fixed
thickness condition, i.e., no additional plies are added over the optimal thickness obtained
in the continuous optimization. The aim is to gauge the improvement over LP-matching
fitness functions if they are subjected to indirect mechanical constraints. For this exercise the
only manufacturing constraint considered is symmetry. The remaining pyTLO GA settings
are given in table 5.3. The run-time of each optimization using the KS approximation for
1783 mechanical constraints is around 1 hour for fixed thickness. A simple LPrmse run of all
components takes 15 minutes.

Table 5.3: Fixed thickness GA settings

attribute Value

elitism 0.02
initial_pop 500
pop_size 200
cx_fraction 0.75
mut_pb 0.25
max_gen 2000
rf_freq -
fit_tol 0.001
update_cycle 10
fit_weights -1
delete_duplicates False
refresh_population False

Table 5.4: Ply material properties

Property Value

E1 [GPa] 177
E2 [GPa] 10.8
G12 [GPa] 7.6
µ12 [−] 0.27
Thickness [mm] 0.20

5.4.1 LP Matching Objective

Simple LP-matching fitness does not take into account constraints and hence no load redis-
tribution. The discrete optimization is carried out individually for each component with the
aim of reducing the LPrmse between the target continuous optimum and retrieved stacking
sequences as given by equation 5.4.
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fobj,1 = min

 1
Np

Np∑
n=1

8∑
j=1

√
(LPj,GA(xi)− LPj,opt)2

8

 (5.4)

After the discrete optimization is complete, retrieved stacking sequences are re-evaluated with
an FEM. The buckling and strength results are given in figures 6.9 and 6.10. The surface plots
pertain to the responses subjected to load case 3 (LC3), whereas the scatter plots (figures
5.11 and 5.12) show the largest value of each response across all load cases.
It can be seen that the retrieved stacking sequences aren’t able to satisfy a number of con-
straints and buckling performance is especially poor. This is expected as a consequence of
the load redistribution due to changes in the in-plane V A

1−4 terms not having any weight on
the fitness of the individuals. The obtained LPrmse for each component is provided in table
5.5.

Table 5.5: LPrmse of the retrieved stacking sequences.

Component fobj = min(LPrmse) fobj = min(LPrmse +C(λ,σ))

UW 0.138 0.189
LW 0.134 0.174
FS 0.170 0.291
RS 0.105 0.115

5.4.2 LP Matching Subjected to Mechanical Constraints

Subsequent discrete optimizations are made using a penalty based objective function where
active response constraints 1 are added to an individual’s fitness on top of the LPrmse penalty
as shown in equation 5.5. In doing so, the objective is still to match the LP parameters of
the continuous target but with an incentive to explore the vicinity of the reference point and
rank designs according to the number and severity of unsatisfied constraints.

fobj,2 = min (LPrmse) + C(σ, λ) (5.5)

The constraint penalty C(σ, λ) is obtained by approximating the selected responses and sum-
ming the portion over the failure threshold as shown in equation 5.6.

C(σ, λ) =
Nσ∑
i=1

δ(σ̃i − σf ) +
Nλ∑
i=j

γ(λ̃i − λf ) (5.6)

{
δ = 1 σ̃ > σf

δ = 0 Otherwise

{
γ = 1 λ̃ > λf

γ = 0 Otherwise

Where σ̃i and σf are the strength constraint approximations and their respective failure
threshold. Similarly, λ̃i and λf correspond to the buckling constraint approximations and
failure threshold. Except for the fitness function, all other optimization settings remain the
same.

1A response constraint is deemed “active” if its value is above the failure threshold.
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Even though no additional plies were added, it can be seen that considerable improvements
were obtained using fobj,2. By comparing the response values plotted for each fitness function
(fig. 5.11 and fig. 5.12), it can be seen that both the number of active constraints and
their magnitude is lower. Where buckling is concerned, a 23% reduction in the failure index
is achieved. The retrieved LP rmse for each component is given in table 5.5 and can be
compared to the results obtained through fobj,1.
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Figure 5.7: LC3 Buckling Failure Index (λ) for two different fitness functions.
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Figure 5.8: LC3 Strength Failure Index (σ) for two different fitness functions.

The optimum obtained with fobj,2 incurred a larger LP rmse as a trade-off to a lower constraint
penalty. This is especially evident with the FS, which is only subjected to strength constraints
and its out-of-plane stiffness has no impact on the buckling performance of the wing skins.
As a result, although the LP rmse is 71% larger, most of that error originates in the V D

1−4
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terms as shown in figure 5.10 where the rmse(V A
1−4) and rmse(V D

1−4) distribution per patch
are plotted for each component.
This is also visible in the polar plots of the membrane stiffness E1m and bending stiffness
E1bstiffness plots for a single FS patch is given in figure A.12. A compromise in matching the
E1m and E1b stiffness distribution is seen in the design resulting from a simple LP matching
objective (fobj,1), whereas a clear preference towards matching the E1m distribution is seen
in the design retrieved with fobj,2.
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Figure 5.9: Polar stiffness E1m and E1b of FS patch 36 for fobj,1 and fobj,2.

After a total of 30 discrete optimization runs using the fobj,2 objective, no stacking sequences
with zero mechanical constraints were retrieved. This implies that the SST method to retrieve
blended stacking sequences constrains the design space significantly and that additional plies
have to be added in the discrete design in order to achieve feasible stacking sequences with
no failed elements under the prescribed design loads.
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Figure 5.11: Maximum response values across all load cases (fobj,2 = min[LPrmse + C(λ, σ)]).
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Figure 5.12: Maximum response values across all load cases (fobj,1 = min(LPrmse)).



Chapter 6

Aircraft Wing Discrete Optimization:
Variable Mass

In this chapter the process to retrieve stacking sequences for the ONERA regional wing model
that are feasible, e.g., having no failed elements under prescribed design loads is described. In
this optimization scheme, patch thickness and wing mass is no longer restricted to the distri-
bution retrieved in the continuous optimization and is allowed to increase until feasible designs
are obtained. By allowing an increase in mass, a multi-objective optimization is necessary and
additional steps are required to ensure that 1) the response approximations remain valid and
2), that the optimization objective yields optimal results in terms of both LP-matching and
mass increase over the reference continuous optima. Furthermore, an additional optimiza-
tion objective is considered to match the wing shape due to aerodynamic loading obtained in
the continuous optimization to ensure that cruise performance the solutions obtained in the
discrete design space is equivalent to the target.
In section 6.1 the changes to the discrete optimization method for feasible designs are dis-
cussed. Here, the ε-constraint method for multi-objective optimization is introduced. The
implementation of the wing shape objective is discussed in section 6.2, followed by an update
to the process of building KS-approximations in section 6.3 that factors in changing thick-
ness distribution. Finally, results of the discrete optimization are discussed in section 6.4
where three different feasible designs are compared, two for the blended case and one for the
unblended continuous reference.

6.1 Variable Mass Discrete Optimization

In previous discrete optimizations, the thickness distribution throughout the wing components
was fixed with respect to the continuous optimum. Since no feasible designs were retrieved,
the increase in thickness is allowed in subsequent optimization runs.
In doing so, total wing mass becomes an additional objective in the optimization since it is
desirable to obtain the lightest designs that comply with all other design criteria. Using the
same objective function (eq. 5.5) as used in the stacking sequence retrieval method described
in chapter 5 is no longer possible as there is an inverse relation between increasing mass and
achievable LPrmse; increasing the patch thickness results in a relaxation of the design space
since more stacking sequence options are available and a lower LPrmse is possible, and unless
the mass increase is restricted, the GA selection process favors heavier designs.
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On the other hand, multi-objective functions to minimize both the LPrmse and mass increase
also pose some challenges. The interaction between the various objectives needs to be consid-
ered since these can conflict with one another as is the case with mass and LPrmse objectives.
Additionally, weighting of the objectives and their impact on the design fitness needs to be
carefully selected to avoid solutions being dominated by a single objective. A large number
of runs is needed in order to assemble a set of solutions and weights that best satisfy the
objectives and support the decision making of which solution best fits design criteria [40].

f(x) = min(f1(x), f2(x), ..., fn(x)) (6.1)

The two most common strategies in handling multi-objective optimization problems rely on
either using a single fitness function where all objectives are aggregated (eq. 6.1) or using
a single objective function where all other objectives are considered as constraints (eq. 6.2).
In the former, optimized weighting of each objective’s contribution to the fitness is needed
to ensure non-dominated solutions are retrieved whereas in the latter it is necessary to know
the objective bounds in order to set them up as constraints.

f(x) = min(f1(x)) (6.2)
st. f2(x) ≤ ε2, ..., fn(x) ≤ εn

In the current problem, only two objectives are considered, mass and LPrmse. Scaling these
objectives and selecting the appropriate weights in the fitness function requires a more thor-
ough search of the design space and subsequently a large number of discrete optimizations
and FEM evaluations if compared to the second approach. Setting one of these objectives as
a constraint requires little additional action since their bounds are easy to define. The LPrmse
bounds can be determined from the discrete runs done for chapter 5, or mass can be added
as a constraint in a single objective function and relaxed whenever the discrete optimization
is unable to retrieve feasible designs. This approach is known as the ε-constraint method.
By changing the mass constraint upper bound incrementally, each set of solutions is Pareto
optimal [41].
The change in mass in pyTLO’s GA is controlled by an upper limit of thickness on each patch.
Each patch is assigned lower and upper bounds [Nmin, Nmax] for their thickness; the lower
bound equals the target continuous optimum. The upper limit sets the maximum number of
plies in the SST but no additional plies are added over this limit during the optimization.
Since the SST can have non-coding columns, i.e. stacking sequences that are not used in the
retrieved design, the optimizer is free to change between higher or lower thicknesses so long
as these are within Nmin, Nmax. For a mass increase of up to 10%, 10 plies were added as the
upper limit of each patch.

Mass Constraints

In order to restrict wing mass increase in the discrete optimization, an additional indirect
constraint εm is added to the LP-matching fitness function as shown in equation 6.3, where
β∆m is the penalty given to a design whose mass exceeds the constraint is the thickness
distribution throughout the structure.

fobj,3 = min (LPrmse) + C(σ, λ) + β ·∆m (6.3)

The penalty β ·∆m is simply the total added mass over the continuous target multiplied by
a factor β (eq. 6.5) large enough to discourage the GA to select such designs. The design
mass is calculated from sensitivities ∂m

∂tp
obtained from the FEM and is given by equation 6.4,

where Np is the total number of patches in the structure and ∆tp is the change in thickness
of patch n versus the target continuous optimum.
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∆m =
Np∑
p=1

∂m

∂tp
·∆tp (6.4)

β = 0 ∆m
mopt

≤ εm
β = P ∆m

mopt
> εm

(6.5)

The constraint threshold εm is set as a x% increase in mass over the target and is changed
incrementally by 1% until a feasible design is found as shown in figure 6.1.

6.2 Wing Shape Matching

The resulting wing deformation from aerodynamic loading determines its performance during
cruise. The desired shape for optimal performance is obtained through aeroelastic tailoring
of the wing for which composites are especially suited due to the possibility of controlling
stiffness direction. This is taken into account in the continuous optimization of the reference
aircraft wing and should be propagated to the discrete step to ensure that retrieved stacking
sequences match the optimal shape so that cruise performance is maintained in addition to
matching initial conditions for gust loading analysis.
This is factored into the fitness equation by adding the RMS error of the LE and TE vertical
displacements uk to fobj,3. The displacement is tracked at 45 points in both LE and TE
so a total of K = 90 displacements are considered. The error is calculated by multiplying
the displacement sensitivities with the changes to the design variables in comparison to the
reference optimum.

fobj,3 = min (LPrmse + urmse) + C(σ, λ) + β ·∆m (6.6)

urmse =

√√√√ 1
K

K∑
k=1

∆u2
k

∆uk =
Np∑
p=1

 4∑
i=1

∂uk

∂V A,D
i,p

∣∣∣∣
0
·∆V A,D

i,p + ∂uk
∂tp
·∆tp


Unlike mass, the displacement error objective does not conflict with the LPrmse objective as
both are minimized by reducing the error between retrieved and target LP (eq. 6.7).

lim
∆LP→0

LPrmse = lim
∆LP→0

urmse = 0 (6.7)

However, it does act as a weight on which LP to prioritize in order to match the target
displacement and a check is made using only the displacement as an objective (eq. 6.8) to
determine if there is any impact in retrieved solutions. The chosen reference load case is LC3
since that is when wing displacement is largest and any mismatch between retrieved and target
solutions is more evident. As the displacement model of the reference wing is linear, matching
the displacement of one of the load cases is sufficient and the 1g displacement can be obtained
simply by dividing the LC3 displacement by its aerodynamic load, e.g. uk,1g = uk,2.5g/2.5.

fobj,4 = min (urmse) + C(σ, λ) + β ·∆m (6.8)
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6.3 KS Process for Changing Mass

By adding additional plies to the design, changes to the stiffness distribution in the wing can
be significant, especially where out of plane stiffness is concerned since the effect of increasing
thickness is more pronounced. In order to ensure that the reference design points used to
build the KS approximations remain accurate, an update cycle is added to replace reference
runs of designs having thickness distributions no longer relevant to the optimization with
more up-to-date references as shown in figure 6.1 where mga/mopt is the ratio between target
optimal mass and retrieved mass of the best individual of the discrete optimization.

Run GA with KS
approximation

Feasible 
Design 

Retrieved?
END

Replace Step 1
Nref,i

with new run

Increase Ɛm Mass
Threshold

mga/mopt
Represented

in Nref?

YES

YES

NO

NO

FEA 
of best individual

Step1
Obtain 10 GA Design points
Standard Linear Approximations

Figure 6.1: Discrete optimization flowchart with varying thickness distribution

6.4 Results

In this section, the results of the discrete optimization subjected to mass constraints are
discussed. Two different continuous optimum targets are considered; the target obtained with
blending constraints is discussed first, followed by the unblended target. Two solutions for the
blended target are provided using the fobj,3 and fobj,4 objective functions and one solution for
the unblended target based on the fobj,3 objective. Finally, blended and unblended solutions
are compared in terms of mass increase, displacement and LPrmse matching.

6.4.1 Blended Continuous Optimum

For this optimization a total of 100 runs using the fitness function given in equation 6.6
were carried out in order to cover a mass constraint εm increase of 10% in steps of 1%.
By plotting the resulting number of active mechanical constraints versus mass increase and
LPrmse versus mass, a conclusion can be made on the optimality of the feasible solutions. The
optimization settings are unchanged according to table 5.3, the same ply material properties
and manufacturing constraints (symmetry) apply.
The lightest design retrieved (solution 1) incurred a 4.9% (29.9 Kg) mass increase over the
target blended optimum with εm = 1.05, The mass, number of active constraints and LPrmse
of best individuals of each of the 100 runs are plotted in figures 6.2 a) and b). The genotype
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Figure 6.2: Effect of Mass increase on active constraints and LPrmse. Both quantities are a sum
of the four wing components. NDF: Non-Dominated-Front

of the SST obtained for each component is given in table 6.1 and a graphical representation
of the SST is given in figure 6.3.
The inverse relation between the mass change and achievable LPrmse discussed earlier is
clearly seen in figure 6.2a. The GA solutions are all clustered at the upper limit of each εm
constraint at least until εm ≥ 1.05, where solutions with no mechanical constraint penalty
are possible. At this stage, it’s possible for the GA to favor those solutions at the cost of a
higher LPrmse.
In terms of mass increase, it can be argued that lightest solution retrieved is near optimal,
since no feasible solutions were retrieved at εm ≤ 1.04 and the best solution in this case still
had 5 active constraints. On the other hand, it is not the most efficient solution in terms
of LPrmse achieved, since lower results were obtained for lower mass. Regardless, having no
active constraints takes precedence over an increase of 4% per component in LPrmse.
Overall, it can be seen that even at higher εm ≥ 1.05, unfeasible designs are still frequent which
implies that not all GA runs are successful in retrieving designs without active constraints.
This can be improved by increasing the penalty associated with the mechanical constraints or
by increasing the number of generations per GA run. More accurate approximation schemes
can also improve the success rate.

A single run using the fobj,4 was necessary to retrieve a second solution with a ∆m
mopt

of 1.05.
subsequently, 10 runs using the same displacement objective were done to explore the εm ≤
1.045 range, but no feasible designs were retrieved, further enforcing the argument that the
two retrieved solutions are indeed near-optimal and that the lowest mass feasible design is
within the range of 1.045 < ∆m

mopt
≤ 1.049.

6.4.2 Feasible Stacking Sequences for an Unblended Target

The same discrete optimization method is now used to retrieve stacking sequences of the
same aircraft wing structure with respect to a reference continuous optimum obtained without
constraining the design space with blending constraints. This is considerably more challenging
than the blended case due to the fact patches are individually optimized for the best global
performance. As a result, severe changes in stiffness direction and thickness can occur between
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Nply=50 Nply=14

(a) UW
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(b) LW

Nply=28 Nply=10

(c) FS

Nply=30 Nply=10

(d) RS

Figure 6.3: Feasible stacking sequence tables of Solution 1. Note that some stacks are non-coding
and thus not included in the retrieved design.
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Figure 6.4: Thickness distribution and polar stiffness E11(θ) of the unblended
continuous optimum.

adjacent patches as is seen in the thickness layout and direction provided in figure 6.4. In
the UW skin, changes in the main stiffness direction can be as high as 90◦ between adjacent
patches.
In the discrete step, these changes in stiffness direction cannot be captured by the type of
guide-based blending used here as changing stiffness direction is restricted by how many plies
can be added or removed between adjacent regions. This is exemplified with two E1m polar
plots of adjacent UW patches showing a feasible retrieved design and the target optimum,
figure 6.5, where even a 36-ply difference is not sufficient to capture the change in direction.
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Figure 6.5: E1m polar plots of two adjacent patches in the upper wing. Note the change in target
stiffness direction.

For these reasons, attempting to retrieve feasible stacking sequences by matching the LP of
a continuous optimum where no manufacturing constraints are enforced is unlikely to yield
efficient or even desirable results in terms of extra mass, adherence to design guidelines and
mechanical behavior.
Using the same settings as in the previous runs, a feasible design (solution 3) was obtained
with a mass increase of 202.7 Kg over the target optimum of 577.49 Kg, an increase of
35%. This is comparable to results obtained by Dillinger [19] where a 42% increase from an
unblended continuous target was registered.
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6.4.3 Comparison of the Feasible Discrete Solutions

A total of three feasible stacking sequence designs representing the lowest weight gain results
are selected for discussion. Solutions 1 and 2 represent the feasible designs retrieved for the
blended continuous optimum with fobj,3 and fobj,4, respectively. Solution 3 represents the
retrieved design for the unblended continuous target with fobj,3 as the optimization objective.
The performance of these designs is evaluated in terms of mass gain over the continuous
target, LPrmse, margin of safety of the λ, σ responses and vertical displacement error ∆u as
summarized in table 6.2. The given margin of safety is the lowest found in the four components
for each case and the ∆u error is the maximum value found for a given solution.

Table 6.2: Summary of retrieved feasible designs performance.

Solution Safety Margin LPrmse ∆umax [cm] Wing Mass [Kg]UW LW FS RS

1 0.1% 0.191 0.166 0.177 0.153 5.17 (2.4%) 640.15 (N4.9%)
2 1.9% 0.223 0.263 0.421 0.507 1.35 (0.6%) 640.75 (N5.0%)
3 0.3% 0.330 0.358 0.355 0.307 7.21 (6.5%) 780.19 (N35%)

As it turns out, the effect of the displacement error objective min(urmse) is not as similar
to min(LPrmse) as initially assumed. The optimization based on fobj,4 (solution 2) resulted
in a design of similar mass as fobj,3 (solution 1) but with an increase of 1.8% in the margin
of safety as well as a lower displacement error of 0.6%. This is not only applicable to the
maximum displacement error; the retrieved stacking sequence for solution 2 is a good match
with the target optimum along the entire wingspan as seen in figure 6.6 b).
On the other hand, the retrieved LPrmse of solution 2 is considerably higher than solution
1. Since the in-plane membrane stiffness distribution has the most effect on the vertical
displacement of the wing, fobj,4 steers the GA towards minimizing the error between the V A

parameters over the V D terms. The RMS error of the UW skin V A parameters for solution
2 stands at 0.101, whereas its V D RMS is higher at 0.287. This is further supported by
comparison of the V A and V D sensitivities of the displacement response where the former
is between 2 and 4 orders of magnitude larger. In order to determine whether the retrieved
displacement errors impact cruise performance of the wing, further analysis is needed to
calculate the resulting wing twist. Due to a lack of data on the wing, the twist verification
has not been done in this work.
Between solutions 1 and 3, the retrieved stacking sequences for the unblended continuous
optimum perform poorly in terms of mass gain, LPrmse and displacement error (figures 6.7,
6.8 and 6.6). By comparing the failure index of the buckling and strength responses given in
figures 6.9 and 6.10, it can also be seen that solution 3 is very inefficient, with most of the
elements in the wing components being far from failure save for a few strength elements in
the lower wing skin. This is especially evident in buckling due to the large increase in patch
thickness tp which affects the out-of-plane stiffness with t3p/12.

6.4.4 KS Approximation Accuracy

Finally, the KS approximation scheme is evaluated in terms of the error present in the ap-
proximations of the retrieved feasible solutions. The error distribution given in figure 6.11 is
calculated for all the mechanical constraints selected by the method described in chapter 5,
section 5.2. Overall, the strength response approximation error is under 5% and conservative
with the exception of the RS, which rarely contains elements near failure. Lowering the ρ
factor for the rear spar can push the approximation to be more conservative if necessary.
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Figure 6.6: LE and TE displacement of retrieved feasible solutions.
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Figure 6.9: LC3 Buckling Failure Index of Retrieved Stacking Sequences for the blended and
unblended continuous optimum.
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Figure 6.10: LC3 Strength Failure Index of Retrieved Stacking Sequences for the blended and
unblended continuous optimum.
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As expected, the strength approximation error is considerably larger for solution 3, which
is based on the unblended continuous optimum and thus suffers from a nearly twice larger
LPrmse error as shown in figure 6.8.
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Figure 6.11: Approximation Error of the two solutions.

Although the maximum error of the buckling approximation is very large, this does not
actually pose a problem in the optimization because the approximation error for buckling
responses near the failure threshold is much more accurate. The error tends to increase only
for responses far from failure. This is likely to be related to the fact that the constraints near
failure play an active role in the fitness of the designs evaluated by the GA, which in turn
leads to a reduction in the error of the relevant LP for that response and an improvement in
the approximation since it is being built nearer to its reference point.
For solution 1, the buckling approximation error for responses at or above a failure index of
0.9 is between −2% and 1% for the UW and LW skins and −5% to −0.1% for solution 2.
For solution 3, buckling responses at or above a failure index of 0.6 are approximated with
an error of ≈ −0.2%. A lower failure index threshold is used here due to the fact that no
buckling responses had a failure index ≥ 0.9 in solution 3.
An additional set of discrete runs were made with a single objective optimization min(∆m)
without trying to match the LP of the continuous optimum. No feasible solutions were
retrieved due to the GA being steered to regions in the design space where the mechanical
constraints are not approximated accurately.
This was verified by using a distance measure in stiffness space proposed by Irisarri et al. [42]
which provides a measure of the distance between the [A] and [D] matrices of two laminates
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referred to as dAD. Solutions obtained from the blended target with a min(LPrmse) objective
displayed a two to three times lower stiffness distance from the continuous target than those
obtained with a min(∆m) objective. Between the three solutions discussed here, solution 1
has the lowest stiffness distance dAD = 0.054, whereas solution 3 has the highest value of
dAD = 0.290.
Where the runs subjected solely to min(∆m) are concerned, discrete results were obtained
with 0 active constraints according to the response evaluation in the GA, but subsequent
FEA showed widespread failure in strength, implying that the KS approximation method
relies heavily on being in the vicinity of the reference points. Another weakness in this
method is that there is no built-in convergence to ensure that with a growing number of
reference runs the approximation error improves and that the response values don’t need to
be evaluated by subsequent FE analysis.



Chapter 7

Conclusion and Recommendations

Three core goals guided the work described in this report. Firstly, an open-source discrete
optimization toolbox for composite structures named pyTLO was created in order to test
objective functions based on LP-matching. This tool is based on the SST method which
scales well for large composite structures due to its compact encoding and practical laminate
layout that makes the implementation of manufacturing constraints in the stacking sequence
design trivial. The computational performance of pyTLO has been improved over similar
toolboxes, with a 18 panel horseshoe optimization problem taking as little as 5 to 15 minutes
depending on which manufacturing constraints are enforced. Other improvements include the
ability to carry out multi-component optimization that factors in response sensitivities due
to changes in stiffness distribution across the components.
Secondly, improvements in the retrieval of feasible stacking sequences for the ONERA regional
wing model were made by using lamination parameter matching objective functions subjected
to strength and buckling constraints. Here, approximations of the structural responses were
used to keep the computational costs of evaluation thousands of designs at a minimum. A
novel local approximation method which relies on building a KS envelope function of linear
approximations built on multiple reference design points was used. The approximation is
sufficiently accurate for the strength response, with median errors around 1% for the UW
and LW skins and up to 10% for the spars. More importantly, the approximations became
conservative when compared to simple linear approximations.
Subjecting a LP-matching objective to mechanical constraints resulted in a clear improvement
of the retrieved stacking sequences. At a small increase in the LP error over the continuous
target, the number and intensity of active constraints were reduced considerably and it can
be determined that the use of constraints had a clear effect on weighting the LP during the
optimization according to their impact on the response. The use of blending constraints in
the continuous optimization played an important role in the effectiveness of matching LP
as an objective; the more realistic stiffness distribution of the continuous optimum made it
possible for relatively low LPrmse discrete optima to be obtained, which in turn improves the
response approximation.
Finally, feasible stacking sequences were retrieved by allowing thickness to increase over the
distribution determined in the continuous optimization. An ε- constraint method was used
to handle the multi-objective optimization where the increase in mass ∆m is used as a con-
straint and LPrmse is minimized. By incrementally increasing the ∆m constraint, feasible
stacking sequences were obtained for the reference aircraft wing with a mass increase of 4.9%
over the continuous optimum of 610.25 Kg. Another feasible design was obtained using a
vertical displacement matching objective (urmse) instead of LPrmse which resulted in a 5%
increase in mass but with a higher margin of safety in the structural responses and a better
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match of the wing shape under aerodynamic loading with only a 0.6% error in the maximum
displacement. A third feasible design was retrieved using a continuous optimum that did
not include blending constraints with a mass increase of 35% over the continuous optimum of
577.49 Kg. It can be concluded that using blending constraints in the continuous optimization
step led to a considerable improvement in the retrieval of stacking sequence in subsequent
discrete optimization by providing a continuous target with a more streamlined stiffness and
thickness distribution throughout the wing. In all, an 18 % reduction in weight of retrieved
feasible stacking sequences was achieved when blending constraints are used in the continuous
optimization.
In order to bring out the full potential of multi-step optimization strategies in the design of
composite structures, a number of items in both the discrete and continuous steps require
additional attention. These are left here as recommendations for future reference. In what
concerns the continuous step, the two recommendations are targeted at increasing the sim-
ilarity between the feasible design regions of the two steps so that retrieval of equivalent
laminates is improved.

1. Additional research on the selection of blending constraint coefficients would be bene-
ficial in determining recommended constraint bounds that lead to an improvement in
stacking sequence matching without compromising the search of the continuous design
space.

2. In addition to blending constraints, formulating other manufacturing constraints in
LP-space could further mitigate the mismatch between the continuous and discrete
design space. This would be especially beneficial in the design of more damage tolerant
structures if guidelines such as the 10% rule are included in the continuous step.

Finally, four recommendations are made with regards to the discrete step of the optimization
that could lead to improvements in computational performance and the retrieval of equivalent
stacking sequences.

1. Better blending algorithms: Although SST is among the best guide-based blending
methods available, it still constrains the discrete space considerably by requiring that
equal thickness patches have the same stacking sequence. Improving the flexibility
of blending algorithms without compromising computational performance or manufac-
turability of retrieved solutions can considerably improve stacking sequence retrieval
through better matching of parametrized optima.

2. Constraint Selection: Thousands of mechanical constraints are considered in the design
and optimization of large composite structures. The evaluation of these constraints even
when they are not design critical can become expensive in the discrete step due to the
large number of designs that are evaluated by evolutionary algorithms. Sampling the
vicinity of the continuous optimum and building local approximations to determine the
critical constraints can translate to considerable computational cost reduction without
impacting the optimization process.

3. As a follow-up of 3), additional constraints can be considered in the discrete optimization
of aircraft wings to account for aeroelastic responses and ensure that retrieved designs
don’t require extensive repair or further optimization in the search of feasible stacking
sequences.

4. Approximations more accurate than the KS method are needed to improve the success
rate of the discrete step. Defining a sampling framework to cover the vicinity of a
continuous optimum that can be used to build accurate local approximations based on
selection of the nearest sampled reference point would improve the search of the design
space without constraining it.
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Appendix A

Appendix: Polar Plots (E1m(θ)) of
Feasible Stacking Sequences

In this appendix the membrane stiffness E11 polar plots of the three solutions discussed in
chapter 6 are provided. Section A.1 contains the polar plots of Solution 1 which was retrieved
from the blended target of the ONERA regional wing model with the following objective
function: fobj = min(LPrmse + urmse + C(σ, λ,m)).
In section A.2 the polar plots of Solution 2 are given. This solution was retrieved from the
blended target with a displacement matching objective, i.e., fobj = min(urmse + C(σ, λ,m)).
Finally, in section A.3 the polar plots of Solution 3 are provided. This solution was retrieved
from the unblended target with the following objective function fobj = min(LPrmse+urmse+
C(σ, λ,m)). In all plots, the straight lines represent the main stiffness direction of the target
(red) and the retrieved discrete stacking sequences (blue).
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A.1 Polar plots of Solution 1
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Figure A.1: Retrieved UW Polar stiffness E1m of Solution 1 (blended target). Normalized
according to target polar stiffness.
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Figure A.2: Retrieved LW Polar stiffness E1m of Solution 1 (blended target). Normalized
according to target polar stiffness.
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Figure A.3: Retrieved FS Polar stiffness E1m of Solution 1 (blended target). Normalized
according to target polar stiffness.
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Figure A.4: Retrieved FS Polar stiffness E1m of Solution 1 (blended target). Normalized
according to target polar stiffness.
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Figure A.5: Retrieved UW Polar stiffness E1m of Solution 2 (blended target, Displacement
Matching). Normalized according to target polar stiffness.
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Figure A.6: Retrieved LW Polar stiffness E1m of Solution 2 (blended target, Displacement
Matching). Normalized according to target polar stiffness.
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Figure A.7: Retrieved FS Polar stiffness E1m of Solution 2 (blended target, Displacement
Matching). Normalized according to target polar stiffness.
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Figure A.8: Retrieved FS Polar stiffness E1m of Solution 2 (blended target, Displacement
Matching). Normalized according to target polar stiffness.
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A.3 Polar plots of Solution 3
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Figure A.9: Retrieved UW Polar stiffness E1m of Solution 3 (unblended target). Normalized
according to target polar stiffness.



A.3 Polar plots of Solution 3 79

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.29
t = 4.80mm

LW Panel 21

Target
Retrieved

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.26
t = 2.80mm

LW Panel 22

Target
Retrieved

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.65
t = 1.20mm

LW Panel 23

Target
Retrieved

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.27
t = 4.00mm

LW Panel 24

Target
Retrieved

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.43
t = 2.40mm

LW Panel 25

Target
Retrieved

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.25
t = 2.40mm

LW Panel 26

Target
Retrieved

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.47
t = 1.60mm

LW Panel 27

Target
Retrieved

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.21
t = 4.80mm

LW Panel 28

Target
Retrieved

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.21
t = 2.00mm

LW Panel 29

Target
Retrieved

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.25
t = 2.00mm

LW Panel 30

Target
Retrieved

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.27
t = 2.00mm

LW Panel 31

Target
Retrieved

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.31
t = 0.80mm

LW Panel 32

Target
Retrieved

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.49
t = 6.00mm

LW Panel 33

Target
Retrieved

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5

LPrmse = 0.66
t = 2.00mm

LW Panel 34

Target
Retrieved

Figure A.10: Retrieved LW Polar stiffness E1m of Solution 3 (unblended target). Normalized
according to target polar stiffness.
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Figure A.11: Retrieved FS Polar stiffness E1m of Solution 3 (unblended target). Normalized
according to target polar stiffness.
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Figure A.12: Retrieved FS Polar stiffness E1m of Solution 3 (unblended target). Normalized
according to target polar stiffness.
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